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Abstract 
 

David Carbonetta 
DEVELOPMENT OF AN INTEGRATED NETWORK VISUALIZATION AND 

GRAPH ANALYSIS TOOL FOR BIOLOGICAL NETWORKS 
2014 

Ying Tang, Ph.D. 
Master of Science in Electrical & Computer Engineering 

 

There has been steady increase in the amount of molecular data generated 

by experiments and computational methods performed on biological networks.  

There is a growing need to obtain an insight into the organization and structure 

of the massive and complex biological networks formed by the interacting 

molecules. To that end, this work presents the development of an integrated 

network visualization and graph analysis plugin within the Cytoscape 

framework. The plugin is capable of computing and visualizing a comprehensive 

set of dyad, node, and graph level statistics. The evaluation of the plugin on a 

range of biological networks and its memory performance is conducted. The 

plugin, proven to be scalable, is an interactive and highly customizable 

application that expects no prior knowledge in graph theory from the user.
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Chapter 1 
 

Introduction 

 

There has been steady increase in the amount of molecular data generated by 

experiments and computational methods performed on biological networks.  

There is a growing need to obtain an insight into the organization and structure 

of the massive and complex biological networks formed by the interacting 

molecules. Given the large size of these networks it is necessary to employ a 

systematic approach to analyze the raw data in order to better understand their 

properties. This need is the motivation for undertaking this work. The system 

presented here is a network analysis plugin, titled Integrated Network Visualization 

and Graph Analysis (INVGA) for the popular network visualization tool 

Cytoscape. While the theory of complex networks is integral to a variety of 

disciplines, including power systems engineering, communications, social 

networking, and molecular biology, the work comprised here focuses on protein-

protein interactions in the field of biology. One promising use for this technology 

is that it could help researchers predict the effects and limit potential side effects 
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of drugs before they even begin testing on animals or humans, which could 

potentially save researchers large amounts of time and money.

1.1 Protein- Protein Interactions 
 

Protein-protein interactions are defined as two or more proteins binding together, 

usually to carry out a biological process. Proteins interact with each other within 

cells. These interactions are very complex, outside events can affect them by 

signal molecules, proteins can bind to each and change their function and 

sometimes proteins can carry other proteins to a different area [1]. The 

combination of these interactions makes the outcome difficult to predict. 

Effective techniques are needed to visualize these complex interactions so that 

we can better understand them. Visualization of these protein interactions will 

provide an excellent way to analyze these large, complex data sets quickly.  

1.2 Cytoscape Plugins 
 

Cytoscape is an open source platform for complex network analysis and 

visualization. Cytoscape only provides the framework with a basic set of features 

for data integration, analysis, and visualization. The task of actually employing 

Cytoscape’s extensive network analysis and visualization capabilities is 

accomplished by 3rd party plugins. INVGA is one such plugin. 
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1.3 Objective of Thesis 
 

The objective of this thesis is to provide researchers a tool that assists them in 

gaining better insight into the properties of complex protein-protein interaction 

networks. The tool titled INVGA implements the fundamental graph analysis 

algorithms that are essential to understand protein-protein interaction networks 

but are not provided by either Cytoscape or the Cytoscape plugin development 

community. 

1.4 Scope of Thesis 
 

The graph analysis operations included in INVGA fall into three categories: node, 

dyad, and network level operations. Node level operations pertain to the 

properties of a single node including how it relates to the network, dyad level 

operations analyze the relationship of two nodes by calculating paths that 

connect them, and finally network level operations calculate properties of the 

network as a whole. Plugins that perform node and dyad level operation in 

Cytoscape are nearly nonexistent and therefore are a particular focus of this 

work. Many of the network level operations provided by INVGA are available in 

other plugins, they are provided by INVGA to provide researchers with a
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complete set of tools that have a common, user-friendly interface. 
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Chapter 2 
 

Background 

 

Recent advancement in genomic technologies results in large complex 

networks with an ever-increasing amount of interacting biological data. The 

complexity of biological processes and the wealth of data needed for the proper 

consideration of underlying interactions make data visualization and analysis a 

fundamental prerequisite for the exploration and interpretation of biological data 

[2]. For instance, an easy visualization of the highly complex linkage of proteins 

is of significant importance to large-scale cross-species comparisons of proteins 

and genes [3]. Such visualization often represents the interactions of protein 

complexes and functional modules as a graph of nodes (proteins) and edges 

(interactions between proteins). Graph-based methods and tools are then 

designed to interpret experimental results and gain insight into key controllers of 

biochemical pathways and complex networks.  

 

In this chapter we discuss some existing plugins related to the functions of 

INVGA. The Cytoscape plugin development community has fulfilled many 

needs of researchers in many fields. There have been many plugins developed
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for clustering and other functions for instance. However, INVGA fills a specific 

need of node-level and dyad-level analysis. Dyad-level functions are of 

particular uniqueness to this work. Other than one plugin for finding shortest 

path, there are no path-finding analysis tools for node pairs available for 

Cytoscape. INVGA also provides many network-level analysis functions, some 

of which have been previously provided by other plugins. The reason for 

INVGA to include these functions is to provide researchers with one 

comprehensive plugin for all of their needs concerning protein-protein 

interactions. While there are no other plugins which do exactly what INVGA 

does, there are a few plugins that share a small number of functionalities or offer 

some similar functions. We go into depth about these plugins, what they offer, 

and any similarities they share with INVGA in the next section. 

2.1 ShortestPath Plugin 
 

ShortestPath Plugin [4] is the only plugin available for Cytoscape that 

features a dyad operation. It only performs a single operation, which is to find 

the shortest path between two nodes. This plugin works on both directed and 

undirected graphs. The user selects two nodes and executes the plugin, which 

highlights the shortest path between the selected nodes and returns the path 

length in a pop-up
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box. This plugin was the inspiration for the dyad operations of INVGA. It 

features a very simple visual style that allows the user to easily visualize a 

specific path in a complex and cluttered network. INVGA’s shortest path 

operation works very similarly to ShortestPath Plugin, however it also visually 

distinguishes the source and sink nodes from the rest of the path. INVGA applies 

this format to a variety of other dyad operations and provides a variety of 

numerical information appropriate to each operation in a pop-up box. 

2.2 CytoHUBBA 
 

CytoHUBBA [5] explores important nodes/hubs and fragile motifs in an 

interactome network by several topological algorithms including Degree, Edge 

Percolated Component (EPC), Maximum Neighborhood Component (MNC), 

Density of Maximum Neighborhood Component (DMNC), Maximal Clique 

Centrality (MCC) and centralities based on shortest paths, such as Bottleneck 

(BN), EcCentricity, Closeness, Radiality, Betweenness, and Stress. It ranks nodes 

based on their importance to the operation executed. The amount of nodes 

included in the ranking is set by the user. Comparing INVGA with CytoHUBBA, 

there are two types of function the two plugins share with similarities and
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 differences. CytoHUBBA features several methods of calculating the centrality 

of a network, including closeness and betweenness; while the centrality that 

INVGA calculates is degree centrality. CytoHUBBA also offer an operation called 

“Degree”; that ranks nodes from highest to lowest degree; while INVGA features 

a related operation called “Degree Distribution” that returns what percentage of 

nodes in the network has a specific degree. 

