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Abstract 

Daniel John O’Connell 

LIFE CYCLE ASSESSMENT OF DEWATERING ROUTES FOR ALGAE-DERIVED 

BIODIESEL PROCESSES 

2011/12 

Mariano Savelski, Ph.D. 

C. Stewart Slater, Ph.D. 

Master of Science in Chemical Engineering 

 

Biodiesel derived from algae is considered a sustainable fuel, but proper 

downstream processing is necessary to minimize the environmental footprint of this 

process. Algae is grown in dilute liquid cultures, and achieving the low water contents 

required for extraction represents one of the greatest challenges for the production of 

algae derived biodiesel. An analysis of the life cycle emissions associated with 

harvesting, dewatering, extraction, reaction, and product purification stages for algae 

biodiesel was performed. This “base case” found 10,500 kg of total emissions per t BD 

with 96% of those attributed to the spray dryer used for dewatering. Alternative cases 

were evaluated for various sequences of mechanical and thermal dewatering techniques. 

The best case, consisted of a disc stack centrifuge, followed by the chamber filter press, 

and a heat integrated dryer. This resulted in 875 kg emissions /t BD, a 91% reduction 

from the base case. A model indicated the optimal case of the disc stack centrifuge, spiral 

plate centrifuge, heat assisted rotary filter press, and then drying, resulting in equivalent 

reductions. Significant reductions in life cycle emissions were achieved compared to the 

base case, but further improvements using these existing technologies were limited. 

Additional improvements will require the development of new techniques for water 

removal or wet extractions.



   

v 
 

Table of Contents 

Abstract iv 

List of Figures ix 

List of Tables x 

Chapter 1: Introduction 1 

1.1 Process Literature Review 2 

1.1.1 Growth 2 

1.1.2 Harvesting 3 

1.1.3 Extraction 7 

1.1.4 Reaction 11 

1.1.5 Purification 16 

1.2 Current Life Cycle Assessments 19 

1.3 Purpose Statement 23 

Chapter 2: Base Case Process Development 24 

2.1 Algae and Oil Properties 25 

2.2 Process Design 28 

2.2.1 Photobioreactor 28 

2.2.2 Harvesting 36 

2.2.2.1 Flocculation 36 

2.2.2.2 Drying 49 

2.2.4 Extraction 56 

2.2.5 Reaction and Product Purification 76 

 2.4 Summary 81 



   

vi 
 

Chapter 3: Development of Life Cycle Inventories 83 

3.1 Raw Material LCIs 84 

3.2 Life Cycle Inventory Generation 97 

3.3 Generating LCIs: Methanol Example 100 

3.3.1 Raw Materials Generation 105 

3.3.1.1 Natural Gas Extraction 106 

3.3.1.2 Natural Gas Production 108 

3.3.1.3 Natural Gas Distribution 108 

3.3.1.4 Natural Gas Combustion 110 

3.3.1.5 Natural Gas Electricity 111 

3.3.2 Methanol LCI Comparison 111 

3.4 Energy LCIs 115 

3.5 Waste/Byproduct LCIs 117 

Chapter 4: Base Case Life Cycle Assessment 120 

Chapter 5: Development and Analysis of Alternatives 133 

5.1 Dewatering Background 133 

5.2 Dewatering Theory 136 

5.2.1 Centrifugation 137 

5.2.2 Filtration 140 

5.2.3 Thermal Drying 143 

5.3 Development of Alternative Dewatering Cases 148 

5.3.1 Case 1 and Case 2 151 

5.3.2 Case 3 153 



   

vii 
 

5.3.3 Case 4 155 

5.3.4 Case 5 157 

5.3.5 Case 6 159 

5.3.6 Summary of Cases 161 

5.4 Alternatives Life Cycle Inventories 164 

5.4 Life Cycle Assessment of Alternative Cases 165 

5.4.1 Case 1 and Case 2 166 

5.4.2 Case 3 170 

5.4.3 Case 4 173 

5.4.4 Case 5 176 

5.4.5 Case 6 179 

5.5 Discussion of the Dewatering Alternatives 183 

5.5.1 Modeling the Life Cycle Emissions 187 

Chapter 6: Conclusions 193 

Appendix A 195 

References  203 

  



   

viii 
 

List of Figures 

Figure Page 

Figure 1. Block diagram of algae biodiesel production 2 

Figure 2. Block flow diagram of algae harvesting 3 

Figure 3. Schematic of flotation process 5 

Figure 4. Setting tank schematic 5 

Figure 5. Block flow diagram of generic extraction with recycle loop 8 

Figure 6. Block diagram of supercritical fluid operation 10 

Figure 7. Transesterification of TAG to produce FAMEs 12 

Figure 8. Separation and purification of biodiesel and coproduct glycerine 17 

Figure 9. Structure of monounsaturated oleic acid 27 

Figure 10. Detail of PBR section of the biodiesel manufacturing process 36 

Figure 11. Sulzer SMX in-line static mixer 40 

Figure 12. Side view diagram of a circular free-jet mixed tank 43 

Figure 13. Detail of flocculation system for the biodiesel manufacturing process 49 

Figure 14. Detail of spray dryer system 53 

Figure 15. Multi-stage counter-current mixer-settler design 58 

Figure 16. Diagram with characteristic dimensions for mixing vessel design 61 

Figure 17. Detail of PFD showing extraction and purification steps 75 

Figure 18. Detail of transesterification and biodiesel purification process PFD 79 

Figure 19. Flow diagram for life cycle inventories of a manufacturing process 83 

Figure 20. Comparison of total emissions from each raw material 91 

Figure 21. Comparison of CED from each raw material 92 



   

ix 
 

List of Figures 

Figure 22. Simplified PFD for methanol production using steam reforming 101 

Figure 23. Natural gas process flow diagram 105 

Figure 24. The total emissions for each step of the base case biodiesel process 123 

Figure 25. Pie chart comparing emissions categories for the algae biodiesel process 126 

Figure 26. Pie chart of total emissions for all algae biodiesel processes 127 

Figure 27. Pie chart of total emissions excluding PBR 127 

Figure 28. Pie chart showing the CED for all steps in the algae biodiesel process 129 

Figure 29. Pie chart showing the CED excluding PBR 129 

Figure 30. The amount of CO2 emissions for each step in the algae biodiesel process 131 

Figure 31. Process flow diagram for the production of biodiesel 134 

Figure 32. Disc stack centrifuge 140 

Figure 33. Tangential flow filtration 141 

Figure 34. Schematic of rotary pressure filter 142 

Figure 35. Illustration of band dryer operation 143 

Figure 36. Illustration of rotary and steam rotary dryer 144 

Figure 37. Diagram of pneumatic steam dryer 145 

Figure 38. Process flow diagram for case 1 and case 2 151 

Figure 39. Process flow diagram for case 3 153 

Figure 40. Process flow diagram for case 4 155 

Figure 41. Process flow diagram for case 5 157 

Figure 42. Process flow diagram for case 6 159 

Figure 43. Percent contribution of emissions for case 1 166 



   

x 
 

List of Figures 

Figure 44. Percent contribution of emissions for case 2 168 

Figure 45. Total emissions of base case versus case 1 and case 2 168 

Figure 46. Percent contribution of the emissions for case 3 171 

Figure 47. Percent contribution of the emissions for case 4 174 

Figure 48. Percent contribution of the emissions for case 5 177 

Figure 49. Percent contribution of the emissions for case 6 180 

Figure 50. Total emissions of alternative dewatering cases including base case 185 

Figure 51. Percent contribution of the emissions for the optimal case 190 

Figure 52. Process flow diagram for the purification and reaction process 201 

Figure 53. Finalized process flow diagram for the manufacture of biodiesel 202 



   

xi 
 

List of Tables 

Table Page 

Table 1. Characteristics of transesterification methods 14 

Table 2. Main methyl ester compounds and their associated triacylglyceride 26 

Table 3. Common compositions of vegetable oils 27 

Table 4. Concentrations of components in Bold’s-Basal medium 30 

Table 5. Carbon dioxide, oxygen, and water consumption of algae 33 

Table 6. Mass flow summary of streams entering and leaving the PBR 35 

Table 7. Chemical information on the flocculant reactants and products 39 

Table 8. Mass flow of streams entering and leaving flocculation system 48 

Table 9. Mass flow summary for streams entering and leaving spray dryer 52 

Table 10. Summary stream conditions for dry air recycle for spray dryer 54 

Table 11. Summary of mass and volume flows entering the extraction phase 57 

Table 12. Summary of chemical and mixture properties of the feed to mixing vessel 59 

Table 13. Density and viscosity of the extraction slurry 60 

Table 14. Summary of mixing vessel specifications and dimensions 62 

Table 15. Summary of mixing tank specifications and results of calculations 65 

Table 16. Mass flow summary of the mixer/settler system 66 

Table 17. Comparison of boiling points for chemicals used in Aspen Plus
® 

67 

Table 18. Summary of flash drum simulation operating conditions 68 

Table 19. Results of component separation between hexane and triolein 69 

Table 20. Properties for hexane and triolein 69 

Table 21. Calculated heat capacities and enthalpies 73 



   

xii 
 

List of Tables 

Table 22. Mass flow summary of the multiple effect system 75 

Table 23. Optimized reaction and purification stream table 80 

Table 24. Summary of the relative energy requirements of the process stages 81 

Table 25. Summary of the relative energy requirements without PBR 82 

Table 26. Raw material inputs into the algae biodiesel process  85 

Table 27. Inventories available and unavailable in SimaPro® 87 

Table 28. LCIs for all materials used in the algae biodiesel process 89 

Table 29. LCIs for all materials used in the algae biodiesel process 90 

Table 30. Emissions to the water for methanol production 104 

Table 31. Emissions to water from natural gas extraction 107 

Table 32. Emissions to air from natural gas processing 108 

Table 33. Emissions to air from the distribution of natural gas 109 

Table 34. EPA specified emissions to air from natural gas combustion 110 

Table 35. eGRID 2010 emissions to air from natural gas combustion 111 

Table 36. Natural gas production LCI 112 

Table 37. Methanol LCI 113 

Table 38. SimaPro
®

 entry compared to the generated entry 114 

Table 39. Energy requirements for each step in the algae biodiesel process 115 

Table 40. LCIs for electricity and steam 116 

Table 41. LCIs for byproducts and carbon sequestration 118 

Table 42. Composition of waste streams 119 

Table 43. Life cycle assessment of the base case algae biodiesel process 122 



   

xiii 
 

List of Tables 

Table 44. Process emissions 124 

Table 45. Categorization of total emissions 125 

Table 46. CED of the algae biodiesel processing stages 128 

Table 47. Dewatering equipment and their relative operating conditions 137 

Table 48. Various continually operating centrifuges and their operating demands 139 

Table 49. Demands of various filtration methods 142 

Table 50. Summary of energy consumption and energy carriers for dryers 146 

Table 51. Material and energy balance for streams in case 1 152 

Table 52. Material and energy balance for streams in case 2 152 

Table 53. Material and energy balance for streams in case 3 154 

Table 54. Material and energy balance for streams in case 4 156 

Table 55. Material and energy balance for streams in case 5 158 

Table 56. Material and energy balance for streams in case 6 160 

Table 57. Summary of the dewatering equipment and energy consumption 162 

Table 58. LCA of case 1 165 

Table 59. LCA of case 2 167 

Table 60. LCA of case 3 170 

Table 61. LCA of case 4 173 

Table 62. LCA of case 5 176 

Table 63. LCA of case 6 179 

Table 64. Summary of the LCAs for all the cases 183 

Table 65. Percent contribution of each emission category to the total emissions 184 



   

xiv 
 

List of Tables 

Table 66. Dewatering equipment emissions 187 

Table 67. The optimal case and the variation from the linear programming model 191 

Table 68. LCAs for the biodiesel originating from a variety of sources 192 

Table 69. Stream tables detailing material flows and compositions 195 

Table 70. Transesterification and purification material flows and compositions 197 

Table 71. Chemical breakdown of medium constituents and mass quantities 198 

Table 72. Material flow for SimaPro
®
 on per tonne of biodiesel basis 199



   

1 
 

Chapter 1 

Introduction 

The manufacture of biodiesel from algae feedstock has become an important issue 

due to the increased demand for alternative fuels. Algae have several advantages over 

other renewable feedstocks. They can naturally mitigate CO2 and unlike sourcing biofuels 

from crops, algae do not compete for the use of arable land.
1
 Algae can be used as a 

feedstock to produce methane and biodiesel.
2, 3, 4 

They are adaptable, have the ability to 

multiply rapidly, and contain a high oil content making it a feasible feedstock in the 

production of biodiesel.
1
 Species, such as Schizochytrium sp. and Botryococcus braunii, 

can have high lipid contents of up to 70 wt% oil.
1, 5

  This oil is composed mostly of 

triacylglycerides (TAGs), which can be processed into biodiesel and further blended into 

conventional diesel fuel, lessening the burden on petroleum derived liquid fuels.
6
 

The algae biodiesel process begins with algae cultivation, followed by harvesting 

to separate the algae from the water. The TAGs are then extracted from the biomass and 

reacted to break down into fatty acid methyl esters (FAMEs), which are high energy 

content carbon chains with properties similar to those of diesel fuel. Converting an algae 

feedstock into biodiesel is energy intensive, which results in the emission of greenhouse 

gasses, and in turn contributes to the carbon footprint of algae-derived biodiesel. Algae-

derived biodiesel plants are not in existence and as a result, it is unknown whether it is a 

sustainable technology. Life cycle assessments (LCAs) can serve as a decision making 

tool when determining the most environmentally effective production route for algae-

derived biodiesel. 
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1.1 Process Literature Review 

As no industrially proven algae biodiesel process exists, most researchers have 

proposed a system similar to existing systems for obtaining and converting oil from 

oleaginous sources such as soybeans. The typical sequence (Figure 1) consists of five 

steps: growth, harvest, extraction, reaction and purification. Each step may consist of one 

or more unit operations.  

GrowthGrowth HarvestHarvest ExtractionExtraction ReactionReaction PurificationPurification

Water, Nutrients, Light

Water

Solvent(s)

Cell Wastes, Solvent(s)

Alcohol, Catalyst

Unreacted Alcohol, Byproducts

Biodiesel

 

Figure 1. Block diagram of algae biodiesel production.  

1.1.1 Growth 

The first step in producing algae-derived biodiesel is the cultivation of the algae. 

Open raceway ponds and photobioreactors (PBRs) are the two main methods of 

cultivating microalgae. Raceway ponds are outdoor pond systems which utilize solar 

energy, from which microalgae can convert carbon dioxide and water into sugars.  PBRs 

are controlled systems which can utilize solar energy, both solar energy and artificial 

lighting, or purely artificial lighting. PBRs are capable of achieving higher microalgae 

densities, higher productivities, as well as greatly reducing the risk of contamination.
7
 

Although raceway ponds are capable of producing large volumes of dilute algae cultures, 

they lack the control required to maintain a homogenous species of microalgae. 

The growth phase of the production presents options of algae strain, growth 

system, and source of nutrients.  After growth, the algae biomass is harvested and dried in 
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preparation for extraction of the lipids. TAGs are then extracted from the cell debris; 

converted into FAMEs during the reaction phase, which are then purified to remove 

reaction byproducts and impurities from the biodiesel.  

1.1.2 Harvesting 

The algae growth solution is highly dilute: values of 1 kg algae per m
3
 of solution 

or less are common; however these values vary from 0.5 to 25 kg algae per m
3
 depending 

on the source. 
8, 9,

 
10

 It is necessary to reduce the water content by harvesting, thereby 

increasing the concentration of the biomass for extraction.
 8

 Water removed is recovered 

and recycled back to the growth system. This also prevents the need to introduce new, 

potentially contaminated water and reduces the water consumption.  

 

 

Figure 2. Block flow diagram of algae harvesting. 

The harvesting step consumes the largest percentage of energy in the algae biofuel 

production process and is responsible for 20 to 30 percent of the final cost of the algae 

biomass.
5,  11

 Several methods for harvesting are available: flocculation, filtration, 

centrifugation, flotation and settling.  

A recent analysis compared two methods of harvesting algae: by centrifuge and 

by filter press.
11

 Centrifugation is significantly more energy demanding than filtration. 

Notably, hexane extraction was chosen, requiring an extra step to dry the algae biomass, 

creating significant demand on energy and emitting carbon dioxide. Waste heat should be 
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used when the process requires a drying step.
12

 Multiple methods for harvesting may be 

combined to increase the algae concentration. 

Flocculation is the agglomeration of multiple molecules into a larger body (a 

“flocc”) by the attraction of individuals to each other or a flocculating agent. Flocculation 

is used because the microscopic size of the algae and similar density to water make 

centrifugation and filtration ineffective on the raw harvest. This process effectively 

increases the volume and mass of the discrete particles, allowing filters and centrifuges to 

be sized appropriately, lowering their costs.
8
 This decreases the water processed by the 

dewatering equipment, requiring less process energy. 

The floccs are suspended in water and must be collected. Settling, floating, 

filtration and centrifugation are all possible collection methods.
4,  13,

 
14

 Centrifugation and 

filtration are unlikely choices because of the high volume of liquid being processed. If the 

floccs are formed within the algae growth system, they must be harvested without 

disrupting the continuing growth of the other algae in the system. The major input for 

flocculation is the flocculant itself. Common flocculants for algae are iron (III) chloride, 

aluminum sulfate and chitosan and are inexpensive, making flocculation an attractive 

method for harvesting.
15

 In addition, chitosan is obtained from crustaceans and is a 

renewable source. 

Particle flotation is a common process in wastewater treatment plants and one 

method of isolating the algae floccs. The solution containing suspended solids is sparged 

with fine air bubbles. The bubbles entrain the algae in a froth that floats to the surface 

where it forms a scum on the surface. A mechanical harvester, such as a rotating arm 
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collects the froth and delivers it to the next processing step.
14, 16

 Currently proposed 

processes for algae production suggest the use of flotation following flocculation.
13

 

 

Figure 3. Schematic of the flotation process. 

Particles denser than the surrounding solvent may be separated by settling. As 

with flotation, this is a common method for wastewater treatment.
16

 A wide and shallow 

tank with low fluid velocity is provided and the solution passes through it. The particles 

settle out on the bottom and are collected by a scraping mechanism. Settling is commonly 

seen in wastewater treatment but not generally proposed in algae harvesting. As with 

flotation the tank dimensions require a significant outlay in area for a large production 

system.  

An obvious disadvantage to both flotation and settling is that its throughput is a 

function of surface area. Since surface area for flotation must be horizontal, increasing 

capacity directly increases the area required. Building and land costs make this 

technology difficult to scale.  

 

Figure 4. Settling tank schematic. 
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Centrifugation is a well established method of separating solutions by density and 

can be operated on a continuous basis.
7
 A summary of studies of algae centrifugation 

show that all reviewers obtained high recoveries, but only at high accelerations, 
17

 which 

carry correspondingly high energy demands. Some researchers specifically note that it “is 

feasible for high value products”, while others suggest flocculation followed by a 

centrifugation process. 
10, 18

 While centrifugation is sometimes suggested as a process for 

harvesting algae, it is energy intensive and hence emissions intensive. Even preceded by 

a different harvesting method, it is uncertain centrifugation can become economically 

feasible for the production of algae-derived biofuels. 

Filtration is a chemical engineering separation process which discriminates by 

particle size. The solution is forced against a fine screen or membrane which selectively 

permits passage. Specific methods such as tangential flow filtration 
8
 allow continuous 

operation. Filters are prone to blinding and tearing, unlike centrifuges. They do, however, 

have much lower energy demands than centrifuges.
11

 When a continuous filtration system 

was evaluated for energy consumption and found it more energetically efficient than 

flocculation at a pilot scale (~100 L).
8
 However, filtration is not suitable for very small 

algae.
5
 Filtration shows promise as a secondary harvesting step after flocculation, and can 

be used to further decrease the percent water in the algae biomass. 

No single process appears ideal for the task of harvesting dilute algae in large 

quantities economically and environmentally. The best method is likely to be a 

combination of two processes with an appropriate design to reduce the size of both 

processes to a minimum. 



   

7 
 

1.1.3 Extraction 

After harvesting, the algae cells are concentrated as a slurry or paste. Before the 

TAGs can be converted to FAMEs, the TAG-bearing lipid bodies must be extracted from 

the algae cells. The most common method operates by using a solvent to remove the 

lipids from the algae and then physically separating the solid cellular remnants from the 

liquid solvent and lipid phase. The disadvantage of solvents is that they present 

environmental concerns. Typical solvents are hexane, with or without a cosolvent, and 

chloroform with methanol. Supercritical fluids (SCF) have been investigated for use, but 

SCF use is associated with significant costs and hazards, and might not suited for this 

application.  

After extraction, it has been suggested that the cell debris be digested to produce 

methane or fermented to ethanol.
4, 11, 19

 This approach produces additional fuels, 

improving overall process sustainability as the methane or ethanol is considered an 

avoided product. An analysis should be performed specifically to determine if either 

option is economically or environmentally desirable. The additional processing of the cell 

debris may become a standard side process of algae biodiesel production if it generates an 

additional salable substance, such as ethanol. Because the cellular nitrogen or 

phosphorous are not consumed, these waste products of the digestion or fermentation 

process are reusable as fertilizer and may be used as nutrient in algae growth. (Figure 5) 
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Figure 5. Block flow diagram of generic extraction with recycle loop. 

Hexane, alone or with a cosolvent, is widely used to extract oil from soybeans and 

has also been used in experimental algae extraction.
11, 20, 21,

 
22

 Hexane is added to the 

algae biomass after drying to no more than 9% wt water.
11

 As a nonpolar solvent, hexane 

dissolves the hydrophobic TAGs from the biomass in a uniphasic solution. 

Hexane is commonly sourced from hydrocarbons, and while the extraction 

process can be designed to recycle solvents, a continual makeup of hexane will be 

required. This presents concerns that dependence on petroleum is not being offset but 

shifted upstream from the consumer. 

Use of hexane requires an additional heating step that impacts process 

sustainability because harvesting methods alone do not efficiently dry the algae biomass 

to the required level. The thermal energy used to dry the algae biomass prior to hexane 

extraction is commonly obtained from natural gas or waste heat from nearby plants.
12

 Use 

of natural gas to dry the algae biomass resulted in significant carbon emissions and 

strongly altered the energy balance in an LCA comparing wet and dry extraction.
12, 19  
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Use of waste heat is recommended for sustainability, and is an elegant reuse of a 

normally discarded resource. Solar drying has been suggested, but not yet analyzed for 

feasibility.
11

 There are concerns that solar drying could only be feasible if continuous and 

dependable, and it has been suggested that sunlight may have a destructive effect on the 

TAGs.
19

  

The use of a 2:1 by volume mixture of chloroform and methanol to extract lipids 

from cells was described by Bligh and Dyer in 1959 and is frequently referred to as the 

“Bligh and Dyer” method.
 23

 It is commonly used as a standard method of determining 

the lipid content of cells because of its extractive efficiency. The chloroform and 

methanol mixture contacts the harvested algae solution. After the lipids have transferred 

to the solution, water is added to cause separation into two phases. The lipids partition to 

the organic (chloroform) phase completely that is separated from the water phase. The 

TAG containing organic phase is reacted to produce FAMEs, while the methanol 

containing water phase must be treated as process waste. 

One study includes the laboratory-scale three step chloroform/methanol system 

scaled directly up to an industrial scale.
24

 The three steps, while useful on a small scale to 

be able to extract nearly all lipids from the cells, are not practical on an industrial scale 

and certainly impact the analysis. The circumstances of the study, a natural lagoon 

suffering algae blooms, are ideal to test potential production methods; however the one 

presented in that study is unworkable. The use of chloroform and methanol to extract 

lipids presents environmental concerns. Methanol is commonly derived from petroleum 

stocks, causing similar concerns to hexane. Additionally methanol is toxic to humans and 
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chloroform is a human carcinogen.
 25, 26

 Use of either will add a significant regulatory 

burden to any operation using them in quantity. 

SCF are substances elevated above critical temperature and pressure, possessing 

properties similar to both gases and liquids, and are currently used in industrial 

extraction.
27

 To extract the TAGs, harvested algae biomass is contacted by the fluid, 

which then dissolves the lipids. The SCF is then separated and the pressure is bled off. As 

the pressure falls below critical, the fluid reverts to a gas and the solute precipitates. 

 

Figure 6. Block diagram of supercritical fluid operation 

Carbon dioxide and methanol have been proposed as supercritical solvents for 

extraction of algae oil.
 28, 33 

Use of carbon dioxide simply extracts the TAGs. Extraction 

with methanol offers the advantage of combining extraction and reaction steps. Because 

methanol is the reagent of choice in the conversion of TAGs to FAMEs, use of methanol 

in supercritical extraction will also perform the conversion reaction. If feasible, this is a 

fundamental improvement over processes which require separate extraction and reaction 

stages. 

However, SCF processes suffer from drawbacks: high energy demands to heat 

and pressurize the SCF substance used, risky operating pressures, necessity of materials 

capable of withstanding the fluid, and difficulty in design of continuous processes. The 
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high energy demands in particular make the process energetically unsustainable and 

likely unprofitable. 

Other solvents and solvent combinations have been investigated. Butanol and 

ethanol were tested with extractive efficiencies of 90% and 74% respectively.
29

 These are 

in the early stages of process development, and have only been shown effective at a lab 

scale. Not having been investigated thoroughly, they cannot yet be considered for use in a 

large scale industrial process.  

Ultrasonication has been shown to significantly improve the efficiency of 

extractions by mechanically disrupting cells. It has been used in the extraction of DHA 

containing lipids from algae and improved extraction efficiency by over 5 times.
30

 This is 

an energy intensive process and was evaluated for its ability to disrupt the cells without 

also disrupting some high value molecules. It is unlikely to be cost effective for a low 

priced commodity, such as biodiesel. 

1.1.4 Reaction 

Numerous methods are physically capable. However, all processes currently 

proposed have environmental or cost draw-backs, and it is possible that the ideal method 

has not yet been found. The reaction step chemically converts the extracted algae TAGs 

to fatty acid methyl esters (FAMEs) which, when purified, become biodiesel. 

Stoichiometrically, three molecules of methanol react with one triacylglyceride to yield 

three FAMEs and one glycerine molecule. FAMEs are nonpolar and glycerine is polar, 

resulting in the formation of a biphasic reaction product. 
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Figure 7. Transesterification of TAG to produce FAMEs.  

If stoichiometric amounts of methanol are used, 0.10 g are required per kg of 

biodiesel produced. Biodiesel has an average density of 0.87 kg/m
3
, therefore, 

approximately 13 metric tons (tonnes or t) of methanol are required to produce 40 billion 

gallons, or 30% of United States 2010 use.
7, 31

 In practice, methanol is usually fed in 

excess to ensure complete conversion.
32

 At a molar excess of 1.6, 21 metric tons are 

required to meet the same demand. Both of these are well below the common production 

of over 454,000 metric tons of methanol per year in the United States.
33

 

While it is possible to use other alcohols in the transesterification reaction, 

methanol is nearly universally used as it is the most inexpensive alcohol and easily 

dissolves basic catalysts.
34

 Methanol is commonly produced from petroleum refining, 

raising concerns about dependency on a non-renewable resource.  Other sources of 

methanol include distillation of wood, a renewable resource. Use of waste wood from 

sawmills, papermills and construction may partially offset petroleum-based production of 

methanol. However, this may not satisfy demand if biodiesel production is carried out on 

an industrial scale. Harvesting wood solely for biodiesel processes presents risks, as 

wood is often harvested unsustainably for current uses, and additional demands could 

accelerate deforestation. If algae-derived biodiesel is to be a sustainable fuel independent 
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of oil, a renewable source of methanol capable of competitive production at industrial 

levels must be found. 

Alcohol does not react spontaneously with the fatty acids, and the reaction is 

commonly promoted by catalysis. Three methods of catalysis exist; basic, acidic and 

enzymatic. Basic catalysis is used industrially as it is the least expensive method. Acid 

catalysis is not favored because its reaction time is the longest of any method. Enzymatic 

catalysts currently are not durable enough for commercial use and have comparatively 

low yields. 

