
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

1-21-2014

Optimizing ad-hoc on-demand distance vector (AODV) routing Optimizing ad-hoc on-demand distance vector (AODV) routing

protocol using geographical location data protocol using geographical location data

Remo Cocco

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Cocco, Remo, "Optimizing ad-hoc on-demand distance vector (AODV) routing protocol using geographical
location data" (2014). Theses and Dissertations. 531.
https://rdw.rowan.edu/etd/531

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F531&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Fetd%2F531&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/531?utm_source=rdw.rowan.edu%2Fetd%2F531&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

	

OPTIMIZING AD-HOC ON-DEMAND DISTANCE VECTOR
(AODV) ROUTING PROTOCOL USING GEOGRAPHICAL

LOCATION DATA

by

Remo Cocco

A Thesis

Submitted to the

Department of Computer Science

College of Science and Mathematics

In partial fulfillment of the requirement

For the degree of

Masters of Science

at

Rowan University

December 24th, 2013

Thesis Chair: Vasil Hnatyshin, Ph.D

	

© 2013 Remo Cocco

	

Dedication

I would like to dedicate my thesis to my nieces Talia and Eliana and my
nephew William, in the hope that they find something that they love as much

as I love Computer Science.

	 iv	

Acknowledgments

I would like to express my gratitude to my advisor, Dr. Vasil Hnatyshin, for his guidance,

expertise, patience, motivation, enthusiasm, and immense knowledge. Without Dr. VH, I

would never have become a Computer Science major or been able to complete my thesis.

I would like to thank the other members of my committee, Dr. Andrea Lobo and Dr.

Stephen J. Hartley, for their assistance. I also would like to thank Hristo Asenov for his

initial research with GeoAODV.

I want to thank Malik Khaleeque Ahmed and Daniel J. Urbano for their help with my

research and for their dear friendship. They say college is where you make life-long

friends, and that is definitely the case with these two. Lastly, I would like to thank Joseph

P. Smith IV for his help with editing my thesis and being one of my best friends.

	 v	
	

Abstract

Remo	 Cocco	
OPTIMIZING	 AD-‐HOC	 ON-‐DEMAND	 DISTANCE	 VECTOR	 (AODV)	 ROUTING	

PROTOCOL	 USING	 GEOGRAPHICAL	 LOCATION	 DATA	
2013	

Dr.	 Vasil	 Hnatyhsin,	 Ph.D	
	

This	 thesis	 summarizes	 the	 body	 of	 research	 regarding	 location-‐aided	 routing	

protocols	 for	 mobile	 ad-‐hoc	 networks	 (MANET).	 This	 study	 focuses	 on	 the	 use	 of	

geographical	 location	 information	 to	 reduce	 the	 control	 traffic	 overhead	 caused	 by	

the	 route	 discovery	 process	 in	 the	 ad-‐hoc	 on-‐demand	 distance	 vector	 (AODV)	

routing	 protocol.	 During	 this	 process,	 AODV	 will	 flood	 the	 entire	 network	 with	 route	

request	 packets.	 This	 introduces	 significant	 packet-‐handling	 overhead	 into	 the	

network.	 This	 thesis	 introduces	 Geographical	 AODV	 (GeoAODV),	 which	 uses	

geographical	 location	 information	 to	 limit	 the	 search	 area	 during	 the	 route	

discovery	 process	 to	 include	 only	 promising	 search	 paths.	 Also,	 this	 thesis	

benchmarks	 GeoAODV's	 performance	 against	 Location	 Aided	 Routing	 (LAR)	 and	

examines	 four	 mechanisms	 for	 reducing	 the	 control-‐packet	 overhead	 introduced	 by	

the	 route	 discovery	 process:	 LAR	 Distance,	 LAR	 Zone,	 GeoAODV,	 and	 GeoAODV	

Rotate.	 OPNET	 Modeler	 version	 16.0	 was	 used	 to	 implement	 each	 of	 these	

mechanisms	 and	 compare	 their	 performance	 via	 network	 simulations.	 The	 results	

indicate	 that	 location-‐aided	 routing	 can	 significantly	 reduce	 the	 aforementioned	

control-‐packet	 overhead.	 	

	 vi	

Table of Contents

Abstract	 v	

List	 of	 Figures	 viii	

List	 of	 Tables	 ix	

Chapter	 1	 Introduction	 1	

Chapter	 2	 Related	 Works	 10	

Introduction 10

Location Aided Routing (LAR) 10

LAR Zone 10

LAR Distance 13

Modified Location Aided Routing 14

Geographical AODV (GeoAODV) 16

Prediction-Based Location Update 17

AODV-Directional Forward Routing 20

Multicast and Geocast Routing in MANETs 22

Chapter	 3	 GeoAODV	 24	

Introduction to Geographical AODV 24

Overview of GeoAODV Operation 25

Distributing Location Information in GeoAODV 28

GeoAODV Protocol 31

GeoAODV Rotate Protocol 34

Chapter	 4	 Implementation	 36	

	 vii	

Table of Contents (Continued)

Overview of Implementation 36

AODV Implementation 36

Location Information Sharing 40

Geo-Assisted Routing Implementation 46

Chapter	 5	 Simulation	 Study	 49	

Simulation Setup 50

Analysis of the Results 54

Chapter	 6	 Conclusions	 59	

Future Work 61

References 63

Appendix	 A	 Initiation	 Functions	 66	

Appendix	 B	 Modified	 AODV	 Packet	 Strucutres	 68	

Appendix	 C	 RREQ	 Rebroadcast	 Logic	 and	 Functions	 69	

Appendix	 D	 Raw	 Results	 76	

	 viii	

List of Figures

	