2.3 CentiScaPe 
 

CentiScaPe [6] was developed in 2009 by Giovanni Scardoni, Michele 

Petterlini, and Carlo Laudanna. The plugin computes a variety of centrality 

parameters to assist users in finding the most significant nodes in a complex 

network. CentiScaPe employs both numerical and graphical output in an effort 

to make the results as clear as possible. The plugin can calculate centricity, 

closeness, betweenness, stress, centroid, and radiality. The shared functionality 

between CentiScaPe and INVGA is calculating centrality (albeit by applying 

different methods), graph diameter and mean shortest path. 
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2.4 MCODE 
 

Clusters are highly interconnected groups of nodes in a network. In a 

protein-protein interaction network, these clusters usually represent protein 

complexes or parts of pathways. MCODE [7] finds these clusters, displays the 

results visually and ranks the resulting clusters. MCODE was developed by 

Bader GD and Hogue CWV in 2003. It is one of the oldest and most widely used 

clustering plugins available for Cytoscape. There are actually a large number of 

clustering plugins available for Cytoscape. It is for this reason that a new 

clustering algorithm is not developed for INVGA, instead INVGA employs 

MCODE for its clustering calculations. 

2.5 Network Analyzer 
 

Network Analyzer [8] was developed in 2008 by Y. Assenov, et al., which 

was the most expansive tool for graph analysis available for Cytoscape. 

Although it has many analytical features, it was developed for network-level 

analysis and offers very limited node-level analysis and zero dyad-level 

functionality.   

In summary, the development of INVGA bridges the aforementioned 

functionality gaps in biological network analysis. The successful implementation
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of INVGA offers researchers a comprehensive package for all basic protein- 

protein network analysis. In particular, INVGA includes many of the same 

network-level analysis tools that Network Analyzer offers. This common overlap 

includes functions such as: mean shortest path, degree distribution, average 

number of interaction partners, topological coefficient, diameter of graph, and 

degree centrality. The way in which INVGA distinguishes itself from Network 

Analyzer is in its node-level and dyad-level functionality. 
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Chapter 3 
 

Design and Implementation 

 

INVGA is a Cytoscape plugin that efficiently computes graph-, node- and 

dyad-level topological operations for undirected networks loaded into Cytoscape 

from a variety of file formats which are supported by Cytoscape. INVGA is 

written in JAVA and utilizes Cytoscape’s API and their corresponding libraries. 

The node- and dyad- level operations that INVGA is capable of calculating are all 

paths, shortest path, critical path, max flow, and topological coefficient. The 

network operations it offers include mean shortest path, degree distribution, 

average number of interaction partners, clustering, diameter of graph, and 

degree centrality. Given that those topological operations are frequently used in 

the literature, the work presented here focuses their design and integration with 

Cytoscape as well as their biological relevance. In particular we examine the 

implementation of every operation of which INVGA is capable, including the 

Java code where relevant. 

3.1 Search Algorithms 

All of the path calculating operations, which include all of the dyad operations 

and several network operations, employ either depth first search (DFS) or
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breadth first search (BFS). For clarity, the two algorithms (DFS/BFS) are first 

briefly described with the focus on their implementation in INVGA. 

 

3.1.1 Depth First Search. Depth first search (DFS) is a recursive algorithm 

that is used to find a path between two nodes in a graph or tree structure data set. 

DFS is categorized as an uninformed search. In a tree structure data set, the 

algorithm starts at the root and progresses through the branches. If the data set is 

represented as a graph, the algorithm starts at a specified node which is referred 

to as the “source” node. This latter case is the focus of this work. The DFS 

algorithm starts at the source and ends when it reaches what is known as the 

“sink” node. The algorithm examines the first node directly connected to the 

source node. All nodes directly connected to the node currently being examined 

are known as the neighbor nodes or child nodes. If this node is not the sink node, 

the algorithm progresses to that node’s first neighbor node. This continues until 

the sink node is found or 
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a node is reached which has no neighbors. If the latter is the case, the algorithm 

backtracks to the previous node and examines its next neighbor node. This 

process repeats until the sink node is reached. 

For the implementation, INVGA utilizes Boolean arrays and stacks 

wherever possible to maximize efficiency. This is an important consideration 

given that networks can be extremely large. The Java code for the 

implementation of DFS is presented below. In it you can see that the variable u is 

the node currently being examined. The algorithm starts by setting the user 

selected source node as u. The Boolean array inAllPaths holds the current path 

being built. The stack path holds the nodes currently being examined. As nodes 

are found to be in the path, they are popped from the stack and recorded as true 

in inAllPaths. When a node is recorded in inAllPaths, it is marked as visited. Once 

a path is completed it is added to the arraylist pathMatrix2, where all of the 

resulting paths can be later examined. This process is repeated until all the nodes 

in the network are marked as visited and every path is found. The matrix that 

results from the combination of the arrays is ordered in such a way that the IDs 

of the nodes in each path can be calculated from their placement in the matrix, 

negating the need to call and store every node ID. With this method of 

implementation, only the IDs of the nodes of interest are called at the necessary 

time. Below is the presentation of the implementation.
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private boolean DFS(int u){ 
            if (visited[u] == true){ 
                return true; 
            } 
                if (u == sink){ 
                    for (int i = 0; i < size; i++){ 
                         inAllPaths[i] = true; 
                    } 
                     for (int i = 0; i < size; i++){ 
                        if (!path.contains(i)){ 
                            inAllPaths[i] = false; // inAllPaths contains true only at vertices that exist in all paths from 
                           source to sink. 
                            } 
                    } 
 
                    inAllPaths[sink] = true; 
                    pathMatrix2.add(deepCopy(inAllPaths)); 
                    return true; 
                 }else { 
                    visited[u] = true; 
                    path.push(u); 
                    //foreach edge (u, v) 
                    for (int k = 0; k < size; k++){ 
                        int v = capacity[u][k]; 
                        if (v != 0 && visited[k] != true){ 
                            DFS(k); 
                        } 
                    } 
 
 
 
                    path.pop(); 
                    visited[u] = false; 
                    return false; 
                                } 
                            } 

 

 

3.1.2 Breadth First Search. Breadth First Search (BFS) is another 

uninformed search algorithm. BFS begins by adding the source node to the 

queue if the data set is a graph or in the case of a tree structure data set, the root 

node. The node is then removed from the queue



15 

and examined. If the node being examined is the sink node the algorithm ends. If 

not, that node’s neighbor nodes are added to the queue and the previous step is 

repeated until the sink node is found. 

INVGA implements BFS by employing the Edmonds-Karp algorithm. Its 

coding utilizes Boolean and integer arrays exclusively for optimal computational 

speed. The algorithm results in building a 2 dimensional Boolean array which 

represents the nodes in the path between the source and sink nodes in the 

network. The coordinates of all the true values in the flow matrix can be used to 

calculate the node IDs from which they resulted. Again, this technique negates 

the need to record additional information in that matrix which would bloat the 

matrix and reduce computational speed. As long as you have the ID of a node in 

Cytoscape, you can call any information that you may need as you need it. The 

implementation of BFS is displayed below. 

