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Abstract

Belhassen Bayar

OPTIMIZATION ALGORITHMS FOR INFERENCE AND CLASSIFICATION
OF GENETIC PROFILES FROM UNDERSAMPLED MEASUREMENTS

2014/06
Nidhal Bouaynaya, Ph.D.

Master of Science in Electrical & Computer Engineering

In this thesis, we tackle three different problems, all related to optimization tech-

niques for inference and classification of genetic profiles. First, we extend the de-

terministic Non-negative Matrix Factorization (NMF) framework to the probabilistic

case (PNMF). We apply the PNMF algorithm to cluster and classify DNA microar-

rays data. The proposed PNMF is shown to outperform the deterministic NMF and

the sparse NMF algorithms in clustering stability and classification accuracy. Sec-

ond, we propose SMURC: Small-sample MUltivariate Regression with Covariance

estimation. Specifically, we consider a high dimension low sample-size multivariate

regression problem that accounts for correlation of the response variables. We show

that, in this case, the maximum likelihood approach is senseless because the likeli-

hood diverges. We propose a normalization of the likelihood function that guaran-

tees convergence. Simulation results show that SMURC outperforms the regularized

likelihood estimator with known covariance matrix and the state-of-the-art sparse

Conditional Graphical Gaussian Model (sCGGM). In the third Chapter, we derive a

new greedy algorithm that provides an exact sparse solution of the combinatorial `0-

optimization problem in an exponentially less computation time. Unlike other greedy

approaches, which are only approximations of the exact sparse solution, the proposed

greedy approach, called Kernel reconstruction, leads to the exact optimal solution.
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Chapter 1
Introduction

1.1 Research Objectives

We outline the goal of this research through the following objectives:

1. Study and analyse the Non-negative Matrix Factorization (NMF) and propose

a probabilistic extension to NMF (PNMF) for data corrupted by noise.

2. Build a PNMF-based classifier and apply it for tumor classification from gene

expression data.

3. Derive a convex optimization algorithm for the solution of an under-determined

multivariate regression problem. Apply the proposed algorithm to infer genetic

regulatory networks from gene expression data.

4. Derive a greedy algorithm for exact reconstruction of sparse signals from a

limited number of observations.

1.2 Research Contribution

This work contributes to the field of computational bioinformatics and biology through

the application of the signal processing algorithms aiming to study and analyze the

microarray data. Our work shifts the focus of the genomic signal processing commu-

nity from analyzing the genes expression patterns and samples clusters to considering

1



the mathematical aspect of the algorithm and deriving its application in the stochas-

tic work. We also focus on solving under-determined multivariate regression systems

in order to infer gene regulatory networks. These networks are known to be sparse,

therefore, we have a great interest in studying the compressive sensing approach which

recovers sparse signal from linear model. Specific contributions of this work include:

� The improvement of the mathematical proof for the NMF algorithm by provid-

ing a general evidence (see Appendix preposition 2).

� The development of a new NMF algorithm for the noisy Microarray data in

order to improve the basic NMF approach and to predict some hidden data

features.

� Solving under-determined multivariate regression systems to infer gene regula-

tory networks using our new SMURC algorithm.

� Recover k-sparse signal using our new approach, called Kernel Reconstruction,

that guarantees an exact reconstruction and less computational time comparing

to the `0-based compressive sensing approach [18].

1.3 Organization

This thesis is organized as follows.

In Chapter 2, we study and analyze the Non-negative Matrix Factorization and de-

rive its probabilistic approach that we call PNMF algorithm and then we derive its

corresponding update rules. The proof of the developed approaches is provided in
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the Appendix chapter. We compare the performance of our PNMF approach with its

homologues in clustering as well as classification.

In Chapter 3, we develop a new approach, called Small-sample MUltivariate Re-

gression with Covariance Estimation (SMURC), to solve under-determined multivari-

ate regression systems. We use this approach to infer gene regulatory networks. We

compare our algorithm to other techniques cited in related works and using a syn-

thetic data. Subsequently, we apply our approach to infer the know interactions in

the Drosophila’s 11-gene wing muscle network.

Finally, in Chapter 4 we provide a complete review of the compressive sensing

technique. We also come up with a new approach that performs an exact reconstruc-

tion of a sparse signal. We call this approach, Kernel Reconstruction, and we compare

it with what has been suggested in the related work.
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Chapter 2

Probabilistic Non-negative Matrix Factorization: Theory and
Application to Microarray Data Analysis

2.1 Introduction

Extracting knowledge from experimental raw data and measurements is an important

objective and challenge in signal processing. Often data collected is high dimensional

and incorporates several inter-related variables, which are combinations of underly-

ing latent components or factors. Approximate low-rank matrix factorizations play

a fundamental role in extracting these latent components [14]. In many applica-

tions, signals to be analyzed are non-negative, e.g., pixel values in image processing,

price variables in economics and gene expression levels in computational biology. For

such data, it is imperative to take the non-negativity constraint into account in or-

der to obtain a meaningful physical interpretation. Classical decomposition tools,

such as Principal Component Analysis (PCA), Singular Value Decomposition (SVD),

Blind Source Separation (BSS) and related methods do not guarantee to maintain

the non-negativity constraint. Non-negative matrix factorization (NMF) represents

non-negative data in terms of lower-rank non-negative factors. NMF proved to be

a powerful tool in many applications in biomedical data processing and analysis,
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such as muscle identification in the nervous system [54], classification of images [29],

gene expression classification [10], biological process identification [32] and transcrip-

tional regulatory network inference [38]. The appeal of NMF, compared to other

clustering and classification methods, stems from the fact that it does not impose

any prior structure or knowledge on the data. Brunet et al. successfully applied

NMF to the classification of gene expression datasets [10] and showed that it leads

to more accurate and more robust clustering than the Self-Organizing Maps (SOMs)

and Hierarchical Clustering (HC). Analytically, the NMF method factors the original

non-negative matrix V into two lower rank non-negative matrices, W and H such that

V = WH + E, where E is the residual error. Lee and Seung [33] derived algorithms

for estimating the optimal non-negative factors that minimize the Euclidean distance

and the Kullback-Leibler divergence cost functions. Their algorithms, guaranteed to

converge, are based on multiplicative update rules, and are a good compromise be-

tween speed and ease of implementation. In particular, the Euclidean distance NMF

algorithm can be shown to reduce to the gradient descent algorithm for a specific

choice of the step size [33]. Lee and Seung’s NMF factorization algorithms have been

widely adopted by the community [6, 10,19,59].

The NMF method is, however, deterministic. That is, the algorithm does not take

into account the measurement or observation noise in the data. On the other hand,

data collected using electronic or biomedical devices, such as gene expression profiles,

are known to be inherently noisy and therefore, must be processed and analyzed by

systems that take into account the stochastic nature of the data. Furthermore, the ef-

fect of the data noise on the NMF method in terms of convergence and robustness has
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not been previously investigated. Thus, questions about the efficiency and robustness

of the method in dealing with imperfect or noisy data are still unanswered.

In this chapter, we extend the NMF framework and algorithms to the stochastic

case, where the data is assumed to be drawn from a multinomial probability den-

sity function. We call the new framework Probabilistic NMF or PNMF. We show

that the PNMF formulation reduces to a weighted regularized matrix factorization

problem. We generalize and extend Lee and Seung’s algorithm to the stochastic case;

thus providing PNMF updates rules, which are guaranteed to converge to the optimal

solution. The proposed PNMF algorithm is applied to cluster and classify gene ex-

pression datasets, and is compared to other NMF and non-NMF approaches including

sparse NMF (SNMF) and SVM.

The chapter is organized as follows: In Section 2.1.1, we discuss related work

and clarify the similarities and differences between the proposed PNMF algorithm

and other approaches to NMF present in the literature. In Section 2.2, we review

the (deterministic) NMF formulation and extend Lee and Seung’s NMF algorithm to

include a general class of convergent update rules. In Section 2.3, we introduce the

probabilistic NMF (PNMF) framework and derive its corresponding update rules. In

Section 2.4, we present a data classification method based on the PNMF algorithm.

Section 2.5 applies the proposed PNMF algorithm to cluster and classify gene ex-

pression profiles. The results are compared with the deterministic NMF, sparse NMF

and SVM. Finally, a summary of the main contributions and concluding remarks are

outlined in Section 2.6.

In this chapter, scalars are denoted by lower case letters, e.g., n,m; vectors are
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denoted by bold lower case letters, e.g., x,y; and matrices are referred to by upper

case letters, e.g., A, V . xi denotes the ith element of vector x and Aij is the (i, j)th

entry of matrix A. Throughout the chapter, we provide references to known results

and limit the presentation of proofs to new contributions. All proofs are presented in

the Appendix section.

2.1.1 Related work. Several variants of the NMF algorithm have been pro-

posed in the literature. An early form of NMF, called Probabilistic Latent Semantic

Analysis (PLSA) [27], [28], [37], was used to cluster textual documents. The key idea

is to map high-dimensional count vectors, such as the ones arising in text documents,

to a lower dimensional representation in a so-called latent semantic space. PLSA

has been shown to be equivalent to NMF factorization with Kullback-Leibler (KL)

divergence, in the sense that they have the same objective function and any solution

of PLSA is a solution of NMF with KL minimization [17].

Many variants of the NMF framework introduce additional constraints on the

non-negative factor matrices W and H, such as sparsity and smoothness. Combin-

ing sparsity with non-negative matrix factorization is partly motivated by modeling

neural information processing, where the goal is to find a decomposition in which the

hidden components are sparse. Hoyer [30] combined sparse coding and non-negative

matrix factorization into non-negative sparse coding (NNSC) to control the trade-

off between sparseness and accuracy of the factorization. The sparsity constraint is

imposed by constraining the l1-norm. The NNSC algorithm resorts to setting the
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negative values of one of the factor matrices to zero. This procedure is not always

guaranteed to converge to a stationary point. Kim and Park [31] solved the sparse

NMF optimization problem via alternating non-negativity-constrained least squares.

They applied sparse NMF to cancer class discovery and gene expression data analysis.

NMF has also been extended to consider a class of smoothness constraints on the

optimization problem [41]. Enforcing smoothness on the factor matrices is desirable in

applications such as unmixing spectral reflectance data for space object identification

and classification purposes [41]. However, the algorithm in [41] forces positive entries

by setting negative values to zero and hence may suffer from convergence issues.

Similarly, different penalty terms may be used depending upon the desired effects on

the factorization. A unified model of constrained NMF, called versatile sparse matrix

factorization (VSMF), has been proposed in [34]. The VSMF framework includes

both l1 and l2-norms. The l1-norm is used to induce sparsity and the l2-norm is used

to obtain smooth results. In particular, the standard NMF, sparse NMF [30], [31]

and semi-NMF [16], where the non-negativity constraint is imposed on only one of

the factors, can be seen as special cases of VSMF.

Another variant of the NMF framework is obtained by considering different dis-

tances or measures between the original data matrix and its non-negative factors [49],

[56]. Sandler and Lindenbaum [49] proposed to factorize the data using the earth

movers distance (EMD). The EMD NMF algorithm finds the local minimum by solv-

ing a sequence of linear programming problems. Though the algorithm has shown

significant improvement in some applications, such as texture classification and face

recognition, it is computationally very costly. To address this concern, the authors
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have proposed the wavelet-based approximation to the EMD distance, WEMD, and

used it in place of EMD. They argued that the local minima of EMD and WEMD are

generally collocated when using a gradient-based method. A similarity measure based

on the correntropy, termed NMF MCC, has been proposed in [56]. The correntropy

measure employs the Gaussian kernel to map the linear data space to a non-linear

space. The optimization problem is solved using an expectation maximization based

approach.

A collection of non-negative matrix factorization algorithms implemented for Mat-

lab is available at http://cogsys.imm.dtu.dk/toolbox/nmf/. Except for PLSA,

which was originally proposed as a statistical technique for text clustering, the pre-

sented NMF approaches do not explicitly assume a stochastic framework for the data.

In other words, the data is assumed to be deterministic. In this work, we assume that

the original data is a sample drawn from a multinomial distribution and derive the

maximum a posteriori (MAP) estimates of the non-negative factors. The proposed

NMF framework, termed Probabilistic NMF or PNMF, does not impose any addi-

tional constraints on the non-negative factors like SNMF or VSMF. Interestingly,

however, the formulation of the MAP estimates reduces to a weighted regularized

matrix factorization problem that resembles the formulations in constrained NMF

approaches. The weighting parameters, however, have a different interpretation: they

refer to signal to noise ratios rather than specific constraints.