Figure 2.1 Request Zone for AODV and LAR Zone protocols 11

Figure 2.2 Summary of LAR Distance Protocol 13

Figure 2.3: Alternative Definition of the Request Zone: (a) Rectangular shaped (b) Cone-

shaped 15

Figure 3.1 GeoAODV Protocol Operation 27

Figure 3.2 GeoAODV Request Zone 34

Figure 3.3 GeoAODV Rotate Protocol 35

Figure 4.1 OPNET’s aodv_rte Process Model State Diagram 37

Figure 4.2 The RREQ Packet Structure used in the Simulation 42

Figure 4.3 The RREP Packet structure used in the Simulation 43

Figure 5.1 Network Topology used in the Simulation Study 49

Figure 5.2 Summary of WLAN configuration 51

Figure 5.3 Summary of AODV Node Configuration 53

Figure 5.4 Number of Control Packets in Scenarios with 2 Communicating Nodes 54

Figure 5.5 Number of Control Packets in Scenarios with 5 Communicating Nodes 55

Figure 5.6 Number of Control Packets in Scenarios with 10 Communicating Nodes 56

Figure 5.7 Number of Control Packets in Scenarios with 20 Communicating Nodes 57

Figure 5.8 Number of Control Packets in Scenarios with 30 Communicating Nodes 57

	

	 ix	

List of Tables

Table 1.1 A Sample Forwarding Table 2

Table 2.1 A Sample Location Table 17

Table 3.1 An example of a GeoTable 29

Table 5.1 Summary of Node Configuration 52

	 1	
	

Chapter 1

Introduction

	

Routing is one of the quintessential components of a computer network’s functionality. In

a broad sense, it is the process of determining a path to a desired destination. For example,

a network administrator could compute all the routes in the network and then deploy

them to all nodes manually. However, this approach is impractical and very error-prone

for even a small network. As a result, a large number of routing protocols have been

created that dynamically determine the routes in the network without human involvement.

Without routing protocols, routing information would have to be manually and

continually maintained by network administrators; networks would have been unable to

scale to the size that it must in order to operate within modern day networks.

After route discovery, the data can be delivered to various destinations in the network on

a hop-by-hop basis. As a packet travels through the network, each intermediate node

(called a “hop”) independently determines the interface on which the packet has to be

sent out in order to reach its destination. This process is known as forwarding. It utilizes a

data structure known as a forwarding table, which maps a network or node address to the

next hop on the route to a particular destination. Forwarding is achieved by consulting the

forwarding table to determine the next node (i.e., the outgoing interface) to which a data

packet must be sent in order to eventually arrive at the desired destination. This process is

repeated at each intermediate node on the packet’s path.

	 2	
	

The forwarding table is sometimes confused with the routing table. A routing table is

built and maintained by a routing protocol deployed in the network. A router could be

simultaneously connected to multiple networks, each of which may be running a different

routing protocol. Each routing protocol process maintains its own routing table. The

forwarding table is an aggregation of all of the routing tables at a particular router. Each

time a routing protocol receives control information and updates its routing table, it also

instructs the router to update the global forwarding table. Thus, a routing table contains

routing information collected by a particular routing protocol. This information is internal

to a particular routing protocol process and may be used only by that process. On the

other hand, a forwarding table contains routing information collected by all the routing

processes deployed on a node. It is used to determine where an arriving packet ought to

be forwarded to next. Colloquially, the terms routing table and forwarding table are used

interchangeably. This study will adhere to that convention in order to avoid confusion.

Table 1.1 A Sample Forwarding Table

Address Next Hop

Default 150.250.64.1

150.250.64.0/24 150.250.64.69

224.0.0.0/8 150.250.64.69

	 3	
	

The primary intent of any routing protocol is to build and maintain the routing and

forwarding tables. A routing protocol is a set of rules that defines how nodes should

interoperate and exchange data in order to build routing tables and ultimately achieve

efficient end-to-end forwarding. Some popular routing protocols are Open Shortest Path

First (OSPF), Intermediate System to Intermediate System (IS-IS), and Interior Gateway

Routing Protocol (IGRP).

Generally, routing protocols are classified into one of two categories: Link-State or

Distance-Vector. In link-state routing algorithms, each node acts independently to map

the entire network topology as a graph. This is achieved by sending information about

each node’s neighbors to all other nodes in the network. Each node then uses the graph

of the network topology it has created to compute the most efficient route to each

destination in the network.

In contrast to link-state algorithms, distance-vector algorithms do not distribute routing

information to all the nodes in the network. Instead, each node only informs its neighbors

about topological changes in the network. These changes are represented as an array of

distance-vectors (i.e., known distances from the current node to each node in the

network). As a result, distance-vector algorithms are considered computationally simpler

and create less control traffic overhead than do the link-state algorithms.

	 4	
	

An ad-hoc network is a network that can operate in an environment without preexisting

infrastructure and allow for minimal configuration during deployment [1]. In an ad-hoc

network, each node acts independently both as an end node and as a router. Each node

may send, receive, and forward data traffic. These attributes are very desirable in areas

where a network is needed but in which no prior infrastructure exists (e.g., search and

rescue, disaster relief systems, military operations).

A Mobile Ad-hoc NETwork (MANET) is a wireless ad-hoc network in which nodes may

move. Consider an area that was just stricken by a natural disaster (e.g., hurricane,

tornado, tsunami). Natural disasters can wipe out existing networking infrastructure,

making communication in the affected area difficult or impossible. The ability of a

MANET to function in areas with no prior infrastructure makes them extremely useful in

disaster scenarios. However, mobility and lack of infrastructure also present an

interesting problem in terms of routing, for which specialized routing protocols are

needed.

Routing protocols in ad-hoc networks can be classified into three different categories:

proactive, reactive, or hybrid. Proactive routing protocols will actively seek routes to

destination nodes, even if there is no traffic traveling through the network. A proactive

routing protocol seeks routes in anticipation that they will be needed later. The advantage

to proactive routing protocols is that routes are readily available as soon as there is data to

transmit. However, they may result in unnecessary overhead when searching for routes

	 5	
	

that will never be used. In a MANET environment where computing resource and

bandwidth are scarce, this could be a major deficiency that will prevent the protocols

from being widely deployed.

On the other hand, reactive protocols only compute routes on demand (i.e., only when a

node has data to transmit and the path to the destination is unknown). The advantage of

reactive routing protocols is that routes are only computed when they are needed, which

minimizes the amount of control overhead introduced into the network. However, the

data has to wait while the routing protocol searches for the route. Hybrid routing

protocols achieve optimal performance by combining the advantages of reactive and

proactive approaches.

There are a large number of routing protocols for MANET environments including

Dynamic Source Routing (DSR), Zone Routing Protocol (ZRP), Optimized Link State

Routing (OLSR), and Ad-hoc On-demand Distance Vector routing (AODV). This work

studies the performance of the AODV protocol and various optimizations that reduce the

control message overhead through the use of geographical location information.

