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Abstract: Precipitation and temperature enact variable influences on vegetation, impacting the
type and condition of land cover, as well as the assessment of change over broad landscapes.
Separating the influence of vegetative variability independent and discrete land cover change remains
a major challenge to landscape change assessments. The heterogeneous Lerma-Chapala-Santiago
watershed of central Mexico exemplifies both natural and anthropogenic forces enacting variability
and change on the landscape. This study employed a time series of Enhanced Vegetation Index (EVI)
composites from the Moderate Resolution Imaging Spectoradiometer (MODIS) for 2001–2007 and
per-pixel multiple linear regressions in order to model changes in EVI as a function of precipitation,
temperature, and elevation. Over the seven-year period, 59.1% of the variability in EVI was explained
by variability in the independent variables, with highest model performance among changing and
heterogeneous land cover types, while intact forest cover demonstrated the greatest resistance to
changes in temperature and precipitation. Model results were compared to an independent change
uncertainty assessment, and selected regional samples of change confusion and natural variability
give insight to common problems afflicting land change analyses.

Keywords: vegetation; variability; Land Use and Land Cover Change; precipitation; temperature;
MODIS; TRMM; EVI; LST

1. Introduction

While the influence on vegetative vigor of climatic variables such as precipitation and temperature
relates to the type and condition of land cover, the isolation of this variability independent of discrete
land cover change is a major challenge of the geographic information science, remote sensing, and land
change science communities. In the heterogeneous and rapidly changing Lerma-Chapala-Santiago
watershed of Mexico [1–4], natural and anthropogenic factors, including droughts, the El Niño
Southern Oscillation, agricultural expansion, and forest loss enact changes in the remotely sensed
detection of vegetative vigor. This study assessed variability using a time series of Enhanced
Vegetation Index (EVI) composites from the Moderate Resolution Imaging Spectoradiometer (MODIS)
for 2001–2007 and per-pixel multiple linear regressions in order to model changes in EVI as a function
of precipitation, temperature, and elevation.

The natural variability of vegetation vigor due to the individual and compound effects of
temperature and precipitation has been investigated in numerous geographical contexts, primarily
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through the use of ground-based observation stations or data from the Advanced Very High Resolution
Radiometer (AVHRR) [5]. The need for both inter- and intra-annual analyses for both short-term
assessments and long term monitoring and prediction has been affirmed by many researchers, but
systematic data errors and coarse global datasets have hindered applicability of studies to local and
regional contexts [6–8]. Still, the direct and immediate relationship of increased precipitation to
positive changes in vegetative vigor has been established through the use of remotely sensed data in
mid-latitude semi-arid environments, such as those in central Mexico [9,10]. Because natural variability
may diminish or exaggerate the ability of researchers to monitor discrete changes in land cover with
satellite-derived image products [11], it is important to consider the climatic conditions concurrent
with land change analyses [12] to avoid both errors of omission and commission in land cover change
detection and quantification.

1.1. Vegetation Indices and Vegetative Vigor

Improving the ability to measure the quantity and condition of vegetation from remote sensing
instruments has been an intensive endeavor for more than 40 years. Early efforts by ecological pioneers
such as Jordan [13] and Sellers [14] to relate the quality of light reaching the forest floor to metrics
like leaf area index, have been refined into vegetative indices (e.g., the work of Tucker [15]), which
attempts to maximize the difference between reflected variables to generate metrics of vegetative vigor.
The investigation of phenological variability, including changes to the timing and duration of growing
seasons, has been facilitated through the increased availability of continuous temporal datasets, such
as AVHRR [16,17] and MODIS [18]. Previous studies have indicated changes in the length and onset of
growing seasons around the world, which have been ascribed to interannual variability or long-term
climatic trends [17,19]. These changing intra-annual patterns are ascribable to both climactic variability
and changing land uses [18,19], and regions experiencing these changes are highly susceptible to
misidentifications of land change [20].

The Normalized Difference Vegetation Index (NDVI) has been the most widely used vegetation
index, and its broad utility across different land covers and remote sensing instruments has led to
tremendous gains in the understanding of regional and global land cover [21,22]. Over tropical and
subtropical regions, the NDVI ratio, using satellite image bands in the red and near-infrared ranges,
is subject to saturation in cases of high vegetative vigor and sensitivity to atmospheric conditions [22].
Numerous efforts to quantify the relationship between reflected radiation and ecological variables
such as leaf-area index and vegetation cover [5,14] have led to improvements upon the NDVI [22]. The
Enhanced Vegetation Index (EVI) (designed to minimize haze effects on red reflectance and expand
radiometric sensitivity to varying amounts of vegetation, by incorporating blue band and correction
constant values) has been systematically evaluated and compared to NDVI in tropical and subtropical
environments, and EVI has proven robust to saturation in regions of dense vegetation, while remaining
sensitive to variations in canopy cover [23,24]. Several studies have compared the effectiveness of
NDVI and EVI in tropical [25] and semi-arid environments [26], noting the close relationship between
the two indices. In a study of the effect of sub-pixel mixing of land cover on the values of vegetation
indices, Liu and Kafatos [27] found that EVI varied less than NDVI in areas of mixed land cover,
making it especially suitable in heterogeneous landscapes. Therefore, the MODIS monthly 1-kilometer
EVI composite product was chosen to represent the vegetative vigor of land cover in relation to climate
variables of temperature and precipitation.

