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Abstract 

Keith Andrew McIver 

USE OF BLOOD OXYGENATOR MEMBRANE UNITS IN TEACHING MASS 

BALANCES, FRICTION FACTOR AND MASS TRANSFER ANALYSIS 

2010-2014 

Stephanie Farrell, Ph. D. 

Thomas Lad Merrill, Ph. D. 

Master of Science in Chemical Engineering 

 Many applications of chemical engineering principles are biomedical but 

traditional chemical engineering education does not focus on these applications. New 

laboratory experiments with hollow fiber blood oxygenators allow integration of concepts 

into already full programs.. This work describes three new educational experiments that 

have been developed to introduce students to concepts of mass balances, mass transfer 

and momentum transfer as applied to a hollow fiber blood oxygenator. In addition, a new 

mass transfer correlation is presented for the Medtronic Affinity NT blood oxygenator, 

which has not been reported previously in the literature. 

 Mass transfer of oxygen through the hollow fiber membranes is determined from 

measurements of the oxygen present in each stream crossing the system boundary and 

applying a mass balance. At 3.78 L/min of blood analog flow and 1 SCFH of oxygen 

delivery, a mass transfer of 70 mg/min was observed. 

 Liquid pressure drop through the oxygenator is measured by calibrated pressure 

transducers and recorded in a spreadsheet. Analyzing the data produces a correlation 

between the Fanning friction factor and Reynolds number of f = 8.1/Re
0.12

 instead of 

predicted f = 16/Re and manufacturer’s data of f = 17.8/Re
0.89

. 
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 A mass transfer correlation from dissolved oxygen concentrations was developed 

using the dimensionless Reynolds, Sherwood and Schmidt numbers: Sh/Sc
0.333

 = 

0.223Re
0.338

.   
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Chapter 1: Introduction 

Biomedical applications of chemical engineering are widespread. Medical devices 

contain materials produced by chemical engineers and many operate using chemical 

engineering principles such as mass transport, heat transfer, momentum transfer or 

chemical reactions.  The skills and knowledge of chemical engineers are needed to 

design, test, produce and support these devices. Engineering ethics, in complement to 

medical ethics, must be continuously integrated into decision making from the initial 

outlining to final withdrawal from the market. Medicine is improved by the integration of 

biology into engineering. 

Chemical engineers have made essential contributions toward the advancement of 

medicine in several areas, including the development of novel controlled drug delivery 

systems for therapeutic proteins [1] of nanomaterials for tissue engineering [2], immune 

white blood cell replacement in bone marrow transplantation [1] complex analysis of the 

human body [3] and engineering of proteins [4]. The entire field of biomanufacturing 

applies chemical engineering knowledge and design thinking to the industrial production 

of therapeutic agents [5].  For the last fifty years, chemical engineers have made 

pioneering contributions toward advancing the biomedical industry [6], which is expected 

to grow 26.6 percent in the United States between 2012 and 2022 [7]. Students 

internationally express a strong interest in working in this field after graduation [8]. In 

response to these trends, chemical engineering programs have begun adding biology 

content and course requirements. Approaches include use of a required engineering-

focused biology course [9], integration of material into existing course lectures [10] and 

creation of minors or concentrations in biotechnology [11]. 
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Integrating new biomedical content into current curricula is challenging. Existing 

chemical engineering programs are notoriously crowded, making an additional course a 

difficult proposition for many colleges. Accreditation entities require student 

performance in a wide range of topic areas besides core technical knowledge. Common 

expectations include ethics and professional responsibility, communication and 

awareness of current issues [12] [13] [14]. When introducing new material, these existing 

outcomes cannot be compromised. 

A synthesis of these options is the use of laboratory experiments covering 

biomedical applications of chemical engineering and including them directly in the 

existing courses. This provides the pedagogically sound benefits of concrete, real-world 

applications and hands-on learning experiences [15]. Students who perform experiments 

are shown to attain a greater understanding than if only written problems are used. 

Instructors report deeper understanding of the material themselves [16]. This thesis 

presents three experiments using biomedical processes and equipment that may be used 

to teach basic concepts in chemical engineering. Preliminary student testing has shown 

positive results, but a rigorous analysis has not been conducted at this time. 

The experiments are based on the analysis of a blood oxygenator membrane unit 

in a heart-lung machine. Heart-lung machines are medical devices that temporarily pump 

and oxygenate blood in place of the human heart and lungs (Figure 1) during operations 

which require a non-beating, blood-free heart. Heart transplant, coronary bypass and 

valve replacement are common surgeries requiring this. This temporary takeover of 

functions is called cardiopulmonary bypass or CPB. The experiments will cover 
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membrane mass transfer rate calculation, pressure drop through the membrane unit and 

the determination of empirical mass transfer correlation coefficients. 

 
Figure 1. Normal circulation (left) and cardiopulmonary bypass using a heart-lung 

machine (right). In normal circulation, air is inhaled by the lungs (L) where mass transfer 

to the blood occurs and the heart (H) pumps the blood through the body (B). In bypass, a 

pump (P) moves blood through a blood oxygenator membrane unit (M) and the heart and 

lungs are not used. 

 Blood oxygenator design is based around several constraints to fluid flow 

mechanics. Blood oxygenators should have a Darcy permeability of approximately 10
-5

 

cm
2
 [17], have transmembrane pressure difference less than 300 mm Hg [18] and not 

induce turbulent flow in the blood [17] [18].  Low resistance to gas transfer allows blood 

and oxygen to be supplied at a lower pressure to the oxygenator, which in turn reduces 

the transmembrane pressure difference and reduces the risk of gas bubbles being 
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introduced to the blood. Turbulence causes high shear and hence blood trauma. The 

testing system described in this thesis may be used to determine values of mass transfer 

across the membrane, pressure drop through the unit and Reynolds numbers. A blood 

analog is pumped through the membrane unit and oxygen gas is supplied to it instead of 

blood.  

Because CPB is commonly performed (In 2008 an estimated 2,000 bypass 

operations occurred daily [19]) the membrane units are widely studied [19] [20] [21] with 

both manufacturer data and literature correlations are available. These allow comparison 

of student data to real-world benchmarks and expose students to data and methods of 

presentation used in research and industry which present data indirectly, such as in 

dimensionless number correlations, and require interpretation. 

 

The three laboratory experiments presented can be used in the courses of a 

chemical engineering curriculum that cover mass balances, fluid flow and mass transfer. 

The first experiment, shown in Chapter Chapter 4:, is appropriate for an introduction to 

engineering course or a mass balance course. This experiment covers mass balances, 

process instrumentation, laboratory safety and mass transfer. 

The second laboratory experiment, detailed in Chapter Chapter 5:, is designed for 

a fluid mechanics course and teaches about fluid flow, friction factor, data acquisition 

and the Reynolds number. 

The third experiment, described in chapter Chapter 6:, is intended for a mass 

transfer course or unit operations laboratory.  It introduces the students to the use of 

Sherwood-Reynolds-Schmidt number correlations and their use in the description and 
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analysis of mass transfer data. Each experiment is independent of the others and of any 

particular lesson plan or textbook. 
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Chapter 2: Testing system 

2.1 Description of the blood oxygenator testing system 

The system is a continuous closed loop of blood analog (BA) liquid pumped 

through two blood oxygenator units in series. Oxygen gas is supplied to the first 

oxygenator and nitrogen to the second, resulting in oxygenation and deoxygenation in a 

continuous loop, shown in Figure 2. 

 
Figure 2. Flow diagram of the system. Instrumentation is present around the oxygen-

supplied membrane, as shown in Figure 5. All liquid tubing is ⅜” ID Tygon except for 

the tank-pump line, which is ½” ID Tygon. All gas tubing is ¼” OD rigid nylon except 

where connecting to the unit ports (Table 2). 
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The system is shown in Figure 3. This bench-top unit incorporates a clinical 

membrane blood oxygenator unit and allows real-time measurement of concentration, 

flow rate and pressure drop. 

 

Figure 3. The blood oxygenator testing system. Height is approximately 2.1 m. The 

oxygenation (OX) and deoxygenation (DEOX) membranes are connected in series. 

Flowrates of nitrogen, oxygen and blood analog are read from the flowmeters labeled FN, 



 

8 
 

FO and FL. Dissolved oxygen concentration in the liquid entering and exiting 

oxygenation membrane is determined by the two sensor-transmitter loops (DO1 and DO2 

respectively). Pressure transducers attached to inlet and outlet lines (black box) are 

checked against a liquid manometer (M) and read on the PC. 

 

The blood analog in the first experiment (Chapter Chapter 4:) is tap water. In the 

other two experiments glycerin and water mixtures (Table 1) are used to obtain a wider 

range of physical properties. Blood is not used because of the expense and danger of 

having potentially pathogenic material present.  

Table 1. Composition of blood analogs 

Blood analog number Mass percent water Mass percent glycerin 

BA100 100 0 

BA95 95 5 

BA90 90 10 

BA80 80 20 

BA70 70 30 

BA60 60 40 

BA50 50 50 

 The membrane unit is an Affinity NT (Medtronic Inc., Minneapolis, MN) 

oxygenator. This is a microporous hollow fiber system with an attached bellows type heat 

exchanger (the heat exchanger is not used in the experiments described in this thesis). 

Specifications are given in Table 2 and a promotional image with added scale marking is 

shown in Figure 4. 

Table 2. Specifications of the Affinity NT blood oxygenator unit [8] [12]. 

Membrane type and material Microporous polypropylene 

Membrane surface area 2.5 m
2
 

Static priming volume 270 mL 
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Recommended blood flow rate 1 to 7 L/min 

Arterial outlet port ⅜ in. 

Venous inlet port ⅜ in. 

Recirculation port ¼ in. 

Gas inlet port ¼ in. 

Gas outlet port ⅜ in. 

Gap between fiber bundle and outer wall ⅛ in. 

Gap between fiber bundle and inner column ⅙ to ⅛ in. 

Fiber bundle thickness ⅞ in. 

Inner diameter of the fiber bundle 1¼ in. 

Outer diameter of the fiber bundle 3 in. 

Effective fiber length 3 in. 

 

 

Figure 4. Medtronic Affinity NT blood oxygenator unit [12]. Venous blood flows in at 

the bottom (V), up through the heat exchanger (HX), outward through the hollow fiber 

membrane bundle (HFM) and exits as arterial blood (A). Oxygen gas enters at the top (O-
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in) and exits at the lower port (O-out). Heat exchanger water is connected to the lower 

right ports (HXW). 

 The system contains three types of instrumentation: flow, pressure and oxygen 

concentration. Each of the three flow streams (blood analog, nitrogen and oxygen) have 

rotameters (7520-2-1-0-3C-06, 7520-2-1-0-2C-03, 74C-1-23-G-081-1-2-1-5-1-0 

respectively, King Instrument Co., Garden Grove, CA) installed for direct flow reading. 

Pressure transducers (EW-68075-40, Cole-Parmer, Vernon Hills, IL) are installed on all 

lines entering and exiting the blood oxygenator under study and are sampled by an NI-

6008 data acquisition device and displayed by the  LabVIEW software package (both 

National Instruments, Austin, TX) on an attached PC. A manometer is installed across the 

oxygenator on the oxygen line as a check on the transducer readings. An OXY-SEN 

oxygen-in-gas sensor (Alpha-Omega Instruments, Lincoln, RI) allows the students to 

determine the volume percent oxygen entering the system from the oxygen source and 

exiting the blood oxygenator. InPro 6050 dissolved oxygen sensors and M300 

transmitters (both Mettler-Toledo Ingold, Bedford, MA) indicate the concentration of 

oxygen in the blood analog liquid as it enters and exits the oxygenator. The location of 

these instruments is shown schematically in Figure 5. 
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Figure 5. Flow (trapezoids), pressure (P), dissolved oxygen (DO) and oxygen-in-gas 

(OG) instruments are located around the oxygenator. 

  

The total cost of the system came to under 5000 USD because several critical 

components such as the pump, table, PC and software were provided by the laboratory or 

department. The most expensive items by far were the two dissolved oxygen sensors and 

transmitters. A summary of costs and items is given in Table 3. 

Table 3. List of major equipment information with costs. 

Component Manufacturer Address Model Cost (USD) 

Table Fisher De Pere, WI Smart table 0.00 (*) 

Pump Watson-

Marlow 

Falmouth, 

UK 

701U/R 0.00 (*) 
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Component Manufacturer Address Model Cost (USD) 

Membrane units Medtronic Minneapolis, 

MN 

Affinity NT 0.00 (**) 

Valves and fittings McMaster-Carr Elmhurst, IL (various) 373.46 (*) 

Flow instrumentation King 

Instrument Co. 