//Breadth First Search 
        private boolean BFS(int source){ 
                for (int i = 0; i < size; i++){ 
                        color[i] = WHITE; 
                        min_capacity[i] = Integer.MAX_VALUE; 
                } 
 
                first = last = 0; 
                queue[last++] = source; 
                color[source] = GRAY; 
 
                // While "queue" not empty 
                while (first != last){ 
                        int v = queue[first++]; 
                        for (int u = 0; u < size; u++) 
                                if (color[u] == WHITE && res_capacity[v][u] > 0){ 
                                        min_capacity[u] = Math.min(min_capacity[v], res_capacity[v][u]); 
                                        parent[u] = v;
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                                        color[u] = GRAY; 
                                        if (u == sink) return true; 
                                        queue[last++] = u; 
                                } 
                } 
                return false; 
        } 

 

3.2 Dyad-Level Operations 
 

3.2.1 All Paths. The All Paths operation is a simple and direct dyad-level 

operation offered by INVGA. In biological networks, finding all paths connecting 

two given substances is of importance to identify chains of reactions. Therefore, 

the All Paths operation is designed in INVGA, where an iterative depth first 

search algorithm is executed on the connectivity matrix of a loaded network to 

find all discrete, noncyclical paths between two selected nodes. Once the paths 

are found, the nodes along the paths are highlighted to assist the user in easily 

visualizing the paths and their cumulative connectivity. A pop-up window, as 

shown in Fig. 3.2.1, is also displayed offering numerical values of the resulting 

number of path calculated as well as their average path length. The following is 

the Java code for the All Paths algorithm including the initial construction of the 

matrices. One note of worth, the nodes are referenced by index, however all 

indices in Cytoscape are negative. Also, Cytoscape indices start a (-)1, while 

arrays start at 0.
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This added complication is what the comment “// Makes index negative and 

adjusted” is referring to. 

private boolean[][] getAllPaths(int node1, int node2) { 
 
            indexArray = root.getNodeIndicesArray(); 
            size = indexArray.length; 
            String output = ""; 
            int colorIndex = 0; 
            double sum = 0; 
            double NoP = 0; 
            double AvLength = 0; 
            APSaveData = ""; 
 
            parent = new int[size]; 
            color = new int[size]; 
            queue = new int[size]; 
            capacity = new int[size][size]; 
            int index = 0; 
            inAllPaths = new Boolean[size]; 
            java.util.Arrays.fill(inAllPaths,true); // init to all true 
            visited = new boolean[size]; 
            java.util.Arrays.fill(visited,false); // init to all false 
            path = new Stack<Integer>(); 
            path.clear(); // init empty 
            pathMatrix = new boolean[size][size]; 
 
            CyNode cynode1 = (CyNode) network.getNode(node1); 
            CyNode cynode2 = (CyNode) network.getNode(node2); 
            source = -1*root.getIndex(cynode2)-1; 
            sink = -1*root.getIndex(cynode1)-1; 
 
            //Build capacity[size][size] matrix 
            for (int i = 0; i < size; i++){ 
             adjArray = network.neighborsArray(-i-1); 
             for (int j = 0; j < adjArray.length; j++){ 
                            index = -1*adjArray[j]-1; 
                                 capacity[i][index] = 1 ;//1 means connected 
                } 
            } 
 
            Arrays.fill(inAllPaths,true); // init to all true 
            Arrays.fill(visited,false); // init to all false 
            path.clear(); // init empty 
 
            DFS(source); 
 
            //Iterate through results and change node colors 
            for(int i=0; i<pathMatrix2.size(); i++){ 
                Boolean[] temp = pathMatrix2.get(i);
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                ArrayList<String> idArray = new ArrayList<String>(); 
                String NodeID =""; 
                output += "["; 
                for(int j=0; j<temp.length; j++){ 
                    if(temp[j] == true){ 
                        colorIndex = -1*j - 1; // Makes index negative and adjusted 
                        Node node = root.getNode(colorIndex); //Get node by index 
                        NodeView nodeView = view.getNodeView(node); 
                        nodeView.setUnselectedPaint(Color.BLUE); 
                        sum += 1; 
                        //Fill idArray 
                        Node node3 = root.getNode(colorIndex); 
                        NodeID = node3.getIdentifier(); 
                        idArray.add(NodeID); 
                }else{} 
                } 
            //Send idArray to string of Save Data 
                for(int k=0; k<idArray.size(); k++){ 
                    output += " " + idArray.get(k); 
                } 
                output += "] "; 
            idArray.clear(); 
            } 

 

 

Fig. 3.2.1 - All Paths 
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3.2.2 Shortest Path. This Shortest Path operation plays a critical role in 

analyzing biological networks. For instance, the shortest path between a receptor 

and a DNA binding protein allows the prediction of the signal transduction 

pathway from a protein-protein interaction network. Similarly, it helps the 

prediction of a metabolic pathway given two reactions or compounds of interest 

and a metabolic network. The shortest path very likely traverses the hub nodes 

of a network. It depends on the biological context, whether this behavior is 

desired or not [9, 10]. 

Shortest Path is another dyad operation which uses DFS to find the 

desired path. The Shortest Path operation essentially runs the All Paths 

algorithm and then examines all of the resulting paths by comparing their 

lengths. Path length is defined as the number of edges which must be traveled to 

connect two nodes. In the case, the path that connected the user specified source 

and sink nodes that has the fewest number of edges is desired. In protein-protein 

interaction networks, the “length” of an edge does not apply as opposed to a 

road map. All that matters is if they are connected, therefore this algorithm 

considers all edges to have a weight of 1. The resulting shortest path is then 

highlighted in the network and the length of the path is displayed numerically in 

a pop-up box for the user as shown in Fig. 3.2.2. Some of the implementation of 
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the Java code for Shortest Path is presented here after omitting some of the 

redundancy with the All Paths algorithm. 

public int getShortestPath(int node1, int node2) { 
            … 
 
            … 
            DFS(source); 
 
            shortest = pathMatrix2.get(0).length; 
            sTemp = pathMatrix2.get(0).length; 
            for(int i=0; i<pathMatrix2.size(); i++){ 
                Boolean[] temp = pathMatrix2.get(i); 
                sTemp = 0; 
                for(int j=0; j<temp.length; j++){ 
                    if(temp[j] == true){ 
                        sTemp += 1; 
                    }else{} 
                } 
                if(sTemp < shortest){ 
                    shortest = sTemp; 
                    sRow = i; 
                } 
            } 
 
            // Iterate through results and change node colors 
            Boolean[] temp = pathMatrix2.get(sRow); 
                for(int j=0; j<temp.length; j++){ 
                    if(temp[j] == true){ 
                        colorIndex = -1*j - 1; // Makes index negative and adjusted 
                        Node node = root.getNode(colorIndex); //Get node by index 
                        SLength += 1; 
                }else{} 
                    output += " " + temp[j];     //Save Data 
                } 
            output += "\n"; 
 
            pathMatrix2.clear(); 
            SLength = SLength-1; 
 
            return SLength; 
        }  
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Fig. 3.2.2 - Shortest Path 

 

3.2.3 Critical Path. Critical-path parameter is concerned about all node 

degrees along a network path. In analyzing protein networks, the critical path 

length property provides an insight into the number of core proteins and the 

interacting proteins in various linear network paths. Durmus et al have shown 

that during the analysis of a protein-protein network of insulin signaling in 

homospaiens, the critical path plays a main role in the glucose transportation 

response of the signaling network [11]. To satisfy this analytical need, INVGA 

provides the critical-path computation for two nodes being selected by a user. 
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Critical Path is a dyad operation offered by INVGA which utilizes DFS. The goal 

of Critical Path is to find the mostly highly connected path between any pair of 

nodes. The Critical Path algorithm runs the All Paths algorithm to return all of 

the unique, noncyclical paths between the selected source and sink nodes. 