9
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2.2 Non-negative Matrix Factorization

The non-negative matrix factorization (NMF) is a constrained matrix factorization

problem, where a non-negative matrix V is factorized into two non-negative matrices

W and H. Here, non-negativity refers to elementwise non-negativity, i.e., all elements

of the factors W and H must be equal to or greater than zero. The non-negativity

constraint makes NMF more difficult algorithmically than classical matrix factoriza-

tion techniques, such as principal component analysis and singular value decompo-

sition. Mathematically, the problem is formulated as follows: Given a non-negative

matrix V ∈ Rn×m, find non-negative matrices W ∈ Rn×k and H ∈ Rk×m such that

V ≈ WH. The optimal factors minimize the squared error and are solutions to the

following constrained optimization problem,

(W ∗, H∗) = arg min
W,H≥0

f(W,H) = ‖V −WH‖2
F , (2.1)

where ‖.‖F denotes the Frobenius norm and f is the squared Euclidean distance

function between V and WH. The cost function f is convex with respect to either

the elements of W or H, but not both. Alternating minimization of such a cost

leads to the ALS (Alternating Least squares) algorithm [25], [55], [1], which can be

described as follows:

1. Initialize W randomly or by using any a priori knowledge.

2. Estimate H as H = (W TW )−W TV with fixed W .

3. Set all negative elements of H to zero or some small positive value.
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4. estimate W as W = V HT (HHT )− with fixed H.

5. Set all negative elements of W to zero or some small positive value.

In this algorithm, A− denotes the Moore-Penrose inverse of A. The ALS algorithm

has been used extensively in the literature [25], [55], [1]. However, it is not guaranteed

to converge to a global minimum nor even a stationary point. Moreover, it is often not

sufficiently accurate, and it can be slow when the factor matrices are ill-conditioned

or when the columns of these matrices are co-linear. Furthermore, the complexity of

the ALS algorithm can be high for large-scale problems as it involves inverting a large

matrix. Lee and Seung [33] proposed a multiplicative update rule, which is proven

to converge to a stationary point, and does not suffer from the ALS drawbacks. In

what follows, we present Lee and Seung’s multiplicative update rule as a special case

of a class of update rules, which converge towards a stationary point of the NMF

problem.

Proposition 1. The function f(W,H) = ‖V −WH‖2
F is non-increasing under the

update rules 
hk+1 = hk −K−1

h (W TWhk −W Tv)

w̃k+1 = w̃k −K−1
w (HHT w̃k −Hṽ)

(2.2)

where w̃ and ṽ are the columns of W T and V T , respectively, and Kh and Kw

satisfy the following conditions

a. Kh and Kw are diagonal matrices with (strictly) positive elements for all vectors

h and w̃.
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b. Khh
k ≥ W TWhk and Kww̃

k ≥ HHT w̃k where the inequality is elementwise.

c. The matrices Kh−W TW and Kw−HHT are positive semi-definite (p.s.d) for all

h and w̃.

The function f is invariant under these update rules if and only if W and H are at

a stationary point.

The following corollary presents a special choice of the matrices Kh and Kw, which

leads to Lee and Seung’s multiplicative rule for the NMF problem.

Corollary 2.2.1. In Proposition 1, chose Kh and Kw as follows:

(Kh)ij = δij(W
TWhk)i/h

k
i , (2.3)

(Kw)ij = δij(HH
T w̃k)i/w̃

k
i , (2.4)

Where hki , w̃
k
i are the ith entries of the vectors hk and w̃k, respectively, and δij is the

kronecker function, i.e., δij =


1, if i = j

0, otherwise.

This choice leads to the following

update rule: 
Hij ←− Hij

(WTV )ij
(WTWH)ij

Wij ←− Wij
(V HT )ij

(WHHT )ij

(2.5)

The function f is invariant under these updates if and only if W and H are at a

stationary point.

Corollary 2.2.1 corresponds to the update rules proposed by Lee and Seung [33].

Proposition 1 presents a general class of update rules, which converge to a station-
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ary point of the NMF problem. From the proof of the Proposition (detailed in the

Appendix), it will be clear that conditions [a], [b] and [c] in Proposition 1 are only

sufficient conditions for the update rules to converge towards a stationary point. That

is, there may exist Kh and Kw that do not satisfy these conditions but that lead to

update rules that converge towards a stationary point. The particular choice of Kh

and Kw in Corollary 1 corresponds to the fastest convergent update rule among all

matrices satisfying conditions [a]-[c] in Proposition 1. Observe also that since the

data matrix V is non-negative, the update rule in (2.5) leads to non-negative factors

W and H as long as the initial values of the algorithm are chosen to be non-negative.

2.3 Probabilistic Non-negative Matrix Factorization

2.3.1 The PNMF framework. In this section, we assume that the data,

represented by the non-negative matrix V , is corrupted by additive white Gaussian

noise. Then, the data follows the following conditional distribution,

p(V | W,H, σ2) =
N∏
i=1

M∏
j=1

[N (Vij | uTi hj, σ
2)], (2.6)

where N (.|µ, σ2) is the probability density function of the Gaussian distribution with

mean µ and standard deviation σ, ui and hj denote, respectively, the ith column of

the matrix U = W T (or the ith row of W ) and the jth column of the matrix H. Zero

mean Gaussian priors are imposed on ui and hj to control the model parameters.
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Specifically, we have

p(U | σ2
W ) =

N∏
i=1

N (ui | 0, σ2
W I) = p(W | σ2

W ). (2.7)

p(H | σ2
H) =

M∏
i=1

N (hj | 0, σ2
HI). (2.8)

We estimate the factor matrices W and H using the maximum a posteriori (MAP)

criterion. The logarithm of the posterior distribution is given by

ln(p(W,H | V, σ2, σ2
H , σ

2
W )) = − 1

2σ2

N∑
i=1

M∑
j=1

(Vij − uTi hj)
2

− 1

2σ2
W

N∑
i=1

‖ui‖2 − 1

2σ2
H

M∑
j=1

‖hj‖2 + C, (2.9)

where C is a constant term depending only on the standard deviations σ, σW and σH .

Maximizing (2.9) is equivalent to minimizing the following function

(W ∗, H∗) = arg min
W,H≥0

‖V −WH‖2
F + λW‖W‖2

F

+ λH‖H‖2
F , (2.10)

where λW = σ2

σ2
W

and λH = σ2

σ2
H

. Observe that the PNMF formulation in (2.10)

corresponds to a weighted regularized matrix factorization problem. Moreover, the

PNMF reduces to the NMF for σ = 0. The following proposition provides the update

rules for the PNMF constrained optimization problem.

14



Proposition 2. The function

f(W,H) = ‖V −WH‖2
F + α‖W‖2

F + β‖H‖2
F (2.11)

is non-increasing under the update rules


Hij ←− Hij

(WTV )ij
(WTWH+βH)ij

Wij ←− Wij
(V HT )ij

(WHHT+αW )ij

(2.12)

The function f is invariant under these updates if and only if W and H are at a

stationary point.

Observe that, since the data matrix V is non-negative, the update rules in (2.12)

lead to non-negative factors W and H as long as the initial values of the algorithm

are chosen to be non-negative.

2.4 PNMF-based Data Classification

In this section, we show how the PNMF output can be used to extract relevant

features from the data for classification purposes. The main idea relies on the fact that

metasamples extracted from the PNMF factorization contain the inherent structural

information of the original data in the training set. Thus, each sample in a test set

can be written as a sparse linear combination of the metasamples extracted from the

training set. The classification task then reduces to computing the representation

coefficients for each test sample based on a chosen discriminating function. The
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sparse representation approach has been shown to lead to more accurate and robust

results [64]. The sparsity constraint is imposed through an l1-regularization term [64].

Thus, a test sample may be represented in terms of few metasamples.

2.4.1 Sparse Representation Approach. We divide the data, represented

by the n×m matrix V , into training and testing sets, where the number of classes k

is assumed to be known. In Section 2.5, we describe a method to estimate the number

of classes based on the PNMF clustering technique. The training data is ordered into

a matrix A with n rows of genes and r columns of training samples with r < m.

Thus, A is a sub-matrix of V used to recognize any new presented sample from the

testing set. We arrange the matrix A in such a way to group samples which belong to

the same class in the same sub-matrix Ai where (1 ≤ i ≤ k). Then A can be written

as A = [A1, A2, ...., Ak] and each matrix Ai is a concatenation of ri columns of the ith

class Ai = [ci,1, ci,2, ...., ci,ri ]

A test sample y ∈ Rn that belongs to the ith class can be written as the following

linear combination of the Ai columns,

y = αi,1ci,1 + αi,2ci,2 + ...+ αi,rici,ri , (2.13)

for some scalars αi,q ∈ R, 1 ≤ q ≤ ri.

Equation (2.13) can be re-written as
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y = Ax, (2.14)

where

x = [0, ...0, αi,1, αi,2, ..., αi,ri , 0..., 0]T ∈ Rr, (2.15)

is the coefficient vector of the testing sample y. x is a ri-sparse vector whose nonzero

entries are associated with the columns of the sub-matrix Ai, hence the name sparse

representation. Therefore, predicting the class of test sample y reduces to estimating

the vector x in Eq. (2.14).

We propose to find the sparsest least-squares estimate of the coefficient x as the

solution to the following regularized least-squares problem [57]

x̂ = min
x
{‖Ax− y‖2 + λ‖x‖1}, (2.16)

where ‖x‖1 denotes the l1-norm of vector x, i.e., ‖x‖1 =
∑

i |xi|, and λ is a positive

scalar used to control the tradeoff between the sparsity of x and the accuracy of

the reconstruction error. Donoho et al. showed that the l1-norm approximates the

l0-norm, which counts the number of non-zero entries in a vector [18]. The l0-norm

problem, however, is NP hard, whereas the l1-norm is convex. The optimization

problem in (2.16) is therefore convex; thus, it admits a global solution, which can be

efficiently computed using convex optimization solvers [23]. Actually, one can show

that (2.16) is a Second-Order Cone Programming (SOCP) problem [9].
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2.4.2 PNMF-based classification . The classifier’s features are given by

the metasamples computed by the PNMF algorithm. We first compute the PNMF

factorization of each sub-matrix Ai as

Ai ∼ Wi ×Hi, (2.17)

where Wi and Hi are respectively n×ki and ki×ri non-negative matrices. ki refers to

the number of metasamples needed to describe and summarize the ith class. The value

of ki is experimentally determined and depends on the number of training samples

ri in each class and the total number of classes k. We subsequently concatenate all

the Wi matrices to form the matrix W = [W1,W2, ..,Wk]. Observe that the matrix

W contains the metasamples of the entire training set. Therefore, a test sample y

that belongs to the ith class should approximately lie in the space spanned by the Wi

columns.

The classification problem in (2.16) can therefore be re-written as

x̂ = min
x
{‖Wx− y‖2 + λ‖x‖1}, (2.18)

Which can be easily solved using a SOCP solver [9].

PNMF-based classification algorithm The PNMF-based classification algorithm

is summarized below.
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Input: Gene expression data V ∈ Rn×m. It is assumed that V contains at least r

labeled samples, which can be used in the learning or training process.

Step 1 Select the training samples A ∈ Rn×r and the testing sample y ∈ Rn from

the original data V such that y is not a column of A.

Step 2 Reorder the training matrix A = [A1, A2, ..., Ak] for k classes.

Step 3 Compute the matrix of featuresWi ∈ Rn×ki from each sub matrix Ai ∈ Rn×ri

Using the PNMF algorithm, i = 1 : k

Step 4 Solve the optimization problem in (2.18) for

W = [W1,W2, ...,Wk] using, for instance, the cvx environment in MATLAB.

Let the solution x = [xT1 , · · · ,xTk ]T , where xi ∈ Rki×1.

Step 5 Compute the residuals ei(y) = ‖y −Wδi(x)‖2, i = 1 : k, where δi(x) =

[0, · · · , 0,xTi , 0, · · · 0]T .

Step 6 Associate class(y)=arg mini ei(y)

2.5 Application to Gene Microarrays

We apply and compare the proposed PNMF-based clustering and classification al-

gorithms with its homologue NMF-based clustering [10] and classification as well as
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Figure 2.1: Clustering results for the Leukemia dataset: (a) Consensus matrices: Top
row NMF-Euc, Second row NMF-Div, bottom row: PNMF; (b) Cophenetic coefficient
versus the rank k (NMF-Euc in green, NMF-Div in red and PNMF in blue).
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Figure 2.2: Metagenes expression patterns versus the samples for k = 4 in the
Leukemia dataset.

the sparse-NMF classification method presented in [64]. We first describe the gene

expression dataset used and present the clustering procedure.

2.5.1 Data sets description. One of the important challenges in DNA mi-

croarrays analysis is to group genes and experiments/samples according to their simi-

larity in gene expression patterns. Microarrays simultaneously measure the expression

levels of thousands of genes in a genome. The microarray data can be represented by

a gene-expression matrix V ∈ Rn×m , where n is the number of genes and m is the

number of samples that may represent distinct tissues, experiments, or time points.

The mth column of V represents the expression levels of all the genes in the mth

sample.