Garden 

Grove, CA 

(various) 436.09 

Oxygen-in-gas 

sensor/transmitter 

Alpha-Omega Lincoln, RI OXY-SEN 900.00 

Dissolved oxygen 

sensors/transmitters 

Mettler-Toledo 

Ingold 

Bedford, MA InPro6050 and 

M300 O2 

2293.00 

Pressure sensors Cole-Parmer Vernon Hills, 

IL 

EW-68075-40 616.00 

Data acquisition National 

Instruments 

Austin, TX NI-6008 and 

LabVIEW 

2012 

189.00 (*) 

(*) – Excludes cost of parts available from department or laboratory 

(**) – Donated by Medtronic 

The dimensions of the system are approximately 2.1 m × 1.2 m × 0.6 m (H × W × 

D) and the bench has wheels. The system is self-contained except for requiring sources of 

electric power (125 VAC) and nitrogen and oxygen gas (2.5 and 2.0 SCFH respectively). 

This allows easy movement into different classrooms and laboratory rooms as required 

for instruction and storage when not needed. The system produces nitrogen and oxygen 

off-gases at rates not higher than 2.5 SCFH. It should only be used in locations with an 

air change rate of 8 hr
-1

 or with a spot ventilation system (elephant’s trunk). 

2.2 Operation of the blood oxygenator testing system 

2.2.1 Introduction of blood analog. 

The system initially has no blood analog in the tank or lines. The first step in operating 

the system is to generate the correct BA and introduce it into the system. A supplemental 

mixing tank is used. Between 5 and 7 liters of tap water is poured into this tank. If BA100 

is being used, it is transferred directly to the system or holding tank. If glycerin is being 
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mixed in, the water is weighed and the mass of glycerin needed is calculated from the 

mass fraction. This amount is then poured into the mixing tank and agitated until a 

homogenous solution is formed. The mixture is then poured into the holding tank and the 

mixing tank rinsed thoroughly. 

2.2.2 Startup 

After the new analog is in the holding tank, the system is ready for startup. First 

the pump is turned on at a low speed (less than 30 on the control dial) to check for leaks. 

If none are present, the speed is increased until 1.3 GPM is read on the rotameter. The 

students must check all the liquid flow lines for bubbles and purge any that are present by 

raising and lowering the tubing, pinching the tubing, or adjusting the speed of the pump. 

 Next, the oxygen and nitrogen cylinders are opened and the regulators set to 

approximately 100 kPa delivery pressure. This is a convenient pressure for students to 

aim for, but not the actual delivery pressure to the oxygenators. Two rotameters with 

integrated valves are used to set the actual flowrates into each oxygenator. The nitrogen 

delivery is always set to 2.5 SCFH; the oxygen flowrate varies in Experiment 1 and is 

constant at 1 SCFH in the others. 

2.2.3 Changing blood analog flowrate 

The flowrate of blood analog is not controlled on the flowmeter, but on the pump 

control panel. This is separate from the front panel shown in Figure 3, but can be seen as 

the blue object behind the lower right of the front panel. The control is graduated from 0 

to 100 % of full output, with full output being 2.5 GPM. To set the flowrate, the operator 

changes the dial while an assistant reads the front mounted flowmeter. Because the pump 
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is a peristaltic pump, the flow at low flowrates will be pulsatile. The average flow rate 

(mean of maximum and minimum when the control is at a single percentage) is recorded 

as the flowrate. 

2.2.4 Dissolved oxygen data collection 

The dissolved oxygen content of the blood analog streams entering and exiting the 

oxygenator are continuously displayed on the two dissolved oxygen transmitters mounted 

on the front panel. Students record the vales on the readouts when they have reached 

steady state. When the blood analog is water, the transmitter is set to display 

concentration is milligrams dissolved oxygen per liter of solution and when these values 

change by less than 0.10 mg/L in 60 seconds, the system is taken to be at steady state. 

Because the transmitter calculates a concentration based on the saturation 

characteristics of pure water, the concentration displayed must be adjusted to account for 

the difference between pure water and the water-glycerin mixture.  The necessity for 

manual correction of the displayed concentration can be avoided by displaying the 

measured value in percentage saturation and using this value directly.  When the percent 

saturation value changes by less than 0.20% in 60 seconds, the system is arbitrarily 

considered to be at steady state. 

2.2.5 Oxygen-in-gas data collection 

There is a single oxygen-in-gas sensor and transmitter that is used to take the 

levels of oxygen in both the feed and outlet streams. Three-way valves are present in the 

inlet and outlet lines. See Figure 6. These valves, when set, divert the entire flow to the 

sensor. To save time, the feed oxygen-in-gas level is recorded once and assumed constant 
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throughout the experimental run. This assumption is justified by noting the oxygen 

source is a commercial cylinder and assumed a homogenous mix. The outlet gas oxygen 

level is continuously measured by setting the gas outlet sampling valve and reading the 

value when it has reached steady state. Steady state is assumed when the reading 

fluctuations stabilize to ± 2.0 % of a value. 

 

Figure 6. Oxygen-in-gas instrumentation on the control panel. Valves (V) divert the gas 

streams entering and exiting the membrane unit to the sensor (S). Mass percentage of 

oxygen in the gas stream is read on the transmitter (T). 

2.2.6 Pressure drop measurement 

Pressure drop through the membrane oxygenator is measured using the pressure 

transducers and the sampling software (LabVIEW) on the PC. The PC is configured to 

allow the software to be run by students with their university-issued network usernames 
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and without needing administrative power. When run, the software displays two virtual 

manometers showing pressure drop across the liquid side and across the gas side of the 

blood oxygenator. An actual gas-over-liquid manometer is provided across the gas side 

for illustration to the students and as a check on the transducer calibration. Once steady 

state is reached, the student signed in to the PC will select a filename and location to save 

the data to, and LabVIEW will record five seconds of raw data pressure data to a CSV 

(comma-separated values) file. Appendix A Raw pressure data for BA50 at 1 GPM 

contains a sample of raw data recorded by LabVIEW. 

2.2.7 Cleanup and shutdown 

To prevent microbial growth in the system and especially within the membrane 

units, the system must be cleaned after use. If glycerin has been used at all, the blood 

analog is drained and the liquid flow path rinsed with water using the procedure in 

Section 2.2.2 and then drained again. Both oxygenator units are purged with nitrogen 

after draining. 

Shutdown is performed by closing the stem valves on both cylinders and bleeding 

the pressure out of the lines, turning off the pump and correctly shutting down the PC. 

Once completed, the system may be left unattended for any length of time. The power 

should not be disconnected unless the system is being moved or put in long-term storage 

as the dissolved oxygen sensors will require lengthy repolarization after a power 

interruption. 
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Chapter 3: Nomenclature 

Table 4 lists the variables shown in the calculations of the different experiments. 

Variables taken from instruments have the units they are recorded in noted. 

Table 4. Nomenclature table. Variables are consistent across experiments. Only variables 

obtained from instruments will have recorded units. 

Variable Quantity Calculation units Recorded units 

  Total surface area of membrane m
2
 - 

   Wetted surface area m
2
 - 

  Dissolved oxygen concentration mg/L mg/L 

  Diameter m - 

  Diameter m - 

    Diffusivity of oxygen in blood analog m
2
/s - 

  Driving force  N - 

  Fanning friction factor (unitless) - 

  Friction losses m
2
/s

2
 - 

  Overall mass transfer coefficient m
3
·s·L/mol·mg - 

  Specific mass transfer coefficient m
3
·s·L/mol·mg - 

  Length m - 

 ̇ Mass flowrate mg/min - 

  Molar flux mol/m
2
·s - 

   Hollow fiber count (unitless) - 

  Pressure Pa mm Hg 
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Variable Quantity Calculation units Recorded units 

  Membrane permeability m
3
·s·L/mol·mg - 

  Volumetric flowrate L/min GPM 

  Velocity m/s - 

  Volume fraction (unitless) % 

  Void fraction (unitless) - 

  Viscosity (dynamic or absolute) Pa·s - 

  Density kg/m
3
 - 

   Reynolds number (unitless) - 

   Schmidt number (unitless) - 

   Sherwood number (unitless) - 
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Chapter 4: Mass transfer rate 

During cardiopulmonary bypass, the blood oxygenator functions as a lung 

replacement. The natural lung contains a network of branching capillaries that single 

blood cells flow through. During natural breathing air enters from the nose and mouth, is 

humidified and adjusted to body temperature in the respiratory passages, and ultimately is 

received by the alveoli.  Alveoli are thin-walled spherical membranes about 0.3 mm in 

diameter with a wall thickness of 1 µm. These provide a surface area of about 80 m
2
. 

During one minute at resting conditions, approximately 250 mL of oxygen is transferred 

to the blood from the alveoli, and 200 mL of carbon dioxide diffuses from the blood to 

the lungs. In mildly hypothermic conditions, such as are used during CPB, an oxygenator 

must deliver 360 mg O2/min to the bloodstream and remove about 370 mg CO2/min. Not 

all carbon dioxide is removed; some must remain to prevent blood acidosis. Microporous 

hollow fiber membranes are used to provide the required permeability to oxygen and 

carbon dioxide [23]. 

In this experiment, the students measure the blood analog dissolved oxygen 

concentrations and flow rates to perform mass balances on the system. As an initial 

exposure to chemical engineering practice, safety is emphasized and potential hazards are 

identified for discussion. The students take redundant data measurements to verify the 

operation of the system by oxygen component balance. 

Students conducting this laboratory will: 

- Safely operate compressed gas cylinders and regulators. 

- Measure gas and liquid flowrates using the rotameters. 
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- Measure dissolved oxygen concentration and oxygen in gas levels. 

- Apply mass balances to independently determine the rate of oxygen exiting the 

gas stream, and the rate of oxygen entering the liquid stream. 

- Identify the primary resistance to mass transfer from experimental data 

- Explore design considerations of blood oxygenators from an engineering 

viewpoint. 

Theory of the experiment, an outline of the procedure and a sample of the results 

are presented below. Detailed instructions for the laboratory are presented in Appendix 

Appendix A Raw pressure data for BA50 at 1 GPM. 

4.1 Background 

An oxygen balance around a single blood oxygenator unit is shown in Equation 

(1) and illustrated in Figure 7. 

 ( ̇   ̇ )  ( ̇   ̇ )    (1) 
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Figure 7. Oxygen mass flows entering and exiting a membrane unit. Horizontal and 

numbered streams (1 and 2) are liquid, vertical and lettered streams (A and B) are gas. 

Expressing mass flowrate of oxygen in the liquid streams as the product of 

concentration and volumetric flowrate, and the mass flowrate of oxygen in the gas 

streams as the product of volumetric flowrate, volume fraction and density, we have: 

                         (2) 

where Q is the flowrate of blood analog liquid (L/min), C is the concentration of oxygen 

in the blood analog liquid (mg/L), y is the volume fraction of oxygen in the gas stream (1) 

and ρ is the density of oxygen gas at the experimental temperature and pressure (kg/L). 

This assumes the density of the gas stream does not change. Rearranging terms to 

obtain liquid flowrates on one side of the equation and gas flowrates on the other: 
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                         (3) 

Assuming that the changes in total volumetric flow of liquid and gas through the 

membrane unit are negligible, we can further factor terms. These assumptions are 

validated by the results presented in Section 4.3. 

     (     )    (     ) (4) 

Each side of Equation (4) represents the mass flowrate of oxygen across the 

membrane. The location of the variables in the equation is shown in Figure 8. 

 
Figure 8. Blood oxygenator labeled with variables used in Equation (4). Central arrow 

indicates oxygen mass transfer across membrane, calculated using Equations (5) and (6).  

Noting that each side of the equation represents a mass flow rate, we define a 

liquid side mass transfer rate: 
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  ̇       (     ) 

 
(5) 

and a gas side mass transfer rate: 

  ̇         (     ) (6) 

where  ̇     is the rate of mass transfer through the membrane (mg/min). 

These two values of the mass transfer rate of oxygen across the membrane, which 

should be identical, are calculated by the students and compared. Differences that appear 

are to be explained by them in their final report. This introduces the concept of redundant 

measurements to the students. 

4.2 Experimental procedure 

Prior to the experiment, the freshmen are given an orientation covering safety and 

standard operating procedure for the system. After completion of the orientation, students 

are able to run the system with supervision. 

