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Abstract 

 

Juan C. Roche 

MAGNETO-ELASTIC BEHAVIOR IN HARD- AND SOFT-MRE’S INCLUDING 

DEMAGNETIZING EFFECTS 

 

 

This thesis studies the magnetic and mechanical behavior of magnetorheological 

elastomers (MREs) based on four possible permutations defined along particle alignment 

(Aligned and Unaligned) and magnetization (Hard- or Soft-magnetic) pairs. These pairs 

designations yield classes A-H, U-H, A-S and U-S. The last two classes comprise 

traditional MREs. Samples were fabricated by mixing DOW HS II silicone elastomer 

compound and 30% by volume of either nominally 40-micron M-type barium hexaferrite 

(BaM) or 325-mesh iron (Fe) particles cured with or without the presence of a magnetic 

field. Magnetization and density measurements were employed to help confirm 

fabrication of the four distinct classes. Results of magnetization measurements suggest 

that the goal of defining and fabricating the four classes was functionally achieved. The 

motivating for this project stems from the notion that in soft-magnetic particles (i.e. Fe), 

behavior is driven by local demagnetizing effects while hard-magnetic particles (i.e. 

BaM) have a preferred magnetic axis and therefore generate magnetic torques at the 

particle level. The larger thesis seeks to define, model, and differentiate the nature of the 

magnetic torque response across all four classes.  
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Chapter 1: Introduction 

 

1.1 Motivation 

 

In this work, consideration is given to materials that consist of magnetically 

polarizable particles in a non-magnetic medium. These materials are commonly known as 

magnetorheological elastomers (MREs), Ginder et al. [1999]. MREs belong to the class 

of smart materials due to their ability to change their shear stiffness under the effect of a 

uniform field (e.g. Jolly et al. [1996] and Zhou [2003]). This thesis studies the magnetic 

and mechanical behavior of four classes of MRE composite materials consisting of 

magnetically hard and soft particles embedded firmly in a non-magnetic elastic matrix. 

The systematic study of the use of magnetically hard particles in MREs was a unique 

contribution to the field because traditionally, MREs are comprised of carbonyl iron 

particles which are magnetically soft and spherical.  

 

The materials used experimentally in this thesis served as proxies for four 

theoretical alignment-magnetization symmetry classes of MREs along which material 

behavior was expected to diverge substantively. Alignment variation was constructed by 

either curing the material in an external magnetic field to align the particles or leaving 

particles unaligned (as mixed); in addition, either magnetically hard or soft particles were 

used to vary the composite’s magnetization behavior. For a magnetically soft particle, 

behavior is driven by local demagnetizing effects while a magnetically hard particle has a 
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preferred magnetic axis and therefore generates magnetic torques at the particle level. 

The four classes are shown schematically in Figure 1.1.1  

 

 

Figure 1.1.1 Iconography of (a) magnetically soft and (b) hard particles, and (c) 

schematics of four classes of MREs based on alignment during the curing process and 

either magnetically hard or soft particles. 

 

In magnetically soft materials (Figure 1.1.2 (a)) the magnitude of the internal 

magnetization can be given as        . Furthermore, the magnetization vector   of 

the particles follows the applied magnetic field  , regardless of deformation (Figure 1.1.2 

(b)). The magnetic torque density   within the particles themselves is determined by 

     . Thus, there is no net torque acting on spherical (geometrically symmetric) 

particles within a uniform field if the composite is unperturbed with respect to that field 

since   and   are collinear.  Furthermore, when chains of particles are sheared within 

the field, individual particle magnetizations still align with   (Figure 1.1.2 (b)); however, 



3 

 

demagnetizing effects between particles generate a restoring torque (or dipole moment) 

that seeks to minimize the energy of the system by returning particles to their unperturbed 

state, Shen et al. [2004].  

 

Figure 1.1.2 (a) Ideal, zero hysteresis, soft magnetic materials showing no remanent 

magnetization,   , and a zero coercive field value,   . (b) Effect of uniform field on 

S‐MRE that uses aligned soft‐magnetic particles under‐shearing stress (red arrows). 

Particle magnetization   is shown in thin black arrows and local field   in block 

arrows.
1
  

 

In an ideal hard magnetic material (Figure 1.1.3 (a)) the particles have a constant 

value of    when    |  |.  The fundamental difference between S-MRE and H-MREs 

lies in the torque generated by   within the embedded particles since   and   need not 

be collinear regardless of deformation (Figure 1.1.3 (b)). Consequently, in contrast to S-

MREs with spherical particles, in the unperturbed state H-MREs can generate substantial 

                                                 
 
1
 Note:       are collinear, therefore      , however demagnetization effects create local torques within 

particles with respect to the external field thereby causing a restoring torque in the bulk specimen. This 

results in experimentally measurable increases in stiffness seen in S‐MREs. 
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torques.  Thus, H-MREs can be more accurately described as active materials as opposed 

to reactive S-MREs. 

 

 

Figure 1.1.3 (a) Ideal hard magnetic material non-zero showing remanent magnetization 

and coercive field. The hysteresis curve is square. (b) Effect of uniform field on H‐MRE 

that uses aligned hard‐magnetic particles. Thin black arrows show the particle 

magnetizations  , block arrows show applied field  .
2
  

 

Material proxy classes are defined along alignment (Aligned and Unaligned) 

magnetization (Hard- or Soft-magnetic) pairs generating four possible permutations. The 

magnetically hard particles lead to classes A-H and U-H, while the magnetically soft, 

provides classes A-S and U-S (i.e. traditional MREs). Classes A-H and A-S were aligned 

by an applied magnetic field of        prior to the curing of the matrix. The applied 

field induces dipole moments on the particles that ideally cause them, in materials with 

low volume fractions, to combine into extended, chain-like structures aligned with the 

                                                 
 

2
 Note:       are not collinear, therefore      . The torque within the particles produces a distributed 

internal moment within the composite that is resisted by the elastic stiffness of the matrix. 
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applied field, Jolly et al. [1996], Davis [1998], Yin and Sun [2005], and Boczkowska et 

al. [2009]. Classes U-H and U-S were not subject to a magnetic field during curing; thus, 

these materials are considered as unaligned and therefore spatially isotropic, Lokander 

and Stenberg [2003] and Gong et al. [2005]. The distinctions are important since the 

particle‐field interactions for each class differ substantially, Wang et al. [2006]. 

 

The need for this study lies in the larger premise that the behaviors of classes A-S 

and U-S are driven primarily by demagnetizing effects while classes A-H and U-H are 

driven by torques produced in the particles. The goal of this chapter is to measure the 

magnetization of the samples to verify the development of the proxies for the four 

materials classes. The larger thesis seeks to define, model, and differentiate the nature of 

the magnetic torque response across all four classes. The methods used to complete these 

tasks are outlined below. 

 

1.2 Methods 

 

A vibrating sample magnetometer (VSM) was used to take measurements of the 

magnetization of the four cases. Measurements of the magnetization   component 

transverse as well as parallel to the poling field   in relation to the sample plane were 

attained. These measurements, detailed in Chapter 3, helped confirm fabrication of the 

four distinct classes. 
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A VSM was also used to study the orientation distribution of remanent 

magnetization in each material class. In preliminary experiments, especially for H-MREs, 

a hysteresis loop of   vs.   showed different values of the remanent magnetization    

when measured parallel and perpendicular to the poling direction. This suggests a 

rotation of the ferromagnetic particles in the plane relative to  . To explore this 

possibility, we examined    while rotating the sample. Additionally, X-ray diffraction 

texture measurements were employed to assist the interpretation of particle distributions 

during the rotation. This work is detailed in Chapter 4. 

 

Multiphysics finite element simulations with COMSOL were performed to 

validate development of computational models of MREs by comparing simulation results 

to experimental data. The cantilever bending actuation of samples with field was tested 

previously for all four classes, Von Lockette et al. [2011].  The combination of this 

cantilever bending experiment with magnetization measurements results helped with the 

development of a FEA model capable of predicting the coupled magneto-elastic behavior 

of the MREs. This work is detailed in Chapter 5. Finally, conclusions drawn from this 

study and the future directions of this project are summarized in Chapter 6. 
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Chapter 2: Literature Review 

 

2.1 Experiments, Models, and Properties of MREs and the Effects of Compositional 

Parameters on their Properties 

 

Literature selected herein provides a good foundation of what has been done and 

what has not in relation to the proposed work. Experiments and the effects of 

compositional parameters on their properties are examined. Moreover, previous 

mathematical, analytical, and computational models provide useful information to further 

the development of this thesis.   