AODV, as the name implies, is a reactive distance-vector routing protocol. AODV

consists of two primary phases: route discovery and route maintenance. The route

maintenance phase is responsible for removing outdated or broken path entries from the

	 6	
	

routing table and is of no interest to this study. This work examines the route discovery

phase, which utilizes a flooding technique to locate a path to the destination.

AODV only initiates route discovery when a node, often referred to as the originator,

receives data from the application layer that is to be delivered to some destination for

which there is not a known route. The originator starts the route discovery phase by

broadcasting a Route Request (RREQ) message. The RREQ message is rebroadcast by

each intermediate node until it reaches either the destination node or a node with a fresh

route to the destination. At that point, the node generates a Route Reply (RREP) message

back to the originator. The route discovery phase terminates when an RREP message that

contains a route to the destination arrives at the originator node. As the RREP traverses

the network back to the originator node, it retraces the path of the RREQ message, which

was recorded by the intermediate nodes as the RREQ message was traveling through the

network. Similarly, intermediate nodes that receive an RREP message update their

routing tables with the route to the destination node. Once the route discovery phase

completes, the originator node sends data to its destination over the newly discovered

path.

Once a route has been discovered and stored, it will only remain in a routing table for a

finite amount of time. When a route is stored, it is initially marked as active. Active

routes will remain useable either for the Lifetime value received in the RREP message or

	 7	
	

for a minimum preconfigured default time period. When the timer eventually expires, the

routes are marked for deletion and are scheduled to be removed from the routing table.

AODV uses three types of control packets during the route discovery phase. These

control packets are Route REQuest (RREQ), Route REPly (RREP), and Route ERRor

(RERR) [2]. An RREQ packet is used anytime AODV needs to discover a route to a

specific node. An RREP is used to reply to an RREQ with a definitive route to the node.

RERR packets are used to disseminate various error details to other nodes in the network.

AODV maintains route entries of its active one-hop neighbors by periodically

broadcasting Hello messages with the IP header TTL field set to one. Hello messages

have the same format as the RREP messages and can carry the IP address and the

destination sequence number for the current node. The sequence number is a unique

counter created and maintained by each AODV-capable node. This value is included in

all messages that carry routing information. The sequence number represents the

freshness of carried data and also prevents routing loops. An AODV node with multiple

routes to the same destination is required to select the freshest route (i.e., the route that

has the largest destination sequence value). An AODV node increments its sequence

number each time it initiates a new route discovery process and whenever it generates an

RREP message. This ensures that other nodes in the network can differentiate between

RREP messages generated from different route request phases.

	

	 8	
	

In order to reduce the overall control message overhead, AODV employs an expanding

ring search technique. The originator node sets the TTL field in the IP header of the

RREQ message to a certain initial value. If the route discovery process fails to find a path

to the destination, then the originator node increments the value of the TTL field and

repeats the process again. This continues until either the originator node finds a path to

the destination or the whole network has been searched without finding a path (i.e., an

RREQ message with IP TTL field set to the preconfigured TTL threshold value was sent

out, but a route to the destination was not found). This search technique prevents

unnecessary network-wide dissemination of RREQs.

	

Despite the expanding ring search technique, the route discovery process in AODV often

results in a large number of control packets traveling through the network. This consumes

already scarce network resources (e.g., bandwidth, processing power, battery power).

Furthermore, anytime there is a demand for a route that is either marked for deletion or

does not exist in the routing table, the routing protocol must rediscover the path. This can

be costly in volatile MANETs, as the constant change in the topology of the network

frequently causes routes to become unavailable. Continuously re-computing routes

creates substantial overhead in the network, which will eventually lead to performance

degradation. Many enhancements have been suggested to cut down on the number of

control packets. Among these are approaches that use the geographical coordinates of

each node to predict which paths are most promising. Using geographical coordinates to

optimize routing is known as location–aided or geo-assisted routing.

	 9	
	

This study examines AODV optimizations that mitigate the aforementioned issues by

reducing the scope of the control message broadcast during the route discovery phase.

Chapter 2 provides an overview of LAR and other related protocols. Chapter 3 discusses

in detail our proposed location-aided improvements to AODV protocol called GeoAODV.

The implementation of GeoAODV is covered in Chapter 4. Chapter 5 describes the

comparison study of GeoAODV and other location-aided routing protocols using OPNET

Modeler Simulation package. The study is concluded in Chapter 6.

	 10	

Chapter 2

 Related Works

	

Introduction

Geo-assisted routing utilizes the geographical location of the nodes to decrease the

amount of overhead in the network, which is created by control packets used during the

route discovery process. There are numerous geographically-aided routing protocols for

MANETs including Location Aided routing [3, 4], Modified Location Aided Routing [5],

Prediction Based Location Update Algorithm [6], AODV Directional Forward Routing [7,

8, 9], Geo-Assisted Multicast Inter-Domain routing [10], and Geographical-AODV [11,

12, 13, 14, 15].

Location Aided Routing (LAR)

Location Aided Routing (LAR) is an extension of the AODV protocol for reducing the

control message overhead by using geographical location information [3, 4]. LAR relies

on knowing the destination node’s coordinates and velocity. There are two main

variations of LAR known as LAR Zone and LAR Distance. These approaches are

described below.

LAR Zone

LAR Zone uses geographical location information to identify the area that is likely to

contain the path to the destination. The LAR Zone approach defines two areas: the

	 11	

expected zone and the request zone. The expected zone is the area where the destination

node is most likely to be located at the time of route discovery. It is defined as a circular

area centered at the destination’s last known location. The radius of the expected zone is

the maximum distance that the destination node could have traveled since the time its

location coordinates were obtained, as shown in Equation (2.1):

r = v × (t1 – t0) (2.1)

where,

• r is the radius of the expected zone

• v is the average traveling speed of the destination node

• t0 is the time when the destination coordinates were obtained

• t1 is the current time

	

Figure 2.1 Request Zone for AODV and LAR Zone protocols

	 12	

The request zone is an area that is likely to contain the path to destination. It is defined as

the smallest rectangle that contains the expected zone and has its sides parallel to the X-

and Y-axes. A possible arrangement of the expected and request zones is shown in Figure

2.1. In Figure 2.1 (a), the source node S is located outside the request zone. In Figure 2.1

(b), the source node S is located within the expected zone for destination node D.