The system is charged with BA100 blood analog (Table 1) as described in Section 

2.2.1 and then started (Section 2.2.2). First the level of oxygen in the feed gas is 

determined using the method in Section 2.2.5. Once recorded, the flowrates of oxygen 

and blood analog are set to 1 SCFH and 3.8 L/min using the method outlined in Section 

2.2.3. 

Data are collected using the definitions of steady state and instruments listed in 

Sections 2.2.4 and 2.2.5. Once done, the system is cleaned and shut down (Section 2.2.7). 
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4.3 Sample results 

The mean mass transfer rate is calculated as the as the average triplicate runs. An 

uncertainty analysis was performed using the Kline-McClintock propagation of error 

equation, 

 

    √∑[
  

   
   ]

  

   

 

(7) 
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where ΔR is the uncertainty of a calculated value R. R is a function of n independent 

measurement variables x1, x2, x3, …, xn. Δxi is the uncertainty associated with measuring 

variable xi. 

The uncertainties of each instrument are listed in Table 5. 

Table 5. Uncertainties of instruments used in calculating the mass transfer rates out of the 

gas phase and into the liquid phase. The sample reading provided for the dissolved 

oxygen sensor is required to calculate the absolute uncertainty. 

Instrument Relative uncertainty  Sample reading Absolute uncertainty 

Liquid flowmeter ±4 % full scale - 0.53 L/min 

Oxygen flowmeter ±6 % full scale - 0.12 L/min 

Oxygen-in-gas meter ±1 % full scale - 1.00 (v/v) 

Dissolved oxygen meter ±1 % reading 13.2 mg/L 0.13 mg/L 

 

Random error was found to be ±10.6 mg oxygen/min on the liquid side (14.1 % of 

the mean value of 75 mg oxygen/min), and ±20.2 mg oxygen/min on the gas side (29.8 % 

of the mean value of 68 mg oxygen/min). The larger random error on the gas side is 

caused by greater uncertainty in measuring gas flowrate and gas contents. 
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These averages, representing the liquid side mass transfer rate and the gas side 

mass transfer rate are compared using standard error in Figure 9.

 

Figure 9. Standard error of the mean on the mass transfer rates across the membrane. 

Both values are an average of three data points. Students are expected to conclude that 

the mass transfer rates are statistically not different. 

Since the standard error of the mean error bars overlap, with 95 % confidence, the 

calculated values of gas side and liquid side mass transfer rates are identical. When this 

experiment is conducted by freshmen, the uncertainty analysis is not performed.  

The flowrates validate the assumption made in deriving Equation (4), that the 

rates of liquid and gas flow are constant through the membrane unit. By converting the 
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3.8 L/min of blood analog to a mass flowrate, we can then compare the flow rate of blood 

analog through the oxygenator to the rate of mass transfer across the membrane:  

 
   

  

   
     

  

   
 

(8) 

By converting the 1 SCFH of oxygen supplied to the oxygenator to a mass flowrate, we 

have: 

    
  

   
     

  

   
 

(9) 

These inequalities indicate that for each stream, the mass entering or exiting it 

may be considered negligible. 

4.3.1 Student learning 

This experiment was implemented in the Fall 2013 semester in one section of 

Rowan’s Freshman Engineering Clinic. The experiment took approximately 1.5 hours for 

a team to complete. Each team of four students scheduled a block of time outside of class 

time to conduct the experiment. Students reviewed the lab handout prior to this time. 

Before beginning the experiment, the team met briefly with the professor and a teaching 

assistant to review the purpose of the experiment. The assistant then reviewed the 

operating procedure and safety precautions in detail with the students, who then 

conducted the experiment independently with the support of the assistant. 

This section (4.3.1) is an assessment of learning outcomes as conducted and 

analyzed by the section professor, Stephanie Farrell [26]. To measure learning outcomes, 

a pretest and posttest were administered to two groups of students. One class section (n = 
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23) served as the treatment group that performed the mass transfer experiment described 

here; two additional class sections (n = 41) served as the control group that did not 

perform the experiment. All three course sections performed the same semester-long 

project during the course in which they designed, built and tested a simple model of a 

heart-lung machine in a challenge-based module. Class content and home assignments 

were coordinated among the three sections to be the same. Thus, the experiment 

described here was used to enhance the students’ understanding of science and 

engineering concepts, data analysis, and engineering design as applied to a blood 

oxygenator beyond the understanding derived from participating in the project.   

The pretest and posttest comprised eleven questions that target students’ 

understanding related to (1) the application of mathematics, science and engineering 

principles, ABET A (2) designing and conducting experiments, analyzing and 

interpreting experimental data, ABET B and (3) designing a system or component to 

meet specific needs, ABET C.  The pretest was administered in the second week of class 

before students began working on their semester-long project. The posttest was 

administered at the end of the semester, 3-4 weeks after the completion of the experiment 

and two weeks after completion of the project. The test questions were designed to 

address lower and higher levels of cognition [27]. Test questions were a mix of six 

multiple choice questions, four short verbal answer questions, and one mass balance 

question. The answers included distractors in addition to the correct answer. The test 

questions are provided in Appendix C Evaluation questions for experiment one. 

Correct answers to multiple choice questions were awarded one point and 

incorrect answers were awarded zero points. Question 7 was an open response question; 
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its solution involved determination of the rate of mass transfer between phases. One point 

was awarded for mathematical representation of the three streams involved, one point for 

recognizing that the mass transfer rate was equivalent to the product of concentration and 

volumetric flow rate, and one point for applying the correct mathematical signs to 

indicate input or output terms. Question 8 asked for the three main functions of the heart-

lung machine, and one point was awarded for each correct response. Question 9 asked 

why a very high blood flow rate should not be used to enhance mass transfer in a blood 

oxygenator, and one point was awarded if students identified a reasonable response 

directly or indirectly related to blood shear. Question 10 asked for a typical flow rate used 

in a blood oxygenator. The question was worth two points; one point was awarded for a 

response indicating a reasonable flowrate and one point for justification based on 

physiologic reasoning. Question 11 asked what body temperature is maintained during 

open heart surgery. The question was worth two points. One point was awarded for a 

correct answer indicating a temperature within a reasonable range, and one point was 

awarded for an explanation that was based on the body’s demand for oxygen.   

The two groups, treatment and control, were compared using unpaired, one-tailed 

Student t-tests at a 95% confidence level. In the two groups, there was no difference 

between the treatment and control based on average pretest scores (p = 0.3).   

Increases in knowledge between the pre- and post-tests were also assessed with 

unpaired, one-tailed Students t-tests at a 95% confidence level. In addition, the class 

average normalized gain was computed and used to evaluate knowledge gain as 

recommended by Hake [28].  The class average normalized gain is defined as the average 

actual gain divided by the maximum possible average gain: 
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     (

                                

                   
) 

(10) 

 

The posttest average for the treatment group was 79.12% (7.00%), and the 

posttest average for the control group was 55.58 (3.91%) where the number in 

parenthesis represents the 95% confidence interval. Thus there was a statistically 

significant difference between the treatment and control groups based on the average 

posttest score, with the treatment group outperforming the control group. Figure 10 

shows the average gain on each question of the posttest for the treatment group and for 

the control group, and Figure 11 shows the class average normalized gain for the two 

groups.  

 

Figure 10. Average gains on assessment questions. The questions themselves are shown 

in Appendix C Evaluation questions for experiment one. 
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Figure 11. Class average normalized gain by question using Equation (7). 

On almost every question, the gain and normalized gain were higher for the 

treatment group in comparison with the control group. The exceptions to this are the 

average normalized gain for questions 2 and 8, which asked about heart-lung machine 

function and operation. For these questions, the gain was higher for the treatment group, 

but the control group had a higher average normalized gain. However, heart-lung 

function and operation was mentioned briefly in the control sections prior to the 

administration of the pre-test, so the normalized gains are unreliable for questions 2 and 

8. Hake [28] considers a high normalized gain to be 0.7 or higher. A medium normalized 

gain is defined as 0.7 > g ≥ 0.3, and a low normalized gain is below 0.3. The treatment 

group achieved high normalized gains on questions 1, 4, 6, 7, 8 and 11. Medium gains 

were achieved on questions 2, 3, 5 and 10. The negative gains shown by the control 
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group for question 1 may indicate a misconception that was developed through the 

project, and this will be explored independently when the project is repeated.    

Since there was no significant difference between groups based on average pre-

test scores, the effect size (Cohen’s d) was used evaluate the magnitude of differences 

between groups based on posttest scores.  The calculated effect size of d = 4.05 is well 

above the criterion for large effect size suggested by Cohen [29], indicating that the 

treatment had a large effect on student performance in the posttest. 
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Chapter 5: Pressure drop 

Pressure drop of blood in a blood oxygenator is potentially correlated to shear 

stress on the blood, which in turn causes blood trauma. Pressure drop is a function of the 

velocity of the flow through the unit, which for an incompressible fluid such as blood is 

directly proportional to the volumetric flowrate. For existing hollow fiber membranes 

pressure drops range from 5 kPa to at 2 L/min up to 37 kPa at 5 L/min [24]. Pressure drop 

is usually minimized by having the blood flow around hollow fibers while the oxygen is 

pumped through the fiber lumen [23]. 

In this experiment, students use the LabVIEW software program to record data 

from the pressure transducers located at the inlet and outlet of the oxygenator. Students 

analyze this data in spreadsheet software to determine the relationship between the 

friction factor and the Reynolds number of flow through the oxygenator. 

Students conducting this laboratory will: 

- Use the LabVIEW data collection software to record pressures of blood analog 

entering and exiting the blood oxygenator. 

- Calculate friction factors and Reynolds numbers for blood analog flow from the 

pressure and flow rate measurements and physical properties. 

- Compare calculated data to published results. 

Theory of the experiment, an outline of the procedure and a sample of the results 

are presented below. Detailed instructions for the laboratory are presented in Appendix D 

Laboratory procedure for friction factor experiment. 
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5.1 Background 

The Fanning friction factor is a dimensionless variable that is used to quantify the 

effect friction has on fluid pressure as it flows through a system. In a blood oxygenator it 

can be used to model the pressure drop at different flowrates of blood. Friction effects 

indicate shearing in the fluid, which damages the blood components [25]. 

Like all dimensionless quantities, the friction factor cannot be directly measured. 

It is instead calculated from measured quantities. Experimentally it has been found that 

frictional loss ( ) is a function of the inverse of the diameter of the pipe (D), the velocity 

of the fluid (v) raised to the second power, and the characteristic length (L) [27]: 

          (11) 

To convert Equation (11) from proportionality to equation, we include a 

proportionality constant, the Fanning friction factor: 

 
      

 

 
 (12) 

 For historical reasons, the Fanning friction factor (f) is defined as one half of the 

value that would make Equation (11) an equality. There exists another very common 

friction factor called the Darcy-Weisbach friction factor, which is exactly four times the 

Fanning friction factor [27]. 

  The friction factor is a function of the Reynolds number: 

 
   

   

 
 (13) 
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where D is the pipe diameter (m), v is the velocity (m/s), ρ is the fluid density (kg/m
3
) 

and µ is the viscosity (Pa·s). 

When the Reynolds number is less than 2100, the flow is laminar and the friction 

factor is a function of the Reynolds number alone. The oxygenator is not a simple pipe, 

but a woven mat of fibers in a cylindrical chamber. To calculate the Reynolds number, 

we must find an equivalent diameter and velocity. We use the method derived by 

Wickramasinghe et al [24]. First, the friction factor is defined in terms of the frictional 

force: 

     (     
 )  (14) 

where   is the frictional force or drag on the fluid (kg/m·s
2
), Aw is the wetted surface area 

(m
2
), ρ is the density of the fluid (kg/m

3
), v is the velocity of the fluid (m/s) and f is the 

Fanning friction factor. 

The velocity through the fiber bundle, shown in Figure 12, is found [25] using: 

 
  

 (   ) 
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 (   )   
    

 

(15) 

where Nf is the number of fibers in the oxygenator, A is the total membrane surface area 

(m
2
) and do the outside diameter of the individual fibers (m). 
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Figure 12. Medtronic Affinity NT fluid flows [24] in cutaway view. Blood from the heat 

exchanger (I) enters the central riser column and flows down the inner gap. The parallel 

arrows are the liquid flows through the woven hollow fiber mat, shown in gray. Their 

velocity is calculated using Equation (15). Oxygenated blood is collected at a side port 

(O). 

For flow around cylindrical fibers we define a void fraction ε, which is the 

volume of space in the membrane containing chamber that the liquid can occupy, divided 

by the total volume of the chamber: 
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where Do is the inside diameter of the membrane containing chamber, Di is the outside 

diameter of the central riser the membrane mat is woven around, Lo is the length of the 

mass transfer chamber and Lf is the length of the fibers. All have units of length (m). 

