
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

12-12-2012

Hybrid solvers for the Boolean Satisfiability problem: an Hybrid solvers for the Boolean Satisfiability problem: an

exploration exploration

Nicole Nelson

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Nelson, Nicole, "Hybrid solvers for the Boolean Satisfiability problem: an exploration" (2012). Theses and
Dissertations. 239.
https://rdw.rowan.edu/etd/239

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Fetd%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/239?utm_source=rdw.rowan.edu%2Fetd%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

HYBRID SOLVERS FOR THE BOOLEAN SATISFIABILITY PROBLEM: AN

EXPLORATION

by

Nicole Ann Nelson

A Masters Thesis

Submitted to the

Department of Computer Science

College of Liberal Arts and Sciences

In partial fulfillment of the requirement

For the degree of

Masters of Science

at

Rowan University

December 5
th

, 2012

Thesis Chair: Dr. Andrea F. Lobo

© 2012 Nicole Ann Nelson

 iii

Acknowledgements

 First of all, I would like to acknowledge my parents for their continued support

through my educational career. From a very young age I learned to work hard to achieve,

and as the tasks became more challenging I have worked even harder. Thanks to my

parents’ encouragement to do well and excel, I am the successful student and professional

I am today.

 Second, I would like to acknowledge my siblings and boyfriend for their support

throughout my studies. The understanding and acceptance for the months that I had no

time for anything but thesis was invaluable in my success. I am especially thankful for

the more challenging days when they were able to make me laugh, even if it only lifted

the weight off my shoulders momentarily.

 I would also like to thank Dr. Andrea F. Lobo, Dr. Ganesh R. Baliga, and Dr.

Vasil Hnatyshin for their time and contributions as a part of my thesis committee. I would

especially like to thank Dr. Baliga for his large contribution in the research conducted

during my graduate studies. Without his guidance I wouldn’t be where I am today.

 iv

Abstract

Nicole Ann Nelson

HYBRID SOLVERS FOR THE BOOLEAN SATISFIABILITY PROBLEM: AN

EXPLORATION

Dr. Andrea F. Lobo

Masters of Science in Computer Science

 The Boolean Satisfiability problem (SAT) is one of the most extensively

researched NP-complete problems in Computer Science. This thesis focuses on the

design of feasible solvers for this problem. A SAT problem instance is a formula in

propositional logic. A SAT solver attempts to find a solution for the formula. Our

research focuses on a newer solver paradigm, hybrid solvers, where two solvers are

combined in order to gain the benefits from both solvers in the search for a solution. Our

hybrid solver, AmbSAT, combines two well-known solvers: the systematic Davis-

Putnam-Logemann-Loveland solver (DPLL) and the stochastic WalkSAT solver.

AmbSAT’s design is original and differs from the hybrid solver designs in the research

literature. AmbSAT utilizes a DPLL algorithm to lead the search and WalkSAT at

appropriate points to aid in the search process. Central to AmbSAT’s design is the notion

of ambivalence. Essentially, ambivalence attempts to formally identify the points in time

when the DPLL solver might be well served by further guidance from WalkSAT. In this

thesis, we present three different ambivalence notions and analyze their performance

against a pure DPLL solver. Our results are promising, and indicate that AmbSAT

performs better than a pure DPLL solver on a diverse collection of SAT problem

instances.

 v

Table of Contents

Abstract iv

Table of Figures vi

Chapter 1 Introduction 1

Chapter 2 SAT Solvers: A Survey 4
2.1 Terminology 4
2.2 Complete Solvers 6
2.3 Incomplete Solvers 13
2.4 Hybrid Solvers 16

Chapter 3 AmbSAT: A Complete Hybrid Solver 20
3.1 Basic Concepts 20
3.2 Designing for Efficiency 21
3.3 Experimentation Methodology 25
3.4 Design Settings 27
3.5 Implementation Details 31
3.6 Ambivalence Notions 36

3.6.1 Probabilistic Ambivalence. 37
3.6.2 Equality Ambivalence. 38
3.6.3 Normalized Percentage Ambivalence. 40

3.7 Conclusions and Future Work 42

List of References 46

Appendix A Benchmark Problem Set Details 49

Appendix B Details of MiniSAT’s Performance on the Benchmark Problem Set 50

Appendix C Details of AmbSAT’s Performance with 5% Scout Overhead on the

Benchmark Problem Set 51

Appendix D Details of AmbSAT’s Performance with Polarity Selection Strategy on the

Benchmark Problem Set 52

Appendix E AmbSAT’s Modified Heap Implementation Details 53

Appendix F Ambivalence Notion Implementation Details 54

Appendix G Details of AmbSAT’s with Probability Ambivalence Performance with

P=1/1000 on the Benchmark Problem Set 57

Appendix H Details of AmbSAT’s with Equality Ambivalence Performance with N=2 on

the Benchmark Problem Set 58

Appendix I Details of AmbSAT’s with Normalized Percentage Ambivalence Performance

with P=0.125 on the Benchmark Problem Set 59

 vi

Table of Figures

Figure 1 DPLL Algorithm Pseudo Code ... 6

Figure 2 SLS Algorithm Pseudo Code .. 13

Figure 3 Shifting Assigned Variables .. 24
Figure 4 Performance of AmbSAT with Different Allowable Overhead Percentages vs.

MiniSAT ... 28

Figure 5 Performance of AmbSAT Selection Strategies vs. MiniSAT 30

Figure 6 AmbSAT select Method: Pseudo Code ... 33

Figure 7 Performance of AmbSAT with Probabilistic Ambivalence vs. MiniSAT 38

Figure 8 Performance of AmbSAT with Equality Ambivalence vs. MiniSAT 40
Figure 9 Performance of AmbSAT with Normalized Percentage Ambivalence vs.

MiniSAT ... 41
Figure 10 Performance of AmbSAT with Optimized Ambivalence Notions vs. MiniSAT

 ... 43

Figure 11 Sub-problem Clause Setup Implementation Details .. 53

Figure 12 Sub-problem Clause Maintenance Implementation Details 53

Figure 13 Ambivalence Abstract Class Implementation Details ... 54

Figure 14 Probabilistic Ambivalence Notion Implementation Details 54

Figure 15 N Equal Ambivalence Notion Implementation Details ... 55

Figure 16 Normalized Percentage Ambivalence Notion Implementation Details.............. 56

 1

Chapter 1

Introduction

 The boolean satisfiability problem (SAT) is the problem of determining if a

satisfying assignment exists for a given boolean constraint formula represented in

conjunctive normal form (CNF). A solution is a boolean assignment that results in a true

evaluation of the formula.

The SAT problem was proven by Stephen Cook to be the first NP-complete in

1971 [4]. The following year, Richard Karp used Cook’s results to prove 21 other

problems to be NP-complete such as the Hamiltonian circuit problem, the 0-1 Knapsack

problem, and the Clique problem [16]. NP-complete problems can be found in many

diverse fields of research within and outside of Computer Science [8]. Any NP-complete

problem can be translated using a translation that operates in polynomial time to any

other NP-complete problem. So, a polynomial time solution to any NP-complete problem

leads to a polynomial time solution to all problems in this collection. Such a solution

would answer in the positive the most outstanding unanswered question in Computer

Science, whether P = NP.
1

The growing interest in the SAT problem correlates to the increasing number of

applications of SAT. Applications of SAT include, but are not limited to: circuit

verification, motion planning, scheduling, computer network design and automated

reasoning. The biannual SAT competition is a result of this increased interest in the field

of research.
2
 Contestants in this competition can submit their SAT solvers as well as hard

SAT problem instances. SAT problem instances at the SAT competition fall into three

1
 http://www.claymath.org/millennium/

2
 http://www.satcompetition.org

 2

categories: application, crafted, and random. Application, also known as industrial,

instances represent encodings of problems in which SAT might be useful for such as

model checking and planning. Crafted instances represent the problem set designed to

challenge SAT solvers; problems in which typical solvers have a hard time. Random

instances represent problem sets produced by a generator based on a random seed.

There are many approaches for solving SAT problem instances. Broadly

speaking, SAT solvers can be either complete or incomplete. A complete solver can

conclusively make the decision whether a satisfying assignment exists for the formula in

question. An incomplete solver can often find a satisfying assignment, if one exists, but

cannot show that no assignment exists.

SAT solvers often fall into one of two paradigms: stochastic local search (SLS),

and Davis-Putnam-Logemann-Loveland (DPLL). SLS solvers are incomplete SAT

solvers. SLS solvers combine a randomized walk through the exponential sized search

space of possible assignments with techniques from artificial intelligence such as hill

climbing and simulated annealing. SLS solvers often operate with low memory

requirements and excel on SAT instances from the random category. The DPLL

algorithm is one of the most popular complete algorithms for solving SAT. DPLL is the

basis for many high grade SAT solvers [6], [21], many of which have excelled at the

recent SAT competitions. DPLL searches the assignment search space using

backtracking. High grade DPLL implementations augment the basic algorithm with

sophisticated techniques such as clause learning and fast constraint propagation using

watched literals, which provide significant improvements in solver performance. They

have a higher memory requirement than SLS solver and are considered the best solvers

 3

for application and crafted problem instances. DPLL solvers typically perform poorly on

random problem instances.

In recent years, a new breed of solvers called hybrid solvers have emerged.

Hybrid solvers combine complete and incomplete solvers, and may themselves be

complete or incomplete [2]. The concept of hybrid solvers is to use two different solvers

that excel in different areas of SAT formulas and combine them together to gain the

benefits of both solvers. Typically, hybrid solvers are crafted using one of the following

techniques:

1. Use an SLS solver to support a DPLL solver [5], [10].

2. Use a DPLL solver to support an SLS solver [2], [9], [15].

3. Using the SLS and DPLL solver to equally aid one another [1], [7], [17],

[19].

The research discussed in future chapters falls in the category of hybrid solvers.

Our approach aims at utilizing a stochastic solver to aid the decision making process of a

DPLL solver. Over time various techniques in this area have been developed. The goal of

the research conducted is to determine a technique for combining two solvers into one

that shows promise for competitive results.

The next chapter features a formal introduction to SAT and a detailed discussion

of the DPLL and WalkSAT SLS solver. Chapter 3 features our abstract notion of

ambivalence which lies at the heart of our hybrid SAT solver. Additionally it focuses on

the important design issues that have a bearing on the hybrid solver’s performance.

Chapter 3 also discusses specific ambivalence notions and the results pertaining to each

implementation. Lastly, conclusions are made based on the data presented.

 4

Chapter 2

SAT Solvers: A Survey

 This chapter includes in detail the most prominent approaches adopted by modern

SAT solvers.

2.1 Terminology

A SAT formula is composed of boolean variables and the boolean operators or

(denoted ∨), and (denoted ∧), and negation (denoted -). The smallest building block in a

SAT formula is a boolean variable which can take either a true or false value. A literal is

a boolean variable represented in its positive or negative form. So, 4 and -4 are the literals

corresponding to the boolean variable 4. A satisfying assignment for a literal is a truth

value which evaluates the literal to true. For instance, the literal 4 is satisfied by the

assignment true, and the literal -4 by the assignment false. A clause comprises of literals

joined together by the boolean or operation. For example, (1 ∨ -2 ∨ -3 ∨ 4) is a clause

comprising 4 literals. In order to satisfy a clause, at least one literal must evaluate to true.

