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Abstract 

 

Nicole Ann Nelson 

HYBRID SOLVERS FOR THE BOOLEAN SATISFIABILITY PROBLEM: AN 

EXPLORATION 

Dr. Andrea F. Lobo 

Masters of Science in Computer Science 

 

 

 

 

 The Boolean Satisfiability problem (SAT) is one of the most extensively 

researched NP-complete problems in Computer Science. This thesis focuses on the 

design of feasible solvers for this problem. A SAT problem instance is a formula in 

propositional logic. A SAT solver attempts to find a solution for the formula. Our 

research focuses on a newer solver paradigm, hybrid solvers, where two solvers are 

combined in order to gain the benefits from both solvers in the search for a solution. Our 

hybrid solver, AmbSAT, combines two well-known solvers: the systematic Davis-

Putnam-Logemann-Loveland solver (DPLL) and the stochastic WalkSAT solver. 

AmbSAT’s design is original and differs from the hybrid solver designs in the research 

literature. AmbSAT utilizes a DPLL algorithm to lead the search and WalkSAT at 

appropriate points to aid in the search process. Central to AmbSAT’s design is the notion 

of ambivalence. Essentially, ambivalence attempts to formally identify the points in time 

when the DPLL solver might be well served by further guidance from WalkSAT. In this 

thesis, we present three different ambivalence notions and analyze their performance 

against a pure DPLL solver. Our results are promising, and indicate that AmbSAT 

performs better than a pure DPLL solver on a diverse collection of SAT problem 

instances. 
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Chapter 1 

Introduction 

 The boolean satisfiability problem (SAT) is the problem of determining if a 

satisfying assignment exists for a given boolean constraint formula represented in 

conjunctive normal form (CNF). A solution is a boolean assignment that results in a true 

evaluation of the formula. 

The SAT problem was proven by Stephen Cook to be the first NP-complete in 

1971 [4]. The following year, Richard Karp used Cook’s results to prove 21 other 

problems to be NP-complete such as the Hamiltonian circuit problem, the 0-1 Knapsack 

problem, and the Clique problem [16]. NP-complete problems can be found in many 

diverse fields of research within and outside of Computer Science [8]. Any NP-complete 

problem can be translated using a translation that operates in polynomial time to any 

other NP-complete problem. So, a polynomial time solution to any NP-complete problem 

leads to a polynomial time solution to all problems in this collection. Such a solution 

would answer in the positive the most outstanding unanswered question in Computer 

Science, whether P = NP.
1
  

The growing interest in the SAT problem correlates to the increasing number of 

applications of SAT. Applications of SAT include, but are not limited to: circuit 

verification, motion planning, scheduling, computer network design and automated 

reasoning. The biannual SAT competition is a result of this increased interest in the field 

of research. 
2
 Contestants in this competition can submit their SAT solvers as well as hard 

SAT problem instances. SAT problem instances at the SAT competition fall into three 

                                                        
1
 http://www.claymath.org/millennium/ 

2
 http://www.satcompetition.org 
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categories: application, crafted, and random. Application, also known as industrial, 

instances represent encodings of problems in which SAT might be useful for such as 

model checking and planning. Crafted instances represent the problem set designed to 

challenge SAT solvers; problems in which typical solvers have a hard time. Random 

instances represent problem sets produced by a generator based on a random seed.  

There are many approaches for solving SAT problem instances. Broadly 

speaking, SAT solvers can be either complete or incomplete. A complete solver can 

conclusively make the decision whether a satisfying assignment exists for the formula in 

question. An incomplete solver can often find a satisfying assignment, if one exists, but 

cannot show that no assignment exists. 

SAT solvers often fall into one of two paradigms: stochastic local search (SLS), 

and Davis-Putnam-Logemann-Loveland (DPLL). SLS solvers are incomplete SAT 

solvers. SLS solvers combine a randomized walk through the exponential sized search 

space of possible assignments with techniques from artificial intelligence such as hill 

climbing and simulated annealing. SLS solvers often operate with low memory 

requirements and excel on SAT instances from the random category. The DPLL 

algorithm is one of the most popular complete algorithms for solving SAT. DPLL is the 

basis for many high grade SAT solvers [6], [21], many of which have excelled at the 

recent SAT competitions. DPLL searches the assignment search space using 

backtracking. High grade DPLL implementations augment the basic algorithm with 

sophisticated techniques such as clause learning and fast constraint propagation using 

watched literals, which provide significant improvements in solver performance. They 

have a higher memory requirement than SLS solver and are considered the best solvers 
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for application and crafted problem instances. DPLL solvers typically perform poorly on 

random problem instances.  

In recent years, a new breed of solvers called hybrid solvers have emerged. 

Hybrid solvers combine complete and incomplete solvers, and may themselves be 

complete or incomplete [2]. The concept of hybrid solvers is to use two different solvers 

that excel in different areas of SAT formulas and combine them together to gain the 

benefits of both solvers. Typically, hybrid solvers are crafted using one of the following 

techniques: 

1. Use an SLS solver to support a DPLL solver [5], [10].  

2. Use a DPLL solver to support an SLS solver [2], [9], [15]. 

3. Using the SLS and DPLL solver to equally aid one another [1], [7], [17], 

[19].  

The research discussed in future chapters falls in the category of hybrid solvers. 

Our approach aims at utilizing a stochastic solver to aid the decision making process of a 

DPLL solver. Over time various techniques in this area have been developed. The goal of 

the research conducted is to determine a technique for combining two solvers into one 

that shows promise for competitive results. 

The next chapter features a formal introduction to SAT and a detailed discussion 

of the DPLL and WalkSAT SLS solver. Chapter 3 features our abstract notion of 

ambivalence which lies at the heart of our hybrid SAT solver. Additionally it focuses on 

the important design issues that have a bearing on the hybrid solver’s performance. 

Chapter 3 also discusses specific ambivalence notions and the results pertaining to each 

implementation. Lastly, conclusions are made based on the data presented. 
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Chapter 2 

SAT Solvers: A Survey 

 This chapter includes in detail the most prominent approaches adopted by modern 

SAT solvers. 

 

2.1 Terminology  

A SAT formula is composed of boolean variables and the boolean operators or 

(denoted ∨), and (denoted ∧), and negation (denoted -). The smallest building block in a 

SAT formula is a boolean variable which can take either a true or false value. A literal is 

a boolean variable represented in its positive or negative form. So, 4 and -4 are the literals 

corresponding to the boolean variable 4. A satisfying assignment for a literal is a truth 

value which evaluates the literal to true. For instance, the literal 4 is satisfied by the 

assignment true, and the literal -4 by the assignment false. A clause comprises of literals 

joined together by the boolean or operation. For example, (1 ∨ -2 ∨ -3 ∨ 4) is a clause 

comprising 4 literals. In order to satisfy a clause, at least one literal must evaluate to true. 

A satisfying assignment for a clause is an assignment that makes the clause true. For 

clause (1 ∨ -2 ∨ -3 ∨ 4), a satisfying assignment would be 1=false, 2=false, 3=true, 

4=true. A SAT formula in conjunctive normal form (CNF) is a collection of clauses 

joined together by the boolean and operation. This thesis focuses exclusively on CNF 

formulae. In order for a formula to evaluate to true, each clause must evaluate to true. An 

assignment that satisfies each clause of a formula is said to satisfy the formula and is 

called a satisfying assignment for the formula. Formula 1 is satisfied by the assignment 

1=false, 2=true, 3=false, and 4=false. Observe that the first clause is satisfied by 4=false, 
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the second clause is satisfied by either 2=true or 4=false, and the third clause is satisfied 

by 1=false. Note that the assignment 1=true, 2=true, 3=true, and 4=true is another 

satisfying assignment for this formula. 

 

 

   ∨     ∨        ∧     ∨      ∧     ∨      (1) 

 

 

 

A satisfying assignment may be either a complete or partial assignment of the 

variables represented in the formula. A partial assignment leaves some of the variables in 

the formula unassigned. For instance, Formula 1 can be satisfied by the partial 

assignment 2=true and 3=true, where variable 3 satisfies the first and third clause and 

variable 2 satisfies the second clause. A formula that has a satisfying assignment is called 

satisfiable.  

 

 

   ∨    ∨     ∧     ∨      ∧     ∨      ∧     ∨      ∧      ∨     ∨      (2) 

 

 

 

For some formulas a satisfying assignment does not exist, these formulas are 

called unsatisfiable. Clearly, there are 2
N
 possible assignments for a formula that has N 

variables. Formula 2 is an unsatisfiable formula with three variables. In the case of 

Formula 2, none of the eight possible assignments to the three variables in the formula 

satisfies the formula.  

The task of SAT solvers is to find a satisfying assignment for a formula, if one 

exists. SAT solvers are either incomplete or complete. Incomplete solvers can often find a 
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solution if one exists, but are unable to determine unsatisfiability. A complete solver can 

definitely determine a solution if one exists or declare unsatisfiability if no solution 

exists.  

 

2.2 Complete Solvers 

 Complete solvers declare a formula as unsatisfiable when no satisfying 

assignment exists as well as find a satisfying assignment when one exists. The best 

performing complete SAT solvers are based on the Davis-Putnam-Logemann-Loveland 

(DPLL) algorithm. The set of all possible assignments to variables in a formula can be 

viewed as a binary tree. Leaves in the binary tree represent complete assignments or 

partial assignments that have been declared a dead-end. The internal nodes in this tree are 

partial assignments and the root node denotes the empty assignment. Each edge in the 

tree represents the assignment of a boolean variable in the formula to a true or false 

value. The DPLL algorithm uses backtracking to traverse this binary tree of assignments.  