1.2. Linear Modeling in Time Series Analysis

Linear modeling, in which predictor equations are calculated based on the correlations of ordinary
least squares regression, has proven useful in identifying and quantifying the relationships among
time series of bioclimatic variables [28]. The use of linear modeling in the context of time series
analysis identifies the relationship among temporal sequences of imagery, rather than individual
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images. Rather than a single slope and intercept to define the terms of the relationship, the relationship
of the dependent variable to the independent variables is calculated on a per-pixel basis.

The relationship of temperature and precipitation with variation in vegetation indices has been
evaluated using AVHRR [6,29] and ground-based data [12]. In almost every global ecosystem, there is a
positive relationship between increased precipitation and increased vegetation index values, especially
in water-stressed regions [6,30,31]. Generally, in both semi-arid and sub-tropical regions, a negative
relationship between temperature and EVI indicates vegetation vigor is limited by water availability
and especially soil moisture [7,8,32]. In the investigation of time series relationships, a change in an
independent variable may occur concurrently with a change in the dependent variable. Alternately,
a lagged effect implies that a change in an independent variable may precede a change in the dependent
variable or that changes in the dependent variable were ascribable to the compound effects of the
preceding changes in the independent variables. Wang and colleagues have demonstrated that while
there are lagged effects of precipitation and temperature upon vegetation variation, the highest
correlation occurred within one or two biweekly periods, or approximately one month [31]. Further,
Braswell and colleagues note that there are both significant instantaneous and lagged relationships
among vegetation and temperature and that these vary across ecosystems [7]. While lagged links
between EVI and climate variables may represent subtle ongoing processes of change [33], they are not
effective for the identification of discrete categorical change due to the longer timelines in which these
changes occur. As the impacts of precipitation on the natural and rain fed agricultural landscapes of
this region would have a quicker impact than the temporal resolution of the data, this study addresses
the instantaneous changes in temperature and precipitation that occur concurrently with changes
in EVI in order to relate the changes in vegetative vigor to the identification of discrete change in
categorical land cover assessments.

1.3. Study Area

This research was conducted in the Lerma-Chapala-Santiago watershed (Figure 1) of central
Mexico (19–23.5˝N, 99–105.5˝W), on Mexico’s Central Mesa, bordered to the south by the Transverse
Neovolcanic Mountain Range [34]. Encompassing nearly 136,000 square kilometers, the watershed
spans more than 4000 meters in elevation, including the drainages of the Lerma River (Río Lerma) and
the Santiago River (Río Grande de Santiago) [35].

This region includes a wide variety of climatic zones and natural vegetation types, due to its
diverse topography and geomorphology [34]: semi-arid, dry-steppe, humid sub-tropical, pine-oak
forests, and others. As a region situated within the tropics, cyclical patterns of natural variability, such
as the El Niño Southern Oscillation, have a direct and immediate effect on precipitation regimes [36].
The phase of El Niño brings cooler temperatures and increased precipitation, while the complementary
phase of La Niña is associated with dryer, hotter conditions [36]. During this study, a minor La Niña
pattern was identified in 2000–2001 and 2007, and an El Niño pattern has been identified in the winters
of 2002–2003, 2004–2005, and 2006–2007. Additionally, the region is subject to the potential influence of
both Atlantic (Caribbean) and Pacific hurricanes, though its elevation and relative topography limit
the influence of these forces largely to changes in precipitation [36,37].

Patterns indicating widespread drying phenomena have been noted across southwestern North
America [38], and there are indications of a major drought in Mexico in the early twenty-first
century [39]. Across central Mexico, there are numerous unprotected water bodies that qualify
as threatened wetland ecosystems under international conventions [40], and large lakes in this study
area, including Chapala and Cuitzeo, have seen volumes decline at an unprecedented rate over recent
decades [35,41]. Drought events have a major impact on the Mexican agricultural sector and the
communities who depend on it [42,43], and the linear patterns of increased drying and decreased
precipitation are shaping a variety of industries [44].
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smallholders’ plots into more commercial and mechanized agricultural systems [54,55]. The 
watershed is a major producer of corn for the region and the country, and increased investment in 
tequila production has led to the conversion of fields to agave cultivation in the western state of 
Jalisco [56,57]. 
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The natural heterogeneity of the region is exemplified by a wide variety of plant species. There
are more than 40 species and recognized variations of pine trees in the Republic of Mexico [45], and the
Transvolcanic range and Central Mesa are recognized as centers of pine species diversity in Mexico [46].
The Monarch Butterfly Biosphere Reserve, on the edge of the watershed near the borders of the states
of Michoacán and Mexico, represents a unique realized niche critical to the annual cycle of the global
population of the species [47].