A satisfying assignment for a clause is an assignment that makes the clause true. For

clause (1 ∨ -2 ∨ -3 ∨ 4), a satisfying assignment would be 1=false, 2=false, 3=true,

4=true. A SAT formula in conjunctive normal form (CNF) is a collection of clauses

joined together by the boolean and operation. This thesis focuses exclusively on CNF

formulae. In order for a formula to evaluate to true, each clause must evaluate to true. An

assignment that satisfies each clause of a formula is said to satisfy the formula and is

called a satisfying assignment for the formula. Formula 1 is satisfied by the assignment

1=false, 2=true, 3=false, and 4=false. Observe that the first clause is satisfied by 4=false,

 5

the second clause is satisfied by either 2=true or 4=false, and the third clause is satisfied

by 1=false. Note that the assignment 1=true, 2=true, 3=true, and 4=true is another

satisfying assignment for this formula.

 ∨ ∨ ∧ ∨ ∧ ∨ (1)

A satisfying assignment may be either a complete or partial assignment of the

variables represented in the formula. A partial assignment leaves some of the variables in

the formula unassigned. For instance, Formula 1 can be satisfied by the partial

assignment 2=true and 3=true, where variable 3 satisfies the first and third clause and

variable 2 satisfies the second clause. A formula that has a satisfying assignment is called

satisfiable.

 ∨ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∨ (2)

For some formulas a satisfying assignment does not exist, these formulas are

called unsatisfiable. Clearly, there are 2
N
 possible assignments for a formula that has N

variables. Formula 2 is an unsatisfiable formula with three variables. In the case of

Formula 2, none of the eight possible assignments to the three variables in the formula

satisfies the formula.

The task of SAT solvers is to find a satisfying assignment for a formula, if one

exists. SAT solvers are either incomplete or complete. Incomplete solvers can often find a

 6

solution if one exists, but are unable to determine unsatisfiability. A complete solver can

definitely determine a solution if one exists or declare unsatisfiability if no solution

exists.

2.2 Complete Solvers

 Complete solvers declare a formula as unsatisfiable when no satisfying

assignment exists as well as find a satisfying assignment when one exists. The best

performing complete SAT solvers are based on the Davis-Putnam-Logemann-Loveland

(DPLL) algorithm. The set of all possible assignments to variables in a formula can be

viewed as a binary tree. Leaves in the binary tree represent complete assignments or

partial assignments that have been declared a dead-end. The internal nodes in this tree are

partial assignments and the root node denotes the empty assignment. Each edge in the

tree represents the assignment of a boolean variable in the formula to a true or false

value. The DPLL algorithm uses backtracking to traverse this binary tree of assignments.

function DPLL(F)
 while F contains C where |C| ≤ 1

 if C = Ø then return UNSATISFIABLE

 if C = {v} then F = F | v

 end while

 if F = Ø then return SATISFIABLE

 select a literal u if unassigned variables exist based on a branching heuristic

 if(DPLL(F, u) == SATISFIABLE) then return SATISFIABLE

 if(DPLL(F, ū) == SATISFIABLE) then return SATISFIABLE

 return UNSATISFIABLE

end function

Figure 1 DPLL Algorithm Pseudo Code

 7

 Figure 1 displays the pseudo code for a recursive implementation of the DPLL

algorithm where F represents the formula, C represents the current clause, v represents

the unit variable, u represents the variable selected by the branching heuristic, and ū

represents the negation of variable u. The algorithm traverses the tree by assigning

unassigned variables to true or false values. The partial assignment at a node in the tree

will satisfy some of the clauses in the formula, effectively reducing the size of the

formula. If the formula is empty, where F = Ø, then DPLL has found a satisfying

assignment. In general, DPLL attempts to grow the partial assignment until the entire

formula is satisfied. A partial assignment that does not satisfy a given clause may

decrease the chance of that clause being satisfied. For example, consider the clause (1 ∨ -

2 ∨ -3 ∨ 4) and the partial assignment 2=true and 3=true. In this case, the only variable

that can now satisfy the clause are variables 1 and 4. The original clause has 4 variables

but from the standpoint of the current partial assignment it only has 2. When a partial

assignment results in one or more clauses of zero length (C = Ø in the pseudo code), we

say that there is a conflict. This is effectively a dead-end and DPLL will backtrack to an

ancestor node of the current tree node.

The algorithm traverses the tree setting each variable to true until a solution is

found or a conflict exists. A conflict occurs when the current assignment results in one or

more clauses where all variables have been assigned but the clause is not satisfied,

termed as an empty clause. When a conflict occurs the algorithm backtracks until it finds

a variable that both the true and false assignments have not been explored. If neither

branch results in a satisfying assignment, then the current partial assignment cannot be

extended to a satisfying assignment and the DPLL must backtrack. When a variable is

 8

found, the boolean assignment is changed to false and this branch of the tree is traversed.

If the algorithm backtracks to the root node and both the true and false assignments have

been explored the formula is determined to be unsatisfiable.

 The efficiency of the DPLL algorithm is increased by the inclusion of unit

propagation. A unit clause is a clause in which all but one variable has been assigned but

the clause is still not satisfied. Unit propagation attempts to satisfy all the unit clauses in

the formula. In order to satisfy the clause the remaining unassigned variable, the unit

variable, must be set to evaluate to true (C = {v} in the pseudo code). When unit

variables are assigned, three possible outcomes exist: new unit clauses are formed, the

formula is reduced to not include unit clauses, or a conflict is detected determining that

this branch is a dead-end. When a unit clause is satisfied, it may create more unit clauses

in the formula. For example, if 1 and (-1 ∨ 2) are clauses in the formula, then we have to

set 1=true to satisfying the first clause which is a unit clause. This will make the second

clause (-1 ∨ 2) a unit clause. Unit propagation can also result in the discovery of a

conflict. A conflict is detected by unit propagation when the same variable requires both

a true and false assignment to satisfy the formula. To see this, consider the clauses 1, -2,

and (-1 ∨ 2). Assigning 1=true results in the unit clauses -2 and 2. It is clear that any

assignment to 2 will be unable to satisfy both unit clauses. Also consider the clauses 1, -

2, (-1 ∨ 2), and (-1 ∨ -2). Assigning 1=true and 2=false to satisfy the first and second

clause makes the third and fourth clause into zero length clauses, resulting in a conflict.

Unit propagation increases the efficiency by reducing the size of the formula and

detecting dead-ends as soon as possible. As discussed below, modern SAT solvers pay

careful attention to the implementation of unit propagation.

 9

 One important way for speeding up unit propagation is the two variable watch

technique [21]. In the implementation of two variable watch, a list is maintained

containing two unassigned literals for each clause. When one of the two variables is

assigned in a manner that does not satisfy the clause, it is replaced with another

unassigned variable in the clause. If another unassigned variable does not exist in the

clause, then this clause is identified as a unit clause. Thus, two variable watch provides

efficient detection of unit clauses without needing to inspect all the literals in the entire

clause. It is noted that two variable watch also aids in the efficiency of backtracking

because the watch literals don’t need updated, resulting in unassigning a variable in

constant time.

High quality SAT solvers also employ clause learning to improve search

efficiency [3]. The general idea behind clause learning is to learn from the mistakes that

were already made. In some cases backtracking will result in the same conflict in a

different branch. Clause learning defines a conflict clause; when a clause is conflicting, it

is determined for each of the literals in the clause what the reason for its assignment was.

This process is repeated until some termination condition is met. This procedure results in

a set of variable assignments that caused the conflict and a clause is added to prohibit the

conflict assignment in the future. Most implementations will maintain a clear separation

between the original clauses in the formula and the learnt clauses. The learnt clauses help

the backtracked search to arrive at dead-ends faster at future points in the search. The

collection of learnt clauses contributes to the memory intensive nature of DPLL based

SAT solvers. In order to keep the number of learnt clauses and the memory associated

with the learnt clauses from growing exponentially, in turn slowing down the process of

 10

unit propagation, the collection of learnt clauses is periodically purged to remove clauses

that have not been very effective in helping reach dead-ends in the recent past.

 Different implementations of DPLL-based algorithms generally vary based on

branching heuristics. A branching heuristic selects the next variable and the truth value to

assign to it. The choice of branch variables impacts the size of the resulting formula. The

branch variable choice might also influence how quickly the branch leads to a dead-end

or a satisfying assignment. It is ideal to not spend extra time traversing a branch of the

tree that leads to a dead-end. Early detection of dead-ends reduces the number of nodes

expanded in the search tree, thereby reducing the search time. For this reason, the

overhead incurred by the branching heuristic is considered to be a worthwhile

investment.

The perfect branching heuristic would select the correct branch for each variable

resulting in a satisfying assignment on the first try. A branching heuristic that could select

the correct assignment for a variable on the first attempt would solve the SAT problem in

a polynomial (linear) number of search tree nodes. A branching heuristic that would

result in a polynomial solution to the NP-complete SAT problem would suggest that

P=NP, which proposes that if such a branching heuristic exists, it is nontrivial.

Chaff is a DPLL based solver that implements two variable watch to speed up the

process of boolean constraint propagation [21]. The branching heuristic used in Chaff is

Variable State Independent Decaying Sum (VSIDS). This branching heuristic maintains a

counter for each literal, which is initialized to 0. The counter for the literal is incremented

at a dead-end if it is present in a clause that is empty. When a decision is made the

unassigned literal with the highest counter is chosen. If multiple literals have the same

 11

count, then one of them is selected at random. Choosing the literal with the highest

counter is a strategy for attempting to satisfy the conflict clauses. Decaying variable

counters periodically by dividing each of them by a constant, allows the variable

selection process to focus on variables that have occurred in more recent conflicts. The

important notion of this branching heuristic is that it focuses on satisfying the conflict

clauses generated by clause learning. Decaying the counters periodically allows the

selection to focus on the most recent conflict clauses. In order to avoid a large amount of

memory usage, Chaff implements a unique deletion strategy. The lazy deletion strategy

implemented determines when a clause should be deleted in the future upon the addition

of the clause. A clause is deleted based on relevance; when more than N literals will

become unassigned the clause will be deleted. Chaff also implements the idea of restarts

which begins the search process again, however the conflict clauses added remain which

prevents a new search from conducting the same search repeatedly.

 MiniSAT is a conflict-driven implementation of the DPLL algorithm [6]. The

implementation includes maintaining a list of constraints for each literal. The collection

of constraints represents the subset of clauses that when the literal becomes true unit

information may be propagated for clauses containing the negation of the literal. For

example, the constraints stored as watched clauses for literal 4 are the clauses which

contain the literal -4. When 4 is satisfied the clauses containing -4 may become unit

clauses. Each of the literals are watched, and when the literal is set to true the watcher list

is processed to detect propagation. The watcher list makes backtracking very cheap

because no adjustment is required when undoing a variable assignment. The search

procedure in MiniSAT follows the general DPLL algorithm including backtracking and

 12

unit propagation. Variable selection in MiniSAT is based on activity values of the

variables, where the activity value for a variable correlates with the number of conflicts

that the variable has occurred in. The selection process selects the variable with the

highest activity value first. Each time a variable is a part of a conflict its activity value is

increased. MiniSAT implements the concept of clause learning by recording a conflict

clause when a conflict occurs. After the conflict is recorded multiplying by a value less

than one decays the activity values of all variables. Decaying the activity values of each

variable when a conflict is recorded, allows the selection process to select variables that

have most recently occurred in a conflict. A similar idea is applied to learnt clauses in

order to maintain a manageable number of learnt clauses. When a learnt clause is in

conflict analysis its activity is increased, and periodically inactive clauses are removed.

