
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

1-3-2012

Visualizing graphs with distinguishable edges and ordered binary Visualizing graphs with distinguishable edges and ordered binary

trees in small area trees in small area

Andrew Fabian

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Fabian, Andrew, "Visualizing graphs with distinguishable edges and ordered binary trees in small area"
(2012). Theses and Dissertations. 485.
https://rdw.rowan.edu/etd/485

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Fetd%2F485&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/485?utm_source=rdw.rowan.edu%2Fetd%2F485&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

VISUALIZING GRAPHS WITH DISTINGUISHABLE EDGES

AND ORDERED BINARY TREES IN SMALL AREA

by

Andrew Fabian

A Thesis

Submitted to the

Department of Computer Science

College of Liberal Arts and Sciences

In partial fulfillment of the requirement

For the degree of

Master of Science in Computer Science

at

Rowan University

December 2011

Thesis Chair: Adrian Rusu, Ph.D.

© 2011 Andrew Fabian

Dedication

In loving memory of my parents, Andrew and Robin Fabian.

iv

Acknowledgments

 Many thanks to my advisor, Prof. Adrian Rusu, for providing me the opportunity

to pursue this research and for all of the support and encouragement in completing this

endeavor. I give many more thanks to him for presenting me with several life-changing

opportunities including the co-op study with the Federal Aviation Administration that has

landed me a position doing exciting and enjoyable work with them.

 I thank Radu Jianu for providing me the framework he developed for creating

graphs that was invaluable to the research conducted on the edge crossing problem.

 For their time, input, and interest in this work, I also thank my committee

members Profs. Steve Hartley, Hieu Nguyen, and Jianning Xu. I also thank them for their

guidance and knowledge that they have passed on to me during the several years I have

been a part of Rowan University.

v

Abstract

Andrew Fabian

VISUALIZING GRAPHS WITH DISTINGUISHABLE EDGES

AND ORDERED BINARY TREES IN SMALL AREA

2009-11

Adrian Rusu, Ph.D.

Master of Science in Computer Science

 As graph layouts and visualizations have been at the forefront of graph drawing

research for decades, it consequently led to aesthetic heuristics that not only generated

better visualizations and aesthetically appealing graphs but also improved readability and

understanding of the graphs. A variety of approaches examines aesthetics of nodes,

edges, or graph layout, and related readability metrics. In this thesis, two solutions

incorporating Gestalt principles to alleviate the effects of the edge crossing problem are

presented. Alleviating this problem improves graph aesthetics and readability. Secondly,

improving the known bounds on two aesthetic requirements (area and aspect ratio) for

planar straight-line order-preserving grid drawings of binary trees is presented in a novel

algorithm using a separations approach. The new bounds are optimal in area and aspect

ratio, where the optimum values are linear and 1:1 respectively. All three topics present

novel contributions to graph and tree drawing ultimately leading to a potential for

improved readability and aesthetics requirements.

vi

Table of Contents

Abstract v

List of Figures vii

List of Tables xi

Chapter 1: Introduction 1

1.1 Introduction 1

1.2 Contributions and Outline 4

Chapter 2: Alleviating the Edge Crossing Problem 5

2.1 Edge Coloring Method 10

2.2 Gestalt Principle of Closure Method 21

Chapter 3: An Optimal Ordered Binary Tree Drawing Algorithm 29

3.1 Introduction 29

3.2 Preliminaries 32

3.3 The Algorithm 39

3.4 Proof of Correctness 59

3.5 Experimental Study 74

3.6 Conclusion 82

Chapter 4: Summary 83

List of References 84

vii

List of Figures

Figure Page

Figure 1. Gestalt principles... 6

Figure 2. Visualizations transformed according to Gestalt principles which pose no

problem to human recognition. ... 10

Figure 3. Examples of edge pairs and their approximate, normalized distance values.... 12

Figure 4. Mesh approximation of the Lab gamut and embedded points corresponding to

edges of a graph. The white sphere at the bottom exerts a repulsive force on the

points so that edge colors are picked from the lighter spectrum............................... 14

Figure 5. The inverse of the closeness metric and the absolute embedding error. The

inverse of the closeness metric for each pair of edges is plotted in increasing order of

magnitude with its corresponding error stacked on top. ... 14

Figure 6. Protein interaction network derived from data available in the Human Protein

Reference Database (HPRD) with described edge coloring solution. 17

Figure 7. Simple example illustrating the coloring method. Edges crossing or stemming

from the same node are assigned opposing colors.. 18

Figure 8. A graph of three sparsely connected clusters.. 18

Figure 9. A complete 8-degree graph. .. 19

Figure 10. A more complex graph.. 19

Figure 11. A problem with the coloring: the close edges in the bundle on the right cause

the embedding algorithm to be insensitive to the crossing edges on the left............ 20

Figure 12. Examples illustrating the algorithm for edge crossings that incorporates the

Gestalt principle of closure. .. 23

Figure 13. Graph drawing with few edge crossings (traditional on the left; Gestalt effect

introduced on the right)... 26

Figure 14. Graph drawing with a cluster of edge crossings (traditional on the left; Gestalt

effect introduced on the right)... 26

Figure 15. Larger graph drawing with edge crossings (traditional on the left; Gestalt

effect introduced on the right)... 27

viii

Figure 16. Graph drawing with a high density of edge crossings (traditional on the left;

Gestalt effect introduced on the right). ... 27

Figure 17. (a) the initial configuration of a three node binary tree. (b) one application of

Rot90. (c) two applications of Rot90. (d) three applications of Rot90. Four

applications of Rot90 do not affect (a). .. 36

Figure 18. (a) the initial configuration of a three node binary tree. (b) one application of

V. (c) one application of H. (d) both V and H applied, order does not matter and is

equivalent to two applications of Rot90. The arrows in (b) and (c) demonstrate how

one application of a flip creates a mirror drawing (left node is right and vice versa).

(e) the mirror of (a). (f) one application of V on (e) and the in-order equivalent of

(b). (g) one application of H on (e) and the in-order equivalent of (c). (h) both V and

H applied on (e), where order does not matter.. 37

Figure 19. A < 1. a = u. l(u) = v. v is root of C. v may be u
*
. .. 42

Figure 20. A ≥ 1. a = u. l(u) = v. v is root of C. (a): o = p(a) and r(o) exists. (b): o = p(a)

and r(o) does not exist. (c): o ≠ p(a) and v ≠ u
*
. (d): o ≠ p(a) and v = u

*
. 42

Figure 21. A < 1. (a): v ≠ u
*
 (subcase C). (b): v = u

*
 (subcase D). 43

Figure 22. A ≥ 1. (a): o = p(u) and r(o) exists. (b): o = p(u) and r(o) does not exist........ 43

Figure 23. (a): A < 1. (b): A ≥ 1. In both options, when v = u
*
 the root of C moves to the

bottom-left corner. .. 44

Figure 24. (a): A < 1. (b-c): A ≥ 1. When v = u
*
 in (a), the root v of C becomes the

bottom-left corner of C. .. 44

Figure 25. A < 1. (a-b): subcase C. (c): subcase D. In subcase C, p(a) is not guaranteed to

be on the left boundary, so A must be split and its pieces considered separately. ... 45

Figure 26. A ≥ 1. In subcase C, o ≠ p(a) so p(a) is actually on the bottom boundary (not

necessarily the bottom-left corner as shown). In subcase D, o = p(a) so by feasibility

property 3, the vertical channel below o is empty allowing a to connect through the

left boundary. A vertical flip is applied to B so that it connects on the bottom-left

corner. ... 46

Figure 27. (a): A < 1. (b): A ≥ 1. ... 46

Figure 28. (a): A < 1. o = v. General scope drawing. (b): A < 1. o = u. α-scope drawing.

(c): A ≥ 1. o = v. General scope drawing. (c): A ≥ 1. o = u. α-scope drawing.......... 47

Figure 29. (a-b): A < 1. (c-d): A ≥ 1. Where either subtree may be α-scope, the other is its

sibling and is general scope. ... 48

ix

Figure 30. (a-b): A < 1. (c-d): A ≥ 1. Where either subtree may be αβ, the other is its

sibling and is general scope. ... 48

Figure 31. A < 1. (a-b): β connects to the root on the left and p(u) may exist on either of

two boundaries. (c-d): β connects to the root on the right and p(u) may exist on

either of two boundaries. (e-f): the root of β has no sibling. 50

Figure 32. A ≥ 1. (a-b): β connects to the root on the left and p(u) may exist on either of

two boundaries. (c-d): β connects to the root on the right and p(u) may exist on

either of two boundaries. (e-f): the root of β has no sibling. 50

Figure 33. (a-b): A < 1. (c-d): A ≥ 1. When both subtrees exist, 1 is the subtree on the left

and 2 is the subtree on the right. When only one exists, 1 is the subtree that exists

(and has root v).. 51

Figure 34. (a-b): A < 1. (c-d): A ≥ 1. (e-f): any aspect ratio. Aβ is drawn with β-scope and

Bβ is drawn with B-scope. These are labeled as such to relate to similar roles in the

general scope diagrams. (b-f): Bβ is horizontally flipped. (f): Aβ' and o make Aβ. 53

Figure 35. All options are for any aspect ratio. (a-b): Cβ' and the link node together make

Cβ; also use a horizontal flip on Cβ'. (d): use a 90 degree rotation and vertical flip on

Cβ so its root is on the top boundary. ... 54

Figure 36. (a-b): any aspect ratio. (c): A ≥ 1. (a): use a 90 degree rotation and vertical flip

on Root when it is created from Figure 35(a-b). (b): works due to feasibility property

3 in the general scope guaranteeing the vertical channel below the root is empty

when it is the link node. (c): use a vertical flip on Bβ so its root is on the bottom-left

corner. ... 54

Figure 37. A < 1. (a-f): have the left subtree of a containing the separator edge. (g-j):

have the right subtree of a containing the separator edge. (k-n): have a = v and a has

no siblings. (o): has a = v and has a sibling and is bottom connected to the partial

tree with root o. If a = v and has a sibling and is right connected to the partial tree

with root o, then one of the first 10 options is used. A horizontal flip is used for any

subtree that is connected at the top-right corner. A 90 degree rotation and vertical

flip are used on Cβ(') when it needs to be connected at its top boundary. If Cβ has

the link node at its root it can be safely drawn if its root has no children or a right

child. If it has a left child it can be safely drawn (Case 2) as long as the root is

moved to the right boundary (by feasibility property 3). Bβ and Cβ('/'') may need to

be horizontally flipped so they can be connected from the right. 56

Figure 38. A ≥ 1. (a-c): Aβ is vertically flipped and o is moved left one so the vertical

channel above it after the flip is guaranteed to be empty. Cβ has a 90 degree rotation

and a vertical flip performed on it so that it is top-connected in (a, c, d). Bβ is

horizontally flipped in (d). .. 57

x

Figure 39. Link node geometry where x is the link node and w is its parent. 68

Figure 40. AVL tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0. The aspect

ratios are perfectly overlaid. ... 75

Figure 41. Fibonacci tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm. 75

Figure 42. Left-Heavy tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm. 76

Figure 43. Right-Heavy tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0.

Blue represents the original algorithm and purple represents the new algorithm..... 76

Figure 44. Complete tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0. The

aspect ratios are perfectly overlaid. .. 77

Figure 45. Random tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm. 77

Figure 46. AVL tree K-Values for desired aspect ratios of 0.5, 1.0 and 2.0. The K-Values

are perfectly overlaid. ... 78

Figure 47. Fibonacci tree K-Values for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm. 78

Figure 48. Left-Heavy tree K-Values for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm. 79

Figure 49. Right-Heavy tree K-Values for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm. 79

Figure 50. Complete tree K-Values for desired aspect ratios of 0.5, 1.0 and 2.0. The K-

Values are perfectly overlaid. ... 80

Figure 51. Random tree K-Values for desired aspect ratios 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm. 80

Figure 52. Left the original out-of-order algorithm. Right the ordered algorithm. Light

blue is a right child and black is a left child. The red circle draws attention to an out-

of-order pair, which is circled in blue on the right to demonstrate being ordered

there... 82

xi

List of Tables

Table Page

Table 1. Graph readability results (5 is ‘very easy’ and 1 is ‘very difficult’). 24

Table 2. Area and Aspect Ratio bounds for planar grid drawing algorithms of n-node

binary trees for each combination of the four properties that may be guaranteed,

upward, orthogonal, straight-line, and order-preserving drawings. Note that ab ≤ kn

for some constant k and 0 < ε < 1 arbitrarily. ... 31

1

Chapter 1

Introduction

1.1 Introduction

Graphs are data structures that express pairwise relationships in a data set. They

are prevalent in most areas of research. Maps of network topology, subway lines, and

roads are graphs that represent how locations are interconnected. Flowcharts and process

models represent how the steps in a process or algorithm are to be carried out. Graphs of

social networks reveal key people in social circles and organizations. Natural language

processing and automata may be formulated with graphs. A certain class of graphs, called

trees, encodes hierarchies useful for such diverse applications as software design,

business organization, artificial intelligence where trees may be used to encode a solution

space of possible actions, decision trees in operations research and statistics, etc.

Graphs are a set of nodes (or vertices) connected by edges. The nodes are the data

and the connecting edges are the pairwise relationships, e.g. in a subway map, stations

and terminals are nodes in the graph and the lines connecting them are the edges. The

edges can be thought of as the relations next_stop and/or previous_stop. A single

pairwise relationship would be expressed next_stop(A, B), which encodes the same

information as previous_stop(B, A), and is interpreted the next stop from station A is

station B and the previous stop from station B is station A.

Information visualization is the discipline of researching and implementing ways

to organize and display potentially large amounts of data so that useful information is

quickly and effectively presented to an analyst. One area of information visualization is

graph drawing, automatically generating visualizations of graphs. Graph drawing also

2

includes tree drawing, which often use different algorithms than the more general graph

drawing algorithms.