 

 

 

 

function DPLL(F) 
    while F contains C where |C| ≤ 1 

        if C = Ø then return UNSATISFIABLE 

        if C = {v} then F = F | v 

    end while 

    if F = Ø then return SATISFIABLE 

    select a literal u if unassigned variables exist based on a branching heuristic 

    if(DPLL(F, u) == SATISFIABLE) then return SATISFIABLE 

    if(DPLL(F, ū) == SATISFIABLE) then return SATISFIABLE 

    return UNSATISFIABLE 

end function 

Figure 1 DPLL Algorithm Pseudo Code 
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 Figure 1 displays the pseudo code for a recursive implementation of the DPLL 

algorithm where F represents the formula, C represents the current clause, v represents 

the unit variable, u represents the variable selected by the branching heuristic, and ū 

represents the negation of variable u. The algorithm traverses the tree by assigning 

unassigned variables to true or false values. The partial assignment at a node in the tree 

will satisfy some of the clauses in the formula, effectively reducing the size of the 

formula. If the formula is empty, where F = Ø, then DPLL has found a satisfying 

assignment. In general, DPLL attempts to grow the partial assignment until the entire 

formula is satisfied. A partial assignment that does not satisfy a given clause may 

decrease the chance of that clause being satisfied. For example, consider the clause (1 ∨ -

2 ∨ -3 ∨ 4) and the partial assignment 2=true and 3=true. In this case, the only variable 

that can now satisfy the clause are variables 1 and 4. The original clause has 4 variables 

but from the standpoint of the current partial assignment it only has 2. When a partial 

assignment results in one or more clauses of zero length (C = Ø in the pseudo code), we 

say that there is a conflict. This is effectively a dead-end and DPLL will backtrack to an 

ancestor node of the current tree node. 

The algorithm traverses the tree setting each variable to true until a solution is 

found or a conflict exists. A conflict occurs when the current assignment results in one or 

more clauses where all variables have been assigned but the clause is not satisfied, 

termed as an empty clause. When a conflict occurs the algorithm backtracks until it finds 

a variable that both the true and false assignments have not been explored. If neither 

branch results in a satisfying assignment, then the current partial assignment cannot be 

extended to a satisfying assignment and the DPLL must backtrack. When a variable is 
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found, the boolean assignment is changed to false and this branch of the tree is traversed. 

If the algorithm backtracks to the root node and both the true and false assignments have 

been explored the formula is determined to be unsatisfiable.  

 The efficiency of the DPLL algorithm is increased by the inclusion of unit 

propagation. A unit clause is a clause in which all but one variable has been assigned but 

the clause is still not satisfied. Unit propagation attempts to satisfy all the unit clauses in 

the formula. In order to satisfy the clause the remaining unassigned variable, the unit 

variable, must be set to evaluate to true (C = {v} in the pseudo code). When unit 

variables are assigned, three possible outcomes exist: new unit clauses are formed, the 

formula is reduced to not include unit clauses, or a conflict is detected determining that 

this branch is a dead-end. When a unit clause is satisfied, it may create more unit clauses 

in the formula. For example, if 1 and (-1 ∨ 2) are clauses in the formula, then we have to 

set 1=true to satisfying the first clause which is a unit clause. This will make the second 

clause (-1 ∨ 2) a unit clause. Unit propagation can also result in the discovery of a 

conflict. A conflict is detected by unit propagation when the same variable requires both 

a true and false assignment to satisfy the formula. To see this, consider the clauses 1, -2, 

and (-1 ∨ 2). Assigning 1=true results in the unit clauses -2 and 2. It is clear that any 

assignment to 2 will be unable to satisfy both unit clauses. Also consider the clauses 1, -

2, (-1 ∨ 2), and (-1 ∨ -2). Assigning 1=true and 2=false to satisfy the first and second 

clause makes the third and fourth clause into zero length clauses, resulting in a conflict. 

Unit propagation increases the efficiency by reducing the size of the formula and 

detecting dead-ends as soon as possible.  As discussed below, modern SAT solvers pay 

careful attention to the implementation of unit propagation.  
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 One important way for speeding up unit propagation is the two variable watch 

technique [21]. In the implementation of two variable watch, a list is maintained 

containing two unassigned literals for each clause. When one of the two variables is 

assigned in a manner that does not satisfy the clause, it is replaced with another 

unassigned variable in the clause. If another unassigned variable does not exist in the 

clause, then this clause is identified as a unit clause. Thus, two variable watch provides 

efficient detection of unit clauses without needing to inspect all the literals in the entire 

clause. It is noted that two variable watch also aids in the efficiency of backtracking 

because the watch literals don’t need updated, resulting in unassigning a variable in 

constant time. 

High quality SAT solvers also employ clause learning to improve search 

efficiency [3]. The general idea behind clause learning is to learn from the mistakes that 

were already made. In some cases backtracking will result in the same conflict in a 

different branch. Clause learning defines a conflict clause; when a clause is conflicting, it 

is determined for each of the literals in the clause what the reason for its assignment was. 

This process is repeated until some termination condition is met. This procedure results in 

a set of variable assignments that caused the conflict and a clause is added to prohibit the 

conflict assignment in the future. Most implementations will maintain a clear separation 

between the original clauses in the formula and the learnt clauses. The learnt clauses help 

the backtracked search to arrive at dead-ends faster at future points in the search. The 

collection of learnt clauses contributes to the memory intensive nature of DPLL based 

SAT solvers. In order to keep the number of learnt clauses and the memory associated 

with the learnt clauses from growing exponentially, in turn slowing down the process of 
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unit propagation, the collection of learnt clauses is periodically purged to remove clauses 

that have not been very effective in helping reach dead-ends in the recent past. 

 Different implementations of DPLL-based algorithms generally vary based on 

branching heuristics. A branching heuristic selects the next variable and the truth value to 

assign to it. The choice of branch variables impacts the size of the resulting formula. The 

branch variable choice might also influence how quickly the branch leads to a dead-end 

or a satisfying assignment. It is ideal to not spend extra time traversing a branch of the 

tree that leads to a dead-end. Early detection of dead-ends reduces the number of nodes 

expanded in the search tree, thereby reducing the search time. For this reason, the 

overhead incurred by the branching heuristic is considered to be a worthwhile 

investment.  

The perfect branching heuristic would select the correct branch for each variable 

resulting in a satisfying assignment on the first try. A branching heuristic that could select 

the correct assignment for a variable on the first attempt would solve the SAT problem in 

a polynomial (linear) number of search tree nodes. A branching heuristic that would 

result in a polynomial solution to the NP-complete SAT problem would suggest that 

P=NP, which proposes that if such a branching heuristic exists, it is nontrivial. 

Chaff is a DPLL based solver that implements two variable watch to speed up the 

process of boolean constraint propagation [21]. The branching heuristic used in Chaff is 

Variable State Independent Decaying Sum (VSIDS). This branching heuristic maintains a 

counter for each literal, which is initialized to 0. The counter for the literal is incremented 

at a dead-end if it is present in a clause that is empty. When a decision is made the 

unassigned literal with the highest counter is chosen. If multiple literals have the same 
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count, then one of them is selected at random. Choosing the literal with the highest 

counter is a strategy for attempting to satisfy the conflict clauses. Decaying variable 

counters periodically by dividing each of them by a constant, allows the variable 

selection process to focus on variables that have occurred in more recent conflicts. The 

important notion of this branching heuristic is that it focuses on satisfying the conflict 

clauses generated by clause learning. Decaying the counters periodically allows the 

selection to focus on the most recent conflict clauses. In order to avoid a large amount of 

memory usage, Chaff implements a unique deletion strategy. The lazy deletion strategy 

implemented determines when a clause should be deleted in the future upon the addition 

of the clause. A clause is deleted based on relevance; when more than N literals will 

become unassigned the clause will be deleted. Chaff also implements the idea of restarts 

which begins the search process again, however the conflict clauses added remain which 

prevents a new search from conducting the same search repeatedly. 

 MiniSAT is a conflict-driven implementation of the DPLL algorithm [6]. The 

implementation includes maintaining a list of constraints for each literal. The collection 

of constraints represents the subset of clauses that when the literal becomes true unit 

information may be propagated for clauses containing the negation of the literal. For 

example, the constraints stored as watched clauses for literal 4 are the clauses which 

contain the literal -4. When 4 is satisfied the clauses containing -4 may become unit 

clauses. Each of the literals are watched, and when the literal is set to true the watcher list 

is processed to detect propagation. The watcher list makes backtracking very cheap 

because no adjustment is required when undoing a variable assignment. The search 

procedure in MiniSAT follows the general DPLL algorithm including backtracking and 
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unit propagation. Variable selection in MiniSAT is based on activity values of the 

variables, where the activity value for a variable correlates with the number of conflicts 

that the variable has occurred in. The selection process selects the variable with the 

highest activity value first. Each time a variable is a part of a conflict its activity value is 

increased. MiniSAT implements the concept of clause learning by recording a conflict 

clause when a conflict occurs. After the conflict is recorded multiplying by a value less 

than one decays the activity values of all variables. Decaying the activity values of each 

variable when a conflict is recorded, allows the selection process to select variables that 

have most recently occurred in a conflict. A similar idea is applied to learnt clauses in 

order to maintain a manageable number of learnt clauses. When a learnt clause is in 

conflict analysis its activity is increased, and periodically inactive clauses are removed. 

 The 2005 and 2007 SAT competitions recognized MiniSAT for its fast DPLL 

based implementation with awards in the industrial and crafted families on both 

satisfiable and unsatisfiable problem instances.
3
 It is implemented in C++ which is often 

selected for SAT solvers because of its known efficiency and speed. Sat4J is a collection 

of SAT solvers implemented in Java [18]. One of the SAT solvers implemented in the 

library is MiniSAT. In future chapters, MiniSAT refers to the Java implementation found 

in Sat4J. Implementation of Sat4J was designed to provide access to cross-platform SAT 

solvers as well as providing a testing platform for various new ideas in SAT solvers. 

Sat4J has been useful for implementation of SAT concepts as well as use in Java-based 

academic software, such as the Eclipse open platform [18]. 

                                                        
3
 http://www.satcompetition.org 
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2.3 Incomplete Solvers 

Incomplete solvers attempt to find a satisfying assignment when one exists. 