 The 2005 and 2007 SAT competitions recognized MiniSAT for its fast DPLL

based implementation with awards in the industrial and crafted families on both

satisfiable and unsatisfiable problem instances.
3
 It is implemented in C++ which is often

selected for SAT solvers because of its known efficiency and speed. Sat4J is a collection

of SAT solvers implemented in Java [18]. One of the SAT solvers implemented in the

library is MiniSAT. In future chapters, MiniSAT refers to the Java implementation found

in Sat4J. Implementation of Sat4J was designed to provide access to cross-platform SAT

solvers as well as providing a testing platform for various new ideas in SAT solvers.

Sat4J has been useful for implementation of SAT concepts as well as use in Java-based

academic software, such as the Eclipse open platform [18].

3
 http://www.satcompetition.org

 13

2.3 Incomplete Solvers

Incomplete solvers attempt to find a satisfying assignment when one exists.

Typically there is no guarantee that one will be found. They are unable to declare

formulae as being unsatisfiable. The vast majority of incomplete solvers come from the

category of Stochastic Local Search (SLS). Many different SLS algorithms exist, and the

vast majority of SLS solvers conform to the structure described in the pseudo code in

Figure 2 where F represents the formula, A represents the current random assignment,

and u represents the variable selected to flip.

The SLS algorithm is given a predetermined number of tries to find a solution to

the formula. For each try the algorithm begins with a random assignment generated for

each variable in the formula. From this random assignment each clause is determined to

be satisfied or unsatisfied. Then, for a maximum number of flips a variable is selected

and its assignment is flipped. The variation from one SLS solver to another is found in

the technique for selecting the next variable to flip. If the SLS solver performs the

function SLS(F)
 for i =1 to maxTries
 A = random variable assignment
 for j = 1 to maxFlips
 if A solves F return A
 u= selectVar()
 A[u] = u
 return UNKNOWN
end function

Figure 2 SLS Algorithm Pseudo Code

 14

maximum number of flips on all its tries without satisfying the formula, the solver returns

unknown since it is unable to declare unsatisfiability.

 The algorithm implemented in GSAT is a greedy hill-climbing approach to SLS

[24]. GSAT begins with a randomly generated truth assignment. GSAT then flips the

truth assignment of the literal that results in the largest decrease in the number of

unsatisfied clauses. GSAT performs flips until a maximum number of flips is reached or

a flip results in a satisfying assignment. It starts with a new randomly generated truth

assignment and performs the flip procedure for a maximum number of tries. GSAT is

very similar to the general implementation of a SLS solver. It however includes the

concept of sideways moves. Sideways moves allow GSAT to perform flips to variables

that do not increase the number of satisfied clauses. The implementation of sideways

moves provides GSAT a strategy for escaping local minimum, which is often a struggle

for greedy algorithms approaches. It can be shown that an SLS solver will not be able to

find a solution unless it begins with an assignment that is very close to a satisfying

assignment on some problem instances. Note that a wrong assignment for a single

variable can lead the search to an unsatisfiable formula. Greedy algorithms may

repeatedly select the same assignment for a variable, leading the search down the same

path which may not be promising. GSAT’s implementation of sideways moves is a

technique for solving this problem because it allows variable flips that are contradictory

to the normal greedy strategy.

WalkSAT builds on GSAT by augmenting it with a random walk strategy [23].

The random walk strategy picks a variable from an unsatisfied clause and flips it thereby

satisfying the selected clause. The randomness of the walk strategy is dependent on

 15

probability p. The algorithm selects a random unsatisfied clause. Then with probability p,

the variable that will result in the largest decrease in the number of unsatisfied clauses is

selected and flipped, as GSAT does. Otherwise, a random literal in the selected clause is

selected and flipped. The number of flips performed is bounded by a maximum number

of flips, and the number of tries with a new randomly generated truth assignment is

bounded by a maximum number of tries. In Chapter 3, each reference to WalkSAT refers

to the Java implementation found in the MiniSat library [14].

The 2007 SAT Competition Gold Medal winner in the random category,

gNovelty+, is an SLS solver building off concepts of previous SAT Competition winners

[22]. The algorithm for gNovelty+ begins with a random assignment. Then for a max

number of steps the algorithm determines if the current state is within the probability for

walking. If so, a random variable is selected from a false clause and flipped. If not, a

check is performed to see if a variable that if flipped will reduce the number of

unsatisfied clauses, essentially reducing the formula size; such a variable is considered

promising variable. If a promising variable exists, select the least recently flipped

promising variable. With no identified promising variables, a weighted objective function

is used to select the next variable and the weight of all false clauses is increased by one.

The algorithm for gNovelty+ includes weight smoothing probability when weights are

increased, which for this case means that when false clause weights are updated, the

weight of all clauses is reduced by one. This entire procedure can be restarted and

completed for a maximum number of tries.

UnitWalk is a local search algorithm with a unique twist [12]. The main

difference between UnitWalk and other SLS solvers is that UnitWalk modifies the

 16

formula during the algorithm. Similar to most SLS solvers, the algorithm begins with a

random assignment. UnitWalk then proceeds in periods and each period starts by

generating a random permutation for the variables in the formula. This permutation

dictates the order in which variables are picked during the period. Like DPLL, UnitWalk

uses unit propagation to reduce the size of the formula during a period. First unit

propagation is attempted; if a unit clause exists, the variable selected is the unit variable.

If the current random assignment for the variable does not satisfy another unit clause, i.e.,

there is no conflict, then the variable’s truth value in the current random assignment is set

to the value that would satisfy the unit clause. Note that this might entail flipping the

variable’s value in the current random assignment. Once all the unit clauses are

eliminated in this manner, the next variable is selected from the random permutation that

was generated. If the variable was not already assigned by unit propagation, the variable

is assigned the value in the current random assignment and unit propagation is invoked

again. Once all the variables in the formula have been processed, if the formula is empty

then it is declared to be satisfiable. Otherwise (a conflict occurred) if no variable was

flipped during a period, then UnitWalk randomly flips one of the variables in the current

assignment. This ends the current period and the formula is reset to the original formula

for the next period. After a specified number of periods, search starts at a new random

assignment.

2.4 Hybrid Solvers

Hybrid SAT solvers have become a prominent area of SAT solver research.

Hybrid solvers have been shown to be effective in solving all three SAT formula

families, namely, crafted, application, and random. A hybrid solver comprises two or

 17

more SAT solvers. The hybridizing process varies from one hybrid solver to the next.

The basic goal is to create a solver that inherits the strengths of each component solver

without inheriting their corresponding weaknesses. An ideal solver is fast, complete, uses

little memory, and fares well on all SAT formula families. SLS solvers are very good at

solving problem instances from the random formula family and typically use little

memory. DPLL solvers are very good at solving application and crafted problem

instances, but they are very memory intensive and tend to perform poorly on the random

formula family. Below we discuss some successful hybrid solvers from the literature.

A hybrid solver hybridGM [2] utilizes the SLS solver gNovelty+ and a DPLL

solver March_ks [11]. The implementation of hybridGM uses SLS as the lead solver and

DPLL periodically to help the lead solver, resulting in an incomplete solver. Having the

SLS solver take the lead means that the solver begins with a complete random

assignment. Then, for a predetermined number of flips a variable’s truth value is flipped.

During the process of flipping variables a Search Space Partition (SSP) is constructed

with the goal of studying local minimum and their neighborhoods. A local minimum

exists when flipping a single variable will not solve the current conflict; rather multiple

flips need to be made in order to move past the conflict. The goal of an SSP is to monitor

the flips in the neighborhood of the local minimum to determine which variables are

conflicting and unassign these variables. The partial assignment created by the SSP based

on the random assignment and the unassigned and possibly conflicting values are passed

to the DPLL solver when the SSP grows to a predetermined size. The DPLL solver may

find an assignment for the unassigned variables in which case hybridGM returns the

assignment. When the DPLL solver cannot find a satisfying assignment of the variables,

 18

a solution to the conflict does not exist in the unassigned variables of the SSP. The SLS

solver then continues to find another local minimum and tries the strategy again until a

solution is found.

SatHys is a complete hybrid solver where the two solvers take equal advantage of

each other [1]. SatHys aims to take advantage of research showing that local search

algorithms can provide important information to a DPLL solver. In SatHys, the SLS

solver is used to steer the DPLL solver towards proving unsatisfiability while the DPLL

solver is used to direct the SLS solver to a solution, if one exists. The solver begins by

first applying unit propagation to the original formula. Any variables assigned during unit

propagation are stored in the current partial assignment. A complete assignment is

generated by randomly assigning each of the variables outside of the partial assignment.

The SLS solver is then called on the complete assignment. When the SLS algorithm is

executed it performs normally by flipping variables to reduce the number of unsatisfied

clauses. The SLS search is halted when a local minimum is reached and the activity

values of the DPLL solver’s formula are updated according to the search conducted by

the SLS solver. At this time the DPLL solver is used to select the next variable or another

strategy such as rsaps [13] or novelty [20] is applied. It is noted that as long as the SLS

solver allows for improvements it is favored to execute the SLS solver. The DPLL solver

is invoked based on a value which measures how well the SLS solver is currently

performing. This value is decreased every time the SLS solver reaches a local minimum.

When the DPLL solver is called, a literal is selected based on the updated variable

activities and the truth assignment is selected from the complete assignment generated by

SLS which results in the largest number of satisfied clauses. When a restart occurs a new

 19

complete assignment is generated. This procedure is performed until a satisfying

assignment is found or the formula is determined to be unsatisfiable. According to the

experiments presented in the paper, SatHys is a solver that does well on all three problem

types: crafted, application, and random. Even though it is not the best for any formula

family it performs close to the best and is able to perform well on all categories.

Another interesting approach is adopted by hybrid solver HBISAT (HyBrid

Incremental SAT Solver), which again combines DPLL and local search [7]. In each

iteration, local search attempts to find a satisfying assignment. If a solution is found, the

solution is returned to HBISAT, validated and returned. Otherwise, local search is used to

collect unsatisfied clauses. Note if DPLL determines this collection of unsatisfied clauses

to be unsatisfiable, then the entire formula can be guaranteed unsatisfiable. If DPLL is

able to find a satisfying assignment, the assignment is passed back to local search for the

next iteration. Each iteration adds the set of unsatisfied clauses to a database of unique

clauses. Eventually the database will contain the entire formula. In order to reduce the

number of iterations before the clause database contains all clauses, HBISAT uses

"clause padding". Clause padding adds clauses related to the unsatisfied clauses in a

single iteration. This can help DPLL find unsatisfiability sooner as well as speed up

incremental search. Related clauses are either clauses containing the most flipped

variable or clauses with two or more variables with opposite polarities of literals

contained in the broken clauses. The paper discusses using WalkSAT as its local search,

however declares itself to be flexible to other solvers.