Research into how people perceive their environment and understand visual

stimuli is the focus of Gestalt psychology. This research is applied extensively within

information visualization. Gestalt psychology provides more concrete reasoning for why

information visualization is needed beyond this simple demonstration. This will be

discussed in detail in the second chapter as well as our research into how principles from

Gestalt psychology were applied to graph drawings to enhance their clarity.

Several useful metrics have been devised for measuring the effectiveness of graph

drawings. These metrics are called aesthetic requirements and are indicators of a graph

drawing’s readability, understandability, and overall aesthetic value. Given two drawings,

one can be deemed ‘better’ if it more successfully meets one or more of these aesthetic

requirements. The following is a list of the most important aesthetics of graph drawings:

• Area: The area of a grid drawing is defined as the number of grid points contained

in its enclosing rectangle. Drawings with small area can be drawn with greater

resolution on a fixed-size page. Note that one cannot discuss the area of non-grid

drawings (i.e. drawings that have the nodes placed at real coordinates), since, by

placing the nodes closer or farther, such a drawing can be scaled down or up by

any value.

• Aspect Ratio: The aspect ratio of a grid drawing is defined as the ratio of the

width to the height of its enclosing rectangle. An aspect ratio is considered

optimal if it is equal to 1:1. Giving the users control over the aspect ratio of a

drawing allows them to display the drawing in different kinds of displays surfaces

3

with different aspect ratios. The optimal use of the screen space is achieved by

minimizing the area of the drawing and by providing user-controlled aspect ratio.

• Size: the longest side of the smallest rectangle with horizontal and vertical sides

covering the drawing.

• Total Edge Length: the sum of the lengths of the edges in the drawing.

• Average Edge Length: the average of the lengths of the edges in the drawing.

• Maximum Edge Length: the maximum among the lengths of the edges in the

drawing.

• Uniform Edge Length: the variance of the edge lengths in the drawing.

• Angular Resolution: the smallest angle formed by two edges incident on the same

node.

• Symmetry: visual identification of symmetries in the drawing.

It is generally accepted [16, 44-46] that small values of the size, total edge length,

average edge length, maximum edge length, and uniform edge length are related to the

perceived aesthetic appeal and visual effectiveness of the drawing. High angular

resolution is desirable in visualization applications and in the design of optical

communication networks. For binary trees, the degree of a node is at most three; hence a

trivial upper bound on the angular resolution is 120 degrees. Given a symmetric drawing,

a conceptual understanding of the entire tree can be built up from that of a smaller

subtree, replicated a number of times. The presentation of a new binary tree drawing

algorithm that considers both the aesthetics of area and aspect ratio optimization is the

focus of the third chapter.

4

1.2 Contributions and Outline

The major contributions of this thesis are two novel approaches to applying

Gestalt psychology to alleviate the edge crossing problem in graph drawings as well as a

planar non-upward straight-line order-preserving grid drawing of binary trees with

optimal area and aspect ratio.

The thesis will follow this outline:

• Chapter 1 gives an introduction and outline to the thesis.

• Chapter 2 presents two methods of applying Gestalt psychology to alleviating the

edge crossing problem in graph drawings, related work on Gestalt psychology in

computer visualization, and future work.

• Chapter 3 presents an algorithm to create a planar non-upward straight-line order-

preserving grid drawing of binary trees with optimal area and aspect ratio, related

work on binary trees, and future work.

• Chapter 4 summarizes the results of the thesis.

5

Chapter 2

Alleviating the Edge Crossing Problem

A natural visualization for graphs is the embedding of the graph into a plane,

referred to as a geometric graph. A classic problem in graph drawing is how to embed a

graph into the plane so that it meets certain aesthetic requirements, such as reducing edge

crossings, maximizing angles between edges, minimizing the graph's area, etc., to

produce readable and aesthetically pleasing geometric graphs. Aesthetic requirements are

indicators of a graph drawing's readability, understanding, and overall aesthetic value.

Therefore, given two drawings of a graph structure the 'better' drawing is more successful

in meeting one or more of these aesthetic requirements than the other.

Most graph drawing algorithms focus on placement of the nodes constrained by

the aesthetic requirements, yet further refinement of the drawing methods after

embedding are not as well studied. This chapter presents two algorithms arising from

application of principles from Gestalt psychology. These principles derive from the law

of prägnanz, which argues that people tend to order experience in a matter that is simple,

orderly, symmetric, and regular [26]. The principles of grouping suggest that predictions

can be made on how the mind will interpret visual stimuli since it naturally seeks order

and patterns based on certain rules. The principles are ordered into the following seven

categories [Fig. 1]:

1. Proximity - elements that are close together are perceived collectively, whereas

elements that are far apart are perceived separately.

2. Similarity - like elements are perceived collectively, whereas differing elements

are perceived separately.

6

3. Closure - incomplete or partially obscured elements tend to be completed by the

mind.

4. Symmetry - elements displaying symmetry are perceived collectively in spite of

distance.

5. Continuation - when elements intersect or overlap, each is perceived separately

and as uninterrupted.

6. Common fate - when elements are moving at the same velocity, they are perceived

collectively.

7. Figure-ground - elements can be distinguished from their surroundings by dividing

a scene into foreground and background.

Figure 1. Gestalt principles.

Such experimental studies as [16] provide evidence that edge crossings are the

primary inhibitor to readability. However, not all graphs are planar so it is impossible to

guarantee that a drawing is free of edge crossings in the general case. The two

7

algorithms
1
 presented in this chapter provide original methods to alleviate this problem.

The first of these two algorithms proceeds from node placement by subsequently coloring

the edges of the graph where close edges are painted with perceptually opposing colors in

order to maximize the viewer’s ability to distinguish them. The second focuses on

utilizing the principle of closure to improve readability inhibited by edge crossings by

allowing for edge breaks around crossing points.

There are several algorithms available for embedding geometric graphs. Among

the most popular are FD-FR by Fruchterman and Reingold, [9] based on an original idea

by Eades [5]; FD-K by Kamada and Kawai, [12] also based on FDP; POGB by Tamassia

[21]; PG by Woods [25]; PGS by de Fraysseix et al. [8]; SEIS by Seisenberger [20]; and

Tu by Tunkelang [23]. FD-FR and FD-K are force-directed algorithms which equate

graph drawing to minimizing energy in a physical system, POGB is a planar orthogonal

grid algorithm, PG is a planar grid algorithm with many sloped edges, PGS uses all

straight lines, SEIS uses PGS followed by compression to reduce the overall area, and Tu

is an incremental algorithm whose drawing is similar to a force-directed algorithm.

In [16], some of the previous algorithms were compared for aesthetics. A user

study was conducted to determine the users’ performance in reading graphs, and the

criteria that made the graphs easier or more difficult to read. The empirical evidence from

this study suggests that edge crossings are one of the primary culprits that make graphs

difficult to read.

1
 The first solution was published in the Proceedings of the 13

th
 International Conference on Information

Visualization, 2009 in collaboration with Adrian Rusu, Radu Jianu, and David Laidlaw [47].

The second solution was published in the Proceedings of the 15
th

 International Conference on Information

Visualization, 2011 in collaboration with Amalia Rusu, Radu Jianu, and Adrian Rusu [48].

8

An embedding algorithm with few edge crossings that is interactive, easy to

implement, and adaptable is required as the first step to both of our algorithms. The Force

Directed Placement (FDP) algorithm FD-FR [9] meets these requirements. In FDP, the

nodes can be imagined as point masses connected by springs. The total energy of the

system is then minimized iteratively by adjusting the lengths of the springs. The final

embedding is the minimum energy state found. The original algorithm has a costly time

complexity of O(n
3
), though [2] and [22] present optimizations to produce algorithms

with a time complexity of O(n
2
) and [15] further improves it with a hybrid algorithm

utilizing approximations by both sampling and interpolating, achieving an algorithm with

time complexity of O(n
5/4

).

While geometric embedding algorithms have been the primary method of

addressing edge crossings, graph drawing coloring algorithms have received little

attention. The traditional graph coloring problem of assigning adjacent nodes different

colors does exist, but it only deals with colors in a theoretical and abstract fashion.

However, there has been some research in traditional coloring of geometric graphs.

Examples of some of these investigations include a study by Bern, Eppstein, and

Hutchings on an algorithm for coloring quadtrees [1], colorings of geometric intersection

graphs by Eppstein [6], and colorings of arrangement graphs by Felsner, Hurtado, Noy,

and Streinu [7]. There have also been studies by Levkowitz and Herman [14], Robertson

[18], and Ware [24] on effectively building color maps corresponding to data values in

data visualization or images. Tracing a path through color space to construct a color scale

has been studied by Rheingans and Tebbs [17].

9

From a methodology standpoint, [4] comes closest to the first algorithm of this

chapter by introducing an algorithm for coloring neighboring nodes in a geometric graph

using perceptually different colors. We are unaware of similar work for graph edges.

Choosing appropriate colors to represent data values or using perceptually similar

colors to indicate similarity between objects have received more attention. The studies in

[10], [14] and [24] perform empirical studies to address the problem of generating

perceptually effective color-maps. [3] uses perceptually uniform colors to underline

similarities in DTI fiber tracts.

The second algorithm of this chapter only affects the areas immediately around

the edge crossings and can still be employed when restricted to black-on-white drawings.

We are unaware of any other research employing edge breaks in the graph drawing to

enhance perception. However, researchers in [27-29, 31] provide evidence of the

cognitive ability of the human mind to correctly interpret highly distorted images or

shapes, useful in applications such as human interactive proof systems and CAPTCHAs

[Fig. 2]. Using the high success rate as evidence that humans use Gestalt principles, such

as closure, in order to interpret distorted images, it is predicted that the minimal effects

incorporated by the second algorithm will not hinder readability; in fact, it is expected to

enhance readability by breaking other unintentional gestalts.

10

a) English words (city names) as CAPTCHA to distinguish humans from automatic programs

(bots) in online services.

b) Tree structure as CAPTCHA.

Figure 2. Visualizations transformed according to Gestalt principles which pose no

problem to human recognition.

2.1. Edge Coloring Method

2.1.1 Introduction

The edge coloring method can be reduced to producing a 2D or 3D embedding of

a distance metric (measuring perceived and actual distance between edges) and

immersing it into a color space. Representing a distance metric in a viewable space has

mostly been researched in the context of multi-dimensional data visualization. So-called

multi-dimensional scaling (MDS) techniques map points in multiple dimensions to a

visualizable 2D or 3D space, while preserving the distance relations among them.

The MDS techniques fall into two categories: linear and non-linear methods. The

linear methods perform linear combinations of the multiple dimensions to approximate

them in lower dimensions. Two such methods are Principal Component Analysis (PCA)

[11] and Star coordinates [13]. The drawbacks to these linear methods are: requiring an

11

explicit vector representation of the points, needing to recompute the result for every

change to the dataset, and a lack of interaction.

Non-linear methods solve the drawbacks of the linear methods. They can usually

take the distance function directly as input and define an embedding error measure to

convey how well the embedding preserves the original distances. Gradient descent or

force simulation can then be used to find an embedding that corresponds to a local

minimum of the embedding error measure. Two such methods are Sammon's Mapping

[19] and Force Directed Placement (FDP) [9], which is an adaptation of the previously

mentioned FDP algorithm for graph embedding to this problem of distance embeddings.

The choice of FDP makes sense here since it is already being used for the graph

embedding, and it accepts distances directly as input, tends to yield better embeddings

than the linear methods, is iterative and thus interactive, and is easy to implement and

adapt.

As for color spaces, the most popular color space for display devices is RGB

where the intensities of red, green, and blue are varied to produce colors. The problem

with RGB is that perceived distance in color does not correlate to Euclidean distance

between color points making it impractical for translating a spatial embedding into a

corresponding color embedding. CIE L*a*b* (Lab) overcomes this drawback. It defines

colors as unique combinations of luminosity (L), degree of magenta to green (a) and

degree of yellow to blue (b). The property that makes Lab suited for color mappings is

that Euclidean distances between color points in the 3D Lab space correspond to a similar

perceived distance in color. Thus, preserving the inverse of the edge distance metric in

12

this space will yield edge colors that are perceptually far for edges that are geometrically

close.

2.1.2 Edge Distance

Assuming a geometric embedding of a graph is provided, a distance metric of the

set of edges can be defined. Intuitively, the distance between two edges is small if they

interact visually [Fig. 3]. Thus the distance metric is defined as a function of line segment

distance, crossing, and angle. Specifically, equation 1 is used to derive values for this

distance function (this is not a true metric since the triangle inequality fails, but the

importance is on the behavior between edges, not the behavior across pairs of edges). The

inverse of this function is then embedded into a color space to compute edge colors. As a

result, perceptually close edges will be assigned colors that are far apart.

Figure 3. Examples of edge pairs and their approximate, normalized distance values.

The distance (closeness) D of two edges, e1 and e2, is computed as follows:

2/

e2 and e1between angle minimum
 and

e2 and e1between distance minimum theis where

)1(
,1

0,
)e2e1,(

π
θ

θ

=





+

=
=

dist

otherwisedist

dist
D

13

It was found that a metric that varies linearly with edge distance and crossing angle

performs better than polynomial functions of the two because it is less affected by the

wide range of angles and distances common to many graph drawings.

2.1.3 Color embedding

 Similar to [4], the colors are computed by embedding the inverse metric described

in the previous section into the Lab color space using a force directed method. However,

a different method of constraining the points to the visible Lab space is used here.

In our algorithm a mesh approximation of the Lab gamut [Fig. 4] is made and

used as a 3D container in which embedding can occur. Points corresponding to edges are

created and placed within the Lab gamut container, and forces are computed on them

iteratively. While in traditional spring based methods, forces are translated directly into

positional displacement, the algorithm here uses a physically correct simulation by using

the forces to compute velocities, which are then translated into displacements. The Lab

gamut boundaries, enforced by the mesh, will act as a closed container that keeps the

points inside by performing collision detection.