Only the nodes within the request zone participate in the route discovery process and

rebroadcast RREQ messages. Specifically, when an RREQ packet arrives at an

intermediate node, the node first determines whether or not it belongs to the request zone

using the data carried in the incoming RREQ message. This determines whether the

regular AODV route discovery processing should then be performed. If the node is part

of that search area (i.e., is in the request zone), then the RREQ packet is processed and

possibly rebroadcast; otherwise, the packet is discarded.

	

	 13	

	

Figure 2.2 Summary of LAR Distance Protocol
	

LAR Distance

LAR Distance is another variation of location-aided routing protocol based on AODV.

LAR Distance relies on the distance between the current node and the destination to

determine if the RREQ should be rebroadcast. Consider the scenario illustrated in Figure

2.2. When node N1 receives an RREQ from node N0, it checks if it is located closer to the

destination than the node from which it received an RREQ (i.e., N0). If the distance

between N0 and destination D is greater than the distance between N1 and D, then N1

rebroadcasts the RREQ; otherwise, the message is discarded. Specifically, the RREQ

message is forwarded only if inequality (2.2) holds true:

N1	

D	

S	

N0	

|N1	 D|	

|N0D|	

N2	

|N2	 D|	

RREQ	

Rebroadcast	

	
Discard	

RREQ	

RREQ	

Rebroadcast	

	

Original	 RREQ	

Broadcast	 	

	

N3	
Discard	

RREQ	

|N3D|	

	 14	

α × Dist (N0 D) + β ≤ Dist (N1 D) (2.2)

where,

• α and β are configuration parameters

• N1 is the node which received the RREQ

• N0 is the node which forwards RREQ to N1

• D is the destination node

Modified Location Aided Routing

Modified Location Aided Routing (MLAR) is a routing algorithm that optimizes LAR via

several enhancements [5]. The first enhancement that MLAR makes is redefining the

request zone area. While LAR calculates the request and expected zones relative to the

X- and Y-axes, MLAR defines the request zone as the rectangle that is independent of the

axes and relative to a line connecting the source and destination nodes. Figure 2.3 (a)

shows an example of the MLAR rectangular shaped request zone. The source node

determines the area of the MLAR request zone by computing the coordinates of the

vertices in the MLAR request zone rectangle. These coordinates are computed relative to

the line between source and destination and thus need to be translated into Cartesian

coordinates before being used. MLAR relies on equations (2.3) and (2.4) to perform this

translation, where (x1, y1) denotes the vertex coordinates and l denotes the distance

between source and destination.

	 15	

𝑥 = 𝑥!×(𝑦! − 𝑦!)/𝑙 + 𝑦!×(𝑥! − 𝑥!)/𝑙 + 𝑥! (2.3)

𝑦 = 𝑥!×(𝑥! − 𝑥!)/𝑙 + 𝑦!×(𝑦! − 𝑦!)/𝑙 + 𝑦! (2.4)

	

Figure 2.3: Alternative Definition of the Request Zone: (a) Rectangular shaped (b)
Cone-shaped

MLAR also makes use of fixed nodes, or posts, which are nodes that move very little or

not at all. If one of these nodes exists in the request zone, then the route discovery

process is performed in two steps. First, find a route to the post. Then, the post will finish

the route discovery process from there. The hope is that the post already has a route to the

destination. In the event of failure, MLAR will enlarge the request zone instead of

immediately reverting to flooding.

	 16	

MLAR also examined an alternative cone-shaped definition of the request zone, shown in

Figure 2.3 (b). The cone-shaped request zone is defined via three lines Δ1, Δ2, and Δ3.

Lines Δ1 and Δ2 originate at the source and are tangent to the expected zone. Line Δ3

is perpendicular to the line between source and destination and travels through the

destination node. In this variation of MLAR, only nodes that belong to the triangle

defined by lines Δ1, Δ2, and Δ3 will participate in route discovery. The MLAR

approach was shown to further reduce the overhead created in the network. Furthermore,

the MLAR with a cone-shaped request area performed better than MLAR with a

rectangular-shaped area. That is why the GeoAODV approach adopts the idea of a cone-

shaped request zone area.

Geographical AODV (GeoAODV)

Geographical AODV (GeoAODV) is an AODV-based routing protocol that utilizes the

knowledge of a node’s location to reduce the route discovery overhead. GeoAODV

employs an idea similar to that of MLAR with the cone-shaped request zone. However,

unlike LAR protocols, GeoAODV relies on a distributed process to share location

coordinates among the nodes in the network, instead of assuming that these coordinates

are readily available. GeoAODV also limits the search area to a portion of the network

that is likely to contain a route to the destination [4, 11]. By limiting the search area,

GeoAODV decreases the amount of control traffic introduced into the network and thus

improves the network’s overall performance. GeoAODV is described in detail in

subsequent chapters.

	 17	

Prediction-Based Location Update

The Prediction-Based Location Update (PLU) algorithm [6] aims to improve upon

current location update algorithms, which are used to distribute location data across a

MANET and keep it up-to-date. Location update algorithms are also known as location

update schemes or Location Information Services (LIS). The primary goal of any LIS is

to reduce the number of Location Update Packets (LUP) sent into the network while still

keeping a high level of accuracy with respect to location information. Therefore, these

schemes are usually benchmarked on the accuracy of the location data distributed across

the MANET and by the overhead introduced into the network. There are three main

approaches for providing location information services: Location Information Flooding

(LIF), DREAM Location Service, and Simple Location Service [6].

Table 2.1 A Sample Location Table

Node Address Location Information

(Cartesian coordinate)

150.250.191.218 (15.6, 10.0)

150.250.190.144 (30.0, 90.7)

150.250.64.69 (-8.0, 109.6)

In the LIF approach, all the nodes in the network keep a location table, which maps node

addresses to location information. An exemplative mapping is shown in Table 2.1. This

table is updated based on periodic broadcasts of location information by individual nodes.

	 18	

This solution is simple and easily implemented. However, it relies on flooding, which

consumes too many of the available resources in the network.

DREAM Location Service (DLS) is an extension built on top of the Distance Routing

Effect Algorithm for Mobility (DREAM) [16]. DLS uses the distance between two nodes

to determine how frequently the nodes should send LUPs to one another. DLS classifies

all nodes in the network into one of two distinct groups: nearby or faraway. It updates the

location information of the nearby nodes more frequently than that of the faraway nodes.