The next chapter features our hybrid SAT solver, AmbSAT.

 20

Chapter 3

AmbSAT: A Complete Hybrid Solver

 In this chapter we describe our hybrid solver, AmbSAT. AmbSAT is a complete

solver that uses the DPLL solver MiniSAT and the SLS solver WalkSAT. We chose

AmbSAT, where Amb represents ambivalence, which is an essential notion in our solver.

In upcoming sections we discuss basic concepts related to the solver, the decisions made

as a part of implementing a hybrid solver, the notion of scout vs. leader, and the notion of

ambivalence.

3.1 Basic Concepts

 Overall, the implementation of AmbSAT attempts to combine an SLS and DPLL

solver in such a way that utilizes the benefits of each solver without incurring a large

amount of overhead.

In order to maintain the completeness of the DPLL algorithm, the hybridization

technique exploited in AmbSAT is to have the SLS solver aid the DPLL solver in its

decision making process. The exploration of AmbSAT is very similar to the traversal

implemented by DPLL. The combination strategy used in AmbSAT is unique in

comparison to existing hybrid solvers. AmbSAT utilizes an SLS solver periodically in

place of using the branching heuristic in MiniSAT, where the results from the SLS solver

are used to select the next variable.

The DPLL algorithm is referred to as the leader because it guides the search until

it is determined that more information is required to continue. When more information is

required, the SLS solver is invoked; the SLS solver is referred to as the scout since it goes

 21

out and gathers information. The scout returns which clause it found the hardest to

satisfy. The DPLL then selects a variable from this clause as the next branch variable.

Essential to the implementation of AmbSAT is our notion of ambivalence. This

abstract notion of ambivalence aims to capture when exactly the leader may not have a

clear preference for which branch variable to use at a search tree node. When

ambivalence is detected, the scout is invoked to identify a difficult to satisfy clause. The

added bonus of executing the scout is that the scout may find a solution, in which case the

search is complete.

3.2 Designing for Efficiency

The MiniSAT implementation utilizes a max-heap to organize variables based on

their activity values. At the beginning of a search, MiniSAT sets the activity values for all

the variables in the formula to zero. The algorithm moves through the heap of variables,

selecting one at a time until a conflict occurs. When a conflict occurs, the activity values

of the variables involved in the conflict are incremented. Within AmbSAT, ambivalence

is not computed until after the first conflict has occurred. However, the scout is invoked

at the root node of the search tree with the intention of steering the leader in the right

direction from the beginning of the search and giving the scout the opportunity to solve

the problem quickly.

The computation involved for each specific notion of ambivalence presented in

Section 3.6 requires access to some of the elements in the heap. Heap implementations

include a pop method that removes the root element of the heap and reorganizes the heap

to maintain heap properties. Performing the pop operation N times would result in a

 22

collection of the largest N elements. Ordinarily the pop operation would suffice for the

purpose of inspecting the variables stored in the heap. However, the N elements that were

removed using the pop operation would need to be placed back into the heap. Simply

inserting the elements back into the heap may result in a change of heap ordering when

multiple variables have the same activity values. Since the ordering of the heap may be

altered, the search path chosen by the leader may also change, which AmbSAT attempts

to avoid. When the leader is not ambivalent, AmbSAT attempts to let the leader perform

as it would have without the hybridization. For this reason, a peek function was

implemented allowing the ability to access any element in the heap without removing the

element from the heap. Less overhead time exists when utilizing the peek function

implemented as opposed to performing pops and manipulating the heap.

MiniSAT implements a lazy heap management technique that allows the heap to

contain both assigned and unassigned variables. During the branch variable selection

process, MiniSAT removes assigned variables from the heap until an appropriate

unassigned variable is found. Note that this does not ensure that the heap only contains

unassigned variables once an unassigned variable is found. It is possible that the heap

may contain assigned variables further down the heap.

 Through the definition of a standard max-heap, it is known that in order to find

the largest N items, the first 2
N
 – 1 items must be accessed to determine the largest N

items. However, since the heap used for AmbSAT may contain assigned variables this

definition becomes complicated. In order to find the true largest N items, it would have to

be tracked how many assigned items are encountered on the heap and the number of

checked items would have to be increased accordingly. Rather than incurring the

 23

overhead of finding the true N largest elements, it was determined that an approximation

was sufficient. In doing so, each type of ambivalence uses two parameters: the number of

unassigned elements to check and N, the number of largest unassigned elements to obtain

from the checked elements.

 When the scout is invoked it is provided with a sub-problem of the original

problem based on the current partial assignment generated by the leader. There are two

benefits to allowing the scout to solve a sub-problem rather than the entire formula. The

first is that the scout will find it easier to solver a smaller problem and if the scout is able

to solve the sub-problem then the formula is satisfiable. The second is that AmbSAT

seeks to extend the current partial assignment upon invocation of the scout. Hence, it is

appropriate to give the scout a list of clauses that remain to be satisfied and a list of

unassigned variables in those clauses to avoid obtaining data that is conflicting with the

leader’s current partial assignment.

When supplying the scout with a sub-problem, all clauses that are left unsatisfied

by the current partial assignment are included. For clauses that are unsatisfied but contain

assigned literals, the clause is modified to provide only unassigned variables. AmbSAT

uses an efficient technique for maintaining the set of unsatisfied clauses. The

maintenance includes creation of an array to store the size of each clause in the formula

and a two-dimensional array whose rows correspond to the clauses in the formula. This

memory is allocated only once at the very beginning of a run when the two-dimensional

array is created to store the original clauses in the formula and the size array is initialized

to the original clause sizes. The implementation specifics for the setup of the clause and

size arrays can be viewed in Figure 11 of Appendix E.

 24

 The clause set is not maintained every time a variable is assigned. Rather the

clause set is updated prior to invoking the scout. Updating the clause set includes looping

through each clause and adjusting accordingly. When the leader has satisfied the clause

the size is set to zero in the size array. For each clause that remains in the formula, we

process the clause variables in the following manner. Each clause variable that has an

assigned value is moved to the end of the clause and the size of the clause is decremented

by one. Figure 12 of Appendix E displays the implementation details of the clause

maintenance method described here.

Figure 3 depicts the action of shifting assigned variables to the end of the clause

array. In the figure the assigned variables are -2 and -8 represented by grayed out indices

of the array. In step one, the original array is displayed and the first element encountered

is the 4. Since literal 4 is unassigned no action is taken at this time. However, in step two

you can see that the array has been altered. In this pass of the array -2 is encountered

which is an assigned variable. Comparing step one to step two it can be observed that the

-2 and 3 have swapped positions. At this time the size of the clause is also decremented

Figure 3 Shifting Assigned Variables

 25

from five to four to adjust for the assigned variable in the clause. In the next pass the

encountered element will be the 3, in its new position, and no action will occur since it is

unassigned. With one more pass through the array all assigned variables will be moved to

the end of the array when the -8 is encountered and swapped in position with the 6. Step

three depicts the final clause array with the assigned variables appearing at the end of the

clause and the clause size set to three, the number of unassigned variables.

 Even with the enhancements made to reduce the amount of overhead based on the

memory allocation, invoking the scout at every node incurs an excessive amount of

overhead. It was determined that the scout should be called only when the leader

indicates that it needs help. The notion of the leader requiring further guidance lead to the

development of the notion of ambivalence for detecting situations where the branching

heuristic is unsure of which variable to select next. Additionally, as discussed in the next

section, AmbSAT caps the scout runtime overhead at a fixed percentage of its total

runtime.

3.3 Experimentation Methodology

 The problem set for these experiments comprises of 29 files collected from the

2005, 2007, 2009, and 2011 SAT competitions (see Appendix A).
4
 The vast majority of

the problem set consists of problem instances from the application and crafted SAT

formula families. As will be evident from our results, AmbSAT’s performance on the

random SAT formula family is vastly superior to MiniSAT’s performance, so our

problem set only includes two files belonging to the random SAT formula family.

Therefore, our results compare AmbSAT’s performance with the performance of

4
 http://www.satcompetition.org

 26

MiniSAT for formulae that MiniSAT is known to excel at solving. The problem set was

used to establish parameter settings that are applied to all ambivalence notions as well as

parameters that pertain to specific ambivalence notions. The problem set was initially run

on MiniSAT in order to allow comparisons of each ambivalence notion implementation.

Appendix B displays the time and node count performance recorded by MiniSAT. Future

paragraphs of this section discuss the parameters that are common to all notions of

ambivalence. Section 3.6 presents specific ambivalence notions and experimental results

thereof.

 In Section 3.6 we will describe several implementations of AmbSAT that vary

based on their specific notion of ambivalence as well as the choice of parameter settings.

Since all implementations use a probabilistic SLS solver, we run each solver three times

on the problem set in order to help understand its performance in the average case, as

well as the influence of various parameter settings. When analyzing the results of various

parameter settings, AmbSAT’s run time performance is compared to MiniSAT’s run time

performance. When two or more settings returned similar results based on time, the

number of nodes expanded in MiniSAT’s tree is used as the secondary comparison

characteristic.

Parameters were optimized using a binary search-like technique, whereby a

couple starting values were selected and the values were adjusted higher, lower, or in the

middle of the starting values based on the run results. For instance, when finding a setting

for normalized percentage ambivalence, discussed in Section 3.6.3, values between 0 and

1 were initially run with increments of 0.1. A run was conducted on a short subset of the

problem set for use in selecting values which seemed to be the most promising. The

 27

results indicated that values on the lower end of the spectrum appeared to be the most

promising. With some more data, we were able to detect that the values 0.1 and 0.2

performed the best regularly. So, then the binary search strategy used suggested runs on

values between 0.05 and 0.25. This binary search strategy then was applied on smaller

values in the ranges that seemed promising resulting in runs with values such as 0.11 and

0.125. Multiple promising values were selected based on the binary search strategy and

executed on the 29 file problem set. The graphs in the upcoming sections present the

percentage of files in the problem set where AmbSAT performs better than MiniSAT. In

the graph related to each ambivalence notion, the selected parameter settings are

displayed compared to a setting numerically less than the selected value and a setting

numerically greater than the selected value.

3.4 Design Settings

One important consideration in AmbSAT’s design was the issue of overhead

incurred by the scout invocations. Clearly, if the overhead grows too large it cannot

possibly compete with MiniSAT. On the other hand, it is desirable to have the scout to be

called a sufficient number of times so AmbSAT can gain the benefits of the scout

invocation. To do this, AmbSAT keeps track of the number of times ambivalence is

detected and the total amount of time the scout runs have taken so far. Another scout

invocation can only be made when the amount of scout time so far plus the estimated

amount of time for one more scout invocation is less than the predetermined percentage

overhead allowed. The average scout run time is estimated from past scout run times.

 28

Figure 4 displays the results of each of the three runs where the scout overhead

percentage is limited to 2.5%, 5%, and 7.5% respectively. Section 3.6.3 discusses

AmbSAT’s implementation of Normalized Percentage Ambivalence with percentage

0.125 that was used to produce the data displayed in Figure 4. The selected setting for the

percentage overhead is 5%. Appendix C displays the detailed time and node count

performance based on 5% overhead. Although all three settings perform fairly well

against the MiniSAT implementation, consistency is a key deciding factor. It can be seen

that the center set of bars for each of the three runs is about 55%. Although a single 2.5%

run performs better than the best 5% run, the other two runs perform worse than the worst

5% run. It can be seen that the variation from run to run is larger than with 5% overhead.