We consider seven different microarray data sets: leukemia [10], medulloblas-

toma [10], prostate [51], colon [2], breast-colon [13], lung [7] and brain [44]. The

leukemia data set is considered a benchmark in cancer clustering and classifica-
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Figure 2.3: Clustering results for the Medulloblastoma dataset: (a) Consensus matri-
ces: Top row NMF-Euc, Second row NMF-Div, bottom row: PNMF; (b) Cophenetic
coefficient versus the rank k (NMF-Euc in green, NMF-Div in red and PNMF in
blue).
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tion [10]. The distinction between acute myelogenous leukemia (AML) and acute

lymphoblastic leukemia (ALL), as well as the division of ALL into T and B cell sub-

types, is well known [10]. We consider an ALL-AML dataset, which contains 5000

genes and 38 bone marrow samples (tissues from different patients for the considered

genes) [10]. The considered leukemia dataset contains 19 ALL-B, 8 ALL-T and 11

AML samples.

The medulloblastoma data set is a collection of 34 childhood brain tumors samples

from different patients. Each patient is represented by 5893 genes. The pathogen-

esis of these brain tumors is not well understood. However, two known histological

subclasses can be easily differentiated under the microscope, namely, classic (C) and

desmoplastic (D) medulloblastoma tumors [10]. The medulloblastoma dataset con-

tains 25 C and 9 D childhood brain tumors.

The prostate data [51] contains the gene expression patterns from 52 prostate

tumors (PR) and 50 normal prostate specimens (N), which could be used to pre-

dict common clinical and pathological phenotypes relevant to the treatment of men

diagnosed with this disease. The prostate dataset contains 102 samples across 339

genes.

The colondataset [2] is obtained from 40 tumors and 22 normal colon tissue sam-

ples across 2000 genes. The breast and colon data [13] contains tissues from 62 lymph

node-negative breast tumors (B) and 42 Dukes’ B colon tumors (C). The lung tumor

data [7] contains 17 normal lung tissues (NL), 139 adenocarcinoma (AD), 6 small-cell

lung cancer (SCLC), 20 pulmonary carcinoids (COID) and 21 squamous cell lung

carcinomas (SQ) samples across 12600 genes. The brain data [44] is the collection of
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embryonal tumors of the central nervous system. This data includes 10 medulloblas-

tomas (MD), 10 malignant gliomas (Mglio), 10 atypical teratoid/rhabdoid tumors

(Rhab), 4 normal tissues (Ncer) and 8 primitive neuroectodermal tumors (PNET).

The brain samples are measured across 1379 genes.

2.5.2 Gene expression data clustering. Applying the NMF framework to

data obtained from gene expression profiles allows the grouping of genes as metagenes

that capture latent structures in the observed data and provide significant insight into

underlying biological processes and the mechanisms of disease. Typically, there are

a few metagenes in the observed data that may monitor several thousands of genes.

Thus, the redundancy in this application is very high, which is very profitable for

NMF [14]. Assuming gene profiles can be grouped into j metagenes, V can be factored

with NMF into the product of two non-negative matrices W ∈ Rn×j and H ∈ Rj×m.

Each column vector of W represents a metagene. In particular, wij denotes the

contribution of the ith genes into the jth metagene, and hjm is the expression level of

the jth metagene in the mth sample.

Clustering performance evaluation

The position of the maximum value in each column vector of H indicates the index

of the cluster to which the sample is assigned. Thus, there are j clusters of the

samples. The stability of the clustering is tested by the so-called connectivity matrix

C ∈ Rm×m [10], which is a binary matrix defined as cij = 1 if samples i and j belong
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to the same cluster, and cij = 0 otherwise. The connectivity matrix from each run of

NMF is reordered to form a block diagonal matrix. After performing several runs, a

consensus matrix is calculated by averaging all the connectivity matrices. The entries

of the consensus matrix range between 0 and 1, and they can be interpreted as the

probability that samples i and j belong to the same cluster. Moreover, if the entries of

the consensus matrix were arranged so that samples belonging to the same cluster are

adjacent to each other, perfect consensus matrix would translate into a block-diagonal

matrix with non-overlapping blocks of 1’s along the diagonal, each block correspond-

ing to a different cluster [10]. Thus, using the consensus matrix, we could cluster the

samples and also assess the performance of the number of clusters k. A quantitative

measure to evaluate the stability of the clustering associated with a cluster number

k was proposed in [31]. The measure is based on the correlation coefficient of the

consensus matrix, ρk, also called the cophenetic correlation coefficient. This coef-

ficient measures how faithfully the consensus matrix represents the similarities and

dissimilarities among observations. Analytically, we have ρk = 1
m2

∑
ij 4(cij− 1

2
)2 [31].

Observe that 0 ≤ ρk ≤ 1, and a perfect consensus matrix (all entries equal to 0 or 1)

would have ρk = 1. The optimal value of k is obtained when the magnitude of the

cophenetic correlation coefficient starts declining.

Clustering results

Brunet et al. [10] showed that the (deterministic) NMF based on the divergence cost

function performs better than the NMF based on the Euclidean cost function. The
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divergence cost function is defined as

(W ∗, H∗) = arg min
W,H≥0

g(W,H) =
∑
i,j

(Vij log(
Vij

(WH)ij
)

− Vij + (WH)ij) (2.19)

The update rules for the divergence function are given by [33]


Hij ←− Hij

∑
k(WkiVkj)/(WH)kj∑

rWri

Wij ←− Wij

∑
k(HjkVik)/(WH)ik∑

r Hjr

(2.20)

In this section, we compare the PNMF algorithm in (2.12) with both the Euclidean-

based NMF in (2.5) and the divergence-based NMF in (2.19). We propose to cluster

the leukemia and the medulloblastoma sample sets because the biological subclasses

of these two datasets are known, and hence we can compare the performance of the

algorithms with the ground truth. Figure 2.1(a) shows the consensus matrices corre-

sponding to k = 2, 3, 4 clusters for the leukemia dataset. In this figure, the matrices

are mapped using the gradient color so that dark blue corresponds to 0 and red to 1.

We can observe the consensus matrix property that the samples’ classes are laid in

block-diagonal along the matrix. It is clear from this figure that the PNMF performs

better than the NMF algorithm, in terms of samples’ clustering. Specifically, the

clusters, as identified by the PNMF algorithm, are better defined and the consensus

matrices’ entries are not overlapping and hence well clustered. In particular, PNMF

with rank k = 2 correctly recovered the ALL-AML biological distinction with higher
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accuracy than the deterministic NMFs (based on the Euclidean and divergence costs).

Consistent clusters are also observed for rank k = 3, which reveal further portioning

of the samples when the ALL samples are classified as the B or T subclasses. In

particular, the nested structure of the blocks for k = 3 corresponds to the known

subdivision of the ALL samples into the T and B classes. Nested and partially over-

lapped clusters can be interpreted with the NMF approaches. Nested clusters reflect

local properties of expression patterns, and overlapping is due to global properties of

multiple biological processes (selected genes can participate in many processes) [14].

An increase in the number of clusters beyond 3 (k = 4) results in stronger dispersion

in the consensus matrix. However, Fig. 2.1(b) shows that the value of the PNMF

cophenetic correlation for rank 4 is equal to 1, whereas it drops sharply for both the

Euclidean and divergence-based NMF algorithms. The Hierarchal Clustering (HC)

method is also able to identify four clusters [10]. These clusters can be interpreted

as subdividing the samples into sub-clusters that form separate patterns within the

whole set of samples as follows: {(11 ALL-B), (7 ALL-B and 1 AML), (8 ALL-T and

1 ALL-B), (10 AML)}.

Figure 2.2 depicts the metagenes expression profiles (rows of H) versus the samples

for the PNMF algorithm. We can visually recognize the different four patterns that

PNMF and HC are able to identify.

Figure 2.3 shows the consensus matrices and the cophenetic coefficients of the

medulloblastoma dataset for k = 2, 3, 4, 5. The NMF and PNMF algorithms are able

to identify the two known histological subclasses: classic and desmoplastic. They also

predict the existence of classes for k = 3, 5. This clustering also stands out because
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Figure 2.4: (NMF-Euc in green, NMF-Div in red and PNMF in blue, K-means in
black and Hierarchical Clustering in purple ) in Leukemia dataset for k = 2.

of the high values of the cophenetic coefficient for k = 3, 5 and the steep drop off for

k = 4, 6. The sample assignments for k = 2, 3 and 5 display a nesting of putative

medulloblastoma classes, similar to that seen in the leukemia dataset. From Fig. 2.3,

we can see that the PNMF clustering is more robust, with respect to the consensus

matrix and the cophenetic coefficient, than the NMF clustering. Furthermore, Brunet

et al. [10] stated that the divergence-based NMF is able to recognize subtypes that

the Euclidian version cannot identify. We also reach a similar conclusion as shown in

Fig. 2.3 for k = 3, 5, where the Euclidian-based NMF factorization shows scattering

from these structures. However, the PNMF clustering performs even better than the

divergence-based NMF as shown in Figs. 2.3(a) and 2.3(b).

To confirm our results we compare our proposed PNMF algorithm with the stan-

dard NMF algorithms, distance criterion-based Hierarchical Clustering (HC) and K-

means. We plot in figure 2.4 the curve Error vs. Number of genes in the labeled

Leukemia data set. We select genes with small profile variance using the Bioinfor-

matics toolbox in MATLAB from 500 to 5000 genes and the experimental points
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Figure 2.5: The cophenetic coefficient versus the standard deviation of the measure-
ment noise for k = 2 (red), 3 (green) and 4 (blue) in the Leukemia dataset.

are equally spaced. We run 100 Monte Carlo simulation then we take the average

of the error. Our simulation results show that PNMF outperforms other clustering

approaches.

Robustness evaluation

In this subsection, we assess the performance of the PNMF algorithm with respect

to the model parameters, especially the choice of the noise power. Recall that, in the

probabilistic model, σ measures the uncertainty in the data or the noise power in the

gene expression measurements. We set the prior standard deviations σW = σH = 0.01,

and compute the cophenetic coefficient for varying values of σ between 0.01 and 1.5.

Figure 2.5 shows the cophenetic coefficient versus the standard deviation σ in the

leukemia data set for ranks k = 2, 3, 4. We observe that the PNMF is stable to

a choice of σ between 0.05 and 1.5 for the ranks k = 2 and 3, which correspond to

biologically relevant classes. In particular, when σ tends to zero, the PNMF algorithm

reduces to the classic NMF, which explains the drop in the cophenetic coefficient for
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Figure 2.6: Cophenetic versus SNR in dB (NMF-Euc in green, NMF-Div in red and
PNMF in blue) in Leukemia dataset for k = 2 and k = 3.

values of σ near zero.

We next study the robustness of the NMF and the proposed PNMF algorithms

to the presence of noise in the data. To this end, we add white Gaussian noise, with

varying power, to the leukemia dataset according to the following formula,

Vnoisy = V + σnR, (2.21)

where σn is the standard deviation of the noise, and R is a random matrix of the

same size as the data matrix V , and whose entries are normally distributed with

zero mean and unity variance. The signal to noise ratio (SNR) is, therefore, given
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Figure 2.7: Cophenetic versus SNR in dB (NMF-Euc in green, NMF-Div in red and
PNMF in blue) in Medulloblastoma dataset for k = 2 and k = 3.
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Table 2.1: Smallest SNR value for which the cophenetic coefficient is higher or equal
than 0.9.

Datasets
k = 2 k = 3

NMF-Euc NMF-Div PNMF NMF-Euc NMF-Div PNMF
Leukemia −93.50 −73.50 -99.50 −87 −71 -88.50
Medulloblastoma −84.68 −70.68 -104.68 −86 −65.50 -86

by SNR = PV
σ2
n

, where the signal power PV = 1
nm

∑
i

∑
j v

2
ij = 1

nm
‖V ‖2

F . Since the

cophenetic coefficient measures the stability of the clustering, we plot in Figures

2.6 and 2.7 the cophenetic coefficient versus the SNR, measured in dB, for both

the Euclidean-based and divergence-based NMFs and PNMF algorithms using the

leukemia and medulloblastoma data sets. We observe that the PNMF algorithm leads

to more robust clustering than the deterministic NMF algorithms for all SNR values.

Table 2.1 shows the minimum SNR values for which the cophenetic coefficient takes

values higher or equal than 0.9. We say that the algorithm is ”stable” for SNR values

higher or equal than the minimum SNR. For the leukemia data, the Euclidean-based

NMF and the divergence-based NMF algorithms stabilize respectively at SNR =

−93.5 and SNR = −73.5 dB for k = 2, whereas the PNMF algorithm is stable at

lower SNR values, SNR = −99.5 dB for k = 2. Similar results are obtained for

the medulloblastoma dataset, where the NMF algorithms stabilize respectively as

above at SNR = −84.68 and SNR = −70.68 dB, whereas the PNMF is stable at

SNR = −104.68 dB. Thus, the PNMF algorithm is more stable than its deterministic

homologue. Also, observe that the Euclidian-based NMF performs better than its

divergence homologue for noisy data.
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2.5.3 NMF-based tumor classification. Given that the proposed PNMF

algorithm results in more stable clustering than its deterministic homologue, we ex-

pect that it will also lead to better feature extraction and classification. We classify

the tumors in the seven gene expression datasets described in Section 2.5.1.