Typically there is no guarantee that one will be found. They are unable to declare 

formulae as being unsatisfiable. The vast majority of incomplete solvers come from the 

category of Stochastic Local Search (SLS). Many different SLS algorithms exist, and the 

vast majority of SLS solvers conform to the structure described in the pseudo code in 

Figure 2 where F represents the formula, A represents the current random assignment, 

and u represents the variable selected to flip. 

 

 

 

 

 

The SLS algorithm is given a predetermined number of tries to find a solution to 

the formula. For each try the algorithm begins with a random assignment generated for 

each variable in the formula. From this random assignment each clause is determined to 

be satisfied or unsatisfied. Then, for a maximum number of flips a variable is selected 

and its assignment is flipped. The variation from one SLS solver to another is found in 

the technique for selecting the next variable to flip. If the SLS solver performs the 

function SLS(F) 
    for i =1 to maxTries 
        A = random variable assignment 
        for j = 1 to maxFlips 
            if A solves F return A 
            u= selectVar() 
            A[u] = u   
    return UNKNOWN 
end function 
 

Figure 2 SLS Algorithm Pseudo Code 
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maximum number of flips on all its tries without satisfying the formula, the solver returns 

unknown since it is unable to declare unsatisfiability.  

 The algorithm implemented in GSAT is a greedy hill-climbing approach to SLS 

[24]. GSAT begins with a randomly generated truth assignment. GSAT then flips the 

truth assignment of the literal that results in the largest decrease in the number of 

unsatisfied clauses. GSAT performs flips until a maximum number of flips is reached or 

a flip results in a satisfying assignment. It starts with a new randomly generated truth 

assignment and performs the flip procedure for a maximum number of tries. GSAT is 

very similar to the general implementation of a SLS solver. It however includes the 

concept of sideways moves. Sideways moves allow GSAT to perform flips to variables 

that do not increase the number of satisfied clauses. The implementation of sideways 

moves provides GSAT a strategy for escaping local minimum, which is often a struggle 

for greedy algorithms approaches. It can be shown that an SLS solver will not be able to 

find a solution unless it begins with an assignment that is very close to a satisfying 

assignment on some problem instances. Note that a wrong assignment for a single 

variable can lead the search to an unsatisfiable formula. Greedy algorithms may 

repeatedly select the same assignment for a variable, leading the search down the same 

path which may not be promising. GSAT’s implementation of sideways moves is a 

technique for solving this problem because it allows variable flips that are contradictory 

to the normal greedy strategy. 

WalkSAT builds on GSAT by augmenting it with a random walk strategy [23]. 

The random walk strategy picks a variable from an unsatisfied clause and flips it thereby 

satisfying the selected clause. The randomness of the walk strategy is dependent on 
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probability p. The algorithm selects a random unsatisfied clause. Then with probability p, 

the variable that will result in the largest decrease in the number of unsatisfied clauses is 

selected and flipped, as GSAT does. Otherwise, a random literal in the selected clause is 

selected and flipped. The number of flips performed is bounded by a maximum number 

of flips, and the number of tries with a new randomly generated truth assignment is 

bounded by a maximum number of tries. In Chapter 3, each reference to WalkSAT refers 

to the Java implementation found in the MiniSat library [14].  

The 2007 SAT Competition Gold Medal winner in the random category, 

gNovelty+, is an SLS solver building off concepts of previous SAT Competition winners 

[22]. The algorithm for gNovelty+ begins with a random assignment. Then for a max 

number of steps the algorithm determines if the current state is within the probability for 

walking. If so, a random variable is selected from a false clause and flipped. If not, a 

check is performed to see if a variable that if flipped will reduce the number of 

unsatisfied clauses, essentially reducing the formula size; such a variable is considered 

promising variable. If a promising variable exists, select the least recently flipped 

promising variable. With no identified promising variables, a weighted objective function 

is used to select the next variable and the weight of all false clauses is increased by one. 

The algorithm for gNovelty+ includes weight smoothing probability when weights are 

increased, which for this case means that when false clause weights are updated, the 

weight of all clauses is reduced by one. This entire procedure can be restarted and 

completed for a maximum number of tries.  

UnitWalk is a local search algorithm with a unique twist [12]. The main 

difference between UnitWalk and other SLS solvers is that UnitWalk modifies the 
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formula during the algorithm. Similar to most SLS solvers, the algorithm begins with a 

random assignment. UnitWalk then proceeds in periods and each period starts by 

generating a random permutation for the variables in the formula. This permutation 

dictates the order in which variables are picked during the period. Like DPLL, UnitWalk 

uses unit propagation to reduce the size of the formula during a period. First unit 

propagation is attempted; if a unit clause exists, the variable selected is the unit variable. 

If the current random assignment for the variable does not satisfy another unit clause, i.e., 

there is no conflict, then the variable’s truth value in the current random assignment is set 

to the value that would satisfy the unit clause. Note that this might entail flipping the 

variable’s value in the current random assignment. Once all the unit clauses are 

eliminated in this manner, the next variable is selected from the random permutation that 

was generated. If the variable was not already assigned by unit propagation, the variable 

is assigned the value in the current random assignment and unit propagation is invoked 

again. Once all the variables in the formula have been processed, if the formula is empty 

then it is declared to be satisfiable. Otherwise (a conflict occurred) if no variable was 

flipped during a period, then UnitWalk randomly flips one of the variables in the current 

assignment. This ends the current period and the formula is reset to the original formula 

for the next period. After a specified number of periods, search starts at a new random 

assignment. 

 

2.4 Hybrid Solvers 

Hybrid SAT solvers have become a prominent area of SAT solver research. 

Hybrid solvers have been shown to be effective in solving all three SAT formula 

families, namely, crafted, application, and random. A hybrid solver comprises two or 
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more SAT solvers. The hybridizing process varies from one hybrid solver to the next. 

The basic goal is to create a solver that inherits the strengths of each component solver 

without inheriting their corresponding weaknesses. An ideal solver is fast, complete, uses 

little memory, and fares well on all SAT formula families. SLS solvers are very good at 

solving problem instances from the random formula family and typically use little 

memory. DPLL solvers are very good at solving application and crafted problem 

instances, but they are very memory intensive and tend to perform poorly on the random 

formula family. Below we discuss some successful hybrid solvers from the literature. 

A hybrid solver hybridGM [2] utilizes the SLS solver gNovelty+ and a DPLL 

solver March_ks [11]. The implementation of hybridGM uses SLS as the lead solver and 

DPLL periodically to help the lead solver, resulting in an incomplete solver. Having the 

SLS solver take the lead means that the solver begins with a complete random 

assignment. Then, for a predetermined number of flips a variable’s truth value is flipped. 

During the process of flipping variables a Search Space Partition (SSP) is constructed 

with the goal of studying local minimum and their neighborhoods. A local minimum 

exists when flipping a single variable will not solve the current conflict; rather multiple 

flips need to be made in order to move past the conflict. The goal of an SSP is to monitor 

the flips in the neighborhood of the local minimum to determine which variables are 

conflicting and unassign these variables. The partial assignment created by the SSP based 

on the random assignment and the unassigned and possibly conflicting values are passed 

to the DPLL solver when the SSP grows to a predetermined size. The DPLL solver may 

find an assignment for the unassigned variables in which case hybridGM returns the 

assignment. When the DPLL solver cannot find a satisfying assignment of the variables, 
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a solution to the conflict does not exist in the unassigned variables of the SSP. The SLS 

solver then continues to find another local minimum and tries the strategy again until a 

solution is found. 

SatHys is a complete hybrid solver where the two solvers take equal advantage of 

each other [1]. SatHys aims to take advantage of research showing that local search 

algorithms can provide important information to a DPLL solver. In SatHys, the SLS 

solver is used to steer the DPLL solver towards proving unsatisfiability while the DPLL 

solver is used to direct the SLS solver to a solution, if one exists. The solver begins by 

first applying unit propagation to the original formula. Any variables assigned during unit 

propagation are stored in the current partial assignment. A complete assignment is 

generated by randomly assigning each of the variables outside of the partial assignment. 

The SLS solver is then called on the complete assignment. When the SLS algorithm is 

executed it performs normally by flipping variables to reduce the number of unsatisfied 

clauses. The SLS search is halted when a local minimum is reached and the activity 

values of the DPLL solver’s formula are updated according to the search conducted by 

the SLS solver. At this time the DPLL solver is used to select the next variable or another 

strategy such as rsaps [13] or novelty [20] is applied. It is noted that as long as the SLS 

solver allows for improvements it is favored to execute the SLS solver. The DPLL solver 

is invoked based on a value which measures how well the SLS solver is currently 

performing. This value is decreased every time the SLS solver reaches a local minimum. 

When the DPLL solver is called, a literal is selected based on the updated variable 

activities and the truth assignment is selected from the complete assignment generated by 

SLS which results in the largest number of satisfied clauses. When a restart occurs a new 
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complete assignment is generated. This procedure is performed until a satisfying 

assignment is found or the formula is determined to be unsatisfiable. According to the 

experiments presented in the paper, SatHys is a solver that does well on all three problem 

types: crafted, application, and random. Even though it is not the best for any formula 

family it performs close to the best and is able to perform well on all categories.  

Another interesting approach is adopted by hybrid solver HBISAT (HyBrid 

Incremental SAT Solver), which again combines DPLL and local search [7]. In each 

iteration, local search attempts to find a satisfying assignment. If a solution is found, the 

solution is returned to HBISAT, validated and returned. Otherwise, local search is used to 

collect unsatisfied clauses. Note if DPLL determines this collection of unsatisfied clauses 

to be unsatisfiable, then the entire formula can be guaranteed unsatisfiable. If DPLL is 

able to find a satisfying assignment, the assignment is passed back to local search for the 

next iteration. Each iteration adds the set of unsatisfied clauses to a database of unique 

clauses. Eventually the database will contain the entire formula. In order to reduce the 

number of iterations before the clause database contains all clauses, HBISAT uses 

"clause padding". Clause padding adds clauses related to the unsatisfied clauses in a 

single iteration. This can help DPLL find unsatisfiability sooner as well as speed up 

incremental search. Related clauses are either clauses containing the most flipped 

variable or clauses with two or more variables with opposite polarities of literals 

contained in the broken clauses. The paper discusses using WalkSAT as its local search, 

however declares itself to be flexible to other solvers. 