Faraway nodes move slower in relation to the node sending the updates and thus do not

require frequent updates.

Simple Location Service (SLS) performs the location information update identically to

DLS, except for one variation [17]. Instead of a node sending only its own coordinates,

each node broadcasts its entire location table to neighboring nodes. All downstream

nodes merge the table received with their own table and also periodically share their

location tables with their own neighboring nodes. By reducing the frequency with which

LUPs are sent, DLS and SLS reduce the amount of overhead in the network.

The PLU algorithm relies on location prediction and one-hop broadcasting of location

updates to decrease the control-packet overhead introduced by the routing protocol [6].

The algorithm uses a timer to trigger PLU to send updates using one of the

	 19	

aforementioned LIF schemes. This algorithm is broken into two stages. In the first stage,

the timer is calculated based on the range and velocity of the node. In the second stage,

the timer is calculated based on how much the node is expected to move.

The goal of the first stage is to carry out normal location updates. These updates are

generated on a periodic basis. The amount of time between updates is a function of the

transmission range and average velocity of a node. The idea is that the nodes with a long

transmission range or low velocity generate updates less frequently, while the nodes with

a short transmission range or high velocity are updated more frequently [6].

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙! =
!"#$%!"#$%
!×!!"#

 (2.6)

where,

• Interval1 is the interval of the first stage

• Rangetrans is the node’s transmission range

• vavg is the average speed of the node

• α is a scaling factor.

	 20	

While a longer update interval introduces fewer packets into the network, it also may lead

to a situation where substantial changes in a node’s location are not propagated quickly

enough. For this reason, PLU uses a second stage to distribute LUPs.

The goal of the second stage is to trigger an update whenever a node’s location changes

substantially. Using equations (2.7) and (2.8), PLU calculates a node’s predicted location

and compares it against the previously predicted values. If the difference between the

newly and previously calculated values is outside of a predefined threshold, then the node

will broadcast a LUP containing its current location. The study showed that PLU was

reasonably accurate; it had the lowest average location error for speeds greater than 6 m/s

as compared to DLS, SLS, or flooding. Also, when PLU is used, 95% of location data in

the network is less than 10 meters off from the actual location of a node.

𝑥! = 𝑥! + 𝑣×(𝑡! − 𝑡!)×𝑐𝑜𝑠𝜃 (2.7)

𝑦! = 𝑦! + 𝑣× 𝑡! − 𝑡! ×𝑠𝑖𝑛𝜃 (2.8)

AODV-Directional Forward Routing

AODV Directional Forward Routing (AODV-DFR) is another routing algorithm that

takes advantages of location information to reduce the control traffic overhead. AODV-

	 21	

DFR is a hybrid routing algorithm that combines the ideas of proactive and reactive

protocols with forward routing. Forward routing refers to the concept of storing the

location of other nodes in the network in a node’s routing table. Each node keeps a

direction cache, in addition to a routing table. The direction cache stores the last known

traveling direction of the nodes in the network, along with an expiry time. In the AODV-

DFR approach, the nodes compute routes on-demand (i.e., reactively or as needed), while

the routing updates are propagated in a proactive manner. This approach allows AODV-

DFR to generate less control traffic overhead than conventional MANET routing

protocols.

Similarly to AODV, AODV-DFR starts the route discovery process only when there is

data to transmit to a destination for which a path is currently unknown. However, AODV-

DFR nodes also periodically advertise their locations to their one-hop neighbors. During

the route discovery process, AODV-DFR nodes maintain the reverse path to the source

node by recording the information about the nodes from which the RREQ arrived (i.e.,

this node is the next hop on the path to the source). The recorded information also

includes the traveling direction of the node, which is to be stored in the direction cache.

The evaluation study showed that, by only exploring promising paths to the destination,

AODV-DFR drastically reduces the amount of overhead introduced into a network in an

environment with mobile nodes. When the nodes in the network are mobile, AODV-DFR

generates about half as much traffic as AODV.

	 22	

Multicast and Geocast Routing in MANETs

Multicast routing has emerged as an efficient means of communicating between large

domains in MANETs. This is important when a message needs to reach a broad audience.

For example, a search and rescue team may want to alert all of the volunteers that a

missing person was found and that the search is over. However, finding a route to every

node in a multicast group tree can introduce a larger amount of overhead than finding a

route to a single node. This will ultimately degrade the performance of the network. In an

ad-hoc network, multicast trees can become very complex. This makes it difficult for the

multicast network to scale appropriately [10]. Several approaches have been explored to

improve the performance in multicast environments such as Geo-Assisted Multicast

Inter-Domain Routing (GMIDR), which relies on geo-routing and clustering to facilitate

communication between the network domains. GMIDR employs elected group cluster

heads (GCH) to provide communication to the entire multicast group. A multicast tree is

built from the source node to each GCH, instead of to individual multicast group

members. A GCH is responsible for receiving information from the source and delivering

it to all the members of the multicast group. This approach was shown to significantly

reduce the overhead associated with the multicast group management.

Geocasting is a mechanism for sending messages to a specific geographical region, also

known as a geocast region [4]. A simple method for achieving geocasting in MANET is

to flood the geocast network region with data packets. The solution proposed in [4] relies

	 23	

on the idea of LAR and employs geographical information to reduce the amount of

overhead introduced into a network by the geocast flooding algorithms. Similar to LAR,

this geocast solution defines a forwarding zone such that only the nodes within that area

rebroadcast geocast packets to their neighbors. The geocast solution that employs a

forwarding zone significantly reduces control traffic overhead and was able to provide

accuracy of data delivery comparable to that of the regular geocast flooding.	

	 24	

Chapter 3

GeoAODV

	

Introduction to Geographical AODV

Geographical AODV (GeoAODV)	 [11, 12, 13, 14, 15] is an extension of the AODV

protocol, which, like the LAR protocol, attempts to reduce the amount of control message

overhead during the route discovery process. GeoAODV is also a reactive protocol,

which initiates the route discovery process only when the node has data to be transmitted

to a destination for which a path is currently unknown. However, unlike AODV,

GeoAODV conducts the route discovery only within a limited area. GeoAODV defines

its search area in the same way as does the MLAR cone-shaped approach shown in

Figure 2.3 [3].