We assess the performance of the classification algorithm using the 10-fold cross-

validation technique [64]. The number of metagenes ki can be determined using the

nested stratified 10-fold cross-validation. However, we follow the work in [64] and

choose ki = 8 if the number of samples in the ith class ri > 8. Otherwise we choose

ki = ri. We selected the parameters α and β of PNMF in order to minimize the classifi-

cation error in the training dataset based on a 10-fold cross-validation technique. The

parameters of SNMF were selected using the same criterion and method, i.e. minimize

the classification error in the training dataset. The classification results for the NMF,

PNMF, SVM and SNMF [64] algorithms are summarized in Table 2.2. In particular,

we compared the PNMF-based MSRC algorithm to the SVM algorithm which has

been shown to outperform K-NN and neural network in tumor classification [52], [43].

In our experiment we use one-versus-rest SVM (OVRSVM) with Polynomial kernels

approach which has been shown to be the best one [52]. The results can be ob-

tained using the Gene Expression Model Selector (GEMS) publicly available online

http://www.gems-system.org/. Observe that the PNMF-based classifier performs

better than the other approaches for the considered data sets except for the prostate

data where SVM achieves the highest classification accuracy. Moreover, the PNMF

performs better than the SNMF for the prostate, lung and brain data sets. This
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Table 2.2: Classification accuracy
Data sets Nbr. of classes NMF-Euc NMF-Div SNMF SVM PNMF
Prostate 2 85.29% 86.27% 88.24% 99% 92.16%
Medulloblastoma 2 85.29% 91.18% 94.12% 79.16% 94.12%
Colon 2 85.48% 88.71% 90.32% 89.04% 90.32%
Breast-Colon 2 98.08% 95.19% 98.08% 84.63% 98.08%
Leukemia 3 97.37% 97.37% 97.37% 95.50% 97.37%
Lung 5 92.61% 90.64% 93.60% 85.54% 94.09%
Brain 5 76.19% 78.57% 83.33% 77% 85.71%

is due to the high accuracy of the PNMF in feature extraction as compared to the

SNMF algorithm, which is not guaranteed to converge to the optimal non-negative

factorization [64].

2.6 Conclusion and Discussion

Studying and analyzing tumor profiles is a very relevant area in computational bi-

ology. Clinical applications include clustering and classification of gene expression

profiles. In this work, we developed a new mathematical framework for clustering and

classification based on the Probabilistic Non-negative Matrix Factorization (PNMF)

method. We presented an extension of the deterministic NMF algorithm to the proba-

bilistic case. The proposed PNMF algorithm takes into account the stochastic nature

of the data due to the inherent presence of noise in the measurements as well as

the internal biological variability. We subsequently casted the optimal non-negative

probabilistic factorization as a weighted regularized matrix factorization problem.

We derived updates rules and showed convergence towards the optimal non-negative

factors. The derived update rules generalize Lee and Seung’s multiplicative update
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rules for the NMF algorithm. We have also generalized Lee and Seung’s algorithm to

include a general class of update rules, which converge towards a stationary point of

the (deterministic) NMF problem. We next derived a PNMF-based classifier, which

relies on the PNMF factorization to extract features and classify the samples in the

data. The PNMF-based clustering and classification algorithms were applied to seven

microarray gene expression datasets. In particular, the PNMF-based clustering was

able to identify biologically significant classes and subclasses of tumor samples in the

leukemia and medulloblastoma datasets. Moreover, the PNMF clustering results were

more stable and robust to data corrupted by noise than the classic (deterministic)

NMF.

Thanks to its high stability, robustness to noise and convergence properties, the

PNMF algorithm yielded better tumor classification results than the NMF and the

Sparse NMF (SNMF) algorithms. The proposed PNMF framework and algorithm

can be further applied to many other relevant applications in biomedical data pro-

cessing and analysis, including muscle identification in the nervous system, image

classification, and protein fold recognition.
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Chapter 3

SMURC: High-Dimension Small-Sample Multivariate Regression with
Covariance Estimation

3.1 Introduction

Many engineering problems are formulated as an inverse problem. Examples in signal

processing include source estimation of electroencephalographic (EEG) and magne-

toencephalographic (MEG) data and inference or reverse-engineering of genetic reg-

ulatory networks from high-throughput gene expression data. These problems are

sometimes referred to as ill-posed or ill-defined because the inverse problem has no

unique solution, and there are infinitely many solutions that are equally compati-

ble with the data. For instance, in EEG and MEG source estimation problems, if

the source distribution contains more independent parameters than there is indepen-

dent information in the recorded data, then the sources spatial distribution cannot

be estimated. In genomics, the inference of genetic regulatory networks also suffers

from the limited number of measurements available to unambiguously estimate the

network connectivity. This problem, known as the “large p small n” problem, poses

a challenge in estimation due to the identifiability problem, where a large class of

solutions is consistent with the measurements and no unique solution exists.
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The approaches proposed in the literature to tackle inverse problems can be clas-

sified into three groups: (1) the statistical approach, which finds the most likely

solution that fits the data and any additional constraints that may be imposed; (2)

the minimum norm approach, which finds a solution that is compatible with the data

and satisfies additional constraints, e.g., on the amplitudes or covariances of the pa-

rameters; (3) the resolution optimization methods, which estimate the parameters as

independently as possible from each other. It has been shown in [26] that all these

approaches result in the same solution given the same a priori information. Moreover,

if no a priori information is available, all three methods are equivalent to the classical

minimum norm solution [26].

Let us consider the (under-determined) multivariate regression problem, which

generalizes the classical regression problem of one response on p predictors to re-

gressing q responses on p predictors. This model has various applications including

genomics [42], neurology [35], imaging [35] and econometrics. Let xi = (xi1, · · · , xip)

denote the predictors, yi = (yi1, · · · , yiq) denote the responses, and εi = (εi1, · · · , εiq)

the errors for the ith sample. The multivariate regression model is given by

yi = Axi + εi, i = 1, · · · , n, (3.1)

where A is a q× p regression matrix and n is the sample size. We make the standard

assumption that ε1, · · · , εn are i.i.d Gaussian with zero mean and covariance matrix
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Σ, i.e., εi ∼ N (0,Σ). The model in (3.1) can be expressed in matrix notation as

Y = AX +E, (3.2)

where Y is the q×n response matrix with its ith column yi, X is the p×n predictor

matrix with its ith column xi and E is the random error matrix. X is assumed to

be full-rank. The system is under-determined when there are more parameters than

samples, i,e, q > p > n.

The negative log-likelihood function of (A,Ω), Ω = Σ−1, can be expressed up to

a constant as,

g(A,Ω) = tr

[
1

n
(Y −AX)tΩ(Y −AX)

]
− log |Ω|, (3.3)

where tr denotes the trace operator. If p ≤ n (complete or over-determined system),

the maximum likelihood estimator for A is simply given by Â
OLS

= Y XT (XXT )−1,

which is independent of Ω and amounts to performing q separate ordinary least-

squares.

The multivariate regression problem becomes particularly challenging when the

system is under-determined as it requires the estimation of pq parameters from nq <

qp predictors or n < p. Different approaches were proposed to reduce the number of

parameters by minimizing (3.3) under various constraints on the regression matrix

A. Reduced-rank approaches restrict the rank of the estimated matrix of regression

coefficients, rank(A) ≤ r ≤ min(p, q) [46]. The rank can also be reduced by imposing

38



a sparsity constraint on the singular values of A [61]. Sparsity can also be imposed to

identify the main predictors [42], where a combined constraint function that includes

l1 and l2 regularization, is used [40]. The l1 constraint introduces sparsity in the entries

of A and the l2 regularization identifies irrelevant predictors (for all q responses) by

introducing zeros for all entries in some rows of A. However, all of these approaches

do not account for correlated responses.

Exploiting the correlation in the response variables improves the prediction per-

formance. For under-determined problems, however, the maximum likelihood (ML)

approach with covariance estimation is senseless because there exist solutions satisfy-

ing Y = AX and Σ infinitely small. For these solutions, the negative log-likelihood

in (3.3) tends to −∞. Hence, the likelihood, as a function of the two variables (A,Ω),

diverges. Observe that the likelihood converges if the covariance matrix Σ is known

(e.g., proportional to the Identity for uncorrelated measurements) or if the system is

over-determined (in this case, there exists no solution that satisfies Y = AX).

Rothman et al. [48] proposed a regularized algorithm that simultaneously infers

the regression coefficient matrix A and the inverse error covariance, Ω = Σ−1, by

imposing sparsity constraints on Ω. The l1-norm penalty on Ω ensures the conver-

gence of the regularized likelihood because it excludes exact solutions, for which the

covariance is infinitely small or equivalently the inverse covariance is infinitely large.

However, in many applications, the assumption of a sparse inverse covariance matrix

may not be reasonable or have any physical justification. In particular, in the genetic

regulatory network problem, there is no evidence for such an assumption. Moreover,

the solution to the regularized problem in [48] relies on an iterative procedure that
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finds the maximum over A then over Ω. That is because the problem is convex in

each variable, A and Ω, but not convex in the pair (A,Ω). This iterative procedure

is not guaranteed to converge and if it does converge, then it may not reach the opti-

mal solution. Additionally, the authors observed that this algorithm may take many

iterations to converge for high-dimensional data. Subsequently, they proposed an ap-

proximate MRCE approach that prematurely terminates the iterative optimization

procedure after two iterations.

Recently, Zhang et al. [62] proposed the sparse Conditional Gaussian Graphical

Model (sCGGM). CGGM formulates the inference problem as a joint probabilistic

graphical model. sCGGM minimizes the negative log-likelihood of the data with l1

penalties on the autocorrelation and cross-correlation precision matrices [62]. The

main advantage of CGGM over MRCE is that CGGM leads to a convex problem,

whereas the MRCE estimation problem is only bi-convex, not jointly convex. How-

ever, as acknowledged by the authors, CGGM and MRCE are so similar that “MRCE

was mistakenly called a sparse CGGM” [62]. In essence, both algorithms solve an

under-determined linear regression problem by maximizing the Gaussian likelihood

subject to sparse constraints on the correlation structure. Hence, the open question

remains: “How can we perform maximum likelihood with covariance estimation for

under-determined systems?”

The work that we present in this chapter addresses this question, namely the

problem of ML estimation with unknown covariance in under-determined systems.

We present a normalization of the likelihood function that guarantees convergence

while still keeping the exponential form of the distribution.
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In this chapter, scalars are denoted by lower case letters, e.g., n,m; vectors are

denoted by bold lower case letters, e.g., x,y; and matrices are referred to by bold

upper case letters, e.g., A,X. I denotes the identity matrix. xi denotes the ith

element of vector x and aij is the (i, j)th entry of matrix A. Throughout the chapter,

we provide references to known results and limit the presentation of proofs to new

contributions.

3.2 The Normalized-Likelihood

We propose to weight the likelihood function by the “energy” of the error, in order

to guarantee the convergence of the energy-weighted likelihood function, while still

keeping the exponential form of the density. Specifically, we define the normalized-

likelihood of the under-determined (p > n) multiple regression model in (3.2), under

the Gaussian assumption, as

Definition 3.2.1.

LN(A,Ω) =
|(Y −AX)TΩ(Y −AX)|n2

(2π)
np
2

exp[−1

2
Tr[(Y

−AX)TΩ(Y −AX)]], (3.4)

where | · | is the matrix determinant operator.

Obviously, one can propose many possible normalizations of the Gaussian likeli-

hood as a function of the pair (A,Ω). Our particular “choice” in Definition 3.2.1

is motivated by finding a function that ensures a finite maximum of the likelihood
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while keeping the form of the Gaussian density. This normalization of the Gaussian

likelihood avoids exact solutions and subsequent divergence issues. The pair (A,Ω)

can then be computed to maximize the normalized-likelihood, LN , i.e.,

(A∗,Ω∗) = arg max
A,Ω

LN(A,Ω), (3.5)

Proposition 3. The solution to (3.5) is given by

(Y −A∗X)TΩ∗(Y −A∗X) = nI, (3.6)

where I denotes the n× n Identity matrix.

Proof of Proposition 3. Let Z = (Y −AX)TΩ(Y −AX). Then, the normalized-

likelihood can be written as the following function of the variable Z,

LN(Z) =
|Z|n2

(2π)
nq
2

exp−1

2
Tr[Z]. (3.7)

To find the stationary point Z∗, we set
∂LN(Z)

∂Z
= 0.