The next chapter features our hybrid SAT solver, AmbSAT.   
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Chapter 3 

AmbSAT: A Complete Hybrid Solver  

 In this chapter we describe our hybrid solver, AmbSAT. AmbSAT is a complete 

solver that uses the DPLL solver MiniSAT and the SLS solver WalkSAT. We chose 

AmbSAT, where Amb represents ambivalence, which is an essential notion in our solver. 

In upcoming sections we discuss basic concepts related to the solver, the decisions made 

as a part of implementing a hybrid solver, the notion of scout vs. leader, and the notion of 

ambivalence.  

 

3.1 Basic Concepts 

 

 Overall, the implementation of AmbSAT attempts to combine an SLS and DPLL 

solver in such a way that utilizes the benefits of each solver without incurring a large 

amount of overhead. 

In order to maintain the completeness of the DPLL algorithm, the hybridization 

technique exploited in AmbSAT is to have the SLS solver aid the DPLL solver in its 

decision making process. The exploration of AmbSAT is very similar to the traversal 

implemented by DPLL. The combination strategy used in AmbSAT is unique in 

comparison to existing hybrid solvers. AmbSAT utilizes an SLS solver periodically in 

place of using the branching heuristic in MiniSAT, where the results from the SLS solver 

are used to select the next variable. 

The DPLL algorithm is referred to as the leader because it guides the search until 

it is determined that more information is required to continue. When more information is 

required, the SLS solver is invoked; the SLS solver is referred to as the scout since it goes 
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out and gathers information. The scout returns which clause it found the hardest to 

satisfy. The DPLL then selects a variable from this clause as the next branch variable.  

Essential to the implementation of AmbSAT is our notion of ambivalence. This 

abstract notion of ambivalence aims to capture when exactly the leader may not have a 

clear preference for which branch variable to use at a search tree node. When 

ambivalence is detected, the scout is invoked to identify a difficult to satisfy clause. The 

added bonus of executing the scout is that the scout may find a solution, in which case the 

search is complete. 

 

3.2 Designing for Efficiency  

The MiniSAT implementation utilizes a max-heap to organize variables based on 

their activity values. At the beginning of a search, MiniSAT sets the activity values for all 

the variables in the formula to zero. The algorithm moves through the heap of variables, 

selecting one at a time until a conflict occurs. When a conflict occurs, the activity values 

of the variables involved in the conflict are incremented. Within AmbSAT, ambivalence 

is not computed until after the first conflict has occurred.  However, the scout is invoked 

at the root node of the search tree with the intention of steering the leader in the right 

direction from the beginning of the search and giving the scout the opportunity to solve 

the problem quickly. 

The computation involved for each specific notion of ambivalence presented in 

Section 3.6 requires access to some of the elements in the heap. Heap implementations 

include a pop method that removes the root element of the heap and reorganizes the heap 

to maintain heap properties. Performing the pop operation N times would result in a 
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collection of the largest N elements. Ordinarily the pop operation would suffice for the 

purpose of inspecting the variables stored in the heap. However, the N elements that were 

removed using the pop operation would need to be placed back into the heap. Simply 

inserting the elements back into the heap may result in a change of heap ordering when 

multiple variables have the same activity values. Since the ordering of the heap may be 

altered, the search path chosen by the leader may also change, which AmbSAT attempts 

to avoid. When the leader is not ambivalent, AmbSAT attempts to let the leader perform 

as it would have without the hybridization. For this reason, a peek function was 

implemented allowing the ability to access any element in the heap without removing the 

element from the heap. Less overhead time exists when utilizing the peek function 

implemented as opposed to performing pops and manipulating the heap. 

MiniSAT implements a lazy heap management technique that allows the heap to 

contain both assigned and unassigned variables. During the branch variable selection 

process, MiniSAT removes assigned variables from the heap until an appropriate 

unassigned variable is found. Note that this does not ensure that the heap only contains 

unassigned variables once an unassigned variable is found. It is possible that the heap 

may contain assigned variables further down the heap. 

 Through the definition of a standard max-heap, it is known that in order to find 

the largest N items, the first 2
N
 – 1 items must be accessed to determine the largest N 

items. However, since the heap used for AmbSAT may contain assigned variables this 

definition becomes complicated. In order to find the true largest N items, it would have to 

be tracked how many assigned items are encountered on the heap and the number of 

checked items would have to be increased accordingly. Rather than incurring the 
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overhead of finding the true N largest elements, it was determined that an approximation 

was sufficient. In doing so, each type of ambivalence uses two parameters: the number of 

unassigned elements to check and N, the number of largest unassigned elements to obtain 

from the checked elements. 

 When the scout is invoked it is provided with a sub-problem of the original 

problem based on the current partial assignment generated by the leader. There are two 

benefits to allowing the scout to solve a sub-problem rather than the entire formula. The 

first is that the scout will find it easier to solver a smaller problem and if the scout is able 

to solve the sub-problem then the formula is satisfiable. The second is that AmbSAT 

seeks to extend the current partial assignment upon invocation of the scout. Hence, it is 

appropriate to give the scout a list of clauses that remain to be satisfied and a list of 

unassigned variables in those clauses to avoid obtaining data that is conflicting with the 

leader’s current partial assignment.  

When supplying the scout with a sub-problem, all clauses that are left unsatisfied 

by the current partial assignment are included. For clauses that are unsatisfied but contain 

assigned literals, the clause is modified to provide only unassigned variables. AmbSAT 

uses an efficient technique for maintaining the set of unsatisfied clauses. The 

maintenance includes creation of an array to store the size of each clause in the formula 

and a two-dimensional array whose rows correspond to the clauses in the formula. This 

memory is allocated only once at the very beginning of a run when the two-dimensional 

array is created to store the original clauses in the formula and the size array is initialized 

to the original clause sizes. The implementation specifics for the setup of the clause and 

size arrays can be viewed in Figure 11 of Appendix E.  
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 The clause set is not maintained every time a variable is assigned. Rather the 

clause set is updated prior to invoking the scout. Updating the clause set includes looping 

through each clause and adjusting accordingly. When the leader has satisfied the clause 

the size is set to zero in the size array. For each clause that remains in the formula, we 

process the clause variables in the following manner. Each clause variable that has an 

assigned value is moved to the end of the clause and the size of the clause is decremented 

by one. Figure 12 of Appendix E displays the implementation details of the clause 

maintenance method described here. 

 

 

 

 

Figure 3 depicts the action of shifting assigned variables to the end of the clause 

array. In the figure the assigned variables are -2 and -8 represented by grayed out indices 

of the array. In step one, the original array is displayed and the first element encountered 

is the 4. Since literal 4 is unassigned no action is taken at this time. However, in step two 

you can see that the array has been altered. In this pass of the array -2 is encountered 

which is an assigned variable. Comparing step one to step two it can be observed that the 

-2 and 3 have swapped positions. At this time the size of the clause is also decremented 

Figure 3 Shifting Assigned Variables 
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from five to four to adjust for the assigned variable in the clause. In the next pass the 

encountered element will be the 3, in its new position, and no action will occur since it is 

unassigned. With one more pass through the array all assigned variables will be moved to 

the end of the array when the -8 is encountered and swapped in position with the 6. Step 

three depicts the final clause array with the assigned variables appearing at the end of the 

clause and the clause size set to three, the number of unassigned variables. 

 Even with the enhancements made to reduce the amount of overhead based on the 

memory allocation, invoking the scout at every node incurs an excessive amount of 

overhead. It was determined that the scout should be called only when the leader 

indicates that it needs help. The notion of the leader requiring further guidance lead to the 

development of the notion of ambivalence for detecting situations where the branching 

heuristic is unsure of which variable to select next. Additionally, as discussed in the next 

section, AmbSAT caps the scout runtime overhead at a fixed percentage of its total 

runtime. 

 

3.3 Experimentation Methodology 

 The problem set for these experiments comprises of 29 files collected from the 

2005, 2007, 2009, and 2011 SAT competitions (see Appendix A). 
4
 The vast majority of 

the problem set consists of problem instances from the application and crafted SAT 

formula families. As will be evident from our results, AmbSAT’s performance on the 

random SAT formula family is vastly superior to MiniSAT’s performance, so our 

problem set only includes two files belonging to the random SAT formula family. 

Therefore, our results compare AmbSAT’s performance with the performance of 

                                                        
4
 http://www.satcompetition.org 
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MiniSAT for formulae that MiniSAT is known to excel at solving.  The problem set was 

used to establish parameter settings that are applied to all ambivalence notions as well as 

parameters that pertain to specific ambivalence notions. The problem set was initially run 

on MiniSAT in order to allow comparisons of each ambivalence notion implementation. 

Appendix B displays the time and node count performance recorded by MiniSAT. Future 

paragraphs of this section discuss the parameters that are common to all notions of 

ambivalence. Section 3.6 presents specific ambivalence notions and experimental results 

thereof. 

 In Section 3.6 we will describe several implementations of AmbSAT that vary 

based on their specific notion of ambivalence as well as the choice of parameter settings. 

Since all implementations use a probabilistic SLS solver, we run each solver three times 

on the problem set in order to help understand its performance in the average case, as 

well as the influence of various parameter settings. When analyzing the results of various 

parameter settings, AmbSAT’s run time performance is compared to MiniSAT’s run time 

performance. When two or more settings returned similar results based on time, the 

number of nodes expanded in MiniSAT’s tree is used as the secondary comparison 

characteristic.  