Research is currently being conducted on non catalytic reaction processes.
35

 The 

two non catalytic transesterification methods are supercritical fluid synthesis and 

cosolvent synthesis. SCF was discussed in the extraction section, and is notable for the 

possibility of combining the extraction and reaction steps. SCF is also notable for high 

energy requirements. Cosolvent synthesis is beneficial for having a short reaction time 

and mild reaction conditions. 
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Table 1. Characteristics of transesterification methods 31, 34, 36, 37, 38
 

 Basic Acidic Enzymatic Supercritical Cosolvent 

Temp. (°C) 22 – 70 ~ 100 22 – 45 239 - 450 22 – 30 

Reaction 

time (h) 

1 – 8 3 – 48 4 – 8 < 1 < 10 minutes 

Yield (%) > 95 > 90 80 – 90 ~99 ~99 

FFA 

sensitivity 

High None Low None Low 

Water 

sensitivity 

High Moderate Low   

Examples NaOH, 

KOH 

H2SO4, 

HCl 

Rhizomucor mieher, 

Candida antarctica, 

Chlorella vulgaris 

CO2, CH3OH Tetrahydrofuran, 

MTBE, dimethyl 

ether 

 

Basic catalysis uses an alkaline substance such as sodium or potassium hydroxide 

to promote the transesterification reaction.
34

 The alcohol and base are initially mixed to 

form an alkoxide before being added to the extracted oil. The reaction mixture is stirred 

between one and eight hours, at a temperature between 22°C and 70°C. Yields of greater 

than 95% are achieved.
38 

A major concern when using basic catalysis is the formation of 

soap, called saponification, by the unwanted side reaction of the base with free fatty 

acids. Soap will form an emulsion of water and FAMEs, hindering separation.
31

 When 

using basic catalysis in this reaction, FFAs must not be present in concentrations above 

0.5 wt% and water 0.1 - 0.3 wt% or saponification will result.
39

 Despite the potential for 

unwanted side products, basic catalysts are most widely used industrially because they 

are inexpensive.
7, 38
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Common industrial acids such as sulfuric and hydrochloric have been used 

successfully in acid catalysis. This synthesis occurs more slowly than basic catalysis; at 

100°C the reaction can take between three and 48 hours. Yields are generally above 

90%.
38

 Acidic catalysis is not sensitive to the presence of FFA; there is no hydroxide and 

FFAs are esterified therefore soap cannot form.
35

 Acidic catalysis is not practiced 

industrially due to its comparatively long reaction time, and the corrosiveness of acids 

used. 

Specific enzymes called lipases, when immobilized on a surface, may be used to 

perform the transesterification reaction.
35

 Reaction time ranges from four to eight hours 

at temperatures between 22°C and 45°C. Yields are generally in the range of 80 to 

90%.
31, 40

  These enzymes are highly selective and are not impacted by the presence of 

water and FFAs, however excess alcohol, heat, and glycerine will denature them. 
31, 41

 

Efficient separation of the glycerine is necessary to maintain the lipase. Alternately, a 

different reaction path using methyl acetate in place of methanol may be usable, but 

information on this mechanism is insufficient and is untested commercially.
41

 Currently, 

enzymatic catalysis is not used commercially because of the short life of the lipases, at 

most 50 uses.
31

 Future use depends on improvement in enzyme life and resistance to 

denaturing. 

Cosolvent synthesis uses a solvent which is capable of dissolving both the alcohol 

and TAGs.  When the TAGs and alcohol are both dissolved in a common phase, they 

react without additional processing. This method has been shown to produce a 99% yield 

in 5 to 10 minutes at 30°C, significantly improving on other methods of reaction 
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promotion.
31, 38

 Currently tetrahydrofuran, dimethyl ether, and methyl t-butyl ether 

(MTBE) have been proposed, but currently has not reached commercialization. 
31, 38, 40

  

Fermentation of the waste cell mass from the extraction step to produce ethanol 

has been proposed, which could then be used to transesterify TAGs.
 11

 This is an elegant 

process as it draws a needed raw material from a waste product generated elsewhere in 

the process.  

Several different methods of performing the conversion reaction from algae oil to 

biodiesel are available. Unlike harvesting and extraction, the reaction step is industrially 

mature. A single method, basic catalysis, is widely accepted by biofuels producers. New 

methods, including cosolvents, are being researched and may improve on current 

standards. The results of reaction step are an organic phase containing FAMEs and a 

water phase containing glycerine. The FAMEs must be separated and further refined in a 

purification step. 

1.1.5 Purification 

During the reaction process the TAGs are converted into FAMEs and glycerine. 

In the purification process glycerine, water, unreacted alcohol and any impurities 

introduced in the reaction step, such as catalysts and soap, must be removed.
34

 All 

reaction methods produce organic and water phases. The organic phase is composed of 

approximately 94% FAMEs with trace impurities, while the water layer is 50% 

glycerine.
34, 42

 



   

17 
 

DecantDecant

PurificationPurification

PurificationPurification

Reaction 
Product

Biodiesel

Aqueous
Phase

Organic 
Phase

Glycerine

Impurities

 

Figure 8. Separation and purification of biodiesel and coproduct glycerine 

The common purification train (Figure 8) separates the two phases before 

individually purifying each. The FAMEs are decanted for further purification. In parallel, 

the organic phase is purified to produce a solution of FAMEs that satisfy standards for 

biodiesel. 

The first step of the purification process is the removal of the glycerine. The water 

phase of the reaction contains glycerine, which is significantly denser than FAMEs (1.26 

g/mL compared to an average 0.85 g/mL).
38

 The phase mixture is separated by settling 

for several hours before the water phase is decanted off.
34

 The water phase is about 50% 

glycerine, and when purified to above 80% the glycerine can be sold.
34

 It is expected that 

new uses will be found for glycerine if biodiesel is industrially produced as the algae 

biodiesel process has the potential to completely flood the already saturated glycerine 

market. 
7, 41 

The remaining organic phase is a solution of FAMEs with trace impurities, and 

must be refined to produce biodiesel. Fewer impurities are present in this phase as they 

are hydrophilic and most were removed when the water phase was decanted off in the 
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previous step. The FAMEs are commonly purified by water washing, dry washing, or 

membrane filtration; and then heated to produce biodiesel.
34

  

Water washing entails adding water to the FAMEs, mixing and settling. Because 

the impurities are hydrophilic they are dissolved in the water, which is then decanted off. 

While chemically and physically simple, the use of water potentially usable to humans 

presents ethical concerns similar to the food-versus-fuel debate concerning current 

biodiesel crops, such as corn and soy. An analysis of this process is needed to determine 

its sustainability, especially for locations which do not have plentiful amounts of fresh 

water.   

Dry washing removes the impurities by passing the crude biodiesel through an 

adsorbent material, such as silica, alumina, or magnesium silicate. Filtration uses a 

pressure to force the stream against a selectively permeable barrier. Leung reported an 

experiment using a hollow fiber polysulfone membrane to obtain 90% pure biodiesel in 

preliminary testing.
34

 Membranes have not been evaluated to determine how well they 

scale for industrial purification of biodiesel. 

This refining process, either washing or filtration, is repeated until the biodiesel is 

pH neutral, indicating removal of all pH-affecting impurities. To drive off any remaining 

water the biodiesel is then heated to approximately 55°C for 15 to 20 minutes or until 

translucent. Regional standards for biodiesel may dictate further purification, which is 

carried out by distillation at about 200°C for 30 minutes.
 31, 43
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1.2 Current State of Life Cycle Assessments 

LCAs can be used to determine the most environmentally friendly method of 

producing algae-derived biodiesel. A review of the currently existing LCAs was 

conducted and allowed for the identification of the locations where the greatest 

improvement could be made. These locations were then used as the focus for this LCA. 

Extensive research is being conducted to determine the most efficient techniques 

of processing algae into biodiesel. An assessment comparing petroleum-derived diesel to 

algae- and canola-derived biodiesel found that algae biodiesel had significantly lower 

greenhouse gas emissions.
 13

 Similar research was conducted comparing petroleum and 

soybean based fuel production to algae-derived biodiesel grown in a photobioreactor.
7
 

This research found that the net energy ratios, the ratio of energy consumed to energy 

produced, were 0.19 for petroleum fuels and 0.93 for algae, respectively. Algae biodiesel 

had the lowest greenhouse gas emissions by sequestering 75.29 g CO2 eq /MJ energy.
7
 

Another study compared algae grown using photobioreactors to soybean biodiesel 

production, finding that the process energy for the production of algae was only less than 

soybeans when recovering waste heat.
12

  A LCA comparing biodiesel produced through 

raceway ponds to photobioreactors showed that raceway ponds are significantly more 

energy efficient for cultivating algae.
44

 Although raceway ponds are currently the 

industry standard, photobioreactors are still in development and offer a higher degree of 

process control, resulting in less contamination risk and higher yields.
45

  

The LCAs performed on the growth phase demonstrate that improvements in 

algae cultivation are necessary. Raceway ponds are currently capable of efficiently 

achieving the required production values; however the higher risk of contamination and 
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lower control over the process can result in lower algae oil content and yields.
45

 The 

algae culture obtained from the algae growth stage is dilute and requires water removal. 

This dewatering stage is also energy intensive due to extensive thermal drying needed to 

eliminate the intercellular water.
46

 Algae cells can contain anywhere from 40 to 80% 

intercellular water.
18,

 
46, 47  

Water removal is required to effectively extract the TAGs from 

the algae and is most efficient at moisture contents between 5 and 15%.
12, 46

 Achieving 

these moisture contents represents one of the major bottlenecks of using microalgae as a 

feedstock for biodiesel.
 19,44, 48

  The dilute nature of the algae culture is the most 

challenging aspect of producing biodiesel from algae.
9
 The dewatering stage can be 

improved by sequencing various methods. Flocculation is the most efficient way of 

initially concentrating the algae in solution; however, the resulting dry solids 

concentration will not exceed 5% and additional dewatering is necessary to achieve lower 

moisture contents.
17

 A life cycle assessment found that the dewatering stage contributed 

to 84.9% of the total process energy.
19

   This study was based on extrapolations of lab 

scale studies, and served to identify the major obstacles in algae biodiesel manufacture. 

An additional study explored the reduction of the process energy demand through using a 

series of dewatering and drying technologies.
46

 Their study obtained a fossil fuel energy 

rating of 1.5, meaning 50% more energy was recovered as biodiesel when compared to 

the energy consumed to create it. They have shown that using thermal drying methods to 

dewater algae contributes to over 90% of the process energy demand in the downstream 

production of algae biodiesel.  The process energy was estimated from laboratory 

observations as well as published data of others, and a comprehensive LCA was not 



   

21 
 

performed. This work demonstrated that more energy is generated than consumed using a 

dry route, but a comprehensive LCA was not performed on this work.  

The LCAs on dewatering demonstrate that this stage is a major bottleneck in the 

commercialization of algae-derived biodiesel. As previously stated, this is due to the low 

moisture contents (5- 15%) required to effectively extract the TAGs from the biodiesel. 

Analyzing different extraction techniques can reveal better methods of extracting these 

oils. 

There are a few different methods of extracting the TAGs from algae. The most 

common is using an oil press which is capable of extracting up to 70% of the oils 

contained within the algae cells.
49

 A more efficient method is to use a solvent, usually 

hexane, to break down the cellular mass and recover over 95% of the total oils in the 

algae cells.
44

 However, these two extraction methods require dried algae. Studies are 

being performed involving alternative extraction techniques which are capable of 

extracting TAGs from higher-water content algae, called wet extractions. One method of 

accomplishing this is through the use of supercritical fluids. Supercritical CO2 is capable 

of performing extraction with up to 30% water content and is shown to aid extraction by 

functioning as a co-solvent with water.
22

 This method requires conditions of 30 MPa and 

80°C which are not likely to be commercially scalable.
22

 Another possibility is the use of 

supercritical methanol, which can simultaneously perform the TAG extraction and 

transesterification reaction. Although the conditions required are less extreme and could 

transform algae with moisture content up to 90%, this is still only performed at the lab 

scale.
28

 A LCA compared multiple methods of producing algae-derived biodiesel by 

extrapolating experimental data from algae growth, extraction, and reaction including 
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supercritical CO2 and methanol as possible production routes.
50

 This work found that 

using supercritical methanol to simultaneously perform the extraction and reaction 

resulted in the lowest cumulative energy demand (CED). The CED is defined as the total 

primary energy required in the production, use, and disposal of the good in question. It is 

unknown whether these techniques are potentially scalable, but this work can be used to 

determine which areas warrant further research. Another approach to extraction is called 

single step extraction developed by Origin Oil which simultaneously performs 

dewatering and extraction. They perform cell lysis through a patented process called 

quantum fracturing which uses pulsed electromagnetic fields, followed by a gravity 

separation, resulting in an effective lipid, cell mass, and water separation.
48,

 
51

 

Unfortunately, wet extraction techniques are only in the development stage, therefore, 

accurate assumptions cannot be made regarding the commercial application of these 

techniques.  

Once these TAGs have been extracted from the algae, they can be reacted to form 

fatty acid methyl esters (FAMEs). The four major methods of reacting the TAGs to 

FAMEs are acid catalyzed, base catalyzed, enzymatic catalyzed, and supercritical 

conditions.
6
 Generally, the base catalyzed reaction is widely preferred in industry due to 

its short residence time of 20 minutes.
52

 The acid catalyzed reaction is time consuming, 

taking 5 hours, and supercritical conditions require energy to achieve conditions of 1,200 

psi and between 240 and 260°C.
28, 52

 The enzymatic catalyzed has not been demonstrated 

at the large scale due to the high price of the enzyme and its short operational life.
6
 This 

stage has a low impact compared to other stages, as shown by previous LCAs and will 

therefore not be the focus of the study described in this paper.
19, 44
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1.3 Purpose Statement 

An extensive life cycle assessment for the dewatering stage is required to provide an 

analysis of more environmentally efficient processing steps. The approaches presented in 

this paper use viable methods of producing algae-derived biodiesel on the commercial 

scale by adapting and coupling dewatering technologies rather than extrapolating from 

lab scale experiments. This study expanded on previous findings from Xu et al. by using 

a wider range of dewatering equipment.  Their research focused on the energy demand 

required for algae processing, but the work does not address the emissions associated 

with production of biofuels. For this reason, our work consisted of a rigorous LCA to 

compare these dewatering technologies when fully integrated into biodiesel production. 

Material and energy balances for an industrial scale algae production facility were 

estimated, and served as the basis to conduct a LCA by evaluating total emissions. This 

“base case facility” was compared with alternative processing cases, created by 

implementing potentially scalable dewatering technologies. Total emissions from each 

stage were quantified, the optimal sequence of dewatering equipment was determined, 

and the life cycle emissions were compared.
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                                                              Chapter 2 

Base Case Process Development 

The overall inputs and outputs for the algae to biodiesel process need to first be 

specified in order to perform a LCA. The literature review was used to develop a process 

for the production of algae-derived biodiesel. This process was not the optimal method of 

producing biodiesel, but was used as a starting point from which alternatives could be 

developed and compared. The algae growth, harvesting, extraction, reaction, and product 

purification stages were investigated. The following sections describe the base case algae 

biodiesel process. 
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2.1 Algae and Oil Properties 

Before the process can be modeled, the primary chemical constituents were 

identified for modeling purposes.  The molecular weights and densities were also 

required to obtain the required quantity of oils (lipids) and the necessary mass of algae. 

An algae cell, much like a plant or animal cell, is made up of four main classes of 

molecules: lipids, carbohydrates, proteins, and nucleic acids.
53

 The lipids serve as the 

storage of energy for the algae cells. The lipid content of these cells comes in the form of 

a triacylglycerol (TAG) which is essentially a glycerol molecule with three fatty acid 

chains. The fatty acid is a methyl ester of varying degree of saturation, but within the 

algae cell, four main structures are the major constituents.
54

 An analysis of the biodiesel 

produced from algae, shows the chemical contribution of each of these specific FAMEs.
22

  

Properties of these typical acids and TAGs as well as typical compositions within algae 

cells are shown in Table 2. The main constituents are: palmitic acid, stearic acid, oleic 

acid, and linoleic acid. Oleic acid is the largest of these FAME constituents. Oleic acid is 

produced from the transesterification of triolein. From this information, it was concluded 

that triolein is the major component of the TAGs in the algae cell. 

 



   

26 
 

Table 2. Main methyl ester compounds with their associated triacylglyceride.
22,

 
54

 

Class Chemical Formula MW Density 

Melting 

Point 

Boiling 

Point 

Lipid 

Content 

(kg/kmol) (kg/m³) (°C) (°C) (%) 

Fatty Acids 

 (Methyl 

Esters) 

Palmitic acid C16H32O2 256.42 853 62.9 351 17-26 

Stearic acid C18H36O2 284.48 847 69.6 383 2-6 

Oleic acid C18H34O2 282.46 895 14 360 52-66 

Linoleic acid  C18H32O2 280.45 900 -5 365 0-20 

Lipids 

(Triglyceride) 

Tristearin C57H110O6 891.48 862 75 N/A N/A 

Triolein C57H104O6 885.432 950 5 554 N/A 

 

Aspen Plus
®

 was used to simulate the solvent recovery following the TAG 

extraction.    The process simulator contains properties for the TAG triolein, the major 

constituent in algae lipids. Since many of these lipids behave in the same manner, it was 

assumed that triolein will properly model the behavior of these TAGs. 

The species of algae used for the base case process was in the Scenedesmus 

family.  The distribution of the composition of the lipids found the Obliquus variety of 

algae can contain up to 75% weight mono unsaturated fatty acids.  This quality makes the 

oil derived from this species of algae highly resistant to oxidation and a good candidate 

for a fuel source.
55

 A comparison of compositions in common vegetable oils to algae is 

seen in Table 3.   Oleic acid is an example of a monounsaturated fatty acid present in 

algae. Since 75% of the lipid composition is monounsaturated acid, its properties should 

represent the system adequately in Aspen Plus
®

 (Figure 9).  The Aspen Plus
®
 simulation 

and additional assumptions made regarding physical and chemical properties are 

discussed in the Extraction and Evaporation section. 



   

27 
 

Table 3. Common compositions of vegetable oils.
54

 

Common name Chemical 

Palm Soybean Corn Algae 
Fatty acid  Methyl ester 

Palmitic acid Methyl palmitate 32 - 45 % 7-11% 8-12% 17-26% 

Stearic acid Methyl Stearate 2 - 7 % 2-6% 2-5% 2-6% 

Oleic acid Methyl oleate 38-52% 15-33% 19-49% 52-66% 

Linoleic acid  Methyl linoleate 5-11% 43-56% 34-62% 0-20% 

Linolenic acid Methyl linolenate   5-11%    

 

 

Figure 9.  Structure of monounsaturated Oleic acid (Fatty acid methyl ester). 
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2.2 Process Design 

A basis of one tonne of biodiesel (t of BD) was used for the calculations and all numbers 

were reported on this basis.  Some of the unit operations required a flow rate to determine 

energy consumption. Therefore, an average per year basis of biodiesel production of 15.7 

MM gal per year (52,300 t BD/year) was assumed. This value is based on the geometric 

average of the typical biodiesel plant production rates provided by the National Biodiesel 

Board.
56

 The plant capacity was designed to reach these production values. To create a 

comparable basis of one t of BD, this capacity was divided by 52,300. The microalgae 

species considered in this process was Scenedesmus Obliquus due to its high lipid yields 

and wide availability.  This species was estimated to be capable of producing 61.3% 

lipids from dry algae biomass (0.613kg TAG/kg dry algae) at optimized growth 

conditions.
55

 This value was reasonable because it was assumed the PBR was capable of 

producing a highly controllable, and optimized algae product, the primary advantage of a 

PBR.  The process will be detailed in following sections and the complete proposed 

process flow diagram is found in Appendix A for reference. 

2.2.1 Photobioreactor 

The PBR is a system capable of growing algae in a closed environment while 

maintaining optimal growth conditions determined for a specific algae species.  The 

growth medium used for the base case was a common Bold’s Basal medium, and was fed 

into the system along with the water and algae seed stock. The contents of this medium 

are shown in Table 4. This medium is a common nutrient mixture for the growth of 

microalgae. The total mass present in the system is shown in Appendix A.  For a 

commercial scale system it may be optimal to utilize simpler growth mediums fewer 
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chemical components. The Bold’s Basal medium is a more complicated medium and was 

a conservative choice in terms of a LCA. Throughout the mass balances, these medium 

chemicals were assumed to be absorbed by the algae at the same rate and were present at 

the same mass fraction at all points in the system. These chemicals were referred to as the 

medium and not by individual chemical due to the large number of individual chemicals 

present in the mixture. The total mass of each chemical component in the medium are 

located in Table 4. 
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Table 4. Concentrations of components in Bold's-Basal medium. 

Chemical 

Quantity 

(kg/t BD) 

KH2PO4 14.5 

CaCl2*2H2O 2.07 

MgSO4*7H2O 6.21 

NaNO3 20.7 

K2HPO4 6.21 

NaCl 2.07 

Na2EDTA 0.828 

KOH 0.513 

FeSO4*7H2O 0.412 

H2SO4 0.152 

H3BO3 0.666 

H3BO3 0.237 

MnCl2*4H2O 0.150 

ZnSO4*7H2O 0.0184 

NaMoO4*5H2O 0.0323 

CuSO4*5H2O 0.00654 

Co(NO3)2*6H2O 0.00409 

 

Carbon dioxide is bubbled into the system and is assumed to be the primary 

carbon source for the algae. Algae utilize the energy from sunlight, photons of light, to 

convert water and carbon dioxide to simple sugars. These simple sugars are the food 

source for algae which is converted into the biomass. Biomass primarily consists of 
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proteins, carbohydrates, and lipids.
57

 In particular, algae have high lipid contents when 

compared to other phototrophic plant species.  

There were many studies on small scale cultivation systems, however very little 

was done in terms of pilot scale or industrial scale PBRs. One such system was 

constructed in Wolfsburg, Germany and began operating in the year 2000. This system 

was the largest PBR system and led to the successful production of algae and proved an 

economically feasible cultivation system. It contained a PBR with a total volume of 700 

m
3
, and required an area of 10,000 m

2
. Annual productivities of this facility were 

between 130 and 150 metric tonnes of dry biomass. This system was constructed in a 

glasshouse, and solely relied on solar lighting.
58

  

The details for the seed PBRs to start the system were not considered in this 

model.  Once the system is started, a portion of the algae culture was drained for 

harvesting and the remaining algae were re-grown to the harvest concentration with fresh 

makeup medium.  Energy was used to heat, mix and provide photons required for 

photosynthesis.  The algae were allowed to grow four to ten days and consume CO2, 

absorb light, and utilize nutrients. The PBR was the final step in a series of seed reactor 

systems. These systems were necessary to reach the appropriate culture density to 

maximize the algae growth and rapidly reach the harvest density.  A patent application 

from Bright Source Energy Inc. suggested a harvest concentration of 25 g dry algae per 

liter of solution.
59

 This translated to an outlet algae mass fraction of 0.024 kg dry algae 

per kg solution. This value was used to specify the best case scenario for a harvest 

density.  The outlet concentration of the medium was reported as a total mass per tonne 

of biodiesel since the individual concentrations were essentially negligible compared to 
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the algae and water.  In addition, the algae were assumed to absorb 70% of the 

nutrients.
60

 This assumption was based on measured values of nitrogen consumption by 

microalgae. The nutrients were present in the algae and assist with metabolic function, 

but were not consumed. The presence of these nutrients eventually became too dilute to 

support the growth of additional algae biomass.
57

 All absorbed nutrients remained present 

in the microalgae and were sent with the expended biomass through the extraction as they 

are all polar compounds.  

The quantity of required biomass was calculated based on the required TAG’s, 

extraction efficiency, and flocculation efficiencies. From transesterification and 

purification, the quantity of TAGs required to create a tonne of BD was found to be 1,090 

kg. When applying the extraction efficiency, along with the lipid content in algae, the 

mass of biomass required to achieve 1,090 kg of TAGs/t BD was 1,920 kg of dry algae 

biomass/t BD. With the knowledge of the quantity of algae lost in the flocculation step, 

the quantity of algae which is grown to produce a tonne of BD is found to be 

approximately 2,020 kg/t BD.  As was previously specified, the concentration of algae at 

the time of harvest was used to find the volume of medium solution required. This was 

calculated to be 82,800 kg/t BD or 82.8 m
3
/t BD after using the density of water as an 

approximate density.  

Carbon dioxide was also a raw material and was bubbled through the PBR and 

absorbed by the algae.  CO2 sequestration studies stated the algae were capable of 

absorbing at least 90% of the CO2 fed to the system.61 Estimations showed that 

approximately 1.83kg of CO2 was consumed to create 1 kg of biomass.62 With the mass 

of dry algae required, the necessary feed rate of CO2 was calculated as 3,520 kg/t BD. 
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However using this method, the mass of water consumed and oxygen produced cannot be 

accurately calculated. For this reason, the equation of photosynthesis was used and is 

shown in Equation 1.
57

 Every mole of biomass produced, consumed a mole of CO2 as 

well as a mole of water and created a mole of O2. This mass balance is summarized in 

Table 5.  

  Compared to the estimated 1.83 kg CO2, the calculated CO2 consumption was 

comparable at 1.5 kg CO2 consumed to create 1 kg of algae biomass or 2,820 kg of CO2 

absorbed/t BD produced. This method was not used to calculate the growth of algae or 

energy consumption, but provided an estimation of the CO2 and water consumption and 

O2 production. This value was used as a conservative number of CO2 consumption.  

 )(2)(2)(2)(2 2222 gnOOCHPhotonsaqOnHgnCO n   (1) 

Table 5.  Carbon dioxide, oxygen, biomass, and water flows for algae (1 t BD basis) 

Chemical Formula MW (kg/kmol) IN (kg/t BD) OUT (kg/t BD) 

Carbon Dioxide CO2 44 3,130 313 

Water H2O 18 1,150 0 

Oxygen O2 32 0 2,050 

Algae (Biomass) CH2O 30 0 1,920 

 

The PBR system utilized a recycle system that integrated the water extracted from 

the following processing steps.  Two recycled streams, one from the flocculation tank and 

the other from the spray dryer system, returned water to the PBR system and thereby 

minimized the necessary water make-up required to achieve the original operating 

volume.  The flocculation system also contained a percentage of the growth medium that 
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was not absorbed or contained within the algae cell.  This reduced the quantity of added 

make-up growth medium (salts). 

Since no energy details on the actual industrial scale PBRs were available, these 

values were estimated.  Utilizing several resources, estimations were performed of the 

different energy consumption rates detailed for each reference’s method of calculation.  

In an LCA conducted by Stephenson, the energy consumption obtained per tonne of BD 

produced was specified at 231 GJ or 64,000 kWhr/t BD.
44

 Posten specified power 

estimates for larger scale PBRs as being above 2,000 W/m³ of algae culture. This was 

converted based on the quantity of energy consumed over a time of 10 days, the upper 

limit of the growth period, and for the volume required to produce 2,020 kg of dry algae/t 

BD. This volume was calculated using the density of water as an estimation and is 

approximately 82.8 m
3
/t BD. This resulted in and energy consumption of 40,000 kWhr/t 

BD. The Wantanabe estimation was based on a bench scale PBR. The bench scale PBRs 

were 6.23 L in size, and each consumed 1,249 kJ of energy per day.
 63

 Each 6.23 L vessel 

was found to consume 1,249 kJ of energy per day. This energy consumption for the 

bench scale PBR is 200.5 kJ/L day. The base case system has a 10 day growth period and 

volume of 82.8 m
3
/t BD. This energy calculation resulted in a value of 46,000 kWhr/t 

BD. All methods were based on a volume of algae solution processed basis.  Stephenson 

did not specify their methods to determine energy consumption, but reported results in 

terms of GJ/t of BD. Posten’s estimation of energy requirements was less than that of the 

bench scale system of Wantanabe. Since the scaled up PBR was likely to have lower 

energy consumption than the bench scale system, Posten’s evaluation was the best energy 

consumption choice.  This resulted in an energy estimate for the modeled PBR of 40.0 
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MWh/t BD.
45 

The material flows and compositions are summarized for each stream 

entering and leaving the PBR in Table 6. 

Table 6.  Mass flow summary of streams entering and leaving the PBR (kg/t BD).
44,

 
45,

 
63

 

Stream [2] PBR Make Up [8] Recycle (Dryer) [6] Recycle (Flocc) 

Chemical m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) 

Algae SEED SEED 0 0 96 0 

Water 1,240 0.97 36,400 1 44,200 1 

Medium 38 0.03 0 0 16 0 

Carbon Dioxide 0 0 0 0 0 0 

Oxygen 0 0 0 0 0 0 

Calcium Sulfate 0 0 0 0 0 0 

Total 1,280 1 36,400 1 44,300 1 

Stream [1] CO2 Feed [3] PBR Product Flow [22] Vented Gases 

Chemical m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) 

Algae 0 0 2,020 0.02 0 0 

Water 0 0 80,800 0.98 0 0 

Medium 0 0 55 0 0 0 

Carbon Dioxide 3,130 1 0 0 313 0.13 

Oxygen 0 0 0 0 2,050 0.87 

Calcium Sulfate 0 0 0 0 0 0 

Total 3,130 1 82,800 1 2,360 1 
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Photo-Bioreactor
Assume 25g Dry Algae/L Sol’n 

Scenedesmus Obliquus

0.613 kg TAG/kg dry mass

247,000 kW-hr/hr

[3]

514,000 kg/hr

xW=0.976

xA=0.024

xM=0.00066

[6]

275,000 kg/hr

xW=1

xA=0.0022

1 ppm Al(OH)3

[8] Condensed Water

226,000 kg/hr

xW=1

[1]

19,500 kg/hr

xCO2=1

Kg/Ton BD

[2] Reactor Feed

7,710 kg/hr

xW=0.97

xM=0.03

[22]

14,700 kg/hr

xCO2=0.13

xO2=0.87

 

 

Figure 10.  Detail of PBR section of the biodiesel manufacturing process.  