Points outside the container mesh are beyond the visible color spectrum and

would be impossible to render. While [4] uses a combination of scaling and truncating to

contain the points within the visible region of Lab, the physically based simulation

described above already avoids this problem. This method was chosen because of two

particularities of the Lab gamut: irregular shape and saturated colors close to the

boundaries. Similarly to [4], it is noted that although it would be possible to simulate a

repulsive force at the container boundaries, it would need to have a steep gradient to

14

allow points to come close to the saturated areas near the boundaries. Such a force would

be hard to control in simulations. The physically based simulation allows points to

bounce off the container and even slide across the container faces to positions that

minimize the system’s energy. Overall, good embeddings are achieved using this

simulation strategy. A graphical result of the final distance that is embedded and its

corresponding embedding error is shown in Figure 5.

Figure 4. Mesh approximation of the Lab gamut and embedded points corresponding to

edges of a graph. The white sphere at the bottom exerts a repulsive force on the points so

that edge colors are picked from the lighter spectrum.

Figure 5. The inverse of the closeness metric and the absolute embedding error. The

inverse of the closeness metric for each pair of edges is plotted in increasing order of

magnitude with its corresponding error stacked on top.

15

It is also important to note that while the objective is for close edges to be colored

differently, it does not matter how distant edges are colored. This enables better

embeddings to be obtained since the number of constraints on the system is significantly

reduced, especially for large graph drawings.

2.1.4 Implementation details

These methods were implemented in C++ using the G3D extension library for

OpenGL. QT 4.3 was used for user interface support. For the actual embedding

algorithm, Chalmer’s method [2] was used to reduce the complexity of one simulation

iteration of FDP to O(n
2
). The collision detection of points with the gamut also needs to

be factored in. To accelerate this process, a set of successive tests based on the proximity

of a point to a gamut face was employed. Interactive embeddings were achieved for

moderately large graphs (1000 edges). For an example graph with 545 nodes and 880

edges, this algorithm required an average of 0.21 seconds/iteration. The number of

iterations required for convergence depends on the specific graph layout.

A problem observed while testing was that some edges were colored near the

graph drawing’s background color, thus the ability to add a repulsive color that is

“avoided” by the embedder was included. This can be used to ensure that edges are not

colored with the background color of the scene and remain distinguishable.

2.1.5 Results

To the best of our knowledge the concept of assigning perceptually opposing

colors to geometrically close edges in graph drawings with the purpose of making edges

more distinguishable and reducing the effects of edge crossings is new. This can

16

complement edge crossing techniques that act on the geometric embedding side and help

in cases where a crossing free drawing is not possible.

The first metric that defines edge closeness to define the amount of visual

interaction between edges in a graph drawing is also provided. This has the potential to

be used in further research and applications related to graph drawing readability.

Presented is a novel and efficient force-based and physically accurate algorithm

that can assign perceptually opposing colors to close edges in a graph drawing. The

colors cover the full visible spectrum and have low embedding errors.

More importantly, from a graph-reading standpoint, there seem to be several

benefits to this method. For instance, lines rooted in the same node and having angles

close to 0 or π are colored differently [Fig. 9]. This can help the user tell them apart and

understand the topology of the graph better. In the case of long edges that stem from the

same node and flow in the same direction, the different colors could make it easier for

users to visually follow paths. It is also likely that the method will minimize the effect of

edge crossings especially in areas with high edge density.

Figures 6 - 11 show some outputs of the program. Figure 6 illustrates a real-life

example: a protein interaction network extracted from the HPRD (Human Protein

Reference Database) is depicted with this edge coloring technique. Despite the high

visual clutter and wide range of angles and distances between edges, the algorithm

manages to generate a good coloring; the upper-right region especially shows many

crossing edges colored with perceptually different colors.

Figure 7 illustrates the concept in a simple example and allows one to better grasp

the coloring metric. Figure 8 depicts a graph of three sparsely connected clusters with an

17

especially good coloring. It must be noted, however, that the algorithm performs better

for clustered graphs, since edges in different clusters can be co-located in the color space

without any interaction. The more edges interact visually in a given area, the less distance

in the Lab color space can be assigned between them, as they need to be spaced more or

less evenly throughout the color space. Figure 9 illustrates this aspect: while the

algorithm accommodates many of the edge crossings in a complete eight degree graph,

some crossing edges are inevitably assigned similar colors.

While Figure 10 shows a relatively good coloring for a more complex graph,

Figure 11 reveals another shortcoming of this technique: crossing edges on the left are

deemed far apart by the algorithm compared to the many tight-angled edges on the right

side of the image. They will thus be assigned a lower embedding priority. This also

motivates the choice of a simple linear distance metric; a polynomial would have

amplified this effect even more.

Figure 6. Protein interaction network derived from data available in the Human Protein

Reference Database (HPRD) with described edge coloring solution.

18

Figure 7. Simple example illustrating the coloring method. Edges crossing or stemming

from the same node are assigned opposing colors.

Figure 8. A graph of three sparsely connected clusters.

19

Figure 9. A complete 8-degree graph.

Figure 10. A more complex graph.

20

Figure 11. A problem with the coloring: the close edges in the bundle on the right cause

the embedding algorithm to be insensitive to the crossing edges on the left.

2.1.6 Discussion

Some simple scenarios where edge coloring helps are presented here. However, a

rigorous evaluation would be helpful to quantify the improvement and determine the

range of benefits. It would be particularly interesting to perform some of the studies in

[16] and quantify the effects of coloring on edge crossings.

While an intuitive approach to defining the “closeness” metric was given, it

would be interesting to base this choice on a more rigorous study. Unfortunately, research

so far can only give binary guidelines, in the sense that crossings do indeed affect graph-

reading performance. A study on edge topologies that are hard to read in the absence of

color would be interesting in its self, but would also help refine the definition of the

closeness metric.

Direct embedding in the Lab space using the gamut as a containing space yields

good results. By adjusting the embedding parameters the full visible range of Lab was

useable and a low-error embedding was achievable. The alternative of using a generic

21

embedding to obtain 3D points and rescale them to fit inside the visible Lab gamut does

not produce good results because of the irregular size of the visible gamut, and the fact

that the high saturation colors are located far from the gamut center.

Finally, it should be noted that applying color to edges in the interest of

improving graph drawing readability is not always an option. Oftentimes, in real-life

applications, edge color is already used to encode a value corresponding to the

relationship it stands for and cannot be used for additional purposes. However, there are

plenty of opportunities to use this method when such constraints are not present.

2.2 Gestalt Principle of Closure Method

2.2.1 Introduction

Proposed here is a new graph drawing algorithm whose focus is on utilizing the

Gestalt principle of closure to improve readability inhibited by edge crossings. At each

edge crossing, assign one edge to be primary and the other to be secondary. The

secondary edge will then have a gap in continuity on the portion immediately passing

through the area of the edge crossing. The primary edge is trivially easy to trace through

the area of the edge crossing, and the secondary edge is still easily perceived as a whole

edge due to the Gestalt principle of closure. In the unusual case of multiple edges

crossing at the same point, a number of them are assigned as primary, while the rest are

assigned as secondary, then each set is treated as in the typical case.

2.2.2 The Algorithm

A sweep line algorithm can be used to efficiently find all edge crossings. For

example, the Bentley-Ottman algorithm [30] performs with a time complexity of

22

O((n+k)log n), where n is the number of edges and k is the number of edge crossings. A

simpler algorithm would be a pairwise comparison of edges where minimum bounding

boxes are used to quickly eliminate spatially distant edges. Although it has a poorer time

complexity, the latter option was chosen in this implementation since it offers a natural

way to select the primary and secondary edges. In this implementation it was decided that

the edge being compared to all others is the secondary edge. This choice naturally leads

to the secondary edges indexing the edge crossing positions so that intermediate points

can be easily determined using the same angle for each by using the following formulas:

)sin(

)cos(

θ

θ

ryy

rxx

ec

ec

±=

±=

where (xec, yec) is an edge crossing, r is the break radius, and θ is the angle that the

secondary edge makes with the x-axis. These intermediate points (x, y) lie on the

intersections of the break area and the secondary edge, so that the entire edge can be

represented as a series of line segments where the first line segment starts at the parent

node's coordinates and ends at the first intermediate point, and the last line segment starts

at the last intermediate point and ends at the child node's coordinates [Fig. 12]. When the

intermediate points are being determined, some may need to be discarded if two break

areas overlap so that a line segment is not drawn in this area. Drawing primary edges is

trivial in this system since they are represented as secondary edges with no intersections,

causing the lines to be drawn through the intersection points creating the desired Gestalt

effect over the secondary edges with which they cross.

23

The graphs presented for this algorithm were all derived from the Human Protein

Reference Database. The same graph generating program used by the first algorithm is

used to create these ones as well.

a) The geometry of the secondary edge.

b) Multiple primary and secondary edges intersecting at the same edge crossing point.

Figure 12. Examples illustrating the algorithm for edge crossings that incorporates the

Gestalt principle of closure.

Various graphs were drawn, and each was rendered with and without the gestalt

effect [Fig. 13-16]. We were interested in the effect of the gestalt approach when applied

to a graph with fewer edge crossings vs. a very large number of edge crossings.

24

2.2.3 User Study

A preliminary study was performed with fourteen participants having various

educational backgrounds. Each participant was shown the four testing figures, in the

order listed here, and asked to identify all nodes connected to a node chosen at random

five times for each graph and rendering. The participants were asked to rate the ease of

this task for each graph on a five-point Likert scale, where one denotes ‘very difficult’

and five denotes ‘very easy.’ The participants were also asked to give general feedback

regarding the test at the end. Table 1 shows the results of this study. The column headings

include a number corresponding to the testing figure and also identify whether the testing

figure is ‘traditional’ (T) or has the Gestalt effect added (G) (i.e., 13T corresponds to

Figure 13 left - traditional, whereas 16G corresponds to Figure 16 right - with breaks in

edges at edge crossings). The cells with lighter shading highlight an improvement in

readability over the traditional graphs whereas the cells with darker shading highlight

difficulty when introducing Gestalt effect, as perceived by the participants in the study.

Table 1. Graph readability results (5 is ‘very easy’ and 1 is ‘very difficult’).

 13T 13G 14T 14G 15T 15G 16T 16G

1 5 5 3 4 3 4 5 5

2 4 4 5 5 3 2 1 1

3 5 5 4 5 3 4 3 3

4 5 5 5 5 4 5 4 3

5 5 5 5 4 5 4 5 4

6 4 4 5 5 2 1 3 2

7 5 5 5 5 5 4 5 4

8 5 5 5 5 4 4 4 4

9 5 5 5 5 5 5 5 5

10 4 4 4 4 4 4 4 4

11 4 5 4 5 4 5 4 5

12 5 4 3 5 4 3 5 5

13 5 5 5 5 4 4 3 4

14 5 5 5 5 4 4 4 4

25

More qualitative data has been recorded through the general feedback on the exit

survey. Out of the 14 participants, 13 left feedback of which one did not relate to the

study. Three of them felt that the gaps were distracting and aesthetically unpleasing

making the tasks more difficult whereas two felt that the gaps made the graph more

aesthetically pleasing though had no impact on the difficulty of the tasks. Three felt that

the breaks were distracting in sparse drawings but were very effective in densely

clustered drawings, while another four had no preference for either rendering after the

study. These preliminary tests are encouraging especially for the graph drawings with

clusters of edge crossings or larger graph drawings.

2.2.4 Conclusion and Future Work

In future work, considering some of the feedback received in the initial study,

more tests could be performed in which edge crossings must meet certain requirements

before a gap is introduced. Such requirements may be local node density, angle at which

edges intersect, number of edge crossings on a single edge, and whether gaps have

already been introduced on an edge.

26

Figure 13. Graph drawing with few edge crossings (traditional on the left; Gestalt effect

introduced on the right).

Figure 14. Graph drawing with a cluster of edge crossings (traditional on the left; Gestalt

effect introduced on the right).

27

Figure 15. Larger graph drawing with edge crossings (traditional on the left; Gestalt

effect introduced on the right).

Figure 16. Graph drawing with a high density of edge crossings (traditional on the left;

Gestalt effect introduced on the right).

Presented here was a method that uses the Gestalt principle of closure for

increasing graph drawings’ aesthetics and readability by introducing gaps into a graph at

every edge crossing. Similar Gestalt principles applied as deformations to handwriting

28

samples or shapes have been proven to work well without altering human recognition

abilities. The FDP algorithm was adapted to accommodate these gaps as part of the

secondary edges when crossing primary edges.

A preliminary study was conducted to collect evidence that this method holds

merit. Initial results and user feedback have been promising and provided important

information for future work. Additional studies will be considered in the future on adding

gaps at edge crossings after certain requirements are met. Additional experiments will be

considered by varying the size of the edge breaks in order to determine any influence on

graph readability.

29

Chapter 3

A Straight-Line Ordered Binary Tree Drawing Algorithm

with Linear Area and Arbitrary Aspect Ratio

3.1 Introduction

Trees are data structures that are useful for encoding acyclic hierarchical

relationships such as directory structures, business organizational structure, object-

oriented software, genealogy, tournament brackets, and decision trees. These data

structures contain nodes and edges that connect the nodes. In a directory structure, a

directory would be a node and every subdirectory would be a node connected to it by an

edge. The root is the directory at the highest level of the hierarchy from which all other

nodes descend. A file in the directory structure is a node contained in a directory that

cannot contain any further subdirectories. Such a node is called a leaf of the tree.

The trees dealt with in this chapter are binary trees, meaning each node may not

have more than two children (nodes immediately descended from it). For example, a

tournament bracket represents teams or players at each node where siblings, nodes which

are children of the same node (their parent) are teams that are paired for a match. Their

parent is the winner of that match, which continues to the root giving the winning team or

player in the tournament. This structure is binary since no more than two teams play a

match. Another example would be a yes/no decision tree where each node represents a

decision and each child represents the next decision in the process depending on which

decision was made at the parent node.