Run 3 of the 7.5% overhead runs performs as well as the first two runs at 5%, but the

other two runs perform significantly worse.

0%

10%

20%

30%

40%

50%

60%

70%

2.50% 5.00% 7.50%

A
m

b
S

A
T

 F
a

st
e

r
T

h
a

n
 M

in
iS

A
T

Run 1

Run 2

Run 3

Figure 4 Performance of AmbSAT with Different Allowable Overhead Percentages vs.

MiniSAT

 29

 Once it is determined how and when to call the scout, it needs to be determined

how to use the scout to benefit the decision making process of the leader. We decided to

use the scout to find out the clause that seems the hardest to satisfy and convey this

information to the leader. The leader can then assign an unassigned variable in this clause

in a manner to satisfy the clause. The scout keeps track of how many times each clause is

unsatisfied with the different assignments that it explores. When the scout completes its

traversal without satisfying the sub-problem, it returns the clause number that has the

most unsatisfied count. From this clause, the leader selects the unassigned variable with

the largest activity value.

 It is possible that the clause selected by the scout may be made up of all

unassigned variables without an activity value. Recall that a variable’s activity value is

incremented only when it is involved in a conflict. Therefore, it may be that the variables

remaining in the selected clause have not occurred in a conflict, thus having an activity

value of 0. In this case, there needs to be a technique for selecting a variable from this

clause. To handle this case, three strategies were defined:

1. Random Selection – The most basic technique for variable

selection includes randomly selecting an unassigned variable in the

clause.

2. Variable Count Selection – A slightly more complex technique for

variable selection which includes selecting the variable which

appears most in the unsatisfied clauses in either its positive or

negative polarity.

3. Literal Count Selection – This variable selection technique is

 30

similar to the Variable Count Selection strategy. The difference is

that this technique selects the variable which occurs most in

unsatisfied clauses in the polarity that it appears in the selected

clause.

Figure 5 Performance of AmbSAT Selection Strategies vs. MiniSAT

Figure 5 displays the results comparing the different possible selection strategies

used to select a variable in a clause where the unassigned variables have activity values

of zero. The data displayed in

Figure 5 was produced with AmbSAT’s implementation of Normalized

Percentage Ambivalence with percentage 0.125, discussed in Section 3.6.3. The Variable

Count selection strategy is determined to be the lowest performing strategy because of

the large amount of variation from run to run. Although this strategy has the largest

0%

10%

20%

30%

40%

50%

60%

70%

Random Variable Literal

A
m

b
S

A
T

 F
a

st
e

r
T

h
a

n
 M

in
iS

A
T

Run 1

Run 2

Run 3

 31

percentage two of the three runs, the variance from smallest to largest percentage is 17%.

From the data presented and based on the elimination of variable selection, the literal

selection strategy is the selected setting because although it does not always perform the

best, it performs the most consistent from one run to another. Literal selection is chosen

over the random selection strategy based on the comparison of the two strategies showing

that on both Run 1 and Run 3 the strategies perform equally or very close to each other.

However, on Run 2 there is a large difference between the two strategies, in which literal

selection is the clear superior. Appendix D displays the detailed results pertaining to the

selection of literal selection as the selection strategy.

3.5 Implementation Details

 In designing and implementing AmbSAT, it was a goal to develop a solver that

modified the component solvers used as little as possible. In order to accomplish this

goal, AmbSAT is implemented in such a way that uses MiniSAT and WalkSAT in their

original implementation states. It should be noted that the only code modified within

MiniSAT’s implementation is an addition of a method to each clause type returning the

clause in an integer array for use with the sub-problem clause set. Although the C

implementation of WalkSAT utilizes the clause and size array the Java implementation

did not, modifications were made to the Java implementation to more closely match the C

implementation with the inclusion of these two arrays.

 The process of executing AmbSAT begins with its own launcher class, adapted

from a basic launcher of MiniSAT. The launcher class is responsible for setting up

AmbSAT to run with user specified parameters as well as invoking methods to read the

 32

problem formula and start the search process. Since the goal of AmbSAT is to allow

MiniSAT to perform a regular search procedure until a state of ambivalence is detected,

most of the setup procedure is exactly what would be performed to execute MiniSAT. In

addition to initializing MiniSAT’s default solver, reading the problem formula, and

starting the search, AmbSAT also loads user specified parameters for notions of

ambivalence, percentage overhead, and selection strategy as well as initializing the clause

and size arrays for use when passing a sub-problem to WalkSAT.

 The use of MiniSAT’s variable heap is important in the implementation of

AmbSAT. In order to allow AmbSAT to function independently from MiniSAT,

AmbSAT sets the MiniSAT default solver to use a heap within AmbSAT. The heap

developed is based on the variable heap used by MiniSAT. AmbSAT’s heap includes the

addition of two methods used to maintain the clause set for WalkSAT’s problem. The

first method is used to initialize the clause and size arrays to store the original clauses and

clause sizes. The second method is used to modify the ordering of the variables in the

clause array to have assigned variables at the end of the array and the clause size reduced,

as discussed in Section 3.2. Lastly, the select method is modified to handle checking for

ambivalence and invoking WalkSAT when ambivalence is detected. Figure 6 displays the

pseudo code for the modified select method. The actual code for the select method, sub-

problem clause initialization, and sub-problem clause maintenance can be found in

Appendix E.

 33

 Figure 6 displays the heap’s select operation where a variable is either selected

from the heap using traditional MiniSAT strategies, or selected based on data returned by

a call to WalkSAT. The lines displayed with bolded text are the portions of the select

method that are added for AmbSAT’s combination of MiniSAT with WalkSAT.

Performing just as MiniSAT does, first it is checked that the heap is not empty. Then,

variable V is selected as the first variable in the heap. The only change in variable V is

that in AmbSAT’s select method the first element is retrieved through a peek method as

opposed to the pop method used by MiniSAT. Since MiniSAT uses a lazy strategy for

heap maintenance, we first check if the variable has been assigned. If the variable is

unassigned, proceed by checking for ambivalence. Otherwise simply remove the assigned

variable from the heap. Ambivalence is checked according the specific notion of

function select ()
 while (heap is not empty)
 V = first heap element
 if (V is unassigned)
 if (ambivalent)
 Build sub-problem, S, with unsatisfied clauses and variables
 satisfied = Invoke WalkSAT on S
 if (satisfied)
 return SATISFIABLE
 C = WalkSAT’s hardest clause
 V’ = Invoke selection strategy to select variable in C
 remove V’ from heap
 return V’
 else

 remove V from heap
 end while
 return UNDEFINED
end function select

Figure 6 AmbSAT select Method: Pseudo Code

 34

ambivalence that is specified in the code. If ambivalence is detected, the sub-problem

clauses are updated and WalkSAT is invoked on the sub-problem. If WalkSAT is

successful in finding a solution to the formula, the search is complete. When WalkSAT

does not solve the sub-problem, it returns the clause that was the hardest to satisfy during

it search. This hardest clause is passed to the selection strategy, which returns an

unassigned variable, V’, in the clause. When possible, the selection strategy picks an

assigned variable that has the largest activity value. If all unassigned variables in the

selected clause have a zero activity value, the selection strategy applies its unique

technique to select one of the unassigned variables. The selected variable is applied as the

next branch variable, and the polarity is selected to satisfy the clause. The selected

variable is removed from the heap and returned for assignment to reduce the size of the

formula.

 The heap’s select method relies on two other implementations: selection strategy,

and ambivalence. First, the implementation details of the selection strategies are

discussed. The three different selection strategies were discussed in Section 3.4 with

results pertaining to each setting. The three strategies are random, variable count, and

literal count. Random selects a random unassigned variable in the clause selected by

WalkSAT. Variable count selects the variable that appears in the most unsatisfied clauses

in either polarity. Literal count selects the variable that appears in the most unsatisfied

clauses in the polarity it appears in the selected clause. Conceptually the strategies are not

very complex. The resulting implementation is also very simple. Random selection is

basic, generating a random number between 0 and the number of unassigned variables in

the clause, and selecting the variable at the generated position. The variable count and

 35

literal count selection algorithms utilize a list of counts maintained by WalkSAT. This

count collection allows these selection strategies to be implemented in an efficient

manner.

 The unique notion of ambivalence implemented in AmbSAT is the key to its

success displayed through data in Section 3.6. Different implementations of ambivalence

rely on the creativity to develop a notion of ambivalence. Different notions share the

same common goal, but the implementations vary from one to another. A single notion is

abstracted into its own class where the Chain of Responsibility (COR) design pattern is

used to allow one notion to contain another notion [25]. This design pattern allows

implementation of the chain of command so that multiple notions of ambivalence can

interact with one another.

 Ambivalence is implemented as an abstract class containing an Ambivalence

object and an abstract method to determine ambivalence. The implementation of abstract

Ambivalence class can be found in Figure 13 of Appendix F. Each specific notion of

ambivalence defines the method to determine ambivalence according to the specifics of

its notion. The use of COR allows notions of ambivalence to function as a chain of

procedures. The chain requires the current ambivalence notion to declare ambivalence

before another notion is evaluated. Each notion of ambivalence in the chain must declare

ambivalence for the leader to be declared ambivalent. When a single notion of

ambivalence does not declare ambivalence, the evaluation is terminated. For instance in

the implementation of AmbSAT, if the overhead is not under the 5% limit then further

notions of ambivalence will not be evaluated. For this reason, it is most logical to apply

the least costly, in terms of overhead time, first so if ambivalence is going to return false

 36

it does so with as little overhead as possible. The coding implementation pertaining to the

three ambivalence notions discussed in Section 3.6 can be found in Appendix F.

3.6 Ambivalence Notions

 The decision left to be made in the hybridization of WalkSAT and MiniSAT is

when and how often to call the scout to aid the leader’s decisions. It was determined to

invoke the scout when the leader was uncertain as to which variable to select next; this

state is referred to as ambivalent. Clearly ambivalence is a subjective notion and admits

to different interpretations. Our first specific ambivalence notion (Probabilistic

Ambivalence in section 3.6.1) is oblivious to the current state of the search and declares

ambivalence from the flip of a biased coin. The other two ambivalence notions, Activity

Equality Ambivalence (see section 3.6.2) and Normalized Percentage Ambivalence (see

section 3.6.3) that we propose in this section are based on the activity ratings of the

unassigned variables in the formula. When MiniSAT is ambivalent the activity ratings of

variables within MiniSAT leave which variable to select ambiguous. The question

remains to define what exactly makes the decision making process ambivalent. The

remainder of this chapter will discuss the different techniques tried in the research

conducted and the decisions made along the way.