(Notation clarification can be found in Appendix A) 

2.2.2 Harvesting 

The harvesting section of the process was where the water content of algae was 

reduced to 5% wt. water.
44

  Here, the output of the PBR was fed to a flocculation vessel 

where chemical flocculants were added and allowed to agglomerate to remove excess 

water. This resulted in algae slurry consisting of 95% wt. water which was then sent to a 

spray dryer. The spray dryer was used to reduce the moisture content to 5% for the TAG 

extraction.  

2.2.2.1 Flocculation 

The flocculation system introduced the flocculant and gently mixed the chemicals 

and algae to ensure particle coagulation and settling rate.
64

  A common method of 

introducing flocculant to a system with minimal power input was through an inline or 
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static mixer.
65

 This was a modified section of pipe containing obstructions that produced 

turbulence and high energy-per-mass input to achieve a homogenized state.  The 

flocculant chemicals were combined by sending a partitioned stream from the PBR vessel 

output to an addition tank where the chemicals were added to the solution. 

This concentrated mixture was then reintroduced into the main process stream and 

mixed using the in-line mixer.  The resulting, homogenized stream was then fed into a 

settling tank which was gently mixed using a jet mixer.  The jet mixer recirculates the 

tank and was designed for a set mixing time.  Once mixed, the particles were given 

enough time to settle and the algae-flocc phase was isolated from the water phase.  The 

design of the static mixer system, its power consumption, and the design of the settling 

tank system are specified in detail below.  

Aluminum sulfate, ferric sulfate, and lime were considered as possible flocculants 

for this operation.  Aluminum sulfate required the smallest concentration at 80-250 mg/L 

compared with 50-90 g/L and 500-700 g/L for ferric sulfate and lime, respectively.  

Aluminum sulfate is commonly used in waste water operations to flocculate systems and 

was chosen as a suitable chemical.  It was found effective at flocculating Chlorella as 

well as Scenedesmus, and made it an ideal choice for our species.
44

 The concentration 

required to flocculate with aluminum sulfate is small in comparison to other chemicals 

and minimized the chemical presence and waste in later operations. This flocculant is 

capable of achieving a concentration factor of 25 for lower density algae cultures.
15

 The 

culture being harvested from the PBR is higher and would result in 0.385 mass fraction 

algae and 0.651 mass fraction water. Upon professional consultations with an expert in 

the flocculation field, it was found that flocculation- settling would only be capable of 
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achieving 0.05 mass fraction algae. This value will be used as the concentration of algae 

being removed from the flocculation tank. 

Aluminum sulfate reacts with calcium carbonate to form aluminum hydroxide.  

Aluminum hydroxide is the active coagulant chemical.  To introduce the two chemicals 

into the system, the product stream from the PBR was split such that a small portion 

flows to an intermediate mixing vessel where the flocculant chemical precursors were 

prepared.  The flow was fed back into the system upstream of the static mixer.  The static 

mixer homogenized the two concentrations, and was sent to the settling tank system. 

The active flocculant chemical, aluminum hydroxide, was prepared by reacting 

calcium bicarbonate and aluminum sulfate.   Calcium carbonate reacted with water to 

form calcium bicarbonate (Equation 2).   The reaction between aluminum hydroxide and 

calcium bicarbonate, in addition to aluminum hydroxide, produced calcium sulfate and 

carbon dioxide (Equation 3).  The aluminum hydroxide formed a net-like material which 

slowly settled through the tank, and collected the algae.  The resulting mixture was a 

gelatinous slurry substance on the bottom of the settling tank, and a purified water phase 

above the tank.  

 
23223 )(3 HCOCaOHCOCaCO   (2) 

 OHCOOHAlCaSOHCOCaOHSOAl 223432342 186)(23)(318)(   (3) 

The calcium sulfate remained in solution in a small concentration.  It was 

unknown whether the calcium sulfate could harm the algae system if the stream were 

returned as recycle.  Should this be the case, the calcium sulfate could be precipitated by 

cooling the recycle stream or flocculated via a polymer flocculant.  Since the 

concentration were very small (on the order of 150 to 2,100 PPM), the effects of presence 
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of this chemical (a simple mineral found in municipal water) were assumed negligible in 

the PBR and flocculation system.  The maximum concentration it can reach before the 

solution is saturated is 2,100 ppm or 2.1 g/L.  The compound was precipitated out of 

solution and removed with the algae slurry. The aluminum hydroxide concentration 

resulting from this reaction was 58.5 ppm.  CO2 was also formed, but not released to the 

atmosphere. The quantities formed were completely soluble in water, and returned to the 

PBR where the CO2 was consumed by algae growth. Equations 2 and 3 were used to 

calculate the concentrations of the flocculation components present in the mixture. These 

concentrations and chemical properties and are presented in Table 7. 

 

Table 7.  Chemical information on the flocculant reactants and products. 

Chemical 

MW 

(kg/kmol) 

Density 

(kg/m³) 

Solubility @ 

20°C (PPM) 

Concentration 

(PPM) 

Concentration 

Ratio To Al2(SO4)3 

Al2(SO4)3 666.7 1,620 364,000 250 1 

Ca(HCO3)2 162 

Aqueous 

Only 166,000 182 0.73 

CaCO3 100 2,710 15 112 0.45 

CaSO4 136 2,960 2,100 153 0.61 

Al(OH)3 78 2,420 1 58.5 0.23 

CO2 44 1.98 1,450 99.0 0.40 

 

To harvest and collect the algae from the PBR product stream, a chemical 

coagulant or flocculant was used to cause the algae cells to form an aggregate mixture. A 

small portion of the product stream was used to introduce the flocculants. This fraction 
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was sent to a mixing vessel where the chemicals were mixed and dissolved before being 

reintroduced to the PBR product stream. 

A static or in-line mixing system was an effective and energy efficient method to 

accomplish the reintroduction of the split stream which was highly concentrated in 

chemical flocculant. Static mixers are augmented sections of pipe containing baffles. The 

presence of these baffles causes increased turbulence and shear forces, resulting in a well 

mixed solution. This system is also ideal for low-viscosity applications.
65

 Shown below 

in Figure 11 is a Sulzer SMX in-line mixer, which is highly effective in turbulent flow 

regimes for low viscous mixtures.    

 

 

Figure 11.  Sulzer SMX in-line static mixer. 

 

The addition of a static mixer to the pipeline from the PBR required pumping 

energy.  To calculate this energy, the methods described in the Handbook of Industrial 

Mixing were utilized and summarized below.  A design flow rate was calculated by 

multiplying the 52,300 t BD/yr basis and the 82,800 kg/t BD exiting the PBR and 

dividing by 351 day operating period (assuming two weeks down time) and 24 hours per 
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day.  This resulted in a flow rate of 501 m³/hr or 0.139 m³/s.  The pumping energy was 

calculated by determining the pressure drop across the static mixer.    

The static mixer pressure drop was calculated by first finding the pressure drop 

across a regular pipe of equal length (with no mixing elements present) using the 

modified Bernoulli’s equation.  Next, an experimental/ measured constant was multiplied 

to this pressure drop and represented the additional pressure drop caused by the static 

mixer elements.  This constant was well known for the Sulzer SMX, and was provided in 

the Handbook of Industrial Mixing as 200.  The modified Bernoulli’s equation with the 

static mixer coefficient included is shown in Equation 4.  The length of a static mixer was 

measured by the ratio between the length and diameter of the pipe.  For a turbulent flow 

regime, the degree of mixing is independent of mixer length after an L:D of five, 

therefore for this application an L:D of five was assumed.
65
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Where: 

 ∆P is the pressure drop across the mixer (Pa) 

 C is the characteristic coefficient associated with a given static mixer 

 f is the Fanning friction factor  

 L is the length of the static mixer section (m) 

 D is the diameter of the static mixer section (m) 

 v is the velocity of the process fluid (m/s) 

 ρ is the density of the process fluid (kg/m³) 

The velocity was assumed and checked using the Reynolds number so that the 

system operates in the turbulent flow regime.  The diameter of the pipe was necessary for 
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this calculation and was found by assuming a velocity and iterating using excel to find an 

acceptable pipe size to handle the design flow rate.  For this application, a process fluid 

velocity of 4 m/s resulted in a pipe diameter of 0.22 m and a Reynolds number of 

842,000.  This Reynolds number was in the turbulent flow regime.
66

 

The modified Bernoulli equation employed the Fanning friction factor to 

represent friction losses to the pipe walls.  A steel pipe was assumed with an associated 

roughness of 0.00015 m.
66

 The Fanning friction factor was calculated by Equation 5.   
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Where:  

 ε is the roughness of the pipe (m) 

 D is the diameter of the pipe (m) 

The pressure drop through a pipe was calculated using the modified Bernoulli 

equation which includes friction losses, simplified for a horizontal, steady state system 

(Equation 4).  A length to diameter ratio (L:D) of five was also assumed to achieve 

complete homogenization in the turbulent regime.
65

 The energy required to pump 52,300 

t BD/yr resulted in an energy consumption of 6.16 kW-hr/t BD or 322,000 kW-hr/yr 

using this methodology. 

Several settling tanks were needed to maintain a continuous process operation. 

The volume of one tank was specified to determine the number of tanks. The system flow 

rate was calculated by converting the specified production flow rate of biodiesel, 52,300 t 

BD/yr, and multiplying it by the amount of liquid exiting the PBR, ~82,800 kg H2O/t BD.  

This was then converted to m³/hr assuming 351 days of operation per year (assuming two 
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weeks of downtime). The density and viscosity of the algae-water mixture was assumed 

to be nearly that of water at standard temperature and pressure due to the dilute nature of 

the algae mixture at this stage. This resulted in a design flow rate of 501 m³/hr.  An 

efficient method to mix and flocculate a colloidal mixture is by using a free jet mixed 

tank.  This type of system used a recirculation pump loop, and drew liquid from within 

the tank and pushed the liquid through a jet nozzle back into the tank (Figure 12).  The 

necessary jet velocity, nozzle size, and the required energy to operate the pump were 

determined. 

H (m)

T (m)

Z (m)

 

Figure 12.  Side View Diagram of a Circular Free-Jet Mixed tank. 

 

A cycle time for a given settling tank were calculated to determine the total 

number of tanks necessary to maintain continuous operation.  A 501 m³ tank was used 

and would take one hour to fill and one hour to drain.  The dimensions of this tank were 

specified knowing that Jet-Mixed tanks function properly when the ratio of the tank 

height, H, to tank diameter, T, is between 0.2 and 2.0.  A shallow tank reduced the time 

required for particles from the surface to reach the bottom of the tank; therefore a H/T 
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ratio of 0.2 was be used.  Assuming a cylindrical tank, the diameter was calculated by 

substituting 0.2T for H and solving for T (equation 6).
65
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Where: 

 T is the tank diameter (m) 

 V is the volume of the tank (m³) 

 0.2 represents the specified H/T ratio 

  The result was a tank that is three meters in height and 15 meters in diameter.  

These dimensions were reasonable tank sizes based on waste water treatment facilities 

and were considered valid for this model.
67

  The settling time for a particle or flocc were 

assumed as two m/hr based off Lardon’s assumption where a three meter deep tank 

resulted in a 1.5 hour settling period.
19

 

To determine the required energy to operate this system, the mixing time for the 

tank was calculated.  The time required to gently mix the system to ensure proper particle 

coagulation was calculated using the techniques described in the Handbook of Industrial 

Mixing and summarized below.
65

 Considering the dimensions of the settling vessel, the 

hypotenuse of the triangle formed between the height and diameter of the tank, Z, was 

first calculated (Figure 12).  Z also represented the trajectory of the jet used to mix the 

tank.  The velocity through the jet and the desired mix time were required to obtain a 

turbulent jet velocity.  The turbulence and required jet nozzle diameter were calculated 

using Equation 7 and solving for the nozzle diameter.  The diameter and velocity were 

then substituted in combination with the fluid properties into Equation 8 to calculate 
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Reynolds number.  A Reynolds number greater than 4,000 is considered to be in a 

turbulent flow regime and will ensure that the jet will thoroughly mix the tank.
65
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Where: 

 θ99 is the mix time for 99% homogeneity (s) 

 DJet is the diameter of the Jet nozzle (m) 

 VJet is the velocity of the fluid through the Jet in (m/s) 

 Z is the trajectory of the Jet (m) 

 



 JetJet Dv
Re  (8) 

For this case, the mix time was varied using Goal Seek® in Excel® to ensure an 

integer number of total tanks.  This was first done by specifying the velocity of the jet at 

10 m/s.  Z was calculated using Pythagorean Theorem (Figure 12).  A spreadsheet was 

used to calculate the number of tanks by multiplying the design flow rate by the total 

cycle time (assumed a place holder) and divided by the volume of a tank.  Using Goal 

Seek
®
, the mixing time was varied until the number of tanks reaches four.  Four tanks set 

the mix time at 30 minutes and when used in Equation 7, resulted in a nozzle diameter 

and Reynolds number of 0.037 m and 373,000, respectively. A 30 minute mixing time is 

a typical flocculation system mixing time.
64

 This corresponded to a cycle time which 

includes the fill/drain time, mixing time, and settling time of four hours per tank. 

The pumping power was calculated by determining the flow rate through the jet in 

m³/s using the calculated nozzle diameter and fluid velocity (Equation 9).   
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 2

4
JetJet DvV


  (9) 

Where: 

V  is the volumetric flow rate through the jet (m³/s). 

Next the pressure drop required to push the fluid through the nozzle was 

calculated using jet velocity and the density of the fluid. An assume water density 1,000 

kg/m³ was used in Equation 10.  The constant, C, was assumed to be 2.5 which represents 

the head loss associated with a jet nozzle and is found in the Handbook of Industrial 

Mixing.
65
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Where: 

 ΔP is the pressure drop (Pa) 

C is the velocity head loss through the nozzle 

The power required for a pump to generate the required head was calculated by 

multiplying the flow rate through the jet by the pressure drop (Equation 11). 

 VPP   (11) 

Where: 

 P is the power required by a pump (Watts) 

The power used over an operational year for a four-tank system was calculated by 

considering the operation time of a pump in a given tank compared to the settling and 

fill/drain time.  Considering the fill/drain time and flocc settling time, the pump operated 

13% of the total cycle time.  The jet flow rate and pressure drop are then calculated 

across the pump and are 0.0109 m³/s and 125,000 Pa, respectively.  This corresponded to 
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a 1.36 kW pump.  This pump operated for 13% of a 24 hour day and 351 days of an 

operational year. For a system which included four pumps, the annual energy requirement 

was 5,700 kWhr/yr or 0.110 kWhr/t BD.  Combined with the static mixer, the total 

energy for the flocculation system was 6.27 kW-hr/t BD. 

The material balance on the flocculation system was calculated as follows. It was 

assumed that 95% of the algae were recovered in a gelatinous phase at the bottom of the 

tank.
17

 The remaining water phase was then removed at an algae mass fraction of 0.05.  

Two streams exited the settling vessel, the essentially pure water stream and the 

flocculated water-algae slurry.  The water-algae slurry had compositions of 95% wt. 

water and 5% wt. algae. The growth medium and flocculant amounts were still negligible 

and are shown in Table 8. It was assumed the flocculant would stay with the algae mass 

in stream 5 as it flowed through the system. The amount of aluminum hydroxide exiting 

in the pure water stream was less than one PPM and is negligible (Figure 13).  These 

numbers were based on the calculated dry algae requirement going into the spray dryer of 

1,920 kg dry algae/t BD. 
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Table 8. Mass flow of streams entering and leaving flocculation system (kg/t BD). 

Stream [3] PBR Output [4] Flocculant [6] Water Phase [5] Slurry Phase 

Chemical 

m 

(kg/t BD) 

X 

(kg/kg) 

M 

 (kg/t BD) 

X 

 (kg/kg) 

M 

 (kg/t BD) 

X 

 (kg/kg) 

M 

 (kg/t BD) 

X 

 (kg/kg) 

Algae 2,020 0.024 0 0 96 0.0022 1,920 0.05 

Water 80,800 0.98 0 0 44,200 1.0 36,500 0.95 

Medium 55 0.00066 0 0 16 0.00037 38 0.0010 

Al2(SO4)3 0 0 21 0.69 0 0 0 0 

CaCO3 0 0 9 0.31 0 0 0 0 

Al(OH)3 0 0 0 0 0 0 5 0.00013 

CaSO4 0 0 0 0 0 0 13 0.0003 

Total 82800 1 30 1 44,300 1 38,500 1 
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[3]

514,000 kg/hr

xW=0.976

xA=0.024

xM=0.00066

[4] Flocculant

186 kg/hr

xAl2(SO4)3=0.69

xCaCO3=0.31 [6]

275,000 kg/hr

xW=1

xA=0.0022

1 ppm Al(OH)3

[5]

239,000 kg/hr

xW=0.95

xA=0.05

xM=<0.001

xAl(OH)3=<0.001

xCaSO4=<0.001

P-101
Electric

Sulzer SMX 

Static Mixer

T-102

T-104
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Flocculating System
95% Recovery

Concentration 25X
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Figure 13.  Detail of Flocculation system for the biodiesel manufacturing process. 

(Notation clarification can be found in Appendix A) 

 

Stream 6 from the flocculant step contained minimal amounts of calcium sulfate 

and was returned to the PBR.  Any additional calcium sulfate from the flocculation tank 

reached its maximum concentration, precipitated out of solution and exited in stream 5 

(Table 7).  

2.2.2.2 Drying 

The exiting algae rich slurry stream was then fed to a spray dryer to reduce the 

moisture content from 95% to 5%.
12

  A spray dryer was chosen due to its common use in 
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drying fine slurries, its fast processing time, and because it created porous, dried particles 

easily digestible by solvents during the extraction step.
68

  This process had the benefit of 

a short residence time (seconds), and limited the slurry’s exposure to high temperatures.  

Hot air at 180°C, 1 atm, and 0.02 kg H2O/kg DA absolute humidity was fed into the 

spray dryer. This temperature of hot air lies within an appropriate temperature range for 

spray dryers.
69

 The average heat capacity of air over the temperature range of 25 – 180°C 

is 1.007 kJ/kgK and the average heat capacity of water over this temperature range was 

4.195 kJ/kgK. The mass of dry air (DA) required to reduce the moisture content was 

calculated by using these average heat capacities of air and water. The assumptions of 

this calculation include: the enthalpy change of liquid water was negligible compared to 

the enthalpy changes undergone by the water vapor, and the energy required to increase 

the liquid water to the air temperature was negligible compared to the latent heat of 

evaporation of water.
70

 These assumptions resulted in the simplified energy balance for a 

spray dryer (Equation 12).  
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Where: 

Evapm  is the water being evaporated/removed (kg/kg t BD) 

airm  is the hot air being fed to the spray dryer (kg/t BD) 

1Wm  is the water contained in the incoming hot dry air (kg/kg DA) 

airPC is the heat capacity of dry air at standard temperature and pressure (1.009 

kJ/kg K) 
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OHPC
2

is the heat capacity of water at standard temperature and pressure (4.186 

kJ/kg K) 

inairT , is the temperature of the air entering the dryer (°C) 

outairT , is the temperature of the air exiting the dryer (°C) 

Vap

OHH 2 is the heat of vaporization of water (kJ/kg) 

The enthalpy of humid air at any given temperature and absolute humidity was 

calculated using Equation 13.  The dried algae biomass exiting the spray dryer needed to 

contain 5.0 % wt. water.  The reduction in water content was necessary for the extraction 

step since the presence of water reduces the hexane extraction efficiency.
19

 The flow rate 

of dry air required to reduce the water content to specifications was calculated using 

Equation 12.  For this case, 1,019 t DA/t BD was needed to remove 36,400 kg H2O/t BD. 
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Where: 

 wH  is the enthalpy of humid air at standard pressure and temperature T (kJ/kg 

DA) 

 
wvPC  is the heat capacity of water vapor at standard pressure (1.84 kJ/kg K) 

The humidified air leaving the spray dryer, now containing 0.06 kg H2O/kg DA, 

was sent to a heat exchanger where it was used to preheat the recycled, dried air.  A mass 

balance on water was used to determine the absolute humidity of the air leaving the spray 

dryer. Equation 12 was used to determine the enthalpy of the humid air, and an energy 

balance was done to determine the resulting stream temperatures. The exiting humid air 

from the spray dryer and the recycle of air and water are discussed in spray dryer heat 
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integration section.  After 36,400 kg of H2O/t BD were removed to achieve 5% water 

content, the mass fractions of the remaining components in the stream were calculated 

given the stream 5 mass flow rates. The water was transferred to the dry air stream 19 and 

the addition of water is seen in stream 9. The resulting algae slurry in stream 10 

contained 92% algae, 5% water, less than 2% medium, and 1% flocculant, by mass 

(Table 9, Figure 14). 

Table 9.  Mass flow summary for streams entering and leaving spray dryer (kg/t BD). 

Stream [5] Slurry Phase [19] Dry Air In [9] Humid Air Out [10] Dried Slurry 

Chemical m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) 

Algae 1,920 0.05 0 0 0 0 1,920 0.95 

Water 36,500 0.95 20,400 0.020 56,800 0.052 101 0.050 

Medium 38.3 0.0010 0 0 0 0 38.3 0.019 

Al(OH)3 4.84 0.00013 0 0 0 0 4.84 0.0024 

Dry Air 0 0 1,040,000 1 1,000,000 1 0 0 

Total 38,500 1 1,040,000 1 1,100,000 1 2,020 1 
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SD-101

Spray Dryer

Reduce Moisture

Content to 5%
Steam Heated

[5]

239,000 kg/hr

xW=0.95

xA=0.05

xM=<0.001

xAl(OH)3=<0.001

xCaSO4=<0.001

[10]

12,900 kg/hr

xA=0.92

xW=0.05

xDS=0.03

[8] Condensed Water

226,000 kg/hr

xW=1

C-101

Condenser
Cooling Water

 (20°C) 

[19] Hot Dry Air, 180°C, 13 bar

6,460,000 kg/hr

xAIR=0.98

xW=0.02

149 kJ/kg DA

Ha = 0.02 kg/kg DA

[9] Sat’d Humidified Air, 100°C, 1 atm

6,680,000 kg/hr

xAIR=0.95 

xW=0.05

250 kJ/kg DA

Ha = 0.056 kg/kg DA

[20] Sat’d Dry Air, 1 atm, 25°C

6,460,000 kg/hr

xAIR=0.98

xW=0.02

76 kJ/kg DA

Ha = 0.02 kg/kg DA

[25] Sat’d Air, 34°C, 1 atm

6,680,000 kg/hr

xAIR=0.95

xW=0.05

177 kJ/kg DA

Ha = 0.056 kg/kg DA

H-102

Air Heater
Sat’d Steam (13 atm)

275,000 kg Steam/hr

(150,000 kW-hr/hr)

Pre-Heated Air

H-101

Preheater

 

 

Figure 14.  Detail of spray dryer, heater, and preheater, with recycle system for the spray 

dryer. (Notation clarification can be found in Appendix A) 

 

The material flows to produce a tonne of biodiesel (Table 9) were converted to 

kg/hr using the plant capacity of 52,300 t BD/yr. The stream flows in kg/hr are presented 

in Appendix A. Commercial spray dryers are offered by SPX Corporation and are 

capable of capacities up to 80 t/hr.
71

 Since these values are on the same order of 

magnitude, spray drying was feasible on the scale of this size production facility. 

In order to determine energy requirements for the spray dryer system, heat 

integration was performed to minimize the energy consumption. This was done by 

establishing recycle loops for recovering energy from the air leaving the spray dryer at 

100°C and absolute humidity of 0.06 kg H2O/kg DA.  The water removed by the dryer 

was condensed from the air stream and returned to the PBR.  The humid air stream 
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contained energy which was used to preheat the incoming dry air stream to minimize the 

energy (steam) necessary to achieve the specified process conditions.  Mass and energy 

balances, as well as Equation 12 were used to determine the conditions of the heat 

integration system (Table 10).  The humid air stream at 100°C leaving the spray dryer 

was fed into a heat exchanger where it heated the incoming 25°C dry air. The exiting 

temperature was assumed to be 95°C to maintain a driving force for the energy and a 

temperature of 35.1°C was calculated through energy balances for the humid air stream 

exit temperature. 

 

Table 10.  Summary stream conditions for dry air recycle system for the spray dryer. 

Stream Temp. (°C) Ha (kg H2O/kg DA) Enthalpy (kJ/kg DA) 

[9] 100 0.060 262 

[25] 35.1 0.060 190 

[20] 25.0 0.020 76 

[19] 95.0 0.020 149 

 

The system was defined as the boundary around the preheater (H-101) and the 

heater (H-102). This allowed the energy balance to be closed around this system and 

determined the necessary flow of steam to achieve the specified spray dryer air feed 

conditions.  The air was recovered and assumed to be completely recycled, resulting in a 

constant dry air mass in all four streams (9, 25, 20, 19).   

The heat input of steam was determined by the steady state energy balance in 

combination with the calculated enthalpy in kJ/kg dry air (Equation 14). This resulted in 

an energy requirement of 159.0 GJ/t BD.  
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 )ˆˆˆˆ( ]19[]25[]20[]9[ HHHHmQ DASteam    (14) 

Where: 

SteamQ  is the energy required by the H-102 exchanger (kJ/t BD) 

DAm  is the flow rate of dry air used by the spray dryer (kg/t BD) 

]9[Ĥ  is the enthalpy of the humid air entering H-101 (kJ/kg DA)  

]20[Ĥ is the enthalpy of the dry air entering H-101 (kJ/kg DA)  

]25[Ĥ is the enthalpy of the humid air leaving H-101 (kJ/kg DA)  

]19[Ĥ is the enthalpy of the humid air leaving H-101 (kJ/kg DA)  

 

Next, using this calculated value as well as the latent heat of steam at 1,300 kPa and 

191.6°C, the flow rate of steam is determined (Equation 15). This pressure of saturated 

steam was chosen to provide a driving force to heat the dry air up to 180°C. 

 


Steam

Steam

Q
m


   (15) 

Where: 

Steamm is the required flow of steam to bring the dry air to the spray dryer 

operation conditions (kg/t BD) 

  is the latent heat of steam at 1,300 kPa (kJ/kg) 

The utilization of the heat integration technique reduced the energy requirement 

by 55%. Prior to heat integration, approximately 4.4 MJ/kg of water removed was 

needed. Typical dryers use between 3.3 and 3.9 MJ/kg water removed.
46

  Depending on 

the application for spray drying, up to 6 MJ/kg of water removed can be consumed.
69

 The 
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designed spray dryer lies between reported values and is considered an appropriate 

approximation. Following heat integration, approximately 2.5 MJ/kg of water removed. 

The flow rate of saturated steam required for H-102 was 44,300 kg/t BD or equivalent to 

24,200 kW-hr/t BD at 1,300kPa and 191.6°C. The cooling water in C-101 was assumed 

to cool the air to 25°C and bring its absolute humidity to 0.02 kg H2O/kg DA.  The air 

was then heated to 180°C and the initial conditions of the dry hot air were restored. 

2.2.3 Extraction 

The next stage in the refinement of algae into biodiesel is the recovery of the 

primary oil from the dried algae cake.  This involves the use of an organic solvent to 

dissolve and extract the lipid (TAG) from the algae cell followed by purification of the 

lipid before it can be reacted with methanol to form biodiesel.  

The triacylglycerols (TAGs) are contained within the algae cells.  N-hexane was 

determined as a suitable solvent capable of extracting lipid molecules from algae at a 

volumetric ratio of one cubic meter of solvent for a cubic meter of dried algae cake.
44

  At 

this stage in the process, the feed stream was made up of the dried algae biomass, water, 

growth medium, and aluminum hydroxide flocculant (Table 11).  The volume of the dry 

slurry was calculated by dividing the component mass flow by the component density.  

At a 1:1 ratio, the volume of dried algae biomass was also the volume of hexane required. 

The mass flow rate of hexane was then calculated using the density of hexane. 
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Table 11.  Summary of mass and volume flows entering the extraction phase. 

Chemical Flow (kg/t BD) Flow (m³/t BD) 

Algae 1,920 1.748 

Water 101.20 0.101 

Aluminum 

Hydroxide 4.84 0.002 

Medium sodium 

nitrate  38.33 0.017 

Total 2,070 1.868 

 

Stephenson’s work demonstrated that a five stage mixer-settler system can 

achieve a 90% TAG recovery.
44

  This separation was achieved using a counter current 

mixer-settler operation with an agitated tank and gravity settling basin.
65,

 
72

  This 

configuration allowed for maximum concentration driving forces and a minimal fresh 

solvent requirement. The exiting organic phase was assumed to contain only hexane and 

TAGs while the residual sludge contained the remainder of cell debris and chemicals.  

Figure 15 shows a representation of the equipment.  The dried algae slurry that exits the 

spray dryer fed the fifth stage mixing unit where it was contacted with the hexane 

solvent.  Fresh hexane solvent entered the first stage where it contacted the algae sludge 

which is mostly depleted of TAGs.  The fresh hexane solvent contacting the depleted 

algae sludge maximized the mass transfer driving force.  
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Mixer 5 Stage 5

Settler

Mixer n Stage n

Settler

Feed: Dried

Algae Slurry

Extract to Solvent Recovery

Hexane/TAG

 

 

  

 

Mixer 1 Stage 1

Settler

 

Raffinate

Solvent

Hexane

 

Figure 15.  Multi-stage counter-current mixer-settler design. 