Parameters were optimized using a binary search-like technique, whereby a 

couple starting values were selected and the values were adjusted higher, lower, or in the 

middle of the starting values based on the run results. For instance, when finding a setting 

for normalized percentage ambivalence, discussed in Section 3.6.3, values between 0 and 

1 were initially run with increments of 0.1. A run was conducted on a short subset of the 

problem set for use in selecting values which seemed to be the most promising. The 
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results indicated that values on the lower end of the spectrum appeared to be the most 

promising. With some more data, we were able to detect that the values 0.1 and 0.2 

performed the best regularly. So, then the binary search strategy used suggested runs on 

values between 0.05 and 0.25. This binary search strategy then was applied on smaller 

values in the ranges that seemed promising resulting in runs with values such as 0.11 and 

0.125. Multiple promising values were selected based on the binary search strategy and 

executed on the 29 file problem set. The graphs in the upcoming sections present the 

percentage of files in the problem set where AmbSAT performs better than MiniSAT. In 

the graph related to each ambivalence notion, the selected parameter settings are 

displayed compared to a setting numerically less than the selected value and a setting 

numerically greater than the selected value. 

 

3.4 Design Settings  

One important consideration in AmbSAT’s design was the issue of overhead 

incurred by the scout invocations. Clearly, if the overhead grows too large it cannot 

possibly compete with MiniSAT. On the other hand, it is desirable to have the scout to be 

called a sufficient number of times so AmbSAT can gain the benefits of the scout 

invocation. To do this, AmbSAT keeps track of the number of times ambivalence is 

detected and the total amount of time the scout runs have taken so far. Another scout 

invocation can only be made when the amount of scout time so far plus the estimated 

amount of time for one more scout invocation is less than the predetermined percentage 

overhead allowed. The average scout run time is estimated from past scout run times. 
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Figure 4 displays the results of each of the three runs where the scout overhead 

percentage is limited to 2.5%, 5%, and 7.5% respectively. Section 3.6.3 discusses 

AmbSAT’s implementation of Normalized Percentage Ambivalence with percentage 

0.125 that was used to produce the data displayed in Figure 4. The selected setting for the 

percentage overhead is 5%. Appendix C displays the detailed time and node count 

performance based on 5% overhead. Although all three settings perform fairly well 

against the MiniSAT implementation, consistency is a key deciding factor. It can be seen 

that the center set of bars for each of the three runs is about 55%. Although a single 2.5% 

run performs better than the best 5% run, the other two runs perform worse than the worst 

5% run. It can be seen that the variation from run to run is larger than with 5% overhead. 

Run 3 of the 7.5% overhead runs performs as well as the first two runs at 5%, but the 

other two runs perform significantly worse. 
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Figure 4 Performance of AmbSAT with Different Allowable Overhead Percentages vs. 

MiniSAT 
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 Once it is determined how and when to call the scout, it needs to be determined 

how to use the scout to benefit the decision making process of the leader. We decided to 

use the scout to find out the clause that seems the hardest to satisfy and convey this 

information to the leader. The leader can then assign an unassigned variable in this clause 

in a manner to satisfy the clause. The scout keeps track of how many times each clause is 

unsatisfied with the different assignments that it explores. When the scout completes its 

traversal without satisfying the sub-problem, it returns the clause number that has the 

most unsatisfied count. From this clause, the leader selects the unassigned variable with 

the largest activity value. 

 It is possible that the clause selected by the scout may be made up of all 

unassigned variables without an activity value. Recall that a variable’s activity value is 

incremented only when it is involved in a conflict. Therefore, it may be that the variables 

remaining in the selected clause have not occurred in a conflict, thus having an activity 

value of 0. In this case, there needs to be a technique for selecting a variable from this 

clause. To handle this case, three strategies were defined: 

1. Random Selection – The most basic technique for variable 

selection includes randomly selecting an unassigned variable in the 

clause. 

2. Variable Count Selection – A slightly more complex technique for 

variable selection which includes selecting the variable which 

appears most in the unsatisfied clauses in either its positive or 

negative polarity. 

3. Literal Count Selection – This variable selection technique is 
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similar to the Variable Count Selection strategy. The difference is 

that this technique selects the variable which occurs most in 

unsatisfied clauses in the polarity that it appears in the selected 

clause. 

 

 

 
Figure 5 Performance of AmbSAT Selection Strategies vs. MiniSAT 

 

 

Figure 5 displays the results comparing the different possible selection strategies 

used to select a variable in a clause where the unassigned variables have activity values 

of zero. The data displayed in  

Figure 5 was produced with AmbSAT’s implementation of Normalized 

Percentage Ambivalence with percentage 0.125, discussed in Section 3.6.3.  The Variable 

Count selection strategy is determined to be the lowest performing strategy because of 

the large amount of variation from run to run. Although this strategy has the largest 
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percentage two of the three runs, the variance from smallest to largest percentage is 17%. 

From the data presented and based on the elimination of variable selection, the literal 

selection strategy is the selected setting because although it does not always perform the 

best, it performs the most consistent from one run to another. Literal selection is chosen 

over the random selection strategy based on the comparison of the two strategies showing 

that on both Run 1 and Run 3 the strategies perform equally or very close to each other. 

However, on Run 2 there is a large difference between the two strategies, in which literal 

selection is the clear superior. Appendix D displays the detailed results pertaining to the 

selection of literal selection as the selection strategy. 

 

3.5 Implementation Details 

 In designing and implementing AmbSAT, it was a goal to develop a solver that 

modified the component solvers used as little as possible. In order to accomplish this 

goal, AmbSAT is implemented in such a way that uses MiniSAT and WalkSAT in their 

original implementation states. It should be noted that the only code modified within 

MiniSAT’s implementation is an addition of a method to each clause type returning the 

clause in an integer array for use with the sub-problem clause set. Although the C 

implementation of WalkSAT utilizes the clause and size array the Java implementation 

did not, modifications were made to the Java implementation to more closely match the C 

implementation with the inclusion of these two arrays. 

 The process of executing AmbSAT begins with its own launcher class, adapted 

from a basic launcher of MiniSAT. The launcher class is responsible for setting up 

AmbSAT to run with user specified parameters as well as invoking methods to read the 
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problem formula and start the search process. Since the goal of AmbSAT is to allow 

MiniSAT to perform a regular search procedure until a state of ambivalence is detected, 

most of the setup procedure is exactly what would be performed to execute MiniSAT. In 

addition to initializing MiniSAT’s default solver, reading the problem formula, and 

starting the search, AmbSAT also loads user specified parameters for notions of 

ambivalence, percentage overhead, and selection strategy as well as initializing the clause 

and size arrays for use when passing a sub-problem to WalkSAT. 

 The use of MiniSAT’s variable heap is important in the implementation of 

AmbSAT. In order to allow AmbSAT to function independently from MiniSAT, 

AmbSAT sets the MiniSAT default solver to use a heap within AmbSAT. The heap 

developed is based on the variable heap used by MiniSAT. AmbSAT’s heap includes the 

addition of two methods used to maintain the clause set for WalkSAT’s problem. The 

first method is used to initialize the clause and size arrays to store the original clauses and 

clause sizes. The second method is used to modify the ordering of the variables in the 

clause array to have assigned variables at the end of the array and the clause size reduced, 

as discussed in Section 3.2. Lastly, the select method is modified to handle checking for 

ambivalence and invoking WalkSAT when ambivalence is detected. Figure 6 displays the 

pseudo code for the modified select method. The actual code for the select method, sub-

problem clause initialization, and sub-problem clause maintenance can be found in 

Appendix E. 
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 Figure 6 displays the heap’s select operation where a variable is either selected 

from the heap using traditional MiniSAT strategies, or selected based on data returned by 

a call to WalkSAT. The lines displayed with bolded text are the portions of the select 

method that are added for AmbSAT’s combination of MiniSAT with WalkSAT. 

Performing just as MiniSAT does, first it is checked that the heap is not empty. Then, 

variable V is selected as the first variable in the heap. The only change in variable V is 

that in AmbSAT’s select method the first element is retrieved through a peek method as 

opposed to the pop method used by MiniSAT. Since MiniSAT uses a lazy strategy for 

heap maintenance, we first check if the variable has been assigned. If the variable is 

unassigned, proceed by checking for ambivalence. Otherwise simply remove the assigned 

variable from the heap.  Ambivalence is checked according the specific notion of 

function select ( ) 
    while (heap is not empty) 
        V = first heap element 
        if (V is unassigned) 
            if (ambivalent) 
                Build sub-problem, S, with unsatisfied clauses and variables 
                satisfied = Invoke WalkSAT on S 
                if (satisfied) 
                    return SATISFIABLE                
                C = WalkSAT’s hardest clause 
                V’ = Invoke selection strategy to select variable in C 
                remove V’ from heap 
                return V’ 
        else 

  remove V from heap 
    end while 
    return UNDEFINED 
end function select 
             

Figure 6 AmbSAT select Method: Pseudo Code 
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ambivalence that is specified in the code. If ambivalence is detected, the sub-problem 

clauses are updated and WalkSAT is invoked on the sub-problem. If WalkSAT is 

successful in finding a solution to the formula, the search is complete.  When WalkSAT 

does not solve the sub-problem, it returns the clause that was the hardest to satisfy during 

it search. This hardest clause is passed to the selection strategy, which returns an 

unassigned variable, V’, in the clause. When possible, the selection strategy picks an 

assigned variable that has the largest activity value. If all unassigned variables in the 

selected clause have a zero activity value, the selection strategy applies its unique 

technique to select one of the unassigned variables. The selected variable is applied as the 

next branch variable, and the polarity is selected to satisfy the clause. The selected 

variable is removed from the heap and returned for assignment to reduce the size of the 

formula. 

 The heap’s select method relies on two other implementations: selection strategy, 

and ambivalence. First, the implementation details of the selection strategies are 

discussed. The three different selection strategies were discussed in Section 3.4 with 

results pertaining to each setting. The three strategies are random, variable count, and 

literal count. Random selects a random unassigned variable in the clause selected by 

WalkSAT. Variable count selects the variable that appears in the most unsatisfied clauses 

in either polarity. Literal count selects the variable that appears in the most unsatisfied 

clauses in the polarity it appears in the selected clause. Conceptually the strategies are not 

very complex. The resulting implementation is also very simple. Random selection is 

basic, generating a random number between 0 and the number of unassigned variables in 

the clause, and selecting the variable at the generated position. The variable count and 
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literal count selection algorithms utilize a list of counts maintained by WalkSAT. This 

count collection allows these selection strategies to be implemented in an efficient 

manner.  