An ordered tree is one that requires an ordering to exist to interpret the

information, for example the leftmost child may be the smallest of a series of numbers

and the rightmost child may be the largest of a series of numbers. In a binary tree, the left

30

node may represent no and the right node may represent yes. More terminology and

background information is provided in Preliminaries.

The approach to creating drawings in [32] and this chapter is known as

Separation. Drawings are solved using a divide-and-conquer strategy where at each level

1. a separator edge, explained in Preliminaries, is found

2. the tree is split into subtrees by removing at least the separator edge

3. a desired aspect ratio is assigned to each subtree, explained in Preliminaries

4. the subtrees are recursively drawn

5. the removed edges are reintroduced and composed with the drawings of the subtrees

How to split the tree and compose the drawing are the trickiest parts of this process. As

such they are the main focus of this chapter.

As electronic devices shrink in size, so do their monitors, so it is desirable that the

most information as possible be contained in the least amount of space. For tree drawings

on an integer grid, the optimal area is order n, where n is the total number of nodes in a

tree. This would arise from placing one node at each grid location with no extra

whitespace. The algorithm presented here will be shown to be of order n, i.e. optimal.

Aspect ratio is an important consideration as popular monitor sizes are either 4:3

or 16:9, while optimal aspect ratio is considered 1:1. The algorithm here tends toward a

desired aspect ratio allowing for a better fit of the drawing based on monitor dimensions.

31

Table 2. Area and Aspect Ratio bounds for planar grid drawing algorithms of n-node

binary trees for each combination of the four properties that may be guaranteed, upward,

orthogonal, straight-line, and order-preserving drawings. Note that ab ≤ kn for some

constant k and 0 < ε < 1 arbitrarily.

Up-

ward

Ortho-

gonal

Straight-

line

Order-

preser-

ving

Area Aspect Ratio Reference

yes yes yes yes Θ(n
2
) O(1) [35, 37]

no yes yes yes O(n
1.5

) O(n
0.5

 / n) [37]

yes no yes yes Θ(n log n) n / log n [33]

O(n log n) [1, n / log n]

O(n log log n) n log log n / log
2
 n

[33]

no no yes yes

O(n) [n
-ε
, n

ε
]

this

chapter

yes yes no yes O(n log n) Θ(log
2
 n / (n log log n)) [38, 39]

no yes no yes O(n) (9a+8) / (9b+8) [36]

log n / n [40]
yes no no yes O(n log n)

Θ(log
2
 n / (n log log n)) [35, 38]

no no no yes O(n log log n) n log log n / log
2
 n [33]

yes yes yes no O(n log n) [1, n / log n] [34, 35]

no yes yes no O(n log log n) Θ(log
2
 n / (n log log n)) [34, 44]

yes no yes no O(n log log n) Θ(log
2
 n / (n log log n)) [44]

no no yes no O(n) [n
-ε
, n

ε
] [32]

yes yes no no O(n log log n) Θ(log
2
 n / (n log log n)) [38]

no yes no no O(n) Θ(1) [41, 43]

yes no no no O(n) [n
-ε
, n

ε
] [38]

32

The previously best known bounds on non-upward planar straight-line order-

preserving grid drawings of binary trees are O(n log log n) for area and O(n log log n /

log
2
 n) for aspect ratio (Table 2). The algorithm here is a non-trivial improvement of the

non-upward planar straight-line non-order-preserving grid drawing algorithm for binary

trees (Table 2) of [32] with area O(n) and aspect ratio between n
-ε

 and n
ε
, where 0 < ε < 1.

It will be shown that the algorithm presented here maintains these bounds on aspect ratio

and area, not only improving on the previous bounds for non-upward planar straight-line

order-preserving grid drawings of binary trees but finding the area bounds to be optimal.

3.2 Preliminaries

3.2.1 Terminology

In this chapter, a tree refers to a binary rooted ordered tree (one with a given root

where each node has at most two children and siblings—nodes that share the same

parent—are assigned a left-to-right ordering). This algorithm will embed a tree onto an

orthonormal grid in the plane, where the x(y)-axis is horizontal(vertical). A channel is a

line on the grid that is parallel to an axis. The horizontal(vertical) channel is parallel to

the x(y)-axis.

Let T be a valid tree with n nodes. If n is zero, the tree is a null tree and has no

drawing. If n is one, the tree is a trivial tree and has a trivial (single dot) drawing. For any

tree with more nodes, let o be the root of the tree. Let the leftmost(rightmost) node of T be

the node that is at the end of the maximal path from o consisting of all left(right) nodes.

A partial tree of T is a connected subgraph of T and a subtree of T at some node w is a

partial tree consisting of w and all of its descendants.

33

Let Γ be the drawing of T produced by the algorithm of this chapter. R is the

smallest rectangle on the grid that completely encloses Γ. The bottom, top, left, and right

boundaries of Γ are defined to be their respective sides of R. Similarly, the bottom-left,

bottom-right, top-left, and top-right corners of Γ are defined to be their respective corners

of R. A good aspect ratio of R is defined to be in the range [n
-ε

, n
ε
] where 0 < ε < 1 is a

constant [32].

Given a node w in T, p(w) is the parent of w, s(w) is the sibling of w, l(w) is the

left child of w and r(w) is the right child of w. u
*
 is a node of T with at most one child and

is called the link node [32], which will be detailed later for how it can be used to combine

two tree drawings into a larger drawing containing both trees. lm is the leftmost node of T

and rm is the rightmost node of T. a(w, x) is the common ancestor of nodes w and x such

that no descendant of a(w, x) is also a common ancestor of w and x; when w is x it is

defined as a = w = x. a(w, x) is simply referred to as a when the context is clear.

3.2.2 Definition of Feasibility

The three properties that constitute a feasible drawing in this algorithm are

relaxed properties of a feasible drawing in [32]:

� Property 1: The root o is placed on the left boundary of Γ and the vertical

channel above it is clear.

� Property 2: If u
*
 exists and is not o, then u

*
 is either placed on the bottom

boundary of Γ and can be moved downward an arbitrary amount or is placed on

the right boundary and can be moved rightward an arbitrary amount without

causing any crossings.

34

� Property 3: If u
*
 exists and is o, then u

*
 is placed in the top-left corner of Γ and

can be arbitrarily moved in either the horizontal or in the vertical channels

without causing any crossings.

These represent the weakest feasibility properties imposed on drawings. It will be shown

in the algorithm that the drawings are grouped into four categories, called scopes, with

varying restrictions on these properties. In the feasibility lemmas, it will be shown how

these variations lead to a planar drawing (a drawing with no edge crossings). Since it is

known that every tree admits a planar drawing, which is more desirable than one with

edge crossings, a feasible drawing of a tree is one that guarantees planarity. Further it is

imposed that a feasible drawing has only straight-line edges. The other properties such as

ordering, area and aspect ratio are not considered until feasibility is firstly established in

Lemmas 1-5.

3.2.3 Separator Edge

Theorem 1 (Separator Edge): In [32], Theorem 1 states:

“Every binary tree T with n nodes, where n ≥ 2, contains an edge e, called a

separator edge, such that removing e from T splits it into two non-empty trees with

n1 and n2 nodes, respectively, such that for some x, where 1/3 ≤ x ≤ 2/3, n1 = xn,

and n2 = (1 - x)n. Moreover, e can be found in O(n) time.”

3.2.4 Definition of Ordering

Let the edge connecting a node x to its parent w be a reference line from which

children of that node are placed in increasing counter-clockwise angular order. Let y and

z be children of x. Angle wxy is the angle between edges wx and xy and angle wxz is the

angle between edges wx and xz. Angle wxy does not equal angle wxz since that implies

the siblings are on the same edge, which is invalid. If angle wxy < wxz, then y is said to be

35

the left child and z is said to be the right child, and vice versa. The root of the tree does

not have a parent so assume wx is the vertical channel above x when x is the root. When x

is the root wx will rotate with the image. For example the vertical channel above the root

is wx, but upon a counter-clockwise rotation of 90 degrees about x (the root), it is rotated

to the horizontal channel left of x. This guarantees that the angles do not change upon

rotation so left remains left and right remains right. This behavior agrees with the usual

understanding of a rotation preserving orientation (handedness).

3.2.5 Functions on Drawings

Let Rot90 be the rotation operation on Γ by 90 degrees counter-clockwise about

o. As discussed in the definition of ordering, this preserves the left-to-right ordering of

siblings. This is demonstrated for a 3-node binary tree in Figure 17.

Let V be a vertical flip of Γ about the horizontal channel through o. Let H be a

horizontal flip of Γ about the vertical channel through o. It is well known that V and H

(flips or reflections) create mirror images, which have opposite orientation from the

original drawing. This causes any angle to negate. Since wxy < wxz for two siblings y and

z as described in the definition of ordering, -wxy > -wxz, so left children become right

children and vice versa. This is demonstrated for a 3-node binary tree in Figure 18 (a-d).

To preserve order, let ΓM be the drawing of M, the mirror of T. M is the tree with

exactly the reverse ordering as T. Though in M we have wxy < wxz for x and y giving x

left of y, the data in x is that from what would be the right node in T and y contains the

data that would be from the left node in T. For example in Figure 18 (a), swapping the

36

data in the left and right nodes puts the right node’s information in the left node and vice

versa as seen in Figure 18 (e).

Using ΓM when flipping will give a drawing that is order-preserving with respect

to Γ, since x left of y in ΓM after a flip becomes x right of y, which is exactly the ordering

we want. In Figure 18 (f) and (g) the ordering problem is solved when using the mirror

because the out-of-order data in Figure 18 (e) is put in-order for these situations.

Therefore V(Γ) is defined to be V(ΓM) and H(Γ) is defined to be H(ΓM) so that order is

preserved when flipping. [33] further describes the utility of mirroring in solving the out-

of-order problem caused by flipping.

Figure 17. (a) the initial configuration of a three node binary tree. (b) one application of

Rot90. (c) two applications of Rot90. (d) three applications of Rot90. Four applications of

Rot90 do not affect (a).

37

Figure 18. (a) the initial configuration of a three node binary tree. (b) one application of

V. (c) one application of H. (d) both V and H applied, order does not matter and is

equivalent to two applications of Rot90. The arrows in (b) and (c) demonstrate how one

application of a flip creates a mirror drawing (left node is right and vice versa). (e) the

mirror of (a). (f) one application of V on (e) and the in-order equivalent of (b). (g) one

application of H on (e) and the in-order equivalent of (c). (h) both V and H applied on (e),

where order does not matter.

3.2.6 Achieving Good Aspect Ratio

Let Tk be a partial tree with nk nodes originating from T with n nodes. Its drawing

has width wk and height hk, where these dimensions are defined as the maximum number

of cells occupied on the grid horizontally and vertically. Therefore a null tree has a

drawing with width and height of zero and a trivial tree has a width and height of one. If a

non-null drawing has its top-left corner at the origin and has width w, it occupies the grid

points along the x-axis from 0 to w-1, so a second drawing of width w' can be placed

starting at grid point w and there will be a single unit space between the drawings though

the combined width of the drawings will be w + w'. This allows adjoining drawings to

have a total width or height that is the sum of their separate widths and heights though

visually they still have a gap of one unit between them.

38

At a recursive level of the algorithm there are N partial trees that are either placed

horizontally or vertically next to each other. If there were minimal spacing between these

partial trees, then a horizontal placement would give for the recursive level an overall

height of max(hk) and an overall width of sum(wk) while a vertical placement would give

an overall height of sum(hk) and an overall width of max(wk) for 1 ≤ k ≤ N. Given a

desired aspect ratio A for the current recursive level, one has depending on the placement,

A = width/height = sum(wk)/ max(hk) or A = width/height = max(wk)/sum(hk).

Therefore for xk = nk / n,

Ak = xk A for horizontal placement

and

Ak = (1 / xk) A for vertical placement

since one can arbitrarily split these into wk = nk and hk = n / A or wk = n A and hk = nk

giving:

sum(wk)/ max(hk) = sum(nk) / (n / A) = (n / n) A = A

or

max(wk)/sum(hk) = n A / sum(nk) = (n / n) A = A

If nk is small enough, then Ak can be approximated by the edges of the good aspect ratio

range to give Ak = nk
-ε

 for horizontal placement and Ak = nk
ε
 for vertical placement. This

ensures that Ak keeps a good aspect ratio by avoiding smaller values from entering into

the division. The threshold for determining if a partial tree is large is:

A ≥ 1, nk ≥ (n / A)
1 / (1 + ε)

A < 1, nk ≥ (n A)
1 / (1 + ε)

39

In [32], the above scheme is used where horizontal placement is used when A ≥ 1 and

vertical placement for the other case. In the algorithm of this chapter, there are times

when either horizontal or vertical placement is used for any A. This would only cause a

problem if there were no variety of placements as the aspect ratio would become

unachievable through constant stretching of one of the directions. The situation that

causes this problem only occurs in special cases denoted in the algorithm under the β-

scope section. Using only these special cases would cause the algorithm to fail, but since

they only occur in one scope, the problem of starting in one of these special cases is

eliminated since the algorithm does not start from within this scope.

3.3 The Algorithm

 Let T be the tree to draw with n nodes, root o, and link node u
*
. Let 0 < ε < 1 be a

constant and let n
-ε

 ≤ A ≤ n
ε
 be the desirable aspect ratio of T. The algorithm uses a

simple divide-and-conquer strategy to construct Γ, a feasible drawing of T. The algorithm

consists of a modification of the original steps in [32]:

� Split Tree: Split T into several partial trees by removing select nodes and their

incident edges. No partial tree has more than (2/3) n nodes due to an application

of Theorem 1 described earlier. There are four scopes in the algorithm described

later, which specify four subgraphs of T that are constructed using different

assumptions then brought together in an overarching decomposition.

� Assign Aspect Ratios: Using the aspect ratios for partial trees described earlier,

assign each partial tree a desirable aspect ratio Ak.