The broad range of natural variation in land cover types and the apparent fluctuation in vegetation
vigor across the region is exacerbated by human activity. In addition to extensive heterogeneity
in its natural cover, the Lerma-Chapala-Santiago watershed includes several major urban centers,
including the cities of Guadalajara (1.7 million inhabitants), Toluca (~750,000 inhabitants), Queretaro
(~730,000 inhabitants), Aguascalientes (~700,000 inhabitants), Morelia (~640,000 inhabitants), and
Guanajuato (~480,000 inhabitants) (INEGI, 2005). With many regional urban centers within the
watershed and Mexico City just beyond its limits, the expansion of the built environment exerts a
strong and constant pressure on natural land covers [48,49] and water resources [35,50,51]. Processes
of urbanization, extensive and intensive agriculture, timber harvesting, and mining fragment the
landscape, creating a motley patchwork of human and natural land covers across most of the
watershed [3,52,53]. Additionally, this agriculturally-intensive region has seen a trend toward the
consolidation of smallholders’ plots into more commercial and mechanized agricultural systems [54,55].
The watershed is a major producer of corn for the region and the country, and increased investment
in tequila production has led to the conversion of fields to agave cultivation in the western state of
Jalisco [56,57].
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Many landscapes in the region comprise a heterogeneous mixture of multiple covers. In the
classification scheme of the International Geosphere-Biosphere Program Data and Information System
(IGBP-DIS) DISCover land cover product, a thematic class of “Cropland/Natural Vegetation Mosaic”
was included to accommodate cover types that did not represent pure endmembers of either natural
or anthropogenic land covers [58,59]. This “Mosaic” cover is especially appropriate in the diverse
Lerma-Chapala-Santiago watershed as a buffer class between cropland and natural land covers, as
well as serving as an indicator of forest fragmentation or harvesting [58,60].

2. Materials and Methods

Data for this project included vegetation index and land surface temperature products from
MODIS, average daily precipitation from TRMM, a DEM from SRTM, and maps of land cover
persistence and change [1]. Methods explicated below included the extraction of summary statistics
from the time series of dependent and independent variables and a multiple linear regression,
performed over the seven-year series and each annual subseries independently (summarized patterns
of EVI, precipitation, and temperature shown in Figure 2). Results of the regression model were
compared to a previous land cover and uncertainty analysis to explain the effect of variability upon
land change error and confusion [1].
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Figure 2. Average Monthly Enhanced Vegetation Index (EVI), Precipitation, and Temperature,
2001–2007, for entire the Lerma-Chapala-Santiago watershed.

2.1. Indices of Vegetative Vigor

Enhanced Vegetation Index (EVI) image composites produced by MODIS product MOD13A3
were used for this study. This product is a monthly maximum value composite of observations from
the MODIS instrument on the Terra platform, with a spatial resolution of 1 km per pixel and continuous
coverage over the period of study, 2001–2007. As this imagery has undergone geometric correction
and compositing by the producers to accommodate periods of impaired observations [61], no further
correction was performed in this study.



Remote Sens. 2016, 8, 478 6 of 18

2.2. Temperature, Precipitation and Elevation Data

Land surface temperature data were derived from the MODIS Terra product MOD11C3, which
are distributed as monthly composites of 0.05 degrees per pixel. Data units were transformed from
Kelvin to degrees Celsius to maximize interpretability of the results, as negative temperature values
were not present in the sample.

Precipitation data were derived from the Tropical Rainfall Measuring Mission product 3B43,
which are distributed as monthly composites of average hourly precipitation at 0.25˝ per pixel [62].
Precipitation data values were rescaled from mm/hour to mm/day to maximize interpretability of
the results.

To account for the effects of elevation upon temperature and precipitation [63,64], a digital
elevation model (DEM) from the Shuttle Radar Topography Mission was included in the regression
analysis as a constant. A series of identical SRTM images was used in the regression to mimic a
temporal sequence of the static variable. A random factor of less than one meter was added to all
SRTM images to avoid the calculation of a singular correlation matrix among this series.

To ensure geometric compatibility with the series of vegetation indices, all temperature,
precipitation, and elevation images were geometrically reprojected and downsampled to 1 km per
pixel resolution in the sinusoidal references system using a bilinear calculation [65].

2.3. Land Cover Dynamics

Maps of eight natural and anthropogenic land cover categories for 2001 and 2007 were
crosstabulated to identify regions of persistent and changing land cover over the seven-year period [1]
(Figure 3). Land cover classes were based on a systematic roadside survey of the Lerma-Chapala-
Santiago during January and July 2007 and included the following thematic categories: forest; shrub;
grass; sparse vegetation; built (including urban and rural settlements); crop (including mechanized
and smallholder agriculture); and mosaic (defined by a sub-pixel mixture of cropland and natural
vegetation). Land cover maps were generated for 2001 and 2007 using a combined pseudo-invariant
calibration database and the Mahalanobis distance classifier in the Idrisi Taiga software package [1].
Overall map accuracy for the both maps was approximately 90%.
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(b) across the Lerma-Chapala-Santiago watershed.