 The unique notion of ambivalence implemented in AmbSAT is the key to its 

success displayed through data in Section 3.6. Different implementations of ambivalence 

rely on the creativity to develop a notion of ambivalence. Different notions share the 

same common goal, but the implementations vary from one to another. A single notion is 

abstracted into its own class where the Chain of Responsibility (COR) design pattern is 

used to allow one notion to contain another notion [25]. This design pattern allows 

implementation of the chain of command so that multiple notions of ambivalence can 

interact with one another.  

 Ambivalence is implemented as an abstract class containing an Ambivalence 

object and an abstract method to determine ambivalence. The implementation of abstract 

Ambivalence class can be found in Figure 13 of Appendix F. Each specific notion of 

ambivalence defines the method to determine ambivalence according to the specifics of 

its notion. The use of COR allows notions of ambivalence to function as a chain of 

procedures. The chain requires the current ambivalence notion to declare ambivalence 

before another notion is evaluated. Each notion of ambivalence in the chain must declare 

ambivalence for the leader to be declared ambivalent. When a single notion of 

ambivalence does not declare ambivalence, the evaluation is terminated. For instance in 

the implementation of AmbSAT, if the overhead is not under the 5% limit then further 

notions of ambivalence will not be evaluated. For this reason, it is most logical to apply 

the least costly, in terms of overhead time, first so if ambivalence is going to return false 
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it does so with as little overhead as possible. The coding implementation pertaining to the 

three ambivalence notions discussed in Section 3.6 can be found in Appendix F. 

 

3.6 Ambivalence Notions 

 The decision left to be made in the hybridization of WalkSAT and MiniSAT is 

when and how often to call the scout to aid the leader’s decisions. It was determined to 

invoke the scout when the leader was uncertain as to which variable to select next; this 

state is referred to as ambivalent. Clearly ambivalence is a subjective notion and admits 

to different interpretations. Our first specific ambivalence notion (Probabilistic 

Ambivalence in section 3.6.1) is oblivious to the current state of the search and declares 

ambivalence from the flip of a biased coin. The other two ambivalence notions, Activity 

Equality Ambivalence (see section 3.6.2) and Normalized Percentage Ambivalence (see 

section 3.6.3) that we propose in this section are based on the activity ratings of the 

unassigned variables in the formula.  When MiniSAT is ambivalent the activity ratings of 

variables within MiniSAT leave which variable to select ambiguous. The question 

remains to define what exactly makes the decision making process ambivalent. The 

remainder of this chapter will discuss the different techniques tried in the research 

conducted and the decisions made along the way.  

 In the development process of combining two solvers into one, various different 

techniques were implemented and evaluated for determination of when to make scout 

calls. The remainder of this chapter will discuss the three different strategies that were 

implemented, tested and evaluated: 

1. Probabilistic Ambivalence 
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2. Activity Equality Ambivalence 

3. Normalized Percentage Ambivalence 

 

3.6.1 Probabilistic Ambivalence.  

 The first implementation for ambivalence determination was based on a 

predetermined probability, P. The Probabilistic Ambivalence notion implementation is 

displayed in Figure 14 of Appendix F. This implementation required determination of 

how frequently the scout could be called and still result in useful data. It can easily be 

seen that calling the scout too frequently would incur a large amount of overhead. Such a 

large amount of overhead would cause the hybrid solver’s performance to not be 

comparable to MiniSAT’s performance. It is also important to note that not invoking the 

scout frequently enough does not provide the leader with enough opportunity to gain 

from the scout’s knowledge of the problem. 

Figure 7 displays an overall comparison of the different probabilistic settings. The 

three runs displayed are for P=1/750, P=1/1000, and P=1/1250. Appendix G contains the 

actual time and node count results for the selected settings of the probabilistic 

ambivalence notion. As seen in Figure 7, the comparisons of AmbSAT with probabilistic 

ambivalence does surprisingly well in comparison to MiniSAT. Note that the three runs 

displayed each correspond to a scout overhead that is capped at 5%. From the presented 

data and other experiments that were performed, we observe a significant variance in the 

performance of AmbSAT with this specific notion of ambivalence. For instance, the 

performance of AmbSAT when P=1/1000 which is represented by the center of the three 

column sets does really well on the first and third run performing faster than MiniSAT on 
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approximately 59 and 55 percent of the problem set files, respectively. However, the 

second run only performs faster than MiniSAT on approximately 24 percent of the 

problem set files. When looking for an ambivalence notion it is desirable to find a notion 

that performs equally, or close to equally, as well from one run to another. The upcoming 

notions of ambivalence exhibit a more uniform performance in their runtimes on our 

problem set.  

 

 

 

Figure 7 Performance of AmbSAT with Probabilistic Ambivalence vs. MiniSAT 

 

 

 

3.6.2 Equality Ambivalence.  

 The second interpretation of ambivalence defines the uncertainty of MiniSAT 

based on the equality of the highest N activity values for unassigned variables. This 
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MiniSAT is unable to decide which one to use. This implementation of ambivalence 
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requires an N parameter determining how many high activity valued unassigned variables 

are checked for equality in the determination of ambivalence. The N parameter is 

adjusted in order to allow for a number of scout calls that does not result in an excessive 

amount of overhead but provides enough guidance to MiniSAT to be competitive. Figure 

15 of Appendix F displays the implementation specifics of the N Equal Ambivalence 

notion. 

 Figure 8 displays the performance of AmbSAT with this notion for N=2 and N=3 

when compared to the performance of MiniSAT. Appendix H contains the time and node 

count data for the selected setting of the equality ambivalence notion. It can be seen that 

N=2 performs notably well. Variation from one run to another is expected based on the 

probabilistic manner of WalkSAT. The AmbSAT implementation with N=2 equality 

ambivalence displays variation but a minimal amount with two runs performing better 

than MiniSAT on approximately 48 percent of the files and the third run approximately 

54 percent. Minimal variation is desirable in an ambivalence notion so the solver 

performs similarly on multiple runs. The N=3 equality ambivalence is not desirable even 

though a single run performs better than any of the N=2 runs because the variation from 

one run to another is so large. For the equality notion only two N values are displayed 

because N=3 performs worse than N=2, showing that 2 should be the selected value for 

N. Values of N larger than 3 performed poorly in our experiments. 
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Figure 8 Performance of AmbSAT with Equality Ambivalence vs. MiniSAT 

  

  

3.6.3 Normalized Percentage Ambivalence.  

 This notion of ambivalence is computed by first extracting N high activity, 

unassigned variables from the heap. The activities were proportionately normalized, so 

that each normalized activity was in the range from 0 to 1. Suppose we obtained M ≤ N 

values from the heap. Recall from the discussion in Section 3.2, that we may not obtain 

fewer than N values from the heap. This ambivalence notion is parameterized by a fixed 

percentage P, which we call the ambivalence percentage. Ambivalence was declared if 

the highest normalized activity is less than 
   

 
. For instance, suppose the value of P = 0.1 

(i.e., 10%). If the solver is looking for ten values but only finds five, ambivalence is 

declared if the highest activity value is less than 
     

 
, which is 0.22. Figure 16 in 

Appendix F displays the implementation specific details of the Normalized Percentage 
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Ambivalence notion. 

 

 

 

Figure 9 Performance of AmbSAT with Normalized Percentage Ambivalence vs. 

MiniSAT 

 

 

 

 Figure 9 displays a comparison of three P values for the normalized percentage 

ambivalence notion. Displayed are the performance results for P = 0.1 (10%), P = 0.125 

(12.5%), and P = 0.15 (15%) respectively, compared to MiniSAT’s performance. 

Appendix I contains the time and node count data for the selected setting of the 

normalized percentage ambivalence notion. The center set of columns displays the results 

for P = 0.125, which depicts the minimal variation that exists with this parameter setting. 

The other two values are used to show values that are close to the selected value but 
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0.125 setting, AmbSAT performs better than MiniSAT on all runs. Furthermore, the table 

in Appendix I shows that AmbSAT performs vastly better than MiniSAT on the two 

formulae in our problem taken from the random category. Recalling that the majority of 

the problem instances in our problem set (27 out of 29) were taken from the application 

and crafted formula categories, it follows that this notion of ambivalence performs better 

than MiniSAT on all problem categories. 

 

3.7 Conclusions and Future Work 

In the previous sections of this chapter, the implementation and key notions of 

AmbSAT were discussed as well as the results pertaining to different parameter 

optimizations and ambivalence notions. Generally, AmbSAT performs well in 

comparison to MiniSAT. Figure 10 displays each of the ambivalence notions discussed 

with their selected value settings. 
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Figure 10 Performance of AmbSAT with Optimized Ambivalence Notions vs. MiniSAT 

 
 
 
 This gives the opportunity to compare each ambivalence notion to each other to 
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three ambivalence notions in this thesis. Our flexible code framework 
5
 makes it easy to 

test new ambivalence notions and evaluate their corresponding performance. 

 It is important to the note that the 29 file problem set used in evaluation of 

parameters and ambivalence notions only had 2 random files. The remaining 27 were 

split were taken from the application and crafted formula families. The reason this is so 

important is because MiniSAT is a former SAT championship winner in the application 

and crafted families. Since our problem set mainly focuses on these two families, 

AmbSAT is actually beating MiniSAT where it is the strongest performing. With the 

inclusion of an SLS solver in the hybrid of AmbSAT, it is expected that AmbSAT will 

perform better than MiniSAT on random problem instances. It can be noted if the 

problem set selected was evenly distributed between random, application, and crafted 

instances AmbSAT would be expected to win a larger percentage of files. For instance, if 

a notion of ambivalence beats MiniSAT 54% of the time on the 29 file problem set 

selected, it can be expected to outperform MiniSAT on 70% of the files in an evenly 

distributed problem set. 