∂LN(Z)

∂Z
=

n

2
|Z|n2−1|Z|Z−1 exp−1

2
Tr[Z]

− 1

2
|Z|n2 exp−1

2
Tr[Z]

=
1

2
|Z|n2 [nZ−1 − I] exp−1

2
Tr[Z]

= 0

⇒ Z∗ = nI. (3.8)
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Moreover, it can be easily derived that the Hessian at the stationary point Z∗ is given

by

∂2LN(Z)

∂Z2 |Z=Z∗= −
1

2n
n
n2

2 e−
n2

2 < 0 (3.9)

There are many pairs (A∗,Ω∗), which satisfy equality (3.6) and hence maximize

the normalized-likelihood. The non-uniqueness of the solution is not surprising given

that the problem is under-determined. Among all possible solutions of (3.6), we

propose to find those that minimize the regularized error ‖Y −AX‖2
F +λ‖Ω‖2

F , where

λ is a tuning parameter and ‖ · ‖F denotes the Frobenius norm. Observe that it is

meaningful to consider the error as the objective function here, because the set of pairs

(A,Ω) satisfying (3.6) are not exact solutions, i.e., they do not satisfy the equality

Y = AX, and hence the minimum error is not trivially zero. Thus, an advantage of

the normalized-likelihood is that it avoids considering exact solutions. In addition,

we consider constraints on the regression matrix A, which reflect prior knowledge

about the nature of the regression model. For instance, A may be constrained to

be sparse. Many applications assume a sparse regression matrix, e.g., robust face

recognition, where the target can be represented as a sparse linear combination of

the dataset [58] and structural equation models (SEM) to infer gene or phenotype

networks [11]. For now, let us consider a general constraint set, A ∈ A ⊂ Rq×p. The
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constrained optimization problem, thus, becomes



min
(A,Ω)

‖Y −AX‖2
F + λ‖Ω‖2

F

s.t. (Y −AX)TΩ(Y −AX) = nI,

A ∈ A.

(3.10)

Problem (3.10) is formulated in terms of the two coupled variables A and Ω, which

satisfy (3.6) to maximize the normalized-likelihood function. The following lemma

derives an analytical expression of Ω as a function of A, and hence reduces the

problem to depend on only one variable A. Before stating the lemma’s result, we

need the following definition of the polar decomposition of matrices.

Definition 3.2.2. The polar decomposition of a matrix B ∈ Cp×n is given by

B = U |B|, (3.11)

where |B| = (BTB)1/2, (·)1/2 is the principal square root operator and U : Cn −→

Range(B) is a Cp×n isometry such that UTU = I.

Lemma 3.2.3. Given A, there exist many Ω satisfying equality (3.6). The minimum

Frobenius norm Ω, for a fixed A, is given by

ΩA = n U
[
(Y −AX)T (Y −AX)

]−1
UT , (3.12)

where U is the isometry of the matrix (Y −AX).
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Proof of Lemma 3.2.3. Let B = (Y −AX). Consider the polar decomposition of

B given by

B = U |B|, and |B| = (BTB)1/2. (3.13)

Then, the equality in (3.6) becomes

(Y −AX)TΩ(Y −AX) = nI

⇐⇒ BTΩB = nI

⇐⇒ |B|UTΩU |B| = nI

⇐⇒ UTΩU = n|B|−2 (3.14)

Since UTU = I, UT restricted to the range of B is invertible, i.e., UT �Range(B) is

invertible. Let us write

Cq = Range(B)⊕Ker(BT ), (3.15)

where ⊕ denotes the direct sum of the two subspaces Range(B) and Ker(BT ). Let

PB be the orthogonal projection onto Range(B). Then, we can decompose Ω as

Ω = PBΩPB ⊕ PBΩPB⊥ ⊕ PB⊥ΩPB ⊕ PB⊥ΩPB⊥ , (3.16)

where P⊥B is the orthogonal projection onto the orthogonal space of Range(B), i.e.,

Ker(BT ). Recall that, by definition of the isometry U , it satisfies the following
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properties:

PB⊥U = UTPB⊥ = 0. (3.17)

Thus, from the decomposition of the matrix Ω in Eq. (3.16), we obtain

UTΩU = UTPB Ω PBU . (3.18)

From Eq. (3.14) and since UT �Range(B) is invertible, we have

UTΩU = UTPB Ω PBU = n|B|−2

⇐⇒

PB Ω PB = n U |B|−2UT . (3.19)

From the matrix decomposition in (3.16), for a fixed A, PB Ω PB is fixed. Thus,

the minimum Frobenius norm matrix Ω results by setting the three other terms in

the matrix decomposition to zero, i.e., the minimum Frobenius norm matrix is of the

form

Ω = PB Ω PB. (3.20)

The result of Lemma 3.2.3 then follows from Eqs. (3.19) and (3.20).

Using Lemma 3.2.3, the following proposition states the equivalent form of prob-

lem (3.10), where the optimization problem does not depend on the variable Ω.
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Proposition 4. The optimization problem in (3.10) is equivalent to


min
S

Tr(S2) + λ n2 Tr(S−4)

s.t. S = |Y −AX|, A ∈ A

(3.21)

Proof of Proposition 4. Replacing ΩA in the objective function of the optimization

problem (3.10) by its expression obtained in Lemma 3.2.3, and lettingB = Y −AX,

we obtain

‖Y −AX‖2
F + λ‖Ω‖2

F = ‖B‖2
F + λ‖n2U (BTB)−1UT‖2

F

= Tr(BTB) + λn2

Tr(U(BTB)−1UTU(BTB)−1UT )

= Tr(BTB) + λn2 Tr((BTB)−2)

= Tr(S2) + λn2 Tr(S−4), (3.22)

where S2 = BTB = (Y −AX)T (Y −AX).

Though the objective function in (3.21) is convex (as a function of the variable

S), the equality in the constraint (assuming that A is convex) is not affine and

thus the optimization problem (3.21) is not convex [9]. We will, therefore, relax the

minimization of (3.21) to a minimization over a convex set that is included in the

original set. In what follows, we show that if the matrix regression A is sparse with

a bounded norm, i.e., A = {A : ‖A‖1 ≤ ε}, then (3.21) can be approximated by
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a convex optimization problem. Moreover, this approximation formulates a much

simpler optimization problem than the initial setting in (3.21) because it depends

only on S and is independent of A.

Proposition 5. If A = {A : ‖A‖1 ≤ ε}, then the optimization problem in (3.21) can

be approximated by the following convex optimization problem


min
S

Tr(S2) + λ n2 Tr(S−4)

s.t. S ∈ Λ = {S ∈ Sn,n : ‖S − |Y |‖F ≤ εc∗}

(3.23)

where Sn,n is the set of n × n symmetric positive semi-definite matrices and c∗ is a

small term which depends on X, Y but independent of ε.

Proof of Proposition 5. Let

S1 = {S : S = |Y −AX|, ‖A‖1 ≤ ε}. (3.24)

and let

S2 = {S ∈ Sn,n : ‖S − |Y |‖F ≤ εc∗}. (3.25)

We will show that S2 ⊆ S1. An illustration of these two sets is provided in Fig. 3.1.

To this aim, we consider S ∈ S2 and show that S ∈ S1. Specifically, given S ∈ S2 we

find A, such that S = |Y −AX| and ‖A‖1 ≤ ε.

Given S ∈ Sn,n, we want to findA such that S = |Y −AX|, i.e., for some isometry

U we have US = Y −AX. For every isometry U , one can find corresponding
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Figure 3.1: Approximation of the optimization problem in Proposition 4 by the convex
optimization problem in Proposition 5. Illustration of the sets S1 and S2 in the proof
of Proposition 5.

matrix A satisfying the previous identity. We will construct a specific matrix A.

Namely, we fix U = V , where V is the isometry from the polar decomposition

Y = V |Y |. Then, we need to find A such that

AX = V (|Y | − S). (3.26)

X is full-rank; hence invertible from the right. Let us define

X̃ =


X−1

∣∣
Range(X)

,

0
∣∣
[Range(X)]⊥

(3.27)

From the Definition of X̃, we haveAXX̃
∣∣∣
Range(X)

= A
∣∣
Range(X)

andAXX̃
∣∣∣
Range(X)⊥

=

0. Therefore, multiplying Eq. (3.26) to the right by X̃, we see that A defined by

A =


V (|Y | − S)X̃

∣∣∣
Range(X)

,

0
∣∣
[Range(X)]⊥

(3.28)
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solves Eq. (3.26). Now we estimate ‖A‖1,

‖A‖1 ≤ ‖V ‖(‖|Y | − S‖1)‖X̃‖

≤ n‖V ‖(‖|Y | − S‖F )‖X̃‖ (3.29)

= C ′‖|Y | − S‖F (3.30)

≤ C ′εc∗ (3.31)

where (3.29) follows from the equivalence of norms and Cauchy-Schwartz. In (3.30),

C ′ = n‖V ‖‖X̃‖, which is a constant. The inequality in (3.31) follows from the fact

that S ∈ S2 and ‖S − |Y |‖F ≤ εc∗. In (3.31), by choosing c∗ ≤ 1
C′

= 1/(n‖V ‖‖X̃‖),

we obtain A ≤ ε. This ends the proof that S ∈ S1.

The optimization problem (3.23) is convex, hence it admits a unique global so-

lution S∗. Given S∗, the optimal regression matrix, Â, is found by solving S∗ =

|Y − ÂX|. There are many possible such solutions Â. We propose to find the

sparsest matrix, in the sense of minimization of the l1-norm.



min
A,U
‖A‖1

s.t. AX = Y −US∗,

(3.32)

where U is an isometry matrix. For every isometry U 0, we can find the minimum

l1-norm A(U 0). The optimal matrix A is, thus, found by minimizing over U and A.

Let V be the isometry of the matrix Y . Assuming that A is sparse, we can chose
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Figure 3.2: Approximation error ||S − S ∗ ||F/||S||F versus n = 1, · · · , p for p = 40.

U to be the isometry of Y . By replacing U by V in (3.32), we may increase the

minimum but we reduce the problem to a convex setting in the unique variable A.

Finally, the estimated regression matrix is the unique global solution of the following

convex optimization problem,


min
A
‖A‖1

s.t. AX = Y − V S∗,

(3.33)

SMURC algorithm. The SMURC algorithm is summarized below.

Input: The matrices X ∈ Rp×n and Y ∈ Rq×n according to the multivariate

regression model in Eq. (3.2) with q > n.

Step 1 Solve the convex optimization problem in (3.23). The solution of this
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problem is a p.s.d. matrix S∗ ∈ Rn×n

Step 2 Given S∗, the optimal regression matrix is obtained as the solution to the

convex optimization problem in (3.33).

Steps 1 and 2 can be implemented efficiently using the Matlab Software for Disciplined

Convex Programming, cvx [23], [22].

The following corollary provides an upper bound on the l1-norm of the optimal

connectivity matrix

Corollary 3.2.4. The norm of the optimal connectivity matrix, given by the solution

of the convex optimization problem in (3.33), is bounded above by

‖A∗‖1 ≤ ‖V (|Y | − S∗)X̃‖1 ≤ ε, (3.34)

where V is the isometry in the polar decomposition of Y , S∗ is the global solution

of the convex optimization problem in (3.23) and X̃, defined in (3.27), is the right

inverse of the matrix X.

Proof. The proof follows from the proof of Proposition 5, and specifically from Eq.

(3.29).

The SMURC algorithm involved an approximation of the original optimization

problem (3.10) by the convex optimization problem in (3.23). It is thus important

to assess the effect of this convex approximation on the final solution. An analytical
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derivation to bound this approximation is difficult and cumbersome. We, therefore,

provide a numerical assessment of this approximation by computing the average error

between the exact solution of (3.21) and the approximate solution of (3.23), ||S −

S ∗ ||F/||S||F . In synthetic data, the exact solution S is known. The error graph,

displayed in Fig. 3.2 shows that this approximation error decreases to a very small

value when the number of measurements n approaches the number of unknowns p.
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Figure 3.3: Performance comparison of SMURC with sCGGM, the l1-regularized
maximum likelihood (RMLE) with known true covariance Σtrue and the l1-regularized
maximum likelihood (RMLE) with covariance Σij = σ2 I for different network sizes
with %80 sparsity. Blue: SMURC with unknown covariance; Green: sCGGM with
unknown covariance; Red: RMLE with Σ = Σtrue = ρ|i−j|; Purple: RMLE with
Σ = σ2 I. (a) (p, δ) = (10, 0.15); (b) (p, δ) = (10, 0.25); (c) (p, δ) = (40, 0.15); (d)
(p, δ) = (40, 0.25).