The slurry or mixture properties are necessary to estimate the energy input in a 

mixer-settler system.  The energy requirement is obtained from the motor powering the 

impeller-mixed vessel and depends on the properties of the fluid being agitated.  The 

density of algae was assumed to be 1,100 kg/m³.
73

  The viscosity of a 30 g dry algae cells 

and 300 ml hexane mixture at the conditions of 50°C was 0.056 Pa-s.
 74

 This was 

assumed to be valid for the process operating conditions of ambient temperature, 25-

30°C.  The density of aluminum hydroxide was 2,420 kg/m³.  The growth medium was a 

mixture of similar minerals, and its density was assumed to be represented by the 

component of highest concentration. This component was sodium nitrate and has a 

density of 2,257 kg/m³.  To determine the mixing energy, the slurry density and viscosity 

was calculated.  Mass fractions and component densities and viscosities are shown in 

Table 12. 
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Table 12.  Summary of chemical and mixture properties of the feed solution to a mixing 

vessel. 

Chemical 

Density 

(kg/m³) 

Viscosity 

(Pa-s) 

Slurry Concentration 

Including Solvent 

Algae 1,100 0.056 0.582 

Water 1,000 0.001 0.031 

Aluminum Hydroxide 2,420 N/A 0.001 

Medium (sodium nitrate)  2,257 N/A 0.012 

Hexane 654 0.0029 0.370 

 

The slurry density was calculated using Equation 16.
65

  

 




i i

i

Slurry x




1

 
(16) 

Where: 

 ix  is the mass fraction of component i 

 Slurry  is the slurry density (kg/m³) 

 i  is the density of component i (kg/m³) 

The trace minerals in the slurry were omitted from the calculations since they are 

present in negligible quantities. This viscosity was calculated using Equation 17.  

 
 

n

i

iiMIX x   (17) 

Where: 

 MIX is the mixture viscosity based on weighted contributions (Pa-s) 

 i  is the viscosity of component i (Pa-s) 
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The resulting values for the density and viscosity of the mixture are shown in 

Table 13. 

Table 13. Density and viscosity of the extraction slurry 

Density 

(kg/m³) 

Viscosity 

(Pa-s) 

882.55 0.034 

 

The energy consumption for the mixing unit in the mixer-settler system was 

determined using methodologies described in the Handbook of Industrial Mixing.  The 

mixing vessel was the sole contributor to the energy requirements. This vessel used an 

electric motor to turn an impeller and agitates the hexane and dry algae mixture. The 

residence time of the tank needed to be greater than the mixing time to make this 

operation continuous. The energy consumed by the gravity settling basin was assumed to 

be negligible. 

In a design scenario for a mixing tank design, several parameters needed to be 

specified, but were varied to alter the process conditions.  For example, the tank 

dimensions or the mix time was manipulated to achieve the desired flow regime. The 

turbulent flow regime was appropriate for this application as it minimized the mix time 

while maximizing mass transfer.    

The first step in the mixing tank design was to specify the ratio of tank height, H, 

to tank diameter, T, the ratio of tank diameter to impeller diameter, D as well as the 

volume as the tank, V.  The H:T ratio was set no less than 0.6 as stated in the Industrial 

Handbook of Mixing.
75

 Figure 16 shows a diagram of a mixing vessel. The residence 

time in the tank could be altered by varying the volume of the tank. A mix time for 95% 
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homogeneity, θ95, was initially specified. If the resulting system was not turbulent, θ95 

was altered to achieve a turbulent flow regime.
65

  A standard high-flow mixing impeller 

such as a Pitched Blade Turbine was an appropriate impeller for this application.
75

 

Vessel

V (m³)

Motor/Drive

Specify H:T and T:D

H (m)

D (m)

T (m)

 

Figure 16.  Diagram with characteristic dimensions for mixing vessel design. 

 

A vessel volume of 5.0 m
3
 was selected and the ratio of H:T was set at one. These 

values are not necessarily the optimal dimensions, but serve to approximate the energy 

demand of the system. The H:T ratio was above 0.6, making it an adequate value.  Using 

the volume of 5.0 m
3
, Equation 6 was used to determine the tank diameter. The tank 

diameter was calculated as 1.85 m. 

 3/1

2.0

4










V
T


 (6) 

Where: 

 T  is the tank diameter (m) 

 V  is the volume of the tank (m³) 

 0.2 represents the specified H/T ratio 
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The tank height was calculated using the H:T ratio of 1 and resulted in a height of 

1.85.  The T:D ratio was set at a value of 4, a common and recommended value for a T:D 

ratio in the Industrial Handbook of Mixing.
65

  The impeller diameter was calculated as 

0.46 m using this T:D ratio. The resulting vessel specifications are summarized in Table 

14. 

 

Table 14.  Summary of mixing vessel specifications and dimensions. 

Parameter Dimension 

Volume (m³) 5 

T/D 4 

H/T 1 

T (m) 1.85 

H (m) 1.85 

D (m) 0.46 

 

The next step was to specify a mixing time and use the vessel dimensions and fluid 

properties to calculate the Fourier number for a turbulent flow regime (Equation 18).
65

 A 

value of 30 seconds for the blend time was used, but subject to change if the system was 

not turbulent.  The value of the Fourier number was 0.0018. 
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


 (18) 

Where: 

 Fo  is the Fourier number (Dimensionless) 
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 95  is the blend time for 95% homogeneity (s) 

 T  is the tank diameter (m) 

To determine the Reynolds number of the system, the impeller Power number was 

specified.  In the turbulent regime, the Power number approached a constant value.  For a 

pitched blade turbine (PBT) with 4 blades at 45°, the power number was 1.74.
65

  The 

Reynolds number was calculated using the relationship between the Fourier, Power, and 

Reynolds numbers for a turbulent regime in an agitated vessel (Equation 19).
65

 

 

Fo
Po

40.5
Re3/1   (19) 

Where: 

 Po  is the power number for a given impeller/turbine type/model (dimensionless) 

The calculated Reynolds number was 1,725.  The mixing vessel and impeller 

should result in a turbulent Reynolds number to ensure sufficient mixing and mass 

transfer. For the system to be turbulent, the Reynolds number needed to be greater than 

4,000.
66

 The mix time was decreased to 10 seconds, and the resulting flow was turbulent 

with Fourier and Reynolds numbers of 0.0006 and 5,180, respectively.  The Reynolds 

number for a mixed tank was used to determine the rotational speed of the impeller and 

then determine the power required to operate the impeller (Equation 20).
65

  

 



 2

Re
ND

  (20) 

Where: 

 N  is the angular speed of impeller rotation (RPS) 

 D  is the diameter of the impeller (m) 
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The angular speed of the impeller was 0.92 RPS. The power was then calculated 

using Equation 21.
65

  

 53DNPoP   (21) 

Where: 

 P is the power required to turn the impeller in a given fluid (W) 

The power to operate five mixing tanks was calculated by multiplying the output 

of Equation 21 by the number of blending tanks, each with its own mixer.  The energy 

requirements for the system were 1,075 kW-hr/yr or 0.02 kW-hr/t BD assuming a 24 

hr/day and 351 day operating year. 

The residence time was calculated using Equation 22 and compared to the mixing 

time. To ensure mass transfer is maximized, the residence time in the mixing tank needs 

to be greater than the required mixing time.  This ensured that there was sufficient phase 

contact.
75

  

 

V

V


  (22) 

Where: 

  is the residence time (s) 

 V is the volumetric flow rate (m
3
/s) 

 V is the mixing tank volume (m
3
) 

Using the tank volume of 5 m³ and the volumetric flow rate of the system of 6.4E-

03 m³/s, the residence time was 776 seconds (~13 minutes).  This was 78 times larger 

than the mix time which means the tank contents were thoroughly mixed.  The results of 

the calculations described above are shown in Table 15. 
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Table 15.  Summary of mixing tank specifications and results of calculations. 

Parameter Value Parameter  Value 

Flow (m³/s) 0.0064 Power (Watts) 25.5 

Vessel Volume (m³) 5 Power (1 Stage) (kW-hr/yr) 215. 

Mix time (s) 10 Power (1 Stage) (kW-hr/t BD) 0.0041 

Flow Residence Time (s) 776 5 Stage (kW-hr/yr) 1,075 

Fourier Number 0.0006 5 Stage (kW-hr/t BD) 0.02 

Reynolds Number 5,176 N (RPS) 0.92 

Power Number (PBT 4 Blades) 1.74 N (RPM) 55 

 

The material balance around the mixer-settler was used to determine how much 

TAGs were recovered by extraction.  The 1,920 kg algae/t BD contained 61.3% lipids or 

TAGs and 95% of these TAGs were recovered.
46, 55

 The quantity of TAGs extracted was 

calculated, as well as the TAGs lost. The extracted TAGs from the dry algae cake was 

1,120 kg TAGs/t BD. The water, growth medium, aluminum hydroxide, algae waste, 

calcium sulfate, and 5% of the TAGs exited the extraction process as waste.  The solvent 

make-up accounted for the lost hexane in the solvent recovery process which is described 

in the evaporator section.  The extract contained the TAG-Hexane phase which was sent 

to the solvent recovery process.  The solvent recovery system recycled the reclaimed 

hexane solvent back to the extraction process with trace amounts of TAGs and entered as 

fresh solvent once mixed with the required solvent make-up stream (Table 16, Figure 17).   
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Table 16.  Mass flow summary of the mixer/settler system. 

Stream [10] Dried Slurry [11] Solvent  [13] Extract 

Chemical m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) 

Algae 1,920 0.92 0 0 0 0 

Water 101 0.049 0 0 0 0 

Al(OH)3 4.84 0.0023 0 0 0 0 

Medium 38.3 0.018 0 0 0 0 

Hexane 0 0 1,420 0.99 1,220 0.48 

TAG 0 0 14.5 0.010 1,120 0.44 

Total 2,080 1 1,430 1 2,540 1 

Stream [12] Raffinate [24] Solvent Make-Up 

Chemical m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) 

Algae 759 0.78 0 0 

Water 101 0.104 0 0 

Al(OH)3 4.84 0.0050 0 0 

Medium 38.3 0.040 0 0 

Hexane 0 0 5 1.0 

TAG 59 0.06 0 0 

Total 970 1 5 1 

 

The extract was transferred to an evaporator to recover the hexane and prepare the 

TAGs for the transesterification process.  A likely choice for an industrial scale unit is a 

rising or falling film system.
72

 These industrial scale systems can be applied in multiple 

effect systems. Aspen Plus
®
 was used to model the separation of the hexane from the 

TAGs.  

Aspen Plus
®

 was used to simulate the evaporation and purification of the 

extracted triglycerides.  Triolein was used to model this separation since it is the only 

triglyceride available in the Aspen Plus
®
 databases.  The methyl ester of triolein is oleic 

acid which is a monounsaturated fatty acid.  The oil content of Scenedesmus Obliquus is 

61.3%. This oil is composed of 75% monounsaturated fatty acid.
55

  Since many of these 

oils behave similarly, using triolein and oleic acid with their associated chemical and 
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physical properties in this simulation was a proper assumption to model this process. The 

boiling points of hexane, oleic acid, and triolein are shown in Table 17.  

Table 17.  Comparison of boiling points for chemicals used in the Aspen Plus
®

. 

Chemical Boiling Temp (°C) 

Hexane 69 

Oleic Acid 360 

Triolein 540 

 

Several thermodynamic packages were considered for this simulation. When 

considering possible packages, it was observed that hexane is a non-polar compound 

while oleic acid and triolein have several polar sites.  UNIQUAC and NRTL both 

account for compound polarity and were considered valid models for this process. The 

main consideration in choosing a thermodynamic package was maintaining consistency 

throughout the course of research. The thermodynamic model used in the reaction and 

product purification step by Pokoo-Atkins, which uses the same chemical constituents, is 

NRTL.
52

  Therefore, the NRTL model was chosen.  

A series of flash drums was used to model the evaporator. The operating 

conditions for the system were chosen to minimize the undesirable triglyceride oxidation 

which occurs at sustained time intervals at elevated temperatures of 180°C.
76

  Operating 

under vacuum allowed the operating temperature to be reduced.   Maintaining the system 

at less than 100°C minimized the degradation of the TAGs and maximized the separation. 

A total of three flash drums were necessary to obtain a 99.6% pure triolein product. 

Triolein losses were negligible since the vapor stream of hexane and trace triolein were 

directly recycled and the triolein is fed back into the system. 
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For the first drum, the evaporator would operate at 101.3 kPa and 90°C. The next 

flash drum was then installed in the simulation and a new pressure is selected. In order to 

achieve an effective separation while reducing the temperature, a significant decrease in 

pressure was required. The second drum would operate at 30.4 kPa and 80°C. In the third 

flash drum, the hexane in the mixture was present in such small quantities that the 

pressure was reduced to 5.1 kPa to achieve an effective separation at a temperature of 

70°C.  The corresponding vapor fraction was 0.22. Table 18 summarizes the solvent 

recovery simulation operating conditions.  

 

Table 18.  Summary of flash drum simulation operating conditions. 

Stage T (°C) P (kPa) Vapor Fraction (V/F) 

1 90 101.3 0.85 

2 80 30.4 0.38 

3 70 5.1 0.21 

 

The material balance for the evaporator system was obtained from the Aspen 

Plus
®
 simulation.  The compositions of each stream in the evaporator system were 

programmed into the overall process simulation in Excel to update the compositions for 

changes in individual process flows. These compositions are shown in Table 19. 
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Table 19.  Results of component separation between hexane and triolein. 

Stream Liquid Phase Vapor Phase 

Stage xTAG xH Flow (kg/t BD) yTAG yH Flow (kg/t BD) 

1 0.901 0.0994 1,230 0.011 0.989 1,320 

2 0.969 0.0309 1,140 0.0404 0.960 91.0 

3 0.995 0.005 1,100 0.218 0.782 36.7 

 

The methodology for the steam requirement calculations was found in 

Introduction to Food Engineering and is used to estimate the steam generation or to 

evaluate the performance of multiple effect evaporators.
77

 The heat capacities, enthalpies, 

and heats of vaporization were obtained for hexane and triolein and are shown in Table 

20. Properties for hexane were found in the DIPPR
®
 database. An experimental heat 

capacity was found for triolein for 60°C. This was used for the heat capacity and assumed 

to be constant for this range of temperatures.  

Table 20. Properties for hexane and triolein. 

Property Hexane  Triolein 

Cp (kJ/kg K)   

70°C 2.48
78

 2.026
79

 

80°C 2.53
78

 2.026
79

 

90°C  2.58
78

 2.026
79

 

Hvap (kJ/kg)   

70°C 333.0278 N/A 

80°C 324.97
78

 N/A 

90°C 316.60
78

 N/A 
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The mass balance for the three effect system was defined and defined in Equation 

23. 

 
pvvvf mmmmm   321  (23) 

Where: 

fm is the mass flow rate of the liquid feed to the first effect 

1vm is the mass flow rate of the vapor from the first effect 

2vm is the mass flow rate of the vapor from the second effect 

3vm is the mass flow rate of the vapor from the third effect 

pm is the mass flow rate of the concentrated product 

The quantity of product, 1,094 kg/t BD, was known. The mass fraction of TAGs 

present in the incoming mixture was 0.44 and the desired TAG purity was 99.5%. 

Equation 24 was then used to find the total flow into the first effect. 

 
ppff xmmx    (24) 

The total flow rate into the first effect was 2,540 kg/t BD. The total amount of 

hexane evaporated was 1,304 kg/t BD. Enthalpy balances were then written around each 

effect separately. These are shown in Equations 25, 26, and 27.  

 
cssffvvvssff HmHmHmHmHm   1111  (25) 

 
1122221111 cvffvvvvff HmHmHmHmHm    (26) 

 
22332222 cvppvvvvff HmHmHmHmHm    (27) 

Where: 

 1fm is the mass flow rate into effect 2 

 2fm is the mass flow rate into effect 3 
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 sm is the steam flow rate 

 vsH is the enthalpy of saturated steam 

csH is the enthalpy of the condensed water leaving the first effect 

 fH is the enthalpy of the mixture flowing into the first effect 

1fH is the enthalpy of the mixture flowing into the second effect 

 2fH is the enthalpy of the mixture flowing into the third effect 

 1cH is the enthalpy of the condensed hexane leaving the second effect 

 2cH is the enthalpy of the condensed hexane leaving the third effect 

 1vH is the enthalpy of the hexane vapor leaving the first effect 

 2vH is the enthalpy of the hexane vapor leaving the second effect 

 3vH is the enthalpy of the hexane vapor leaving the third effect 

 pH is the enthalpy of the purified TAGs leaving the third effect 

The heat transfer across heat exchangers can be expressed by Equations 28, 29, 

and 30. It was assumed that the overall heat transfer coefficient for each of the three 

effects is 1,000 W/m
2
 K. 

 
cssvsss HmHmTTAUq   )( 1111  (28) 

 
111121222 )( cvvv HmHmTTAUq    (29) 

 
222233333 )( cvvv HmHmTTAUq    (30) 

Where: 

 iq is the rate of heat transfer across effect i  

 iU is the overall heat transfer coefficient of effect i  
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 iA is the area of the heat exchanger 

 sT is the temperature of the steam 

 iT is the boiling temperature maintained in effect i   

Assuming that the area of heat transfer for all three effects are the same, Equation 

31 was derived. 
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(31) 

The enthalpies of the TAG/hexane mixtures and hexane vapors were calculated. 

The heat capacities for the TAG/hexane mixtures were calculated using Equation 32. The 

enthalpies were then calculated using Equation 33.  

 
i

piipmix CxC  (32) 

Where: 

 piC is the heat capacity of component i  

 ix is the mass fraction of component i  

 )0(  ipii TCH  (33) 

The enthalpy of steam at 120°C and 2 bar is 2,706.6 kJ/kg. The enthalpy of the 

condensed water is 504.8 kJ/kg. The heat of vaporization for hexane is 368.18 kJ/kg. The 

heat of vaporization of hexane can be added to the enthalpy of liquid hexane at that 

specific pressure and temperature to acquire enthalpy values for the vapor. The resulting 

enthalpies and heat capacities are shown in Table 21. 
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Table 21. Calculated heat capacities and enthalpies. 

Cpf = 2.18 kJ/kg K 

Cpf1 = 2.15 kJ/kg K 

Cpf2 = 2.11 kJ/kg K 

Hf = 43.6 kJ/kg 

Hf1 = 193.3 kJ/kg 

Hf2 = 168.7 kJ/kg 

Hf3 = 145.78 kJ/kg 

Hc1 = 232.2 kJ/kg 

Hc2 = 202.4 kJ/kg 

Hc3 = 173.6 kJ/kg 

Hv1 = 548.8 kJ/kg 

Hv2 = 527.37 kJ/kg 

Hv3 = 506.62 kJ/kg 

 

The heat capacities and known flow rates were inserted into Equations 25, 26, 27, 

and 31. This resulted in Equations 34, 35, 36, 37, and 38.  The material balance in 

Equation 23 is then used to find the sixth equation and is shown in Equation 39. This 

produces a system of equations with six equations and six unknowns. The unknown 

variables are sm , 1vm , 2vm , 3vm , 1fm , and 2fm . 

 066.3183.72 1  vs mm   (34) 

 050.3266.31 21  vv mm   (35) 



   

74 
 

 3032.1938.54874.2201 12  fvs mmm   (36) 

 072.16837.5276.31632.193 2211  fvvf mmmm   (37) 

 69.5663.5069.32472.168 322  vvf mmm   (38) 

 384.0321  vvv mmm   (39) 

The system of equations was solved using Microsoft Excel
®
. The quantity of 

steam required for the multiple effect evaporators is 226.4 kg/t BD. To convert this to an 

hourly basis, the mass of steam on the basis of one tonne of biodiesel is multiplied by the 

plant capacity (52,300 t BD/yr). Therefore, the amount of steam required on an hourly 

basis is 1,406 kg/hr. 

Using these compositions the materials flows were calculated via material balance 

using the output flow from the extraction system (Table 22, Figure 17).   
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Table 22.  Mass flow summary for the multiple effect system (kg/t BD). 

Operating Conditions Stream [13] (Feed) [14] (Vap) [15] (Liq) 

Stage 1 (F-101) 

{0.85=V/F, 1 atm} 

Chemical m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) 

Triolein (TAG) 1,120 0.44 14.5 0.011 1,110 0.901 

Hexane 1,430 0.56 1,300 0.989 121 0.099 

Total 2,540 1 1,320 1 1,230 1 

Stage 2 (F-102) 

{0.38=V/F, 0.2 atm} 

Stream [15] (Feed) [26] (Vap) [27] (Liq) 

Triolein (TAG) 1,110 0.90 3.60 0.04 1,100 0.97 

Hexane 121 0.10 87.4 0.96 33.7 0.03 

Total 1,230 1 91.0 1 1,140 1 

Stage 3 (F-103) 

{0.22=V/F, 0.05 atm} 

Stream [27] (Feed) [28] (Vap) [29] (Liq) 

Triolein (TAG) 1,100 0.97 7.98 0.22 1,090 1.00 

Hexane 33.7 0.03 28.7 0.78 5.00 0.00 

Total 1,140 1 36.7 1 1,100 1 

 

[10]

12,900 kg/hr

xA=0.92

xW=0.05

xDS=0.03

[14]

8,160

xTAG = 0.012

xH = 0.988
[13]

15,800 kg/hr

xH = 0.56

xTAG = 0.44

[12] Waste

6,120 kg/hr

xA=0.78

xW=0.10

xM=0.04

xAl(OH)3=0.005

xCaSO4=0.01

xTAG=0.06

F-101
V/F=0.85

1 atm

[29] TAG Purified

1,095 kg/hr

xTAG = 0.996

xH = 0.004

[11]

8,980 kg/hr

xH=0.98

xTAG=0.02

1 m³ Hexane:m³ slurry 

Hexane 

Introduction

[24] Hexane Make-Up

758 kg/hr

xH=1

F-102
V/F=0.38

0.2 atm

F-103
V/F=0.22

0.05 atm

[15]

7,640 kg/hr

xTAG = 0.90

xH = 0.10

[27]

1,134 kg/hr

xTAG = 0.97

xH = 0.03

[26]

91.0 kg/hr

xTAG = 0.04

xH = 0.96

[28]

36.7 kg/hr

xTAG = 0.22

xH = 0.78

Forced-Circulation Evaporator

Solvent Recovery/TAG Purification
Steam Heated – 1650 kg/hr

P<Vacuum, T <180°C

Aspen Simulation

769 kW-hr/Ton BD

8,700 kg steam/hr

Mixer/Settler 

Five Stage Counter-Current
Hexane Extraction

95% TAG Recovery

0.02 kW-hr/Ton BD

 

 

 

Figure 17.  Detail of PFD showing extraction and purification steps. (Notation 

clarification can be found in Appendix A) 
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2.2.4 Reaction and Product Purification 

The transesterification reaction is where the biodiesel is produced.  In this 

reaction (Equation 40), a triglyceride molecule reacts with three alcohol molecules to 

form a glycerol molecule and three fatty acid methyl esters. This reaction is not 

spontaneous and must be carried out under special conditions, such as in the presence of a 

catalyst or at high temperatures.
35

  The alcohols used in transesterification are usually 

methanol or ethanol due to their cost and commercial availability compared to other 

alcohols.
 34, 39

  The various methods of transesterification are differentiated by the 

conditions under which they are carried out and can be separated into the following: basic 

catalysis, acidic catalysis, enzymatic catalysis, non-catalytic supercritical synthesis, and 

non-catalytic co-solvent synthesis. 

 

 

(40) 

The transesterification and purification steps in the manufacture of biodiesel from 

microalgae are well understood stages in this process.  Pokoo-Aikins and Nadim provide 

a well defined Aspen Plus
®
 simulation that documents the reaction of the TAGs and 

purification of the crude biodiesel as well as the reclamation of the glycerol byproduct 

and the complete purification system.
52

  Two reactor designs were investigated; Reactor 

Design One assuming a 70% conversion in each reactor and Reactor Design Two 

assuming a 90% conversion.  In order to take a conservative approach, the 70% reactor 

conversion case was chosen which resulted in a total TAG conversion to methyl esters 
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(biodiesel) of 91% of the input TAGs. The designed system has the capacity of producing 

130,000 t BD/yr which is different than the proposed system of 52,300 t BD/yr. The 

process was proportionally scaled down to achieve the desired production values for this 

system. These production values were then applied to the proposed inputs and values for 

the required inputs and shown in terms of kg/t BD.  

The overall process parameters of Pokoo-Aikins transesterification and 

purification were as follows. The simulation assumed 99.5% pure triglycerides in the 

extracted algae oil with impurities of this feed stream consisting of individual fatty acids. 

Alkali-catalyzed transesterification was used as it was found throughout several studies 

as an effective method of converting triglycerides and methanol to glycerol and fatty acid 

alkyl esters (FAMEs or biodiesel). Although our system also contained hexane, this 

component is present in such small quantities, 0.3% wt., that hexane was unlikely to have 

any significant effect on the transesterification.
52

  

This reaction was accomplished through a two stage transesterification where a 

70% conversion was assumed in each reactor vessel. First methanol and NaOH were 

mixed together to form a 1% wt. solution with a methanol feed rate of a 6:1 molar ratio of 

methanol to TAG’s.
52

  The excess TAGs from the first reactor were then fed into the 

second reactor with makeup NaOH and methanol to bring the methanol concentration 

back to a 6:1 molar ratio.
52

  

The products coming out of each reactor, FAMEs and Glycerol were first cooled 

to 33.3°C and 1 atm. The knowledge of these two component’s immiscibility and 

difference in specific gravity was exploited for separation via a decanter.
52

 The excess 

unreacted methanol was recovered using a distillation column and collected as vapor. The 
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excess sodium hydroxide was neutralized with hydrogen chloride. Hydrogen chloride 

was also used to split any soap that may form. The FAMEs were purified by water 

washing to remove residual catalyst, salts, methanol, free glycerol and soaps resulting 

with a biodiesel purity of 99.65% by weight. Glycerol was purified where residual 

FAMEs exit the column as vapor and glycerol exits from the bottom and was then 

considered a purified by-product. This Aspen flow diagram is shown in Appendix A.  

Only total system input mass flows were given. From these values as well as 

using the conversions through each reactor, the resulting mass generated of each 

component were calculated. The system described by Pokoo-Atkins was listed in such a 

way as to make a balance on each individual unit operation impossible without further 

details; therefore, calculations were done on the system as a whole using the author’s 

initial assumptions and process parameters. Using the specified reactor conversions, the 

quantity biodiesel produced, methanol consumed, and glycerol produced was calculated. 

Pokoo-Atkins performed energy integration on this process as well, resulting in 

optimized energy consumption. The mass requirements of each chemical and total system 

energy balance for this process were specified, and reported on a t BD basis. 

The compositions for individual streams were not provided and several 

assumptions were necessary to separate the system into individual output streams. The 

molecular weight of oleic acid was used as the molecular weight of the FAMEs and the 

TAGs consisted of three molecules of oleic acid, and one molecule of glycerol. 

Streams 17 and 18, the exiting biodiesel and glycerol streams, were assumed to be 

pure streams of usable product under the assumption that all life cycle emissions, due to 

these very small quantities of impurities, will be insignificant when compared to the 
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overall transesterification and purification process. There were two waste streams in this 

process, one from the water washing, and one from decanting. In the waste from the 

water washing, it was assumed that purely salts will be taken out in the water. In the 

decanter waste, it was assumed that this was unreacted TAGs, excess sodium hydroxide 

catalyst, and the residual hexane. A PFD with mass and energy flows is shown in Figure 

18. 

Transesterification and

Purification Process
Assume 90% conversion

0.60 kW-hr/hr

1.69 kg steam/hr

[16] Reactor Feeds

1,735 kg/hr

xMeOH=0.41

xNaOH=0.021

xHCl=0.0063

xW=0.57

[17] Purified Glycerol

675 kg/hr

xG=1

[29] TAG Purified

1,095 kg/hr

xTAG = 0.996

xH = 0.004
[18] Purified Biodiesel

6,208 kg/hr

xBD=1

[23] Rinse Water

1,038 kg/hr

xNaCl=0.017

xH=0.030

xW=0.95

[30] Decanter Waste

215 kg/hr

xTAG=0.92

xH=0.05

 

Figure 18.  Detail of transesterification and biodiesel purification process PFD. 

(Notation clarification can be found in Appendix A) 

 

The mass flow rate of each stream was then calculated using the assumptions and 

system inputs. Each stream was separated in a way which would allow for an effective 

life cycle assessment (LCA) of the entire transesterification and purification process. 

Energy requirements were found by proportionally scaling down Pokoo-Aikins energy 

requirements to the design basis. 

The unreacted methanol produced is purified by distillation and recycled back 

into the reactor. This greatly reduces then quantity of methanol required. The resulting 
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streams are shown in Table 23. The cooling energy required is 0.10 kWhr/t BD and the 

heating requirement is 0.15 kWhr/t BD. This heating requirement was then converted to 

mass of steam by utilizing the latent heat of saturated steam at 13 bar and results in 0.27 

kg/t BD. 

Table 23.  Optimized reaction and purification stream table. 