Regions of changing and persistent land cover were further refined using the Confusion Index
metric derived from soft-classified Mahalanobis typicality images for both dates [1]. The Confusion
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Index (CI) quantifies the potential for error in land change assessments based upon the uncertainty
inherent to each map used for the change assessment, identifying potential cases in which classification
error in one or both maps may contribute to the misidentification of landscape change. CI values
range from 0 to 1, in which low values represent a low likelihood of spurious change assessments and
higher values indicate apparent change (or persistence) in the imagery may not match true landscape
dynamics. For this study, land cover persistence and change assessments were thresholded at a level
below 0.3, based on the results of a sensitivity analysis, to isolate the transitions in which there was the
highest confidence.

2.4. Multiple Linear Regression

Multiple linear regression was used to model the series of monthly EVI composites as a dependent
variable against the independent variables of precipitation and temperature. Through the use of the
Earth Trends Modeler of the Idrisi Taiga software package [66], per-pixel slope and intercept terms
were calculated as well as a spatially-explicit coefficient of determination for the modeled relationship.
Models were generated using the seven-year series of 84 months as well seven independent annual
series of 12 months/year. Model results of the seven-year series (R2) are shown in Figure 4.
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Figure 4. Coefficient of determination (R2) of modeled variability in EVI with temperature,
precipitation, and elevation as independent variables in 2001–2007 series across the Lerma-Chapala-
Santiago watershed.

2.5. Statistics of Variability and Model Performance

Summary statistics of the average monthly of EVI, temperature, and precipitation and the annual
variability of each of these variables were calculated over the entire study area. The mean and standard
deviation of the monthly spatial averages was calculated to indicate the temporal variability of each
variable for each location through time on an annual basis. Additionally, the spatial population
standard deviation was calculated from the annual mean EVI images to illustrate the variability
across space.
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The spatially-explicit model equation terms and the coefficient of determination were averaged
over the scale of the entire watershed as well as the isolated regions of persistent and changing land
cover, for the seven-year series and the annual series relationships.

2.6. Selected Sample Regions

Four selected sample regions were isolated based on model performance and Confusion Index
(CI) values to illustrate potential cases in which land cover change and persistence may or may not be
conflated with natural variability. Regions were selected quantitatively through the logical intersection
of very low (<0.4) and very high (>0.7) CI, which ranged from 0 to 1, and model R2 values, which
ranged from 0 to 0.84. Areas with low CI comprised 22.0% of the landscape, while areas with high CI
comprised 49.0% of the landscape. Areas with low R2 values comprised 7.7% of the landscape and
high R2 values comprised 15.3% of the landscape. The intersection yielded the four zones from which
samples were selected, with their proportional area of the entire Lerma-Chapala-Santiago watershed:
low R2 and low CI, 2.2%; low R2 and high CI, 3.8%; high R2 and low CI, 3.6%; high R2 and high CI,
6.7%. A region of approximately 21.4 square kilometers (corresponding to 25 1-kilometer MODIS
pixels or 100 500-m pixels) was selected to represent each sample. Land cover composition in 2001,
2007, Confusion Index, Model R2, Average EVI, and Annual EVI profiles for 2001 and 2007 were
extracted for each sample (illustrated in Figure 5).
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3. Results

3.1. Average Characteristics of Dependent and Independent Variables by Series

Over the seven-year period, the average EVI value across the entire Lerma-Chapala-Santiago
watershed was 0.270, with a temporal standard deviation of 0.100 and a spatial standard deviation of
0.408, demonstrating the range of variability of this landscape. Annual average EVI values ranged
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from a low of 0.255 in 2001 to a high of 0.284 in 2004. The temporal standard deviation of the seven-year
series was 0.100, which varied on an annual basis from a low of 0.096 in 2006 to a high of 0.105 in 2007.
The spatial standard deviation calculated of the averages of the seven-year series was 0.058, which
varied in the annual series from 0.59 (2006) to 0.062 (2004 and 2005).

Average daily precipitation over the entire series was 1.793 mm/day, with a standard deviation of
2.158 mm/day. On an annual basis, average daily precipitation ranged from a high of 2.579 mm/day in
2004 to a low of 0.769 mm/day in 2005. Average daytime temperature over the seven-year series was
30.357 degrees C, with a standard deviation of 5.980 degrees C. Annually, average daily temperature
ranged from a high of 31.440 degrees C in 2001 to a low of 28.457 degrees C in 2004. In the SRTM
DEM, the elevation of the Lerma-Chapala-Santiago watershed ranges from 4360 m to sea level, with an
average elevation of 1903.9 m. Table 1 details summary statistics of EVI, precipitation, and temperature,
and the profiles of each of these variables is illustrated in Figure 2.

Table 1. Summary statistics of time series of dependent and independent variables across entire
Lerma-Chapala-Santiago watershed.