3.3 Application: Genetic Regulatory Networks

An application of interest, which suffers from the high-dimension, small sample-size

problem is the reconstruction, also called reverse engineering, of genetic regulatory
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networks (GRNs), where only few samples, denoting time points or tissue samples, are

available. Inference of genetic regulatory networks is important for understanding the

dynamics of genetic interactions and harnessing this understanding into an educated

intervention of the cell. The behavior of the regulatory network can be modeled by a

system of linear differential equations near a steady-state [4, 5, 15, 21,45]:

ẋi(tk) =
N∑
j=1

aijxj(tk) + biu(tk) + εi(tk), (3.35)

where i = 1, · · · , p, k = 1, · · · , n, p is the number of genes, n is the number of

experiments or time points, xi(t) is the expression of gene i at time t, ẋi(t) is the

rate of change of expression of gene i at time t, aij represents the influence of gene

j on gene i, bi is the effect of the external perturbation on gene i and u(t) denotes

the external perturbation at time t. εi(tk) models the measurement and model error

at time step k. The goal is to infer the gene interactions {aij}pi,j=1, given a certain

number of measurements n. Introducing the new variable yi(t) = dxi
dt
− biu(t), we can

write the ODE model in vector form for the p genes as

y = Ax+ ε, (3.36)

where y = [y1, y2, · · · , yp]T ,x = [x1, x2, · · · , xp]T , ε = [ε1, · · · , εp]T and A = {aij}pi,j=1.

Performing n different experiments , we obtain n measurements and can write the

results as

Y = AX + E, (3.37)
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where Y = [y1, · · · ,yn], X = [x1, · · · ,xn] and E = [ε1, · · · , εn]. That is, every

column of Y , X, and E represents a single experiment and there are n < p columns

representing n experiments. The goal of reverse-engineering the network is to estimate

the connectivity matrix A given a number of measurements and in the presence of

correlated noise with unknown covariance matrix Σ.

3.3.1 Simulation results. Before considering a real dataset, we generate syn-

thetic data and compare the proposed SMURC algorithm with the l1-regularized

maximum likelihood estimator in [45], where an l1-norm penalty is imposed on the

connectivity matrix A. The regularized MLE finds the optimal connectivity matrix,

which minimizes the following convex function

f(A) =Tr

[
1

n
(Y −AX)(Y −AX)TΣ−1

]
+ ln |Σ|

+ α

p∑
i=1

p∑
j=1

|ai,j|,
(3.38)

where Σ, the covariance matrix of the data, is assumed to be known and α is a tuning

parameter that controls the sparsity level of the matrix A.

We generate synthetic gene networks with varying size p, varying number of mea-

surements n < p, and covariance structure Σ. Gene regulatory networks are known

to be sparse: every gene interacts only with few other genes. Thus, the connectivity

matrix A is sparse. In the presented simulations, we assume 80% sparsity level, i.e.,

‖A‖0 = 0.2p2, where ‖ · ‖0 denotes the number of non-zero elements. The perfor-

55



mance of the algorithm is similar for other sparsity levels as long as the system is

under-determined. The entries of the matrix A are drawn from a standard normal

distribution with zero-mean and unit variance, i.e., ai,j ∼ N (0, 1). The performance

of the algorithm is assessed using the following measure suggested in [60]:

E =

p∑
i=1

p∑
i=j

ei,j with

ei,j =


1, if |aij − âij| > δ|aij|

0, otherwise,

(3.39)

where aij is the (i, j)th element of the true genetic interaction matrix and âij is the

estimate of aij. δ is a threshold parameter. The percentage error is computed as

E/p2.

Figure 3.3 shows the percentage error versus the number of measurements n for

p = 10 and p = 40-gene networks, which are 80% sparse. We considered a threshold

of error corresponding to δ = 0.15 and δ = 0.25. Observe that, though the system is

sparse, it is still under-determined, i.e., the number of “effective” unknowns is larger

than the number of independent observations. We compare the proposed SMURC

algorithm (which assumes an unknown covariance matrix) with the regularized MLE

(RMLE) with known covariance matrix [45], with covariance matrix Σ = σ2 I and the

latest sCGGM algorithm [62]. It was shown in [62] that sCGGM outperforms Roth-

man et al. MRCE and approximate MRCE. We used the optimized code for sCGGM

available at http://www.cs.cmu.edu/~sssykim/softwares/softwares.html. We
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Figure 3.4: Flybase: The known undirected gene interactions in the Drosophila’s
11-gene wing muscle network [36].

assess the algorithms with a covariance Σtrue = ρ|i−j| with ρ = 0.7. Fifty Monte

Carlo simulations were performed for each experiment. From Fig. 3.3, we observe

that the proposed SMURC algorithm outperforms the sCGGM algorithm and has

similar performance as the regularized MLE with known covariance matrix equal to

the true covariance matrix.

(a) (b)

(c) (d)

Figure 3.5: Estimated gene regulatory networks of the Drosophila during four devel-
opmental phases using the SMURC algorithm. Blue and red edges denote, respec-
tively, positive and negative interactions. The green edges are interactions reported
in Flybase. (a) Embryonic; (b) Larval; (c) Pupal; (d) Adulthood.
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3.3.2 Drosophila Melanogaster gene expression data. To assess our al-

gorithm on real data, we tested it on the Drosophila melanogaster gene expression

levels [3]. The data contains 4028 genes in wild-type flies examined during 66 sequen-

tial time periods beginning at fertilization and spanning embryonic, larval, pupal and

the first 30 days of adulthood. Since early embryos change rapidly, overlapping 1-hour

periods were sampled; adults were sampled at multiday intervals. The time points

span the embryonic (samples 1-30; time E01h till E2324h ), larval (samples 31-40;

time L24h till L105h), pupal (samples 41-58; M0h till M96h) and adulthood (samples

59-66; A024h till A30d) periods of the organism. A list of known undirected gene

interactions is hosted in Flybase [36].

A set of 11 genes that regulate the wing muscle development has been considered

in [24, 39, 47, 63]. The 11-gene network, with the interactions reported in Flybase,

is depicted in Fig. 3.4. We reconstructed the genetic network between these 11

genes during the four developmental phases using the SMURC algorithm. In the

embryonic and pupal phases, 9 time points, undersampled from the original time

points (30 for embryonic and 18 for pupal), were used to reconstruct the 11-gene

network during these two developmental periods. In the larval and adulthood phases,

the entire 9 larval and 7 adulthood time points were used to reconstruct the network

during the larval and adulthood development phases, respectively. In summary, the

connectivity matrix of the 11-gene Drosophila development network was estimated

using the SMURC algorithm with 9 time points in the embryonic phase, 9 time points

in the larval phase, 9 time points in the pupal phase and 7 time points in the adulthood
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phase. Observe that in all four developmental phases, the system is underdetermined.

The reconstructed networks using the SMURC algorithm are shown in Fig. 3.5.

The SMURC algorithm was able to detect six out of the seven Flybase interactions

during different developmental phases of the organism: (up,sls) appears during the

embryonic period; (Actn,sls) and (up,mhc) appear during the larval phase; (twl,eve)

appears during the pupal phase; (prm,Actn) and (mhc,sls) appear during the adult-

hood stage of the development.

We compare the SMURC findings with the results in [63], [24], [47], [39]. Though

these references are not directly related to the problem of under-determined re-

gression systems with unknown covariance structure, their work aims at reverse-

engineering the connectivity of genetic regulatory networks. In particular, they

all consider the Drosophila’s 11-gene wing muscle network. Zhao et al. [63] infer

a single directed network using the minimum description length principle. They

used all 66 time points to identify a single network that characterizes the entire

Drosophila’s life cycle. In [24], a time-varying undirected network is learnt using

an exponential random graph model model. A dynamic Bayesian network was used

in [47], and [39] proposed a non-parametric Bayesian regression approach for gene

regulatory network inference. Table 3.1 shows the detection of the known interac-

tions in Flybase by the five approaches, E,L,P,A stand, respectively, for the em-

bryonic, larval, pupal and adulthood phases. Though the proposed SMURC algo-

rithm relies on fewer time points than the other approaches, it detected the most

number of known interactions cited in Flybased and reported in FLIGHT website

http://flight.icr.ac.uk/search/search_interactions.jsp. Additionally, the
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Table 3.1: Detection of the known gene interactions in Flybase

(prm,Actn) (sls,mhc) (mhc,up) (sls,Actn) (sls,up) (twi,eve) (up,Actn)

SMURC X (A) X (A) X (L) X (L) X (E) X (P) ×
Minimum description length [63] X X × × × X ×

Random graph model [24] × × X (E,L,P,A) X (P,A) X (E,L,P,A) × ×
Dynamic Bayesian network [47] × X (E,L,P,A) × × × × ×

Nonparametric Bayesian regression [39] × × × × × X (E) ×

SMURC algorithm found two directed interactions (msp 300 → prm) and (msp300

→ up) in common with the works in [63], [24], [47], and three directed interactions dur-

ing the embryonic phase in common with [39] (the networks in the other phases were

not reported in [39]) , (up → twi), (up → mlc1 ) and (msp300 −→ Myo61F1 ). It is

striking that all detected interactions that are shared with previous work [24,39,47,63]

have also the same direction.

3.4 Conclusion and Discussion

In this chapter, we showed that the Gaussian likelihood, as a function of the regres-

sion coefficients and the covariance matrix, diverges when the multivariate regression

system is under-determined. We subsequently proposed a normalized likelihood func-

tion that guarantees convergence while still keeping the Gaussian form of the data.

The maximum normalized likelihood, however, admits multiple solutions because the

system is still under-determined. Using the polar decomposition of matrices, we pro-

vided an expression of the covariance matrix in terms of the regression coefficients.

This provided an equivalent representation of the optimization problem in one vari-

able only, namely the regression matrix. We then relaxed the optimization problem

into a convex one by considering a convex set included in the original constraint

set. The optimal sparse regression matrix is found as the global solution to a convex
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optimization problem.

We applied the proposed Small-sample MUltivariate Regression with Covariance

estimation (SMURC) algorithm to infer the wing muscle genetic regulatory networks

of the Drosophila melanogaster during the four phases of its development: embryonic,

larval, pupal and adulthood. Genetic regulatory networks are known to be sparse and

often the number of measurements is smaller than the number of genes, which makes

the network inference problem unidentifiable. SMURC was able to detect six out

of the seven interactions reported in Flybase. Other algorithms aimed at reverse-

engineering dynamic gene regulatory networks were able to detect a maximum of

three out of the seven interactions.
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Chapter 4

Kernel Reconstruction versus the Combinatorial `0-based Compressive
Sensing Algorithm

4.1 Introduction

The Compressed Sensing method is known to reconstruct large dimensional signal

from a small number of measurements, where the original signal admits a sparse

representation in a certain basis. It has been widely used and implemented in many

application such as computized tomography [12], wireless communication [53], image

processing [8] and camera design [20] where the task is the reconstruction of a signal or

an image from linear measurements while taking many of them. We will focus in this

chapter on the mathematical aspect and proofs to see how far the CS based on convex

programming is asymptotically optimal. Actually, the CS technique is an under-

determined system where there is no guarantee that it yields a solution. Thus, in order

to make sure that our system converges to the optimal solution, some constraints are

imposed. In fact, this technique employs a few number of non adaptative-projections

of the sparse signal to compute a set of M measurements, i.e. encoding matrix.

Therefore, this framework is characterized by M equations for N unknowns. To solve

this problem, this system needs to be well-conditioned in order to yield a solution. In
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other words, we are looking to guarantee the stability of these projections.

More specifically, CS solves `0-based optimization problem where the `0 norm

corresponds to the number of nonzero entries in a vector. The main goal is to minimize

the number of non zero element in a vector given a linear model. In other words,

we are looking to find the sparsest solution within all possible ones. This achieved

by doing combinatorial search which is computationally very expensive. Therefore,

Donoho in [18] suggested to replace `0-norm by the `1 and the `2 norms and stated

that they yield the same solutions. However, minimizing either the `1 or the `2 norm

does not guarantee an exact solution. Therefore, in this chapter will present a new

approach that performs the exact reconstruction of sparse signals given a linear model

for under-determined systems.

This chapter is organized as follows: In Section 4.2 we present an overview of the

Compressed Sensing technique and the most important theoretical details. Section

4.3 we present our approach called the the Kernel Reconstruction and we compare it

to the alternatives techniques suggested in [18]. Finally, we briefly discuss in Section

4.4 the most important results of this research and what are the points that should

be investigated for the future work.

4.2 Compressed Sensing

4.2.1 Preliminaries and Notations. This section introduces the different

mathematical modeling and analysis needed for this study. We mostly consider com-

plex vectors in CN , however, sometimes the considerations will be restricted to RN .
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We denote vectors by lower-case letters and matrices by upper-case letters. The

`p-norm of a vector x ∈ CN is given by

‖x‖p = (
N∑
j=1

|x|p)1/p

‖x‖∞ = max
j=1,...,N

|xj|, (4.1)

where 1 ≤ p ≤ ∞. For 0 ≤ p ≤ 1, `p is called quasi-norm. However, in contrast to

the definition, the `0-norm ‖x‖0 is the number of the nonzero entries in x and it’s

not considered as a quasi-norm. The support of a vector x is denoted supp(x) =

{j, xj 6=}0. Moreover, x is called k -sparse if ‖x‖0 ≤ k where k ∈ {1, .., N}. The set

of k -sparse vectors is denoted by Σk = {x ∈ CN , ‖x‖0 ≤ k}. In addition, the best

k -term approximation error of a vector x in `p is defined as

σk(x)p = inf
z∈Σk
‖x− z‖p. (4.2)

The `Np notation refers to the `p-norm for the N-dimensional vector in CN or RN .