 

In the last few years, prompted largely by the work of Lord Corporation research 

group, numerous articles on the magneto-elastic behavior of MRE’s have appeared. Jolly 

[1996] et al. created a model of the MR effect as a function of particle magnetization to 

measure the response of the composite to a magnetic field. The model established a 

mechanism by which magnetic flux density is distributed within the composite material 

accounting for nonlinearities and saturation. The maximum field-induced change in stress 

occurred when the particles became magnetically saturated. In their model, there was a 

noticeable discrepancy between theory and experimental results. Therefore, a parameter 

to adjust experimental data to the model was needed. This parameter accounted for un-

modeled magnetic interactions, such as demagnetizing effects.  

 

Davis’ [1999] model provides a mathematical description of the rubber matrix 

properties leading to an expression for the effect of volume fraction of iron (Fe) particles 
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on shear modulus as a function of  .  They consider the high-field limit and calculate the 

maximum change in shear modulus due to  . In this model, Fe particles are treated as 

rigid spherical shells in a continuous matrix. The magnetic properties of the particles 

were represented by a nonlinear magnetic induction   as a function of  . This 

relationship becomes      at small magnetic fields and            above 

saturation. Where   is the permeability of the filler particle (e.g. Fe),              

 , and    is the saturation magnetization of the filler particles. Typical values for Fe are 

         and        . The mechanical response is described in terms of the 

principal extension ratios   , which are the ratios of the current length (deformed) to 

original (non-deformed) length in the principal directions. Incompressibility is assumed, 

so that for any deformation         . The shear modulus at zero magnetic fields for 

the sample with aligned particles is less than that for the sample with randomly dispersed 

particles at the same volume fraction. The optimum volume fraction of the particles is 

predicted to be 27%. This is important because it is desirable to have the ratio of the 

magnetically induced change in shear modulus to be as large as possible.  

 

Ginder [2002] et al. reported preliminary measurements of the field-induced 

increase in dynamic modulus and length change on MREs. To study the dynamic shear 

modulus they built a tuned vibration absorber (TVA). The device was clearly tunable by 

a magnetic field, with a resonance that shifted upward in frequency by over 20% at 0.56 

T.  The transmissibility was found to decrease as the amplitude of the base acceleration 

increased. From the measure of transmissibility and phase, the dynamic spring rate was 

calculated. Furthermore, they built a lever-arm-based dilatometer to allow measurements 



9 

 

of the length changes in cylindrical MRE’s.  They noted that by attaching masses to the 

lever arm the effect of compressive preload on the length change could also be studied. 

Obviously, the magnitude of the magnetostriction (i.e. length change) of the sample was 

greater than that obtained in bulk Fe. They argued that this result was due to inter-particle 

or shape effects.  

 

Zhou [2003] tested the damped free vibration of an MRE spring and mass system. 

Zhou determined the shear properties and damping factor by calculating the dependence 

of the natural frequency and damping ratio of the system on the applied field. The 

commonly used point-dipole model was not suitable in this experiment when the shear 

modulus was linear in  , as found for small fields. In addition, the local saturation of the 

particles was considered since the natural frequency is affected by the magnetic force 

between the particles inside the matrix.  The total magnetic energy density was used to 

analyze the shear stress induced by inter-particle magnetic forces.  By taking the 

derivative of the total magnetic energy density with respect to the relative position of two 

adjacent particles in a chain after deformation (when the magnetic field is applied along 

the z direction) the stress induced can be computed and the damping factor was shown to 

be independent of the applied field.  

 

Zhou and Li [2003] tested the accelerations of an MRE and cuprous mass system 

under (uniaxial) displacement excitation. The generation of hysteresis loops was highly 

noticeable through the paper. They employed this method to describe the change of the 

system with applied magnetic field and exciting frequency under harmonic excitation. 
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They argue that the method is a useful tool when showing the dynamic behavior of a 

system. Some of the characteristics of the system examined were the energy dissipated 

per cycle, identification of a linear vs. nonlinear system behavior, phase delay between 

the excitation and the response for a linear system. They showed that the mechanical 

behavior was nonlinear and the field-dependent behavior of the MRE was associated with 

the applied frequency. However, they acknowledged the existence of eddy current 

damping from the brass mass that added to energy loss in the system, which is not 

directly dependent on the MRE material.  

 

Lokander and Stenberg [2003] produced and investigated isotropic MR solids 

made of nitrile rubber (with various acrylonitrile contents) and two different types of iron 

particles: large, irregularly shaped iron particles and spherical carbonyl iron powders. 

They discovered that the MR effect of irregularly shaped iron particles is larger compared 

to the carbonyl iron powders. A maximum occurs at a particle content of about 30% by 

volume and size > 60 μm of the irregularly shaped particles. They found that isotropic 

MREs materials with irregularly shaped particles show an increase in modulus of about 

0.4 MPa, while aligned MREs with carbonyl iron show an increase of 0.7 MPa. In 

addition, they found that the absolute MR effect could be improved by the addition of 

plasticizers or by using a softer matrix material, such as silicone rubber. 

 

Zhou and Jiang [2004] presented the real-time dynamic deformation progress 

using a white light speckle technique for deformation analysis of MREs and elastomer-

ferromagnet composites (EFCs). In this case, the MREs were cured under a strong 
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magnetic field while the EFCs were not (i.e. the ferrous particles are embedded randomly 

in the matrix). Therefore the mechanical properties of these two kinds of materials were 

very different. The white light speckle technique consisted of the retrieval of the in-plane 

displacement of the sample from a series of images recording the speckle pattern during 

deformation. The speckle movement calculated by the intensity correlation of consequent 

images was related to the displacement distribution on the surface of the sample. As a 

result, by calculating the correlation of a series of recorded images numerically, they 

obtained the in-plane displacement of a sample at different times. Based on this study 

they concluded that the deformation of the samples driven by magnetic field is related to 

the field strength. The MREs were compressed along the direction of the applied 

magnetic field while EFCs is dilated. The deformation of the MREs changes slightly with 

volume fraction and is smaller than that of EFCs. Thus, the MRE was stiffer than the 

EFCs in the direction of the chain-like structures formed in MREs cured in the presence 

of a magnetic field.    

 

Zhou [2004] presented a different data processing method to recover the shear 

modulus of an MRE in the frequency domain through the measured force excitation and 

acceleration response of the mass in the aforementioned experiment (Zhou and Li 

[2003]), based on the Steiglitz-McBride [1965] interaction method. An analysis of the 

recovered shear modulus was performed in three ranges of the frequency domain (i.e. 

low, moderate, and high). In the low-frequency range the average shear modulus changes 

proportionally with the magnetic field until magnetic saturation occurs. The maximum 

relative change in shear modulus was 55%.. They argue that in the moderate-frequency 
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range and high-frequency range, the shear modulus was too complex to be analyzed by 

their proposed method. 

 

Gong et al. [2005] investigated the effects of carbonyl iron particles and additives 

(e.g. silicone oil and rubber) on the MR effect and the relationship between 

microstructure and mechanical properties. They found that, due to the help of the silicone 

oil, MREs contain a self-assembled microstructure of particles. Under the magnetic field, 

the particles become magnetized and move slightly, due to the lubrication action of the 

oil, to form a regular structure, which result in a high MR effect. The best MR effect was 

obtained for a sample with 60% of carbonyl iron particles, 20% of silicone rubber and 

20% silicone oil. The elastic modulus enhancement reached 60%, which represent the 

same degree as for the anisotropic MR elastomers fabricated under a strong magnetic 

field. Furthermore, they proposed a simple micro-assemble model to explain the MR 

effect, which was in agreement with the results. 