Similarly to the Shortest Path algorithm, after Critical Path runs All Paths, it then 

examines the resulting paths by a specific set of criteria. The criterion used in our 

implementation is the degree of a node defined as the number of incident edges 

of a node. The algorithm sums the degrees of every node along each path and 

returns the path with the highest summation. The resulting path is highlighted in 

the network so that it can be easily visualized by the user and the values of the 

summation and path length are displayed numerically in a pop-up box as shown 

in Fig. 3.2.3. 

 
public boolean[][] getAllPaths(int node1, int node2) { 
            … 
             
            … 
            DFS(source); 
 
            int tempCrit = 0; 
            int maxCrit = 0; 
            int row = 0; 
            int tempLength = 0; 
            //Calculate critical path from all paths 
            for(int i=0; i<pathMatrix2.size(); i++){ 
                Boolean[] temp = pathMatrix2.get(i); 
                tempCrit = 0; 
                for(int j=0; j<temp.length; j++){ 
                    if(temp[j] == true){ 
                        indexCrit = -1*j - 1; 
                        tempCrit += network.getDegree(indexCrit); 
                        tempLength += 1;
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                        if(tempCrit > maxCrit){ 
                            maxCrit = tempCrit; 
                            critLength = tempLength-1; 
                            row = i; 
                        } 
                    }else{} 
                } 
            } 
            //Color nodes in critical path 
            Boolean[] temp = pathMatrix2.get(row); 
            ArrayList<String> idArray = new ArrayList<String>(); 
            String NodeID =""; 
            for(int k=0; k<temp.length; k++){ 
                    if(temp[k] == true){ 
                        colorIndex = -1*k - 1; // Makes index negative and adjusted 
                        Node node = root.getNode(colorIndex); //Get node by index 
                        NodeView nodeView = view.getNodeView(node); 
                        nodeView.setUnselectedPaint(Color.BLUE); 
                        //Fill idArray 
                        Node node3 = root.getNode(colorIndex); 
                        NodeID = node3.getIdentifier(); 
                        idArray.add(NodeID); 
                    }else{} 
                } 
            //Send idArray to string 
            for(int k=0; k<idArray.size(); k++){ 
                output += " " + idArray.get(k); 
            } 
 
            //Change color of source and sink nodes 
            NodeView nodeView1 = view.getNodeView(cynode1); //Source = "Go" 
            nodeView1.setUnselectedPaint(Color.GREEN); 
            String sourceNodeID = cynode1.getIdentifier(); 
            NodeView nodeView2 = view.getNodeView(cynode2); //Sink = "Stop" 
            nodeView2.setUnselectedPaint(Color.RED); 
            String sinkNodeID = cynode2.getIdentifier(); 
 
            JOptionPane.showMessageDialog(Cytoscape.getDesktop(), "Critical Path Value: " + maxCrit + 
"\n\nCritical Path Length: " + critLength); 
            pathMatrix2.clear(); 
 
            //Save Data 
            CPSaveData = "Critical Path("+sourceNodeID+", "+sinkNodeID+"): " 
                    +"["+ output +"]"+ "   Length: " +critLength; 
            SaveData SDobj = new SaveData(); 
            SDobj.WriteFile(CPSaveData); 
 
            return pathMatrix2; 
        } 
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Fig. 3.2.3 - Critical Path 

 

3.2.4 Max Flow. The maximum flow property has been widely used in 

automatic decomposition of proteins.  With the exponential growth in number of 

protein structures, the decomposition of multi-domain proteins into individual 

proteins becomes essential. Such a problem is usually formulated in a network 

flow framework in which residue of a protein is represented as a node of the 

network and each residue-residue contact as an edge with a particular capacity. 

Finding the maximum flow of the network can help determine the bottleneck of 

the network, which is the core of the decomposition [12].  
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Flow can be visualized as the rate that information is traveling between 

two nodes. Max flow seeks to find the configuration of paths that result in the 

highest possible rate of flow. An easily understood analogy would be to think of 

the nodes in the network to be computers and the edges to be data lines. 

 

Fig. 3.2.4.1 - Example Network [13] 

 

Given the undirected network presented in Figure 3.2.4.1, suppose that we 

wanted to send a large file from computer A to computer E. What route (paths)
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should be taken to transfer the file at the maximum rate possible and what is the 

value of that rate? Two important things to consider are that no node can send 

more data than it receives and no node will receive more data than it can send. 

That is to say that all data is conserved. Computer A can send data out at a rate 

of 8 Mb/s since it had two 4 Mb/s data lines. Computer B’s date line from 

computer A is capable of receiving data at 4 Mb/s, however it can only send out 2 

Mb/s of data, so B will then only receive 2 Mb/s from A. Computer C can receive 4 

Mb/s of data from A and can send 3 Mb/s to E, but the extra 1 Mb/s can be sent 

over its data line to D. Computer D then receive 2 Mb/s from B and 1 Mb/s from C 

and can easily send all 3 Mb/s over its line to E. So then Computer E receives 3 

Mb/s from D and another 3 Mb/s from C. This results in the maximum flow of 

data from node A to node E to be 6 Mb/s. 

 

As clearly shown in the example, there are several important steps to 

derive the max flow of a given network. The first of these is to find all paths 

between the source and sink nodes. For that purpose, Breadth First Search (BFS) 

is utilized. The traditional implementation of BFS is using the queue structure to 

traverse the network and to determine the connectivity of individual nodes. The 

source node is first added to the queue and marked as examined (i.e., 

color[source] = GRAY). A loop is then used to check the connectivity of the node 
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being examined (i.e., node v) with all of the other nodes (i.e., node u) in the 

network. Only if u has not been visited (i.e., color[u] == WHITE ) and it is 

connected with v  ( i.e., res_capacity[v][u] > 0), u is pushed into the queue for 

further examination, and changed its color to gray. Meantime, v is marked as u 's 

parent. This process is continued until the queue is empty. 

The second important aspect is the residual capacity matrix as we are concerned 

not only the connectivity of two nodes but also the flow in between. The residual 

capacity matrix is initially set to be the capacity matrix that contains all of the 

nodes in the network with their corresponding weighted edges. BFS operates on 

the residual capacity matrix. Each time BFS finds a path between the source and 

the sink, the residual capacity matrix is updated to reflect the portion of the 

network capacity that remains. This allows the same BFS to run repeatedly for 

unique paths until the residual capacity reaches zero.                                             

The final important aspect of Max Flow is the concept of minimum capacity that is 

implemented as a necessary check to ensure the conservation of flow in the 

network. The flow that v is sending to u over their shared edge can’t be more 

than the maximum value of flow available to v as illustrated in the equation 

below.  

min_capacity[u] = Math.min(min_capacity[v], res_capacity[v][u] 
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Minimum capacities are updated and recorded in the flow matrix each time BFS is 

run. When Max Flow concludes, the flow matrix contains the portions of all of the 

edges which the flow traverses between the source and sink, that is to say it 

contains all of the resulting paths with their respective flows. 

The protein-protein interaction networks of concern here are undirected 

networks with all edges having a weight of 1. In INVGA’s Max Flow operation, 

all of the paths traveled between the user selected source and sink nodes are 

highlighted in the network and the value of the flow is displayed numerically as 

shown in Fig. 3.2.4.2. 

// Edmonds-Karp algorithm 
public int[][] getMaxFlow(int node1, int node2) { 
            … 
 
            … 
            //Build capacity[size][size] matrix 
            for (int i = 0; i < size; i++){ 
             adjArray = network.neighborsArray(-i-1); 
             for (int j = 0; j < adjArray.length; j++){ 
                            index = -1*adjArray[j]-1; 
                            //nodeIndex = -1*adjArray[j]; 
                                 capacity[i][index] = 1 ;//1 means connected 
                } 
            } 
 
                for (int i = 0; i < size; i++) 
                        for (int j = 0; j < size; j++) 
                                res_capacity[i][j] = capacity[i][j]; 
 
              while (BFS(source)){ 
                        max_flow += min_capacity[sink]; 
                        int v = sink, u; 
                        while (v != source){ 
                                u = parent[v]; 
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                                flow[u][v] += min_capacity[sink]; 
                                flow[v][u] -= min_capacity[sink]; 
                                res_capacity[u][v] -= min_capacity[sink]; 
                                res_capacity[v][u] += min_capacity[sink]; 
                                v = u; 
                        } 
                } 
 