EVI Precipitation Temperature

Series Year(s) Mean
Standard Deviation

Mean Standard
Deviation

Mean Standard
DeviationTemporal Spatial

2001–2007 0.270 0.100 0.058 1.793 2.158 30.357 5.980
2001 0.255 0.102 0.060 1.997 2.291 31.440 5.878
2002 0.270 0.101 0.061 2.134 2.125 30.309 6.321
2003 0.282 0.108 0.060 2.433 3.033 30.145 6.519
2004 0.284 0.109 0.062 2.579 2.810 28.457 5.525
2005 0.260 0.098 0.062 0.769 0.977 31.386 6.280
2006 0.267 0.096 0.059 1.227 1.302 30.633 6.713
2007 0.276 0.105 0.060 1.414 1.644 30.128 5.589

3.2. Average Characteristics of Dependent and Independent Series by Land Cover Type and Dynamics

Average EVI values across the sample set of persistent land cover type varied widely. Water, with
little vegetative response, had a mean EVI value of 0.022 across the seven-year series. The highest mean
EVI value was in the forest class, with 0.304, and the lowest mean EVI was in the built class, at 0.151.
Agricultural classes of crop and mosaic had average EVI values of 0.296 and 0.298, respectively.

Precipitation falling on each land cover type varied accordingly with its distribution across the
watershed, ranging from a high of 1.903 mm/day for the mosaic class to a low of 1.395 mm/day for
the grass class. Similarly, average daytime temperature ranged from lows of 22.7 degrees C across the
water cover and 25.5 degrees C across the forest cover to 34.4 across sparsely vegetated land cover.

When averaged over each land cover class, EVI generally exhibited a positive relationship to
elevation (R2 = 0.41), supported by the high average EVI and high elevation of the forest class. Average
temperature and elevation over each land cover showed a weak negative correlation (R2 = 0.03), and
there was no demonstrable relationship between precipitation and elevation over the averaged extent
of each land cover.

For all persistent land covers, the mean EVI for the seven-year series was 0.281, with an average
precipitation of 1.793 mm/day and temperature of 30.3 degrees C. For any land cover that confidently
experienced a categorical shift [1], the mean EVI for the seven-year series was 0.260, with average
precipitation of 1.787 mm/day and temperature of 30.9 degrees C. Table 2 details summary statistics of
average EVI, temperature, and precipitation by land cover type and dynamic over the seven-year series.
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Table 2. Summary statistics of average EVI, temperature, and precipitation by land cover type and
dynamics, 2001–2007.

Land Cover
Dynamic *

Land
Cover Type

EVI
(mean)

Precipitation
(mean, mm/day)

Temperature
(mean, degrees C)

Elevation
(mean, meters)

Persistence

Water 0.022 1.638 22.732 1518.002
Forest 0.304 1.799 25.467 2360.186
Shrub 0.234 1.532 31.975 1918.243
Grass 0.204 1.395 32.025 2143.839
Sparse 0.186 1.587 34.401 1424.184
Built 0.151 1.809 32.578 1694.716
Crop 0.296 1.870 31.367 1825.303

Mosaic 0.289 1.903 30.336 1881.013

All Land ** 0.281 1.793 30.332 1934.101

Change All Changes 0.260 1.787 30.903 1975.454

* Land Cover Dynamic refers to the state of change or persistence in the comparison of the 2001 and 2007 land
cover maps; ** The “All Land” Land cover type aggregates all land cover types except Water.

3.3. Model Performance by Series

The model indicated that 59.1% of the variability in the dependent variable (EVI) was explained
by precipitation, temperature, and elevation over the seven-year series from 2001 to 2007 (Figure 4).
On an annual basis, EVI exhibited a varying relationship with the independent variables. From
2001 to 2004, model performance across the watershed was high, with 71.5% (2001) to 79.1% (2002)
of the variability in EVI explained by precipitation, temperature, and elevation. In 2005 the model
relationship decreased, with only 52.5% of the variability in EVI explained by independent variables.
In 2006, model performance was highest among all years studied (R2 = 0.798), and in 2007, model
performance decreased slightly, explaining only 68.1% of the variability in EVI. Table 3 summarizes the
annual and series model performances, as well as the slope and intercept coefficients for each model.

Table 3. Average coefficients of determination, slope, and intercept terms for each model across entire
study region.