 

Yin and Sun [2005] investigated the particle interaction forces and elastic 

distributions in both the particles and the matrix phases of a composite subject to both 

magnetic and mechanical loading. Magnetic interaction forces were induced by the large 

relative magnetic permeability of the particles (as high as 10
2
 to 10

5
 times the relative 

permeability of the matrix). Since their model involves a transverse isotropic symmetry, 

they argue that by applying a uniaxial loading and shear load in the plane normal to the 

direction of the expected chain structures, the Young’s modulus can be calculated. They 

found that the model has a quadratic prediction of the elastic response at high-applied 
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magnetic field and a linear tendency when the applied flux density is small. They argue 

that this difference is a result of nonlinear magnetizing behavior of the particles and 

demagnetizing field effect during the fabrication and experiments. They show that there 

exists an optimal particle volume fraction to maximize magneto-elasticity. Although they 

do not give a value, they argued that is because volume fractions of 10% and 20% yield 

similar shear modulus results before magnetization becomes saturated. Their predictions 

suggest that the higher the volume fraction, the higher the saturation flux density. Iron 

composites of 10%, 20%, and 30% were saturated at 0.55, 0.72, and 0.88 T, respectively.  

 

Vargas et al. [2006] established the effect of the external magnetic field on the 

elastic modulus. They determined the elastic modulus of isotropic and anisotropic 

magnetic elastomers using five different experimental set-ups (see Figure 2.1.1) 

depending on the direction of the magnetic field, particle alignment, and mechanical 

stress. They have found that anisotropic magnetic elastomers exhibit much larger increase 

in modulus than the isotropic ones. In addition, their mechanical properties (i.e. elastic 

modulus and stress–strain behavior) are significantly different when characterized 

parallel and perpendicular to the particle alignment. The most significant result (i.e. the 

change in modulus) was found in anisotropic magnetic elastomers if the applied field, the 

particle alignment, and the mechanical stress are all parallel with respect to each other.  
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Figure 2.1.1 Experimental set-ups proposed by Vargas et al. [2006]. White arrow 

indicates the direction of the force and black arrow shows the direction of magnetic field. 

 

 

Wang [2006] et al. studied the influence of interactions between particles and 

matrix on the performance of MRE’s, including the change of shear modulus and 

mechanical properties. In their study, modifications of the matrix/particle interactions 

were controlled by using different kinds of silane coupling agents (i.e. AH-151 and KH-

550). The addition of the silane agents improved the dispersion of the particles and the 

adhesion between the particles and matrix. These modifications led to an improvement of 

the composite mechanical properties. The tensile strength of the composites with silane 

coupling agents AH-151 and KH-550 increased by 77% and 62%, respectively. Thus, an 

effective method to improve the mechanical properties of MREs is to control the 

matrix/particle interactions. AH-151 improved the relative MR effect by 37% under a 

magnetic field of 0.6 mT. Conversely, KH-550 decreased both relative and absolute MR 

effect.  
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2.2 Continuum Mechanics and Magneto-Elastic Coupling 

 

There are two different approaches to the study of the magneto elasticity of 

MREs: firstly, theories that treat the problem from the viewpoint of continuum 

mechanics, which formally couple elasticity and electromagnetic field theories on various 

arrangements of particles, and secondly, energy-based theories that attempt to derive 

magneto-elastic properties from idealized models of the structure of the particulate 

composite. Consequently, there are several works in the literature that present the full 

system of equations suitable for the magneto-elastic deformation of MREs. 

 

Borcea and Bruno [2001] calculated the distribution of magnetization in MR solid 

composites from the basic minimum energy principle of magneto-elasticity, taking into 

account the fully coupled magneto-elastic interactions. They considered random, 

statistically homogeneous distributions of ferromagnetic inclusions (diameter        ) 

within an elastic matrix and evaluated the overall properties in the regime in which the 

volume fraction of particles is small. They argue that their approximation is justified for 

cubic crystalline ferromagnetic materials, such as iron and iron–cobalt alloys and for 

polycrystalline particles. For ferromagnetic particles that satisfy the above assumptions, 

their method of solution is valid. For real systems, both the anisotropy effects and the 

existence of varying magnetizations within the particles must be taken into account. Their 

calculations were made under the assumption that the ferromagnetic particles were 

uniformly magnetized when the material had been cured in magnetic field.  
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The Yin [2002] et al. micromechanics based model investigated the 

microstructure of particle-filled composites subject to both magnetic and mechanical 

loading derived from strain energy functions. They considered a two-phase isotropic 

composite consisting of an elastomer matrix and ferromagnetic spherical particles. They 

evaluated the effective free energy in the magnetostrictive composite and presented 

numerical results and comparisons based on their method. To demonstrate the capability 

of their model they considered the case of uniaxial stress loading of the composites with a 

saturated magnetostriction. They considered the strain energies from both the particles 

and the matrix. The model also predicted the nonlinear finite deformation behavior of the 

composites. In their proposed method, it is noticeable that the mechanical uniaxial 

loading direction was the same as the saturated magnetic field. The volume fraction of 

the particles had a significant effect on the hyperelastic response (i.e. stress vs. stretch 

curves) of the composite. They argued that if the volume fraction of the particles is large 

the strain energy in the particles should be considered. Many models ignore the 

contribution of the strain energy from the particles.  Although, they have included the 

local deformation mechanism of interacting particles in their model, they ignored the 

magnetic dipole interactions between particles. Including these effects on the modeling of 

such composites may have improved their results. 

 

Dorfman and Ogden [2003] presented a summary of the relevant continuum 

mechanics equations and general theory that governs the deformation of magneto-

sensitive elastic solids. In particular, they examined constitutive relations for isotropic 

magneto-sensitive solids. To demonstrate the application of the constitutive model and 
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theory they considered a sample confined to a circular cylindrical tube in the presence of 

a radial magnetic field and subject to a transverse shearing deformation. Two specific 

models were studied. First, they considered strain energy as a function of shear stress. In 

this case, the relationship between shear stress and displacement is linear. They found 

that as the magnetic field strength increases a given displacement requires a larger value 

of the shear stress to maintain mechanical equilibrium. Thus, the response of the device 

becomes stiffer.  In the second study, they consider a strain-energy function that led to a 

nonlinear relationship between shear stress and displacement. They found that for a given 

displacement the required shear stress increases with the magnetic field strength. From 

these two models, they have concluded that the effect of the magnetic field is to stiffen 

the shear response of the material.  

 

The model of Shen et al. [2004] consisted of a modified Ogden [1984] model that 

represented a nonlinear stress-strain relationship as well as all the dipole interactions in a 

MRE composite assumed to contain parallel chains of particles. They showed that the 

shear modulus change was quadratically proportional to the value of dipole moment. This 

modulus change was highly affected by the ratio of mean distance between two adjacent 

particles to the mean radius of the particles. Theoretical results were a good 

representation of the stress-strain relationship when compared to experimental results. 

However, a discrepancy was noticeable in the comparison. In the model, the mean 

distance between two particles was treated as constant during deformation and the 

interaction between chains has been neglected. These two factors may explain the 

discrepancy between the model and test data.  
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Kankanala and Triantafyllidis [2004] presented two different approaches to the 

continuum formulations for MREs, with negligible dissipative and hysteretic behavior. 

First, they present a direct approach based on the second law of thermodynamics and the 

conservation laws of mechanics. Secondly, a novel energy approach based on the 

unconstrained minimization of a potential energy functional is offered. They revealed that 

both approaches yielded the same governing equations and boundary conditions. To 

illustrate the magneto-elastic coupling phenomena they used a free energy function for a 

magnetorheological elastomer with cylindrical shape, subjected to traction or torsion, 

under the presence of external magnetic field. 

 

Although the aforementioned models provide important guidelines to simulate 

such behavior, most of their solutions are idealized in the sense that they apply only to 

bodies of infinite extent and derived for isotropic magneto-elastic materials. Recently, 

Tuan and Marvalova [2010] adopted the formulation of Dorfmann and Ogden 

[2004,2005] and summarized the relevant magnetic and mechanical balance equations, 

boundary conditions, and general constitutive equations for magneto-elastic interactions 

for both compressible and incompressible magneto-elastic materials and then used them 

for specific application to incompressible, anisotropic magneto-elastic materials. They 

presented the simulation of the simple shear of a rectangular block of finite size subjected 

to a magnetic field, which, in the far field, is uniform and perpendicular to the shear 

direction. The constitutive equations are based on a modified free-energy function that 
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depends, in addition to the deformation gradient, on the magnetic flux density vector as 

the independent magnetic variable. 