BN
p = {x ∈ CN , ‖x‖p ≤ 1} denotes the unit ball in `Np . The operator norm of a

matrix φ ∈ CM×N ‖.‖ : `Np → `Mp is denoted ‖φ‖p→p = max‖x‖p=1 ‖φx‖p. Specifically

if p = 2, the operator norm is the maximal singular value σmax(φ) of φ. We consider

the subset T ⊂ {1, .., N} where xT is the N-dimensional vector whose entries in T are

equal to the corresponding ones in x ∈ CN and zero outside T . The complement of

T is denoted by T c and ] refers to the cardinality.
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4.2.2 Mathematical Analysis. In the last decade, the CS was introduced

in literature [18], [50] based on mathematical viewpoint to prove its feasibility. This

method deals with the original signal in a certain k -sparse representation computed

by the transform coding (TC) [18] knowing that many signals are sparse in some

bases, e.g. Gabor, Fourier and Wavelet bases. A signal x with dimension N is called

k -sparse when it can be written in linear combination of few K basis vectors with large

coefficients. The remained (N − K) lowest values are set to zero where N >> K.

x is called compressible when it has few large coefficients and many small values.

The main task of CS is how to directly sense the compressible signal. In general,

as we mentioned above, we apply the TC to find the sparse vector representation.

The k -sparse signal seems to be sufficient and suitable for any application since it

contains a few coefficients. It so happens that TC has numerous inefficiencies that CS

rigorously addresses. Specifically, in some cases, for example seismic and video signals,

the dimension N of the signal may blow up to a big number regardless whether the

desired K is small. In addition, the entire transform coefficients in the new space must

be computed. Finally the locations of the sparse coefficients are unknown, therefore

they must be encoded. Consequently this leads to an overhead in memory. Actually,

to solve this bunch of problems CS employs a few numbers of non-adaptive linear

projections of the k -sparse signal. From the latter we can get a set of measurements

which will replace the acquired samples. Explicitly, the measurements set can be
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represented by the following mathematical model:

y0 = φ× x, (4.3)

where y0, x, φ are respectively the M × 1 vector of noiseless measurements, the k -

sparse N × 1 signal and the M × N measurement matrix. The k -sparse signal x

has (N −K) zeroed entries and the matrix φ has M different rows to compute each

corresponding measurement. The term non-adaptive is used here to mention that

the linear projections do not depend on the signal x. Infering the sparse vector x is

equivalent to solving the `0-minimization problem:

min ‖x‖0 subject to y0 = φ× x, (4.4)

Ideal CS reconstruction of K -sparse signal is to find the sparsest solution from the

infinitely many solutions x̂. It has been shown in [18] that if M ≤ K then there is

no solution and if M ≤ k + 1 then there is a high probability of high reconstruc-

tion. Unfortunately, this combinational minimization problem is computationally

NP-hard and intractable. Donoho et al. [18] proposed two practical alternatives,

i.e. `1minimization and `2-minimization. The `1minimization technique considers the

following problem:

min ‖x‖1 subject to y0 = φ× x, (4.5)
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which is a convex optimization problem and can be seen as a convex relaxation of

Eq. (4.4). The `2minimization technique considers the following problem:

min ‖x‖2 subject to y0 = φ× x, (4.6)

using the `2minimization, our problem still convex and can be solved.

As we mentioned above, our system in Eq. (4.3) is under-determined since we have

M equations for N unknowns where M << N . Consequently, some constraints are

imposed on φ in order to yield a solution. Therefore the properties of the measurement

matrix has been extensively studied in [50] where they revealed to be useful for CS

based on convex programming recovery. Thus, based on lemma and theorems; which

have been proven in [50]; we show how the `2-recovery implies the `1-recovery. We

need first to introduce the following lemma which states that `q-balls where q ≤ 1 are

good models for compressible vectors.

Lemma 4.2.1. Let 0 < q < p ≤ ∞ and set r = 1
q
− 1

p
. Then

σk(x)p ≤ k−r k=1,..,N ∀x ∈ BN
q .

Proof. Let T be the set of indices of the k-largest entries of x in absolute value. The

nonincreasing rearrangement satisfies |rk(x)| ≤ |xj| for all j ∈ T , and therefore we

have

krk(x)q ≤
∑
j∈T

|xj|q ≤ ‖x‖qq ≤ 1.
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Hence, rk(x) ≤ k
1
q . Thus

σk(x)pp =
∑
j 6∈T

rk(x)p−q|xj|q ≤ k
p−q
q ‖x‖qq ≤ k

p−q
q ,

which implies σk(x)p ≤ k−r.

From lemma 4.2.1, it’s very interesting to see that σk(x)p is bounded.

One fundamental property in `1-analysis that φ needs to satisfy is the Null Space

Property (NSP).

Definition 4.2.2. A matrix φ ∈ CM×N is said to satisfy the null space property

(NSP ) of order k with constant γ ∈ (0, 1) if

‖ηT‖ ≤ γ‖ηT c‖,

for for all sets T ⊂ 1, .., N , ]T ≤ k and ∀η ∈ ker(φ)

The following theorem prove the `1-recovery of x.

Theorem 4.2.3. Let φ ∈ CM×N be a matrix that satisfies the NSP of order k with

constant γ ∈ (0, 1). Let x ∈ CN , y = φ × x and let x̂ be a solution of the Eq. (4.5).

Then

‖x− x̂‖1 ≤
2(1 + γ)

1− γ σk(x)1. (4.7)

In particular, if x is k-sparse then x̂ = x.
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Proof. Let η = x̂− x. Then η ∈ kerφ and

‖x̂‖1 ≤ ‖x‖1

because x̂ is a solution of the `1-minimization problem in Eq. (4.5). Let T be the set

of the k-largest entries of x in absolute value. we have

‖x̂T‖1 + ‖x̂T c‖1 ≤ ‖xT‖1 + ‖xT c‖1

using the triangular inequality we have

‖xT‖1 − ‖ηT‖1 + ‖ηT c‖1 − ‖xT c‖1 ≤ ‖xT‖1 + ‖xT c‖1.

Therefore,

‖ηT c‖1 ≤ ‖ηT‖1 + 2‖ηT c‖1 ≤ γ‖ηT c‖1 + 2σk(x)1.

which is equivalent to have

‖ηT c‖1 ≤
2

1− γσk(x)1. (4.8)

Then,

‖x− x̂‖1 = ‖ηT‖1 + ‖ηT c‖1 ≤
2(1 + γ)

1− γ σk(x)1. (4.9)

Then Using Lemma 4.2.1 and Eq. (4.7) in theorem 4.2.3 we can show that the
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reconstruction error ‖x− x̂‖1 is bounded. Hence if all possible k -sparse signals x can

be `1-recovered then necessarily φ satisfies the Null Space Property (NSP). It’s clear

here that the NSP is equivalent to sparse `1-recovery.

For `2-analysis, we consider the Restricted Isometry Property (RIP). The matrix

φ must satisfy this property in order to prove the `2-recovery.

Definition 4.2.4. The restricted isometry constant constant δk of a matrix φ ∈ CM×N

is the smallest number such that

(1− δk)‖x‖2
2 ≤ ‖φx‖2

2 ≤ (1 + δk)‖x‖2
2 ∀x ∈ Σk,

A matrix φ is said to satisfy the restricted isometry property of order k with constant

δk if δk ∈ (0, 1). It’s easily seen that δk can be equivalently defined as

δk = max
T⊂{1,..,N}

‖φ∗TφT − Id‖2→2,

where φ∗T is the hermitian matrix of φT .

In other words, all columns submatrices of φ with at most k columns are required to

be well conditioned.

From the previous definition, if φ satisfies the RIP then any matrix formed from the

columns of indices j ∈ T is well-conditioned. Given that x is sparse, then the vector

of measurement y0 can be written as the summation of k inner products between the

same k -sparse vector x and the corresponding columns of the matrix φ that correspond

to the nonzero entries in x. Thus, the RIP implies the stability of the system.
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Furthermore, we can show the relationship between the NSP and the RIP con-

straints for φ. The following lemma proves this result.

Lemma 4.2.5. If φ ∈ CM×N satisfies the RIP of order K = k + h with constant

δK ∈ (0, 1), then φ has the NSP of order k with constant γ =
√

k
h

1+δK
1−δK

Proof. Let η ∈ N = ker(φ) and T ⊂ {1, . . . , N}, #T ≤ k. Define T0 = T and

T1, T2, . . . , Ts to be disjoint sets of indexes of size at most h, associated to a nonin-

creasing rearrangement of the entries of η ∈ N , i.e.

|ηj| ≤ |ηi| for all j ∈ T`, i ∈ T`′ , ` ≥ `′ ≥ 1. (4.10)

We have φη = 0 which is equivalent to have φηT0∪T1 = −∑s
j=2 φηTj . Using the

Cauchy-Schwartz inequality, the RIP, and the triangular inequality we have

‖ηT‖1 ≤
√
k‖ηT‖2 ≤

√
k‖ηT0∪T1‖2

≤
√

k

1− δK
‖φηT0∪T1‖2 =

√
k

1− δK
‖φηT2∪T3∪···∪Ts‖2

≤
√

k

1− δK

s∑
j=2

‖φηTj‖2 ≤
√

1 + δK
1− δK

√
k

s∑
j=2

‖ηTj‖2 (4.11)

Now consider Eq. (4.10), then we have|ηi| ≤ |η`| for all i ∈ Tj+1 and ` ∈ Tj. Taking

the sum over ` ∈ Tj and next the `2-norm over i ∈ Tj+1 gives

|ηi| ≤ h−1‖ηTj‖1; and ‖ηTj+1
‖2 ≤ h−1/2‖ηTj‖1.
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Using the inequality in Eq. (4.11) we have

‖ηT‖1 ≤
√

1 + δK
1− δK

k

h

s−1∑
j=1

‖ηTj‖1 ≤
√

1 + δK
1− δK

k

h
‖ηT c‖1. (4.12)

Lemma 4.2.5 shows that the RIP implies the NSP. Then we can conclude that the

`2-recovery implies the `1-recovery. The following theorem prove the `2-recovery of x.

Theorem 4.2.6. Assume φ ∈ CM×N satisfies the RIP of order 3k with δ3k < 1/3.

For x ∈ CN , let y0 = φx and x̂ be the solution of the Eq. (4.6). Then

‖x− x̂‖2 ≤
C√
k
σk(x)1, (4.13)

with C = 2
1−γ (γ+1√

2
+ γ), γ =

√
1+δ3k

2(1−δ3k)
.

Proof. This proof is similar to Lemma 4.2.5, where η = x̂− x ∈ N = ker(φ), T0 = T

the set of the 2k-largest entries of η in absolute value, and Tj’s of size at most k

corresponding to the nonincreasing rearrangement of η. Then using the inequality in

Eq. (4.11)and (4.12) with h = 2k of the previous proof we find

‖ηT‖2 ≤
√

1 + δ3k

2(1− δ3k)
k−1/2‖ηT c‖1. (4.14)

Given that δ3k < 1/3 we have γ =
√

1+δ3k
2(1−δ3k)

< 1. Using the results of Lemma 4.2.1
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and 4.2.5 we can find

‖ηT c‖2 = σ2k(η)2 ≤ (2k)−1/2‖η‖1 = (2k)−1/2(‖ηT‖1 + ‖ηT c‖1)

≤ (2k)−1/2(‖γηT c‖1 + ‖ηT c‖1)

(4.15)

We know that T is the set of 2k-largest entries of η in absolute value, then we have

‖ηT c‖1 ≤ ‖ηsupp xc
[2k]
‖1 ≤ ‖ηsupp xc

[k]
‖1, (4.16)

where x[k] is the best k-term approximation to x. From Eqs. (4.16) and (4.8) we can

finally find

‖x− x̂‖2 ≤ ‖ηT‖2 + ‖ηcT‖2

≤ (
γ + 1√

2
+ γ)k−1/2‖ηT c‖1

≤ 2

1− γ (
γ + 1√

2
+ γ)k−1/2σk(x)1. (4.17)

Then similarly to the `1-analysis, using lemma 4.2.1 and Eq. (4.13)in theorem

4.2.6 we can show that the reconstruction error ‖x − x̂‖2 is bounded. Hence if all

possible k -sparse signals x can be `2-recovered then necessarily φ satisfies the RIP.
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RIP in Linear Algebra Explicitly, the RIP condition is equivalent to have all the

elements of ker(φ) should have at least K + 1 = 3k+ 1 non zero entries, i.e. K ≤M .