We also define an equivalent diameter: 
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   (17) 

The driving force for liquid flow is: 
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 )   (18) 

where ΔP is the pressure drop in the liquid flowing through the oxygenator (Pa). 

Combining Equations (14) through (18) we have: 
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(19) 

In Equation (19) all variables on the right hand side of the equation are geometric, 

tabulated physical properties or directly measurable quantities. We use this equation to 

determine the friction factor for a range of flowrates of blood analog. 
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5.2 Experimental procedure 

Pressure sensors located before and after the oxygenator are sampled by a data 

acquisition device (DAQ) which is connected by USB interface to a PC running 

LabVIEW software. Students are given an explanation of this and instructed on how to 

use the software to obtain data. 

A blood analog from Table 1 is mixed and charged to the system holding tank as 

described in Section 2.2.1. The blood analogs are tested in a randomized order. Following 

this the system is started (Section 2.2.2). The flowrates of oxygen and blood analog are 

set to 1 SCFH and the blood analog flowrate is set to a value from Table 6 using the 

method outlined in Section 2.2.3. 

Table 6. Liquid blood analog flowrates used in Experiment 2. 

Q [L/min] 

2.3 

2.6 

3.0 

3.4 

3.8 

4.2 

4.5 

4.9 

5.3 

5.7 

Data are collected using the procedure in Section 2.2.6. After each flowrate has 

been tested three times, the blood analog solution is drained from the system (Section 

2.2.7) and a new blood analog is mixed and charged, again using Section 2.2.2. This 

process repeats until all of the blood analog solutions have been tested in triplicate at the 

flowrates given above. This will take more than one day, so students will perform a 

shutdown and cleaning of the system (Section 2.2.7) before leaving the equipment.  
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5.3 Sample results 

The analysis of a complete set of data is shown in Figure 13. As the Reynolds 

number increases, representing increasing velocity and density and decreasing viscosity, 

the friction factor decreases. This agrees with the theoretical development of the friction 

factor, which predicts a decrease in the friction factor as the Reynolds number increases 

if the flow is laminar. The maximum Reynolds number seen in this experiment is 11, 

which is much less than the critical Reynolds number for any geometry.  Data from the 

manufacturer’s publication is included. 

A marked difference in slope (-0.89 v. -0.119) exists between the two data sets. 

Further research is needed to determine if the data from this experiment is incorrect, if the 

experiment is flawed, or if the manufacturer data is not directly comparable. It appears 

likely the experiment or the experimental data is incorrect; the manufacturer data strongly 

correlates with theoretical predictions. 

 
Figure 13. Friction factor of all blood analogs as a function of the Reynolds number (light 

gray diamonds) and the manufacturer’s published data (solid dark triangles). 
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Manufacturer data does not indicate the source or properties of the fluid used in their 

tests.  Dashed lines are f = 16/Re for flow through the fiber lumen (upper left) the empty 

mass transfer chamber (lower right), showing friction effects for flow through the fiber 

mat. Uncertainty analysis was not performed because the collected data is believed to be 

erroneous. 

It is proposed that minor losses be investigated to determine if they are controlling 

the pressure drop at these flowrates. Metal fittings should be checked for burrs or 

irregularities and any angles in piping should be removed if possible. The sample port on 

top of the oxygenator unit (see Figure 12) should be investigated as a possible place to 

locate the outlet pressure transducer. 
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Chapter 6: Mass transfer correlation 

Dimensionless quantities are commonly used to report the complex relationships 

governing various phenomena of interest to chemical engineering. Mass transfer is 

commonly characterized with the Reynolds, Schmidt and Sherwood numbers. The 

Reynolds number is an indicator of the flow regime (laminar or turbulent). The Schmidt 

number (Sc) is the ratio of viscous diffusivity to mass diffusivity (Sc = µ/ρDAB). The 

Sherwood number (Sh) is the ratio of mass transfer by convection to mass transfer by 

diffusion (Sh = Kde/DAB) [30]. Correlations developed using these numbers show the 

interaction between the physical properties of the blood and operating parameters of the 

heart-lung machine in their effect on transfer of oxygen to the blood. This knowledge is 

important in designing new blood oxygenators and optimizing existing designs [28]. 

In this experiment students measure dissolved oxygen concentrations in the blood 

analog entering and exiting the oxygenator to determine the relationship between the 

Sherwood, Reynolds and Schmidt numbers. This correlation can then be used to describe 

the mass transfer characteristics under a wide range of operating conditions and fluid 

physical properties. 

Students conducting this laboratory will: 

- Calculate the Sherwood, Reynolds and Schmidt numbers from the dissolved 

oxygen concentration data and physical properties of the solutions. 

- Transform the calculated values into a single correlation. 

- Compare calculated data to published results. 
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Theory of the experiment, an outline of the procedure and a sample of the results 

are presented below. Detailed instructions for the laboratory are presented in Appendix E 

Laboratory procedure for mass transfer correlation experiment. 

6.1 Background 

We follow the method of analysis used by Wickramasinghe et al [26] in their 

experiments. The governing equation of mass transfer through the membrane is: 

       (20) 

where N is the total molar flux through the membrane, K is the overall mass transfer 

coefficient and ΔC the concentration gradient across the membrane. 

Mass transfer through the membrane requires the oxygen to overcome three 

resistances: the resistance of the gas side boundary layer (kgas), the resistance of the 

membrane itself (pmembrane), and the resistance of the liquid side boundary layer (kliquid) 

[32]. 

 
  

 
 

       
 

 

         
 

 

    

 (21) 

The gas is commercially pure oxygen supplied in excess, eliminating a 

concentration boundary layer on the gas side. The membrane is hydrophobic, which 

ensures the pores will be filled with oxygen. Experiments by Wickramasinge et al [21] 

show that the mass transfer coefficient is dominated by the liquid side mass transfer 

coefficient, or: 
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         (22) 

The coefficient kliquid may be related to measurable quantities by performing a 

mass balance on the oxygen in the liquid [33]: 

 
    

  

  
        (   

 ) (23) 

where Q is the volumetric flowrate of the liquid across the membrane (L/min), A is the 

membrane surface area (m
2
), C is the concentration of oxygen in the liquid (mg/L) and 

C* is the concentration of oxygen in the liquid that would result from exposing the liquid 

to pure oxygen and allowing the two to come to equilibrium (mg/L). 

Assuming the saturation concentration is constant at a constant temperature and 

pressure, we integrate and combine with Equation (22) to form: 

 
  

 

 
  (
    

 

    
) (24) 

where C0 is the concentration of solute in the liquid at the entrance to the membrane unit 

(mg/L) and C is the concentration of solute at the outlet (mg/L). 

 Using this coefficient, now we can define three dimensionless groups to describe 

mass transfer [31]: 

 
   

   
   

 (25) 

where de is the equivalent diameter (m) and DOA is the diffusivity of the oxygen solute 

through the analog solution (m
2
/s). 
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 (26) 

where v is the velocity of the fluid across the membrane (m/s), ρ is the fluid density 

(kg/m
3
) and µ is the fluid viscosity (Pa·s). 

    
 

    
 (27) 

 To form a single equation relating these three quantities, we use the form in 

Equation (28), which is based on the Chilton-Colburn J factor analysis [30] [34]. 

                (28) 

 

6.2 Experimental procedure 

Dissolved oxygen probes are located upstream and downstream of the oxygenator 

unit. These are automatically displayed on transmitters mounted on the panel front. A 

blood analog from Table 1 is mixed and charged to the system holding tank as described 

in Section 2.2.1. The blood analogs are not tested in a specific order. Following this the 

system is started (Section 2.2.2). The flowrates of oxygen and blood analog are set to 1 

SCFH and the blood analog flowrate is set to a value from Table 6 using the method 

outlined in Section 2.2.3. 

Table 7. Liquid blood analog flowrates used in Experiment 3. 

Q [L/min] 

2.3 

2.6 

3.0 

3.4 

3.8 
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Q [L/min] 

4.2 

4.5 

4.9 

5.3 

5.7 

Data are collected using the procedure in Section 2.2.6. After the above flowrates 

have had data recorded in triplicate, the blood analog solution is drained from the system 

(Section 2.2.7) and a new blood analog is mixed and charged, again using Section 2.2.2. 

This process repeats until all of the blood analog solutions have been tested in triplicate at 

the flowrates given above. This will take more than one day, so students will perform a 

shutdown and cleaning of the system (Section 2.2.7) before leaving the equipment.  

6.3 Sample results 

The analysis of a complete set of data is shown in Figure 14 and compared to 

manufacturer data on the same make and model of oxygenator. The manufacturer’s data 

correlation is obtained by converting the 100 % fraction of inspired oxygen (FiO2) mass 

transfer data from the published information [24]. This information did not provide any 

information on the blood analog fluid, so it was assumed to be healthy human blood at 

hypothermic operating conditions (27 °C). Final dissolved oxygen concentration was 

modeled on the saturation measurements of BA50: At 1 L/min the BA50 analog was 

approximately 84 % of saturation. Similarly at 4 L/min, 77 % was observed and at 7 

L/min, 70 %. 
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Figure 14. Correlations between  Sherwood, Schmidt and Reynolds numbers showing 

mass transfer in the Medtronic Affinity NT oxygenator. Diamonds represent new data 

from this experiment. Squares show adaptation of manufacturer’s mass transfer data. The 

root mean square (RMS) error of the correlation is 0.0478 and the bias is -0.00291.  

 Saturation concentration of oxygen in blood was obtained by calculating the 

density of oxygen using the ideal gas law at 101,325 Pa and 27 °C and multiplying by the 

hemoglobin carrying capacity of oxygen, 0.167 mL O2/mL blood [39]. 

  

Sh/Sc0.333 = 0.2227Re0.3384 

R² = 0.815 
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Chapter 7: Summary 

Chemical engineering is of growing importance to medicine and medical 

technology. It is the responsibility of college engineering programs to keep their 

curriculum offerings relevant to students who will enter the workforce. Using 

biomedical-focused laboratory experiments allows integration of medical topics into 

existing programs and courses.  Laboratories and associated learning materials for 

teaching mass balancing, fluid flow and mass transfer have been developed around a 

clinical blood oxygenator from a heart-lung machine. These are suitable for inclusion in 

courses on introductory chemical engineering principles, fluid mechanics, mass transport 

and unit operations. Effect of these experiments on student learning has not been studied, 

but is left for future investigations. 

Mass transfer of oxygen through the hollow fiber membranes was found to be 

approximately 70 mg/min at 1 L/min blood analog flow and 1 SCFH oxygen supplied. 

Uncertainty analysis combined with statistical analysis shows that the mass transfer rate 

of oxygen leaving the gas stream and the mass transfer rate of oxygen entering the liquid 

stream may or may not be the same. Further work is required to reduce the uncertainty 

and spread of data for a definitive conclusion. 

Data taken to test the pressure drop experiment’s validity does not agree with 

manufacturer data or literature predictions for pressure drop: A correlation between the 

Fanning friction factor and Reynolds number was found to be f = 8.1/Re
0.12

 compared to f 

= 17/Re
0.89

 for manufacturer data and laminar flow theory of f = 16/Re. It is suspected the 

experimental system contains permanent frictional losses which  are responsible and 



 

48 
 

further work is required to improve the results. All data was collected in triplicate with 

randomization to reduce random errors. 