 In the development process of combining two solvers into one, various different

techniques were implemented and evaluated for determination of when to make scout

calls. The remainder of this chapter will discuss the three different strategies that were

implemented, tested and evaluated:

1. Probabilistic Ambivalence

 37

2. Activity Equality Ambivalence

3. Normalized Percentage Ambivalence

3.6.1 Probabilistic Ambivalence.

 The first implementation for ambivalence determination was based on a

predetermined probability, P. The Probabilistic Ambivalence notion implementation is

displayed in Figure 14 of Appendix F. This implementation required determination of

how frequently the scout could be called and still result in useful data. It can easily be

seen that calling the scout too frequently would incur a large amount of overhead. Such a

large amount of overhead would cause the hybrid solver’s performance to not be

comparable to MiniSAT’s performance. It is also important to note that not invoking the

scout frequently enough does not provide the leader with enough opportunity to gain

from the scout’s knowledge of the problem.

Figure 7 displays an overall comparison of the different probabilistic settings. The

three runs displayed are for P=1/750, P=1/1000, and P=1/1250. Appendix G contains the

actual time and node count results for the selected settings of the probabilistic

ambivalence notion. As seen in Figure 7, the comparisons of AmbSAT with probabilistic

ambivalence does surprisingly well in comparison to MiniSAT. Note that the three runs

displayed each correspond to a scout overhead that is capped at 5%. From the presented

data and other experiments that were performed, we observe a significant variance in the

performance of AmbSAT with this specific notion of ambivalence. For instance, the

performance of AmbSAT when P=1/1000 which is represented by the center of the three

column sets does really well on the first and third run performing faster than MiniSAT on

 38

approximately 59 and 55 percent of the problem set files, respectively. However, the

second run only performs faster than MiniSAT on approximately 24 percent of the

problem set files. When looking for an ambivalence notion it is desirable to find a notion

that performs equally, or close to equally, as well from one run to another. The upcoming

notions of ambivalence exhibit a more uniform performance in their runtimes on our

problem set.

Figure 7 Performance of AmbSAT with Probabilistic Ambivalence vs. MiniSAT

3.6.2 Equality Ambivalence.

 The second interpretation of ambivalence defines the uncertainty of MiniSAT

based on the equality of the highest N activity values for unassigned variables. This

notion is very intuitive; if two or more variables have the same activity value, then

MiniSAT is unable to decide which one to use. This implementation of ambivalence

0%

10%

20%

30%

40%

50%

60%

70%

P=1/750 P=1/1000 P=1/1250

A
m

b
S

A
T

 F
a

st
e

r
T

h
a

n
 M

in
iS

A
T

Run 1

Run 2

Run 3

 39

requires an N parameter determining how many high activity valued unassigned variables

are checked for equality in the determination of ambivalence. The N parameter is

adjusted in order to allow for a number of scout calls that does not result in an excessive

amount of overhead but provides enough guidance to MiniSAT to be competitive. Figure

15 of Appendix F displays the implementation specifics of the N Equal Ambivalence

notion.

 Figure 8 displays the performance of AmbSAT with this notion for N=2 and N=3

when compared to the performance of MiniSAT. Appendix H contains the time and node

count data for the selected setting of the equality ambivalence notion. It can be seen that

N=2 performs notably well. Variation from one run to another is expected based on the

probabilistic manner of WalkSAT. The AmbSAT implementation with N=2 equality

ambivalence displays variation but a minimal amount with two runs performing better

than MiniSAT on approximately 48 percent of the files and the third run approximately

54 percent. Minimal variation is desirable in an ambivalence notion so the solver

performs similarly on multiple runs. The N=3 equality ambivalence is not desirable even

though a single run performs better than any of the N=2 runs because the variation from

one run to another is so large. For the equality notion only two N values are displayed

because N=3 performs worse than N=2, showing that 2 should be the selected value for

N. Values of N larger than 3 performed poorly in our experiments.

 40

Figure 8 Performance of AmbSAT with Equality Ambivalence vs. MiniSAT

3.6.3 Normalized Percentage Ambivalence.

 This notion of ambivalence is computed by first extracting N high activity,

unassigned variables from the heap. The activities were proportionately normalized, so

that each normalized activity was in the range from 0 to 1. Suppose we obtained M ≤ N

values from the heap. Recall from the discussion in Section 3.2, that we may not obtain

fewer than N values from the heap. This ambivalence notion is parameterized by a fixed

percentage P, which we call the ambivalence percentage. Ambivalence was declared if

the highest normalized activity is less than

. For instance, suppose the value of P = 0.1

(i.e., 10%). If the solver is looking for ten values but only finds five, ambivalence is

declared if the highest activity value is less than

, which is 0.22. Figure 16 in

Appendix F displays the implementation specific details of the Normalized Percentage

0%

10%

20%

30%

40%

50%

60%

70%

N=2 N=3

A
m

b
S

A
T

 F
a

st
e

r
T

h
a

n
 M

in
iS

A
T

Run 1

Run 2

Run 3

 41

Ambivalence notion.

Figure 9 Performance of AmbSAT with Normalized Percentage Ambivalence vs.

MiniSAT

 Figure 9 displays a comparison of three P values for the normalized percentage

ambivalence notion. Displayed are the performance results for P = 0.1 (10%), P = 0.125

(12.5%), and P = 0.15 (15%) respectively, compared to MiniSAT’s performance.

Appendix I contains the time and node count data for the selected setting of the

normalized percentage ambivalence notion. The center set of columns displays the results

for P = 0.125, which depicts the minimal variation that exists with this parameter setting.

The other two values are used to show values that are close to the selected value but

perform worse than the selected value. These other values, P = 0.1 and P = 0.15, show a

large amount of variation amongst the three runs performed. Observe that at the P =

0%

10%

20%

30%

40%

50%

60%

70%

P=0.1 P=0.125 P=0.15

A
m

b
S

A
T

 F
a

st
e

r
T

h
a

n
 M

in
iS

A
T

Run 1

Run 2

Run 3

 42

0.125 setting, AmbSAT performs better than MiniSAT on all runs. Furthermore, the table

in Appendix I shows that AmbSAT performs vastly better than MiniSAT on the two

formulae in our problem taken from the random category. Recalling that the majority of

the problem instances in our problem set (27 out of 29) were taken from the application

and crafted formula categories, it follows that this notion of ambivalence performs better

than MiniSAT on all problem categories.

3.7 Conclusions and Future Work

In the previous sections of this chapter, the implementation and key notions of

AmbSAT were discussed as well as the results pertaining to different parameter

optimizations and ambivalence notions. Generally, AmbSAT performs well in

comparison to MiniSAT. Figure 10 displays each of the ambivalence notions discussed

with their selected value settings.

 43

Figure 10 Performance of AmbSAT with Optimized Ambivalence Notions vs. MiniSAT

 This gives the opportunity to compare each ambivalence notion to each other to

determine which of the three notions performs the best. It is clear that the probabilistic

notion incurs a large amount of variability from run to run based on the random

determination of ambivalence and the probabilistic manner of WalkSAT. This

ambivalence notion can easily be determined to be the poorest performing of the three

implementations discussed. The remaining two implementations, equality ambivalence

and normalized percentage ambivalence, both display little difference from one run to

another. However, based on the data displayed in Figure 10, it is easy to see that the

normalized percentage ambivalence notion performs better than the equality notion. For

this reason, the normalized percentage notion is determined to be the best performing

ambivalence notion discussed. AmbSAT performs well against MiniSAT in two of the

0%

10%

20%

30%

40%

50%

60%

70%

Probabilistic
(P=1/1000)

Equality (N = 2) Normalized Percentage
(P = 0.125)

A
m

b
S

A
T

 F
a

st
e

r
T

h
a

n
 M

in
iS

A
T

Run 1

Run 2

Run 3

 44

three ambivalence notions in this thesis. Our flexible code framework
5
 makes it easy to

test new ambivalence notions and evaluate their corresponding performance.

 It is important to the note that the 29 file problem set used in evaluation of

parameters and ambivalence notions only had 2 random files. The remaining 27 were

split were taken from the application and crafted formula families. The reason this is so

important is because MiniSAT is a former SAT championship winner in the application

and crafted families. Since our problem set mainly focuses on these two families,

AmbSAT is actually beating MiniSAT where it is the strongest performing. With the

inclusion of an SLS solver in the hybrid of AmbSAT, it is expected that AmbSAT will

perform better than MiniSAT on random problem instances. It can be noted if the

problem set selected was evenly distributed between random, application, and crafted

instances AmbSAT would be expected to win a larger percentage of files. For instance, if

a notion of ambivalence beats MiniSAT 54% of the time on the 29 file problem set

selected, it can be expected to outperform MiniSAT on 70% of the files in an evenly

distributed problem set.

 Future work for the development of AmbSAT includes the development of new

notions of ambivalence. The number of possible notions is infinite; it is all up to the

creativity applied to evaluating the current decision making process of MiniSAT. Also, it

is of interest to apply AmbSAT to different problem sets. A starting point would be a

problem set containing more random files. There is also the evaluation of AmbSAT on

completely different problem sets. Lastly, future work may include performance

observations on more than three runs. The number of runs was selected specifically based

on the length of time needed to complete an experiment. Performing more runs would

5
 https://github.com/nicolen8489/AmbSAT.git

 45

improve our confidence in AmbSAT’s performance and also provide data needed for a

formal statistical analysis of the results.

 46

List of References

[1] Audemard, G., Lagniez, J. M., Mazure, B., & Sais, L. (2010). Boosting local

search thanks to CDCL. In Logic for Programming, Artificial Intelligence, and

Reasoning (pp. 474-488). Springer Berlin/Heidelberg.

[2] Balint, A., Henn, M., & Gableske, O. (2009). A novel approach to combine a

SLS-and a DPLL-solver for the satisfiability problem. Theory and Applications of

Satisfiability Testing - SAT 2009 , 284-297.

[3] Beame, P., Kautz, H., & Sabharwal, A. (2003, August). Understanding the power

of clause learning. In International Joint Conference on Artificial Intelligence

(Vol. 18, pp. 1194-1201). Lawrence Erlbaum Associats Ltd.

[4] Cook, S. A. (1971, May). The complexity of theorem-proving procedures. In

Proceedings of the third annual ACM symposium on Theory of computing (pp.

151-158). ACM.

[5] Crawford, J. M. (1993, October). Solving Satisfiability problems using a

combination of systematic and local search. In Second DIMACS Challenge.

[6] Een, N., & Sorensson, N. (2004). An Extensible SAT-solver. In Theory and

Applications of Satisfiability Testing (pp. 333-336). Spring Berlin/Heidelberg.

[7] Fang, L., & Hsiao, M. S. (2007, April). A new hybrid solution to boost SAT

solver performance. In Design, Automation & Test in Europe Conference &

Exhibition, 2007. (pp. 1-6). IEEE.

[8] Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman and Company.

[9] Habet, D., Li, C., Devendeville, L., & Vasquez, M. (2006). A hybrid approach for

SAT. In Principles and Practice of Constraint Programming - CP 2002 (pp. 19-

24). Springer Berlin/Heidelberg.

[10] Havens, W., & Dilkina, B. (2004). A hybrid schema for systematic local

search. Advances in Artificial Intelligence, 248-260.

[11] Heule, M., & Van Maaren, H. (2007). Effective incorporation of double

look-ahead procedures. Theory and Applications of Satisfiability Testing - SAT

2007 , 258-271.

[12] Hirsch, E. A., & Kojevnikov, A. (2005). UnitWalk: A new SAT solver

that uses local search guided by unit clause elimination. Annuals of Mathematics

and Artificial Intelligence , 43 (1), 91-11.