            //Change Node Color & Print matrix for debugging 
            ArrayList<String> idMatrix = new ArrayList<String>(); 
            String NodeID =""; 
            for (int row = 0; row < size; row++) { 
            for (int col = 0; col < size; col++) { 
                if(flow[row][col] != 0){ 
                    colorIndex = -1*row - 1; // Makes certain index is negative and adjusted 
                    Node node = root.getNode(colorIndex); //Get node by index 
                    NodeView nodeView = view.getNodeView(node); 
                    nodeView.setUnselectedPaint(Color.BLUE); 
                    //Fill idArray 
                    Node node3 = root.getNode(colorIndex); 
                    NodeID = node3.getIdentifier(); 
                    idMatrix.add(NodeID); 
                }else{} 
            } 
        } 
            //Send idArray to string 
            for(int k=0; k<idMatrix.size(); k++){ 
                output += " " + idMatrix.get(k); 
            } 
 
            //Change color of source and sink nodes 
            NodeView nodeView1 = view.getNodeView(cynode1); //Source = "Go" 
            nodeView1.setUnselectedPaint(Color.GREEN); 
            String sourceNodeID = cynode1.getIdentifier(); 
            NodeView nodeView2 = view.getNodeView(cynode2); //Sink = "Stop" 
            nodeView2.setUnselectedPaint(Color.RED); 
            String sinkNodeID = cynode2.getIdentifier(); 
 
            JOptionPane.showMessageDialog(Cytoscape.getDesktop(), "Max Flow: " + max_flow); 
 
            //Save Data 
            MFSaveData = "Max Flow Path("+sourceNodeID+", "+sinkNodeID+"): " 
                    +"["+ output +"]"+ "   Flow Value: " +max_flow; 
            SaveData SDobj = new SaveData(); 
            SDobj.WriteFile(MFSaveData); 
 
            return flow;     
     } 
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Fig. 3.2.4.2 - Max Flow 

 

3.3 Node-Level Operations 
 

3.3.1 Topological Coefficient. The topological coefficient is a relative 

measure for the extent to which a node shares neighbors with other nodes. In the 

context of analyzing proteins, the decreasing behavior of the topological 

coefficient as the number of interactions of a protein increases provides an 

indication of the modular network organization. For instance, the decreasing 

behavior of topological coefficient will indicate that the neighbors of hub 

proteins are not more connected than the neighbors of sparsely connected 

proteins [14].         
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Topological coefficient is a node-level operation that is used to measure 

the relative amount to which a given node shares neighbors with other nodes. 

When the Topological Coefficient operation is executed on a selected node, the 

following equation is calculated: 

 

𝑇𝑛 = 𝑎𝑣𝑔(𝐽(𝑛,𝑚))
𝑘𝑛

 (m=1, 2, …kn) 

 

where J(n,m) is the number of nodes shared between the selected node n and m, 

where m=1, 2, …kn, the node that has at least one neighbor shared with node n 

and kn is the number of neighbors of node n. A value of 1 is added when node m 

has a direct link to node n. The results for every node m is averaged to give 

avg(J(n,m)). Finally, this value is divided by k n. The resulting value of the 

topological coefficient (T n) is displayed in a pop-up box as shown in Fig. 3.3.1. 

    public void TCcalc(){ 
 
        network = Cytoscape.getCurrentNetwork(); 
        view = Cytoscape.getCurrentNetworkView(); 
        root = Cytoscape.getRootGraph(); 
        TCSaveData = ""; 
 
        int Tt = 0; //topological total 
        int counter = 0; 
        double Tav = 0; //average topological coefficient 
        double T = 0; //topological coefficient of nodeN 
        String NodeID = ""; 
 
        //Get selected node 
        //Node NodeN = nodeView.getNode(); //Get nodeN (selected by user) 
 
        //int NIndex = root.getIndex(NodeN); 
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        int[] NodeN = view.getSelectedNodeIndices(); 
        int NIndex = NodeN[0]; 
        int[] neighborArrayN  = network.neighborsArray(NIndex); //Get neighbors of N 
        int kn = neighborArrayN.length; //number of neighbors of nodeN 
        int[] indexArray = root.getNodeIndicesArray(); 
        List nodeList = root.nodesList(); 
        int NI = 0; 
        int MI = 0; 
 
        if (kn <= 1){ 
            T = 0; 
        } 
        else{ 
            for (Iterator iter = nodeList.iterator(); iter.hasNext();) { 
                CyNode NodeM = (CyNode) iter.next(); 
                int MIndex = root.getIndex(NodeM); 
                int[] neighborArrayM  = network.neighborsArray(MIndex); //Get neighbors of M 
 
                if (MIndex != NIndex){ 
 
                    //For every node contained in neighborArrayN && neighborArrayM { 
                    //Add 1 to Tt & add 1 to counter } 
                    for(int i=0; i<neighborArrayN.length; i++){ 
                        NI = neighborArrayN[i]; 
                        for(int j=0; j<neighborArrayM.length; j++){ 
                            MI = neighborArrayM[j]; 
                            if(MI == NI){ 
                                Tt += 1; 
                                counter += 1; 
                            } 
                            //If nodeM is contained in neighborArrayN { 
                            //Add 1 to Tt } 
                            if(MIndex == neighborArrayN[i]){ 
                                Tt += 1; 
                        } 
                        } 
 
                    } 
                } 
                else{} 
        } 
        } 
        if(counter != 0){ 
        Tav = Tt / counter; 
        T = Tav/kn; 
        }else{ 
            T = 0; 
        } 
 
        DecimalFormat df = new DecimalFormat("#.#####"); 
        Node node = root.getNode(NIndex);
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        NodeID = node.getIdentifier(); 
 
        JOptionPane.showMessageDialog(Cytoscape.getDesktop(), "Topological Coefficient of node " + 
NodeID + ":\n" + df.format(T)); 
 
        //Save Data 
        TCSaveData = "Topological Coefficient("+NodeID+"): " + df.format(T); 
        SaveData SDobj = new SaveData(); 
        SDobj.WriteFile(TCSaveData); 
    } 

 

 

Fig. 3.3.1 - Topological Coefficient 

 

3.4 Graph-Level Operations 
 

3.4.1 Mean Shortest Path. The mean shortest path length property is 

usually utilized in analyzing connectivity of protein networks. It is calculated by 

finding the shortest paths
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between all protein pairs in a given connected network and then averaging them 

over all connected components [15]. 

The Mean Shortest Path (MSP) operation is one of the graph-level path 

finding operations. It employs a modified version of the Shortest Path algorithm 

and iterates through every pair of nodes in the network instead of having the 

user to specify a single source and single sink node.  MSP finds the shortest path 

between every pair of nodes and sums their lengths. This summation is then 

divided by the number of node pairs found to calculate the average. 

Combinations of identical source and sink nodes are excluded. The Mean 

Shortest Path, being a graph-level operation, does not highlight the paths it 

calculated since it does calculation over the entire network. It does however 

display a pop-up box with numerical values of the network’s mean shortest path 

length, the number of shortest paths, and the summation of all of the shortest 

paths found as shown in Fig 3.4.1. Below is the code of Mean Shortest Path which 

is unique from Shortest Path. 

//Iterate through all node combinations 
            for (int i = 0; i < indexArray.length; i++){ 
                int node1 = indexArray[i]; 
                for (int j = 0; j < indexArray.length; j++){ 
                    int node2 = indexArray[j]; 
 
                    if(node1 == node2){} 
                    else { 
                        int allPaths = getShortestPath(node1,node2); 
                        pathCount += 1; 
                        output += allPaths + " "; 
                        sum += allPaths;
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                    } 
 
                } 
            } 
 
            //Avoid divide by 0 error 
            if(pathCount > 0){ 
            MeanSP = sum/pathCount; //Calculate mean 
            }else{ 
                MeanSP = 0; 
            } 
            DecimalFormat df = new DecimalFormat("#.###"); 
            JOptionPane.showMessageDialog(view.getComponent(), 
                "The network's mean shortest path: " + df.format(MeanSP) + 
                "\n\nNumber of shortest paths: " + pathCount + 
                "\nSum: " + sum); 
 
 

 

Fig. 3.4.1 - Mean Shortest Path 

 

3.4.2 Diameter of Graph. The diameter is an indicator of the compactness 

of a biological network. For example, in a protein-signaling network, the 

diameter of a graph can provide
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insight into the complexity associated with proteins communicating or 

influencing their neighbors. The diameter feature is also an example of functional 

convergence. A large protein network with a low diameter may indicate that the 

proteins within the network have functional co-evolution [16]. 