Stream [16] Reaction Inputs [29] Pure TAGs [18] Pure FAME's (Biodiesel) 

Chemical m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) 

TAG 0 0 1,094 1 0 0 

MeOH 113.5 0.40 0 0 0 0 

NaOH 5.806 0.02 0 0 0 0 

HCl 1.759 0.0062 0 0 0 0 

H2O 158.5 0.56 0 0 0 0 

FAME 0 0 0 0 1,000 1 

Glycerol 0 0 0 0 0 0 

NaCl 0 0 0 0 0 0 

Hexane 5.0 0.018 5 0 0 0 

Total 285 1 1,099 1 1,000 1 

Stream [17] Glycerine [23] Rinse Waste [30] Decanter Waste 

Chemical m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) m (kg/t BD) x (kg/kg) 

TAG 0 0 0 0 98 0.92 

MeOH 0 0 0 0 0 0 

NaOH 0 0 0 0 4 0.036 

HCl 0 0 0 0 0 0 

H2O 0 0 159 0.98 0 0 

FAME 0 0 0 0 0 0 

Glycerol 109 1 0 0 0 0 

NaCl 0 0 3 0.017 0 0 

Hexane 0 0 0 0 5 0.047 

Total 109 1 162 1 107 1 
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2.3 Summary of Base Case  

A summary of the energy requirements for each unit operation is shown in Table 24. The 

PBR contributed to nearly all of the electricity consumption. The other process’ 

contributions were negligible in comparison. The energy estimations for the PBR have 

many uncertainties such as lack of data on a commercial system design. This resulted in 

large variations in energy consumption depending on the method of estimation. In 

Stephenson’s LCA, it was also found that the PBR was also the major contributor to 

energy consumption.
44

 The lack of commercial scale PBRs suggest that this is a major 

obstacle to overcome in making algae-derived biodiesel a feasible process.  

Table 24.  Summary of the relative energy requirements of the process stages. 

Process Energy Breakdown 

Unit 

Electricity 

(kWh/t BD) 

Electricity 

(%) 

Steam 

(kg/t BD) 

Steam (%) 

Total Energy 

(kWh/t BD) 

Total Energy 

(%) 

PBR 39,800 >99.9%  0 0% 39,800 62% 

Flocculation 6.3 <0.1% 0 0% 6.3 <0.1% 

Spray Drying 0 0% 44,300 99.5% 24,200 38% 

Extraction and Solvent 

Recovery 

0.0206 <0.1% 226 0.5% 124 0.2% 

Reactor/Purification 0.1 <0.1% 0.27 <0.1% 0.25 <0.1% 

Total 39,800   44,500 100.0% 64,100   

 

If the PBR electricity consumption is removed from consideration, the resulting 

energy contributions are shown in Table 25. The major contributor becomes the spray 

drying step, contributing to nearly 99.5% of the total energy requirements. This was an 

expected result due to the large quantity of water removed from the algae during this 

operation. All other processes are insignificant when compared to this stage.  
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Table 25. Summary of the relative energy requirements without PBR. 

Process Energy Breakdown 

Unit 

Electricity 

(kWh/t BD) 

Electricity 

(%) 

Steam 

(kg/t BD) 

Steam (%) 

Total Energy 

(kWh/t BD) 

Total Energy 

(%) 

Flocculation 6.3 98% 0 0% 6.3 <0.1% 

Spray Drying 0 0% 44,300 99.5% 24,200 99.5% 

Extraction and 

Solvent Recovery 

0.0206 0.3% 226 0.5% 124 0.5% 

Reactor/Purification 0.1 1.6% 0.27 <0.1% 0.25 <0.1% 

Total 6   44,500   24,400   
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Chapter 3 

Development of Life Cycle Inventories 

In order to make an accurate assessment of the environmental impact, a 

comprehensive life cycle inventory of each process must be developed. This inventory 

includes the production of all raw materials, all energy requirements, and management of 

waste streams, as well as direct emissions from the manufacturing process. The life cycle 

inventories were obtained using SimaPro
®
 software. SimaPro

®
 contains a large database 

of life cycle inventories for materials and energy. These established databases were used 

for the majority of the compounds in this process. When the material was not found in the 

database, a new LCI for that material was developed, and the methodology used to 

develop a life cycle inventory properly documented. Figure 19 shows the information 

included in a comprehensive LCI for any given manufacturing process. 

 

Figure 19. Flow diagram for life cycle inventories of a manufacturing process 
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3.1 Raw Materials LCIs 

Life cycle inventories were obtained for each individual processing stage within 

the production of algae-derived biodiesel. The process was divided into the algae growth 

stage, flocculation stage, spray drying stage, extraction stage, solvent recovery stage, and 

reaction/final purification stage. All of the raw material and energy inputs were compiled 

(Table 26) and then defined in SimaPro
®
. Each raw material and energy input has 

associated emissions, energy consumption, and raw material consumption values. Every 

material input below 0.1 kg/t BD was considered to be insignificant towards the life cycle 

analysis and was not considered as part of the LCI. Components considered to be 

insignificant include: zinc sulfate, copper sulfate, sodium molybdate, and cobalt(II) 

nitrate. 
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Table 26: Raw material inputs into the algae biodiesel process. 

Inputs 

Growth 

(kg/t BD) 

Flocculation 

(kg/t BD) 

Extraction and Solvent Recovery 

(kg/t BD) 

Reaction and Purification 

(kg/t BD) 

Water 1,150 0 0 158 

KH2PO4 14.5 0 0 0 

CaCl2 2.07 0 0 0 

MgSO4 6.21 0 0 0 

NaNO3 20.7 0 0 0 

K2HPO4 6.21 0 0 0 

NaCl 2.07 0 0 0 

Na2EDTA 0.828 0 0 0 

KOH 0.513 0 0 0 

FeSO4 0.412 0 0 0 

H2SO4 0.152 0 0 0 

H3BO3 .903 0 0 0 

MnCl2 0.237 0 0 0 

ZnSO4 0.0184 0 0 0 

NaMoO4 0.0323 0 0 0 

CuSO4 0.00654 0 0 0 

Co(NO3)2 0.00409 0 0 0 

CaCO3 0 9.32 0 0 

Al2(SO4)3 0 20.7 0 0 

CO2 3,130 0 0 0 

Hexane 0 0 5.03 0 

MeOH 0 0 0 113 

NaOH 0 0 0 5.81 

HCl 0 0 0 1.76 
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Some of the LCIs for components which are significant contributors to the 

process were not available in SimaPro
®
. Table 27 shows a list of available and 

unavailable chemicals in the database. Inventories unavailable in the SimaPro
® 

database 

were generated by other means. These methodologies are described within the LCI 

generation section of the report. 
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Table 27. Inventories available and unavailable in SimaPro
®

 

Available Inventories Unavailable Inventories 

Tap water, H2O, at user/RER U Na2 EDTA 

Calcium chloride, CaCl2, at plant/RER U Dipostassium phosphate (K2HPO4) 

Magnesium sulfate (MgSO4), at plant/RER U Manganese Chloride (MnCl2) 

Sodium chloride (NaCl), powder, at plant/RER U Monopotassium phosphate (KH2PO4) 

Potassium Hydroxide (KOH), at regional storage/RER U Sodium Nitrate (NaNO3) 

Iron sulfate (FeSO4), at plant/RER U  

Sulphuric acid (H2SO4), liquid, at plant/RER U  

Boric acid (H3BO3), anhydrous, powder, at plant/RER U  

Aluminum sulfate (Al2(SO4)3), powder, at plant/RER U  

Limestone (CaCO3), milled, loose, at plant/CH U  

Hexane (C6H14), at plant/RER U  

Methanol (CH3OH), at plant/GLO U  

Sodium hydroxide (NaOH), 50% in H2O, production 

mix, at plant/RER U 
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The LCI for each raw material can be found in Table 28 and Table 29. Each 

impact category is measured on a one kg basis. The relative impact of each given 

component can then be compared to find the major contributors to each impact category. 

Figure 20 shows the comparison of the overall life cycle emissions of the chemicals and 

indicates that the two components with the largest emissions are monopotassium 

phosphate and dipotassium phosphate. Figure 21 shows a comparison of the Cumulative 

Energy Demand (CED) of each component. The CED is the entire demand of primary 

energy associated with the raw material production, manufacturing process, and waste 

disposal of the component. The two components with the largest energy demand are 

Na2EDTA and hexane respectively. 

Each raw material inventory in SimaPro
®
 has its own set of assumptions and 

includes all energy, material, emissions, and waste management impacts. This data can be 

derived from stoichiometric relationships, reported literature values, or measured data 

from existing production facilities. The selected database entry for each component 

available in SimaPro
®
 is shown in Table 27. 
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Table 28. LCIs for all materials used in the algae biodiesel process on a per kilogram 

basis. 

 

 

 

 

 

Table 29. LCIs for all materials used in the algae biodiesel process on a per kilogram 

basis. 

Figure 20. Comparison of total emissions from each raw material 

Figure 21. Comparison of CED from each raw material 
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Water was defined in SimaPro
®
 as tap water. The resulting total emissions from 

the generation of tap water are insignificant compared to other processes at 3.7 x 10
-4

 kg. 

The majority of these emissions are to air (88%). The CED was 0.006 MJ for every kg of 

tap water generated. Tap water includes the impact of infrastructure as well the energy 

used for water treatment and the transportation to the end user. There are no emissions 

from the water treatment process. Tap water is based on data from Switzerland and 

energy estimations from Denmark. 

Calcium chloride is present in the growth medium for the algae. The total 

emissions generated from each kg of calcium chloride are 1.18 kg. The emissions to soil 

are essentially negligible, while 74% and 25% of the total emissions are to air and water, 

respectively. The CED for the generation of calcium chloride is 11.5 MJ/kg. This was 

modeled by the manufacturing process using the Solvay technique. It includes: the 

consumption of raw materials, auxiliaries, energy, infrastructure and land use, and the 

transport of raw materials, auxiliaries, and wastes. It also includes the generation of 

wastes and emissions into the air and water. Byproducts and coproducts are not 

considered. The data is based on measurements from two plants in Germany. 

Magnesium sulfate is also a component of the growth medium.  The total 

emissions are low at 0.3 kg with 97% being emitted to air. The CED for this process is 

6.29 MJ. The model within the SimaPro
®
 database includes the raw materials, machinery, 

and energy consumption for the production and infrastructure of the site. It is based on 

average European data from existing production plants. 

Sodium chloride is present as part of the growth medium. Total emissions from 

the production of sodium chloride are 0.21 kg with air emissions contributing to 93% of 
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these emissions. The CED of this process is 3.69 MJ. This process includes the solution 

mining process of sodium chloride, the removal of impurities, as well as the drying step. 

Mining is modeled by thermo compressing technology. It is based on data acquired from 

one European mining site. 

Potassium hydroxide is another component of the growth medium and is a cradle 

to gate LCI including precursors, ancillary materials as well as transportation 

requirements. It is produced by the electrolysis of potassium chloride brine in electrolytic 

cells. This is based on industry data from the United States. The resulting total emissions 

are relatively high at 4.26 kg. The majority of these emissions are to water (56%) while 

44% are to air. Soil emissions are negligible. The CED for potassium hydroxide 

production is 37.1 MJ. 

Iron sulfate is present in the growth medium. This is a by-product of the steel and 

iron manufacturing. This database entry is specified as a rough estimation of electricity 

use for the purification of this byproduct in Switzerland. This result is emissions of 0.20 

kg with 96% emitted to air. The CED for this process is 3.8 MJ. 

Sulfuric acid is also present in small quantities within the growth medium. The 

total emissions are 0.16 kg with 94% being to air. The CED is 2.4 MJ. This is modeled as 

the collection of SO2 containing gas by means of oxidation of the sulfur containing raw 

materials. It includes the conversion of SO2 to SO3 and the absorption of SO3 into 

aqueous solution to yield sulfuric acid. It includes all auxiliaries, raw materials, energy, 

infrastructure and land use, as well as the transportation of raw materials, auxiliaries and 

wastes. These values are based on literature and European data from 1990 to 2000. 
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Boric acid is a component of the growth medium and is based on the average 

European plant data for the raw materials, transportation requirements, and electricity 

usage. Emissions were estimated and the infrastructure of the plant was approximated. 

The resulting emissions are 0.79 kg with 97% contributing to emissions to air. The CED 

for this process is 14 MJ. 

Aluminum sulfate is a flocculating agent which is added during the flocculation 

stage of the algae process. The total emissions are 0.54 kg with 92% emitted to air. The 

CED for this process is 9.5 MJ. This database entry includes the raw materials and energy 

consumption for the production and infrastructure of the plant. They are based on average 

European plant data. 

Calcium carbonate is also a flocculating agent which reacts with aluminum 

sulfate. This was defined as limestone which is included in the SimaPro
®
 database. This 

includes all the raw materials, emissions, waste treatment, and utilities required to mine, 

crush, and mill the limestone. The data comes from one company in Switzerland. The 

resulting emissions are low at 0.01 kg. The CED for this process is also low at 0.4 MJ. 

Hexane is used for the extraction of the TAGs from the dried algae biomass. The 

emissions for the production of hexane are 1.06 kg with 83% emitted to air and 17% 

emitted to water as VOCs. The CED is high at 62 MJ. It was modeled through the 

molecular sieve separation of naphtha. This includes the materials, energy consumption, 

infrastructure, as well as plant emissions. This data is modeled with data from plants 

located in the United States.  

Methanol is a reactant for the transesterification of the TAGs. Total emissions are 

0.65 kg with 99% of them being emitted to air. The CED for this process is 37.6 MJ. The 
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SimaPro
®
 database entry is obtained from modeling the process of producing methanol 

from natural gas. It includes the raw materials, processing energy, estimations on catalyst 

use, emissions to air and water, as well as the plant infrastructure. These values come 

from various plants at different locations as well as literature related to the design of 

methanol plants. 

Sodium hydroxide is the catalyst for the reaction stage of the biodiesel process. 

The database value is based on the average European production of sodium hydroxide 

from mercury, diaphragm, and membrane electrolysis cell technologies. The total 

emissions from this process are 1.16 kg with 59% contributing to air emissions and 41% 

contributing to water emissions. The resulting CED is 23 MJ. 
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3.2 LCI generation 

For species not available in the SimaPro
®
 database, a new process had to be 

created to appropriately model the environmental impact. Only five components were not 

available in the existing SimaPro
®
 database and were defined as follows. 

Monopotassium phosphate is found in small quantities as a component of the 

growth medium. In order to model monopotassium phosphate, a compound which would 

have a similar production pathway was found. Sodium phosphate is defined in the 

SimaPro
®
 database and is very likely to have a comparable production pathway since is a 

similar salt. This entry is based on the production of sodium phosphate from phosphoric 

acid and soda. The raw material input of sodium phosphate uses soda, or sodium 

carbonate. The values are based on a United Kingdom production plant. In order to create 

the potassium salt, potassium carbonate was used as the replacement raw material. It was 

assumed that the same molar quantities of potassium carbonate as sodium carbonate will 

be required since the two molecules have the same ratio of cation to anion. The quantity 

of sodium carbonate required is given within SimaPro
®
 entry for sodium phosphate. This 

mass was converted to the moles of sodium hydroxide. The mass of potassium carbonate 

required to replace sodium carbonate was then calculated using this same number of 

moles.  The result of this gives total emissions of 7.17 kg with 59% emitted to air and 

41% emitted to water. The CED for this process is 59 MJ. 

Dipotassium phosphate is another component of the growth medium. Dipotassium 

phosphate is an intermediate in the production of monopotassium phosphate. Additional 

phosphoric acid is added to dipotassium phosphate to produce monopotassium phosphate. 

For this reason, the same chemical process and methodology as used with 
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monopotassium phosphate was applied to assess the emissions associated with this raw 

material. The only difference was in the required moles of potassium carbonate compared 

to phosphoric acid. This change was calculated through the difference in molecular 

weight of dipotassium phosphate and monopotassium phosphate. This process results in 

total emissions of 5.43 kg with 59% to air and 41% to water. The CED is 45 MJ. 

Manganese chloride is a component of the growth medium and is not present in 

the SimaPro
®
 database. Using the methodology that was done to generate the 

monopotassium phosphate inventory; a similar production route was found.  Magnesium 

chloride is found in the database and will be assumed to have a similar production route 

as manganese chloride. The raw material input for magnesium chloride is defined as 

magnesium, in ground. This refers to mined raw magnesium compounds. Manganese, in 

ground is also available in SimaPro
®
. In order to create the life cycle inventory for 

manganese chloride, we used the process for magnesium chloride and substitute 

manganese, in ground for magnesium in ground. The same molar quantity of manganese 

will be added. This was calculated using the same procedure as for monopotassium 

phosphate. Total emissions are 0.86 kg with 74% to air and 26% to water. The CED of 

this process is 8 MJ. 

Na2EDTA is required for the growth medium. Since this compound is not 

available in SimaPro®, the most similar available compound is used. EDTA is available 

which is based on the production using ethylenediamene by alkaline cyanomethylation. 

This entry is based solely on stoichiometric calculations. There is one additional step 

required to create Na2EDTA. This is created by adding sodium hydroxide to EDTA in 

solution. Since EDTA’s database entry was based on stoichiometric calculations, the 
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stoichiometric relationship between the quantity of EDTA and sodium will be used. For 

every mole of EDTA, two moles of sodium hydroxide are required. This can simply be 

added to the existing EDTA entry by adding the required mass of sodium hydroxide to 

the input section, since the addition of sodium hydroxide is likely to have minimal energy 

impact on the existing process. The resulting emissions are 4.49 kg with 90% of 

emissions from air. The CED of the process is high at 96 MJ. 

Sodium nitrate is an ingredient in the growth medium. SimaPro
®
 contains sodium 

nitrate in the database, but only as a raw material. This only contributes to the raw 

material used impact category and does not contribute to the remainder of the impact 

categories. Assuming there are no emissions associated with the mining and processing 

would be inaccurate. For this reason, a more appropriate sodium nitrate inventory was 

generated. In order to make an estimate of the energy required to mine sodium nitrate, an 

existing mining operation in SimaPro
®
 was used. The limestone mining process was 

utilized to approximate the mining. Instead of using calcite as a raw material, sodium 

nitrate was specified as the raw material consumed. All of the fuel, energy, emissions, 

and infrastructure requirements for this process were assumed to be similar. Since this 

process is based on the milled limestone process, the resulting emissions are the same at 

0.01 kg with 96% emitted to air. The CED for this process is 0.4 MJ. 
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3.3 Generating LCIs: Methanol Example 

A LCA requires that all of the impacts associated with the inputs are defined. 

These are commonly obtained through databases. SimaPro
®
 contains extensive databases 

and users can easily compile inputs, outputs, energy requirements, and the waste 

products. The databases contain LCAs for the production of a wide range of specific 

inputs. These databases do not always contain every required component for a 

comprehensive LCA of a process. If the database does not contain information for an 

input, the analysis requires research, assumptions, and estimations to develop a LCA for 

the process. This walks through the generation of a LCI for methanol.  

Methanol is a good example for the generation of a LCA because it has very few 

inputs, and is commonly used in industrial processes. The production of methanol is a 

commercially established technology with extensive data regarding the feedstocks, 

energy input, products, and emissions. Steam reforming is the primary method of 

producing methanol and accounts for 60% of the world production.
80

 The synthesis gas 

preparation reactions are found in equations 41 and 42 and the methanol synthesis 

reactions are shown in equations 43 and 44. 

 
224 3HCOOHCH 
 

(41)
 

 
222 HCOOHCO 
 

(42)
 

 OHCHHCO 322 
 

(43)
 

 OHOHCHHCO 2322 3 
 

(44)
 

The overall process flow diagram for the steam reforming system is shown in 

Figure 22. This system is highly integrated with a complicated steam system and heat 

recovery system. Steam is used both as a raw material and an energy source, causing 
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complications when calculating the required inputs for such a system. Known data is the 

most accurate method of compiling an LCI and as a result, the efficiency, energy 

consumption, and raw materials were obtained from measured data. All of the inputs and 

emissions are specified on the basis of producing 1 kg of methanol. The following 

sections describe the required inputs and emissions from methanol production to generate 

the methanol inventory. 

Steam 
Production

Methanol 
Synthesis

Steam 
Reforming

Methanol 
Purification

Process Fuel

Steam

Synthesis Gas Raw Methanol

Methanol

Sulfur from 
Desulfurization

Purge Gas

Hydrogen
Light Ends

Heat Recovery

Process Water

Natural Gas

Electricity
Cooling 
Water

Catalysts

Emissions
Waste 
Water

Waste 
Catalyst

 

Figure 22. Simplified PFD for methanol production using steam reforming.
81

 

The major resource in the production of methanol is natural gas, which serves as a 

raw material and an energy source. The natural gas consumption was determined for a 

typical size methanol plant to be 750,000 t/yr.
81

 This equates to a total natural gas 

requirement was 32.7 MJ/kg of methanol. This gas requirement includes that needed for 

both the raw material production and heating requirements. To quantify the emissions 

from burning natural gas, the fuel and feedstock must be separated. It was determined 
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that 76.5% of the natural gas is used as a raw material and the remainder is used for the 

generation of steam. This yields 25 MJ of natural gas as raw material, and 7.7 MJ of 

natural gas burned in a furnace for every kilogram of methanol produced. Hydrogen is a 

byproduct of this process where 0.06 kg is generated for every kilogram of methanol 

produced, and is assumed to be burned in the furnace for the generation of steam. The 

emissions calculations are discussed in the emissions section.  

Water is used as both a raw material and for cooling. Data from plants of similar 

size were used. Between 0.3 kg and 0.85 kg of deionized water for steam is required as a 

feedstock for the generation of methanol. Cooling water is also required for this process, 

and varies from plant to plant. An average value of cooling water makeup was used 

which was 8.16 kg/kg of methanol.
81

 The water requirements are known, but the impact 

of water is unlikely to influence the LCA of methanol production (Figure 20, Figure 21) 

and was not considered in this model. 

Electricity is used to operate rotary machines such as compressors, fans, and 

pumps within the methanol process. The average electricity consumption was found to be 

0.27 MJ/kg of methanol, based on the use of external electricity from an average of 

methanol plants. 
81

 

The production of methanol requires 3 different catalysts: Desulfurization, steam 

reforming, and synthesis catalyst. The first of which is for the desulfurization process and 

consists of 4% NiO, 14% MoO3, with the remainder being Al2O3. The steam reforming 

process requires 16% NiO with the remainder of Al2O3 and the methanol synthesis uses 

64% CuO, 24% ZnO, with the balance made up of Al2O3. Using an isothermal converter, 

the catalyst yield factor is approximately 1,000 kg of methanol/h·m
3
 of catalyst bed.

82
 For 
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these estimations, the catalyst density was assumed to be 1,300 kg/m
3
, and 8,000 h/yr 

production time was used. The expected lifetime of all of these catalysts is 5 years. This 

yields approximately 40 mg of catalyst for 1 kg of methanol with 25 mg of Al2O3, 9 mg 

of CuO, 2 mg of NiO, 3 mg of ZnO, and 1 mg of MoO3. Since these quantities are orders 

of magnitude smaller compared to other inputs, they will not have a significant impact on 

the LCA, therefore their impact was considered negligible for the purpose of this 

example. 

The majority of the emissions to air is generated by the combustion of natural gas 

in the furnace and is described in the natural gas combustion section. Hydrogen 

combustion, desulfurization, and fugitive emissions generate additional emissions to air. 

NOX is generated by the combustion of the hydrogen produced in the methanol synthesis 

and  was specified in Faist Emmenegger & Heck (2007) as 23.3 mg/MJ of H2 burned.
83

 

The lower heating value (LHV) of H2 is 108 MJ/kg of H2. Using this information 0.06 kg 

of H2 was generated for every kilogram of methanol produced, resulting in 0.15 × 10
-3

 kg 

of NOX emissions. Natural gas requires desulfurization before it can be used in the 

methanol production process. Faist Emmenegger & Heck (2007) specified that 0.55 mg 

of SO2 is released for every megajoule of natural gas combusted.
83

 This was assumed to 

be the quantity of SO2 that required removal from the feedstock of the gas and resulted in 

13.8 × 10
-6

 kg of SO2 emissions. Non-methane volatile organic compounds (NMVOC) 

and methane emissions were reported in Delucchi et al. 1996.
84

 All NMVOC were 

specified as methanol and were 0.53 × 10
-3

 kg/ kg methanol and 0.98 × 10
-3

 kg of 

methane. 
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The liquid exiting the bottoms after the distillation for methanol purification 

(Figure 22) contains water, methanol, ethanol, higher alcohols, oxygen-containing 

organic compounds, and variable quantities of paraffin.
82

 Every kilogram of methanol 

results in 0.2 kg of waste.
81

 This waste is sent to a biological treatment unit and the 

emissions following treatment are shown in Table 30.
85

 The biological oxygen demand 

(BOD) was assumed to be the quantity of methanol, formaldehyde, and phenol assuming 

a degradation of 96% in the biological treatment unit. The emissions from the cooling 

water discharge were assumed to be the minimum requirements for cooling water 

discharge as described in IPPC 2000.
86

  

Table 30. Emissions to the water for methanol production (g/kg methanol produced) 

Emission Emissions from 

waste water 

Emissions from 

cooling water 

Total Emissions 

to water 

COD 0.3 0.19 0.49 

BOD 0.18 - 0.18 

DOC, TOC 0.18 0.06 0.24 

AOX - 0.001 0.001 

Phosphor (Ptot) - 0.01 0.01 

Formaldehyde, CH2O 0.1 - 0.1 

Methanol, CH3OH 0.03 - 0.03 

Phenol, C6H6 0.01 - 0.01 

Suspended solids 0.02 - 0.02 

Chloride, Cl
-
 - 0.002 0.002 
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Emissions to soil were not considered in this analysis. All catalysts were assumed 

to be recovered and no emissions were accounted for the spent catalyst. 

3.3.1 Raw materials generation 

The inputs into the methanol production which significantly impact the LCA were 

natural gas as a raw material, natural gas burned in a furnace as a heat source, and the 

required electricity. Electricity generated from natural gas will be modeled for simplicity 

purposes. The general process flow diagram for natural gas is shown in Figure 23.  

 

Natural Gas Extraction

Natural Gas Production

Natural Gas Distribution

Electricity from Natural Gas

Natural Gas Combustion

Raw Material
Input

Heat Input

Electricity 
Input

 

Figure 23. Natural gas process flow diagram. The natural gas distribution, combustion, 

and electricity from natural gas are all inputs into the methanol process. 
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To accurately model the generation of electricity from natural gas, the inputs, 

outputs, and emissions for the 5 processes in Figure 23 need to be specified. The 3 direct 

inputs into methanol are natural gas distribution, natural gas combustion, and electricity 

from natural gas. The electricity for the methanol plant is assumed to be sourced from 

natural gas which simplifies the electricity LCI. It is not likely this will have a large 

influence on the LCA because of the relatively small amount of electricity required. This 

will serve as an appropriate estimation for this process. 

3.3.1.1 Natural Gas Extraction 

The emissions associated with the extraction of the natural gas are described in 

this section. To determine the emissions associated with natural gas extraction, the 

National Renewable Energy Laboratory (NREL) database was used.
87

 NREL contains 

information regarding the material inputs, energy requirements, and emissions from 

extracting the natural gas as of 2007. These data were considered to be a good 

representation of emissions for the US natural gas extraction process. The inputs and 

emissions were on a basis of 1 m
3
 of unprocessed natural gas. The natural gas extracted 

from the ground is assumed to have a LHV of 38.3 MJ/m
3
. The electricity requirement 

for the extraction of natural gas is 104 kJ/m
3
 natural gas. This is ignored since we are 

defining electricity and it will likely not have a large impact on the total LCA. The only 

emission to air considered by NREL was methane, which was 0.00882 kg methane. The 

emissions to water are shown in Table 31.  
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Table 31. Emissions to water from natural gas extraction (kg/m
3
 unprocessed gas) 

Emission Quantity Emission Quantity 

4-methyl-2-pentanone 1.33E-8 Lithium, ion 3.41E-3 

Acetone 3.17E-8 Magnesium 1.99E-3 

Acidity, unspecified 6.67E-7 Manganese 3.22E-6 

Aluminum 5.84E-5 Mercury 6.23E-10 

Ammonium, ion 3.91E-5 Molybdenum 7.29E-8 

Antimony 3.57E-8 m-Xylene 9.61E-8 

Arsenic, ion 7.01E-7 Nickel, ion 5.55E-7 

Barium 09.03E-4 Oils 6.09E-5 

Benzene 5.32E-6 o-Xylene 7E-8 

Benzene, ethyl- 2.99E-7 Phenol 1.42E-6 

Beryllium 3.18E-8 Selenium 7.05E-9 

BOD, Biological Oxygen Demand 5.52E-4 Silver, ion 6.65E-6 

Boron 9.96E-6 Sodium, ion 3.23E-2 

Bromine 6.8E-4 Solved solids 1.41E-1 

Cadmium, ion 1.02E-7 Strontium 1.73E-4 

Calcium, ion 1.02E-2 Sulfate 2.34E-4 

Chloride 1.15E-1 Sulfur 8.41E-6 

Chromium, ion 1.61E-6 Thallium 7.54E-9 

Cobalt 7.03E-8 Tin, ion 3.49E-7 

COD, Chemical Oxygen Demand 9.13E-4 Titanium, ion 5.48E-7 

Copper, ion 4.48E-7 Toluene 5.03E-6 

Cyanide 2.29E-10 Vanadium, ion 8.62E-8 

Fluoride 1.11E-9 p-Xylene 2.54E-6 

Iron, ion 1.84E-4 Zinc, ion 1.57E-6 

Lead 1.01E-6 
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3.3.1.2 Natural Gas Production 

This section quantifies the emissions associated with processing natural gas into a 

useable product. This is also based off NREL 2007 measured data.
87

 The electricity 

required by this process is 57 kJ, but this was not considered as it is unlikely to have a 

significant influence on the LCA. The resulting emissions are shown in Table 32. This is 

reported on the basis of 1 m
3
 of processed natural gas, which requires 1.05 m

3
 of 

unprocessed gas as an input.  