 

Castañeda and Galipeau [2010, 2011] address the important problem of non-

spherical particles in an MRE composite. The work is important since particle asymmetry 

is the only way to develop magnetic anisotropy in soft-magnetic materials such as Fe.  It 

is this magnetic anisotropy and the torques generated at the particle level that break 

magnetic symmetry and open new classes of material behavior. The 2011 work solves the 

problem of arbitrarily shaped, soft-magnetic uniformly oriented ellipses subjected to a 

magnetic field collinear with the major axis of the ellipse. The work finds that 

magnetostriction is a complex function of particle aspect ratio and volume fraction. 

 

2.3 Summary 

 

Prior works on MREs, theoretical and experimental, have almost exclusively dealt 

with roughly spherical soft-magnetic filler particles, i.e. carbonyl iron (see Table 2.3.1) 

whereas this work seeks to address the use of hard-magnetic filler particles. The critical 

difference stems from the development of torques at the particle level which occurs in 

hard-magnetic materials. Though magnetic torques may occur in soft-magnetic materials 

having some shape anisotropy, this additionally requires that the shape anisotropy is not 

collinear with the external field, which has not been addressed in the literature.   
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Table 2.3.1: A sampling of constituent use in the MRE literature
3
 

 

particle type particle size 
particle volume  

fraction (%) 
matrix used in 

silicon steel 

alnico alloy 

0.15 - 0.20 

mm 
0.3, 0.5, 0.7 silicone rubber 

Bednarek             

(2000) 

carbonyl  iron ~ 3 µm ~0.27 
natural rubber or                 

cis-poly(isoprene) 

Ginder, et 

al.     (2002) 

carbonyl iron 3 µm 0.27 silicone rubber 
Zhou and Li         

(2003) 

carbonyl iron     

iron 

3.9 – 5 µm 

< 60 µm 
0 - 0.5 

nitrile rubber                

natural rubber 

Lokander 

and  

Stenberg              

(2003) 

carbonyl iron 3 µm 0.2 – 0.7 silicone rubber 
Gong, et al.         

(2005) 

carbonyl iron                   

iron oxide 
2.5 µm 0.1 – 0.3 

poly(dimethyl 

siloxane) 

Varga, et al.        

(2005-2006) 

carbonyl iron 3-5 µm - 
polyurethane/Si-

rubber 

Hu, et al.              

(2005) 

carbonyl iron 3-5 µm - 
silicone rubber            

/Polystyrene 

Wang, et al.        

(2006-2007) 

carbonyl iron 3-11 µm 0.6 
natural rubber              

silicone rubber 

Chen, et al.         

(2007) 

Iron 10-40 µm 0 – 0.3 silicone rubber 

Von 

Lockette, et 

al. (2008) 

carbonyl iron 3.5 µm 0.3 natural rubber 
Jiang, et al.         

(2008) 

iron                         

BaM 
40 µm 0.3 silicone rubber 

Von 

Lockette, et 

al. (2009-

2011) 

 

                                                 
 
3
 In addition to the actual matrix, additives like oils and other mixing agents are normally used in synthesis. 

The behavior of MREs depends fundamentally on the characteristics of the composite materials (i.e. there 

exist many compositional parameters that influence this characteristic behavior, including but not limited 

to: the matrix and filler particles of the composite; the shape, volume fraction, and distribution of the 

particles and whether the composite is un-poled or pole during the curing process).  
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The focus of theoretical derivation has been to estimate improvements to shear 

modulus or to predict enhancements to shear-driven responses. Experimental work has 

also largely focused on shearing behavior with a notable exception examining 

compression, but these works based shear response on magnetostrictive phenomena – 

magnetic field affecting changes in inter-particle spacing – and have not dealt with torque 

driven behavior which is the focus of this thesis.  
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Chapter 3: Fabrication and Validation of Proxies for Four Magnetic Symmetry 

Classes 

 

3.1 Fabrication of MRE Composites 

 

 Samples were fabricated by mixing DOW HS II silicone elastomer compound 

and 30% by volume of either nominally 40 micron M-type barium hexaferrite (BaM) or 

325-mesh iron (Fe) particles. All particles were nominally spherical. MRE materials 

made with BaM and Fe powders, aligned and unaligned, served as proxies for each of the 

four classes in this work.  In order to validate their fabrication we used the following 

methods. 

 

3.2 Density Measurements  

 

In order to confirm the magnetic particle volume content, or volume fraction, of 

the samples (a characteristic important to the elasto-magnetic performance), the density 

of each sample was measured following Lokander and Stenberg [2003]. This constitutes 

an important check since the highest MR effect has been found to occur between volume 

fractions of 27% to 30% by numerical means (e.g. Davis [1998]) and with experiment 

(e.g. Demchuk and Kuzmin [2002]).  

 

The measured densities of each sample are shown in Table 3.2.1. The density 

values were determined experimentally by measuring the mass of the samples in air and 
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then submerging them into a container (known volume) filled with water (known 

density). The submerged sample experiences a buoyant force equal to the volume of the 

displace water, allowing calculation of the samples density via the Archimedes’ principle 

 

    
  

(      )
           

  

where    is the mass of the sample in air,     the mass of the displace water,    

        the density of water, and    the density of the sample. Once the density of the 

composite is obtained, the particle volume fraction    of the sample can be calculated by 

 

    
          

          
         

 

where                    is the density of the rubber and    the density of the filler 

particle (for BaM,            and for Fe,           ). 

 

Table 3.2.1 Summary of results obtained from density measurements. Calculated volume 

fractions are within desirable values. 

 

 

Class 
Density 

        
   

Volume fraction 

      

A-S 3.41 33 

U-S 3.24 30 

A-H 2.42 30 

U-H 2.70 36 
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3.3 Magnetization Measurements 

 

The magnetization of H-MREs and S-MREs was measured with a VSM in fields 

up to           in order to verify the generation of proxies for the four classifications 

of materials. Measurements were done parallel (along the so-called easy axis) and 

perpendicular (along the so-called hard axis) to the alignment axis. Magnetization   is 

defined as a measure of the magnetic moment    per unit volume   of the sample or  

 

   ∑
  

 
 

         

 

The internal magnetic field is the superposition of the applied magnetic field and 

the magnetic field created by the material itself (i.e. the magnetic field caused by the 

dipole moment of all the particles which is the demagnetizing field), that is expressed by 

 

                     

 

where    ,     , and    are respectively the internal, the applied and the demagnetizing 

magnetic field.  The intensity of the demagnetization field is linearly related to the 

magnetization by a geometry dependent constant called the demagnetizing factor  , so 

that we have 
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Since the experiment was carried out on cylindrical samples ~6 mm tall and 5 mm in 

diameter      , Chikazumi [1997]. The internal magnetic field including the 

demagnetizing factor is then defined by 

 

          
  

 
          

 

From a        curve, a number of magnetic properties can be determined. For 

example, when a magnetic material is exposed to a sufficient field the magnetization 

reaches a saturation point, i.e. saturation magnetization,   . When   is reversed   

returns to zero at the coercive field   . BaM with coercive field             provided 

the hard-magnetic behavior while Fe               served as the soft magnet. Material 

classes A-H and A-S were produced by curing in           to produce anisotropy in 

particle alignments while material classes U-H and U-S were cured as mixed in ambient 

field.  Magnetic anisotropy especially in the case of hard-magnetic materials produces 

remanent magnetization    , which remains even when    .  

 

Figure 3.3.1 shows the magnetization cycle for the A-H sample. The data show a 

relatively constant value of the magnetization, outside of the hysteretic regions, when 

measured in the parallel direction. Most notably, the differences in quantities such as the 

    and    when measure in different directions. For example a lower coercive field is 

observed when measure in the perpendicular direction with respect to the poling 

direction. This suggests that relatively, a smaller applied magnetic field is required to 

reverse magnetization in the perpendicular direction, a 60% reduction from the parallel 
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direction. An important result is that ideally, in the aligned cases the remanent 

magnetization should be zero perpendicular to the alignment axis. However, results 

showing non-zero remanent magnetization (a 73% decrease from the parallel direction) 

suggest otherwise. Clearly this suggests a rotation of the ferromagnetic particles in the 

plane relative to the applied field. Therefore, the need for a better understanding of this 

phenomenon is necessary. 