The Diameter of Graph operation is of course a graph-level operation and 

it functions much like the Mean Shortest Path operation. It too employs a 

modified version of the Shortest Path algorithm using depth first search on every 

node pair. However, instead of averaging the path lengths, Diameter of Graph 

examines the paths as they are calculated and records the longest of the resulting 

shortest paths. This longest shortest path in the network is called the diameter of 

the graph. The length of the diameter of the graph is returned by a pop-up box as 

shown is Fig 3.4.2. 

//Iterate through all node combinations 
            for (int i = 0; i < indexArray.length; i++){ 
                int node1 = indexArray[i]; 
                for (int j = 0; j < indexArray.length; j++){ 
                    int node2 = indexArray[j]; 
 
                    if(node1 == node2){} 
                    else { 
                        int allPaths = getShortestPath(node1,node2); 
                        output += allPaths + " "; 
                        //Find the longest shortest path in the graph 
                        if(allPaths > dia){ 
                            dia = allPaths; 
                        } 
                    } 
 
                } 
            } 
            dia = dia -1; 
            JOptionPane.showMessageDialog(view.getComponent(), 
                "The diameter of the graph: " + dia);
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                //+"\nShortest Paths: " + output); 

 

 

Fig. 3.4.2 - Diameter of Graph 

 

3.4.3 Degree Distribution. The degree distribution represents the 

probability distribution of node degrees over the whole network. The shape of 

the degree distribution allows us to distinguish among different types of 

biological networks. In a scale free network, the degree distribution is 

exponential, signifying that most nodes have only one connection and few nodes 

are highly connected. On the other hand, protein nodes with lots of interactions 

tend to gain links more often. 

Degree Distribution is defined as the fraction of nodes in a network that share a 

given node’s degree. Degree is defined as the number of incident edges of a node.
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Degree distribution is a graph-level operation that uses the following simple 

equation: 

 

𝑃(𝑘) =
𝑛𝑘
𝑛

 

 

Where k represents the degree value for which the equation is calculating. The 

symbol n k is number of nodes in the network which have a degree of value k. The 

symbol n is the total number of nodes in the network. When the user executes the 

Degree Distribution operation, he is prompted to enter a value of degree for 

which to calculate and the result is displayed in a pop-up box as shown in Figs. 

3.4.3.1 and 3.4.3.2, respectively. 

    public void DDcalc(){ 
 
        network = Cytoscape.getCurrentNetwork(); 
        view = Cytoscape.getCurrentNetworkView(); 
        root = Cytoscape.getRootGraph(); 
        DDSaveData = ""; 
 
        List nodeList = root.nodesList(); 
        double N = nodeList.size(); 
        int k = 0; 
        int Nk = 0; 
        int degree = 0; 
        double Pk = 0; 
 
        String input = JOptionPane.showInputDialog("Enter node degree"); 
        k = Integer.parseInt(input); 
 
        //Iterate through all nodes and sum degrees 
        for (Iterator iter = nodeList.iterator(); iter.hasNext();) { 
            CyNode Node = (CyNode) iter.next(); 
            degree = root.getDegree(Node); 
            if(degree == k){ 
                Nk += 1;
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            }else{} 
        } 
 
        if(N == 0){ 
            Pk = 0; //Avoid divide by zero error for empty graphs 
        }else{ 
            Pk = Nk/N; 
        } 

 

 

Fig.3.4.3.1 - Degree Distribution 
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Fig. 3.4.3.1 – Degree Distribution - Continued 

 

3.4.4 Average Number of Interaction Partners. The average number of 

interacting partners per protein provides insight into the dynamic interactions of 

a specific protein with its partners [17]. Analyzing these dynamic interactions is 

critical for rational design of drug molecules to modulate protein interactions. 

The average number of interaction partners is sometimes called the average 

number of neighbors. The Average Number of Interaction Partners operation is a 

graph-level operation that iterates through every node in the network, sums the 

number of neighbors each node has and finally divide the resulting sum by the 

total number of nodes in the network to calculate the average. The result is 

displayed in a pop-up box for the user as shown in Fig 3.4.4. 
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    public void ANIPcalc(){ 
 
        network = Cytoscape.getCurrentNetwork(); 
        view = Cytoscape.getCurrentNetworkView(); 
        root = Cytoscape.getRootGraph(); 
        ANIPSaveData = ""; 
 
        List nodeList = root.nodesList(); 
        double N = nodeList.size(); 
        int degree = 0; 
        double sumDeg = 0.0; 
        double avDeg = 0.0; 
 
        //Iterate through all nodes and sum degrees 
        for (Iterator iter = nodeList.iterator(); iter.hasNext();) { 
                CyNode Node = (CyNode) iter.next(); 
                degree = root.getDegree(Node); 
                sumDeg += degree; 
 
        } 
         //Calculate average degree 
        avDeg = sumDeg/N; 
 
        DecimalFormat df = new DecimalFormat("#.###"); 
 
        JOptionPane.showMessageDialog(Cytoscape.getDesktop(), "Average Number of Interaction Partners: 
" + df.format(avDeg)); 
 
        //Save Data 
        ANIPSaveData = "Average Number of Interaction Partners: " + avDeg; 
        SaveData SDobj = new SaveData(); 
        SDobj.WriteFile(ANIPSaveData); 
    } 
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Fig. 3.4.4 - Average Number of Interaction Partners 

 

3.4.5 Degree Centrality. The degree centrality provides an immediate 

evaluation of the regulatory relevance of a node in various biological networks. 

For example, in signaling networks, proteins exhibiting high degree interact with 

several other signaling proteins, thus indicating a central regulatory role. The 

role also indicates that these proteins are likely to be regulatory hubs. Jeong et al. 

(2001) demonstrated the correlation of the degree of a protein in the network 

with the lethality of its removal [18]. Hahn and Kern (2005) demonstrated how 

degree centrality has led to the identification of essential proteins in three 

different organisms: Saccharomyces cerevisiae, Caenorhabditis elegans, and 

Drosophila
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melanogaster [19]. Inall these example networks, it was shown that the mean 

centrality value for essential proteins is significantly higher than the centrality 

value of nonessential proteins. INVGA employs the Freeman Centrality [20] 

method to determine the relative importance of a vertex in a graph (i.e. how 

important is a vertex in the context of information flow on a particular path).  

Degree centrality is the simplest and most direct method for calculating 

centrality. Degree centrality is used as an indicator of the immediate risk of a 

node coming into contact with whatever is flowing through the network. The 

Degree Centrality operation performed by INVGA is a graph-level operation. 

The formula for the degree centrality of a graph is below: 

 

𝐶𝐷 =  
∑ [𝐶𝐷(𝑣∗)−𝐶𝐷(𝑣𝑖)]|𝑉|
𝑖=1

𝑛2−3𝑛+2
  

 

where CD(vi) is the value of the degree of the iterated node v. CD(v*) represents 

the degree value of the node with the highest degree in the network. The symbol 

n is the total number of nodes in the network. 