 Future work for the development of AmbSAT includes the development of new 

notions of ambivalence. The number of possible notions is infinite; it is all up to the 

creativity applied to evaluating the current decision making process of MiniSAT. Also, it 

is of interest to apply AmbSAT to different problem sets. A starting point would be a 

problem set containing more random files. There is also the evaluation of AmbSAT on 

completely different problem sets. Lastly, future work may include performance 

observations on more than three runs. The number of runs was selected specifically based 

on the length of time needed to complete an experiment. Performing more runs would 

                                                        
5
 https://github.com/nicolen8489/AmbSAT.git 
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improve our confidence in AmbSAT’s performance and also provide data needed for a 

formal statistical analysis of the results. 
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Appendix A  

 

Benchmark Problem Set Details 

 
Filename File Number Formula Family Number of Variables Number of Clauses 

aaai10-planning-ipc5-pipesworld-12-step16.cnf.bz2 1 Application 68952 1028193 

clauses-4.cnf.bz2 2 Application 267766 1002957 

cube-9-h11-sat.cnf.bz2 3 Application 208292 626360 

E02F20.cnf.bz2 4 Application 10420 394943 

E04F19.cnf.bz2 5 Application 9044 295571 

E04F20.cnf.bz2 6 Application 10420 483373 

grid-pbl-0150.shuffled-as.sat05-1338.shuffled-as.sat05-1338.cnf.bz2 7 Crafted 22650 44851 

grid-pbl-0200.shuffled-as.sat05-1339.shuffled-as.sat05-1339.cnf.bz2 8 Crafted 40200 79801 

gss-14-s100.cnf.bz2 9 Application 31229 93750 

mizh-md5-47-3.cnf.bz2 10 Application 65604 240059 

mizh-md5-47-4.cnf.bz2 11 Crafted 65604 240121 

mod2-rand3bip-sat-210-1.shuffled-as.sat05-2158.cnf.bz2 12 Crafted 210 840 

mod2-rand3bip-sat-210-2.shuffled-as.sat05-2159.cnf.bz2 13 Crafted 210 840 

mod2-rand3bip-sat-210-3.shuffled-as.sat05-2160.cnf.bz2 14 Crafted 210 840 

mod2c-rand3bip-sat-170-1.shuffled-as.sat05-2413.cnf.bz2 15 Crafted 241 1740 

mod2c-rand3bip-sat-190-3.shuffled-as.sat05-2445.cnf.bz2 16 Crafted 271 1972 

mod2c-rand3bip-sat-200-1.shuffled-as.sat05-2458.cnf.bz2 17 Crafted 282 1984 

mod2c-rand3bip-sat-200-2.shuffled-as.sat05-2459.cnf.bz2 18 Crafted 285 2060 

mod2c-rand3bip-sat-210-1.shuffled-as.sat05-2473.cnf.bz2 19 Crafted 297 2100 

partial-5-11-s.cnf.bz2 20 Application 164587 731835 

rbsat-v760c43649g7.cnf.bz2 21 Crafted 760 43649 

rnd_100_28_s.cnf.bz2 22 Crafted 2856 10578 

rnd_150_42_s.cnf.bz2 23 Crafted 6384 23817 

safe-30-h30-sat.cnf.bz2 24 Application 133925 453114 

srhd-sgi-m27-q225-n25-p15-s58217873.cnf.bz2 25 Crafted 550 35586 

unif-k5-r21.3-v75-c1597-S1009664450-096.SATISFIABLE.cnf.bz2 26 Random 75 1597 

unif-k5-r21.3-v75-c1597-S906725726-060.SATISFIABLE.cnf.bz2 27 Random 75 1597 

uts-l06-ipc5-h35-unknown.cnf.bz2 28 Application 196689 912020 

vmpc_26.cnf.bz2 29 Application 676 86424 
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Appendix B  

 

Details of MiniSAT’s Performance on the Benchmark Problem Set 

 
File Number Time (in seconds) Node Count 

1 381 410250 

2 169 188692 

3 94 22991 

4 490 2225616 

5 39 311967 

6 203 1049594 

7 18 10377419 

8 45 28439710 

9 86 28839 

10 827 4832302 

11 393 3874412 

12 680 723987 

13 227 602432 

14 802 1577525 

15 149 525866 

16 103 381106 

17 706 1650574 

18 541 1103161 

19 683 1011747 

20 598 1049684 

21 533 912292 

22 44 232624 

23 419 434082 

24 83 89140 

25 349 661232 

26 1432 2797188 

27 862 2002354 

28 20 22804 

29 83 652708 
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Appendix C  

 

Details of AmbSAT’s Performance with 5% Scout Overhead on the Benchmark Problem Set 

 
File Number Run1 

Time (in seconds) 

Run2 

Time (in seconds) 

Run3 

Time (in seconds) 

Run1  

Node Count 

Run2 

Node Count 

Run3 

Node Count 

1 377* 565 581 377369* 455367 491911 

2 132* 94* 117* 150707* 115526* 140429* 

3 196 150 93* 36666 31162 22616* 

4 565 419* 649 2331894 1915457* 2633737 

5 282 230 147 1687790 1374604 953964 

6 170* 380 141* 854587* 1587444 594033* 

7 19 21 23 8698201* 9863448* 10788507 

8 51 41* 50 27476779* 22710024* 27032413* 

9 189 88 49* 52720 30754 16280* 

10 2750 714* 825* 8424065 4586752* 5178823 

11 291* 1031 731 3365615* 5499113 5220346 

12 109* 23* 564* 287228* 85980* 1063127 

13 167* 2430 1491 372188* 1757172 1449104 

14 1698 1202 668* 2256651 1713968 960993* 

15 36*# 69*# 32*# 175425*# 246765*# 173888*# 

16 64*# 27* 74*# 265772*# 132084* 275312*# 

17 512* 610* 2427 899406* 1408241* 2269886 

18 636# 562# 1353# 1073334*# 1358947# 1592447# 

19 1391# 504*# 214* 1602244# 977709*# 560858* 

20 810 211* 606 1276831 436260* 978205* 

21 3180 23* 2593 2352737 138865* 2087587 

22 61# 14*# 12* 265829# 71128*# 60788* 

23 265# 511 146*# 697729# 661545 181775*# 

24 34* 45* 38* 52773* 51227* 54063* 

25 33* 51* 81* 133251* 183042* 241993* 

26+ 24*# 1*# 1167*# 210408*# 1*# 2435081*# 

27+ 1*# 1*# 1*# 1*# 1*# 1*# 

28 19* 26 299 23258 37791 203159 

29 62* 231 63* 429755* 1387456 441268* 

* indicates instances where AmbSAT performed better than MiniSAT 
# 
indicates instances where the scout solved the formula and  

+
 denotes a problem instance from the Random formula family  
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Appendix D 

 

Details of AmbSAT’s Performance with Polarity Selection Strategy on the Benchmark Problem Set 

 
File Number Run1 

Time (in seconds) 

Run2 

Time (in seconds) 

Run3 

Time (in seconds) 

Run1  

Node Count 

Run2 

Node Count 

Run3 

Node Count 

1 380*#
 569 921 352797*# 452112 634975 

2 121* 91* 117* 138695* 110880* 139737* 

3 79* 117 119 23029 23434 30354 

4 880 384* 831 3286042 1715478* 3188160 

5 177 175 206 1160746 1072045 1318815 

6 249 276 247 1143962 1223195 1155431 

7 23 26 19 11638009 12442948 8851585* 

8 49 51 40* 26519465* 28145627* 23599313* 

9 124 182 138 41366 50845 40059 

10 783* 1926 353* 5090354 7352571 3540015* 

11 158* 884 551 2588856* 5183644 4462342 

12 238* 1853 658* 554188* 1852575 847144 

13 409 634 304 549044* 1049577 648246 

14 596* 855 3998 896581* 1628335 2291142 

15 27* 40*#
 32*#

 145729* 174743*# 173888*# 

16 30* 50*#
 98* 141823* 215474*# 277443* 

17 269* 300*#
 3* 664203* 712655*# 35713* 

18 110*#
 433* 3178

#
 341217*# 709049* 2400463# 

19 505*#
 105* 145*#

 926942*# 364808* 414707*# 

20 1548 1648 341* 2036704 2036190 643581* 

21 1231
#
 841 299* 1375333# 1124531 638944* 

22 108
#
 48

#
 20* 261113# 140880# 103785* 

23 180*#
 371*#

 294* 215940*# 396945*# 389320* 

24 51* 23* 85 63549* 45458* 93072 

25 102* 310* 194*#
 314274* 594671* 433965*# 

26+ 24*#
 1159*#

 23*#
 210408*# 2463556*# 210408*# 

27+ 1*#
 1205

#
 1*#

 1*# 2493397# 1*# 

28 89 150 219 102247 111611 143149 

29 194 80* 53* 1189278 536473* 377830* 

* indicates instances where AmbSAT performed better than MiniSAT 
# 
indicates instances where the scout solved the formula and  

+
 denotes a problem instance from the Random formula family  
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Appendix E 

AmbSAT’s Modified Heap Implementation Details 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

public void setupClauseStates(IVec<Constr> constraints) { 

clauses = new int[constraints.size()][]; 

size = new int[constraints.size()]; 

for (int i = 0; i < constraints.size(); i++) { 

 int[] reduced = constraints.get(i).toArray();  

 clauses[i] = reduced; 

size[i] = reduced.length; 

} 

} 

private void updateClauseStates() { 

for each clause C in the formula 

 // used to keep track of the number of variables with assignments 

 int setVariables = 0; 

 // we only want to make the number of unassigned variables passes 

for j from 0 to (C.length – setVariables) 

int lit = C[j] 

if (lit is satisfied) 

 // this clause is satisfied, so we can move on 

  setVariables = C.length; 

  break; 

} else if (lit is assigned) { 

  // swap the assigned literal with the last unassigned literal 

  C[j] = C[C.length - ++setVariables]; 

  C[C.length - setVariables] = lit; 

  j--; 