Table 32. Emissions to air from natural gas processing (kg/m
3
 natural gas) 

Emission Quantity 

Methane, fossil 0.00142 

Sulfur dioxide 0.0184 

NMVOC 0.000581 

Hydrocarbons, aromatic 0.00026 

3.3.1.3 Natural Gas Distribution 

The emissions from natural gas distribution were also quantified in the NREL 

2007 study.
87

 This section includes the distribution and transportation of the natural gas 

from the production facility to the consumer on the basis of 1 MJ of natural gas. Using an 

LHV of 38.3 MJ/m
3
 and assuming a transportation loss of 2.6%, a volume of 0.0268 scm 

processed natural gas is required to deliver 1 MJ of natural gas to the consumer.
88

 The 

production of the pipeline was not considered. The resulting emissions can be seen in 

Table 33. 
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Table 33. Emissions to air from the distribution of natural gas (kg/MJ natural gas) 

Emission Quantity Emission Quantity Emission Quantity 

Methane, fossil 2.82E-05 Bromine 3.61E-15 Hexane 6.20E-15 

Particulates, > 10 um 2.52E-07 Cadmium 3.86E-11 Hydrogen fluoride 2.59E-08 

Particulates, > 2.5 um, 

and < 10um 1.14E-07 Carbon disulfide 1.20E-14 Isoprene 1.05E-14 

Particulates, < 2.5 um 2.28E-07 

Methane, 

tetrachloro-, CFC-

10 4.40E-12 Lead 1.01E-10 

Nitrogen oxides 6.84E-06 CFC-12 9.84E-15 Magnesium 1.90E-09 

NMVOC 1.33E-06 

Benzene, 

hexachloro- 2.03E-15 Manganese 2.65E-10 

Sulfur dioxide 3.98E-05 Chloroform 5.46E-15 Mercury 2.30E-11 

Carbon monoxide, 

fossil 5.7E-06 Chlorine 7.73E-11 Methane, bromo- 1.48E-14 

Carbon dioxide, fossil 4.83E-03 Chromium 8.53E-11 Nickel 4.33E-10 

Carbon dioxide, 

biogenic 1.91E-05 Chromium VI 1.36E-11 Ethene, tetrachloro- 8.00E-12 

Acenaphthene 8.8E-14 Cobalt 4.34E-11 Phenol 3.48E-11 

Acetaldehyde 5.58E-10 Copper 3.19E-12 PAH 6.00E-11 

Acrolein 5.10E-10 Cumene 4.90E-16 Propanal 3.51E-14 

Aldehydes 3.75E-09 Cyanide 2.31E-13 Propene 8.31E-10 

Ammonia 1.83E-09 

Dinitrogen 

monoxide 9.84E-08 Selenium 2.36E-10 

Antimony 3.88E-12 Dioxins 1.64E-13 Styrene 2.31E-15 

Arsenic 8.50E-11 Ethene, chloro- 3.70E-15 Toluene 3.08E-06 

Benzene 1.99E-06 Fluorine 1.57E-13 HCFC-140 1.01E-14 

Benzo(a)pyrene 6.56E-15 Formaldehyde 7.87E-09 Xylene 1.80E-06 

Benzal chloride 6.47E-14 Furan 7.86E-16 Zinc 2.12E-12 

Beryllium 5.72E-12 Hydrogen chloride 2.14E-07 
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3.3.1.4 Natural Gas Combustion 

The emissions from the combustion of the natural gas was determined using data 

from two different sources. The EPA AP42 document contained a compilation of air 

pollutant emission factors for the combustion of fuels.
89

 This document was used to 

obtain estimates for trace contaminants in combustion in terms of lbs/mmscf of natural 

gas. These were converted to kg/m
3
 and can be found in Table 34. 

Table 34. EPA specified emissions to air from natural gas combustion (kg/MJ natural 

gas) 

Emission Quantity 

CO 3.54E-05 

Lead 2.11E-10 

PM (Total) 3.2E-06 

PM (Condensable) 2.4E-06 

PM (Filterable) 8.01E-07 

TOC 4.64E-06 

VOC 2.32E-06 

The Emissions and Generation Resource Integrated Database (eGRID) is an EPA 

database and contains measured data for all the power plants within the US during 

2010.
90

 Only power plants using 100% natural gas as an electricity source were 

considered in this assessment. The emissions of NOX, SO2, CO2, CH4, and N2O were all 

listed on an annual basis. This database also contains the quantity of fuel burned on an 

annual basis. The emissions were divided by the quantity of fuel burned by the power 

plant, resulting in emissions per 1 MJ of natural gas burned (Table 35). 
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Table 35. eGRID 2010 emissions to air from natural gas combustion (kg/MJ natural gas) 

Emission Quantity 

NOX 8.8E-05 

SO2 1.2E-06 

CO2 0.050479 

CH4 1E-06 

N2O 1E-07 

3.3.1.5 Natural Gas Electricity 

The conversion efficiency of natural gas to electricity was determined using 

eGRID 2010.
90

 The total electricity output of natural gas power plants was divided by the 

total energy content of natural gas burned in the US. This conversion assumes a uniform 

efficiency and resulted in 6.94 MJ of natural gas to obtain 1 MJ of electricity. 

3.3.2 Methanol LCI Comparison 

The LCI for each of the stages in the natural gas production was categorized and 

can be found in Table 36.  
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Table 36. Natural gas production LCI 

 

Natural gas 

unprocessed 

Natural gas 

at 

production 

Natural 

gas at 

consumer 

Natural 

gas 

combustion 

Electricity 

from natural 

gas 

Basis 1 m
3
 1 m

3
 1 MJ 1 MJ 1 MJ 

Emissions to Air (kg) 0.00882 0.0299 0.00574 0.0564 0.391 

Carbon Dioxide (kg) 0 0 0.00485 0.0553 0.384 

Carbon Monoxide (kg) 0 0 5.70E-06 4.11E-05 0.000285 

Methane (kg) 0.00882 0.0107 0.000314 0.000344 0.00239 

NMVOC 0 0.000581 1.69E-05 1.69E-05 0.000117 

NOX (kg) 0 0 6.84E-06 9.49E-05 0.000659 

SO2 (kg) 0 0.0184 0.000533 0.000534 0.00371 

Particulates (kg) 0 0 5.94E-07 7.00E-06 4.86E-05 

Emissions to Water (kg) 0.308 0.323 0.00866 0.00866 0.0601 

VOCs (kg) 0 0 0 2.32E-06 1.61E-05 

Emissions to Soil (kg) 0 0 0 0 0 

Total Emissions (kg) 0.317 0.353 0.0144 0.0650 0.451 

CED (MJ) 38.4 40.4 1.08 1.08 7.51 

 

There is a similar entry in SimaPro
®
 for the natural gas distribution in the US. The 

results of this LCA are shown in Table 37. These values are very similar, with the 

exception of the electricity from natural gas. This is due to an assumed efficiency of 34%. 

This is compared to the measured data from eGRID which results in a 14% efficiency. 

This shows the need for accurate assumptions. Poor assumptions can yield inaccurate 

LCAs. 



   

113 
 

Using these values, the inventory for methanol can be completed. The methanol 

LCI is shown in Table 37. The LCA of methanol was performed using the information in 

Table 37 and the quantity of each resource required. Emissions to soil were neglected for 

all cases because of the small overall contribution to the total emissions. 

Table 37.  Methanol LCI 

 

Natural 

Gas 

Distribution 

Natural 

Gas 

Combustion 

Natural 

Gas 

Electricity 

Methanol 

Process 

Emissions 

Methanol 

Total 

Emissions to Air (kg) 0.144 0.434 0.104 1.70E-03 0.683 

Carbon Dioxide (kg) 0.121 0.426 0.102 0 0.650 

Carbon Monoxide (kg) 0.000143 0.000317 7.6E-05 0 0.000535 

Methane (kg) 0.00786 0.00265 0.000635 9.80E-04 0.0121 

NMVOC (kg) 0.000423 0.00013 3.12E-05 5.30E-04 0.00111 

NOX (kg) 0.000171 0.000731 0.000175 1.80E-04 0.00126 

SO2 (kg) 0.0133 0.00411 0.000988 1.38E-05 0.0184 

Particulates (kg) 1.49E-05 5.39E-05 1.29E-05 0 8.17E-05 

Emissions to Water (kg) 0.217 0.0667 0.0160 0.00108 0.300 

VOCs (kg) 0 1.79E-05 4.29E-06 0 2.21E-05 

Emissions to Soil (kg) 0 0 0 0 0 

Total Emissions (kg) 0.360 0.501 0.120 2.79E-03 0.984 

CED (MJ) 27.1 8.33 2.00 0.00E+00 37.4 

 

These results were compared with the SimaPro
®
 inventory as shown in Table 38. 

The major differences are in the emissions to water because of data used in the extraction 

step of the natural gas. Since this data was acquired from NREL 2007, we assumed the 

data is accurate and up to date.
87

 Depending on the assumptions made and the method of 
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calculation, these values can vary. Our case was based off data valid for the US and will 

be considered accurate for US applications. The entry for methanol in SimaPro
®
 is based 

on European natural gas extraction/processing/distribution chain, which differs from that 

of the US.  

Table 38. SimaPro
®

 entry compared to the generated entry 

Impact category 

SimaPro
®
 

Entry 

Generated 

Entry 

Emissions to Air (kg) 0.647 0.731 

Carbon Dioxide (kg) 0.640 0.698 

Carbon Monoxide (kg) 0.000433 0.000569 

Methane (kg) 0.00423 0.0122 

NMVOC (kg) 0.00108 0.00111 

NOX (kg) 0.000917 0.00134 

SO2 (kg) 0.000636 0.0184 

Particulates (kg) 0.00012 8.78E-05 

Emissions to Water (kg) 0.00639 0.300 

VOCs (kg) 1.72E-07 2.43E-05 

Emissions to Soil (kg) 0.000127 0 

Total Emissions (kg) 0.654 1.03 

CED (MJ) 37.6 37.4 
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3.4 Energy LCIs 

A life cycle inventory was developed for the energy used by each process. Two 

different forms of energy were defined: electricity and heat. Steam will be used as the 

source of heat on a kg basis. The quantity of each required for the production of algae-

derived biodiesel is shown in Table 39. Both the electricity and steam were available in 

the SimaPro
®
 database. 

Table 39. Energy requirements for each step in the algae biodiesel process 

Inputs Growth Flocculation 

Spray 

Drying 

Extraction and 

Solvent Recovery 

Reaction and 

Purification 

Electricity 

(kWh/t BD) 39,800 6.3 0 0.02 0.10 

Steam 

(kg/t BD) 0 0 44,300 226 0.27 

The electricity requirement for each operation in the process was defined as high 

voltage electricity in the United States. The United States electricity at grid includes all 

emissions, raw materials, and wastes from the production, transmission, and 

infrastructure of energy production. This electricity inventory is based on distribution 

data from the United States. Swiss data was used for the electricity grid infrastructure 

requirements. The resulting effect on the impact categories is shown in Table 40. The 

values are reported on a per MJ energy basis.  

The heating requirement was met through the use of steam. Steam for chemical 

processes was chosen and includes the water and energy input for the production of 

steam. The inventory steam for chemical processes is based on the average steam 
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production data from 11 European chemical sites. The LCI for steam is shown in Table 

40. This is reported on a basis of one kg of steam.  

Table 40. LCIs for electricity and steam 

Impact category 

Electricity  

(MJ basis) 

Steam  

(kg basis) 

Raw Materials Used (kg) 0.124 0.0902 

Emissions to Air (kg) 0.205 0.224 

CO2 (kg) 0.203 0.223 

CO (kg) 8.23E-05 5.84E-05 

CH4 (kg) 0.000377 0.000451 

NMVOC (kg) 4.19E-05 9.43E-05 

NOx (kg) 0.0004 0.0002 

SO2 (kg) 0.00110 0.000382 

Particulates (kg) 0.000186 4.61E-05 

Emissions to Water (kg) 0.00735 0.00231 

VOCs (kg) 1.01E-07 3.91E-07 

Emissions to Soil (kg) 2.54E-05 9.63E-05 

Total Emissions (kg) 0.213 0.226 

CED (MJ) 3.52 3.97 

Water Used (kg) 808 37.2 
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3.5 Waste/Byproduct LCIs 

The production of biodiesel also yields glycerine (a.k.a. glycerol). This is 

generated during the reaction and purification section. Typically allocation should be 

avoided, which will require the expansion of the system boundaries to include the 

emissions associated with a separate glycerine production route. The impact of producing 

glycerine will be subtracted from the algae biodiesel process in our life cycle analysis. 

The SimaPro
®
 database has an entry for the production of glycerine through the 

esterification of soybean oil. This was chosen as an appropriate model and includes: the 

production of the soybean, extraction of the soybean oil, the esterification process, as 

well as the waste treatment. The total glycerine process emissions are 1.33 kg with 86% 

being emitted to air and 14% being emitted to water. The CED for producing glycerine 

through this process is 39 MJ. These results can be seen in Table 41. 

Carbon dioxide produced as emissions from energy generation will be used 

during the algae growth stage. The quantity of CO2 absorbed by the algae was estimated 

when completing the mass balance on the PBR. In order to account for consuming CO2 

rather than producing it, a SimaPro
®
 entry was created. This allows for a credit to be 

taken by assigning a negative emission value. For every kg of CO2 consumed, a kg of 

CO2 produced by this process is offset. This entry is added into the algae growth stage of 

the process and will alleviate some of the CO2 emissions associated with the process. The 

LCI can be seen in Table 41. 
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Table 41. LCIs for byproducts and carbon sequestration 

Impact category 

Glycerine (kg 

basis) 

CO2 Absorbed (kg 

basis) 

Raw Materials Used (kg) 2.53 0 

Emissions to Air (kg) 1.14 -1 

CO2 (kg) 1.13 -1 

CO (kg) 0.000678 0 

CH4 (kg) 0.00107 0 

NMVOC (kg) 0.00337 0 

NOx (kg) 0.00211 0 

SO2 (kg) 0.00141 0 

Particulates (kg) 0.000427 0 

Emissions to Water (kg) 0.187 0 

VOCs (kg) 1.01E-06 0 

Emissions to Soil (kg) 0.00106 0 

Total Emissions (kg) 1.33 -1 

CED (MJ) 39 0 

Water Used (kg) 824 0 

There were three waste streams for the algae biodiesel process: stream 10, 23, and 

30. Stream 10 is waste from the extraction step which consists of expended biomass, 

some water, medium salts, and waste flocculant. The other two waste streams come from 

the reaction and purification section. Stream 30 is an organic stream, and stream 23 is a 

salt water mixture. The stream compositions can be seen in Table 42. 

 



   

119 
 

Table 42. Composition of waste streams 

Chemical 

Stream 

12 Stream 23 

Stream 

30 

Algae (kg) 770 0 0 

Water (kg) 101 159 0 

Al(OH)3 (kg) 4.84 0 0 

CaSO4 (kg) 12.7 0 0 

Hexane (kg) 0 0 5.03 

TAG (kg) 58.9 0 98.4 

NaOH (kg) 0 0 3.88 

NaCl (kg) 0 2.82 0 

The solid wastes will be sent to a landfill. The liquid organic waste stream 

containing hexane (stream 30), is incinerated. The aqueous waste stream containing salt 

(stream 23) can be sent to a wastewater treatment plant. Ecosolvent
®
 software will be 

used to address life cycle emissions associated with the bulk waste disposal of these two 

liquid streams. The disposal of the solid waste stream can be modeled by SimaPro
®
. This 

is defined in SimaPro
®
 as long term waste and high active chemical landfill. This 

database entry is based on European landfill studies. This assumes that all emissions from 

a landfill are to water. Based on this approach, for every kg of material sent to a landfill, 

there is 0.19 kg of life cycle emissions to water. 
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Chapter 4 

Base Case Life Cycle Assessment 

The SimaPro
®
 generated LCIs and the previously calculated quantities of the 

component were used to perform a life cycle assessment (LCA). LCAs couple the 

inventory of relevant energy inputs, material inputs, and environmental releases, evaluate 

the impacts associated with the inputs and releases, and interpret these results. This 

interpretation can then be used to make an accurate assessment of the impact for each 

stage in the algae biodiesel production. The LCA consists of the summation of all LCIs 

multiplied by the quantity of each inventory and shown in Equation 45. The biodiesel 

production stages were analyzed and the impact for each was obtained. These were 

inserted into a new process defined as biodiesel, so the various production stages and 

their resulting impact could be compared. The LCA was defined within SimaPro
®
 to 

categorize emissions, raw material usage, and energy consumptions.  

 
LCAWLCIELCIRLCI
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Where: 

 iLCI  is the life cycle inventory of component i  (per kg component i ) 

 iR  is the quantity of raw material i  (kg) 

 iE  is the quantity of energy i  (MJ) 

 iW  is the quantity of waste i  (kg) 

The total emissions and the cumulative energy demand were the impact categories 

compared. This LCA is shown in Table 43. This table contains a comprehensive report of 

all emissions and the cumulative energy demand associated with each section of the 
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process (Figure 31). This preliminary assessment illustrates the portions of the production 

where alternatives should be considered. 
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  Table 43. Life cycle assessment of the base case algae biodiesel process (t of BD basis) 
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Figure 24. The total emissions for each step of the base case biodiesel process 

The total emissions from Table 43 were analyzed according to their respective 

production stages shown in Figure 24. The total emissions category is the summation of 

all emissions to the air, water, and soil. Due to the large emissions from the growth stage, 
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Figure 24 excludes the emissions from this step. The emissions to air, water, and soil are 

shown in Table 44. Figure 24 exemplifies the high emissions during the drying step. This 

is due to the high energy expenditures associated with thermally separating the water 

from the algae. A large amount of energy is needed to generate the steam required to dry 

the algae through thermal methods.  

Table 44. Process emissions 

Processing stage Emissions 

to air  

(kg/t BD) 

Emissions 

to water 

(kg/t BD) 

Emissions 

to soil  

(kg/t BD) 

CO2 

emissions 

(kg/t BD) 

Total 

Emissions 

(kg/t BD) 

Growth 28,400 1,110 3.72 26,000 29,500 

Flocculation 15.1 1.08 0.007 14.8 16.2 

Drying 9,920 102 4.27 9,870 10,000 

Extraction and Solvent 

Recovery 

55.1 189 0.051 54.6 245 

Reaction and Purification 179 -14.6 0.137 179 164 

 

Table 45 shows the percent contribution of each emission category towards the 

total emissions. The analysis indicates that the vast majority of all emissions are to the 

air. The emissions to water are high within the extraction and solvent removal step 

(contributing to 77% of the total emissions), due to the landfilling of solid biomass waste. 

The reaction and purification step is where a credit is taken for producing glycerine. This 

results in negative emissions to water, denoting that these emissions are offset as a result 

of the transesterification process.  The component air emissions (179 kg) are larger than 

the total emissions (164 kg) due to the credit taken as a result of emissions to water (-14.6 

kg).  In all cases emissions to soil can be considered insignificant, contributing to under 



   

125 

 

0.1% in all stages. The contribution of CO2 to the total emissions is also shown in Table 

45. With the exception of the extraction stage, CO2 contributes to the majority of 

emissions. In most processing stages, the CO2 emissions are similar to the emissions to 

air. Figure 25 shows the contribution of emission categories in the algae biodiesel 

process. 

Table 45. Categorization of total emissions 

Processing stage Emissions 

to air 

Emissions to 

water 

Emissions 

to soil 

CO2 emissions 

Growth 96% 4% <0.1% 88% 

Flocculation 93% 7% <0.1% 91% 

Drying 99% 1% <0.1% 98% 

Extraction and Solvent 

Recovery 

23% 77% <0.1% 22% 

Reaction and Purification 109%* -9%** <0.1% 109%* 

* The value is greater than 100% since the air emissions exceeds the total emissions when the emission 

credit to water is incorporated 

** The negative value represents the credit from the emissions to water as a percent of the total emissions 
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Figure 25. Pie chart comparing emission categories for the algae biodiesel process 

In Figure 26, the various processing stages were compared. The PBR has the 

highest contribution to emissions; this is due to the high energy costs associated with the 

algae growth in a tubular PBR. The algae growth step produced 73.9% of the total 

emissions, while 25.1% of the total emissions were a result of the drying step. Due to the 

high emissions in the PBR, this stage was removed from our analysis to more carefully 

review the downstream processing stages. When comparing the remaining processes 

(Figure 27), the drying step contributes the majority of the emissions due to the large 

quantity of steam required. The remaining stages have relatively low contributions to the 

total process emissions. When the PBR is removed, the spray drying produces 95.9% of 

the total emissions. 
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Figure 26. Pie chart of total emissions for all algae biodiesel processes 

 

Figure 27. Pie chart of total emissions excluding PBR 

The next impact category compares the cumulative energy demand (CED) of each 

processing stage. The CED is the entire demand of primary energy associated with the 

raw material production, manufacturing process, and waste disposal. Table 46 shows how 
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much energy was used by each unit operation in MJ. The CED of the PBR is much larger 

than the other processes. The dryer is the second highest contributor due to the large 

quantity of energy required in the steam generation. 

Table 46. CED of the algae biodiesel processing stages 

Processing stage CED (MJ) 

Growth 506,000 

Flocculation 280 

Drying 176,000 

Extraction 1,200 

Reaction and Purification 407 

Figure 28 compares the CED of the various stages. This illustrates that the PBR 

has a larger CED than any other operation. Figure 29 shows the comparison excluding 

the PBR. The spray dryer also has a large CED when evaluated against the other 

operations. When considering all cases, the PBR contributes to 74.0% of the total CED 

and the spray dryer contributes to about 25.7%. The remaining four operations make up 

less than 1% of the CED. When the PBR is excluded from consideration, the drying step 

contributes to 98.9% of the total CED. This is analogous to other studies which show 

drying directly after flocculation consumes 99% of the downstream processing energy.
46 
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Figure 28. Pie chart showing the CED for all steps in the algae biodiesel process 

 

Figure 29. Pie chart showing the CED excluding PBR 

Figure 30 shows the CO2 emissions resulting from each process excluding the 

growth stage. In this case, the CO2 mitigated by the algae growth was separated from the 
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algae consumed during this stage. This was done by taking the known quantity of CO2 

consumed, adding it to the growth phase, and displaying it as a negative emission under 

the CO2 mitigation column. Initially, SimaPro
®

 had combined the CO2 emissions and 

mitigation to acquire a net quantity of CO2 emitted. Figure 21 also shows that out of the 

downstream processing steps, spray drying is responsible for the highest carbon footprint.  
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Figure 30. The amount of CO2 emissions for each step in the algae biodiesel process 
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The LCA for the base case shows the parts of the biodiesel production which have 

the greatest opportunity for improvement. These processes can then be compared to 

alternative methods and a comprehensive LCA can be performed for each alternative. A 

comparative analysis will then be executed. This analysis will be used as a decision 

making tool for determining the algae biodiesel production pathway. 

The results of the base case LCA were reported and analyzed in terms of total 

emissions and CED. The algae growth stage made up 73.9% of the total emissions. This 

method of growth was based on using a tubular PBR, and contributed to 74.0% of CED. 

This is due to the energy required to constantly pump the algae mixture through tubes at 

turbulent velocity. Although this was established as a commercially feasible technology, 

other technologies will likely be more suitable for the algae growth stage. This will not be 

the focus of this LCA. This assessment will be towards the downstream processing. 

The drying step is another operation which can be improved greatly. Instead of 

sending the flocculated algae directly to a spray dryer, mechanical separation methods 

were investigated. Minimizing the amount of water which requires thermal separation can 

decrease the energy requirement for the drying step and its respective impact.  
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Chapter 5 

Development and Analysis of Alternatives 

5.1 Dewatering Alternatives Background 

Despite its many advantages, the process of producing biodiesel from algae is 

energy intensive and leaves a significant carbon footprint. A majority of this energy can 

be attributed to dewatering, or the removal of water from the algae.
11

 Xu et al. state that 

approximately 85% of the energy of the overall production of biodiesel is taken up by the 

dewatering step.  The cultivation of algae results in a dilute solution of algae and water. 

The removal of this water is energy intensive, but necessary to achieve the high dry solid 

weight content required to effectively extract the lipids. Currently, there are several 

dewatering methods that have been proven on the industrial scale to be effective. 

However, certain technologies require a higher energy investment, while other 

technologies are incapable of sufficiently reducing the water content.  Therefore, either 

new methods need to be developed, or existing technologies have to be optimized to find 

an energy efficient process.  

The goal of this project is to analyze alternative harvesting and dewatering 

methods, and conduct a life cycle assessment (LCA) of these processes to serve as a 

decision making tool in commercial algae biofuel production. Figure 31 shows the 

boundaries of this study.    
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Figure 31: Process flow diagram for the production of biodiesel- boundaries for this study 

are shown with a dashed line 

Various dewatering technologies were evaluated to find an efficient alternative 

processes to serve as comparisons to the current base case scenario. The base case 

concentrates the algae slurry using flocculation and is further dried using a spray dryer. 

This is very energy intensive because of thermal drying.  An alternative dewatering 

process would include various mechanical and thermal means of dewatering that would 

yield lower water content without as high an energy investment. In order to determine the 

extent to which each type of process is used, a comparison was done between mechanical 

and thermal drying to evaluate energy demands for each. From this, preliminary scenarios 

were developed based of an existing model that maps out energy demands for thermal 

versus mechanical drying, which was developed by Xu et al.
46 

From these scenarios, 
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comparisons were performed using the life cycle emissions of each in order to develop an 

alternative dewatering process that improves upon the base case. 
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5.2 Dewatering Theory 

Following cultivation of the algae, the water needs to be separated before the 

extraction of the lipids can take place. The algae slurry needs to have a dry algae content 

of 95%, to maximize extraction efficiency.
12

 This is based on commercially available 

solvent extraction systems such as those using hexane.  Several dewatering technologies 

were explored in order to find the most effective means to remove the water from the 

algae. These technologies, primarily utilized in wastewater treatment, have been proven 

to be effective at removing water from biomass. The technologies being considered for 

the purposes of dewatering algae are the following: flocculation, centrifugation, filtration, 

and thermal drying. Table 47 shows the general operating conditions for each of these 

types of equipment. Flocculation is determined to be the ideal method of initial 

concentration, while thermal dryers should be used as little and as efficiently as possible. 

The base case demonstrated that flocculation removed approximately 50% of the total 

water, while consuming the least energy of all the processing steps. In the following 

sections, in depth analyses of each of these technologies were performed in order to 

determine the advantages and disadvantages of each. This analysis will provide the basis 

for an industrially scaled dewatering scheme, which can then be compared to the base 

case.  
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Table 47: Dewatering equipment and their relative operating conditions 

Dewatering 

Equipment 

Initial Water 

Content 

Final Water 

Content 

Energy 

Consumption 

Equipment 

Capacity 

Flocculation Very High High Very Low Very High 

Centrifugation High Medium Medium High 

Filtration High Medium Medium Medium- High 

Thermal Dryers Medium Very Low Very High High 

5.2.1 Centrifugation  

Centrifugation uses centrifugal forces to separate mixture components based on 

the size of the particles and the densities of the different mixture components.
91

 

Operational guidelines for centrifugation vary with different types of centrifuges. 

Usually, the choice of centrifuge is case specific. 