 47

[13] Hutter, F., Tompkins, D. A., & Hoos, H. H. (2002). Scaling and

probabilistic smoothing: Efficient dynamic local search for SAT. Lecture notes in

computer science , 2470, 233-248.

[14] Inoue, K., Soh, T., Ueda, S., Sasaura, Y., Banbara, M., & Tamura, N.

(2006). A competitive and cooperative approach to propositional satisfiability.

Discrete Applied Mathematics , 154 (16), 2291-2306.

[15] Jussien, N., & Lhomme, O. (2002). Local search with constraint

propagation and conflict-based heuristics. Artificial Intelligence, 139(1), pp. 21-

45.

[16] Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E.

Miller, & J. W. Thatcher (Ed.), Complexity of Computer Computations (pp. 85-

103). New York: Plenum.

[17] Kroc, L., Sabharwal, A., Gomes, C. P., & Selman, B. (2009, July).

Integrating systematic and local search paradigms: A new strategy for MaxSAT.

In Proceedings of the 21st international joint conference on Artificial Intelligence

(pp. 544-551). Morgan Kaufmann Publishers Inc.

[18] Le Berre, D., & Parrain, A. (2010). The Sat4j library, release 2.2 system

description. Journal on Satisfiability, Boolean Modeling and Computation, 7, 59-

64.

[19] Letombe, F., & Marques-Silva, J. (2008). Improvements to hybrid

incremental SAT algorithms. Theory and Applications of Satisfiability Testing -

SAT 2008, 168-181.

[20] McAllester, D., Selman, B., & Kautz, H. (1997, July). Evidence for

invariants in local search. In Proceedings of the national conference on artificial

intelligence (pp. 321-326). John Wiley & Sons Ltd.

[21] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S.

(2001, June). Chaff: Engineering an efficient SAT solver. In Proceedings of the

38th annual Design Automation Conference (pp. 530-535). ACM.

[22] Pham, D., Thorton, J., Gretton, C., & Sattar, A. (2007). Advances in Local

Search for Satisfiability. AI 2007: Advances in Artificial Intelligence, 213-222.

[23] Selman, B., Kautz, H., & Cohen, B. (1993). Local Search Strategies for

Satisfiability Testing. Cliques, coloring, and satisfiability: Second DIMACS

implementation challenge , 26, 521-532.

 48

[24] Selman, B., Levesque, H., & Mitchell, D. (1992, July). A New Method for

Solving Hard Satisfiability Problems. In Proceedings of the tenth national

conference on Artificial Intelligence (pp. 440-446).

[25] Vlissides, J., Helm, R., Johnson, R., & Gamma, E. (1995). Design

patterns: Elements of reusable object-oriented software. Reading: Addison-

Wesley.

4
9

Appendix A

Benchmark Problem Set Details

Filename File Number Formula Family Number of Variables Number of Clauses

aaai10-planning-ipc5-pipesworld-12-step16.cnf.bz2 1 Application 68952 1028193

clauses-4.cnf.bz2 2 Application 267766 1002957

cube-9-h11-sat.cnf.bz2 3 Application 208292 626360

E02F20.cnf.bz2 4 Application 10420 394943

E04F19.cnf.bz2 5 Application 9044 295571

E04F20.cnf.bz2 6 Application 10420 483373

grid-pbl-0150.shuffled-as.sat05-1338.shuffled-as.sat05-1338.cnf.bz2 7 Crafted 22650 44851

grid-pbl-0200.shuffled-as.sat05-1339.shuffled-as.sat05-1339.cnf.bz2 8 Crafted 40200 79801

gss-14-s100.cnf.bz2 9 Application 31229 93750

mizh-md5-47-3.cnf.bz2 10 Application 65604 240059

mizh-md5-47-4.cnf.bz2 11 Crafted 65604 240121

mod2-rand3bip-sat-210-1.shuffled-as.sat05-2158.cnf.bz2 12 Crafted 210 840

mod2-rand3bip-sat-210-2.shuffled-as.sat05-2159.cnf.bz2 13 Crafted 210 840

mod2-rand3bip-sat-210-3.shuffled-as.sat05-2160.cnf.bz2 14 Crafted 210 840

mod2c-rand3bip-sat-170-1.shuffled-as.sat05-2413.cnf.bz2 15 Crafted 241 1740

mod2c-rand3bip-sat-190-3.shuffled-as.sat05-2445.cnf.bz2 16 Crafted 271 1972

mod2c-rand3bip-sat-200-1.shuffled-as.sat05-2458.cnf.bz2 17 Crafted 282 1984

mod2c-rand3bip-sat-200-2.shuffled-as.sat05-2459.cnf.bz2 18 Crafted 285 2060

mod2c-rand3bip-sat-210-1.shuffled-as.sat05-2473.cnf.bz2 19 Crafted 297 2100

partial-5-11-s.cnf.bz2 20 Application 164587 731835

rbsat-v760c43649g7.cnf.bz2 21 Crafted 760 43649

rnd_100_28_s.cnf.bz2 22 Crafted 2856 10578

rnd_150_42_s.cnf.bz2 23 Crafted 6384 23817

safe-30-h30-sat.cnf.bz2 24 Application 133925 453114

srhd-sgi-m27-q225-n25-p15-s58217873.cnf.bz2 25 Crafted 550 35586

unif-k5-r21.3-v75-c1597-S1009664450-096.SATISFIABLE.cnf.bz2 26 Random 75 1597

unif-k5-r21.3-v75-c1597-S906725726-060.SATISFIABLE.cnf.bz2 27 Random 75 1597

uts-l06-ipc5-h35-unknown.cnf.bz2 28 Application 196689 912020

vmpc_26.cnf.bz2 29 Application 676 86424

5
0

Appendix B

Details of MiniSAT’s Performance on the Benchmark Problem Set

File Number Time (in seconds) Node Count

1 381 410250

2 169 188692

3 94 22991

4 490 2225616

5 39 311967

6 203 1049594

7 18 10377419

8 45 28439710

9 86 28839

10 827 4832302

11 393 3874412

12 680 723987

13 227 602432

14 802 1577525

15 149 525866

16 103 381106

17 706 1650574

18 541 1103161

19 683 1011747

20 598 1049684

21 533 912292

22 44 232624

23 419 434082

24 83 89140

25 349 661232

26 1432 2797188

27 862 2002354

28 20 22804

29 83 652708

5
1

Appendix C

Details of AmbSAT’s Performance with 5% Scout Overhead on the Benchmark Problem Set

File Number Run1

Time (in seconds)

Run2

Time (in seconds)

Run3

Time (in seconds)

Run1

Node Count

Run2

Node Count

Run3

Node Count

1 377* 565 581 377369* 455367 491911

2 132* 94* 117* 150707* 115526* 140429*

3 196 150 93* 36666 31162 22616*

4 565 419* 649 2331894 1915457* 2633737

5 282 230 147 1687790 1374604 953964

6 170* 380 141* 854587* 1587444 594033*

7 19 21 23 8698201* 9863448* 10788507

8 51 41* 50 27476779* 22710024* 27032413*

9 189 88 49* 52720 30754 16280*

10 2750 714* 825* 8424065 4586752* 5178823

11 291* 1031 731 3365615* 5499113 5220346

12 109* 23* 564* 287228* 85980* 1063127

13 167* 2430 1491 372188* 1757172 1449104

14 1698 1202 668* 2256651 1713968 960993*

15 36*# 69*# 32*# 175425*# 246765*# 173888*#

16 64*# 27* 74*# 265772*# 132084* 275312*#

17 512* 610* 2427 899406* 1408241* 2269886

18 636# 562# 1353# 1073334*# 1358947# 1592447#

19 1391# 504*# 214* 1602244# 977709*# 560858*

20 810 211* 606 1276831 436260* 978205*

21 3180 23* 2593 2352737 138865* 2087587

22 61# 14*# 12* 265829# 71128*# 60788*

23 265# 511 146*# 697729# 661545 181775*#

24 34* 45* 38* 52773* 51227* 54063*

25 33* 51* 81* 133251* 183042* 241993*

26+ 24*# 1*# 1167*# 210408*# 1*# 2435081*#

27+ 1*# 1*# 1*# 1*# 1*# 1*#

28 19* 26 299 23258 37791 203159

29 62* 231 63* 429755* 1387456 441268*

* indicates instances where AmbSAT performed better than MiniSAT

indicates instances where the scout solved the formula and

+
 denotes a problem instance from the Random formula family

5
2

Appendix D

Details of AmbSAT’s Performance with Polarity Selection Strategy on the Benchmark Problem Set

File Number Run1

Time (in seconds)

Run2

Time (in seconds)

Run3

Time (in seconds)

Run1

Node Count

Run2

Node Count

Run3

Node Count

1 380*#
 569 921 352797*# 452112 634975

2 121* 91* 117* 138695* 110880* 139737*

3 79* 117 119 23029 23434 30354

4 880 384* 831 3286042 1715478* 3188160

5 177 175 206 1160746 1072045 1318815

6 249 276 247 1143962 1223195 1155431

7 23 26 19 11638009 12442948 8851585*

8 49 51 40* 26519465* 28145627* 23599313*

9 124 182 138 41366 50845 40059

10 783* 1926 353* 5090354 7352571 3540015*

11 158* 884 551 2588856* 5183644 4462342

12 238* 1853 658* 554188* 1852575 847144

13 409 634 304 549044* 1049577 648246

14 596* 855 3998 896581* 1628335 2291142

15 27* 40*#
 32*#

 145729* 174743*# 173888*#

16 30* 50*#
 98* 141823* 215474*# 277443*

17 269* 300*#
 3* 664203* 712655*# 35713*

18 110*#
 433* 3178

#
 341217*# 709049* 2400463#

19 505*#
 105* 145*#

 926942*# 364808* 414707*#

20 1548 1648 341* 2036704 2036190 643581*

21 1231
#
 841 299* 1375333# 1124531 638944*

22 108
#
 48

#
 20* 261113# 140880# 103785*

23 180*#
 371*#

 294* 215940*# 396945*# 389320*

24 51* 23* 85 63549* 45458* 93072

25 102* 310* 194*#
 314274* 594671* 433965*#

26+ 24*#
 1159*#

 23*#
 210408*# 2463556*# 210408*#

27+ 1*#
 1205

#
 1*#

 1*# 2493397# 1*#

28 89 150 219 102247 111611 143149

29 194 80* 53* 1189278 536473* 377830*

* indicates instances where AmbSAT performed better than MiniSAT

indicates instances where the scout solved the formula and

+
 denotes a problem instance from the Random formula family

53

Appendix E

AmbSAT’s Modified Heap Implementation Details

public void setupClauseStates(IVec<Constr> constraints) {

clauses = new int[constraints.size()][];

size = new int[constraints.size()];

for (int i = 0; i < constraints.size(); i++) {

 int[] reduced = constraints.get(i).toArray();

 clauses[i] = reduced;

size[i] = reduced.length;

}

}

private void updateClauseStates() {

for each clause C in the formula

 // used to keep track of the number of variables with assignments

 int setVariables = 0;

 // we only want to make the number of unassigned variables passes

for j from 0 to (C.length – setVariables)

int lit = C[j]

if (lit is satisfied)

 // this clause is satisfied, so we can move on

 setVariables = C.length;

 break;