Series
Year(s) R2 Slope1

(Precipitation)
Slope2

(Temperature)
Slope3

(Elevation) Intercept α

2001–2007 0.5910 2.955 ˆ 10´2 ´5.592 ˆ 10´3 3.300 ˆ 10´5 0.3376 <0.001
2001 0.7148 2.766 ˆ 10´2 ´7.549 ˆ 10´3 1.440 ˆ 10´4 0.163 <0.001
2002 0.7907 3.837 ˆ 10´2 ´3.590 ˆ 10´3 1.740 ˆ 10´4 0.722 <0.001
2003 0.7739 2.779 ˆ 10´2 ´4.150 ˆ 10´3 2.500 ˆ 10´4 ´0.107 <0.001
2004 0.7246 3.004 ˆ 10´2 ´4.079 ˆ 10´3 ´4.500 ˆ 10´5 0.355 <0.001
2005 0.5247 5.564 ˆ 10´2 ´5.330 ˆ 10´3 4.400 ˆ 10´5 0.270 <0.05
2006 0.7976 5.655 ˆ 10´2 ´4.566 ˆ 10´3 ´1.180 ˆ 10´4 0.603 <0.001
2007 0.6809 4.468 ˆ 10´2 ´6.139 ˆ 10´3 1.070 ˆ 10´4 0.194 <0.01

3.4. Model Performance by Land Cover Type and Dynamics

Across the seven-year series, the average performance of the per-pixel multiple linear regression
varied widely by land cover type. Table 4 summarizes the performance of the seven-year per-pixel
multiple linear regression model by land cover type and dynamics. In a sample of confidently persistent
land covers, on a per-class basis, from 45.9% to 68.0% of the variability in EVI values was explained
by independent variables temperature, precipitation, and elevation. Persistent forested landscapes
showed the lowest modeled relationship, with only 45.9% of the variability in EVI values explained
by the independent variables. The highest model performance was in the mosaic class, explaining
68.0% of the variability in EVI values. Water was excluded from aggregations of land cover, due to
the very low relationship among its vegetative vigor (ascribable mostly to changing water levels and
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eutrophication), temperature, and precipitation. For any pixel that experienced a categorical change in
land cover type over the seven-year period, 64.5% of the variability in EVI values was explained by
the independent variables. Of the sample of persistent land-based classes, the model explained 56.9%
of the variability in EVI values.

Table 4. Average coefficients of determination, slope, and intercept terms for 2001–2007 series model
by land cover type and dynamics.

Land Cover
Dynamic *

Land
Cover Type R2 Slope1

(Precipitation)
Slope2

(Temperature)
Slope3

(Elevation)
Intercept

Unmodified α Unmodified

Persistence

Water 0.0361 ´6.010 ˆ 10´4 ´1.558 ˆ 10´3 9.030 ˆ 10´4 ´1.313 <0.4
Forest 0.4587 1.586 ˆ 10´2 ´2.054 ˆ 10´3 1.390 ˆ 10´4 7.087 ˆ 10´2 <0.001
Shrub 0.6053 3.629 ˆ 10´2 ´4.615 ˆ 10´3 ´1.060 ˆ 10´4 0.574 <0.001
Grass 0.5583 2.808 ˆ 10´2 ´3.437 ˆ 10´3 ´3.740 ˆ 10´4 0.952 <0.001
Sparse 0.5666 1.907 ˆ 10´2 ´1.940 ˆ 10´3 5.250 ˆ 10´4 ´0.559 <0.001
Built 0.4423 1.045 ˆ 10´2 ´7.150 ˆ 10´4 ´1.467 ˆ 10´3 2.615 <0.001
Crop 0.5477 3.194 ˆ 10´2 ´5.415 ˆ 10´3 2.010 ˆ 10´4 ´1.763 ˆ 10´2 <0.001

Mosaic 0.6796 3.590 ˆ 10´2 ´7.773 ˆ 10´3 ´1.010 ˆ 10´4 0.839 <0.001

All Land ** 0.5690 3.057 ˆ 10´2 ´5.097 ˆ 10´3 4.600 ˆ 10´5 0.322 <0.001

Change All Changes 0.6453 3.425 ˆ 10´2 ´6.162 ˆ 10´3 ´2.820 ˆ 10´4 1.060 <0.001

* Land Cover Dynamic refers to the state of persistence or change in the comparison of the 2001 and 2007
land cover maps, controlled for uncertainty; ** The “All Land” cover type aggregates all land cover types
except Water.

3.5. Model Performance, Confusion, and Land Change in Selected Samples

Four sample regions were selected to evaluate the cases in which high and low Confusion Index
values intersected with high and low coefficients of determination in the seven-year model (Figure 5).

‚ The first region (Figure 5a), a parcel of intact forest on the border of the states of Zacatecas and
Aguascalientes, is representative of poor model performance with low potential for spurious
change assessments and was selected for its low CI (0.170) and low R2 (0.290). In the land cover
assessments for both the 2001 and 2007, 100% of the pixels were classified as forest, and the
average EVI value over all years was 0.283. Examination of the EVI profiles for 2001 and 2007
indicated similar pattern variability in values over each year.

‚ The second region (Figure 5b), a stretch of irrigated agriculture in the state of Nayarit, at the
very end of the Rio Grande de Santiago delta, is representative of poor model performance with
high potential for spurious change assessments and was selected for its high CI (0.932) and low
R2 (0.336). In both 2001 and 2007 land cover assessments, 100% of the pixels were classified as
agriculture, with an average EVI value of 0.315 for this period. Examination of the EVI profiles for
2001 and 2007 indicated increased vegetative vigor during the growing seasons of July, August,
and September in 2007 compared to 2001.