 

  

 

Figure 3.3.1: Magnetization cycles,   versus  , for the A-H material perpendicular and 

parallel to the alignment axis of the sample. The graphs show remarkable difference in 

quantities such as the coercive field     and remanent magnetization    when measure in 

different directions. The dashed line is the hysteresis loop when   is along the hard axis. 

 

Figure 3.3.2 shows the results of a type U-H (H-MRE) material. The 

magnetization clearly increases with increasing field strength similarly to the A-H 
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material when measured in the perpendicular direction with respect to the main axis of 

the sample. Remanent magnetization for the material shows            resulting 

from the hard-magnetic particles a reduction of 54.1% from A-H case which was 

expected due to lack of initial order. However, in contrast to the A-H material, the U-H 

material shows equivalence in        in other directions suggesting bulk isotropy (i.e. 

unaligned in the bulk). 

 

 

 

Figure 3.3.2: U-H magnetization curves, M versus H. In contrast to the A-H material, the 

U-H material shows equivalence in        in other directions. The dashed line is the 

hysteresis loop when   is along the hard axis. 
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Figure 3.3.3 shows the S-MRE type A-S material. As expected, result show no    

and an initially linear behavior until the magnetization begins to saturate.  The saturation 

magnetization of the composite was found to be            .  

 

  

 

Figure 3.3.3: A-S magnetization curves,   versus  . The results show negligible 

difference in quantities such as the coercive field     and remanent magnetization    

when measured in other directions. 

 

Figure 3.3.4 shows the S-MRE type U-S material’s magnetic behavior. As 

expected, result show     , and an initially linear behavior until the magnetization 

begins to saturate, which  saturates at             . If we compare the S-MREs 

behavior we found that is uniform in orthogonal directions. While this is expected for the 

unaligned case, where the particle are assumed left randomly arranged as mixed, it is 

surprising for the aligned case – but can likely be expected at large volume fractions 
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since particles are no longer free to move.  Their behavior in general is in line with 

traditional MREs.   

 

 

 

Figure 3.3.4: U-S magnetization curves,   vs.  . 

 

From the knowledge of both the saturation magnetization of the ferromagnetic 

material (i.e. the filler particle) and of the sample, the particle volume fraction   can be 

calculated in an alternate fashion.  The particle volume fraction of the sample was 

calculated with 
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where    is the saturation magnetization of the sample and     of the filler particle. 

Results show values between 30%-36% across all samples, in agreement with the density 

measurement suggesting that there are a) very few voids and b) the particles maintain 

their magnetic properties.  

 

 

Table 3.3.1: Physical and magnetic properties of H- and S-MREs classes and materials 

investigated. 

 

 

Class 
Density 

tot (g/cc) 

Saturation 

Magnetization 

Ms (kA/m) 

     Remanent 

Magnetization 

  (kA/m) 

  
Coercive Field 

   (kA/m) 

Volume 

fraction 

cp(%) eq.(3.2.2) 

Volume 

fraction 

f (%) eq. (3.3.5) 

A-H 2.42 120  103,   28  394,   158 30 30 

U-H 2.70 141 61 318 36 35 

A-S 3.41 640 0 0.36 33 36 

U-S 3.24 570 0 1 30 32 

       

Material 
Density 

p (g/cc) 

Saturation 

magnetization 

Msp (kA/m) 

Coercive Field 

   (kA/m) 
 

  

BaM 5.27 400 > 300    

Fe 7.87 1800 <2    

rubber 1.21 0 0    
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3.4 Conclusion 

 

Results of magnetization measurements suggest that the goal of defining and 

fabricating four symmetry classes (based on alignment-magnetization pairs) of MRE 

materials has been functionally achieved. For example, the fact that calculated      in 

both S-MREs cases and is non-zero in both H-MRE cases verifies differentiation of the 

soft- vs. hard-magnetic behaviors. Results show that A-H, aligned H-MRE material, 

exhibit differential remanent magnetizations and coercive fields along the parallel 

(aligned) and perpendicular axes, further validating differentiation due to alignment 

during curing.
4
  In addition, a number of magnetic properties of the studied materials 

were determined. Also measurements of the saturation magnetization yielded volume 

fractions values similar to the ones obtain by using the Archimedes principle which 

indicates that all samples contain few air pockets and the particles maintain their 

magnetic properties.  

 

 

 

 

 

 

                                                 
 
4
 Ideally, in the aligned cases remanent magnetization would be zero perpendicular to the alignment axis. 

However, results showing non-zero remanent magnetization in the A-H material perpendicular to the 

alignment axis suggest otherwise. To better understand the orientation of particle magnetizations, a 

distribution model for the interpretation of particle alignments in H-MRE’s is presented in the next chapter. 
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Chapter 4: Modeling Distribution of Magnetization in A-H 

 

4.1 Remanent Magnetization Study 

 

Remanent magnetization    is the magnetization left behind in the samples after 

the applied magnetic field is removed. We measured    as a function of orientation with 

respect to the alignment (or curing) axis. The experiment was carried out at room 

temperature on samples ~6mm tall and ~5mm in diameter cut from larger specimens of 

25 mm square. Samples were studied with the same VSM system used to study    and 

   (see Chapter 3). A sample was mounted such that it could be turned about its 

geometric axis in a fixed magnetic field.  To begin, the sample was placed in a magnetic 

saturation state by a              field, then      was set to zero and    was 

measured.  Next, the sample was rotated by a 5 increment and the process repeated 

through 90.  The results are presented in Figure 4.1.1 

 

In previous experiment (using a different sample cut from the sample bulk 

material), a hysteresis loop of   vs.  , showed           and   ⊥           , 

parallel and perpendicular to the poling direction, respectively (see previous Chapter). 

This suggests a rotation of the ferromagnetic particles in the plane relative to the applied 

field.  
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Figure 4.1.1 Results of     as a function of orientation   where the alignment direction is  

    and one observes a maximum there, as expected.  

 

 

Figure 4.1.2 Ideal magnetization curves along hard-axis (in-plane) and easy-axis 

(perpendicular), where            , are the remanent magnetizations on the easy and 

hard axes respectively.  
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One-way to understand the underlying phenomenon is to look at the ratio    

   called squareness, Jiles [1998].  When this ratio is close to unity,   is close to some 

orientation defined as the easy-axis and the hysteresis loop is closest to a square shape 

(e.g.             for A-H when measured in parallel to the poling axis, see previous 

Chapter Figure 3.3.1). The angle the magnetic field makes with the easy-axis (say  ) can 

be increased (by rotating the sample in plane ) and the opening of the hysteresis loop is 

reduced; it is largest when   is parallel to the easy-axis and smallest when   is parallel to 

the so called hard-axis.  

 

4.2 XRD-Texture Study 

 

The orientation distribution of the particles (in H-MREs) was explored by X-ray 

diffraction texture measurements. A material is textured if the particles are aligned in a 

preferred orientation along a certain direction (e.g. in class A-H). The “texture” is usually 

introduced in the fabrication process (e.g. by applying a magnetic field during curing) 

and affects the material properties by introducing structural anisotropy. The texture 

analysis determines the preferred orientation of the crystallites within the sample. It is 

possible to determine both the direction of the orientation and its prevalence. The 

preferred orientation was determined in terms of a series of in plane rotation scans around 

the center of the sample at different tilt or azimuthal angle (see Figure 4.2.1). 
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Figure 4.2.1 Experimental set up for XRD-texture measurements at fixed scattering angle 

    . The test consists of a series of in plane rotation scans around the center of the 

sample   at different tilt or azimuthal angle  , as illustrated. 

 

For the measurements, we used an Empyrean diffractometer from PANalitycal. 

The variation of diffracted intensity with changing tilt angle   was recorded using the 

included X’Pert software. The sample was tilted in        increments (    maximum), 

while   was rotated from           in     increments.  Results are shown in Figure 4.2.2. 