GeoAODV also defines the route discovery search area as a cone-shaped request zone,

where the apex point is located in the position of the source node. However, GeoAODV

determines the size of the cone-shaped area via a flooding angle. The source node

dynamically controls the value of the flooding angle. MLAR assumes that the destination

node coordinates and traveling speed, which are used to compute the expected zone and

the cone-shaped request zone area, are readily available to everyone in the network.

GeoAODV does not make this assumption. Instead, GeoAODV piggybacks location

information onto control messages during the route discovery process. Effectively,

GeoAODV dynamically distributes the node location information through the network

during the route discovery process. Thus, GeoAODV initially performs the same way as

	 25	

regular AODV. GeoAODV begins to search for a route to the destination in the cone-

shaped request zone only after the destination node’s location information has been

distributed and the source node has GPS coordinates of the destination node.

Another key difference between the MLAR protocol and GeoAODV is the dynamic

adaptability of the cone-shaped area. If the path is not completely located within the

request zone (i.e., if there is some constituent hop that is outside the zone), then MLAR

fails to find a route to the destination. The authors of LAR and MLAR do not specify

how the protocol should handle such an event. GoeAODV, on the other hand,

dynamically increases the cone-shaped request zone angle, known as the flooding angle,

until the protocol either finds a route to the destination or searches the whole network and

determines that there is no such route. Note that the GeoAODV protocol operates the

same way as does regular AODV once the flooding angle reaches 360 degrees.

Overview of GeoAODV Operation

The shape of the GeoAODV request zone can also be described as an isosceles triangle,

where the source node is the vertex of the triangle and is located in the top corner

opposite to the base (i.e., the source node is the origin point of the equal sides of the

triangle). The destination node is located on the line that originates at the source node and

is perpendicular to the base of the triangle. The width of the GeoAODV request zone (i.e.,

the isosceles triangle) is controlled via the angle between the equal sides. This protocol

configuration parameter is denoted as α. Only the nodes located within the confines of

	 26	

the GeoAODV request zone participate in route discovery (i.e., only the nodes within the

request zone rebroadcast arriving RREQ packets). All the other nodes discard arriving

RREQs. For example, Figure 3.1 illustrates an instance of GeoAODV where a RREQ

from source node S arrives at an intermediate node N. Node N tries to determine if it

belongs to the GeoAODV request zone for node S. In order to make this determination,

an intermediate node N computes the angle θ that is formed between the source node,

itself, and the destination. Since the source-destination vector always divides the flooding

angle evenly, node N belongs to the request zone if angle θ is not larger than one half of

the flooding angle α.

θ ≤ 1
2×α (3.1)

Thus, if inequality (3.1) holds, then node N is located within the request zone for source

node S and will rebroadcast the RREQ packet. Otherwise, N is outside of the request

zone and the RREQ will be discarded. The value of angle θ is computed according to

equation (3.2), where SD denotes a vector between source node S and destination node D,

SN denotes the vector between source node S and node N, and SD and SN are the

absolute values of vectors SD and SN, respectively.

θ = cos!! !" ∙!"
!" × !"

 (3.2)

	 27	

At the start of the route discovery process, GeoAODV sets the flooding angle α to some

initial value. This initial value could be determined by the freshness of the destination’s

GPS coordinates (i.e., the value of α increases proportionally to t!, the time passed since

the last update of the destination’s location information). Once t! crosses a certain

threshold, the location information is considered stale. As a result α is set to 360 degrees

and GeoAODV performs the same way as does regular AODV. Alternatively, the initial

value of the flooding angle could be a function of the expected zone radius defined in

equation (2.1).

Figure 3.1 GeoAODV Protocol Operation

Figure 3.1 illustrates an example of the GeoAODV protocol operation where source node

S initiates the route discovery process in an attempt to find a path to destination node D.

	 28	

Initially S uses the flooding angle with the value α1. The request zone defined by α1 is

shown in Figure 3.1 as an isosceles triangle of a lighter grey color. During this round of

route discovery, only intermediate node N1 rebroadcasts the RREQ packets. The

remaining nodes are outside of the request zone defined by α1 and do not participate in

route discovery. These nodes (i.e., N2, N3, and N4) discard all arriving RREQs during

this initial round. If the first round of route discovery fails, then the source node increases

the flooding angle to some new value α2 and repeats the process again. During the

second round of route discovery, the request zone is extended (shown in Figure 3.1 as a

darker color isosceles triangle) and intermediate nodes N1, N2, and N3 rebroadcast

RREQs. Intermediate node N4 discards all arriving RREQ packets, since it is located

outside of the request zone defined by the flooding angle α2.

Distributing Location Information in GeoAODV

GeoAODV assumes that each node in the network knows its own position with precision

through the use of a GPS-like device. However, GeoAODV nodes do not explicitly

possess knowledge about the destination’s coordinates or traveling speed, and therefore

must learn about other nodes’ positions during the lifetime of the network. The location

information about other nodes in the network is obtained during the route discovery

process. To store this information, each node in a GeoAODV network maintains a

supplementary geographical location table, known as a GeoTable. An entry in the

GeoTable consists of: the location information (e.g., GPS coordinates), the freshness

timer, the AODV sequence number, the identity of the destination node (e.g., IP address),

and status. The freshness timer keeps track of when the node coordinates were last

	 29	

updated, while the AODV sequence number allows an intermediate node to identify if the

arriving control packet (e.g., RREQ, RREP) carries new location information. This

process is similar to the manner in which the AODV protocol differentiates between new

and old control packets. However, the GeoTable entries remain valid for longer periods

of time than do the entries in the AODV routing table. This is because the location

information can help determine the general direction in which the destination node may

be located, even if a route to that destination has changed. Table 3.1 illustrates a possible

GeoTable stored in a GeoAODV node.

	

Table 3.1 An example of a GeoTable

IP Address Coordinates Timer Sequence Number Status

192.168.0.8 (104.7, -365.7) 10 1234567220 Fresh

192.168.0.77 (134.0, -59.1) 55 9446543201 Deleted

192.168.0.90 (4.0, 256.8) 38 9446543201 Fresh

192.168.0.234 (-47.2, 56) 13 7357907642 Stale

	

	

The formats of RREQ and RREP packets were modified to carry additional information

(e.g., the locations of the source and destination nodes, the flooding angle). This

information is used to populate the GeoTable, as well as to determine if an intermediate

	 30	

node should participate in route discovery. At the start of the route discovery process, the

source node consults its GeoTable and generates an RREQ packet that will carry: the

node’s own location information, the initial value of the flooding angle, and the last

known location of the destination node. If the source node does not contain a GeoTable

entry for the destination node, then the flooding angle is set to 360 degrees and

GeoAODV shall operate in the same way as does regular AODV.