Centrifugation has been considered extensively for the purposes of dewatering 

algae and is the preferred method of recovering algae cells as high rotational speeds make 

it very effective both at lab and industrial scale.
10, 92

 Centrifugation is reliable in 

separating highly dilute solutions using appropriate rotational speeds. The main downside 

is the high energy demand necessary to operate the centrifuge to attain high centripetal 

acceleration (Table 48). This acceleration can yield a high degree of separation but results 

in further emissions.
17

  Operating the centrifuge at lower rotational speeds can also be 

energy intensive as the separation requires more time and the degree of separation is 

significantly less. This was demonstrated in a study using centrifugal speeds of 13,000g, 

6,000g, and 1,300g. “g” is a denotation of g-force which is a measure of the force from 

centripetal acceleration.
17

  This study demonstrated that at 13,000g, greater than 95% of 

the cells were recovered from the feed stream, about 60 % were recovered at 6,000g, and 
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only 40% at 1,300g.
17 

The centrifuge becomes less effective as the rotational speed is 

decreased. The algae recovery varies depending on the type of centrifuge and the 

incoming dry algae concentration.   Molina Grima et al. summarized various types of 

centrifuges and documented their energy consumption for algae feedstocks (Table 48).
10

  

The final algae concentrations are based on experimental data and actual final algae 

concentrations can vary depending on the species. 
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Table 48: Various continually operating centrifuges and their operating demands
10

 

Centrifuge Type 

Initial 

Algae 

Concent-

ration 

Final Algae 

Concent-

ration 

Energy 

Consumed
1
 

(kWh/m
3
 feed 

processed) 

Energy 

consumed
2
 

(Wh/kg water 

removed) 

Disc Stack 0.1% 12% 1 1.0 

Nozzle Discharge 0.1% 2-15% 0.9 0.9 

Decanter Bowl 2.0% 22% 8 8.8 

Hydrocyclone 0.1% 0.4% 0.4 0.53 

1
 Energy consumed for each m

3
 of feed volume processed 

2
 Energy consumed for each kg of water removed. This assumes a feed density of 

water, and uses the initial and final algae concentrations to calculate the water 

removed. 

Xu et al. use an Alfa Laval
®
 PX-115 disc-stack centrifuge for algae dewatering.

93
 

The centrifuge operates at 4,800 rpm and consumes 45 kW of power to process 85 m
3
/h 

of an algae solution at an initial concentration of 2% to a final concentration of 16%.
46  

This corresponds to an energy consumption of 0.53 kWh/m
3
 of algae slurry processed 

and 0.00078 kWh/kg water removed. Comparing this centrifuge to the values in Table 48, 

the disc stack centrifuge is able to remove the most water while consuming the least 

energy.  Figure 32 shows a schematic of the disc stack centrifuge.  
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Figure 32: Disc stack centrifuge 
93

 

5.2.2 Filtration 

There are different filter designs, including pressure filters and vacuum filters that 

can be considered in algae separation.  Pressure and vacuum filters have several different 

designs, including plate and frame presses, pressure and vacuum belts, and rotary presses. 

Experimental comparisons of pressure filters showed that they are more energy efficient, 

reliable, and reach higher algae concentrations than vacuum filters (Table 49).
94

  Another 

filter technology proposed for algae separation is tangential flow filtration (TFF).  The 

process works with the pressurized feed mixture flowing parallel to the membrane filter 

as shown in Figure 33.   
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Figure 33: Tangential flow filtration 
95

 

The membrane pores are between 1 and 2 nm in size, small enough to prevent 

algae from transferring across the membrane. The tangential flow of the mixture avoids 

the formation of a cake on the filter, resulting in improved performance.
96

  A study 

conducted by Danquah et al, investigated the energy consumption of other filtration and 

flocculation technologies compared to a lab scale tangential flow filter.  The initial and 

final algae concentrations as well as their power consumption per cubic meter of algae 

solution can be found in Table 49.  
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Table 49: Demands of various filtrations methods 

Filtration 

Process 

Algae Initial 

Concentration 

Final Algae 

Concentration 

Energy 

Consumption 

(kWh/m
3
) 

Energy consumption 

(Wh/kg water 

removed) 

TFF 0.06% 8.88% 2.06 2.1 

Pressure 

Filter 

0.5% 22-27% 0.88 0.90 

Vacuum 

Filter 

0.5% 18% 5.9 6.1 

Overall, it was found that the TFF energy consumption is higher than in a 

pressure filter and lower than in vacuum filters for every kg of water removed.
9
  The 

rotary pressure filter is energy efficient, can continuously operate, and is commercially 

available. For these reasons, a rotary pressure filter is the most promising filtration 

technology for algae dewatering. Figure 34 shows a schematic of the rotary pressure 

filter.  

 

Figure 34: Schematic of rotary pressure filter
97
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5.2.3 Thermal Drying 

Depending on the quantity of water removed mechanically, thermal drying can 

represent up to 99% of the energy consumed in the dewatering process.  This is a result of 

the high heat of vaporization of water which is 2,257 kJ/kg at atmospheric pressure.
91

  

Since energy consumption is directly related to life cycle emissions, it is essential to find 

the most efficient method for separating water and algae.  Driers are generally used as the 

last step in the dewatering process to reduce overall energy consumption and reduce 

water content to levels that cannot be achieved by mechanical drying methods.  Six 

drying technologies were compared to see which was the least energy intensive.  They 

are band dryers, rotary dyers, steam rotary dryers, pressurized fluid-bed dryers, 

pneumatic steam dryers, and a heat integrated dryer developed by Delft University. 

Fagernäs et al. compared commercially available band, rotary, steam rotary, 

pressurized fluid-bed, and pneumatic steam dryers used in woody biomass drying.
98 

   

Band dryers blow hot air perpendicular to the belt direction, carrying water vapor with it. 

The air is usually between 90-120°C and the belt is typically permeable.  A band dryer is 

illustrated in Figure 35.     

 

Figure 35: Illustration of band dryer operation
99
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Rotary and steam rotary dryers are continuous processes that utilize a spinning 

drum. Biomass is passed through the inside of the drum, while hot gas or steam is passed 

through a shell on the exterior of the drum. An illustration is shown in Figure 36.  

 

Figure 36: Illustration of rotary and steam rotary dryer
100

 

Pressurized fluid-bed dryers utilize the principles of fluidization of solid particles 

to dry biomass.  Superheated steam is sent through a bed of biomass, where water is 

evaporated.  Finally, a pneumatic steam dryer uses superheated steam to transport wet 

particles through a series of heat exchangers, where the biomass is dried.  The biomass is 

then separated from the steam via a cyclone.
98

  A pneumatic steam dryer diagram can be 

found in Figure 37.      
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Figure 37: Diagram of pneumatic steam dryer
101

 

A novel drying technology was developed at the Delft University of 

Technology.
102

  This heat integrated dryer mixes steel balls heated by steam with wet 

medium in an auger under vacuum.  Once the medium reaches the desired moisture 

content, the dried material is mechanically removed from the steel balls and leaves the 

system.  The clean steel balls are sent to a second, counter currently flowing auger.  The 

water vapor produced by the first auger is sent to this second auger via multiple channels, 

where the balls recover the heat from the vapor.  Once the balls have been reheated, 

condensed water vapor is mechanically removed.  The steel balls are then passed through 

a steam heater, where they reach the desired temperature to be recycled back into the first 

auger. This dryer was also considered as a potential dryer for algae drying in a study by 

Xu et al.
46, 102, 103

 

Differences in design and heat carriers results in varying efficiencies for each 

system.  Table 50 summarizes the energy consumption required for each drying 

technology as well as the system’s energy carrier.    
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Table 50: Summary of energy consumption and energy carriers for dryer technologies. 

Adapted from Fagernas et al.
98

 

Dryer Type Energy Carrier 

Energy Consumption             

(kWh/kg H2O 

removed) 

Band Air (90-120°C) 1.1-1.4 

Rotary Air (250-400°C) 1.1-1.4 

Steam Rotary Steam (0.6-1 MPa) 0.83-1.1 

Fluidized Bed Steam  (2.6 MPa) 0.61 

Pneumatic Steam Steam (0.7-2.6 MPa) 0.56-0.83 

Heat Integrated 

Dryer 
46

 

Steam (0.2 MPa and 120°C) 
46

 0.56
46

 

Although it is not currently a commercial technology, the heat integrated dryer 

has the potential to be the most energy efficient drying system.  For the alternative 

dewatering scenarios, a heat integrated dryer and steam rotary dryer were chosen as the 

drying technologies. These were compared to illustrate differences between using driers 

with different efficiencies. 
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5.3 Development of Alternative Dewatering Cases 

The base case analysis revealed that thermal drying required much more energy 

input than any other downstream operation in biodiesel production, and therefore should 

be optimized. From this, it was determined that if the dry solids concentration were 

increased prior to the thermal drying step using mechanical separations, then the energy 

input of the overall dewatering process would decrease. Thermal drying, unlike 

mechanical drying, is capable of removing water from within the cells and is required to 

achieve the 5% target dry weight. First, preliminary alternative cases were developed by 

adapting equipment from Xu et al.’s study. This preliminary study was used to make 

initial comparisons towards the base case. Different types of mechanical drying were 

sequenced prior to thermal drying to develop four alternative cases. These cases were 

later refined and expanded upon as a result of the reductions achieved by these cases.
46 

 

These preliminary cases are not described, since the resulting final alternatives are more 

comprehensive. 

The preliminary alternative cases revealed that thermal drying required much 

more energy input than the mechanical operations. Therefore, the dewatering operations 

were refined utilizing a wider range of dewatering equipment.  The Xu et al. (2011) study 

provides comparison of the heat integrated dryer, heat assisted rotary filter, and disc stack 

centrifuge energy requirements.
46

  Our study incorporates these as well as other types of 

dewatering techniques and performs a LCA when they are integrated into the biodiesel 

production process.  

Thermal drying was inevitably required as a result of bound intercellular water. 

Typical algae cells can contain between 40 and 80% water.
 18, 46, 47

 This water cannot be 
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removed by mechanical techniques such as centrifugation or filtration. A thermal dryer 

can achieve the low moisture contents needed, but the base case shows that this is not 

energy efficient for high moisture content slurries. This work used various types of 

dewatering equipment and sequenced them to effectively lower the environmental impact 

of dewatering. The energy consumption is determined by the extent and sequence these 

dewatering technologies are used. Without heat integration, spray drying is typically 

considered inefficient. This is because air is used as the medium to transfer heat which 

has a relatively low heat transfer coefficient. This coupled with the fast processing time 

means that less heat is transferred to the medium, allowing a large portion of the energy 

to go unutilized. 

Since thermal drying will be required, two methods of drying were compared. A 

steam rotary dryer and a novel heat integrated dryer were considered as alternative 

methods of thermal drying. The steam rotary dryer consumes approximately 3 MJ/kg of 

water removed.
98

 The heat integrated dryer was developed by Delft University for drying 

a biomass-type sludge and consumes 2 MJ/kg of water removed.
103

 This dryer uses hot 

balls to contact the algae slurry under a vacuum, and condenses the water vapor over the 

metal balls to recover the heat. Although this is a new method of drying, the production 

capacity is 1,000 kg of dried sludge/hr.
102

  

Three different types of centrifuges were considered. The first was a disc-stack 

centrifuge capable of removing water to approximately 12% dry algae content.
10

 This 

centrifuge has a processing capacity of 85 m
3
/hr and a power consumption of 45 kW. The 

second centrifuge used was a decanter bowl centrifuge. The decanter bowl centrifuge 

produces a 22% dry algae, is available at commercial capacities, and consumes 8 kWh/m
3
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of feed processed.
10

  The third centrifuge was a novel spiral plate centrifuge developed by 

Evodos
® 

(Breda, The Netherlands), specifically for dewatering algae.
104

 It is capable of 

achieving 31.5% dry algae weight, consumes 0.95 kWh/m
3
 of algae slurry processed, and 

can process up to 40 m
3
 of slurry/hr. 

105
 

The three filtration methods investigated were a tangential flow filtration, 

chamber filter press, and a heat assisted rotary pressure filter. The tangential flow 

filtration was based on a study by Danquah et al. (2009) which found an energy 

consumption of 0.00206 kWh/kg of water removed and achieved a final dry algae content 

of 8.8%.
9
 The chamber filter press consumes 0.88 kWh/m

3
 of water removed and can 

achieve a 27% dry algae content. The heat assisted rotary filter was used in a study 

conducted by Mahmood et al. (1998) on biomass-type sludge drying.
106

 This study used a 

filter that increased the solids concentration from 33% to 56% while using 60 kWh/dry t 

sludge. This filter was capable of operating at a capacity of 200 tons of sludge/hr. It was 

assumed that this equipment can handle algae contents as low as 22% for the purpose of 

sequencing technologies. These filtration units require electricity as the energy input. 

Even though the pressure filter uses heat, this is still supplied through electricity rather 

than steam.  

Centrifugation, filtration, and thermal drying equipment were sequenced to 

establish alternative cases. The energy consumption and the resulting dry algae content 

were calculated based on the dry algae content of the incoming slurry, the attainable dry 

weight content, and the energy consumption for each dewatering operation. The 

alternatives were generated on the basis of 1 t of biodiesel (BD). Since only energy was 

an input for these processes, the electricity and steam consumption for each case was 
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known. The dryers required steam, while the remaining dewatering equipment consumed 

electricity. The LCA could then be performed using the energy consumption and the 

LCIs for electricity and steam. 
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5.3.1 Case 1 and Case 2 

Case 1 and case 2 were developed to investigate alternative thermal drying 

methods instead of using a spray dryer.  Case 1 used a steam rotary dryer and case 2 used 

the heat integrated dyer developed by Delft University. The input into these dryers is 

assumed to be the same as those from the base case. A process flow diagram of case 1 

and case 2 can be found in Figure 38. Both cases consist of the same process 

configuration, but differ by the type of dryer and resulting energy expenditures. The mass 

and energy balance for case 1 can be found in Table 51. 

 

DryerAlgae Slurry from Flocculation 
5% Dry Algae

Dried Algae for Extraction
95% Dry Algae

Water Removed

 

Figure 38: Process flow diagram for case 1 and case 2.   

The steam rotary dryer consumes 3 MJ/ kg of water.
98

 The heat integrated dryer 

uses 2 MJ/ kg of water removed, which is significantly less than other dryer 

technologies.
46

  The output conditions of the flocculation unit were 5% algae by weight 

and 95% water and are shown in Table 51 and Table 52.  This assumed that the mass of 

flocculants are negligible compared to the algae and water in solution.  The desired 

output concentrations are 95% algae and the remainder water. The material and energy 

balances for case 1 and case 2 are shown in Table 51 and Table 52 respectively. 
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Table 51: Material and energy balance for streams in case 1 

Steam Rotary Dryer 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water 

Water 

removed Water removed (t/t BD) 

In  0.05 0.95 1,920 36,500 N/A N/A 

Out 0.95 0.05 1,920 101 36,400 36.4 

Energy Input 

(GJ/t BD) 109           

It was found that the steam rotary dryer consumed 109 GJ/t BD, while removing 

36.4 t of water per t BD.  This is compared to 87.3 GJ that were consumed by the spray 

dryer in the base case.  The steam rotary dryer consumes 25% more energy than the spray 

dryer. The dryers use steam as an energy source, therefore this needs to be converted to 

quantity of steam. Using steam under the same conditions as the base case (191.6°C, 13 

bar), 55,500 kg of steam/t BD is required. 

Table 52: Material and energy balance for streams in case 2 

Heat Integrated Dryer 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water 

Water 

removed Water removed (t/t BD) 

In  0.05 0.95 1,920 36,500 N/A N/A 

Out 0.95 0.05 1,920 101 36,400 36.4 

Energy Input 

(GJ/t BD) 72.9           

The heat integrated dryer consumed 72 GJ/t BD and also removed 36.4 t of water 

per t of BD. This consumes 21% less energy than the spray dryer and corresponds to 
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Algae Slurry from Flocculation  

 

37,000 kg of steam/ t BD. The heat integrated dryer was used for cases 3 through 6 

because it was found as the more efficient dryer. 

5.3.2 Case 3  

Case 3 consists of the disc stack centrifuge, the chamber filter press, and the heat 

integrated dryer. Figure 39 contains the process flow for Case 3.  The input 

concentrations to the centrifuge were 5% dry algae.  The outlet conditions of the disc 

stack centrifuge were 12% dry weight algae.10 
Using the conditions from the flocculation 

stage, the disc stack centrifuge consumed approximately 3.27 kJ/kg of water removed. 

The chamber filter press followed this, and dewatered to 27% dry algae and then to 95% 

dry algae by the heat integrated dryer.10 The chamber filter press removed approximately 

3.17 kJ/kg of water removed in this case. 

Disc Stack 
Centrifuge

Algae Slurry from Flocculation
5% Dry Algae

Chamber Filter 
Press

12% Dry Algae

Dried Algae for Extraction
95% Dry Algae

Water Removed

Water Removed

Heat 
Integrated 

Dryer

27% Dry Algae

Water Removed

 

Figure 39: Process flow diagram for case 3.  

The material and energy balances for the process can be found in Table 53.  The 

total energy consumed is 10.3 GJ/t BD, with 99% of the energy being consumed in the 

thermal drying step.  By adding the centrifugation step, the energy input for the drying 

process was reduced by 61.7 GJ/t BD as compared to case 2.  The water removed by the 

centrifuge was 22.4 t, the chamber filter press removed 8.9 t of water, and 5.1 t were 
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removed by the dryer. The disc stack centrifuge and chamber filter press consumed 

electricity, but the heat integrated dryer consumes steam. When this energy is converted 

to steam, the heat integrated dryer consumes 5,180 kg of steam/t BD. 

Table 53: Material and energy values for streams in case 3 

Disc Stack Centrifuge 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed 

Water removed 

(t/t BD) 

In  0.0500 0.95 1,920 36,500 N/A N/A 

Out 0.12 0.88 1,920 14,100 22,400 22.4 

Energy Input 

(GJ/t BD) 0.073           

Chamber Filter Press 

 Mass fraction Mass (kg/t BD)  

  Algae Water Algae Water Water removed 

Water removed 

(t/t BD) 

In  0.12 0.880 1,920 14,100 N/A N/A 

Out 0.27 0.0500 1,920 5,200 8,900 8.9 

Energy Input 

(GJ/t BD) 0.028           

Heat Integrated Dryer  

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed 

Water removed 

(t/t BD) 

In  0.27 0.730 1,920 5,200 N/A N/A 

Out 0.950 0.0500 1,920 101 5,100 5.1 

Energy Input 

(GJ/t BD) 10.19           
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5.3.3 Case 4 

In case 4, the spiral plate centrifuge, heat assisted rotary pressure filter, and heat 

integrated dryer were used. The spiral plate centrifuge dewatered the algae to 31.5% dry 

algae content and the heat assisted rotary pressure filter brought the slurry to 56% dry 

algae content. The spiral plate centrifuge was found to consume approximately 4.07 kJ/kg 

water removed. Mahmood et al. used a filter that increased the dry solids concentration 

from 33% to 56% while consuming 60 kWh/t of dried solids.
106

 The filter used 173 kJ per 

kg of water removed. The heat integrated dryer was used to increase the algae 

concentration to 95% following the pressure filter. Figure 40 contains the process flow 

diagram for case 4. Mass and energy balances can be found in Table 54. 

Spiral Plate 
Centrifuge

Algae Slurry from Flocculation
5% Dry Algae

Heat Assisted 
Rotary 

Pressure Filter

31.5% Dry Algae

Dried Algae for Extraction
95% Dry Algae

Water Removed

Water Removed

Heat 
Integrated 

Dryer

56% Dry Algae

Water Removed

 

Figure 40: Process flow diagram for case 4. 

 

The energy demand for this process is 3.41 GJ/t BD.  This is 6.9 GJ/t BD less than 

case 3.  Once again, the majority of the energy consumed in Case 4 is during the drying 

step, constituting 83% of the total.  The centrifugation step removed 89% of the total 

water during the process. The centrifugation and pressure filter used electricity as an 

energy source, while the heat integrated dryer consumed 1,430 kg of steam/t BD. 
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Table 54: Material and energy balance for Case 4 

Spiral Plate Centrifuge 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed 

Water removed 

(t/t BD) 

In  0.0500 0.950 1,920 36,500 N/A N/A 

Out 0.315 0.685 1,920 4,180 32,400 32.4 

Energy Input 

(GJ/t BD) 0.132           

Rotary Pressure Filter 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed 

Water removed 

(t/t BD) 

In  0.315 0.685 1,920 4,180 N/A N/A 

Out 0.56 0.44 1,920 1,510 2,670 2.67 

Energy Input 

(GJ/t BD) 0.463           

Delta Dryer 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed 

Water removed 

(t/t BD) 

In  0.56 0.44 1,920 1,510 N/A N/A 

Out 0.95 0.05 1,920 101 1,410 1.41 

Energy Input 

(GJ/t BD) 2.82           
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5.3.4 Case 5 

Case 5 consisted of the chamber filter press, followed by the heat assisted rotary 

pressure filter, and dried using the heat integrated dryer. The chamber filter press 

dewaters the algae slurry to 27% dry algae, the heat assisted rotary pressure filter 

dewaters the algae to 56% dry algae, and the heat integrated dryer is used to reach 95% 

dry algae. Figure 41 contains the process flow diagram for case 5.  

Chamber Filter 
Press

Algae Slurry from Flocculation
5% Dry Algae

Heat Assisted 
Rotary 

Pressure Filter

27% Dry Algae

Dried Algae for Extraction
95% Dry Algae

Water Removed

Water Removed

Heat 
Integrated 

Dryer

56% Dry Algae

Water Removed

 

Figure 41: process flow diagram for case 5. 

The total energy consumption for the process is 3.58 GJ/t BD, slightly higher than 

that of case 4. The majority of energy is consumed by the heat integrated dryer, 

representing 79% of the total dewatering energy in Case 5. The heat integrated dryer 

consumed 1,430 kg of steam/ t BD. The results of the material and energy balances can 

be found in Table 55. 
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Table 55: Material and energy balance for case 5 

Chamber Filter Press: 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed 

Water removed 

(t/t BD) 

In  0.05 0.95 1,920 36,500 N/A N/A 

Out 0.27 0.73 1,920 5,200 31,300 31.3 

Energy Input 

(GJ/t BD) 0.122           

Rotary Pressure Filter 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed 

Water removed 

(t/t BD) 

In  0.27 0.73 1,920 5,200 N/A N/A 

Out 0.56 0.44 1,920 1,510 3,690 3.69 

Energy Input 

(GJ/t BD) 0.640           

Heat Integrated Dryer 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed 

Water removed 

(t/t BD) 

In  0.56 0.44 1,920 1,510 N/A N/A 

Out 0.95 0.05 1,920 101 1,410 1.41 

Energy Input 

(GJ/t BD) 2.82           
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5.3.5 Case 6 

Case 6 consisted of tangential flow filtration, followed by the decanter bowl 

centrifuge, the heat assisted rotary pressure filter, and the heat integrated dryer. 

Tangential flow filtration dewaters the algae slurry to 8.8% dry algae, the decanter bowl 

centrifuge dewaters the algae to 22% dry algae, the rotary pressure filter attains a 56% 

dry weight content, and the heat integrated dryer is used to reach 95% dry algae. The 

tangential flow filter consumed 7.42 kJ/kg of water removed using the conditions 

specified. The decanter bowl centrifuge was found to consume 28.8 kJ/kg of water 

removed. Figure 42 contains the process flow diagram for Case 6.  

Tangential 
Flow Filtration

Algae Slurry from Flocculation
5% Dry Algae

Decanter Bowl 
Centrifuge

8.8% Dry Algae

Dried Algae for Extraction
95% Dry Algae

Water Removed

Water Removed

Heat Assisted 
Rotary 

Pressure Filter

22% Dry Algae

Heat 
Integrated 

Dryer

56% Dry Algae

Water Removed

Water Removed

 

Figure 42: Process flow diagram for case 6. 

The total energy consumption for the process is 4.49 GJ/t BD, higher than case 4 

and case 5. The majority of energy is consumed by the heat integrated dryer, representing 

63% of the dewatering process energy. The heat integrated dryer consumed 1,430 kg of 

steam/t BD. The results of the material and energy balances can be found in Table 56. 
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Table 56: Material and energy balance for case 6 

Tangential Flow Filtration 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed Water removed (t/t BD) 

In  0.05 0.95 1,920 36,500 N/A N/A 

Out 0.088 0.91 1,920 19,700 16,800 16.8 

Energy Input 

(GJ/t BD) 0.125       

Decanter Bowl Centrifuge 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed Water removed (t/t BD) 

In  0.088 0.91 1,920 19,700 N/A N/A 

Out 0.22 0.78 1,920 6,820 12,900 12.9 

Energy Input 

(GJ/t BD) 0.624           

Heat Assisted Rotary Pressure Filter 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed Water removed (t/t BD) 

In  0.22 0.78 1,920 6,820 N/A N/A 

Out 0.56 0.44 1,920 1,510 5,310 5.31 

Energy Input 

(GJ/t BD) 0.921           

Heat Integrated Dryer 

  Mass fraction Mass (kg/t BD)   

  Algae Water Algae Water Water removed Water removed (t/t BD) 

In  0.56 0.44 1,920 1,510 N/A N/A 

Out 0.95 0.05 1,920 101 1,410 1.41 

Energy Input 

(GJ/t BD) 2.82           
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5.3.6 Summary of Cases 

Table 57 contains a summary of all the energy inputs for the various dewatering 

technologies used in Cases 1-6. The energy values follow a basis of energy per tonne of 

BD.  It also states the energy source for each dewatering method.  This will be used to 

perform life cycle assessments (LCA) on each dewatering case to determine their 

environmental impact. 
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Table 57: Summary of the dewatering equipment and energy consumption (the total 

dewatering energy in case 4 is bold because it has the lowest process energy demand) 

 Overall Comparison of Dewatering Processes 

     Energy Values (GJ/t of BD) 

  

Energy 

source for 

dewatering 

Dry algae 

content (%) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Disc Stack 

Centrifuge Electricity 12 N/A 0.116 0.0733 N/A N/A N/A 

Spiral Plate 

Centrifuge Electricity 31.5 N/A N/A N/A 0.132 N/A N/A 

Decanter 

Bowl 

Centrifuge Electricity 22 N/A N/A N/A N/A N/A 0.624 

Tangential 

Flow Filter Electricity 8.8 N/A N/A N/A N/A N/A 0.125 

Chamber 

Filter Press Electricity 27 N/A N/A 0.0282 N/A 0.122 N/A 

Rotary 

Pressure 

Filter Electricity 56 N/A N/A N/A 0.463 0.640 0.921 

Steam 

Rotary 

Dryer Steam 95 109 N/A N/A N/A N/A N/A 

Delta Dryer Steam 95 N/A 72.9 10.2 2.82 2.82 2.82 

Total Dewatering Energy Demand 109 72.9 10.30 3.41 3.58 4.49 
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5.4 Alternatives Life Cycle Inventory 

The life cycle inventory (LCI) was compiled for the alternative cases. No additional 

inventories were developed for the alternative cases. The only alterations to the base case 

were in the energy required to operate the additional/alternate drying operations. 

Electricity and steam were used as the primary forms of energy and their LCI’s remained 

consistent with the base case. The electricity used was high voltage electricity in the 

United States. Heating was performed through the use of steam and defined as steam for 

chemical processes in SimaPro
®
. This maintained consistency with the steam used 

throughout the base case analysis to provide for an accurate comparison. The chemical 

processes that use steam for heating requirements included both water and energy inputs 

to generate the steam. Table 40 shows the LCI’s generated for electricity and steam using 

SimaPro
®
. The steam inventories are reported on a per kg of steam basis and electricity 

inventory is reported on a per MJ energy basis. 
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5.5 Alternative Cases Life Cycle Assessment 

The LCIs generated by SimaPro
®
 and the previously calculated energy 

requirements were used to perform a life cycle assessment (LCA). The biodiesel 

production stages were analyzed and the impact for each was obtained. These were 

inserted into a new process defined as biodiesel, so the various production stages and 

their resulting impact could be compared. The LCA was defined within SimaPro
®
 to 

categorize emissions, raw material usage, and energy consumptions.  

The total life cycle emissions was the impact category used for comparisons. Each 

process was categorized and then compared to the base case. Each of the LCA’s contains 

an assessment of each stage represented in Figure 31. The only modifications to the 

process were performed on the dewatering and drying stages. Additional mechanical and 

alternative thermal drying technologies were compared. The goal was to minimize the 

energy demand and environmental impact of the drying step by studying a wider range of 

dewatering methods. As was found in the base case, the impact of algae growth is 

significantly larger than the other cases. For the purposes of this analysis, emissions and 

the energy demand of algae growth was omitted to focus on downstream processing. No 

analysis was included on the algae growth stage. 

The CED was not analyzed for each process stage. The CED is the total energy 

expenditure that goes into raw material processing, manufacturing processes, and the 

waste disposal. The analysis of the CED for the preliminary alternatives showed similar 

trends in both the total life cycle emissions and the CED. Analyzing both impact 

categories proved repetitive and was therefore not performed on the CED. The values for 

the CED are included in the LCA tables for reference, but are not discussed. 
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5.5.1 Case 1 and Case 2 

Cases 1 and 2 were comparisons on using different dryers. Table 58 shows the life 

cycle assessment of case 1.The difference between the base case and case 1 is the spray 

dryer was replaced with a steam rotary dryer.  