 

The XRD measurements determine the preferred orientation of the BaM 

crystallites. Information about the crystallites distribution can be suitable for comparison 

with magnetization measurements.  Also since the recorded intensity is not uniform the 

crystallites in the sample have a prefer orientation, thus indicating the expected alignment 
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of the particle during the curing process. This is important since the easy-axis 

magnetization of BaM follows its crystallite orientation. 
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Figure 4.2.2 XRD-texture scan data for every   position, yielding a total of 360 scans per 

increment of tilt angle  .  Data is well described by a Gaussian curve (thick blue line on 

the graph). Raw data were corrected for background intensity.   

 

4.3 Results of Analysis of Data Using Distribution Models  

 

To analyze the data, we consider a spherical coordinate system for a set of 

ferromagnetic particles whose magnetic moments are aligned with an axially symmetric 

angular ideal distribution     . The magnetization   of a single particle (Figure 4.3.1) is 

characterized by two angles,   and  .  The angle   is defined as the angle the easy axis of 

the particle makes with the alignment axis (z axis) and   as the rotation projection into 
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the xy- plane. While the angle   is defined as the angle the sample z axis makes with the 

field. 

 

 

 

Figure 4.3.1 Illustration of the variables used in the model. 

 

 

The directions of  ̂ and  ̂ are 
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respectively. Since  ̂   ̂      for each individual particle, only the upper half of the 

sphere is used (i.e. only integrate       ⁄ ) and the collective average of   for all 

the particles is expressed by  

 

 
    

  
 

 

     
∫ ∫     

  

 

 
 ⁄

 

| ̂   ̂|                  

 

where 

 

     ∫           

 
 ⁄

 

         

 

is the normalization factor.  

 

Figure 4.3.2 shows the results of the expected angular dependence of    using the 

Gaussian distribution found for texture measurements (Figure 4.2.2). The agreement is 

qualitative at best. However if one includes a 2% randomly oriented component to the 

distribution (Figure 4.2.2) the data match the calculated values. Note that the 2% random 

component is below the sensibility of the texture measurements. 
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Figure 4.3.2 Modeling of the magnetization orientation in A-H based on remanent 

magnetization and XRD-texture measurements. The points represent the experimental 

data. The dashed line represents the Gaussian fit using XRD-texture data and the solid 

line the same fit plus some small component. 
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Chapter 5: Modeling Cantilever Bending Behavior 

 

5.1 Motivation and Prior Work 

 

In order to formulate tractable problems in modeling MRE behavior, previous 

theoretical modeling has been forced to address the issue using simplifying assumptions 

of material composition and structure, for example roughly spherical soft-magnetic 

particles either randomly arranged or neatly aligned. This work begins down a 

computational path, employing simplifying assumptions on behavior that are based on 

experimentally proven material response, which include both elastic isotropy and 

magnetic anisotropy.  This is an important step since key paradigms of such assumptions, 

such as the alignment of particles in MREs cured in a magnetic field, are coming under 

increased scrutiny in MREs with technologically relevant volume fractions and thus are 

invalidating the basis of previous constitutive models (e.g. Boczkowska [2009], see 

Chapter 4). A finite element modeling approach allows us to analyze the elasto-magnetic 

behavior (both kinetic and kinematic) numerically while incorporating experimentally 

determined elastic and magnetic behavior. The computational method then seeks to solve 

the problem of determining the combined elasto-magnetic behavior of a given geometry 

under given external mechanical and magnetic loads. 

 

In this study, we present the simulation of a cantilever beam composed of MRE 

material (hard- and soft-magnetic) of finite size subjected to a magnetic field. The 

constitutive equations are based on generalized forms of Hooke’s laws and Maxwell’s 

equations for anisotropic materials that depend on the displacement field   and the 
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magnetic potential vector   as the solution variables. The fundamental problem herein 

deals with discontinuous changes in physical properties (elastic and magnetic) across 

interfaces. These physical properties give rise to coupled magnetic and elastic responses 

that in turn generate forces within an MRE in response to an applied magnetic field 

and/or external load.  These forces are coupled through use of the Maxwell stress tensor 

which is valuated as a surface traction boundary condition on the cantilever geometry. 

 

The objective of the simulations described in this chapter was to develop 

predictive simulations of MRE behavior. The objective was pursued by measuring the 

physical and rheological properties of actual MRE samples and developing continuum 

elastic and magnetic properties for the MRE particulate composite. The authors use 

actual magnetization and elastic modulus data from experiments to determine the model's 

material parameters. 

 

5.1.1 Cantilever Bending Experiment 

 

In a prior work (Von Lockette et al. [2010]), a schematic of the blocked-force test 

setup is shown in Figure 5.1.1. The MRE samples were fixed at the base with 50 mm free 

length and 20 x 5 mm cross sections.  Samples were subjected to increasing magnetic 

field strengths (up to           ) in order to study the dependence of magnetic field 

strength and tip deflection on blocking force.  Beyond            the tip of the A-H 

samples moved beyond the width of the electromagnet’s pole faces.  Measurements were 

conducted to determine the amount of force generated at discrete tip displacements of 0, 
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2.5, 5.1, 7.6, and 10.2 mm, each over the range of field strengths.  Displacements were 

measured with a video microscope with integrated measurement software. Forces were 

measured with a Shimpo model FGV-0.5x force gauge contacting the tip of the sample 

via a 254 mm aluminum extension to avoid possible field interference (though none was 

seen even without the extension). 

 

The measured total load    reflected the combined result of the elastic    and 

magnetic    responses, i.e.  

 

                        

 

where the magnetic behavior was a function of  .  The zero field measurements yielded 

the elastic forces,             , from which the magnetic response       was 

determined. 

 

Figure 5.1.1: Experimental Setup of Forced Displacement testing. The force gauge could 

be moved to give the samples a prescribed displacement. 
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5.1.2 Results of Cantilever Bending Experiments 

 

5.1.2.1 Elastic Bending Compliance 

 

Results of cantilever bending deflection experiments measuring tip deflection   as 

a function of       were presented in Von Lockette et al. [2011].  The data show linear 

behavior initially for all cases while the A-H and U-H cases show signs of softening at 

higher deflections. Overall, the A-H and U-H (BaM) samples appear more compliant than 

the A-S and U-S (Fe) samples. Class U-H and A-H have slopes of 65 and 51 mm/N, 

respectively, while classes A-S and U-S have slopes of only 33 and 26 mm/N, 

respectively.  

 

5.1.2.2 Blocked-Force 

 

Blocked-force tests were used to determine the forces exerted by the samples 

across the same range of proscribed displacements used in the previous experiments but 

now under the influence of    for     up to 0.09 T.   

 

The most strikingly result, was that the S-MRE material showed         zero 

tip deflection for all field strengths and increasing force with field when displaced to v = 

10mm.  This is in line with previous observations that Fe-based MREs show no motion in 

free deflection experiments (Von Lockette et al. [2009]). Moreover, it was noticed that 

the maximum force found in the U-S sample is greater than that found in the A-S material 
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(0.37N vs. 0.33N, or 11% higher, respectively). This suggests that alignment reduces 

maximum tip force somewhat but is mitigated by the fact that the U-S sample has lower 

elastic bending compliance,  , (26 mm/N vs. 33 mm/N, or 27% lower, respectively). In 

contrast to the aligned A-H sample, the unaligned U-H material shows little to no force 

under all conditions.  

 

These preceding data are used as the basis for comparison for the FE models 

developed in this work. 

 

5.2 FEA Model Definition 

 

The problem herein is considered in a 2-D plane as illustrated in Figure 5.2.1.The 

model consists of two regions: a cantilever beam ( ) and the surrounding air region ( ). 

The dimensions of the beams were length: 50 mm; width: 20 mm; and thickness 5 mm. 

Basic mechanical and magnetic properties were established from experimental data and 

literature values: Young’s modulus             and          a (values which 

yield accurate bending results), Poisson’s ratio       and density            ⁄  

(mixture approximation for the elastomer-composite), and the magnetic saturation of 

BaM MRE,            (see 3.3 Magnetization Measurements Figure 3.3.1). For Fe 

the magnetic properties are defined by a measured H-B curve (see 3.3 Magnetization 

Measurements Figure 3.3.3) 
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In the air region (simulated as an elastic medium with negligible modulus), the 

problem solution is governed by electromagnetic behavior. The magnetic field depends 

on the vector potential   which is determined from the solution to the problem given 

appropriate boundary conditions in   on 1 and 9 (Figure 5.2.1) and continuity conditions 

on 4 and 7.  The direction of the resulting magnetic field in the air region is then parallel 

with the y-axis. A moving mesh formulation is used for the calculation of the magnetic 

field values to account for displacement of the beam relative to the field.  