‚ The third region (Figure 5c), a stretch of seasonal agriculture in the northern portion of the state
of Michoacán near the border of Guanajuato, is representative of high model performance with
low potential for spurious change assessments and was selected for its low CI (0.331) and high
R2 (0.726). In the 2001 land cover map, 49% of the pixels were classified as cropland, and 51%
as mosaic cover. In the 2007 assessment, mosaic cover increased to 72% of the classified pixels,
cropland decreased to 25%, and forest and shrub covered 1% and 2% of the pixels in the parcel,
respectively. The average EVI value for this sample was 0.291 for this period. EVI profiles for 2001
and 2007 demonstrated a very similar pattern for both years.

‚ The fourth region (Figure 5d) is a heterogeneous plot of shrub, forest, and mosaic cover in the
northern region of the state of Jalisco, in an area along a small river basin, where logging is
prevalent. This region demonstrates high potential for spurious change assessments and had
high model performance, as indicated by its high CI (0.955) and high R2 (0.740). In the 2001
land cover map, the parcel was comprised of mosaic (57% of classified pixels), forest (27%),
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shrub (11%), crop (3%), and water (2%) covers. In 2007, the land cover types included shrub
(58% of classified pixels), mosaic (34%) and forest (8%). The average EVI value from 2001 to 2007
was 0.304. Examination of the average monthly EVI values revealed that values for 2007 were
lower in July than in 2001, but higher in August and September.

4. Discussion

4.1. Variability of Dependent and Independent across Land Cover Types, 2001–2007

Across the Lerma-Chapala-Santiago watershed, the average patterns of EVI, temperature, and
precipitation exhibit noticeable variability through time. Temperature was the most constant variable,
ranging less than 3 degrees C among all years, with the lowest average temperatures (28.5 degrees C)
in 2004 and the highest (31.4 degrees C) in 2001 and 2005. Average EVI increased steadily from
0.255 in 2001 to 0.284 in 2004 before dipping to 0.260 in 2005 and then rising again to 0.276 in 2007.
The precipitation record demonstrates the greatest average differences among years, ranging from a
high in 2004 of 2.58 mm/day to decrease of 70% the following year (0.77 mm/day). Through these
average records, the basic relationship among the independent variables is clear: high precipitation
and low temperatures are associated with high average EVI values.

The relationship among EVI, temperature, and precipitation across each persistent land cover
type related to the typical composition and configuration of the thematic class. Forest, at an average
elevation of 2360.2 m, had the lowest average temperature (25.5 degrees C) and highest average EVI.
Average EVI decreased with the stature of vegetation among natural land covers, based upon the
categorical definitions, and the low average precipitation in the Grass and Sparse classes may indicate
that water stress contributed to the composition of these land covers.

Changing land covers exhibited slightly lower average EVI than persistent land covers, with an
average EVI value of 0.260 for any region that demonstrated a categorical transition and 0.281 for any
persistent land cover. While the high EVI values among persistent land covers may be ascribable to the
intact forest cover and consistent agricultural cultivation from 2001 to 2007, the changing land covers
may also demonstrate high EVI because most transitions in this landscape involved an agricultural
land cover class [1].

The relationship between temperature and EVI is not unidirectional [32], as land cover has a
demonstrable negative effect upon surface temperature [67], but increased temperature may indicate
stresses limiting vegetation [68]. Dense green vegetation, which is characteristic of high average EVI
values, has a lower surface temperature than unvegetated surfaces [32,69]. However, the instantaneous
temperature of the surface of the Earth is a function of the reflected and absorbed solar radiation
and may be influenced by many factors besides land cover type, such as soil moisture, geology, and
topography [63,67]. The positive relationship between temperature and vegetative vigor demonstrated
by others in high latitude and high elevation regions is directly attributable to the limited solar energy
upon vegetation growing patterns [6,11]. In semi-arid regions, such as the Lerma-Chapala-Santiago
watershed, however, the negative relationship between vegetation indices and temperature likely
indicates that water, rather than solar energy, is the greatest limitation on vegetation growth and that
higher temperatures exacerbate dry conditions [7,68].

4.2. The Modeled Relationship of Temperature, Precipitation, and Elevation on EVI

The modeled relationship of EVI as a function of temperature, precipitation and elevation for
each individual year demonstrated higher coefficients of determination than the seven-year series.
Annual models with the highest R2 values were in 2002, 2003, 2004, and 2006 all occurred during
years recognized for El Niño activity [70], typically associated with lower temperature and higher
precipitation. In years recognized for La Niña, which generally brings lower precipitation [70],
72.5% (in 2001) and 68.1% (in 2007) of the variability in EVI values was attributable to climate variables.
The year in which the model performance was lowest, in 2005, with 52.5% of the variability in EVI
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explained, occurred during a year in which average precipitation indicated drought conditions across
Mexico and in many other regions of the world [39,71].