A mass transfer correlation of Sh/Sc
0.333

 = 0.223Re
0.338

 was obtained for a range of 

blood analog liquids. Manufacturer data for this particular model of oxygenator was 

transformed to allow direct comparison and provides a correlation of Sh/Sc
0.333

 = 

0.0639Re
0.7386

.  
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Appendix A Raw pressure data for BA50 at 1 GPM 

mmHg mmHg mmHg mmHg mmHg mmHg 

 BPin BPout deltaBP O2in O2out deltaO2 Untitled 

129.4526 77.78723 51.66533 7.298974 -0.69888 7.997856 0 

140.858 86.34217 54.51581 7.166504 -0.56781 7.734313 0 

137.7117 88.26537 49.44629 7.232739 -0.56781 7.800547 0.021001 

124.6675 85.67899 38.98853 7.431443 -0.50227 7.933714 0.043002 

96.15396 74.07346 22.0805 7.232739 -0.56781 7.800547 0.066004 

69.5413 50.39817 19.14313 7.10027 -0.69888 7.799152 0.088005 

60.49562 30.70191 29.7937 7.034035 -0.76442 7.798455 0.110006 

52.43316 29.97242 22.46074 7.166504 -0.56781 7.734313 0.132008 

50.46671 34.81359 15.65312 7.10027 -0.69888 7.799152 0.154009 

56.03833 35.67572 20.36261 7.431443 -0.43673 7.868177 0.17601 

67.83704 39.25685 28.58019 7.298974 -0.56781 7.866782 0.198011 

82.78208 49.0055 33.77658 7.166504 -0.69888 7.865387 0.220012 

98.97254 60.74367 38.22887 7.232739 -0.56781 7.800547 0.242014 

113.1965 70.62496 42.57159 7.10027 -0.69888 7.799152 0.264015 

124.4709 76.26193 48.20894 7.10027 -0.69888 7.799152 0.286016 

131.7467 78.78199 52.96476 7.232739 -0.56781 7.800547 0.308018 

135.6141 79.5778 56.03631 7.365209 -0.43673 7.801943 0.330019 

137.6461 79.77675 57.86936 7.298974 -0.50227 7.801245 0.35202 

138.1049 80.37361 57.73134 7.10027 -0.50227 7.602541 0.374021 

139.6781 82.42944 57.24867 7.166504 -0.69888 7.865387 0.396022 

140.2025 84.68423 55.51826 7.298974 -0.63335 7.932319 0.418024 

134.3687 87.27061 47.09808 7.298974 -0.63335 7.932319 0.450026 

116.8673 82.89367 33.97359 7.10027 -0.69888 7.799152 0.472027 

86.1906 67.37541 18.81519 7.298974 -0.43673 7.735708 0.494028 

64.42852 41.11374 23.31479 7.232739 -0.63335 7.866085 0.516029 

57.61149 28.04922 29.56227 7.431443 -0.43673 7.868177 0.539031 

50.53226 32.02826 18.504 7.365209 -0.43673 7.801943 0.561032 

51.58103 35.21149 16.36954 7.10027 -0.69888 7.799152 0.583033 

59.18465 36.0073 23.17735 7.365209 -0.43673 7.801943 0.605034 

72.22879 42.17482 30.05397 7.166504 -0.76442 7.930924 0.627036 

87.82931 53.05086 34.77845 7.232739 -0.56781 7.800547 0.649037 

103.3643 64.39113 38.97316 7.431443 -0.43673 7.868177 0.671038 

116.5395 72.41552 44.12399 7.10027 -0.69888 7.799152 0.693039 

126.8306 76.9251 49.90551 7.232739 -0.56781 7.800547 0.715041 

132.9266 78.91462 54.012 7.232739 -0.56781 7.800547 0.737042 

136.3351 79.71043 56.62471 7.298974 -0.56781 7.866782 0.759043 

137.7772 79.84307 57.93414 7.431443 -0.43673 7.868177 0.781044 

138.826 80.97046 57.85552 7.298974 -0.50227 7.801245 0.803046 

139.8748 83.09262 56.78214 7.298974 -0.63335 7.932319 0.825047 

138.6293 85.34741 53.28193 7.232739 -0.56781 7.800547 0.848048 
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133.3199 86.0769 47.24301 7.232739 -0.56781 7.800547 0.870049 

117.0639 81.96522 35.09868 7.298974 -0.56781 7.866782 0.892051 

88.28815 67.64068 20.64747 7.232739 -0.56781 7.800547 0.914052 

65.93614 44.0317 21.90444 7.497678 -0.43673 7.934412 0.936053 

58.85691 29.30925 29.54766 7.232739 -0.50227 7.73501 0.958055 

51.77768 32.49248 19.2852 7.166504 -0.50227 7.668776 0.981056 

52.03987 35.67572 16.36416 7.034035 -0.69888 7.732918 1.003057 

58.98801 36.60416 22.38385 7.298974 -0.43673 7.735708 1.025058 

70.98337 41.37901 29.60436 7.232739 -0.43673 7.669473 1.04706 

85.60066 51.59188 34.00878 7.232739 -0.50227 7.73501 1.069061 

102.25 63.1311 39.11887 7.298974 -0.43673 7.735708 1.092062 

115.2941 71.22181 44.07228 7.365209 -0.50227 7.86748 1.115064 

125.3886 75.79771 49.59084 7.298974 -0.63335 7.932319 1.137065 

131.6812 78.18513 53.49607 7.298974 -0.56781 7.866782 1.158066 

135.5486 79.17989 56.36866 7.232739 -0.56781 7.800547 1.180067 

137.8428 79.84307 57.99969 7.365209 -0.43673 7.801943 1.202069 

139.2193 81.56732 57.65195 7.166504 -0.50227 7.668776 1.22407 

140.3991 83.49052 56.90862 7.298974 -0.56781 7.866782 1.246071 

141.2513 86.34217 54.9091 7.034035 -0.69888 7.732918 1.268073 

136.0074 87.66851 48.33888 7.232739 -0.43673 7.669473 1.290073 

120.8657 84.15369 36.71202 7.298974 -0.56781 7.866782 1.312075 

91.30338 70.0281 21.27528 7.298974 -0.43673 7.735708 1.334076 

67.31265 46.28649 21.02616 6.9678 -0.69888 7.666683 1.356077 

60.03678 29.44189 30.59489 7.166504 -0.56781 7.734313 1.378078 

52.23652 31.49772 20.7388 7.166504 -0.56781 7.734313 1.40008 

51.58103 35.54308 16.03795 7.10027 -0.69888 7.799152 1.422081 

58.20142 36.33889 21.86254 7.232739 -0.56781 7.800547 1.444082 

69.86904 40.78215 29.08689 7.298974 -0.50227 7.801245 1.466084 

84.42079 50.72975 33.69104 7.365209 -0.43673 7.801943 1.488085 

99.82467 61.93738 37.88729 7.10027 -0.69888 7.799152 1.510086 

113.3932 70.35969 43.03351 7.232739 -0.50227 7.73501 1.532087 

125.1919 75.86403 49.32788 7.298974 -0.56781 7.866782 1.556089 

131.8123 78.64936 53.16294 7.298974 -0.56781 7.866782 1.57809 

135.7452 79.51148 56.23372 7.232739 -0.56781 7.800547 1.601091 

137.8428 79.84307 57.99969 7.034035 -0.69888 7.732918 1.623093 

139.0882 81.30205 57.78612 7.10027 -0.69888 7.799152 1.645094 

140.3336 83.4242 56.90939 7.232739 -0.56781 7.800547 1.667095 

140.6613 85.87795 54.78339 7.232739 -0.63335 7.866085 1.689096 

137.9738 88.26537 49.70848 7.034035 -0.69888 7.732918 1.711098 

124.9953 86.20953 38.78573 7.365209 -0.3712 7.736405 1.733099 

96.54725 74.40505 22.1422 6.9678 -0.69888 7.666683 1.7551 

69.4102 50.33185 19.07836 7.232739 -0.69888 7.931622 1.777102 

60.49562 30.10506 30.39056 7.365209 -0.43673 7.801943 1.799103 
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52.62981 30.23769 22.39212 7.232739 -0.56781 7.800547 1.821104 

50.59781 34.61464 15.98317 7.298974 -0.56781 7.866782 1.843105 

56.16942 35.87467 20.29476 7.10027 -0.76442 7.864689 1.865107 

67.83704 39.38949 28.44755 7.431443 -0.43673 7.868177 1.887108 

82.65098 49.40341 33.24758 7.232739 -0.50227 7.73501 1.909109 

98.71035 61.00894 37.70141 7.365209 -0.56781 7.933017 1.93111 

112.6722 70.29337 42.37879 7.166504 -0.69888 7.865387 1.953112 

123.6843 75.53244 48.15185 7.232739 -0.50227 7.73501 1.975113 

131.4846 78.84831 52.63625 7.166504 -0.56781 7.734313 1.997114 

135.483 79.90938 55.57363 7.365209 -0.43673 7.801943 2.019115 

137.7117 80.24097 57.47068 7.232739 -0.63335 7.866085 2.041117 

138.8915 81.03678 57.85475 7.431443 -0.43673 7.868177 2.066118 

140.1369 82.95998 57.17697 7.431443 -0.43673 7.868177 2.08812 

140.9891 85.81163 55.17745 7.232739 -0.56781 7.800547 2.11012 

138.1049 88.398 49.70694 7.232739 -0.50227 7.73501 2.132122 

126.5684 86.40848 40.15994 7.298974 -0.43673 7.735708 2.154123 

98.84144 75.59876 23.24269 7.365209 -0.3712 7.736405 2.176124 

70.52453 51.92347 18.60106 7.166504 -0.50227 7.668776 2.198125 

60.95446 30.90087 30.05359 7.166504 -0.76442 7.930924 2.220127 

53.0231 29.37557 23.64753 7.431443 -0.56781 7.999252 2.242128 

50.07342 34.41569 15.65773 7.232739 -0.56781 7.800547 2.264129 

55.31729 35.21149 20.1058 7.298974 -0.63335 7.932319 2.28613 

66.98491 38.72631 28.2586 7.298974 -0.43673 7.735708 2.308132 

81.8644 48.40865 33.45576 7.232739 -0.56781 7.800547 2.330133 

98.25151 60.41209 37.83942 7.298974 -0.43673 7.735708 2.352134 

112.6722 70.29337 42.37879 7.232739 -0.43673 7.669473 2.374135 

124.1431 76.06298 48.08015 7.431443 -0.43673 7.868177 2.396137 

131.8123 78.98094 52.83136 7.166504 -0.76442 7.930924 2.418138 

135.6797 79.77675 55.90291 7.232739 -0.56781 7.800547 2.440139 

137.7117 80.04202 57.66964 7.10027 -0.76442 7.864689 2.462141 

138.5638 80.57256 57.99123 7.10027 -0.69888 7.799152 2.484142 

139.547 81.96522 57.58179 7.232739 -0.56781 7.800547 2.506143 

140.2025 85.01582 55.18668 7.166504 -0.69888 7.865387 2.528144 

137.5806 86.74007 50.84049 7.10027 -0.76442 7.864689 2.550146 

125.7163 84.9495 40.76679 7.10027 -0.56781 7.668078 2.574147 

98.05486 74.40505 23.64982 7.166504 -0.76442 7.930924 2.597148 

70.13124 50.66344 19.4678 7.232739 -0.56781 7.800547 2.61915 

60.82336 30.76823 30.05513 7.431443 -0.3712 7.80264 2.642151 

53.1542 30.23769 22.9165 7.10027 -0.69888 7.799152 2.664152 

50.86 34.68096 16.17905 7.034035 -0.69888 7.732918 2.686153 

56.03833 35.41045 20.62788 7.10027 -0.63335 7.733615 2.708155 

66.72272 38.66 28.06272 7.431443 -0.43673 7.868177 2.730156 

80.94673 48.14338 32.80335 7.232739 -0.56781 7.800547 2.752157 
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97.00609 59.35101 37.65508 7.034035 -0.76442 7.798455 2.774158 