} 

 end for 

 // update the size to the number of unassigned literals 

 size[i] = clauses[i].length - setVariables; 

end for 

} 

 

Figure 11 Sub-problem Clause Setup Implementation Details 

Figure 12 Sub-problem Clause Maintenance Implementation Details 
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Appendix F 

 

Ambivalence Notion Implementation Details 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

protected boolean determineAmbivalence ( 

 HybridVarOrderHeap heap,  

 DataInfo info) { 

 

// Ambivalence determined with probability 1/N 

 

if(rand.nextInt(N) == 0) { 

 if(chainAmb != null) {  

      // Invoke the next ambivalence object in the chain  

return chainAmb.determineAmbivalence(heap, info); 

 } 

 return true; 

} 

return false; 

} 

 
Figure 14 Probabilistic Ambivalence Notion Implementation Details 

public abstract class Ambivalence { 

protected Ambivalence chainAmb; 

public boolean isAmbivalent(HyrbidVarOrderHeap heap, DataInfo info) { 

 return this.determineAmbivalence(heap, info); 

} 

Protected abstract boolean determineAmbivalence(HybridVarOrderHeap heap, 

DataInfo info); 

} 

Figure 13 Ambivalence Abstract Class Implementation Details 
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protected boolean determineAmbivalence ( 

HybridVarOrderHeap heap,  

DataInfo info) { 

 

// gather first numCheckElements unassigned variables 

// where numCheckElements is a predetermined value of elements to 

//  collect from the heap 

// note: approximation of largest made to avoid heap manipulation 

collect the first high activity unassigned variables from the heap 

 

// reorder the array so the largest N elements are at the beginning 

for i from 0 to N 

 swap the i
th

 largest element into position i 

end for 

 

// check the first N elements for equality 

for i from 1 to N 

// If we’re checking the first 3 equal and the first 2 are not equal, 

 // then we don’t need to check any further 

if(heapItems[i].getActivity() != heapItems[i-1].getActivity()) 

return false; 

end for 

 

if (chainAmb != null)  

// Invoke the next ambivalence object in the chain 

return chainAmb.determineAmbivalence(heap, info); 

return true;  

} 

 

 Figure 15 N Equal Ambivalence Notion Implementation Details 
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protected boolean determineAmbivalence ( 

HybridVarOrderHeap heap,  

DataInfo info) { 

 

// gather first numCheckElements unassigned variables 

// where numCheckElements is a predetermined value of elements to 

//  collect from the heap 

// note: approximation of largest made to avoid heap manipulation 

collect the first high activity unassigned variables from the heap 

 

// Normalize selected activity values 

double sum = 0; 

// since we may find less elements than we’re looking for 

// we determine how many elements we’ve found 

int upperBound = number of elements found on heap or number of elements to 

check, whichever is larger 

for i from 0 to upperBound 

      swap the i
th

 largest element into position i 

 sum += the activity of variable at position i; 

end for 

for i from 0 to n 

normalize the value by dividing by the sum 

 

// Compute ambivalence, for given ambivalence percentage 

// Assume “foundCount” is the number of variables found on the heap 

double prob = 1.0 / foundCount; 

prob += ambPercentage * prob; 

if(heapItems[0] < prob) {  

// Ambivalence detected, so invoke next object in the chain 

      if(chainAmb != null) 

return chainAmb.determineAmbivalence(heap, info); 

return true; 

} 

return false; 

} 

 

 Figure 16 Normalized Percentage Ambivalence Notion Implementation Details 
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Appendix G 

Details of AmbSAT’s with Probability Ambivalence Performance with P=1/1000 on the Benchmark Problem Set 

File Number Run1 

Time (in seconds) 

Run2 

Time (in seconds) 

Run3 

Time (in seconds) 

Run1  

Node Count 

Run2 

Node Count 

Run3 

Node Count 

1 1041# 784 193*# 650178# 542256 249324*# 

2 97* 171 144* 125543* 183625* 169394* 

3 290 272 197 41708 43817 34425 

4 281* 977 1147 1428916* 3431866 3931773 

5 96 177 195 664862 1175487 1233077 

6 196* 152* 172* 947357* 762974* 801985* 

7 19 21 20 9337594* 10155708* 8856631* 

8 72 63 48 39864423 32607880 25784131* 

9 346 185 218 97550 59105 69946 

10 1914 1480 1415 6904963 6502250 6554625 

11 1858 575 98* 7239462 4862466 1818268* 

12 935 932 1001 1794480 653735 1003868 

13 51* 362 262 176741* 666387* 510561* 

14 2994 4774 132* 2160966 2486133 352569* 

15 88* 197 118* 299178* 610581 362299* 

16 28* 72*# 337 140164* 264358*+ 774918 

17 3* 935 112* 35713* 1586482* 321305* 

18 70* 156* 5* 260630* 423419* 45604* 

19 873 1389 22* 1580188 1640429 110370* 

20 820 886 688 1186806 1331968 1108954 

21 500* 838 1064 842547* 1107142 1288303 

22 22* 35* 26* 98752* 174248* 123081* 

23 353* 581 247* 375577* 588039 284449* 

24 75* 42* 75* 111863 57832* 96018 

25 50* 65* 263* 198809* 243536* 511004* 

26+ 142* 680*# 132*# 644584* 1663671*# 618178*# 

27+ 1*# 1071 1*# 1*# 2236273 1*# 

28 19* 56 61 17813* 74267 55888 

29 22* 139 40* 162819* 880187 283447* 

* indicates instances where AmbSAT performed better than MiniSAT 
# 
indicates instances where the scout solved the formula and  

+
 denotes a problem instance from the Random formula family  
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Appendix H 

 

Details of AmbSAT’s with Equality Ambivalence Performance with N=2 on the Benchmark Problem Set 

 
File Number Run1 

Time (in seconds) 

Run2 

Time (in seconds) 

Run3 

Time (in seconds) 

Run1  

Node Count 

Run2 

Node Count 

Run3 

Node Count 

1 671 878 2321 522304 583257 998389 

2 172 94* 114* 192293 118783* 136356* 

3 118 212 174 22488* 38523 26361 

4 456* 555 357* 1984015* 2383320 1699834* 

5 251 136 226 1496390 983328 1372778 

6 187* 159* 155* 894364* 811378* 806615* 

7 24 22 25 11521249 10648162 11746185 

8 54 54 48 28538316 29543681 27405805* 

9 90 85*# 29* 28837* 28837*# 11639* 

10 1525 591* 139* 6810027 4344622* 2266069* 

11 1004 665 284* 5897460 4996951 3054736* 

12 586* 79* 418* 650756* 261732* 756309 

13 186* 80* 584 420213 225403* 867346 

14 101* 123* 4917 286109 375648* 3367617 

15 58*# 97*# 39*# 238659# 432030*# 176072*# 

16 49* 34* 95*# 220800 168532* 330122*# 

17 979# 1582# 3312# 1512986*# 1811058# 3335369# 

18 573# 545# 804# 1127706# 1159192# 958315*# 

19 390*# 79*# 242*# 873114*# 308882*# 503439*# 

20 123* 605 769 302649* 1025893* 1184591 

21 1531# 1258# 1490# 1619527# 1442115# 1615023# 

22 45# 78 8* 210738*# 343997 41212* 

23 998# 2748# 819# 976025# 2010104# 779314# 

24 24* 99 18* 32183* 106509 27689* 

25 73* 25*# 134*# 252652* 117395*# 355376*# 

26+ 208*# 26* 618*# 789609*# 210408 1548130*# 

27+ 561* 557* 1*# 1458140* 1458140 1*# 

28 98 9* 47 93944 8193* 47793 

29 42* 102 45* 319743 693865 319743 

* indicates instances where AmbSAT performed better than MiniSAT 
# 
indicates instances where the scout solved the formula and  

+
 denotes a problem instance from the Random formula family  
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Appendix I 

 

Details of AmbSAT’s with Normalized Percentage Ambivalence Performance with P=0.125 on the Benchmark Problem Set 

 
File Number Run1 

Time (in seconds) 

Run2 

Time (in seconds) 

Run3 

Time (in seconds) 

Run1  

Node Count 

Run2 

Node Count 

Run3 

Node Count 

1 377* 565 581 377369* 455367 491911 

2 132* 94* 117* 150707* 115526* 140429* 

3 196 150 93* 36666 31162 22616* 

4 565 419* 649 2331894 1915457* 2633737 

5 282 230 147 1687790 1374604 953964 

6 170* 380 141* 854587* 1587444 594033* 

7 19 21 23 8698201* 9863448* 10788507 

8 51 41* 50 27476779* 22710024* 27032413* 

9 189 88 49* 52720 30754 16280* 

10 2750 714* 825* 8424065 4586752* 5178823 

11 291* 1031 731 3365615* 5499113 5220346 

12 109* 23* 564* 287228* 85980* 1063127 

13 167* 2430 1491 372188* 1757172 1449104 

14 1698 1202 668* 2256651 1713968 960993* 

15 36*# 69*# 32*# 175425*# 246765*# 173888*# 

16 64*# 27* 74*# 265772*# 132084* 275312*# 

17 512* 610* 2427# 899406* 1408241* 2269886# 

18 636# 562# 1353# 1073334*# 1358947# 1592447# 

19 1391# 504*# 214* 1602244# 977709*# 560858* 

20 810 211* 606 1276831 436260* 978205* 

21 3180 23* 2593 2352737 138865* 2087587 

22 61# 14*# 12* 265829# 71128*# 60788* 

23 265*# 511 146*# 697729# 661545 181775*# 

24 34* 45* 38* 52773* 51227* 54063* 

25 33* 51* 81* 133251* 183042* 241993* 

26+ 24*# 1*# 1167*# 210408*# 1*# 2435081*# 

27+ 1*# 1*# 1*# 1*# 1*# 1*# 

28 19* 26 299 23258 37791 203159 

29 62* 231 63* 429755* 1387456 441268* 

* indicates instances where AmbSAT performed better than MiniSAT 
# 
indicates instances where the scout solved the formula and  

+
 denotes a problem instance from the Random formula family  
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