40

� Draw Partial Trees: Recursively create feasible drawings for each of the partial

trees Tk using their desirable aspect ratios Ak.

� Compose Drawings: Arrange the feasible drawings and replace the nodes and

edges removed in the split in a way described later that creates Γ, a feasible

drawing of T. In most arrangements, when A < 1 the partial tree drawings are

stacked and are placed side-by-side in the other case. There are some

arrangements that always require the partial trees to be placed either horizontally

or vertically.

Γ will not necessarily have aspect ratio A, but will fit within rectangle R with the desired

aspect ratio as will be demonstrated in the proof of correctness later. Each of the steps

mentioned will now be detailed.

3.3.1 Split Tree

 Let T be the tree rooted at o with leftmost node lm. A and ε have been chosen by

the user. Using Theorem 1, find the separator edge between nodes u and v, where u =

p(v). The algorithm begins in the general scope where the three feasibility properties are

restricted to those found in [32]:

� Property 1: The root o is placed on the top-left corner of Γ.

� Property 2: If u
*
 is not o, then u

*
 is placed on the bottom boundary of Γ and can

be moved downward an arbitrary amount.

� Property 3: If u
*
 is o, then u

*
 is placed in the top-left corner of Γ and can be

arbitrarily moved in either the horizontal or in the vertical directions.

41

Also, lm = u
*
 and a = a(u

*
, u). There are two cases for a, either a ≠ u implies u is not an

ancestor of u
*
 or a = u implies u is an ancestor of u

*
. If a = u and l(u) = v, then the

separator edge occurs in the leftmost path of T. [32] denotes this case as Case 2. Here this

situation is presented first since it requires no additional scopes, which are different

algorithms that are applied to specific subtrees depending on the characteristics they need

to achieve as will be shown at the beginning of the section of each scope. Since ΓM is

needed to flip Γ so as to preserve ordering of siblings, flips cannot be used on partial trees

A and C in the following, since ΓM does not have the property lm = u
*
, though B never

connects to other partial trees through a link node so it can be flipped. This leads to a

slightly different description of the algorithm than what is provided in [32] where the

changes are incorporated to avoid flips in A and C.

3.3.1.1 General Scope

Case 1 (separator edge in leftmost path)

A-B

In subcase A, a = u and v is the root of C. The link node of partial tree A must be

the leftmost node of A, as desired, since a is on the leftmost path of T. u
*
 = lm so it is

obviously the valid link node for C. r(u) exists as well in subcases A and B. In subcase B,

v is the root of C and also v = u
*
; since it is drawn in the top-left corner of C, it must be

moved down to the bottom boundary. See Figure 19 for when A < 1 and see Figure 20 for

when A ≥ 1. The star in these figures and all following figures represents u
*
. Figure 19 is

straight-forward, but Figure 20 requires some more explanation. There are four options in

this case based on whether o = p(a) and v = u
*
 or not. For Figure 20(a), A' and o are

together A, but have been split and considered separately to fit the situation. For Figure

42

20(b), o is exactly A (A is trivial). For Figure 20(a-b), if v = u
*
, then it must be moved to

the bottom boundary and is the bottom-left corner of C as was mentioned previously in

this section. For Figure 20(c), the link node of A must be extended downward so as to be

level with a (represented in the picture with a stretched box) and a vertical flip must be

applied to B so that its root is on the bottom boundary. Figure 20(d) is when v = u
*
, so v

is the bottom-left corner.

Figure 19. A < 1. a = u. l(u) = v. v is root of C. v may be u
*
.

Figure 20. A ≥ 1. a = u. l(u) = v. v is root of C. (a): o = p(a) and r(o) exists. (b): o = p(a)

and r(o) does not exist. (c): o ≠ p(a) and v ≠ u
*
. (d): o ≠ p(a) and v = u

*
.

(a) (b)

(c) (d)

43

C-D

In subcases C and D the partial tree B is null. Subcase C has v ≠ u
*
 and subcase D

has v = u
*
. See Figure 21 for when A < 1 and see Figure 22 for when A ≥ 1. The rationale

for these cases is apparent from the discussion in subcases A and B.

Figure 21. A < 1. (a): v ≠ u
*
 (subcase C). (b): v = u

*
 (subcase D).

Figure 22. A ≥ 1. (a): o = p(u) and r(o) exists. (b): o = p(u) and r(o) does not exist.

(c): o ≠ p(u) and v ≠ u
*
. (d): o ≠ p(u) and v = u

*
.

(a) (b)

(a) (b)

(c) (d)

44

E-F

In subcases E and F the partial tree A is null. Subcase E has v ≠ u
*
 and subcase F

has v = u
*
. See Figure 23. The rationale for these subcases is straightforward.

Figure 23. (a): A < 1. (b): A ≥ 1. In both options, when v = u
*
 the root of C moves to the

bottom-left corner.

G-H

In subcases G and H the partial trees A and B are null. Subcase G has v ≠ u
*
 and

subcase H has v = u
*
. See Figure 24. The rationale for these cases is straightforward.

Figure 24. (a): A < 1. (b-c): A ≥ 1. When v = u
*
 in (a), the root v of C becomes the

bottom-left corner of C.

Case 2 (separator edge not in leftmost path)

Note that in Case 2 the B-scope (detailed later) is needed since the separator edge

is within B (unless v is the root of B, though the B-scope handles that case by returning a

general scope drawing). It is important that the separator edge is split at each recursive

level, so even though the B-scope may look like a separate recursive level, its first level is

processed at the same recursive level as the current level. This type of scope will be

(a) (b)

(a) (b) (c)

45

referred to as immediate. Scopes that do not start until the next recursive level, like the

general scope will be referred to as delayed. The general scope and β-scope are delayed.

The B-scope and α-scope are immediate.

A-B

This is exactly the same set-up as in Case 1 subcases A and B. See Figures 19 and

20. The only difference here is that a may not be u and v is contained within B instead of

C. This requires that the partial tree B is sent to the B-scope (detailed later) so that it is

split immediately.

C-D

In subcases C and D, partial tree C is null, thus a = u
*
. In subcase C, o ≠ p(a). In

subcase D, o = p(a). See Figure 25 for when A < 1 and see Figure 26 for when A ≥ 1. In

Figure 25, subcase D works because feasibility property 3 ensures that the vertical

channel directly below o is empty.

Figure 25. A < 1. (a-b): subcase C. (c): subcase D. In subcase C, p(a) is not guaranteed to

be on the left boundary, so A must be split and its pieces considered separately.

(a) (b) (c)

46

Figure 26. A ≥ 1. In subcase C, o ≠ p(a) so p(a) is actually on the bottom boundary (not

necessarily the bottom-left corner as shown). In subcase D, o = p(a) so by feasibility

property 3, the vertical channel below o is empty allowing a to connect through the left

boundary. A vertical flip is applied to B so that it connects on the bottom-left corner.

E

In subcase E, partial trees A and C are null, therefore a = u
*
 = o. See Figure 27.

Figure 27. (a): A < 1. (b): A ≥ 1.

F-G

These have the same set-up as subcases E and F in Case 1. See Figure 23.

3.3.1.2 B-Scope

� Property 1: The root o is placed on the top-left corner of Γ.

� Property 2 / Property 3: u
*
 is a do not care condition so these are ignored.

As will be shown later, the β-scope only guarantees that o is placed on the left boundary

and that the vertical channel above it is empty, so β cannot be the partial tree from o of B

to p(u) as in [32]. Instead it is the partial tree from a child of o of B to p(u). Also p(u)

cannot be the root of β, since the link node cannot equal the root in that scope. β is a

(a) (b)

47

delayed scope and α is an immediate scope. Any unlabeled partial trees are general scope

and are sibling subtrees to the subtree mentioned in the figure notes (e.g. Figure 29).

Case 1 (u = o or v = o)

See Figure 28. Remember that general scope is delayed and α-scope is immediate.

Figure 28. (a): A < 1. o = v. General scope drawing. (b): A < 1. o = u. α-scope drawing.

(c): A ≥ 1. o = v. General scope drawing. (c): A ≥ 1. o = u. α-scope drawing.

Case 2 (o = p(u) or o = p(p(u)))

If o = p(u) then β does not exist. If o = p(p(u)) (shorthanded as o = p
2
(u)) then β

must be specially handled since the link node cannot equal the root in β-scope. The figure

called αβ is a logical convention that does not exist in practice and only exists in the

figure for simplification. Figure 29 shows the construction of αβ when o = p(u) and

Figure 30 shows simplified diagrams for when o = p
2
(u) where the partial trees marked

αβ are actually one of the diagrams in Figure 29.

(a) (b) (c) (d)

48

Figure 29. (a-b): A < 1. (c-d): A ≥ 1. Where either subtree may be α-scope, the other is its

sibling and is general scope.

Figure 30. (a-b): A < 1. (c-d): A ≥ 1. Where either subtree may be αβ, the other is its

sibling and is general scope.

Case 3 (β-scope is used)

Since the root of β exists on the left boundary, it is necessary to know the northern

or southern extent of β from its root in addition to its height so it can be appropriately

(a) (b) (c)

(d)

(a) (b) (c)

(d)

49

spaced. See Figures 31 and 32 for the different aspect ratio scenarios. In Figure 31, if p(u)

is on the right boundary of β, then use a horizontal flip on α so that the root is in the top-

right corner. In Figure 32, use a 90 degree rotation and a vertical flip on β to move its

root to the upper boundary. Since the vertical channel is clear above the root in the initial

image, the horizontal channel is clear to the left of the root in the rotated and flipped

image. The connections to the root of β that appear to attach to the top-left corner actually

are connecting to the top boundary along the empty horizontal channel. If the link node of

β is on the bottom boundary, it should be shifted so that if α had a larger height than β, β

now has the same height as α. α only needs to be vertically flipped when the link node is

on the bottom boundary, though for convenience it is always flipped vertically in this

case.

50

Figure 31. A < 1. (a-b): β connects to the root on the left and p(u) may exist on either of

two boundaries. (c-d): β connects to the root on the right and p(u) may exist on either of

two boundaries. (e-f): the root of β has no sibling.

Figure 32. A ≥ 1. (a-b): β connects to the root on the left and p(u) may exist on either of

two boundaries. (c-d): β connects to the root on the right and p(u) may exist on either of

two boundaries. (e-f): the root of β has no sibling.

(a) (b) (c)

(d) (e) (f)

s(β)
s(β)

s(β)

s(β)

s(β) s(β)
s(β)

s(β)

(a) (b) (c)

(d) (e) (f)

51

3.3.1.3 α-Scope

� Property 1: The root o is placed on the top-left corner of Γ.

� Property 2 / Property 3: u
*
 is a do not care condition so these are ignored.

This scope is an immediate scope used to draw the subtrees below u in the B-scope, so it

is the simplest scope to describe. See Figure 33.

Figure 33. (a-b): A < 1. (c-d): A ≥ 1. When both subtrees exist, 1 is the subtree on the left

and 2 is the subtree on the right. When only one exists, 1 is the subtree that exists (and

has root v).

3.3.1.4 β-Scope

� Property 1: The root o is placed on the left boundary of Γ and the vertical

channel above it is clear.

� Property 2: If u
*
 ≠ o, then u

*
 is either placed on the bottom boundary of Γ and

can be moved downward an arbitrary amount or is placed on the right boundary

and can be moved rightward an arbitrary amount.

(a) (b)

(c) (d)

52

� Property 3: u
*
 = o is explicitly handled before entering this scope and within it,

therefore at the beginning of every recursive level, this condition is impossible.

In this scope a = a(u
*
, v). If a = u

*
 = v then u

*
 = v. If a = u

*
 then u

*
 is an ancestor of v. If

a = v then u
*
 is a descendent of v. If a is neither, then one subtree of a is β-scope (or

explicitly handled if the subtree is rooted at u
*
 since this condition is not allowed in β-

scope) and the other subtree is B-scope. Also, the cases are checked in order, for example

if u
*
 = a = lm, then Case 1 is used instead of Case 3.

Case 1 (u
*
 = lm)

The drawing belongs to the general scope. Refer to that section.

Case 2 (u
*
 = rm)

Use a 90 degree rotation and vertical flip to produce an in-order general scope

drawing with the root at the top-left corner and the link node on the right boundary.

Case 3 (u
*
 = a)

See Figure 34. Figure 34(a,c) have u
*
 with no children (thus making a = u

*
 = v).

The dotted lines represent the fact that the edge will either come from the bottom

boundary or the right boundary. Figure 34(b,d) have r(u
*
) exists. Figure 34(e) has any

aspect ratio in which l(u
*
) exists. Figure 34(f) has any aspect ratio in which r(o) = a. In

this case, r(a) must exist or else a = u
*
 = rm, which is already handled by Case 2. If

o = p(a), then one of Figure 34(e-f) must be used, since all other options lead to either

u
*
 = rm or u

*
 = lm, which would have already been handled in Case 1 or Case 2. It is

allowable to use β-scope for the bottom-left option when o = p(a), since it is guaranteed

that l(o) = a thus making it a Case 1 drawing (in the general scope).

53

Figure 34. (a-b): A < 1. (c-d): A ≥ 1. (e-f): any aspect ratio. Aβ is drawn with β-scope and

Bβ is drawn with B-scope. These are labeled as such to relate to similar roles in the

general scope diagrams. (b-f): Bβ is horizontally flipped. (f): Aβ' and o make Aβ.

Case 4 ((1) o = a. (2) r(o) = a and l(o) exists. (3) l(o) = v = a. (4) l(o) = a and r(o) exists

and the right subtree of a contains the separator edge and A ≥ 1)

See B-scope Case 2 for a discussion of the αβ diagram simplification. This case

uses a similar simplification called the Root diagram. See Figure 35 for the construction

of the Root diagram (o = a) and Figure 36 for when o = p(a). The two stars on the β

subtree represent the fact that the link node may appear on the bottom or right boundary.