This would guarantee that the measurement matrix is full rank and hence invertible.

Proof. Assume that K > M and let G be a subspace having N − K zeros where

dim(G) = K. If φ is invertible in this space this is equivalent that there is no kernel

in G which is impossible since dim(φ) = M

Thus, we have M ≥ K + 1 which is a theoretical bound of the number of mea-

surements. In [50], it has been suggested a more precise theoretical bound which is

in terms of the sparsity K. The following corollary from [50] shows a very important

result in CS community.

Corollary 4.2.7. Suppose that φ ∈ RM×N such that

‖x− x∗‖2 ≤ Cσk(x)1√
k

,

for all x ∈ BN
1 and some constant C > 0. Then necessarly

M ≥ C
′
K log(2N/M). (4.18)

Therefore, the most important property that φ needs to satisfy is the Restricted

Isometry Property. Actually it has been shown that RIP implies robustness under

noise on measurements. The following theorem gives an upper bound for the `2-norm

error between the original vector x and the sensed vector x∗ under noisy measure-

ments.
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Theorem 4.2.8. Assume that the restricted isometry constant δ2k of the matrix φ ∈

CM×N satisfies

δ2k <
2

3 +
√

7/4
' 0.4627.

Then the following holds for all x ∈ CN . Let noisy measurements y = Ax+e be given

with ‖e‖2 ≤ ε. Let x∗ be the solution of

min ‖z‖1 subject to ‖φz − y‖2 ≤ η,

Then

‖x− x∗‖2 ≤ C1ε+ C2
σk(x)1√

k
, (4.19)

for some constants C1,C2 > 0 that depend only on δ2k.

Comparing to the bound in Eq. (4.13), Eq. (4.19) has an extra term related to

the noise e which is in terms of its upper bound ε.

The recovery abilities of a measurement matrix is assessed by the coherence co-

efficient µ computed for `2 normalized columns matrix ‖φn‖2 = 1 for n = 1, .., N ;

µ = maxn 6=k |〈φn|φk〉|. This allows deriving numerous inequalities and conditions

on the number of measurements M . Furthermore it was proven in [18] that M =

O(K log N
K

) << N for `1 and `2-minimization recovery approaches. We will discuss

in the next section what can be said about M in practical application. The M linear

projections of x are non-adaptive so we can choose random encoding entries for φ.

Different useful types of random matrices have shown to satisfy the RIP, e.g. Gaus-

sian, Bernoulli and Partial Fourier random matrices [18]. From the latter, it’s indeed
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easier to deal with such matrices.

In this section we have presented the `1-based and the `2-based CS alternative

approaches for inferring k-sparse signals. We have also presented the two main con-

ditions that are required to be satisfied by a matrix of measurements in order to find

an upper bound for the `1 and the `2 errors. In the next section we present our new

approach that guarantees an exact reconstruction of a k-sparse signal

4.3 Kernel Reconstruction

In the previous section we have shown from [18] that the `0-based CS approach

could be replace by either `1-based or `2-based approach were the error ‖x − x∗‖ is

upper-bounded for both norms. In this section, we present an alternative approach

to the `0-based approach where it requires to go through all possible x ∈ Σk =

{x ∈ CN , ‖x‖0 ≤ k} to find the sparsest solution. This requires to make a search of∑K
k=1

(
N
k

)
combinations to find the optimal solution of the `0 optimization problem.

We consider the linear operator Φ : CN −→ Range(Φ) and we know that Cn =

Range(ΦT ) ⊕ Ker(Φ) where dim(Ker(Φ)) = S. Let x0 ∈ Range(AT ) be a particular

solution. We have

y = PRange(Φ)ΦPRange(ΦT )x

= Φ
(
ΦTΦ

)−1
ΦTΦΦT

(
ΦΦT

)−1
x

= Ax

=⇒ x0 =
(
PRange(Φ)ΦPRange(ΦT )

)−1
y. (4.20)
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Let B = Null(Φ) be the N × S matrix whose columns are the S vectors that span

the subspace Ker(Φ). Therefore ∀x ∈ CN we have

x = x0 +
S∑
j=1

ajbj, (4.21)

where bj’s are the kernel vectors and aj’s are the coefficients of the linear combination

in Ker(Φ). The matrix form of Eq. (4.21) is as follow

x = x0 +Ba, (4.22)

Thus, to find x we need to compute the entries in the vector a. To do this, we

assume that we have AT LEAST S = dim(Ker(Φ)) zeros in the vector x. rank(B) =

S, therefore ∃ S linearly independent rows of B that span a space that we call L

where these entries are equal to zero.

Let Ps be the projection matrix that projects x onto the space L. We choose Ps

to be the n× n matrix which has 1’s on the diagonal entries that correspond to the

s selected rows of B and 0’s elsewhere.

Finally, a can be computed as follow

Psx = Psx0 + PsBa = 0 =⇒ a = −
(
PsB

)−1
Psx0. (4.23)

Thus, if we find the vector a, then we can recover x from its expression in 4.22.

One should notice that we don’t know the indices of the S linearly independent rows

in B. Therefore, a combinatorial search should be performed in order to find the exact
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Figure 4.1: Performance comparison of Kernel Reconstruction with `1-based and `2-
based CS for N = 10 and K = 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

10

20

30

40

50

60

70

80

90

100

Number of measurements M

E
rr
o
r(
%
)
=

‖x
−
x
∗ ‖

2

‖x
‖ 2

Error v.s. Number of measurements M for N = 20, K = 7 and 50 Monte Carlo Iterations

 

 

Kernel Reconstruction
l
1
−based CS

l
2
−based CS

Figure 4.2: Performance comparison of Kernel Reconstruction with `1-based and `2-
based CS for N = 20 and K = 7

x. Comparing to the `0-based CS approach, our algorithm requires
(
N
S

)
<<

∑K
k=1

(
N
k

)
combinatorial search to find the optimal solution.

We plot in Figs 4.1 and 4.2 the percentage error ‖x−x
∗‖2

‖x‖2 versus number of measure-

ments M respectively for (N,K) = (10, 3) and (N,K) = (20, 7). We compared our

Kernel Reconstruction algorithm to the `1 and the `2 approaches. Observe from Figs

4.1 and 4.2 that our approach can exactly recover the K-sparse signal respectively for

M ≥ 3 and M ≥ 7. This is mainly because at these point, i.e., M = 3 and M = 3, we

consider that there are at least respectively S = 7 and S = 13 zeros in x. However,

respectively for M < 3 and M < 7, we don’t have an exact reconstruction because

we assume that we have at least S = 8 and S = 14 zeros in x.
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4.4 Conclusion

In this chapter, we have presented a complete overview about the Compressive Sens-

ing approach. Subsequently, we have presented a new algorithm that recovers exact

k-sparse signals. The CS is based on the `0-norm optimization. Donoha in [18],

showed that the `p-based approaches yield very close solutions with upper-bounded

error. In this research, we have suggested a new algorithm that recovers exactly a

k-sparse vector from a given matrix Φ and a vector of measurements y. We assume

in our approach that x has at least S zero entries where S corresponds to the dimen-

sion of the kernel of the matrix of measurements Φ. Although, the technique that

we suggest requires
(
N
S

)
combinatorial search to find the optimal solution, it is still

computationally not expensive comparing to the `0-based approach which requires∑K
k=1

(
N
k

)
combinatorial search. Finally, we compared our algorithm to the two `p

approaches and we showed that our technique does exactly recover a sparse signal,

whereas, its homologues can infer the same signal with a certain error. Therefore,

that would be very interesting to test our approach in solving multivariate regres-

sion model, that we have studied in Chapter 3, by considering multidimensional CS

framework.
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Appendix A

To prove the results in Chapter 2, we need to define the notion of an auxiliary function.

Definition A.0.1. G(h,h′) is an auxiliary function for f(h) if G(h,h′) ≥ f(h) and

G(h,h) = f(h).

The following lemma in [33] shows the usefulness of the auxiliary function.

Lemma A.0.2. [33] if G is an auxiliary function, then f is nonincreasing under the

update

h(k+1) = arg min
h

G(h,h(k)). (A.1)

Proof of Proposition 1. We will prove the update rule for H. A similar reasoning

would provide the update rule for W . Consider the two-variable matrix

G(h,h(k)) = f(h(k)) + (h− h(k))T∇f(h(k)) +

1

2
(h− h(k))TKh(h

(k))(h− h(k)), (A.2)

whereKh is any function satisfying conditions [a]-[c] and f(h) = 1/2
∑

i(vi−
∑

jWijhj)
2.

We show that G is an auxiliary function for f . It is straightforward to verify that
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G(h,h) = f(h). We only need to show that G(h,hk) ≥ f(h). To do this, we compare

f(h) = f(h(k)) + (h− h(k))T∇f(h(k)) +

1

2
(h− h(k))T (W TW )(h− h(k)) (A.3)

With Eq. (A.2) to find that G(h,hk) ≥ f(h) is equivalent to

(h− h(k))T [Kh(h
(k))−W TW ](h− h(k)) ≥ 0, (A.4)

From Condition [c], we have that Kh−W TW is positive semi-definite; thus, Eq. (A.4)

is satisfied and G(h,hk) ≥ f(h), proving that G is an auxiliary function of f . We

next show that h is positive elementwise at every iteration k. From lemma A.0.2,

and taking the derivative of G with respect to h, we obtain that

h(k+1) = h(k) −K−1
h ∇f(h(k))

= h(k) −K−1
h (W TWh(k) −W Tv)

= [I −K−1
h W TW ]h(k) +K−1

h W Tv, (A.5)

Let us assume that hk is positive and show that hk+1 is also positive. From condition

[a], Kh is diagonal and positive (elementwise). Therefore, K−1
h is also diagonal and

positive. Given that W and V are also positive, we have that K−1
h W Tv is positive.

From condition [b], we have that [I−K−1
h W TW ]h(k) is positive. Thus, hk+1 is positive
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(elementwise). In particular, by choosing the initial point h0 positive, all iterations

hk are guaranteed to be positive.

This ends the proof of Proposition 1. Next, we show that Lee and Seung’s choice

of (Kh)ij = δij(W
TWh(k))i/h

(k)
i corresponds to the fastest convergent update rule

among the class of matrices Kh that satisfy conditions [a]-[c].

From Eq. (A.5), we have

‖h(k+1) − h(k)‖ = ‖K−1
h (W TWh(k) +W Tv)‖

≤ ‖K−1
h ‖‖W TWh(k) +W Tv‖. (A.6)

Thus, the smaller the norm of Kh (or the larger the norm of K−1
h ), the faster the

convergence rate. From condition (b), we have that Khh
k ≥ W TWhk. Hence, the

smallest choice of Kh corresponds to (Kh)ij = δij(W
TWh(k))i/h

(k)
i .

Proof of Proposition 2. The following lemma provides an auxiliary function for the

objective function f in (2.11).

Lemma A.0.3. Consider the diagonal matrix

Φij(h
(k)) = δij(W

TWh(k))i/h
(k)
i + β. (A.7)

We show that

G(h,h(k)) = f(h(k)) + (h− h(k))T∇f(h(k)) +

1

2
(h− h(k))TΦ(h(k))(h− h(k)) (A.8)
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is an auxiliary function for f(h) =
∑

i(vi −
∑

jWijhj)
2 + α‖W‖2

F + β
∑

i ‖hi‖2.

The fact that G(h,h) = f(h) is obvious. Therefore, we need only to show that

G(h,h(k)) ≥ f(h). To do this, we compare

f(h) = f(h(k)) + (h− h(k))T∇f(h(k)) +

1

2
(h− h(k))T (W TW + βI)(h− h(k)) (A.9)

with Eq. (A.8) to find that G(h,h(k)) ≥ f(h) is equivalent to

(h− h(k))T [K(h(k))−W TW ](h− h(k)) ≥ 0, (A.10)

The proof of the semi-definiteness of the matrix in (A.10) is provided in [33]. Replac-

ing G in Eq. (A.2) by its expression in Eq. (A.8) results in the update rule

h(k+1) = h(k) − Φ(h(k))−1∇f(h(k)). (A.11)

Since G is an auxiliary function of f , f is non-increasing under this update rule.

Writing the components of Eq. (A.11), we obtain

h
(k+1)
i = h

(k)
i

(W Tv)i

(W TWh(k) + βh(k))i
. (A.12)

Similarly, we can obtain the update rule for W .

Proof of Corollary 2.2.1. Consider the diagonal matrices
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(Kh)ij = δij(W
TWHk)ij/H

k
ij. (A.13)

(Kw)ij = δij(WkHH
T )ij/W

k
ij. (A.14)

It can be easily shown thatKh andKw in Eqs. (A.13) and (A.14) satisfy conditions

[a]-[c]. Corollary 2.2.1 follows directly from Proposition 1 by choosing Kh and Kw in

proposition 1 as above.
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