The average model performance by land cover revealed patterns relating to the dynamics of
vegetation inherent to each cover type in this region. For example, while persistent forest cover had the
highest average EVI during the seven-year period, the model performance was lowest among natural
land covers. Because evergreen pine forests dominate the forest types of this region, the vegetative vigor
measured by a vegetation index demonstrates less interannual variability than broadleaf vegetation.
Natural cover types with the highest R2 between EVI and the independent variables included shrub
(0.605), grass (0.558) and sparse (0.567), indicating that these covers demonstrate a direct and immediate
relationship to changes in precipitation and temperature.

The landscape dynamics of change and persistence of land cover affected the average EVI values.
Regions experiencing a change of categorical land cover between 2001 and 2007 had a closer modeled
response of EVI to independent variables (64.5%) than the average of all persistent land covers, with
only 56.9% explained. Similarly, the mosaic class, defined by the heterogeneous composition of natural
and agricultural land uses showed the highest modeled relationship among all land covers. The
mosaic class comprised more than half of the observed land cover transitions during this time period,
and such transitions often replaced natural land covers with the precipitation-dependent agricultural
activity [27].

4.3. Land Cover Confusion and Natural Variability in Selected Sample Regions

The four sample regions identified through comparison of the Confusion Index and model
performance reveal indicators that can help users of change assessments identify and evaluate the
potential for real and spurious change on the landscape. Previous research identified the prevalence of
change in this landscape using the same data and noted cases where classification uncertainty and
potential error in one or both maps may lead to spurious change assessments [1].

In the forested sample (Figure 5a), a low average CI demonstrates that the signature of this
parcel of land was consistent with the calibration data with which it was classified in the land cover
assessments. As the persistent forest class overall demonstrated low coefficients of determination in
the model, this is consistent with the identification of persistence in this region. These two indices
together indicate that there is little likelihood of change in this parcel.

In the intensive agricultural example (Figure 5b), model performance was relatively low and
confusion was high. This might ordinarily appear to be an indicator of spurious persistence; however
the high CI demonstrates that, in both 2001 and 2007 land cover assessments, this parcel was not very
typical of the range of variability of its thematic category. The legend scheme used for this analysis did
not discriminate between intensive and seasonal agricultural patterns. Because this region is irrigated,
the regression model performance did not demonstrate the close relationship to precipitation and
temperature seen across the rest of the study area. Hence, though this parcel may not be typical of all
pixels in the thematic class, natural variability did not interfere with the change assessment.

Conversely, the change assessment of the seasonal agricultural plot (Figure 5c), with both a low
CI and a high R2, indicates that natural variability may have a role in the identification of change in
this region. Because seasonal agricultural patterns intermittently leave parcels fallow, a change in the
condition may be perceived as a change in category. The sub-pixel endmembers that comprise the
mosaic class may share similar appearance to both crop or other natural covers, and this class has
been recognized as being very difficult to map accurately [72]. Close examination of the CI sample of
Figure 5c reveals highest confusion in the individual pixels where change was indicated. Though the
land cover assessment indicated change in this region with a low CI value, the high R2 indicates that
the pattern of variability closely follows climatic variables, indicating that the detection of change may
be due to a change in condition rather than a change in category.

Finally, the heterogeneous parcel of mosaic, shrub, and forest cover (Figure 5d), with a very high
CI and high R2 indicates that the while change apparent in the comparison of the 2001 and 2007 land
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cover maps may not be accurate, something is happening in the region that deviates from normal
patterns of activity. Because both human and natural land covers can show a close relationship to
climate variables, the high R2 alone does not indicate that this region is or is not changing. However,
the high CI of the change assessment, coupled with the increase in EVI in 2007 over 2001 indicates that
the pattern of activity in this region is not typical of other examples of similar classes or other regions
where the model performs well. Indeed this region has undergone tremendous human modification,
including legal and illegal logging as is prevalent across the region [73]. Agriculture is present in
the region, but at an elevation of 917 m over rugged terrain, it is highly dependent on precipitation.
In comparison to the forested example (Figure 5a) which had a low model R2, the high CI coupled with
high model performance indicates that forests in this parcel maybe be experiencing discrete change
that could be hidden by the natural variability.

5. Conclusions

The relationship of an index of vegetative vigor, such as EVI, to climate variables can reveal
important patterns of variability that can augment land change analyses. The overall performance of
the multiple regression model revealed that an average of 59.1% of the variability in EVI was explained
by concurrent variability in temperature and precipitation, with values as high as 84% explained
variance in some regions. Areas in transition represented a closer link between EVI and the climate
variables than persistent land cover classes, indicating that high variability in vegetation may be
closely linked to land cover change. Further, areas modified by human action for agricultural patterns
(including both seasonal agriculture and the mosaic class) generally demonstrate a closer relationship
between EVI and climate variables than non-agricultural areas. As exemplified by the selected sample
parcels, ultimately, the range of natural variability can both enhance and diminish the perception of
land cover change across a heterogeneous and dynamic landscape, even among confident assessments
of land cover change. Hence, it is essential to consider the vegetative patterns of both natural and
anthropogenic classes in the context of land change assessments in dynamic regions to avoid both
errors of omission and commission.
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