(a) (b)

(c) (d)

(e) (f)

A

β

A

A

A

β

β
β

Aβ'

54

Also the β subtree must be stretched so that the link node is on the bottom or the right

boundary of the total drawing.

After this case, it is guaranteed that a is not the root. Also a is only r(o) if it is a

single child. Figure 36(c) allows for a horizontal placement for a specific situation that

arises when A ≥ 1. Figure 36(b) exists to allow a simple solution to l(o) = v = a.

Figure 35. All options are for any aspect ratio. (a-b): Cβ' and the link node together make

Cβ; also use a horizontal flip on Cβ'. (d): use a 90 degree rotation and vertical flip on Cβ

so its root is on the top boundary.

Figure 36. (a-b): any aspect ratio. (c): A ≥ 1. (a): use a 90 degree rotation and vertical flip

on Root when it is created from Figure 35(a-b). (b): works due to feasibility property 3 in

the general scope guaranteeing the vertical channel below the root is empty when it is the

link node. (c): use a vertical flip on Bβ so its root is on the bottom-left corner.

(a) (b) (c) (d)

Cβ'

β Cβ'

β

β

C

β C

Aβ

C

C

β Aβ'

(a) (b) (c)

55

Case 5 (A < 1)

See Figure 37. Since o = p(a) only when l(o) = a or a is an only child, the partial

tree containing the root will either have a right subtree in which the root has to be moved

to the bottom boundary since it will also be the link node, or this partial tree is trivial.

a = v is specially handled if a has an only child or is bottom-connected to the partial tree

rooted at o. This represents Figure 37(k-o). Figure 37(a-f) detail the different

configurations when the right subtree of a contains the link node. Figure 37(a-c) detail

when the right subtree of a has a root that is not the link node (left subtree of this root

contains link node, only one subtree of the root, right subtree of this root contains link

node, in that order). Figure 37(d-f) detail when the right subtree of a has a root that is the

link node (right subtree exists, left subtree exists, the drawing is trivial, in that order).

Figure 37(g-j) detail the different configurations when the left subtree of a contains the

link node. The first of these details when the root is not the link node and the rest of these

detail when the root is the link node (left subtree exists, right subtree exists, the drawing

is trivial, in that order). The caption of Figure 37 explains how to handle Cβ(') when the

root is also the link node.

56

Figure 37. A < 1. (a-f): have the left subtree of a containing the separator edge. (g-j):

have the right subtree of a containing the separator edge. (k-n): have a = v and a has no

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(n) (o)

A

β

Cβ''

C ' C ' C '

Cβ''

Cβ'

Cβ'

C

Cβ'

Cβ'

Cβ'

Cβ'

C

C

β β

β

β

β

β

β

β
β

A
A

A

A

A
A

A

A
A

A A

A

A

A

57

siblings. (o): has a = v and has a sibling and is bottom connected to the partial tree with

root o. If a = v and has a sibling and is right connected to the partial tree with root o, then

one of the first 10 options is used. A horizontal flip is used for any subtree that is

connected at the top-right corner. A 90 degree rotation and vertical flip are used on Cβ(')

when it needs to be connected at its top boundary. If Cβ has the link node at its root it can

be safely drawn if its root has no children or a right child. If it has a left child it can be

safely drawn (Case 2) as long as the root is moved to the right boundary (by feasibility

property 3). Bβ and Cβ('/'') may need to be horizontally flipped so they can be connected

from the right.

Case 6 (A ≥ 1)

See Figure 38. Since o = p(a) exists only when a is a single child of o the drawing

in this instance is trivial, allowing the correct flipping of β, which would otherwise be

unachievable.

Figure 38. A ≥ 1. (a-c): Aβ is vertically flipped and o is moved left one so the vertical

channel above it after the flip is guaranteed to be empty. Cβ has a 90 degree rotation and

a vertical flip performed on it so that it is top-connected in (a, c, d). Bβ is horizontally

flipped in (d).

(a) (b)

(c) (d)

A

A

A

A

C
C

C

C

β

β

58

3.3.2 Assign Aspect Ratios

The aspect ratios assigned to each partial subtree were described earlier in

Preliminaries. If the split requires a vertical placement, then the vertical placement aspect

ratios are assigned. If the split requires a horizontal placement, then the horizontal

placement aspect ratios are assigned. It should also be noted that using the vertical and

horizontal flips do not affect aspect ratio, though an odd number of 90 degree rotations

switches the placement of width and height. Therefore, whenever rotating, the assigned

aspect ratio should be 1/Ak to assure the drawing after the rotation has aspect ratio Ak.

3.3.3 Draw Partial Trees

The partial trees Tk as described by the Split Tree process are recursively drawn

using desirable aspect ratios Ak, or the multiplicative inverses, as discussed in Assign

Aspect Ratios. The base case is the drawing of the trivial tree, a single node represented

by a single dot.

3.3.4 Compose Drawings

Referring back to the Split Tree process, the drawings are ordered in relation to

each other and the removed nodes and their incident edges are placed back into the

drawing. The spacing between drawings of partial trees and nodes is minimal unless more

space is needed as obviated by the figures in Split Tree so that the link node and root are

both guaranteed to be on a boundary of the overall drawing at each recursive level. All

edges in the figures that appear to be drawn in the horizontal or vertical channels are

actually drawn in those channels. Any edge that is not guaranteed to be in one of these

channels is drawn on a slant in the figures. The partial trees are labeled with what scope

59

they were drawn with except for partial trees 1, 2, A, C which are general scope partial

trees with naming convention matching [32].

3.4 Proof of Correctness

Lemma 1: The general scope satisfies its feasibility properties.

Proof:

The trivial tree is trivially feasible. For any larger tree, by inspection of the

general scope, the root is always placed in the top-left corner when explicitly present

(Figure 20 options 1 and 2, Figure 22 options 1 and 2, Figure 23, Figure 24, Figure 27).

When it is implicit (partial tree A exists), A’s root is the root of the overall drawing. A is

drawn with general scope, therefore it will eventually resolve into one of the drawings in

the general scope with the root explicitly present. Therefore the root is always in the top-

left corner when using general scope.

Figure 27 is the only time when the root explicitly equals the link node. Property

3 of the general scope is satisfied here. This also shows that in this situation the link node

can be made to be in the bottom boundary. Figures 25 and 26 are the only times the link

node is explicitly present. Both figures draw the link node on the bottom boundary where

it can obviously be moved downward freely. All other figures in the general scope show

that the bottom boundary of partial tree C is placed on the bottom boundary of the

drawing at that level, moving the root of C to the bottom boundary when it is also the

root of C. Therefore the implicit drawings always have C’s bottom boundary on the

bottom boundary and when they resolve to the explicit cases they are drawn on the

bottom boundary or can be moved there by feasibility property 3 of the general scope.

Therefore Property 2 is satisfied since the implicit cases always resolve to the explicit

60

cases and the link node is on the bottom boundary every time or can be moved there

when it is also the root of C. All three feasibility properties are therefore satisfied.

Lemma 2: The α-scope satisfies its feasibility property.

Proof:

The root is explicitly placed in the top-left corner in the α-scope [Fig. 33] so every

drawing in this scope satisfies the feasibility property of α-scope.

Lemma 3: The B-scope satisfies its feasibility property.

Proof:

Figure 28 shows that Case 1 resolves to either the general scope or the α-scope, so

by Lemma 1 and Lemma 2 the root is in the top-left corner for this case. Figures 29 to 32

explicitly place the root in the top-left corner so every drawing from these figures places

the root in the top-left corner. Every drawing of the B-scope thus satisfies the feasibility

property of B-scope.

Lemma 4: The β-scope satisfies its feasibility properties.

Proof:

Case 1 and Case 2 are resolved by Lemma 1. The top-left corner belongs to the

left boundary and the vertical channel above this is obviously empty. Case 1 places the

link node in the bottom boundary and Case 2 places the link node in the right boundary

due to rotation. Since the link node can move downward before rotation, it can move

rightward after rotation. In Case 3 the link node is explicitly drawn in either the bottom or

the right boundary (the bottom-right corner counts as either) and by examination can be

shown to be movable in either the downward direction when on the bottom boundary or

the rightward direction when on the right boundary. By the same reasoning it can be

61

shown that the explicit link node placements in Cases 4 and 5 also share this property.

Every implicit placement of the link node can be seen to touch the bottom and right

boundary simultaneously by stretching the link node rightward when on the right

boundary and downward when on the bottom boundary. Therefore, the link node in this

scope is guaranteed to obey β-scope feasibility property 2. For every case except Case 6,

it is easy to see that the vertical channel above the root is clear and that it is placed on the

left boundary in every instance therefore satisfying property 1. Since the root is on the

left boundary it is safe to move it left one space to create an empty vertical channel

beneath it so that when it is flipped vertically in Case 6 it is still true that the root is on

the left boundary and has an empty vertical channel above it. Therefore every drawing

satisfies β-scope feasibility property 1. It is explicitly stated with explanation when it was

safe to enter the β-scope with u
*
 = o, which is only from within the β-scope itself in

certain situations. It is also mentioned how u
*
 is restricted from being o before entering

the β-scope from a different scope. Therefore feasibility property 3 indeed can be

ignored.

Lemma 5 (Feasibility): The drawing of a tree using this algorithm is feasible.

Proof:

The trivial tree is trivially planar. For any nontrivial tree, by Lemmas 1-4 every

scope maintains its feasibility properties. In the general scope, the only other scope

visible is the B scope, which acts like a general scope drawing since its root is also at the

top-left corner and it never links to anything by its link node. It is easy to see that no edge

crossings can happen while connecting to the root of a partial tree in the general scope or

the B-scope when it connects from above or from the left due to feasibility property 1 in

62

these two scopes. From feasibility properties 2 and 3 of the general scope, the link node

can always be moved to the bottom edge. By these properties it is obvious that no edge

crossings occur when they connect from below. It may appear that the left option in

Figure 20 does not connect below A, but A is drawn stretched which means that the link

node was moved below the rest of the image so it can connect horizontally in this case.

Knowing now the exception in Figure 20 as well as how A must connect below and B

and C must connect at either the top-left corner (or bottom-left corner after a vertical flip

or moving the root to the bottom edge) it can be seen from the figures for the general

scope that this indeed happens. By inspecting the edges around a, it can be seen that they

cannot conflict with each other since they all stem from a and go in different directions.

They also do not interfere with the partial trees since they are shown to only touch the

drawings of the partial trees at their connection points, which were just demonstrated as

being conflict-free points. The general scope must produce only planar drawings, and

since every edge is drawn straight as well the general scope must produce feasible

drawings.

Convincing oneself that the general scope produces feasible drawings is the most

challenging part because there is no basis to build from, though once convinced that the

general scope indeed works the other scopes are much simpler to prove as feasible. The

α-scope is comprised of at most two general-scope subtrees and at least one general-

scope subtree. Both cases are analogous to Figure 23 and the first two options of Figure

24, which were shown to be feasible drawings in the general scope, so immediately the α-

scope must be feasible.

63

The first two cases in the B-scope are readily demonstrated as feasible. The six

options in Case 3 for A < 1 enumerate the configurations of the β subtree either

connecting to the root from right or left and connecting to α from bottom or right and

whether the auxiliary tree is present or not. The other six options for A ≥ 1 are analogous

to the first six options. From the description of this case, it is seen that the rotations and

reflections justify where the partial trees are being connected, remembering that β-scope

guarantees root placement on the left border with the vertical channel open from above.

For A ≥ 1, a 90 degree rotation and vertical flip are used to move the root to the top

boundary with the left horizontal channel open so that the root can be connected

horizontally from the left. These operations will move the link node from either right

boundary to bottom boundary or vice versa. The α subtree is flipped either vertically or

horizontally so that it can connect from the bottom or right edge of β simultaneously.

After understanding how β and α fit together to produce no crossings, the same

techniques from the general scope can be applied to show that no violations occur

between the root, auxiliary subtree and β. It is then shown that B-scope is feasible.

The β-scope can also be shown to be feasible using the same reasoning that was

used to demonstrate feasibility for the other scopes. Cases 1 and 2 are immediately

feasible. The other cases can be demonstrated exactly as before. The drawings of the

partial trees do not touch. The connection points occur on edges so they do not cause

interference with the internal parts of the partial trees, the edges cannot cross each other

because they all join at a common area and are pointed in differing directions, and the

edges only touch the partial trees at their connection points unless explicitly stated in the

64

algorithm that a channel is guaranteed open along an edge as in the B-scope when the

root of β is on the top edge and the horizontal channel is guaranteed open to the left.

The proof started with the feasibility properties of each scope and showed how

these were sufficient to guarantee edges at a recursion level will not cross within

drawings of partial trees. Then the edges were shown to not cross each other relying on

the diagrams of each case of the algorithm. These together offer a proof that any drawing

produced by this algorithm is planar. No edge is ever bent in any diagram and since the

diagrams are planar, they never need to be bent to guarantee planarity so the algorithm

also has straight-line edges. These were the two conditions necessary for the algorithm to

be deemed feasible.

Lemma 6 (Time): From [32] Lemma 2:

“Given an n-node binary tree T with a link node u
*
, [the a]lgorithm […] will

construct a drawing Γ of T in O(n log n) time.”

This statement is applicable to the algorithm of this paper as well since it uses the same

recursion depth and each recursive step is linear in time as is also the case in [32].

Lemma 7 (Ordering): The drawing of a tree using this algorithm preserves left-to-right

ordering of siblings.

Proof:

A set of siblings contain between 0 and 2 nodes inclusive in a binary tree. If there

are no siblings in a set, then the parent node is a leaf and the siblings are trivially ordered.

If there is one sibling in a set, then it is trivially ordered if its parent is not a link node. If

the parent is a link node, then after composition the set may be increased to two nodes if

the link node was used to link to the root of another subtree. It is therefore only the case

of two siblings in a set that needs to be addressed.

65

If there are two siblings in a set, it is easy to determine that they are properly

ordered when their parent is not the link node by inspecting how the tree is composed.