111.0334 68.56912 42.46433 7.298974 -0.56781 7.866782 2.79616 

122.7666 75.0019 47.76472 7.232739 -0.50227 7.73501 2.818161 

130.698 78.11882 52.57916 7.232739 -0.50227 7.73501 2.840162 

135.1553 79.77675 55.37852 7.232739 -0.56781 7.800547 2.862164 

137.7772 80.30729 57.46992 7.232739 -0.56781 7.800547 2.884165 

139.0882 81.16941 57.91876 7.232739 -0.63335 7.866085 2.906166 

139.7437 82.69471 57.04894 7.431443 -0.3712 7.80264 2.928167 

140.6613 84.81687 55.84447 7.232739 -0.56781 7.800547 2.950169 

138.8915 87.13798 51.75355 7.166504 -0.76442 7.930924 2.97217 

129.7147 86.20953 43.50522 7.232739 -0.56781 7.800547 2.994171 

104.282 77.45564 26.82632 7.10027 -0.69888 7.799152 3.016172 

73.80195 56.69831 17.10363 7.034035 -0.76442 7.798455 3.039174 

61.21665 32.9567 28.25995 7.431443 -0.43673 7.868177 3.061175 

54.00633 28.57976 25.42657 7.431443 -0.43673 7.868177 3.084176 

49.87677 33.75251 16.12426 7.298974 -0.56781 7.866782 3.106177 

59.05355 36.20625 22.8473 7.298974 -0.43673 7.735708 3.139179 

71.96659 41.64428 30.32232 7.166504 -0.82996 7.996461 3.162181 

87.30492 52.52032 34.7846 7.365209 -0.50227 7.86748 3.184182 

102.9054 63.72795 39.17749 7.298974 -0.43673 7.735708 3.206183 

115.884 71.68603 44.198 7.298974 -0.56781 7.866782 3.228185 

126.2407 76.39457 49.84612 7.431443 -0.43673 7.868177 3.250185 

132.4678 78.4504 54.01738 7.298974 -0.63335 7.932319 3.272187 

135.6141 79.17989 56.43421 7.232739 -0.56781 7.800547 3.294188 

137.8428 79.51148 58.33127 7.232739 -0.56781 7.800547 3.316189 

139.0226 81.16941 57.85321 7.166504 -0.69888 7.865387 3.338191 

140.5302 83.49052 57.03972 7.10027 -0.69888 7.799152 3.360192 

140.268 86.14321 54.12483 7.298974 -0.43673 7.735708 3.382193 

135.0897 87.20429 47.88543 7.232739 -0.50227 7.73501 3.404195 

118.9648 83.55684 35.40797 7.232739 -0.56781 7.800547 3.426196 

88.81254 68.5028 20.30973 7.232739 -0.69888 7.931622 3.448197 

66.19833 43.89907 22.29927 7.232739 -0.43673 7.669473 3.470198 

59.3813 28.64608 30.73522 7.166504 -0.69888 7.865387 3.492199 

51.64658 32.02826 19.61832 7.298974 -0.43673 7.735708 3.514201 

51.51549 35.41045 16.10504 7.298974 -0.56781 7.866782 3.536202 

58.33252 36.27257 22.05995 7.431443 -0.3712 7.80264 3.558203 

70.72117 41.18006 29.54112 7.232739 -0.56781 7.800547 3.581205 

86.1906 52.25505 33.93555 7.298974 -0.50227 7.801245 3.604206 

101.8567 63.1311 38.72557 7.298974 -0.50227 7.801245 3.626207 

114.8353 70.82391 44.01135 7.431443 -0.50227 7.933714 3.649209 

124.9297 75.53244 49.39727 7.431443 -0.43673 7.868177 3.67121 

131.8123 78.18513 53.62716 7.232739 -0.56781 7.800547 3.693211 

135.5486 79.04726 56.5013 7.034035 -0.76442 7.798455 3.715212 
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137.9738 80.04202 57.93183 7.232739 -0.63335 7.866085 3.737214 

139.2193 81.23573 57.98354 7.034035 -0.89549 7.929529 3.759215 

140.9891 83.62316 57.36592 7.298974 -0.50227 7.801245 3.781216 

141.4479 86.60744 54.84048 7.10027 -0.69888 7.799152 3.803217 

137.2528 88.33169 48.92113 7.10027 -0.76442 7.864689 3.826219 

121.98 84.68423 37.2958 7.232739 -0.56781 7.800547 3.84822 

91.50002 70.55864 20.94138 7.298974 -0.43673 7.735708 3.870221 

66.98491 46.15386 20.83106 7.232739 -0.63335 7.866085 3.892222 

59.05355 28.57976 30.47379 7.298974 -0.43673 7.735708 3.914224 

51.51549 30.6356 20.87989 7.497678 -0.56781 8.065486 3.936225 

50.92555 35.34413 15.58142 7.232739 -0.50227 7.73501 3.958226 

58.07033 36.27257 21.79776 7.298974 -0.63335 7.932319 3.980227 

70.19678 40.91479 29.282 7.232739 -0.56781 7.800547 4.002229 

85.07628 51.06134 34.01494 7.232739 -0.56781 7.800547 4.02423 

100.218 62.20265 38.01531 7.232739 -0.56781 7.800547 4.046231 

113.5898 70.69127 42.89856 7.298974 -0.69888 7.997856 4.068233 

125.5852 75.99666 49.58854 7.232739 -0.56781 7.800547 4.093234 

132.5989 78.64936 53.94952 7.232739 -0.56781 7.800547 4.115235 

136.794 79.5778 57.21618 7.232739 -0.56781 7.800547 4.147237 

138.236 80.24097 57.99507 7.497678 -0.43673 7.934412 4.169238 

140.0714 82.36313 57.70827 7.166504 -0.56781 7.734313 4.191239 

141.3824 85.28109 56.10128 7.298974 -0.69888 7.997856 4.213241 

139.7437 88.0001 51.74356 7.232739 -0.56781 7.800547 4.235242 

131.5501 87.20429 44.34581 7.232739 -0.56781 7.800547 4.257243 

109.0014 79.84307 29.15838 7.10027 -0.56781 7.668078 4.279244 

78.12814 60.0805 18.04765 7.232739 -0.56781 7.800547 4.301246 

63.05201 36.07362 26.97839 7.034035 -0.69888 7.732918 4.323247 

56.03833 28.57976 27.45857 7.298974 -0.56781 7.866782 4.345248 

50.20452 33.6862 16.51832 7.431443 -0.43673 7.868177 4.367249 

53.08865 35.21149 17.87715 7.232739 -0.63335 7.866085 4.389251 

62.33097 37.1347 25.19628 7.298974 -0.63335 7.932319 4.411252 

75.11292 44.23065 30.88226 7.431443 -0.43673 7.868177 4.433253 

90.84454 55.37197 35.47257 7.232739 -0.56781 7.800547 4.455255 

106.5762 65.98274 40.59342 7.166504 -0.69888 7.865387 4.477256 

119.1615 73.4766 45.68485 7.298974 -0.56781 7.866782 4.500257 

128.1416 77.25669 50.8849 7.232739 -0.56781 7.800547 4.522258 

133.9754 79.24621 54.72919 7.166504 -0.69888 7.865387 4.54426 

136.794 79.71043 57.08355 7.232739 -0.56781 7.800547 4.566261 

138.4327 80.37361 58.05908 7.232739 -0.56781 7.800547 4.588262 

139.8748 82.36313 57.51163 7.166504 -0.56781 7.734313 4.610263 

141.0546 84.02106 57.03357 7.232739 -0.63335 7.866085 4.633265 

140.7269 87.07166 53.65523 7.431443 -0.43673 7.868177 4.655266 

134.172 87.80115 46.37089 7.166504 -0.69888 7.865387 4.677268 



 

58 
 

114.3764 82.09786 32.27856 7.431443 -0.43673 7.868177 4.699269 

83.04427 64.6564 18.38788 7.166504 -0.69888 7.865387 4.72127 

63.64194 39.12422 24.51773 7.232739 -0.56781 7.800547 4.743271 

57.15265 27.71763 29.43502 7.232739 -0.63335 7.866085 4.765273 

49.94232 32.02826 17.91406 7.298974 -0.56781 7.866782 4.787274 

51.58103 34.81359 16.76744 7.166504 -0.56781 7.734313 4.809275 

59.70904 36.20625 23.50278 7.10027 -0.76442 7.864689 4.831276 

72.94982 42.44008 30.50973 7.166504 -0.69888 7.865387 4.853277 

88.15705 53.38245 34.77461 7.431443 -0.43673 7.868177 4.875278 

103.4954 64.19217 39.30321 7.10027 -0.50227 7.602541 4.89728 

116.7362 72.15026 44.58591 7.298974 -0.56781 7.866782 4.919281 

126.5684 76.32825 50.24018 7.298974 -0.56781 7.866782 4.941282 

132.7955 78.51672 54.2788 7.166504 -0.69888 7.865387 4.963284 

136.4007 79.71043 56.69026 7.232739 -0.50227 7.73501 4.985285 

  



 

59 
 

Appendix B Laboratory procedure for mass transfer rate experiment 

Objectives 

1. Identify and use process control and monitoring instrumentation 

Process control and data monitoring help ensure that a process operates in 

a way that maintains the desired result. You should be able to identify the 

primary instrumentation and controls for a process. 

2. Obtain relevant data 

Engineers must be able to design and conduct experiments and analyze 

and interpret data.  You should be able to determine what data are needed 

to be able to calculate what you want to know. 

3. Analyze and interpret data 

Engineers must turn raw data into meaningful information.  Engineering 

calculations are the common language of the profession that enables us to 

do this.  In this experiment you will use mass balances to analyze the mass 

transfer in your blood oxygenator. 

4. Identify and minimize potential hazards associated with the experiment 

Every process poses safety hazards which must be identified and 

managed.  You should be able to identify the safety hazards associated 

with the blood oxygenator system, know how to avoid these hazards, and 

how to control them. 

5. Communicate your results using an appropriate technical reporting style 

Engineers must be able to communicate effectively with different 

audiences including peers, managers and the general public.  You will 
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prepare a technical report on blood oxygenator design that targets a peer 

engineering audience. 

Introduction 

This laboratory is a continuation of the work you have done this semester in 

biological studies from an engineering perspective. You will operate a process mimicking 

a heart-lung machine (HLM) and patient such as is seen in cardiopulmonary bypass 

(CPB) surgery. The blood oxygenation and deoxygenation will take place in real medical 

hollow fiber membrane devices. 

Background 

Blood oxygenation is the biological process of exchanging waste gas (mostly 

carbon dioxide) in the bloodstream with oxygen. Blood is pumped by the heart through 

the capillaries of the lungs. There, oxygen-rich/carbon dioxide-poor air is separated from 

the blood by a membrane. Because of the concentration differences between the air and 

blood, mass transfer occurs. The air in the lungs loses some (not all) of its oxygen and 

gains carbon dioxide while the blood gains oxygen and loses a little CO2. The oxygenated 

blood is then moved through the body to the cells, which consume oxygen and produce 

carbon dioxide.  This is transported from the cells to the blood to the lungs, and then 

exhaled from the lungs. Figure 15 shows this as a membrane transfer process. 
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Figure 15. Actual data from a journal article (Stamatialis et al., Journal of Membrane 

Science, 2008) showing mass transfer in membrane. “mmHg” (millimeters of mercury) 

refers to the partial pressure of the gases in the blood, a proxy for their concentration. 

“cm
3
 (STP) / min” (cubic centimeters at STP per minute) is a volumetric flow rate. 

System overview 

The main flow path in the system is that of the blood analog (BA). The pump 

draws the liquid from the holding tank and forces it through the oxygenator and 

deoxygenator before it is returned to the holding tank. 

A compressed oxygen cylinder supplies oxygen gas through a pressure-reducing 

regulator to the gas side of the oxygenator. It passes through and vents to the atmosphere. 

A compressed nitrogen cylinder performs the same function to the deoxygenator. A 

simplified schematic, called a block diagram, is shown in Figure 16. 

In the body, the degree of blood oxygenation depends on the respiration rate of air 

and the blood flow rate.  In the blood oxygenator system, the degree of blood 

oxygenation depends on the flow rate of the blood analog fluid and not the flow rate of 

the oxygen through the membrane.  You will prove the second statement in this 

laboratory. 
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Figure 16. Block diagram of the system. Instrumentation and controls are not shown. 

The following page contains a more detailed diagram (Figure 17) of the system in 

an idealized layout. The names of the parts are deliberately left out. Compare the figure 

to the system and fill in the names of each component. 
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Figure 17. Detailed diagram of the system 
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Controls 

The system has three controls. Each of these will be demonstrated for you. Before 

you can use them you will have to answer questions on them to demonstrate competence. 

 The pump controls 

The speed of the pump controls the flow rate of the blood analog fluid. Set 

the dial to 30. First select the direction of flow (◀) and then press the “.I.” 

button to start the pump. After the pump has started, adjust the speed of 

the pump with the dial. 

 The cylinder valves 

The delivery pressure of the gas controls its flowrate.  These gas cylinders 

have stem valves, regulator valves, and cutoff valves, shown in Figure 18.  

The stem valve turns the flow on and off. The regulator valve increases or 

decreases the delivery pressure. The cutoff valve allows you to quickly 

stop delivery of gas to the system. 
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Figure 18. Valves on the oxygen cylinder. Turning the regulator valve clockwise will 

OPEN it, not close it. The stem valve should not be opened more than a quarter turn. 

Excess opening takes unnecessary time to close, such as in an emergency. LP gage 

indicates pressure of gas delivered to the system; HP gage indicates pressure in the 

cylinder. 

 The gas sampling valves 

These divert the gas from the inlet and outlet of the oxygenator. You 

cannot run the system while the inlet valve is set to “measure” because the 

oxygenator will not work without the gas supply. 

 

Instrumentation 
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Data for all process variables will be recorded manually during the experiment. 

Using the five manual display instruments below, you will take measurements of blood 

analog and oxygen flowrates, pressures of various streams, and oxygen concentrations in 

liquid and gas phases. 