Table 58: LCA of case 1 (basis of 1 t BD) 

Impact category Flocculation 

Steam 

Rotary 

Dryer 

Extraction 

and Solvent 

Recovery 

Reaction and 

Product 

Purification Total 

Raw Materials Used (kg) 22.5 5,010 28.4 -125 4,930 

Emissions to Air (kg) 15.1 12,400 55.1 179 12,700 

Carbon Dioxide (kg) 14.8 12,400 54.6 179 12,600 

Carbon Monoxide (kg) 0.0115 3.24 0.0204 -0.0177 3.26 

Methane (kg) 0.0238 25.0 0.115 0.174 25.3 

NMVOC (kg) 0.00510 5.23 0.102 -0.226 5.11 

Nox (kg) 0.0387 11.1 0.0570 -0.163 11.0 

SO2 (kg) 0.187 21.2 0.113 -0.109 21.4 

Particulates (kg) 0.0381 2.56 0.0143 -0.0405 2.57 

Emissions to Water (kg) 1.08 128 189 -14.6 304 

VOCs (kg) 2.8E-05 0.0217 0.000216 0.000961 0.0229 

Emissions to Soil (kg) 0.00652 5.34 0.0514 0.137 5.54 

Total Emissions 16.2 12,500 245 164 13,000 

CED (MJ) 280 220,000 1,205 408 222,000 

Water Used (kg) 77,800 2,060,000 16,900 20,200 2,180,000 
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The total emissions resulting from the steam rotary dryer are 12,500 kg/t BD 

which is approximately 25% higher than the total life cycle emissions of the base case 

(Figure 43). This is because of the decreased efficiency of the dryer compared to the 

designed spray dryer. The high emissions are because of the energy required to thermally 

reduce the water content of the algae to 5%. As with the base case, this case requires a 

large quantity of steam to evaporate the water present in the algae slurry to achieve the 

low water content.  

 

Figure 43: Percent contribution of emissions associated for case 1 

Table 59 shows the life cycle assessment of case 2. Case 2 used a heat integrated 

dryer instead of a spray dryer. The replacement of spray dryer with the heat integrated 

dryer in case 2 reduced emissions of drying by 2,700 kg/t BD. This is a result of the 

lower energy demanded by the heat integrated dryer to achieve the same water content as 

the spray dryer.  



   

167 

 

Table 59: LCA of case 2 (basis of 1 t BD) 

Impact category Flocculation 

Heat 

Integrated 

Dryer 

Extraction 

and Solvent 

Recovery 

Reaction and 

Product 

Purification Total 

Raw Materials Used (kg) 22.5 3,340 28.4 -125 3,260 

Emissions to Air (kg) 15.1 8,290 55.1 179 8,540 

Carbon Dioxide (kg) 14.8 8,240 54.6 179 8,490 

Carbon Monoxide (kg) 0.0115 2.160 0.0204 -0.0177 2.18 

Methane (kg) 0.0238 16.7 0.115 0.174 17.0 

NMVOC (kg) 0.00510 3.49 0.102 -0.226 3.37 

Nox (kg) 0.0387 7.41 0.0570 -0.163 7.34 

SO2 (kg) 0.187 14.1 0.113 -0.109 14.3 

Particulates (kg) 0.0381 1.70 0.0143 -0.0405 1.72 

Emissions to Water (kg) 1.08 85.5 189 -14.6 261 

VOCs (kg) 2.8E-05 0.0144 0.000216 0.000961 0.0157 

Emissions to Soil (kg) 0.00652 3.56 0.0514 0.137 3.76 

Total Emissions 16.2 8,380 245 164 8,800 

CED (MJ) 280 147,000 1,205 408 149,000 

Water Used (kg) 77,800 1,380,000 16,900 20,200 1,490,000 

 

The heat integrated dryer had 8,380 kg/t BD of total emissions. This is 16% less 

total life cycle emissions than was generated with the base case. Drying is once again the 

major contributor to the total emissions. The distribution of the total life cycle emissions 

is shown in Figure 44.  
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Figure 44: Percent contribution of emissions for case 2 

There were 12,500 kg/t BD of total emissions by using the steam rotary dryer and 

8,380 kg/t BD from the heat integrated dryer. Comparing both of these cases and the base 

case shows the heat integrated dryer to be the most efficient of the selected processes 

(Figure 45).  

 

Figure 45: Total emissions of base case versus case 1 and case 2 
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The large variation between using dryers results from the different efficiencies of 

the dryers. The heat integrated dryer consumes 2 MJ/kg of water removed, while the 

steam rotary dryer consumes 3 MJ/kg of water removed. This is higher than the spray 

dryer which uses 2.5 MJ/kg of water removed. Case 2 has high emissions associated with 

the production of algae-derived biodiesel, but is still an improvement over the base case 

and case 1. This heat integrated dryer was chosen for the thermal drying in the remaining 

cases as a result of these findings. 

5.5.2 Case 3 

Table 60 contains the results of the case 3 life cycle assessment. This case consisted of a 

disc stack centrifuge and chamber filter press following flocculation and prior to drying. 

The total life cycle emissions were analyzed and compared to the base case.  
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Table 60: LCA of case 3 (basis of 1 t BD) 
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The total life cycle emissions resulting from case 3 is 1,620 kg/t BD. Figure 46 

shows that the most of the total life cycle emissions are associated with the heat 

integrated dryer. This is because of the energy required to vaporize the water in the algae 

slurry. In case 3, the total emissions released during the delta dryer stage are 1,170 kg/t 

BD, which is 73% of the total emissions from case 2. This can be compared to the case 2 

value of 95%. The addition of centrifugation resulted in less thermal drying, thus 

reducing the contribution of drying to the total process emissions. 

 

Figure 46: Percent contribution of the emissions for case 3 

  The addition of mechanical dewatering reduces the total life cycle emissions by 

approximately 82% when compared to case 2. The addition of the disc stack centrifuge 

increases the dry algae content to 12%, consuming 3.27 kJ/kg of water removed. The 

chamber filter press results in algae slurry of 27% dry algae, using 3.88 kJ/kg of water 

removed. This is compared to thermal drying at 2 MJ/kg of water removed which 
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emphasizes the importance of minimizing the thermal drying. The disc stack centrifuge 

removed 22,400 kg of water and the chamber filter press removed 8,900 kg of water. This 

left only 5,100 kg of water for the heat integrated dryer to remove rather than the full 

36,400 kg of water. 

5.5.3 Case 4 

Case 4 used the spiral plate centrifuge, followed by the heat integrated rotary 

pressure filter. The algae slurry was then fed into the heat integrated dryer at 56% dry 

weight and was dried to 95% dry algae. The resulting total life cycle emissions for case 4 

were then analyzed and compared to the base case. Table 61 contains the results of the 

life cycle assessment.
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Table 61: LCA of case 4 (basis of 1 t BD) 
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The total life cycle emissions for case 4 was 875 kg/t BD.  Figure 47 shows the 

total life cycle emissions distribution for case 4. The dryer released 324 kg emissions/t 

BD in this case which corresponds to 37% of the total emissions. The heat assisted rotary 

pressure filter contributed to 11% of the total life cycle emissions, but further reduced the 

total demand of thermal drying.  

 

Figure 47: Percent contribution of the emissions for case 4 

Case 4 is a 46% reduction compared to case 3. Adding the heat assisted rotary 

pressure filter lessened the extent of thermal drying, and resulted in a decrease of total 

emissions produced by the biodiesel production process. The spiral plate centrifuge 

dewatered to 31.5% dry algae slurry, which removed 32,400 kg of water and only 

consumed 4.07 kJ/kg water removed. The addition of the pressure filter increased the dry 
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algae content to 56%. This removed 2,670 kg of water while using 173 kJ/kg water 

removed. The rotary pressure filter consumes significantly higher amounts of energy 

compared to the spiral plate centrifuge, but can achieve higher dry algae contents. 

Compared to the heat integrated dryer which consumes 2 MJ/kg water removed, the 

pressure filter is significantly less energy demanding. In this case only 1,410 kg of water 

was removed by the dryer.  

5.5.4 Case 5 

Case 5 consists of the chamber filter press, followed by the heat assisted rotary 

pressure filter, and dried using the heat integrated dryer. The LCA was performed, and 

the total life cycle emissions were analyzed and compared to the previous cases. Table 62 

contains the results of the LCA. 
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Table 62: LCA of case 5 (basis of 1 t BD) 
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Case 5 had 911 kg of total life cycle emissions/t BD. The emissions for the dryer 

contribute to 34% of the total life cycle emissions (Figure 48). The total emissions from 

the drying stage was constant between case 4 and case 5. This was because the algae 

slurry leaving the heat assisted rotary pressure filter was 56% in both cases and only 

1,410 kg of water was removed. Therefore, the only difference between these two cases 

is the spiral plate centrifuge was replaced by the chamber filter press and resulted in only 

a 36 kg/t BD difference compared to case 4.  

 

Figure 48: Percent contribution of the emissions for case 5 

Case 5 did not further decrease the total emissions associated with the algae 

biodiesel process. Although this was a 36 kg/t BD increase in total life cycle emissions, 

case 4 and case 5 are not significantly different. The major similarity between these two 

cases is the heat assisted rotary pressure filter. This does not further decrease the extent of 
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drying, and the resulting life cycle emissions did not vary significantly even though the 

configuration of the dewatering operations was altered.   

5.5.5 Case 6 

Case 6 consisted of tangential flow filtration, followed by the decanter bowl 

centrifuge, and the heat assisted rotary pressure filter which was dried using the heat 

integrated dryer. The LCA was performed, and the total life cycle emissions were 

analyzed and compared to the previous cases. Table 63 contains the results of the case 6 

life cycle assessment. 
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Table 63: LCA of case 6 (basis of 1 t BD) 
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The total life cycle emissions for case 6 were 1,100 kg/t BD. Figure 49 shows the 

distribution for the total life cycle emissions of each process stage in case 6. As with case 

4 and 5, the total life cycle emissions were the same at 324 kg/t BD for the dryer since the 

dry algae content from the heat assisted rotary pressure filter is 56%. The life cycle 

emissions from case 6 were 225 kg/t BD greater than case 4, which suggests that either 

one or more of the dewatering methods were inappropriate for algae drying.   

 

Figure 49: Percent contribution of the emissions for case 6 

The tangential flow filtration was able to dewater the algae slurry to 8.8% dry 

weight algae while consuming 7.42 kJ/kg water removed. This technique is not capable 

of achieving high dry algae contents, and consumes more energy than the disc stack 

centrifuge, spiral plate centrifuge, and chamber filter press. These technologies should be 

utilized instead of the tangential flow filtration as this is not an appropriate application for 

this technology. 



   

181 

 

The decanter bowl centrifuge also proves to have a higher energy demand than 

the aforementioned technologies at 28.8 kJ/kg of water removed. Using a mixture which 

does not consist of biomass, decanter bowl centrifuges are capable of reaching higher dry 

weight contents. The attainable dry weight contents are lower for algae than other 

applications because of bound intercellular water. This lower achievable algae content 

and higher energy consumption makes the decanter centrifuge an inappropriate 

technology for algae dewatering. 
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5.6 Discussion of the Dewatering Alternatives 

Table 64 contains a summary of the life cycle assessment performed on each 

alternative and the base case.  The decrease in total life cycle emissions was largest 

between case 2 and case 3 at 7,180 kg/t BD. The least improvement was seen between 

cases 4 and 5. These two only differed by 36 kg/t BD, which is not a significant 

difference. This is because the extent of drying was not altered between these two cases. 

Each of these cases had 56% dry content algae being sent to the heat integrated dryer. 

Mechanical methods are unable to further dry the algae because of bound intercellular 

water.
46

 Typical algae cells can contain between 40 and 80% water.
11, 46, 47 
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Table 64: Summary of all the LCA’s for all the cases including the base case 

Impact Category 

Base 

Case Total Case 2 Case 3 Case 4 Case 5 Case 6 

Raw Materials Used (kg) 3,920 4,930 3,260 405 128 149 262 

Emissions to Air (kg) 10,200 12,700 8,540 1,430 691 726 912 

Carbon Dioxide (kg) 10,100 12,600 8,490 1,420 687 722 906 

Carbon Monoxide (kg) 2.60 3.26 2.18 0.325 0.146 0.161 0.235 

Methane (kg) 20.3 25.3 17.0 2.68 1.18 1.24 1.59 

NMVOC (kg) 4.06 5.11 3.37 0.373 0.0410 0.0480 0.0861 

Nox (kg) 8.80 11.0 7.34 1.01 0.457 0.524 0.887 

SO2 (kg) 17.1 21.4 14.3 2.28 1.39 1.58 2.58 

Particulates (kg) 2.05 2.57 1.72 0.269 0.188 0.219 0.388 

Emissions to Water (kg) 278 304 261 189 184 185 192 

VOCs (kg) 0.0185 0.0229 0.0157 0.00324 0.00182 0.00184 0.00193 

Emissions to Soil (kg) 4.46 5.54 3.76 0.696 0.348 0.353 0.376 

Total Emissions (kg) 10,500 13,000 8,800 1,620 875 911 1,100 

CED (MJ) 178,000 222,000 149,000 22,800 9,660 10,200 13,400 

Water Used (kg) 1,760,000 2,180,000 1,490,000 389,000 647,000 784,000 1,520,000 

 

The total emissions category is a summation of all the emissions to the air, water, 

and soil. Table 65 shows the percent of the total emissions that is released into the air, 

water, and soil for each alternative dewatering operation considered. The dewatering 

options were broken down into mechanical and thermal methods. This is because the 

mechanical methods consumed electricity and had the same emissions distribution 

between air, water and soil. All thermal methods used steam as the source and had the 

same emissions distribution. The majority of the total emissions are released into the air. 

This excludes the extraction stage which emits 23% of the total emissions to the air while 
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77% is released into water. This is attributed to the landfilling of solid biomass that is 

expended during this stage. The negative emission percentage within the reaction and 

purification stage is a result of the credit taken from the production of glycerine. 

Therefore, the total emissions are actually smaller than that of the emissions going into 

air. The emissions to soil contribute less than 0.1% to the total emissions of all stages 

within case 1. Emissions to soil could be considered negligible compared to air and water 

emissions.  

Table 65: Percent contribution of each emission category to the total emissions  

Process Stage Emissions to Air Emissions to Water Emissions to Soil CO2 Emissions 

Flocculation 93% 7% <0.1% 91% 

Mechanical 

Dewatering 97% 3% <0.1% 95% 

Thermal Drying  99% 1% <0.1% 98% 

Extraction and 

Solvent Recovery 23% 77% <0.1% 22% 

Reaction and 

Product 

Purification 109% -9% <0.1% 109% 

Each case shows a significant improvement compared to the base case when 

looking at the total emissions released and the cumulative energy demand. Figure 50 

shows the decrease in total emissions of each case with respect to the base case.  
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Figure 50: Total emissions of alternative dewatering cases including the base case  

As shown in Figure 50, the further utilizing mechanical drying significantly 

reduced the total emissions released by each case. This was because of the reduction in 

the extent of thermal drying. Since the mechanical drying units require much less energy 

input compared to the thermal drying stage, the energy input for each process was 

significantly reduced. Thus, the total emissions were also decreased. The addition of 

more mechanical separations prior to thermal drying decreases the energy of the overall 

process. However, there is a point where additional mechanical drying will no longer 

result in a decrease in moisture content. In Figure 50, the reduction between case 4, case 

5, and case 6 is small compared to the initial reduction achieved by utilizing thermal 

drying. It suggests that although the configuration of the mechanical dewatering units has 

an effect on the total life cycle emissions, it is not as significant as decreasing the extent 

of using a thermal dryer. Mechanical dewatering is not likely to be utilized beyond the 
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56% dry algae content because of bound intracellular water content within the algae. 

Therefore thermal drying is still required to reach this water content within the algae 

slurry. 

5.6.1 Modeling the Life Cycle Emissions 

Additional analysis was performed to determine the optimal configuration for the 

equipment and if it is a significant improvement over the six developed cases. Each unit 

was individually analyzed, and the total emissions per t of water removed were 

calculated. These values were based on the operating conditions for the dewatering 

ranges studied. The total life cycle emissions of each dewatering process for every t of 

water removed was found since the energy consumption is directly related to the life 

cycle emissions (Table 66). As was shown before, drying is the least efficient processing 

method. The disc stack centrifuge, spiral plate centrifuge, tangential flow filtration, and 

chamber filter press all have low emissions/ t of water removed. The decanter centrifuge 

has higher emissions than the other filtration and centrifugation methods. The attainable 

dry weight contents are lower for algae than other applications because of bound 

intercellular water. This lower achievable algae content and higher energy consumption 

makes the decanter centrifuge an inappropriate technology for algae dewatering. The heat 

assisted rotary pressure filter incorporates heating into the mechanical separation 

resulting in a higher dewatering capability. This results in higher energy expenditures, 

and therefore higher emissions. 
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Table 66: Dewatering Equipment Emissions 

Operation Category Emissions 

(kg/t water removed) 

Spray Dryer Drying 287.35 

Delta Dryer Drying 229.9 

Steam Rotary Dryer Drying 344.86 

Disc Stack Centrifuge Centrifugation 0.69 

Spiral Plate Centrifuge Centrifugation 1.14 

Decanter Centrifuge Centrifugation 10.67 

Tangential Flow Filtration Filtration 1.58 

Chamber Filter Press Filtration 0.83 

Heat Assisted Rotary Filter Dryer Filtration 36.88 

 

The dewatering stages were analyzed using linear programming. The objective 

function sums the emissions based on the quantity of water removed by each piece of 

equipment (Equation 46). Minimizing the objective function provides the configuration 

with the minimum total emissions. This can be performed with any impact assessment 

parameter, including CO2 emissions and CED by swapping the desired parameter with 

the total emissions parameter. 

 
SRDMHIDMSDMRMCM.TMEMDMSM *86.344*9.229*35.28788.36830*58.114.167.1069.0 

 
(46) 

Where: 

 SM
is the mass of water removed by the disc stack centrifuge (t) 

 DM is the mass of water removed by the decanter centrifuge (t) 

 EM is the mass of water removed by the spiral plate centrifuge (t) 
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 CM
is the mass of water removed by the chamber filter press (t) 

 TM is the mass of water removed by tangential flow filtration (t) 

 RM is the mass of water removed by the heat assisted rotary filter press (t) 

 SDM
is the mass of water removed by the spray dryer (t) 

 HIDM is the mass of water removed by the heat integrated dryer (t) 

 SRDM
is the mass of water removed by the steam rotary dryer (t) 

The constraint functions were then defined. Equation 47 specifies the quantity of 

water that must be removed in order to achieve a dry weight percentage of 95%. 

Equations 48, 49, 50, 51, 52, and 53 represent the quantity of water that can be removed 

by each respective component. These are resulting from the known limitations on 

attainable dry weight percentages for each piece of equipment. To achieve a dry weight 

content of 95%, 36.431 t of water needs to be removed. Tangential flow filtration is only 

able to achieve 8.8% dry weight algae, which is reached when 16.605 t of water is 

removed. The disc stack centrifuge is only capable of attaining 12% dry algae content, 

corresponding to 22.432 t of water removed. Decanter centrifugation can only 

concentrate the algae to 22% dry weight, which occurs when 29.716 t of water is 

removed. The chamber filter press can only remove 31.334 t of water which is 27% dry 

weight algae. The disc stack centrifuge can only achieve 31.5% dry algae content which 

corresponds to removing 32.351 t of water, and the heat assisted rotary filter press can 

remove 35.022 t of water, or 56% water content. 

 4316** .3MMMMBMBMMMM SRDHIDSDREECCDST 
 

(47) 
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 605.16TM  
(48) 

 432.22 ST MM
 

(49) 

 716.29 DST MMM
 

(50) 

 334.31*  CCDST BMMMM
 

(51) 

 351.32**  EECCDST BMBMMMM
 

(52) 

 022.35**  REECCDST MBMBMMMM
 

(53) 

Where: 

CB
is a binary number for the chamber filter press 

EB is a binary number for the spiral plate centrifuge 

The spiral plate centrifuge and the chamber filter press both process the algae to 

low quantities of extracellular water. Since the algae solution is not likely to flow under 

these water contents, the spiral plate centrifuge and chamber filter press cannot be 

operated in series. This requires the generation of the constraint in Equation 54. This is a 

binary constraint which specifies that one, the other, or neither may be operated, but not 

both. These binary constraints are multiplied to their respective variable in the previous 

constraints. 

 1 EC BB
 

(54) 

This system was solved to find the configuration which generates the lowest total 

emissions. This was found at 22.432 t of water removed by the disc stack centrifuge, 

9.919 t of water removed by the spiral plate centrifuge, 2.671 t of water removed by the 

heat assisted rotary pressure filter, and 1.409 t of water removed by the heat integrated 

dryer.  The sequence of this configuration was then logically deduced from knowing the 
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equipment’s capabilities for dewatering and the acceptable ranges they can operate. The 

disc stack centrifuge can only dewater to 12% which removes 22.432 t of water, the 

spiral plate centrifuge can then be used to remove 9.919 t of water to bring the slurry to 

32% dry algae. The additional 2.671 t of water removed by the heat assisted rotary filter 

press dewaters to 56% dry algae and the remaining 1.409 t of water is results in 95% dry 

algae. This sequence is shown in Table 67. 

 

Figure 51. Total emissions distribution for the optimal case 

Figure 51 shows the distribution of the total life cycle emissions for the optimal 

case. Total life cycle emissions of 450 kg/t BD resulted from the dewatering and drying 

section of this configuration. This was added to the remainder of the algae biodiesel 

process, producing 874 kg of total emissions are produced for one t of biodiesel. This 

optimal case is essentially the same as case 4, which had 875 kg of total emissions per t 

of biodiesel produced. This suggests that the correct sequencing is only beneficial to a 

certain point. Estimation was performed using the objective function to quickly analyze 
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the emissions from replacing the spiral plate centrifuge in the optimal case, with the 

chamber filter press. This case was used to investigate the significance of altering the 

sequence of the dewatering equipment. These two cases are shown in Table 67. 

Table 67: The optimal case and the variation from the linear programming model 

Optimal Case Optimal Case Variation 

Equipment Dry algae 

content 

Equipment Dry algae 

content 

Disc Stack Centrifuge 12% Disc Stack Centrifuge 12% 

Spiral Plate Centrifuge 31.5% Chamber Filter Press 27% 

Heat Assisted Rotary 

Pressure Filter 

56% Heat Assisted Rotary 

Pressure Filter 

56% 

Heat Integrated Dryer 95% Heat Integrated Dryer 95% 

Total Life Cycle Emissions 874 kg Total Life Cycle Emissions 908 kg 

 

The total life cycle emissions from these two cases only differed by 4%. The 

optimal case, the variation, case 4, and case 5 vary by only 36 kg of life cycle emissions/t 

BD. This suggests the sequencing does not significantly affect the total life cycle 

emissions. Instead, maximizing the mechanical dewatering is more crucial than the 

proper sequencing. Therefore, future work should focus on removing the required 

thermal drying which is responsible for 37% of the total downstream emissions. 

However, this aspect is limited because of bound intercellular water which can represent 

40 to 80% of the cellular mass and cannot be removed by mechanical means.
 18, 46, 47  

Since removing this intercellular water may not be possible without thermal drying, 

additional research should focus on extraction methods capable of handling mixtures with 

significant water content, 40 - 80%. This would eliminate the need for thermal drying, 
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and remove the largest contributor to the downstream total life cycle emissions. 

Unfortunately these techniques are not currently commercially available. Future research 

should investigate these technologies and determine the scalability as well as the 

environmental sustainability of wet extraction techniques. 

In addition to comparing the different algae biodiesel processing methods, algae 

can be evaluated against other sources of biodiesel. Case 4, the best case, was compared 

against the GWP of biodiesels from various sources (Table 68). Cultivation was not 

considered in our cases; therefore, these were also not included for these sources. To 

determine the GWP for case 4, emission factors of 1, 25, and 298 were applied to the 

CO2, CH4, and N2O emissions respectively.
107

 This resulted in a GWP of 663 kg CO2eq/t 

BD. The allocation of glycerine avoids potential N2O emissions, resulting in a lower 

GWP than the CO2 emissions. This is shown in Table 68.  

Table 68. LCAs for biodiesel originating from a variety of sources 

Source GWP (kg CO2/t BD) Oil Content (%) 

Soybean 1,290
108

 17 
109

 

Rapeseed 578 
108

 40 
110

 

Jatropha 391 
108

 30 
109

 

Algae (Case 4) 663 61.3 

 

The varying GWP seen between these sources is because of the differences in oil 

contents between these sources. More raw material must be processed to attain the same 

quantity of oil, resulting in a greater GWP in downstream processing. Algae have a 

higher GWP than rapeseed and jatropha because of their high water contents compared to 

terrestrial plants. Algae have significantly higher water contents than terrestrial plants. A 

large portion of the GWP is associated with the extensive dewatering and drying. Algae 

are capable of being produced space efficiently, and rapidly which might give algae the 

long term advantage over terrestrial plants.  
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Chapter 6 

Conclusions 

A base case was developed for the downstream processing of algae into biodiesel 

and resulting life cycle emissions were obtained. Alternative cases were investigated to 

reduce the total life cycle emissions. The equipment compared for these alternatives were 

a disc stack centrifuge, spiral plate centrifuge, decanter centrifuge, tangential flow filter, 

chamber filter press, heat assisted rotary pressure filter, steam rotary dryer, and heat 

integrated dryer. Comparing the base case to the dewatering alternatives led to a 

significant decrease in emissions. The optimal sequence was found using linear 

programming and was a disc stack centrifuge, followed by a spiral plate centrifuge, heat 

assisted rotary pressure filter, and a heat integrated dryer. This had 874 kg emissions/t 

BD, with 53% attributed to dewatering and was a 91% improvement compared to the 

base case. Increasing the extent of mechanical dewatering resulted in significant life 

cycle emissions reduction. This is because the driving force for thermal drying had a high 

energy demand at 2 MJ/kg water removed.  

This optimal case was a significant improvement over the base case, but was 

essentially the same as the next best case which had 875 kg emissions/t BD. Additional 

investigation found that four of the developed cases varied by 36 kg emissions/t BD. This 

demonstrates that increasing the extent of dewatering is more important than the proper 

arrangement. The drying component was responsible for 37% of the total downstream 

emissions in case 4 and the optimal case. Additional improvements can be made by 

lessening or removing the thermal drying, but current mechanical technologies are 

incapable of removing bound intercellular water. 
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Even in the optimal configuration, 51% of the total emissions were from 

operating the disc stack centrifuge, spiral plate centrifuge, heat assisted rotary filter press, 

and heat integrated dryer. Although this is a 91% improvement compared to the base 

case, the dewatering and drying still accounts for the majority of total emissions. An 

alternative method of achieving lower total emissions would be to remove the drying step 

entirely. Performing the TAG extraction under considerable water content would avoid 

thermal drying, which may decrease the total emissions. Wet extraction methods would 

remove the stage with the largest impact towards total emissions, potentially resulting in 

a lower environmental footprint.
46, 51
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Table 71.  Chemical breakdown of medium constituents and mass quantities. 

Medium Breakdown {kg/hr} 

KH2PO4 8.99E+01 

CaCl2*2H2O 1.28E+01 

MgSO4*7H2O 3.85E+01 

NaNO3 1.28E+02 

K2HPO4 3.85E+01 

NaCl 1.28E+01 

Na2EDTA 5.14E+00 

KOH 3.19E+00 

FeSO4*7H2O 2.56E+00 

H2SO4 9.46E-01 

H3BO3 4.14E+00 

H3BO3 1.47E+00 

MnCl2*4H2O 9.30E-01 

ZnSO4*7H2O 1.14E-01 

NaMoO4*5H2O 2.00E-01 

CuSO4*5H2O 4.06E-02 

Co(NO3)2*6H2O 2.54E-02 

Total 3.40E+02 
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Table 72.  Material flows for SimaPro
®

 on per tonne of biodiesel basis. 

Stream Tables {kg/t BD} - Main Process Streams 
  

  
Chemical 1 2 3 4 5 6 8 

  Algae   SEED 2019   1923 96   

  Water   1242 8.08E+04   36533 4.42E+04 36431 

  Medium   38.3 54.8   38.3 16.4   

  Al(OH)3         4.84 0   

  CaSO4         12.7     

  Al2(SO4)3       20.7       

  CaCO3       9.32       

  CO2 3133             

  Total 3133 1281 8.28E+04 30.0 38511 4.43E+04 36431 

  
Main Process Streams - Continued 

  

  
Chemical 9 10 11 12 13 14 15 

  Algae 0 1923   770       

  Water 56822 101   101       

  Medium 0 38.3   38.3       

  Al(OH)3   4.84   4.84       

  CaSO4   12.7   12.7       

  Hexane     1420   1430 1300 121 

  TAG     26.0 59 1120 14.5 1110 

  Dry Air 1.02E+06             

  Total 1.08E+06 2080 1446 986 2550 1315 1231 

  
Main Process Streams - Continued 

Chemical 19 20 22 24 25 26 27 28 29 

Algae                   

Water 20391 20391     56822         

CO2     313             

O2     2051             

Hexane       5   87.4 33.7 28.7 5.00 

TAG           3.60 1100 7.98 1090 

Dry Air 1.02E+06 1.02E+06     1.02E+06         

Total 1.04E+06 1.04E+06 2364 5 1.08E+06 91.0 1134 36.7 1095 
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Reactor Purification Section {kg/t BD} 

    
    Chemical 16 17 18 23 30 

    TAG         98.4 

    MeOH 113         

    NaOH 5.81       3.88 

    HCl 1.76         

    H2O 158         

    FAME (Oleic Acid)     1000     

    Glycerol   109       

    NaCl       2.82   

    Hexane       

 

5.00 

    Waste Water       159   

    Total 280 109 1000 162 107 
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