The explicit cases fall into two categories. Remembering the definition of

ordering, wx is the reference line for siblings y and z with parent x. The first category has

w above x and one node is in the vertical channel below x and the other is in the

horizontal channel to the right of x. Most situations are covered by this case. It is obvious

that starting above x and moving counter-clockwise, the vertical channel below x is

encountered before the horizontal channel right of x, so the node below x is the left node

and the other one is the right node. Most options in cases, like the six options in Figure

31, exist so that a partial tree, like β, can occur either as the right or left node (on the right

horizontal channel or the vertical channel below the parent). In the general case C is

defined to be left of a and B is defined to be right of a, so C is always drawn in the

vertical channel below a when in this category.

The second category is w is on the horizontal channel left of x, the left node y is to

the right and above x, and the right node has a larger angle than wxy. It is obvious that

this setup guarantees over 90 degrees for the right node’s subtree to be drawn, which is

all that is needed for a rectangle. See a in the bottom-left option of Figure 20 for an

example.

The third category is w is left and above x, the left node y is on the horizontal

channel right of x, and the right node has a larger angle than wxy. It is obvious that this

also leaves over 90 degrees for the right node’s subtree to be drawn. See a in the bottom-

right option of Figure 20 for an example.

66

The fourth category is w is left and at or above the position of x and the left node

is left and below or at the position of x. The right node has angle larger than wxy. See a in

most options of Figure 37 for multiple examples of this.

The final category is w is left and at or below the position of x and the left node is

in the vertical channel below x. The right node has angle larger than wxy. See a in the

top-left option of Fig. 38 for an example of this.

These five categories cover all of the configurations for explicit sibling pairs. The

algorithm details all possible layouts of nodes where ordering is managed by one of the

five categories above. When a layout can occur to the left or right, an option exists to

show how to proceed for either situation, which explains the many options present in

Figure 37. In the general scope the partial tree C is to the left of the partial tree B in every

case. In the B-scope an option exists for whether the β-subtree is left or right of the root.

In the β-scope an option exists from each case that allows the β-subtree below a to appear

on either the left or right. In the α-scope when subtrees 1 and 2 both exist, subtree 1 is the

left subtree and subtree 2 is the right subtree. Since it is known ahead of time how the

tree will be ordered, the algorithm will know which subtree is left and which subtree is

right based on their roots, which are siblings. For every option of every case, it is known

which partial tree in the schema is left and right so it is only a matter of assigning the left

schema to the left subtree, etc.

The more interesting case is the one where there is a hidden sibling. This is the

case when the link node has a child then connects to another drawing essentially adding

on a second child. One child must be placed without knowing the exact position of its

sibling since that sibling was removed during decomposition, to appear later in

67

composition. It is known which child was removed and which child remains since the

ordering of the tree structure is known and it is only desired to be replicated in the

drawing of the tree. If the left child is removed, then the right child must be placed in

such a way that it is guaranteed to still be the right child after composition and vice versa.

See Figure 39 for the geometry of the link node when it is on the bottom boundary. The

horizontal line is the bottom boundary of the drawing containing the link node extended

infinitely. Let wx be the ray originating at x and going through w or the vertical channel

above x if w does not exist. The child removed during decomposition will appear

somewhere in region III by the design of the algorithm. If this is the left node then the

right child is in the drawing including x and must appear in region I so that during

composition region III is guaranteed to be completely left of the right child. If the child

removed during decomposition is the right child, then the left child is in the drawing

including x and must appear in region II so that region III is guaranteed to be completely

right of the left child. This same logic applies for when the link node is on the right

boundary by rotating the geometry by 90 degrees though still drawing wx vertical in the

case that w does not exist. In this case, region I does not exist, but this situation only

arises when x is the root and the child removed was the right child, in which case the

remaining child is drawn in region II below the position of x.

When in α-scope or B-scope, there is no link node so this problem is not present.

In the general scope the link node is always the leftmost node in the tree so the right node

is the one that is present. It is clear that the right node is never drawn in region III since

that is outside of the drawing. Case 2 (C), (D), and (E) are the only cases that explicitly

draw the link node. In (C) and (D) the right subtree spawning from the link node is in

68

region I as it should be. In (E) the link node will be moved to the bottom boundary when

being utilized which will also put the subtree in region I as desired. In the β-scope the

link node can have either a left or right child in its drawing. The options that have the

child in region I assume this is the right child and the options that have the child in region

II assume that this is the left child of the link node.

Since each set of siblings can be correctly ordered within each drawing and

between drawings, then it is demonstrated that this algorithm preserves left-to-right

ordering of siblings.

Figure 39. Link node geometry where x is the link node and w is its parent.

Lemma 8 (Area and Aspect Ratio): From [32] Lemma 4:

“Let T be a binary tree with a link node u
*
. Let n be the number of nodes in T. Let

ε and A be two numbers such that 0 < ε < 1, and A is in the range [n
-ε

, n
ε
]. Given

T, ε, and A as input, [the a]lgorithm […] will construct a drawing Γ of T that can

fit inside a rectangle R with O(n) area and aspect ratio A.”

Proof:

The proof in [32] is modifiable to this algorithm, as will be shown. Using the

same idea, we start with D(n) as the area of R. It will be demonstrated that

021)(nnncncnD ≥∀−≤ β given c1, c2, n0, β are positive constants and 1<β ,

demonstrating)()(nOnD = .

69

 For the cases where 1≥A and placement is horizontal and A < 1 and placement is

vertical, the proof follows exactly from [32] with a slight change to constants. Let T be

the tree being drawn by this algorithm. T is either general scope or β-scope, since the

other two scopes are immediate (e.g. the partial tree B in Case 2 of the general scope

when drawn using Case 3 of the B-scope is actually partial trees 1 and 2 from the α-

scope, the β-subtree and the s(β) subtree because B is immediately recursed one level). If

T is general scope it is always true that the conditions to use the proof from [32] are met.

If T is β-scope, it may not be true that these conditions are met, e.g. Figure 34 (e-f),

although the proof is similarly structured.

In either case, let Tk be a partial tree of T as specified by the tree splitting process

of the algorithm (recursing one level for partial trees that are drawn in an immediate

scope). For example, in general scope Case 2 using B-scope Case 3 Tk may be one of TA,

TC, Tβ, Ts(β), T1, and T2. Let Tk have nk nodes and xk = nk / n. Let ς be the maximum

number of Tk needed to split T. Figure 37 (a) potentially has 7 partial trees (the two pieces

of TCβ, TAβ, and up to 4 pieces of TBβ, e.g. Tβ, Ts(β), T1, and T2 in Case 3 of the B-scope);

this is the maximum number of partial trees generated by any figure so ς = 7. Let ζ and ξ

respectively be the maximum number of extra horizontal and vertical channels needed to

compose T. It is tedious to go through every case to compute these but exact numbers are

not necessary for the proof. It is only necessary to know these values are small (around

5). The last definition needed before beginning is letting ββ −−= 1

21 / kk xncncP .

From Theorem 1 it must be true that nnk)3/2(≤ which implies 3/2≤kx . Hence,

')2/3()3/2/(1

21

1

21 PncncncncPk ≡−=−≤ −− ββββ . From the inductive hypothesis, each

70

drawing Γ(Tk) will fit inside a rectangle Rk with optimal area =−≤ β
kkk ncncnD 21)(

() '/)(1

2121 PxPxxncncxnxcnxc kkkkkkk ≤=−=− −βββ and aspect ratio Ak as defined by the

aspect ratio assignments given in the algorithm.

Let Wk and Hk be the width and height respectively of Rk. There are four cases to

consider from the combination of choice of whether placement will be horizontal or

vertical and whether Tk is large or small as defined in the aspect ratio assignments given

in the algorithm. For horizontal placement and Tk is small,




<

≥
<

+

+

1)(

1)/(
)1/(1

)1/(1

AAn

AAn
nk ε

ε

 and

ε−= kk nA . Defining Wk and Hk by the relation of area and aspect ratio, we get:

())1/(2

)1/(2)1/()1()1/()1(

)1/(2)1/()1()1/()1(

1

/'
1/'/')(

1/'/1/')/(

/'')(

εε

εεεεεε

εεεεεε

εε

+

++−+−

++−+−

−−

≤












<=

≥=

<=≤=

nP
AnPAnPAn

AnPAnPAn

nPnPxnnDAW kkkkkk







<=

≥=

<=≤=

++

++

+

1'/')(

1/'/')/(

/''/)(

)1/()1(

)1/()1(

1

APAnPAn

AAPnPAn

nPnPxnAnDH kkkkkk

εε

εε

εε

For horizontal placement and Tk is large, Ak = xk A, this time giving:

APAxPxAnDH

APxPAxxnDAW

kkkkk

kkkkkk

/')/('/)(

'')(

=≤=

=≤=

For the case of vertical placement, when Tk is small, Ak is the multiplicative inverse of

what it was for horizontal placement, so Wk and Hk swap results. For large Tk, xk is

switched giving:

APxH

APW

kk

k

/'

'

≤

≤

71

 Let 'W and 'H be the width and height respectively of the rectangle 'R that

encloses Γ(T), the drawing of T. For horizontal placement:

AnPAPWWW

AAPHH

kk T

k

T

k

k

∀++≤++≤

∀+≤+≤

+∑∑ ζςζ

ξξ

εε)1/(2

smalllarge

/'''

/')max('

since 1
large

≤∑
kT

kx and ς≤∑
small

1
kT

.

For vertical placement:

AnPAPHHH

AAPWW

kk T

k

T

k

k

∀++≤++≤

∀+≤+≤

+∑∑ ξςξ

ζζ

εε)1/(2

smalllarge

/'/''

')max('

'R does not necessarily have an aspect ratio of A, but it is enclosed by a rectangle R with

width W and height H that does have aspect ratio A. It must be assured that W and H

contain their primed counterparts entirely. For horizontal placement:

() AAnPAPAWH

AAnPAPW

∀+++==

∀+++=

+

+

ξζς

ξζς

εε

εε

//'/'/

/''

)1/(2

)1/(2

which both certainly contain their primed counterparts entirely. For vertical placement:

() AnPAAPHAW

AAnPAPH

∀+++==

∀+++=

+

+

ζξς

ζξς

εε

εε

)1/(2

)1/(2

/''

//'/'

Notice that if the horizontal definition swaps the definition of H and W and ξ and ζ then

inserts the multiplicative inverse of A, the vertical placement formulas are acquired. This

means that horizontal placement with 1≥A is equivalent to vertical placement and A < 1.

This case was proved in [32] (where with no loss of generality ζ=2, ξ=1, and ς=5). It must

72

be demonstrated that horizontal placement with A < 1 (and therefore vertical placement

with 1≥A) is also feasible. This reduces to demonstrating only the horizontal case of:

() ()()
()

()
AnPcAPcAccAc

nPcAnPcAPcAnPcP

AnPAPAA

nPAnPAPAnPP

AAnPAPAnPAP

WHnD

//'/'/

/'/''/''

//'2/'2/2

/'2/''2/'2'

1//'/'/''

)(

)1/(2

1110987

)1/(2

6

)1/(2

54

)1/(2

3

)1/(222

)1/(2)1/(22)1/(2

)1/(2)1/(2

εε

εεεεεε

εε

εεεεεε

εεεε

ςζζζζξξ

ςξςξς

ξζςξζς

+

+++

+

+++

++

+++++

++++≤

+++++

++++=

<++++++

==

and since 1<≤−
An

ε
 and ncP 1'< :

2/1)1/(1

111

2/12/

101987

)1/()1)(2/1(

61

)1/()1(

51

2/1

41

)1/(12/

31

)1/(21

1111

1

10987

)1/(21

161

)1/(2

514

)1/(2

13

)1/(2

1110987

)1/(2

6

)1/(2

54

)1/(2

3

2

')(

: tosimplifieswhich

'

/''

/''''')(

−+++

+−++++

+−+

+−+−+−

+

+++

+++++

++++≤

+++++

++++≤

+++++

++++≤

εεεε

εεεεεε

εεεεε

εεεεεεεε

εεεεε

εεεεεεεε

nccncccncc

nccnccnccnccPnD

ncnccnccncc

nccncncnccnnccP

nPncPnccncc

nPcPnncPcnnPcPnD

and only keeping highest order terms one can find c12 to c15 such that:

2/1)1/(1

15

2/12/

14

)1/()1(

13

)1/(12/

12

2

')(−+++++++ ++++≤ εεεεεεε
ncncncncPnD

)1()2/3(' 1621

1

21 cncncncncP +−=−= − βββ for some c16 such that β−=+ 1

16)2/3(1 c .

Therefore:

()2/1)1/(1

15

2/12/

14

)1/()1(

13

)1/(12/

1216221

2/1)1/(1

15

2/12/

14

)1/()1(

13

)1/(12/

121621

2

2

)(

: tosimplifies

)1()(

−+++++++

−+++++++

−−−−−−≤

+++++−≤

εεεεεεεββ

εεεεεεεβ

ncncncncnccncncnD

ncncncnccncncnD

73

and given enough largechosen constant somefor 00 nnn ≥ and)1/(12/1 εεβ ++≥> ,

since β needs to give an order at least as large as that of the highest power in the

parenthesized part, a solution can be found to:

02/1)1/(1

15

2/12/

14

)1/()1(

13

)1/(12/

12162

2

≥−−−− −+++++++ εεεεεεεβ
ncncncncncc , which then gives:

βncncnD 21)(−≤ , the desired result. Since β < 1, the desired result is also linear,

therefore the area of the enclosing rectangle is linear (and therefore optimal).

 From here, it is easy to see that the desired aspect ratio is achieved since one of

the following was chosen by definition:

HAWAWH ≡≡ /

By definition of A, this gives:





=

=
=≡

AHHA

AAWW
HWA

/

)//(
/ , which is indeed true.