Upon the arrival of an RREQ message, all nodes (even those that will discard the RREQ

packet) update their GeoTables with the source node’s location information. An

intermediate node only updates its GeoTable with the destination’s location information

if the destination sequence number carried in the RREQ is larger than that stored in the

node’s GeoTable. Otherwise, an intermediate node discards the destination coordinates

carried in the RREQ packet. Similar processing occurs when an RREP is sent back. Each

intermediate node updates its GeoTable with the source and destination location

information carried in the packet. GeoAODV also utilizes periodic AODV Hello

messages (which have the same header format as RREQ packets) to distribute location

information among the neighboring nodes.

Stale GeoTable entries are identified using the sequence number and freshness timer.

The nodes periodically purge stale entries from the table, similarly to the manner in

which AODV updates its routing table. This is done using two timers. The first timer is

known as the freshness timer. It is used to identify when an entry becomes stale. When an

entry becomes stale, the node changes the entry’s status to stale and starts the second

	 31	

timer. Stale entries are eligible for deletion. When the second timer expires, the entry is

marked for deletion and can be removed from the GeoTable. Each node periodically

purges all the entries that are marked for deletion from the table.

Generally, the GeoTable retains entries longer than the AODV routing table. This is

because the routes can become unavailable quickly in a highly dynamic MANET

environment where the nodes are moving around. However, even incorrect geographical

location information can still be helpful in limiting the route discovery search area by

providing a general direction in which the destination node is likely to be located.

Typically, this is sufficient to determine the request zone area where the route discovery

process should be conducted.

GeoAODV

The GeoAODV protocol operates as follows. When the source node or an originator

receives a request to transmit data, it checks its forwarding table. If a route to the

destination is known, then the node transmits the data. If a route to destination is

unknown, then the node queues the data and initiates the route discovery process.

The first step of the route discovery process is to determine the value of the flooding

angle. If the GeoTable contains the location information for the destination node, then the

flooding angle is computed based on the freshness of the location coordinates, otherwise,

the flooding angle is set to its maximum value of 360 degrees. Next, the originator node

creates an RREQ packet and broadcasts it in the network. The generated RREQ carries

the following values: the computed flooding angle value, the originator’s location

	 32	

coordinates, the originator sequence number, the last known destination coordinates (if

available), and the destination sequence number (if available).

Upon RREQ arrival at an intermediate node, GeoAODV performs the following steps

before the packet is rebroadcast. First, the node updates its GeoTable with the most up-to-

date source and destination information. Next, the node performs the regular AODV

validation to determine if the arriving RREQ is a duplicate. If so, then the packet is

discarded. Otherwise, the node checks its routing table to see if it knows a route to the

destination. If such a route is available, then the intermediate node discards the RREQ

packet and sends an RREP message back to the source node. Note that the RREP

message will contain fresher destination location and sequence number information, as

well as the intermediate node’s location coordinates and sequence number. This feature

facilitates distribution of the node location information throughout the network.

If the RREQ packet was not discarded and if no RREP was generated, then the

intermediate node performs the GeoAODV validation to determine if it is within the

originator’s request zone. If the node is outside the request zone, then the packet is

discarded. Otherwise, the node rebroadcasts the RREQ packet. Note that if the node’s

GeoTable contains destination information that is fresher than that which is carried in the

RREQ packet, then the node may update the RREQ’s destination location and sequence

number fields.

	 33	

When the destination node receives an RREQ packet, it updates its GeoTable and sends

an RREP message back to the originator. Note that while the RREP message is unicast

back the originator node, each packet transmission in the MANET environment is

overheard by all the neighboring nodes. Thus, all the neighboring nodes along the path

between the destination and the originator will overhear the RREP message and will each

update their GeoTable with the most up-to-date location information for the destination

and originator nodes. Once the RREP packet arrives at the originator, the route discovery

process is complete and the originator begins sending data to the destination node.

If the originator does not receive an RREP within a certain amount of time during the

first round of route discovery, then it is assumed that a route to the destination within the

current request zone cannot be found. In this case, the originator node increases the value

of the flooding angle and repeats the route discovery process, this time searching a wider

area. Eventually, the GeoAODV request zone could be morphed into a network-wide

search, as in regular AODV. Figure 3.2 illustrates how the GeoAODV request zone is

expanded during each round of route discovery until it becomes the regular AODV

request zone.

	 34	

	

Figure 3.2 GeoAODV Request Zone
	

GeoAODV Rotate Protocol

This study considered two variations of the GeoAODV protocol: GeoAODV Static and

GeoAODV Rotate. GeoAODV Static operates as described above. The GeoAODV Static

request zone remains unchanged during each round of route discovery (i.e., the source

node is always the vertex opposite to the base of the isosceles triangle). GeoAODV

Rotate operates slightly differently. It re-orients the request zone towards the destination

at each intermediate node by making the previous node a new vertex of the triangle (i.e.,

each intermediate node re-computes the request zone based on the location of the

previous hop, rather than on the location of the source node).

	 35	

Figure 3.3 GeoAODV Rotate Protocol

Figure 3.3 illustrates the idea of GeoAODV Rotate. Node N1 belongs to the request zone

that was computed based on the location of node S. Node N2 belongs to the new, re-

oriented request zone that was computed based on the location of node N1. Although they

belong to different request zones, both nodes N1 and N2 participate in route discovery.

On the other hand, node N3, which receives an RREQ from N1, will not participate in

route discovery. This is because node N3 is located outside the new request zone that was

computed using the location of N1, its previous hop. Were GeoAODV Static to be used

instead, all the nodes in the Figure 3.3 would participate in the route discovery process.

This is because they all belong to the request zone that was computed based on the

location of source node S.