 

 

Figure 5.2.1: Geometry of the studied 2-D problem where   represents the beam domain 

in grey, which is fixed at the base and   the air domain, dashed line. Boundaries are 

numbered. 
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Table 5.2.1: Boundary conditions on the propose model where SC is the surface current, 

PMC the perfect magnetic conductor, FC the force calculation, BL the boundary load, 

and PD the prescribe displacement condition. 

 
 

Boundary 

Number 

Elastic 

Boundary 

Condition 

Magnetic 

Boundary 

Condition 

1 Free SC (-) 

2 Fixed PMC 

3 Free PMC 

4 BL FC 

5 Fixed FC,PMC 

6 PD, BL FC 

7 BL FC 

8 Fixed PMC 

9 Free SC (+) 

 

 

 

 

The MRE domain   is also governed by electromagnetic physics and additionally 

solid mechanics behavior. The displacement field solution variable   is added to the 

magnetic vector potential  . The base of the MRE sample, boundary 5, is fixed. All four 

boundaries of the MRE sample, 4, 5, 6, and 7 are subjected to the Maxwell surface stress 

which relates electromagnetic energy density to linear momentum, here in a static case. 

 

The primary problem COMSOL addresses is the 2-way coupling between the 

elastic deformation and the magnetic field interactions through the Maxwell stress tensor. 

As the tip of the beam undergoes blocked or free deformation under the application of a 
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magnetic field and/or prescribed displacement via applied boundary conditions, a 

reaction force that tends to bring the beam back to an equilibrium position is created on 

boundary 6. Hence, the accurate prediction and analysis of this reaction force is important 

in predicting the actuation capabilities of the MREs. Therefore, the analysis and 

computation of the x-direction reaction force on boundary 6 (Figure 5.2.1) is of primary 

interest. 

 

 

Figure 5.2.2: Schematic of the finite element model showing the direction of: the applied 

current    (the open circle is out and circle with x is into the board), prescribed 

displacement  , and reaction force    . 

 

5.2.1 Governing Equations 

 

In this, and other works, modeling begins by choosing a magnetic vector 

potential,  , as the independent magnetic variable in the constitutive laws. Relationships 

between  , the independent variable in elasticity theory, and higher order dependent 
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variable such as strain and stress are employed as well. The elastic and magnetic 

responses are then coupled through the Maxwell stress tensor. The resulting boundary-

value problem can be presented as a set of differential equations coupling elastic and 

magnetic behavior that can be solved using a finite-element method. To reflect material 

behavior under combined external mechanical loads and magnetic fields and to come up 

with a reasonable and applicable magneto-elastic law is still an important issue in linear 

and nonlinear magneto-elasticity theory.  

 

5.2.1.1 Equations of Elasticity 

 

Herein the magneto-elastic behavior of the MREs is analyzed by an approach in 

which the appropriate mechanical deformation equations are coupled with 

electromagnetic equations through the Maxwell stress. Let us consider a differential 

volume element in static equilibrium within the cantilever beam acted on by an arbitrary 

body force. A body force is any externally applied force that acts on each element of 

volume of the continuum, thus, a force per unit volume   . Applying Newton's first law 

of motion, we can obtain the set of differential equations that govern the stress   

distribution within the beam, 
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Since we are interested in the 2D case, it is assumed that               so that 

static equilibrium becomes 

 

 
    

  
 

    

  
             

   

 
    

  
 

    

  
             

 

In tensor notation these constitutive equations are given by  

 

          
      

 

Next we employ generalized Hooke’s Law  

 

            

 

where   is stress tensor,   is the stiffness matrix defined in 2D plane stress by 
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and   is the small strain tensor defined by 
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]       

 

this can be represented in tensor notation as  

 

 
  

 

 
[        ] 

      

 

Now substituting eqs. (5.5) and (5.6) into (5.4) we can obtain the constitutive equations 

for a linear elastic material: 
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Alternately, (5.8a-c) may be inverted to yield:  
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where E is Young’s modulus, and   Poisson’s ratio, e.g. the component form of eq. (5.4). 

A final substitution of eqs. (5.9a-c) into (5.3) with no body forces yields the governing 

equation in terms of the independent displacement variables,   ,  

 

 
  { [

 

 
[        ]]}    

       

 

These set of equations encompasses what COMSOL solves for the elastic aspect 

of the elasto-magnetic problem. Though the displacements expected are large, the 

deformations are not necessarily so. As a first level model we employ the moving mesh 

and iterative solution capabilities of COMSOL to determine more accurate response at 

larger deflections using small deformation theory. 
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5.2.1.2 Equations of Electromagnetism 

 

On the other hand, Maxwell’s equations represent the governing equation of 

electro-magnetic phenomena. In this case, 

 

 
     

  

  
 

       

   

 
    

  

  
   

       

 

where   is the electric field intensity,   the magnetic flux density,   the displacement 

current density, and    the electric current density.  

 

First, we formulate the vector potential   defined by   

       

 

       

 

Next, assuming a quasistatic model, all time derivatives are zero, specifically  

 

 
  

  
   

    

  
           

  

  
          

 

which, from eq. (5.11) yields  
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Together with the material law, 

 

                

 

where   is the material electric conductivity,   the electric current density, and     the 

applied current density. We can reduce our remaining Maxwell equation to 

 

               

 

The three materials in question, the air medium, the Fe-MRE, and the BaM-MRE, 

have three different     relationships. The general constitutive equation for the 

magnetic response of the air medium is given by 

 

                

 

yielding the governing equation for the air medium domain in terms of the solution 

variable,   

 

   (
 

     
   )            
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where   , is the relative permeability of the material (unity in this case) and    

             is the permeability of free space. 

 

The general constitutive equation for BaM, a hard magnetic material, can be 

expressed by 

 

                  

 

Therefore, the governing equation for a BaM-MRE domain is given by 

 

   (
 

  
   )            

 

which in terms of the solution variable yields 

 

   (
 

  
     )            

 

Magnetization values for the anisotropic BaM material were found from experimental 

results (see 3.3 Magnetization Measurements Figure 3.3.1).   

 

For Fe-MREs the gradual alignment of the magnetic domains within the material 

causes an increase in   as   is gradually increased.  The constitutive relation is not a 

simple linear function and thus requires a general definition, 
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 | |    | |         

 

where the function   | |  was from experimental results (see 3.3 Magnetization 

Measurements Figure 3.3.3). Finally, substituting (5.23) into (5.17) we get 

 

     |   |            

 

5.2.2 Model Boundary Conditions 

 

The basic idea behind our proposed system is to allow the mechanical structure to 

bend freely (as expected for BaM composites) in the presence of a magnetic field or to 

impose a tip deflection and measure the required external load via the x-component of the 

reaction forces. The beam was contained within a simulated air volume modeled as an 

elastic medium with negligible modulus. The bending results in a nonlinear relationship 

between the beam tip deflection and the resulting restoring force on its surface. 

 

Prescribed displacements, u, are imposed on boundary 6; the resulting restoring 

force RFx is determined from reactions at the proscribed displacement boundary. A 

surface current    is applied on both the left and right surfaces of the entire air domain 

(boundaries 1 and 9). This gives rise to a magnetic field in the +y direction, perpendicular 

to the curing direction, that actuates the cantilevers (see Figure 5.2.1). 
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A parametric study was developed to determine the influence of the applied 

magnetic field on the deflection of the beam. Since the applied magnetic field plays a 

major role in determining the beam deflection, the study defines one parameter:  the 

applied surface current    on surface   (surface   keeps     ) which gives to   and is 

defined by a start value 0, an end value 1240 A/m, and the step of the range 310 A/m. 

Then for each prescribe displacement imposed on the tip of the beam, it is possible to 

calculate the resulting restoring force for a range of magnetic field values and 

displacements. 