In order to efficiently calculate the degree centrality of a network, the 

numerator is algebraically rearranged into the following form: 
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𝑛 × 𝐶𝐷(𝑣∗) −�𝐶𝐷(𝑣𝑖)
|𝑉|

𝑖=1

 

 

This change approximately doubles the speed of calculating the formula from 

two iterations through the nodes of that network to one. The value of the graph’s 

degree centrality is displayed to the user via a pop-up box as shown in Fig. 3.4.5. 

    public void DCcalc(){ 
 
        network = Cytoscape.getCurrentNetwork(); 
        view = Cytoscape.getCurrentNetworkView(); 
        root = Cytoscape.getRootGraph(); 
        DCSaveData = ""; 
 
        List nodeList = root.nodesList(); 
        double n = nodeList.size(); 
        double pMax = 0.0; //highest degree in network 
        double p = 0.0; //degree of current node 
        double sumDC = 0.0; 
        double numDC = 0.0; //numerator of degree centrality 
        double denomDC = 0.0; //denominator of degree centrality 
        double Cd = 0.0; //Degree Centrality 
 
       //Iterate through all nodes and sum degrees 
        for (Iterator iter = nodeList.iterator(); iter.hasNext();) { 
            CyNode Node = (CyNode) iter.next(); 
            p = root.getDegree(Node); 
            sumDC += p; 
            if(p >= pMax){ 
                pMax = p; 
            }else{} 
        } 
 
        numDC = n*pMax-sumDC; 
        denomDC = n*n-3*n+2; 
 
        Cd = numDC/denomDC; //Calculate Degree Centrality 
 
        DecimalFormat df = new DecimalFormat("#.####"); 
 
        JOptionPane.showMessageDialog(Cytoscape.getDesktop(), "Degree Centrality:\n" + "CD = " + 
df.format(Cd)); 
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 //Save Data 
        DCSaveData = "Degree Centrality: " + df.format(Cd); 
        SaveData SDobj = new SaveData(); 
        SDobj.WriteFile(DCSaveData); 
    } 

 

 

Fig. 3.4.5 - Degree Centrality 

 

3.4.6 Clustering. Clustering of biological networks, such as protein-

protein interaction network, and metabolic network, is one of the most common 

approaches for identifying functional modules and protein complex, predicting 

protein or gene functions [21]. INVGA implements MCODE [7] for intuitive 

visualization of clustering results and easy-to-use topological analysis. 
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As was stated in the previous chapter, the clustering operation of INVGA is 

performed by the 3rd party clustering plugin MCODE. Since INVGA is meant to 

supply researchers of protein-protein interactions with a complete set of basic 

tools for their research, the INVGA plugin requires a clustering function. The 

decision to employ the MCODE plugin was made after surveying the large 

number of clustering plugins already available in the Cytoscape platform. Given 

the amount and capabilities of these plugins, it was judged to be a misallocation 

of time to develop another clustering operation specifically for INVGA and that 

it would be far more practical to utilize MCODE. The jar file for MCODE is 

included in the download for INVGA and INVGA simply calls MCODE when 

the user executes the Clustering operation from the INVGA operations menu. 

The MCODE plugin is unchanged and the developers of INVGA take no credit 

for this work. 

3.5 Miscellaneous Operations. 

The operations in this section are not mathematical like the previous operations. 

The operations simply perform important functions of usability for the user. 

 

3.5.1 Reset Colors. At the bottom of INVGA’s operations menu there is an 

operation titled RESET COLORS. This function simply returns all nodes in the 
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network back to their original colors. The decision to make this function a 

separate operation is twofold. The first reason is efficiency. If this function were 

built into the beginning of every operation, so that the node colors would be 

reset before the next operation was run, it would require an extra iteration 

through the network for every operation. If an extremely large network is being 

analyzed, this could add a significant amount of time to each operation even if 

the resetting node colors isn’t of concern to the researcher. The second reason is 

that by having the node color reset function as a separate operation, it is now 

possible to compare multiple paths simultaneously in a visual manner. 

 

3.5.2 Save Data. The Save Data operation does not appear in the 

operations menu and cannot be manually executed. Instead, this operation 

functions automatically in the background every time a mathematical operation 

is performed. When INVGA is activated for a new session, Save Data 

automatically creates a log file titled in the following format:  

INVGA_Log_NetworkName_Year_Month_Day_Hour_Minute_Second.txt.

Every time a mathematical operation is executed, the name of the operation and 

the corresponding values returned are appended to this file. Each operation is 

appended as its own line in the log. Here are a few examples of the formatting. 
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Dyad-Level Operation: 

Format: 

Operation Name(Source ID, Sink ID): [IDs of nodes along path] Other Data: value 

Example:  

Critical Path(7329, 4188): [7329 9146 1407 4188]   Length: 6 

 

Node-Level Operation: 

Format: 

Operation Name(Node ID): value 

Example: 

Topological Coefficient(7329): 0.15385 

 

Graph-Level Operations: 

Format: 

Operation Name: Primary Data Other Data: value 

Example: 

Mean Shortest Path: 2.513   Number of Shortest Paths: 600.0   Sum: 1508.0 

 

The log provides a convenient and clear record of everything that the user 

calculates to avoid the need to manually copy the output with a pen and paper 

after every operation. The log file is saved to the Cytoscape directory. 
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Chapter 4 
 

Performance Analysis 

 

In this chapter we will examine the performance of the INVGA plugin in various 

respects. Given the extremely large size of many biological networks, efficiency 

is of great importance to analysis in this field [2]. Both the memory performance 

and the theoretical efficiency of the underlying algorithms for the different 

operations offered by INVGA are examined here.  

 

4.1 Memory Performance 

As the size of the network increases from 25 nodes to 300 nodes, the memory 

usage is obtained for and compared between INVGA and a combination of four 

other plugins, i.e., Network Analyzer, Shortest Path Plugin, CentiScaPe and 

CalculateNodeDegree. Note that the combination of the four plugins has the 

biggest overlap with INVGA in terms of the topological analysis at the network-, 

node- and dyad-level. For this performance testing, a 3rd party system memory 

monitoring program, DTaskManager [22], is used to together with Cytoscape 

version 2.7. The system specifications of the computer used to run the tests are as

follows: Windows 7 Home Premium 64-bit operating system with Intel Core i7 

CPU Q720 @1.60Ghz and 8GB. 
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Using the data in Table 4.1, 95% confidence interval for the mean difference in 

average memory usage is calculated. The approximate 100(1-α)% confidence 

interval is defined as: 

)ˆ(ˆˆ
)1(,2/ θθ α Vg n−±  or  )ˆ(ˆˆ)ˆ(ˆˆ

)1(,2/)1(,2/ θθθθθ αα VgVg nn −− +≤≤−  

 

where θ̂  is a sample mean of θ based on a sample of size n; )ˆ(ˆ θV  is the standard 

error of θ̂ ; 
)ˆ(ˆ

ˆ

θ
θθ

V
g −
=  and g α/2, (n-1) is the 100(1-α)% percentage point of a t-

distributed with n-1 degrees of freedom. The value of g α/2,  (n-1) = g 0.0025, 3 = 3.18 is 

obtained from t-distribution table [23]. A 95% confidence interval for average 

disassembly time is given by: 

-8765 ± (3.18)1474 
or 

-13452.32≤ θ1 - θ2 ≤ -4077.68 
 

The 95% confidence interval for average memory usage lies completely below 

zero, which provides strong evidence that θ1 - θ2 < 0  that is, the INVGA is 

better than the combination of the other four plugins, because its average 

memory usage is smaller.         
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Table 4.1 - Comparison of Average Memory Usage 

Size of 
networks 

Average Memory Usage (KB) Observed 
Difference INVGA Combination 

25 nodes 131,136 137,214 -6,078 
50 nodes 131,262 139,521 -8,259 
100 nodes 132,716 139,748 -7,032 
300 nodes 132,938 146,630 -13,692 
Sample mean 132,013 140,778 -8,765 
Sample 
variance 

670741 12397237 8688656 

Standard 
error 

 1474 

 

4.2 Big O Notation 

Big O notation describes the performance or complexity of an algorithm. It is 

important to remember that Big O is a description of the worst-case scenario for 

the algorithm. Here we examine the performance of the operations of INVGA 

using Big O notation. For the operations that share the common core process, we 

analyze them together.  