Theorem 2 (Main Theorem): From [32] now that the same results have also been

developed in these lemmas:

“Let T be a binary tree with n nodes. Given two numbers A and ε, where ε is a

constant, such that 0 < ε < 1, and n
-ε

 ≤ A ≤ n
ε
, we can construct in O(n log n) time,

a planar straight-line grid drawing of T with O(n) area and aspect ratio A.”

This result is further strengthened by including Lemma 7 so that the planar straight-line

grid drawings preserve ordering of binary rooted and ordered trees.

Corollary to Theorem 2: Setting A = 1 and choosing an arbitrary ε within the specified

bounds, then by Theorem 2 an order-preserving planar straight-line grid drawing of a

binary rooted and ordered tree can be constructed in O(n log n) time with area O(n) and

optimal aspect ratio A = 1.

74

3.5 Experimental Results

An implementation of [32] was run side-by-side with an implementation of the

algorithm in this chapter. Maximum width and height were recorded for different types of

binary trees ranging from less than 100 nodes to tens of thousands of nodes. The different

types of trees used were AVL, Fibonacci, Left-Heavy, Right-Heavy, Complete, and

Random. Each tree generated three drawings with 0.5, 1, and 2 for their respective

desired aspect ratios. It is expected that the number of nodes for each type plotted against

aspect ratio will converge to the desired aspect ratio. Since area is expected to be linear to

the number of nodes, the area divided by the number of nodes, called the K-value, is

expected to converge to a constant as the number of nodes is increased. The following are

the plots obtained.

75

Figure 40. AVL tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0. The aspect

ratios are perfectly overlaid.

Figure 41. Fibonacci tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm.

76

Figure 42. Left-Heavy tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm.

Figure 43. Right-Heavy tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0.

Blue represents the original algorithm and purple represents the new algorithm.

77

Figure 44. Complete tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0. The

aspect ratios are perfectly overlaid.

Figure 45. Random tree aspect ratios for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm.

78

Figure 46. AVL tree K-Values for desired aspect ratios of 0.5, 1.0 and 2.0. The K-Values

are perfectly overlaid.

Figure 47. Fibonacci tree K-Values for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm.

79

Figure 48. Left-Heavy tree K-Values for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm.

Figure 49. Right-Heavy tree K-Values for desired aspect ratios of 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm.

80

Figure 50. Complete tree K-Values for desired aspect ratios of 0.5, 1.0 and 2.0. The K-

Values are perfectly overlaid.

Figure 51. Random tree K-Values for desired aspect ratios 0.5, 1.0 and 2.0. Blue

represents the original algorithm and purple represents the new algorithm.

81

In the implementation used, an exact 1/3-2/3 cut was not required as long as the

cut was within those bounds, so the AVL and Complete trees always had a link node at

the root for both algorithms, since they are both balanced trees. This results in the general

scope, Case I, subcases E-H to be the only situations that can arise. These cases are

exactly equivalent to Case II, subcases E-H from [32], so the drawings are identical. This

is why the plots for these are perfectly overlaid for aspect ratio and K-Value.

Both algorithms do not guarantee that the aspect ratio will be exactly the desired

aspect ratio, but should approach it so that it can fit in a box of the desired aspect ratio.

The Fibonacci and Complete trees were consistently furthest from the desired aspect ratio

in both algorithms.

Both algorithms suggest a constant K-Value for increasing number of nodes. This

value tends to be between 3 and 4 for both algorithms when the tree style is not left or

right heavy. In these cases, the original algorithm had K-Values of about 9 and 19

respectively, while the newer algorithm seems to improve this to about 9 and 10

respectively.

 Figure 52 shows the difference between the two algorithms for a random binary

tree of 100 nodes. The left drawing has a node circled in red in which the left and right

children were drawn out of order, whereas the same node is circled on the right and has

been correctly drawn.

82

Figure 52. Left the original out-of-order algorithm. Right the ordered algorithm. Light

blue is a right child and black is a left child. The red circle draws attention to an out-of-

order pair, which is circled in blue on the right to demonstrate being ordered there.

3.6 Conclusion

The work in [32] has been extended to allow for order preserving planar straight-

line grid drawings of binary rooted and ordered trees. Given that a tree has n nodes this

solution is found in O(n log n) time with O(n) area and user specified aspect ratio n
-ε

 ≤ A

≤ n
ε
 where 0 < ε < 1, which are the same bounds placed on the out-of-order solution.

83

Chapter 4

Summary

Graphs (and trees) have been demonstrated to be widely important in many

different applications from many disciplines. It was also discussed that Information

Visualization is an important area of research in finding better ways of effectively

communicating the data contained within graphs. Gestalt psychology was also introduced

as a complementing field to study techniques that may benefit visualizations. From here,

aesthetic requirements were presented as a way of measuring the effectiveness and

aesthetic value of graph and tree drawings.

Edge crossings were noted as being especially detrimental to non-planar graph

drawings. Alleviating this problem by diminishing unintentional gestalt effects is the

consideration of Chapter 2. Here a method of embedding graph edges into a color space

was presented. The motivation being coloring edges that may hinder effectiveness by

having low angular resolution or long lengths, for example, have perceptually different

colors to allow for easier differentiation. The second method presented used breaks in

edges as an alternative that does not rely on colors, being better for black-on-white

printings and for color-blind users.

Chapter 3 focuses on a novel algorithm for improving the known bounds on

planar straight-line order-preserving grid drawings of binary trees to optimal for both area

(linear) and aspect ratio (1:1).

Future work should include an intensive user study of the effectiveness of the

methods in Chapter 2 as well as researching other Gestalt applications to the edge

crossing problem, and exploring different separator values for the tree drawing algorithm.

84

List of References

[1] M.W. Bern, D. Eppstein, and B. Hutchings. Algorithms for coloring quadtrees. Algorithmica, Volume

32, Issue 1, pages 87-94, 2002.

[2] M. Chalmers. A linear iteration time layout algorithm for visualizing high-dimensional data. In Proc.

of VIS’96, pages 127-ff. IEEE CS Press, 1996.

[3] C. Demiralp, S. Zang, D. Tate, S. Correia and D. H. Laidlaw. Connectivity-aware sectional

visualization of 3D DTI volumes using perceptual flat-torus coloring and edge rendering. In

Proceedings of Eurographics, 2006.

[4] M.B. Dillencourt, D. Epstein and M. T. Goodrich. Choosing colors for geometric graphs via color

space embeddings. In Proceedings of the 14th International Symposium on Graph Drawing, pages

294–305, 2006.

[5] P. Eades. A Heuristic for Graph Drawing. In Congressus Numerantium, Volume 42, pages 149-160,

1984.

[6] D. Eppstein. Testing bipartiteness of geometric intersection graphs. In Proc. 15th Symp. Discrete

Algorithms, pages 853-861. ACM and SIAM, 2004.

[7] S. Felsner, F. Hurtado, M. Noy, and I. Streinu. Hamiltonicity and colorings of arrangement graphs. In

Proc. 11th Symp. Discrete Algorithms, pages 155-164. ACM and SIAM, 2000.

[8] H. de Fraysseix, J. Pach, and R. Pollark. How to draw a planar graph on a grid. Combinatorica,

Volume 10, pages 41-51, 1990.

[9] T. Fruchterman and E. Reingold. Graph Drawing by Force-Directed Placement. In Software—

Practice and Experience, Volume 21, Issue 11, pages 1129-1164, 1991.

[10] C. Healey. Choosing effective colors for data visualization. In Proceedings of the 7th conference on

Visualization, pages 263-ff, 1996.

[11] I. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

[12] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information

Processing Letters, Volume 31, Issue 1, pages 7-15, 1989.

[13] E. Kandogan. Star Coordinates: A multidimensional visualization technique with uniform treatment

of dimensions. In Proceedings of the IEEE Information Visualization Symposium, pages 9-12, 2000.

[14] H. Levkovitz and G. Herman. Color scales for image data. In IEEE Computer Graphics and

Applications Volume 12, pages 72-80, 1992.

[15] A. Morrison and M. Chalmers. A pivot-based routine for improved parent-finding in hybrid MDS.

Information Visualization, Volume 3, Issue 2, pages 109-122, 2004.

[16] H. Purchase. Which aesthetic has the greatest effect on human understanding? In Proceedings of the

5th International Symposium on Graph Drawing, pages 248–261, 1997.

[17] P. Rheingans and B. Tebbs. A tool for dynamic explorations of color mappings. Computer Graphics,

Volume 24, Issue 2, pages 145-146, 1990.

85

[18] P. Robertson. Visualizing color gamuts: A user interface for the effective use of perceptual color

spaces in data displays. IEEE Computer Graphics and Applications, Volume 8, Issue 5, pages 50-64,

1988.

[19] J. Sammon. A Nonlinear Mapping for Data Structure Analysis. In IEEE Trans. Computers, Volume

13, pages 401-409, 1964.

[20] K. Seisenberger. Termgraph: Ein System zur Zeichnerischen Darstellung von Strukturierten Agenten

und Petrinetzen. Diplomarbeit, Universität Passau, 1991.

[21] R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM Journal

on Computing, Volume 16, pages 421-444, 1987.

[22] E. Tejada, R. Minghim, and L.G. Nonato. On improved projection techniques to support visual

exploration of multidimensional data sets. Information Visualization, Volume 2, Issue 4, pages 218-

231, 2003.

[23] D. Tunkelang. A practical approach to drawing undirected graphs. Carnegie Mellon University, 1994.

[24] C. Ware. Color sequences for univariate maps: Theory, experiments and principles. In IEEE

Computer Graphics and Applications, Volume 8, pages 41–49, 1988.

[25] D. Woods. Drawing Planar Graphs. PhD thesis, Stanford University, 1982.

[26] C.G. Boeree. Gestalt Psychology, <http://webspace. ship.edu/cgboer/gestalt.html>, 2000.

[27] Am. Rusu and V. Govindaraju. Visual CAPTCHA with handwritten image analysis, Proceedings of

the 2
nd

 International Workshop on Human Interactive Proofs, Lecture Notes in Computer Science,

Vol. 3517, pp. 42-52, 2005.

[28] Am. Rusu and V. Govindaraju. A human interactive proof algorithm using handwriting recognition,

Proceedings of the 8
th

 International Conference on Document Analysis and Recognition, IEEE

Computer Society, Vol. 2, pp. 967-971, 2005.

[29] Am. Rusu, A.O. Thomas and V. Govindaraju. Generation and use of handwritten CAPTCHAs,

International Journal on Document Analysis and Recognition, Springer-Verlag, Vol. 13, Issue 1, pp.

49-64, 2010.

[30] J. Bentley and T. Ottman. Algorithms for counting and reporting geometric intersections, IEEE

Transactions on Computers, Vol. C-28, Issue 9, pp. 643-647, 1979.

[31] Am. Rusu and R. Docimo. Securing the Web using human perception and visual object interpretation,

Proceedings of the 2009 13
th

 International Conference on Information Visualization.

[32] A. Garg and A. Rusu. Straight-line Drawings of Binary Trees with Linear Area and Arbitrary Aspect

Ratio. Journal of Graph Algorithms and Applications, 8(2):135-160, 2004.

[33] A. Garg and A. Rusu. Area-efficient order-preserving planar straight-line drawings of ordered trees.

International Journal of Computational Geometry and Applications, 13(6):487-505, 2003.

[34] T. Chan, M. Goodrich, S. Rao Kosaraju, and R. Tamassia. Optimizing area and aspect ratio in

straight-line orthogonal tree drawings. S. North, editor, Graph Drawing (Proceedings of Graph

Drawing ’96), volume 1190 of Lecture Notes in Computer Science, 63-75, 1997.

86

[35] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward drawings

of binary trees. Computational Geometry Theory and Application, 2:187-200, 1992.

[36] D. Dolev and H. W. Trickey. On linear area embedding of planar graphs. Technical report. Stanford

University, Stanford, USA. 1981.

[37] F. Frati. Straight-line orthogonal drawings of binary and ternary trees. Seok-Hee Hong and Takao

Nishizeki, editors, 15
th

 International Symposium on Graph Drawing, volume 4875 of Lecture Notes

in Computer Science, 76-87, 2007.

[38] A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward tree drawings with optimal area.

International Journal of Computational Geometry and Applications, 6:333-356, 1996.

[39] S. K. Kim. Simple algorithms for orthogonal upward drawings of binary and ternary trees.

Proceedings of the 7
th

 Canadian Conference on Computational Geometry, 115-120, 1995.

[40] S. K. Kim. Order-preserving, upward drawing of binary trees using fewer bends. Discrete Applied

Mathematics Journal, 143(1-3):318-323, 2004.

[41] C. E. Leiserson. Area-efficient graph layouts (for VLSI). Proceedings of the 21
st
 Annual IEEE

Symposium on the Foundations of Computer Science, 270-281, 1980.

[42] C.-S. Shin, S. K. Kim, and K.-Y. Chwa. Area-efficient algorithms for straight-line tree drawings.

Computational Geometry Theory and Application, 15:175-202, 2000.

[43] L. Valiant. Universality considerations in VLSI circuits. IEEE Transactions on Computers, C-

30(2):135-140, 1981.

[44] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated

bibliography. Computational Geometry Theory and Application, 4:235-282, 1994.

[45] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle

River, NJ, 1999.

[46] H. C. Purchase, R. F. Cohen, and M. I. James. An experimental study of the basis for graph drawing

algorithms. ACM Journal of Experimental Algorithmics, 2(4), 1997.

[47] A. Rusu, R. Jianu, A. J. Fabian, and D. Laidlaw. Proceedings of the 13
th

 International Conference on

Information Visualization, 2009.

[48] Am. Rusu, A. J. Fabian, R. Jianu, and Ad. Rusu. Using the Gestalt Principle of Closure to Alleviate

the Edge Crossing Problem in Graph Drawings. Proceedings of the 15
th

 International Conference on

Information Visualization, 2011.

	Visualizing graphs with distinguishable edges and ordered binary trees in small area
	Recommended Citation

	Microsoft Word - 2011-Andrew_Fabian-Thesis.doc