 

5.2.2.1 Mechanical Boundary Conditions (MBCs) 

 

The MBCs are formulated as prescribed displacement     , prescribed 

constraints where    , and boundary load specify on domain  . This boundary load is 

defined by the Maxwell surface stress tensor (included to account for the stress due to the 

electromagnetic force induced by the magnetic field) on the surface  . The calculated 

Maxwell surface tensor is imposed as a surface traction on the boundary of the MRE 

(boundaries 4-7) and is the basis of the elasto-magnetic coupling. The Maxwell stress 

tensor is given by 

 

    
 

 
                      

 

where   is the outward normal from the object. 
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5.2.2.2 Electromagnetic Boundary Conditions (EBCs) 

 

The EBCs are formulated as prescribed surface current     (boundaries 1 and 9), 

perfect magnetic conductor on boundary 5 to impose symmetry for the magnetic field as  

well as on the upper and lower surfaces of   (i.e. boundaries 2,3, and 8) to ensure that the 

field continued uninterrupted by the end of the air domain. 

 

5.2.3 Mesh Development 

 

Free quadrilateral elements were used to mesh the beam and free 

triangular elements to mesh the remaining domain. The quality of the triangular mesh 

was set by the triangulation method: Advancing front. The sizes of the elements were 

specified by the predefined sizes presented in Table 5.2.3.1. Quadrilateral elements where 

used to yield more symmetric approximations of the Maxwell surface on the MRE 

sample’s boundaries.  

 

 

Table 5.2.3.1 Element type and final size of the used mesh. 

 

Domain Element Size [mm] 

Beam Extra Fine 1.6 

Air Extremly Fine 0.8 
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Determination of an appropriate level of mesh refinement was found from the x-

reaction force on boundary 6 as working metric in a mesh-size convergence study. The 

study started with an extremely coarse divided mesh, which was gradually reduced in size 

while the x-reaction force was tracked. The rate of change between an extremely coarse 

and coarser mesh was 48.73% at 0.02T. The rate of change between an extremely fine 

and finer mesh was 27.19% at 0.02T. The rate of change between an extremely fine and 

an extra fine mesh was 6.35% at 0.02T. Element size reduction was terminated when the 

results were found to asymptotically converge (see Figure 5.2.3.1). The resulting mesh 

consisted of 2620 elements and 28340 degrees of freedom (Figure 5.2.3.2.) 

 

 
 

Figure 5.2.3.1: Convergence study of the reaction force RFx vs. degrees of freedom 

(DOF) at specific magnetic field densities. 
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Figure 5.2.3.2 (A) Resulting mesh and (B) 1:1 deformed geometry; the converged mesh 

consists of 2620 elements and 28340 degrees of freedom. Tip displacement is 4 mm. 

 

 

5.3 Comparison of Finite Element Model to Experimental Data in Cantilever 

Bending 

 

In this study, a magneto-elastic finite element formulation was presented. Herein 

reaction forces to the blocked bending deformation of the beams under the influence of 

static magnetic field were analyzed using COMSOL. We modeled the blocked-force of 

an MRE beam either made of nominally 30% v/v 40 micrometer BaM particles, which 

provides the hard magnetic behavior or 325 mesh Iron (Fe) also at 30% v/v, which serves 

as a soft magnetic case. Both are combined with a compliant elastomer matrix. The 

results obtained from the simulation are compared with those reported in the literature 

and show very good agreement. 
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Figure 5.3.1 x-direction reaction force vs. tip displacement for BaM beam MRE 

composite. Data (in symbols) taken from Von Lockette et al. [2011] is compared to FEM 

model predictions (lines). 

 

The BaM composite behavior, as reproduced by the simulation, is in very good 

agreement with experiment on the same material.  As shown in Figure 5.3.1, the 

composite reaction force is non-zero for non-zero field strengths and as expected, they 

increase with tip deflection and field strength.  This result is again in agreement with 

experimental observation, [Von Lockette 2011]. Nevertheless, in experimental results a 

non-linear behavior is noticeable as the field is increased and tip displacement increases. 

 

Based on the comparison between the proposed model and experimental data we 

conclude that the model can be useful to predict the behavior of hard-magnetic MREs 

especially those comprised of BaM particles. The model could be made more effective if 

large-deformation and/or hyperelastic material formulations are used. On the contrary, 
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the Fe composite behavior, as reproduced by the simulation, is not in agreement with 

experimental data. The author believed that the problem is inherent to the formulation of 

the Maxwell stress tensor. Once the model becomes asymmetric when it bends, it 

develops an erroneous net force with +x direction.  This error does not go away even at 

millions of DOF. A suggested fix is to use a virtual work formulation to obtain a solution 

of the Maxwell tensor that is less dependent on MRE symmetry.  However, in the current 

software one cannot couple this new Maxwell stress solution with the solid mechanics 

formulation (e.g. assign this traction to the MRE surface). Consequently, the Fe-MRE 

model is not effective. 
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Chapter 6: Conclusions and Future Work 

 

6.1 Conclusions 

 

Magnetorheological elastomers (MREs) are materials that consist of magnetically 

polarizable particles in a non-magnetic medium. Most works examine MREs comprised 

of carbonyl iron which is both soft magnetic and spherical but in this thesis hard-

magnetic particles were studied as well. While performing magnetization measurement in 

order to validate the fabrication of the four classes we have found some remarkable 

results, most notably, the remanent magnetization and coercive field values in the A-H 

class when measured in different directions (parallel and perpendicular) in relation to the 

poling axis. This clearly suggests a rotation of the ferromagnetic particles in the plane 

relative to the applied field, behavior which in principle can lead to the development of 

new devices like sensors and actuators requiring anisotropic magnetization. 

 

Based on the aforementioned findings a distribution model for the interpretation 

of particle alignments in H-MREs was formulated in order to better understand the 

orientation of particle magnetizations. We compared orientation measurements taken 

with VSM and XRD of A-H materials through a distribution model and found that results 

obtained by both methods are in agreement with our proposed model. While this has been 

shown before in experimental visualization results, this is the first time it has been shown 

through magnetization results. 
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Furthermore, we presented the simulation of a cantilever beam composed of MRE 

material (hard- and soft-magnetic) of finite size subjected to a magnetic field. We have 

found that the BaM composite behavior, as reproduced by the simulation, is in very good 

agreement with experiment on the same material.  On the contrary, the Fe composite 

behavior is not. We believe that the problem is inherent to the formulation of the 

Maxwell stress tensor in COMSOL. A suggested fix is to use a virtual work formulation 

to obtain a solution of the Maxwell tensor that is less dependent on MRE symmetry.   

 

We consider that this research project is likely to inspire future studies on the 

subject both theoretically and experimentally. Furthermore, the techniques used in the 

present work to define, model, and differentiate the nature of the magnetic torque 

response can be easily extended and applied to other soft- and hard-MRE systems. 

 
 

6.2 Proposal for Future Work 

 

Over the course of this work, some important observations were made which will 

require additional investigation. For a clearer vision of the potentials of MREs in sensor 

and actuator, further computational analyses should be made. For example development 

of working Fe actuation simulations are of interest. As stated in Chapter 5 the simulations 

based on Fe presented herein becomes asymmetric when it bends and develops an 

erroneous net force with +x direction.  A proposed fix for this problem is to use a virtual 

work formulation and incorporate nonlinear elastic behavior. Furthermore, the working 

BaM simulations can provide controlled torque through control of an applied magnetic 
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field. Thus, knowledge of the relationship between the applied current and output torque 

is required.  

 

In addition to having potential as actuators, MREs can be used to develop sensors 

for the detection of small magnetic fields. However, there is a need to control the 

orientation distribution of the particles in order to maximize detection capabilities. 

Hence, in the future, MREs have to be synthesized such that there will be adequate 

control over the orientation of the particle magnetization.  

 

At present, works on MREs, theoretical and experimental, have almost 

exclusively dealt with roughly spherical soft-magnetic filler particles. The use of hard-

magnetic particles in herein was a unique contribution to the field. Therefore, 

experimenting with different ferromagnetic particles, especially hard-magnetic ones, is 

highly encouraged. There is a great possibility of enhancing the magneto-elastic 

characteristics of the MREs  by examined them as components (e.g. honeycombs, foams, 

trusses,…) and not just simple geometries for testing. 
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