4.2.1 DFS Dyad Operations. All but one of the dyad operations of INVGA 

employ depth first search. Those are All Paths, Shortest Path, and Critical Path. 

In essence, all of these operations run the All Paths algorithm which returns an 

arraylist of all the unique,
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noncyclical paths between the source and sink nodes. Shortest Path and 

CriticalPath then iterate through this arraylist in a linear fashion and return the 

single path that meets their individual criteria. In comparison to the complexity 

of All Paths algorithm, such iterations are trivial. Therefore, the analysis here 

focuses on All Paths algorithm and the result applies to the other two algorithms 

by extension.  

For a given network with N number of vertices, All Paths algorithm starts 

with a process of building a 2 dimensional NxN capacity matrix. In this 2D 

matrix every row represents a node and every column corresponds to another 

node in the network. A value of 1 denotes an edge connecting the two nodes and 

a value of 0 means that they are not connected. All Paths algorithm then employs 

DFS.  The complete implementation of DFS is presented in section 3.1.1, however, 

the portion of code that is relevant to calculating the efficiency of DFS is: 

for (int k = 0; k < size; k++){ 
                        int v = capacity[u][k]; 
                        if (v != 0 && visited[k] != true){ 
                            DFS(k); 
                        } 

 
In the for loop, k equals the size of the network, so here the algorithm must 

necessarily iterate through every node in the network. The next part is recursive. 

There is an if statement where if there is a neighbor node that has not been 
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visited, DFS is run again. Given the worst-case scenario, where each node is 

connected to every other node, this would result in nesting N more calculations 

in each previous N calculation. That gives DFS an efficiency of O(N2). Finally, the 

All Paths algorithm iterates through the path matrix resulted from DFS to color 

the nodes involved in all paths. Iterating through a 2D matrix adds another 

nested loop, which is O(N2). The total computational complexity of the All Paths 

algorithm is O(N2) + O(N2) = O(2* N2). After simplifying, the worst case scenario 

results in a complexity of:  

O(N2). 

 

4.2.2 Maximum Flow. The only operation offered by INVGA that utilizes 

breadth first search is Max Flow.  It is known that BFS also results in an efficiency 

of O(|N|+|E|) [24]. This is the same as DFS for the same reasoning that given the 

worst case scenario, every vertex and edge would be traversed before finding the 

desired path. Also, just since like the DFS algorithm the highest complexity 

results from iterating through 2D matrices, it results in the same efficiency of: 

O(N2) 
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 4.2.3 Degree Distribution, Degree Centrality, & Average Number of 

Interaction Partners. The Degree Distribution, Degree Centrality, and Average 

Number of Interaction Partners are examined here together since they share the 

same complexity. All three of these operations are very simple and straight 

forward. They begin by iterating through a list of all the nodes of the network. At 

each node, the value of its degree is examined via the getDegree() function from 

the Cytoscape API. It is intuitively understandable that the complexity 

getDegree() is N as the function searches through the list of all nodes and 

determines the number of the nodes connected the node of concern. Depending 

on the individual operation, these degree values either are summed, their 

maximum recorded, or matches of an exact value counted. Finally, a simple 

arithmetic operation is performed with the results to produce the final output. 

There is only one significant action in these operations, which is the nested 

iteration through all the nodes in the network. Therefore, in all cases the 

complexity of these operations is: 

O(N2)
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 4.2.4 Topological Coefficient. The Topological Coefficient operation is a 

unique operation within INVGA since it is the only node-level operation. 

Topological Coefficient’s calculation is based on how many neighbor nodes the 

selected node has in common with those of the 

rest of the nodes in the network. This can be thought of as “Mutual Friends”. The 

operation begins by getting an array of neighbors of the user selected node called 

node “A”. Then it gets the neighbor arrays of the other nodes, called the “B” 

nodes. These neighbor arrays would normally be small sub-arrays of the network, 

but in a worst case scenario they can contain every other node in the network, 

making it N-1. These arrays of neighbors of the B nodes are iterated through to 

find matches with the neighbors of the A node. This forms a nested loop which 

results in a complexity of (N-1) 2=N2-2N+1. After eliminating the insignificant 

terms, we are left with a complexity of: 

O(N2) 
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 4.2.5 Mean Shortest Path & Diameter of Graph. Mean Shortest Path and 

Diameter of Graph are graph-level operations of INVGA that operate very 

similarly to each other. Unfortunately, they are inherently complex algorithms. 

Simply put, these operations run the Shortest Path algorithm, but instead just 

finding the shortest path between two nodes, they run Shortest Path on every 

combination of node pairs. It should be immediately apparent that this will 

greatly compound that complexity of the algorithm. Since Shortest Path already 

has a complexity of

 

O(N2) 

Since the combination of every article in a set of N is N!, this added complexity 

results in Mean Shortest Path and Diameter of Graph having a complexity of: 

O(N!)( N2) 

 Because of this high level of complexity, steps have been taken to reduce the 

calculation time. Since a path cannot be formed with the same node as both the 

source and sink nodes, these combinations are omitted from the calculation. 

However, this provides only a minor improvement. 
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Chapter 5 
 

Conclusion 

 

As mentioned previously, there has been an ever increasing amount of molecular 

data generated by experiments and computational methods performed on 

biological networks.  As a result, there is a growing need to obtain insight into 

the organization and structure of massive and complex biological networks 

formed by interacting molecules. Given the large size of these networks it is 

necessary to employ a systematic approach to analyze the raw data in order to 

better understand their properties. Integrated Network Visualization and Graph 

Analysis (INVGA) is one of such contributions to help fulfill this growing need by 

implementing a list of network analysis functions that enables researchers to 

quickly and easily analyze and visualize complex bioinformatics data on the 

node, dyad, and network levels. Those functions, many of which aren’t available 

for Cytoscape users anywhere else, include: All Paths, Shortest Path, Critical Path, 

Max Flow, Mean Shortest Path, Degree Distribution, Average Number of 

Interaction Partners, Clustering Coefficient, Topological Coefficient, Diameter of 

Graph, and Degree Centrality.  In addition, the performance advantages of 

having a collection of basic network analysis tools combined in a single plugin
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has been demonstrated to be superior, by reducing overhead, as opposed to 

loading many separate plugins to accomplish the same tasks. INVGA presents 

the additional advantage of having a consistent user interface for all of its 

functions. This decreases the learning curve for users since they no longer are 

required to learn to navigate the interfaces of multiple, dissimilar plugins. It is 

this author’s hope that this plugin for Cytoscape will assist researchers in 

predicting the effects and limiting potential side effects of drugs before they 

begin testing on animals or humans, resulting in savings in time and money.  

 

5.1 Future Work 

The INVGA is created to provide all the fundamental graph analysis algorithms 

that are essential to understand protein-protein interaction networks but are not 

provided by Cytoscape and have not been fulfilled by the Cytoscape plugin 

development community. The objective is to provide researchers everywhere, 

such a tool to assist them in gaining better insight into the properties of complex 

protein-protein interaction networks. In the future, the functions of INVGA 

could be expanded beyond the fundamental operations that are currently 

implemented, such as multiple methods of measuring centrality, and the 

incorporation of graph that display the plotted data that results from the current 

operations. In addition, we plan to expand INVGA to accept bioinformatics data
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encoded in different formats other than what Cytoscape natively supports. It is 

this author’s sincere wish that researchers of protein-protein interaction 

networks, or researchers of less directly applicable networks, find this work 

beneficial in some form in the course of their efforts. 
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