 The liquid flowmeter – measures liquid flowrate 

 The gas flowmeters – measure gas flow rates 

 The dissolved oxygen (DO) meter (2 of these) – measures inlet and outlet 

dissolved oxygen concentration in the liquid 

 The oxygen-in-gas  (OG) meter – measures inlet and outlet oxygen concentration 

in the gas 

Safety! 

Engineering requires the use of materials and forces that can be dangerous if 

safety protocols are not followed. To reduce risks by developing more inherently safe 

processes is the constant concern of engineers. Because risk is never eliminated, 

engineers must also be aware of the dangers posed by the processes and materials they 

use. 

In biomedical engineering, a major concern is pathogenicity of materials.  

However this is not a risk in our experiment due to the use of an analog liquid (water) 

rather than blood. Additionally the materials in the system have never been in contact 

with blood or other potentially pathogen-carrying liquids. 

There are two potential hazards in this system; their risk can be minimized by 

following proper protocols: 
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 Compressed gas cylinders, which contain over 500 ft
3
 compressed down to about 

6 ft
3
. As the gages show, they are under enormous pressure (~2000 psig, well over 

100 atm). Never use these without direct supervision. 

 Venting of used gas to the atmosphere. The air turnover rate in the lab, 8 ACH 

(air changes per hour), should prevent dangerous concentrations of oxygen or 

nitrogen. However, don’t inhale the gases or bring any open flame into the lab. 

You should look up the Safety Data Sheets (SDS) –sometimes called Material 

Safety Data Sheets (MSDS) – for water, nitrogen and oxygen to become familiar with the 

risks that they represent. SDSs are the official descriptions of the material’s basic 

physical properties, health, safety and environmental effects, basic treatment instructions 

and potential long term effects. Reading these will help you practice good industrial 

hygiene and be alert for dangerous situations. 

Everyone should know the emergency shutdown: 

 Hit the red button to turn of electric power 

 Close the cylinder stem valves (clockwise) 

 Evacuate if needed. 

Operation 

Before you start, familiarize yourself with the system.  After you have become 

familiar with the layout of the system and the operation of its controls and the use of the 

monitoring devices, you will perform the experiment. Record the data in the table on the 

next page, or in a similar one in your lab notebook.  
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Keep QN constant at 2.5 SCFH 

QBA 

[GPM] 

QO 

[SCFH] 

Cin 

[mg/L] 

yin 

[1] 

Cout 

[mg/L] 

yout 

[1] 

1 1     

1 2     

Run number ___ out of ___. 

 

Steady state has been reached when both 

concentrations change by less than 0.10 

mg/L in 60 seconds. 

Taken by: 

____________________ 

____________________ 

____________________ 

____________________ 

Day and date:  
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Preparation 

1. Fill the mixing tank with at least 6 L of tap water. 

2. Pour it into the holding tank and put the lid on top of it. 

3. Check the pump hose is connected and clamped on both ends. 

4. Set the dial to 30 and select the direction of flow (◀). 

5. Get permission to turn the pump on. 

6. Press the “.I.” button to start the pump. 

7. Get permission to turn the pump on. Let the new BA flow through the system. 

8. Turn the “equalizer” tank (located on the liquid flow line between the pump head 

and the rotameter) completely upside down and wait until the liquid line is 

completely free of bubbles. 

9. Use the pump to set the flowrate to 1 GPM. 

Mass transfer 

1. Check to see that the nitrogen regulator is completely closed (turns freely with no 

resistance). 

2. Open the stem valve on the nitrogen cylinder. 

3. Open the nitrogen regulator valve slowly until the LP gage (Figure 18) is up to 

100 kPa. 

4. Open the nitrogen cutoff valve. 

5. Adjust the regulator until the nitrogen gas flowmeter reads 2.5 SCFH. 

6. Open the stem valve on the oxygen cylinder. 

7. Open the oxygen regulator valve slowly until the LP gage (Figure 18) is up to 100 

kPa. 
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8. Adjust the oxygen regulator until the oxygen gas flowmeter reads the correct 

flowrate. 

9. Turn the inlet gas sampling valve to point to the right. 

10. Wait until the oxygen in gas meter reaches a stable reading and record it as “yin” 

11. Turn the valve back to the left. 

12. Slowly raise the pump to the correct flowrate. 

13. Turn the outlet gas sampling valve to the right. 

14. When the gas reading is stabilized, record it in your lab notebook as “yout”. 

15. Turn the valve back to the left. 

16. After the dissolved oxygen readings “Cin” and “Cout” have reached steady state, 

record them in your lab notebooks. Remember, assume steady state has been 

reached when the concentrations change by less than 0.10 mg/L in 60 seconds. 

17. Change the gas and liquid flowrates and repeat until the table has been filled in. 

18. Turn the pump off (“O”) 

19. Turn the gases off at the stem valve. 

20. Confirm with your instructor that you have finished the lab. 

Data analysis 

You will use a spreadsheet program such as Microsoft Excel to analyze the mass 

transfer rate in the membrane unit. The purpose of a membrane like this is to allow mass 

to flow (“transfer”) from one stream to the other. To determine if that is happening, you 

will collect data and perform calculations for the amount of mass that has crossed 

(“permeated”) the membrane. These are shown in the next section. 
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You will have to do two mass balances around the membrane unit to determine 

how much mass has been transferred from the gas to the liquid. A mass balance is a 

single equation that accounts for all the mass that is flowing into, out of, or remaining 

within a system. We assume the system is at steady state (not changing over time) and 

therefore no mass is accumulating in the system. Then: 

                 

This works because of the Law of Conservation of Mass, a familiar statement 

that “mass cannot be created or destroyed”. We can also do component balances, which 

are mass balances on components of flows. For example: 

                               

We will use this to determine rate of oxygen mass transfer. Oxygen enters our 

system (and the lungs) by inhalation, and exits by crossing into the blood and being 

exhaled: 

 ̇        ̇         ̇           

 ̇        ̇            ̇        

 ̇ represents mass flow rate (the dot on top of a variable commonly indicates “per time”, 

or rate).  The subscript “G” represents gas and “L”, liquid.  The first term of the equation 

is read “mass flow rate of oxygen, in the gas phase, at the system inlet”. 

Rearranging: 

 ̇        ̇         ̇           
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 ̇            ̇         ̇       

You may recognize from algebra we have two equations and 4 unknown variables 

(commonly called unknowns). Converting to measurement variables of volumetric 

flowrate (Q) and concentration (C) we have: 

 ̇                               

 ̇                                 

Note that these are still dimensionally valid equations (that is, the units work out) 

because volumetric flow multiplied by concentration equals mass flow (prove it). 

Going back to our two equations, we can factor out terms: 

 ̇           (                ) 

 ̇            (                ) 

Finally, we convert concentrations of oxygen in gas to volume fractions, using the 

ideal gas law. This gives us: 

 ̇             (        ) 

 ̇            (        ) 

The symbol that looks like a “p” in the first equation is the lowercase Greek letter 

rho, which is used to represent density. The subscripts on the variables have been cleaned 

up by removing “O” for oxygen and the “L” and “G” for liquid and gas since we can tell 
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by inspection of the flowrate variables which equation is for liquid and which is for gas. 

Figure 19 below shows where all these variables fit on the block diagram. 

 

Figure 19. Flow variables and concentrations crossing a system boundary drawn around 

the oxygenator. 

Now we have two equations and one unknown,  ̇         (you can easily look up 

the density of oxygen). Since we only need one equation to solve for the unknown, the 

system is overspecified. Mathematics dictates that the number of equations should equal 

the number of unknowns in order to have a unique solution. In real engineering systems, 

however, redundant measurements are commonly used as a method of cross-checking 

and correcting values. While useful, redundant measurements can lead to two different 

calculated values for a single variable, which can be confusing. Experience is required to 

choose the more reliable value when redundant values differ significantly. 
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Calculate and report the value of  ̇         using both equations and report both 

values. Are the values the same?  Why or why not? 

To include in your final report 

You will include these following items in your final report on blood oxygenators. 

You do not have to give them in this order, but they must be present. 

1. The full system diagram with complete labels. 

2. The value of  ̇         using both equations and an explanation of their 

difference, if any.  
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Appendix C Evaluation questions for experiment one  

 

1. What does “mass transfer” mean? 

a. A net movement of mass from one location to another 

b. The process of changing mass into weight 

c. Movement of mass between phases 

d. Mass flowing across a system boundary 

2. An adult human blood flowrate through the heart is approximately: 

a. 1 L/min 

b. 5 L/min 

c. 8 L/min 

d. 10 L/min 

3. If the membrane area in a hollow fiber oxygenator is doubled, the rate of oxygen 

transfer to the deoxygenated blood contacted by oxygen would 

a. decrease by a factor of 2 

b. stay the same 

c. increase by a factor of 2 

d. increase by a factor of diameter squared 
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4. The term describing dissolved oxygen movement through a liquid such as blood, 

from a high concentration to a low concentration: 

a. rediffusion 

b. perfusion 

c. associated rediffusion 

d. diffusion 

5. In a hollow fiber membrane oxygenator, pure oxygen flows at a high flow rate 

through the tubes.  The membrane is thin and oxygen fills the pores of the 

membrane.  On the other side of the membrane (shell side), blood flows through 

the unit.  How could the mass transfer rate of oxygen to the blood be increased? 

a. increase the gas flow rate through the oxygenator 

b. increase the liquid flow rate through the oxygenator 

c. decrease the gas flow rate through the oxygenator 

d. decrease the liquid flow rate through the oxygenator 

6. The solubility of a gas in a liquid  

a. increases as the temperature increases 

b. does not depend on temperature 

c. decreases as the temperature increases 
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d. decreases as the pressure increases 

7. Write an equation for the rate of oxygen transfer to blood in a hollow fiber 

oxygenator.  In the diagram below, C is the concentration of oxygen in the blood 

(mg/L), 

   

˙ V  is the volumetric flow rate of the blood (L/min), and  

   

˙ m xfer is the rate 

of oxygen transfer to the gas (mg/min). 

 

 

 

 

8. What are three functions of a heart-lung machine? 

a. _____________________ 

b. _____________________ 

c. _____________________ 

9. There are some benefits to using a higher blood flowrate of blood in a hollow 

fiber blood oxygenator.  Yet it is not desirable to operate the blood oxygenators at 

the fastest flow rate the pump can achieve.  Why? 

 

10. What is a typical flow rate used in a hollow fiber blood oxygenator during open 

heart surgery for an adult, and why? 

   

C1,O 2

˙ V 1,O 2

   

C2,O 2

˙ V 2,O 2

   

˙ m xfer
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11. What body temperature is typically maintained by the heart lung machine during 

open heart surgery, and why? 
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Appendix D Laboratory procedure for friction factor experiment 

Objectives 

1. Identify and use process control and monitoring instrumentation 

Process control and data monitoring help ensure that a process operates in 

a way that maintains the desired result. You should be able to identify the 

primary instrumentation and controls for a process. 

2. Obtain relevant data 

Engineers must be able to design and conduct experiments and analyze 

and interpret data.  You should be able to determine what data are needed 

to be able to calculate what you want to know. 

3. Analyze and interpret data 

Engineers must turn raw data into meaningful information.  Engineering 

calculations are the common language of the profession that enables us to 

do this.  In this experiment you will calculate the friction factor and 

Reynolds number. 

4. Communicate your results using an appropriate technical reporting style 

Engineers must be able to communicate effectively with different 

audiences including peers, managers and the general public.  You will 

prepare a technical report on pressure losses in the blood oxygenator. 

Introduction 

This laboratory is a continuation of the work you did in your freshman 

engineering courses in biological studies from an engineering perspective. You will 

operate a process mimicking a heart-lung machine and patient such as is seen in 

cardiopulmonary bypass surgery. 
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Background 

Blood oxygenation is the biological process of exchanging waste gas (mostly 

carbon dioxide) in the bloodstream with oxygen. Blood is pumped by the heart through 

the capillaries of the lungs where mass transfer takes place. In the  

System overview 

The flow path in the system is that of the blood analog. The pump draws the 

liquid from the holding tank and forces it through the oxygenator and deoxygenator 

before it is returned to the holding tank, shown in Figure 20. 

 

Figure 20. Block diagram of the system. Instrumentation and controls are not shown. 

Controls 

The pump controls are the only ones used in this laboratory. The speed of the 

pump controls the flow rate of the blood analog fluid. Set the dial to 30. First select the 
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direction of flow (◀) and then press the “.I.” button to start the pump. After the pump has 

started, adjust the speed of the pump with the dial. 