} else if (lit is assigned) {

 // swap the assigned literal with the last unassigned literal

 C[j] = C[C.length - ++setVariables];

 C[C.length - setVariables] = lit;

 j--;

}

 end for

 // update the size to the number of unassigned literals

 size[i] = clauses[i].length - setVariables;

end for

}

Figure 11 Sub-problem Clause Setup Implementation Details

Figure 12 Sub-problem Clause Maintenance Implementation Details

54

Appendix F

Ambivalence Notion Implementation Details

protected boolean determineAmbivalence (

 HybridVarOrderHeap heap,

 DataInfo info) {

// Ambivalence determined with probability 1/N

if(rand.nextInt(N) == 0) {

 if(chainAmb != null) {

 // Invoke the next ambivalence object in the chain

return chainAmb.determineAmbivalence(heap, info);

 }

 return true;

}

return false;

}

Figure 14 Probabilistic Ambivalence Notion Implementation Details

public abstract class Ambivalence {

protected Ambivalence chainAmb;

public boolean isAmbivalent(HyrbidVarOrderHeap heap, DataInfo info) {

 return this.determineAmbivalence(heap, info);

}

Protected abstract boolean determineAmbivalence(HybridVarOrderHeap heap,

DataInfo info);

}

Figure 13 Ambivalence Abstract Class Implementation Details

55

protected boolean determineAmbivalence (

HybridVarOrderHeap heap,

DataInfo info) {

// gather first numCheckElements unassigned variables

// where numCheckElements is a predetermined value of elements to

// collect from the heap

// note: approximation of largest made to avoid heap manipulation

collect the first high activity unassigned variables from the heap

// reorder the array so the largest N elements are at the beginning

for i from 0 to N

 swap the i
th

 largest element into position i

end for

// check the first N elements for equality

for i from 1 to N

// If we’re checking the first 3 equal and the first 2 are not equal,

 // then we don’t need to check any further

if(heapItems[i].getActivity() != heapItems[i-1].getActivity())

return false;

end for

if (chainAmb != null)

// Invoke the next ambivalence object in the chain

return chainAmb.determineAmbivalence(heap, info);

return true;

}

 Figure 15 N Equal Ambivalence Notion Implementation Details

56

protected boolean determineAmbivalence (

HybridVarOrderHeap heap,

DataInfo info) {

// gather first numCheckElements unassigned variables

// where numCheckElements is a predetermined value of elements to

// collect from the heap

// note: approximation of largest made to avoid heap manipulation

collect the first high activity unassigned variables from the heap

// Normalize selected activity values

double sum = 0;

// since we may find less elements than we’re looking for

// we determine how many elements we’ve found

int upperBound = number of elements found on heap or number of elements to

check, whichever is larger

for i from 0 to upperBound

 swap the i
th

 largest element into position i

 sum += the activity of variable at position i;

end for

for i from 0 to n

normalize the value by dividing by the sum

// Compute ambivalence, for given ambivalence percentage

// Assume “foundCount” is the number of variables found on the heap

double prob = 1.0 / foundCount;

prob += ambPercentage * prob;

if(heapItems[0] < prob) {

// Ambivalence detected, so invoke next object in the chain

 if(chainAmb != null)

return chainAmb.determineAmbivalence(heap, info);

return true;

}

return false;

}

 Figure 16 Normalized Percentage Ambivalence Notion Implementation Details

5
7

Appendix G

Details of AmbSAT’s with Probability Ambivalence Performance with P=1/1000 on the Benchmark Problem Set

File Number Run1

Time (in seconds)

Run2

Time (in seconds)

Run3

Time (in seconds)

Run1

Node Count

Run2

Node Count

Run3

Node Count

1 1041# 784 193*# 650178# 542256 249324*#

2 97* 171 144* 125543* 183625* 169394*

3 290 272 197 41708 43817 34425

4 281* 977 1147 1428916* 3431866 3931773

5 96 177 195 664862 1175487 1233077

6 196* 152* 172* 947357* 762974* 801985*

7 19 21 20 9337594* 10155708* 8856631*

8 72 63 48 39864423 32607880 25784131*

9 346 185 218 97550 59105 69946

10 1914 1480 1415 6904963 6502250 6554625

11 1858 575 98* 7239462 4862466 1818268*

12 935 932 1001 1794480 653735 1003868

13 51* 362 262 176741* 666387* 510561*

14 2994 4774 132* 2160966 2486133 352569*

15 88* 197 118* 299178* 610581 362299*

16 28* 72*# 337 140164* 264358*+ 774918

17 3* 935 112* 35713* 1586482* 321305*

18 70* 156* 5* 260630* 423419* 45604*

19 873 1389 22* 1580188 1640429 110370*

20 820 886 688 1186806 1331968 1108954

21 500* 838 1064 842547* 1107142 1288303

22 22* 35* 26* 98752* 174248* 123081*

23 353* 581 247* 375577* 588039 284449*

24 75* 42* 75* 111863 57832* 96018

25 50* 65* 263* 198809* 243536* 511004*

26+ 142* 680*# 132*# 644584* 1663671*# 618178*#

27+ 1*# 1071 1*# 1*# 2236273 1*#

28 19* 56 61 17813* 74267 55888

29 22* 139 40* 162819* 880187 283447*

* indicates instances where AmbSAT performed better than MiniSAT

indicates instances where the scout solved the formula and

+
 denotes a problem instance from the Random formula family

5
8

Appendix H

Details of AmbSAT’s with Equality Ambivalence Performance with N=2 on the Benchmark Problem Set

File Number Run1

Time (in seconds)

Run2

Time (in seconds)

Run3

Time (in seconds)

Run1

Node Count

Run2

Node Count

Run3

Node Count

1 671 878 2321 522304 583257 998389

2 172 94* 114* 192293 118783* 136356*

3 118 212 174 22488* 38523 26361

4 456* 555 357* 1984015* 2383320 1699834*

5 251 136 226 1496390 983328 1372778

6 187* 159* 155* 894364* 811378* 806615*

7 24 22 25 11521249 10648162 11746185

8 54 54 48 28538316 29543681 27405805*

9 90 85*# 29* 28837* 28837*# 11639*

10 1525 591* 139* 6810027 4344622* 2266069*

11 1004 665 284* 5897460 4996951 3054736*

12 586* 79* 418* 650756* 261732* 756309

13 186* 80* 584 420213 225403* 867346

14 101* 123* 4917 286109 375648* 3367617

15 58*# 97*# 39*# 238659# 432030*# 176072*#

16 49* 34* 95*# 220800 168532* 330122*#

17 979# 1582# 3312# 1512986*# 1811058# 3335369#

18 573# 545# 804# 1127706# 1159192# 958315*#

19 390*# 79*# 242*# 873114*# 308882*# 503439*#

20 123* 605 769 302649* 1025893* 1184591

21 1531# 1258# 1490# 1619527# 1442115# 1615023#

22 45# 78 8* 210738*# 343997 41212*

23 998# 2748# 819# 976025# 2010104# 779314#

24 24* 99 18* 32183* 106509 27689*

25 73* 25*# 134*# 252652* 117395*# 355376*#

26+ 208*# 26* 618*# 789609*# 210408 1548130*#

27+ 561* 557* 1*# 1458140* 1458140 1*#

28 98 9* 47 93944 8193* 47793

29 42* 102 45* 319743 693865 319743

* indicates instances where AmbSAT performed better than MiniSAT

indicates instances where the scout solved the formula and

+
 denotes a problem instance from the Random formula family

5
9

Appendix I

Details of AmbSAT’s with Normalized Percentage Ambivalence Performance with P=0.125 on the Benchmark Problem Set

File Number Run1

Time (in seconds)

Run2

Time (in seconds)

Run3

Time (in seconds)

Run1

Node Count

Run2

Node Count

Run3

Node Count

1 377* 565 581 377369* 455367 491911

2 132* 94* 117* 150707* 115526* 140429*

3 196 150 93* 36666 31162 22616*

4 565 419* 649 2331894 1915457* 2633737

5 282 230 147 1687790 1374604 953964

6 170* 380 141* 854587* 1587444 594033*

7 19 21 23 8698201* 9863448* 10788507

8 51 41* 50 27476779* 22710024* 27032413*

9 189 88 49* 52720 30754 16280*

10 2750 714* 825* 8424065 4586752* 5178823

11 291* 1031 731 3365615* 5499113 5220346

12 109* 23* 564* 287228* 85980* 1063127

13 167* 2430 1491 372188* 1757172 1449104

14 1698 1202 668* 2256651 1713968 960993*

15 36*# 69*# 32*# 175425*# 246765*# 173888*#

16 64*# 27* 74*# 265772*# 132084* 275312*#

17 512* 610* 2427# 899406* 1408241* 2269886#

18 636# 562# 1353# 1073334*# 1358947# 1592447#

19 1391# 504*# 214* 1602244# 977709*# 560858*

20 810 211* 606 1276831 436260* 978205*

21 3180 23* 2593 2352737 138865* 2087587

22 61# 14*# 12* 265829# 71128*# 60788*

23 265*# 511 146*# 697729# 661545 181775*#

24 34* 45* 38* 52773* 51227* 54063*

25 33* 51* 81* 133251* 183042* 241993*

26+ 24*# 1*# 1167*# 210408*# 1*# 2435081*#

27+ 1*# 1*# 1*# 1*# 1*# 1*#

28 19* 26 299 23258 37791 203159

29 62* 231 63* 429755* 1387456 441268*

* indicates instances where AmbSAT performed better than MiniSAT

indicates instances where the scout solved the formula and

+
 denotes a problem instance from the Random formula family

	Hybrid solvers for the Boolean Satisfiability problem: an exploration
	Recommended Citation

	Abstract
	Table of Figures
	Chapter 1 Introduction
	Chapter 2 SAT Solvers: A Survey
	2.1 Terminology
	2.2 Complete Solvers
	2.3 Incomplete Solvers
	2.4 Hybrid Solvers

	Chapter 3 AmbSAT: A Complete Hybrid Solver
	3.1 Basic Concepts
	3.2 Designing for Efficiency
	3.3 Experimentation Methodology
	3.4 Design Settings
	3.5 Implementation Details
	3.6 Ambivalence Notions
	3.6.1 Probabilistic Ambivalence.
	3.6.2 Equality Ambivalence.
	3.6.3 Normalized Percentage Ambivalence.

	3.7 Conclusions and Future Work

	List of References
	Appendix A Benchmark Problem Set Details
	Appendix B Details of MiniSAT’s Performance on the Benchmark Problem Set
	Appendix C Details of AmbSAT’s Performance with 5% Scout Overhead on the Benchmark Problem Set
	Appendix D Details of AmbSAT’s Performance with Polarity Selection Strategy on the Benchmark Problem Set
	Appendix E AmbSAT’s Modified Heap Implementation Details
	Appendix F Ambivalence Notion Implementation Details
	Appendix G Details of AmbSAT’s with Probability Ambivalence Performance with P=1/1000 on the Benchmark Problem Set
	Appendix H Details of AmbSAT’s with Equality Ambivalence Performance with N=2 on the Benchmark Problem Set
	Appendix I Details of AmbSAT’s with Normalized Percentage Ambivalence Performance with P=0.125 on the Benchmark Problem Set