Instrumentation 

Data for all process variables is recorded automatically using the process monitor 

installed on the PC. To use it, start the PC and log in with your usual username and 

password. Open the file named “BLOX” that is located on the Desktop. Instructions are 

present in the LabVIEW program on how to use the instrumentation. Data from the 

pressure transducers is saved to *.CSV files that can be opened in Microsoft Excel or a 

similar spreadsheet program. 

Safety! 

In biomedical engineering, a major concern is pathogenicity of materials.  

However this is not a risk in our experiment due to the use of an analog liquid made of 

water and glycerine rather than blood. Additionally the materials in the system have 

never been in contact with blood or other potentially pathogen-carrying liquids. 

Everyone should know the emergency shutdown: 

 Hit the red button to turn of electric power 

 Close the cylinder stem valves (clockwise) 

 Evacuate if needed. 

Operation 

Before you start, familiarize yourself with the system. After you have become 

familiar with the layout of the system and the operation of its controls and the use of the 

monitoring devices, you will perform the experiment. 
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Preparation 

1. Prepare a well-mixed blood analog solution using the mixing tank.  The total 

volume of the blood analog solution should be between 7 and 8 liters.   

2. Pour it into the holding tank and put the lid on top of it. 

3. Check the pump hose is connected and clamped on both ends. 

4. Set the dial to 30 and select the direction of flow (◀). 

5. Get permission to turn the pump on. 

6. Press the “.I.” button to start the pump. 

7. Get permission to turn the pump on. Let the new BA flow through the system. 

8. Turn the “equalizer” tank (located on the liquid flow line between the pump head 

and the rotameter) completely upside down and wait until the liquid line is 

completely free of bubbles. 

9. Use the pump to set the flowrate to 1 GPM. 

Pressure drop 

1. Check to see that the nitrogen regulator is completely closed (turns freely with no 

resistance). 

2. Open the stem valve on the nitrogen cylinder. 

3. Open the nitrogen regulator valve slowly until the LP gage (Figure 18) is up to 

100 kPa. 

4. Open the nitrogen cutoff valve. 

5. Adjust the regulator until the nitrogen gas flowmeter reads 2.5 SCFH. 

6. Open the stem valve on the oxygen cylinder. 
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7. Open the oxygen regulator valve slowly until the LP gage (Figure 18) is up to 100 

kPa. 

8. Adjust the oxygen regulator until the oxygen gas flowmeter reads the correct 

flowrate. 

9. Slowly raise the pump to the correct flowrate. 

10. In LabVIEW, begin collecting process data. Save the file to your Desktop with a 

“.csv” extension. 

11. Change the liquid flowrate and repeat until each flowrate has been run three 

times. 

12. Turn the pump off (“O”) 

13. Turn the gases off at the stem valve. 

14. Empty the blood analog liquid into the mixing tank and pour it down the sink 

drain. 

15. Repeat the preparation step to mix the next blood analog. 

Data analysis 

You will use a spreadsheet program such as Microsoft Excel to analyze the 

pressure drop in the system.  

To include in your final report 

You must include the graph of the Fanning friction factor as a function of the 

Reynolds number for all blood analogs and flowrates.  
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Appendix E Laboratory procedure for mass transfer correlation experiment 

Objectives 

1. Identify and use process control and monitoring instrumentation 

Process control and data monitoring help ensure that a process operates in 

a way that maintains the desired result. You should be able to identify the 

primary instrumentation and controls for a process. 

2. Obtain relevant data 

Engineers must be able to design and conduct experiments and analyze 

and interpret data.  You should be able to determine what data are needed 

to be able to calculate what you want to know. 

3. Analyze and interpret data 

Engineers must turn raw data into meaningful information.  Engineering 

calculations are the common language of the profession that enables us to 

do this.  In this experiment you will create a correlation of three 

dimensionless groups, the Sherwood, Reynolds and Schmidt numbers. 

4. Communicate your results using an appropriate technical reporting style 

Engineers must be able to communicate effectively with different 

audiences including peers, managers and the general public.  You will 

prepare a technical report on pressure losses in the blood oxygenator. 

Introduction 

This laboratory is an application of the mass transfer theory you have been learning to a 

biomedical engineering device. You will operate a process mimicking a heart-lung 

machine and patient such as is seen in cardiopulmonary bypass (CPB) surgery. The blood 



 

85 
 

oxygenation and deoxygenation will take place in real medical hollow fiber membrane 

devices. 

Background 

One of the major applications of blood oxygenators is the oxygenation of blood in a heart 

lung machine system. Heart lung machines are often utilized to help support a patient 

during cardiopulmonary bypass. They have been utilized since 1953, when John H. 

Gibbon of the Jefferson University Medical Center in Philadelphia performed a total 

cardiopulmonary bypass on an 18 year old woman in order to close an atrial defect.  

Since then, millions of patients around the world have had heart defects operated on, as 

technology for blood oxygenators have improved through the generations. Today’s blood 

oxygenators are commonly composed of microporous hollow fiber membranes which are 

capable of efficiently separating the liquid blood and oxygen gas phases. In these type of 

membranes, the liquid blood typically flows on the outside of the membrane while gas 

(usually oxygen) flows on the inside or lumen. These types of membranes are designed to 

be hydrophobic, which allows the pores in the membrane to be filled with gas, which 

results in minimal mass transfer resistance in the membrane itself. 

System design and operation 

The system uses 2 hollow fiber membranes to serve as an oxygenator and a de-

oxygenator of the system, acting as both the HLM and patient respectively.  A CAD 

drawing of the system front panel to scale is represented below in Figure 21.  A picture of 

the oxygenator is shown in Figure 22. 
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Figure 21. Drawing of system front panel 

 



 

87 
 

 

Figure 22. Blood oxygenator membrane unit. This unit is used to oxygenate the blood 

analog. An identical one is used to deoxygenate the blood analog. 

A picture of the system is shown in Figure 23.   
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Figure 23. The oxygenator testing system. Concentration sensors, flow meters, 

manometer and membrane units are mounted on the front panel. The nitrogen and oxygen 

gases are supplied by the cylinders seen behind the assembly. The pump rests on the table 

behind the panel and pumps the blood analog from the holding tank through the two 

membranes and back to the tank. 

Controls 

The system has two sets of controls. Each of these will be demonstrated for you. Before 

you can use them you will have to answer questions on them to demonstrate competence. 

 The pump controls 

The speed of the pump controls the flow rate of the blood analog fluid. Set 

the dial to 30. First select the direction of flow (◀) and then press the “.I.” 
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button to start the pump. After the pump has started, adjust the speed of 

the pump with the dial. 

 The cylinder valves 

The delivery pressure of the gas controls its flowrate.  These gas cylinders 

have stem valves, regulator valves, and cutoff valves, shown in Figure 18.  

The stem valve turns the flow on and off. The regulator valve increases or 

decreases the delivery pressure. The cutoff valve allows you to quickly 

stop delivery of gas to the system. 

 

 

Figure 24. Valves on the oxygen cylinder. Turning the regulator valve clockwise will 

OPEN it, not close it. The stem valve should not be opened more than a quarter turn. 

Excess opening takes unnecessary time to close, such as in an emergency. LP gage 
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indicates pressure of gas delivered to the system; HP gage indicates pressure in the 

cylinder. 

Instrumentation 

Data for all process variables will be recorded manually during the experiment. 

Using the three instruments below, you will take measurements of blood analog flowrates 

and oxygen concentrations in the inlet and outlet of the oxygenator. 

 The liquid flowmeter – measures liquid flowrate 

 The dissolved oxygen (DO) inlet meter – measures inlet dissolved oxygen 

concentration in the liquid 

 The dissolved oxygen (DO) outlet meter – measures outlet dissolved oxygen 

concentration in the liquid 

Safety! 

We use a blood analog liquid of water or water/glycerine. These substances are 

non-pathogenic. Additionally the materials in the system have never been in contact with 

blood or other potentially pathogen-carrying liquids. 

There are two potential hazards in this system: 

 Compressed gas cylinders, which are under enormous pressure (~2000 psig, well 

over 100 atm). Never use these if you are unsure about their safe operation. 

 Venting of used gas to the atmosphere. The air turnover rate in the lab, 8 air 

changes per hour, should prevent dangerous concentrations of oxygen or nitrogen. 

However, don’t inhale the gases or bring any open flame into the lab. 
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Everyone should know the emergency shutdown: 

 Hit the red button to turn of electric power 

 Close the cylinder stem valves (clockwise) 

 Evacuate if needed. 

Operating procedure 

The operating procedure is given below. Note that you cannot work alone: at least one 

other person must be in the lab, or within shouting distance. This is a departmental safety 

requirement. 

1. Prepare a well-mixed blood analog (water/glycerine) solution using the mixing 

tank.  The total volume of the blood analog solution should be between 7 and 8 

liters.   

2. Pour the blood analog into the holding tank.   

3. Make sure the oxygen and nitrogen gas lines are connected to their proper flow 

meters. 

4. Turn the stem valves of the oxygen and nitrogen storage tanks counter-clockwise.  

In addition, open the secondary valve so that the low pressure gauge reads about 

100 kPa. 

5. Set the flow rate of oxygen to 1 SCFH and the flow rate of nitrogen to 2.5 SCFH 

by turning the knob on their respective flow meters. 

6. Plug the pump’s power cord into the outlet and turn the pump on.  Set the liquid 

(blood analog) flow rate (QBA) to the first run. 
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7. Allow the system to reach steady state.  For this experiment, steady state was 

assumed to have been achieved when the outlet oxygen concentration changed 

less than 0.1 mg/L for 1 minute.  Record the inlet the outlet oxygen concentrations 

(Cin and Cout) from the DO meters.  

8. Once all data has been recorded, repeat step 7 for duplicate runs at same wt% of 

blood analog solution. 

9. Once the first blood analog solution has done, prepare a new solution and repeat 

step 1 to 8 until all data has been recorded for 7 different solutions. 

Below is a template you may use to record your data at a certain fluid composition: 

BA___ QL  Cin Tin Cout Tout 

Run # [GPM] [mg/L] [°C] [mg/L] [°C] 

1      

2      

3      

 

Shut down procedure: 

1. Turn off the pump, disconnect the power of pump, and close the oxygen storage 

tank stem valve. 

2. Drain the system by using needle-nose pliers to undo the clamps holding the 

liquid line together.  Make sure a bucket is placed underneath to collect the 

solution. 
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3. Run the pump to drain the rest of the system’s fluids into the bucket. Stop and 

unplug the pump. 

4. Reconnect the liquid line and purge both HFM units with nitrogen gas by placing 

the nitrogen gas line into each gas flow rate meter. 

5. After purging the system with nitrogen, close the stem valve of the nitrogen 

storage tank. 

Dimensionless Number Analysis 

You will plot a relationship between several dimensionless numbers at each liquid flow 

rate that the system operates. Specifically, you will create a plot of Sh/Sc
1/3

 v. Re, where 

Sh is the Sherwood number, Sc is the Schmidt number, and Re is the Reynolds number.  

The Reynolds numbers is defined as: 

    
   

 
 

where, ρ is the fluid density, μ is the fluid viscosity, v is the apparent velocity, and D is 

the hydraulic diameter.  v and D are defined below: 

   
 (   )  
      

 

   
 

   
 

where ε is the void fraction, QL is the liquid volumetric flow rate, d is the fiber diameter, 

and Nf is the number of fibers in the hollow fiber membrane defined below:   
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where A is the membrane surface area and L is the length of a single fiber. In addition to 

calculating Reynolds number, after collecting concentration data, you will calculate the 

Sherwood number which is defined as: 

   
  

   
 

where DOA is the mass diffusivity of oxygen in the analog. The mass transfer coefficient 

K for this system is defined as: 

  
  
  
  (

     
 

       
) 

where Cin and Cout are the oxygen concentrations of the liquid in and out of the membrane 

respectively. C
*
 is the saturation concentration of the oxygen in the liquid as if it were at 

equilibrium with the gas phase. Finally, the Schmidt number is defined as: 

   
 

    
 

Table 8 below lists system data. Water and glycerin solution density and viscosity at each 

composition should be looked up using external reliable sources. 

Table 8. System values for calculations. 

Variable (units) Value 

Mass Diffusivity (m
2
/s) 2.10 × 10

-9
 

Void Fraction (1) 0.45 

Fiber Diameter (μm) 300 

Length of Fiber (mm) 76.2 

Membrane Surface Area (m
2
) 2.5 
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To include in your report 

1. Percent error of mass transfer rates in Equation 6 for all of the compositions 

and flow rates tested. Is mass conserved in this system? Explain any 

discrepancies. 

2. Graph of Sh/Sc
1/3

 v. Re including correlation line, equation and R
2
 value. 
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