	 36	

Chapter 4

Implementation

	

Overview of Implementation

A network simulation was chosen as the means by which to compare the performance of

GeoAODV Rotate against AODV, GeoAODV, LAR Zone, and LAR Distance. A

simulation-based approach offers an effective way to accurately and inexpensively

measure and analyze large-scale systems [18]. Implementing a network simulation using

standard models is straightforward. However, modifying existing models can be a tedious

and often time-consuming process. OPNET Modeler [19] provides a highly cohesive and

flexible platform to modify existing networking protocols and is one of the most popular

commercial network simulations in the world [18]. OPNET Modeler version 16.0 was

used to implement GeoAODV and LAR routing protocols. OPNET’s existing AODV

process model was modified, along with several other process models and external files

that are responsible for modeling MANET routing protocols. These implementations

were verified and benchmarked. Then, the performances of the implemented protocols

were compared.

AODV Implementation

In OPNET Modeler, a process model is used to represent a singular networking process

such as a routing protocol, a load-balancing mechanism, or an upper-layer protocol [18].

Process models are implemented using the Proto-C programming language, which uses a

mixture of state transition diagrams and the C programming language. Proto-C also

	 37	

provides an expansive set of APIs to help model various systems. In particular, the

OPNET Modeler implements AODV MANET routing protocol through the aodv_rte

process model [20, 21, 22].

Figure 4.1 OPNET’s aodv_rte Process Model State Diagram

Figure 4.1 provides a screenshot of the OPNET process model state diagram for the

AODV MANET routing protocol. The AODV process model is made up of two states:

init and wait. The init state is denoted in Figure 4.1 by a green circle with the incoming

arrow to the left of it. It is responsible for initializing any data structures and related

processes required for AODV’s operation. This includes the AODV packet queue,

AODV request table, AODV route table, statistic collectors, etc. While in this state, the

node parses the routing protocol configuration and is configured accordingly. Note that

each MANET node that employs AODV during the simulation will have an instance of

the AODV process model associated with it.

	 38	

While in the init state, AODV also sets-up all user-specified configuration parameters for

the routing protocol. During the simulation set-up, the OPNET user may configure each

protocol by providing the values for protocol configuration parameters, which are also

known as model attributes. For example, the AODV process model includes model

attributes such as Active Route Timeout, Hello Interval, Net Diameter, and several others.

To properly model GeoAODV and LAR protocol operation, several new model attributes

were added to the AODV process model. The following model attributes were added:

• Geo-Assisted Protocol Type – specifies which AODV-based protocol will be used

in the simulation: AODV, GeoAODV, GeoAODV Rotate, LAR Distance, or LAR

Zone

• GeoAODV Initial Flooding Angle – specifies the value of the flooding angle used

by a MANET node when starting the GeoAODV route discovery

• GeoAODV Flooding Angle Increase – specifies the amount by which the value of

the flooding angle will be increased after each round route discovery failure.

Several other model attributes were added as well.

OPNET performs the actual parsing of the model attributes for all MANET routing

protocols in a single process model called manet_mgr, which subsequently sends parsed

attributes to the corresponding MANET routing protocol process model. The aodv_rte

process model initializes corresponding internal data structures to user-specified

configuration values in its attributes_parse_buffers_create function. The complete code

for GeoAODV and LAR’s init function can be found in Appendix A.

	

	 39	

Once the protocol initialization is complete, the AODV process model moves into the

wait state, which implements the actual operation of the AODV protocol. In this state, the

AODV protocol waits for either a packet arrival or the Hello timer to expire. Upon packet

arrival, AODV discovers the packet type (i.e., data packet or ADOV control packet),

performs the corresponding packet processing (e.g., forward the data packet into the

network if a route to destination is known or queue the data packet otherwise, perform

AODV protocol operations upon the control packet arrival), and returns to the wait state.

If the Hello timer expires, then the AODV process will broadcast a HELLO message to

all of its immediate neighbors and return to the wait state.

To implement the LAR Distance, LAR Zone, GeoAODV, and GeoAODV Rotate

protocols, we modified the aodv_rte process model by dividing the protocol processing

into six logical modules [19]: 	

• aodv_packet_queue – module for managing the incoming and outgoing packet

data

• aodv_pkt_support – module for creating AODV control packets and headers

• aodv_request_table – module that manages AODV’s request table

• aodv_route_table – module that manages AODV’s routing table

• aodv_support – module for various supporting functions, including collecting

statistics and printing debugging information

• manet_support – module that exposes MANET functionality to other MANET

protocols and neighboring layers.

	

	 40	

Upon	 packet	 arrival,	 the	 AODV	 process	 model	 calls	 the	 aodv_rte_pkt_arrival_handle	

function.	 If	 the	 arriving	 packet	 is	 an	 application	 data	 packet,	 then	 AODV	 calls	 the	

app_pkt_arrival_handle	 function.	 If	 it	 is	 a	 control	 packet,	 then	 it	 is	 handled	 by	 the	

control	 message	 handler.	 Specifically,	 the	 AODV	 process	 model	 contains	 the	

following	 functions	 for	 processing	 incoming	 AODV	 control	 packets:	

• rreq_pkt_arrival_handle	 –	 handles	 the	 arrival	 of	 the	 route	 request	 packets	

• rrep_pkt_arrival_handle	 – handles	 the	 arrival	 of	 the	 route	 reply	 packets	 	

	

Additionally,	 the	 aodv_rte	 process	 model	 includes	 the	 route_request_send	 and	

route_reply_send	 functions.	 These	 are	 responsible	 for	 generating	 and	 forwarding	

RREQ	 and	 RREP	 messages,	 respectively.	 The	 rreq_pkt_arrival_handle	 function	 was	

modified	 to	 disregard	 packets	 that	 should	 not	 be	 rebroadcasted.	 	

	

Location Information Sharing

GeoAODV distributes location information in the network through the use of AODV

control messages. For that purpose, internal OPNET data structures that represent control

information carried by the RREQ and RREP packets were modified. Specifically, the

AodvT_Rreq and AodvT_Rrep data structures were modified to include the following

information: the value of the flooding angle (i.e., the request level), the GPS coordinates

of the originator, and the GPS coordinates of the destination node. This code can be seen

in Appendix B. The new structure of an RREQ packet is shown in Figure 4.2. To

properly create and process the new RREP and RREQ packet formats, two new functions

	 41	

were added in the aodv_pkt_support.ex.c OPNET external support file. These functions

are known as aodv_pkt_support_rreq_option_create_geo and

aodv_pkt_support_rrep_option_create_geo. Note that the AODV HELLO messages use

the same header fields as the RREP messages and thus also carry location information. A

HELLO message is simply an RREP packet with its IP TTL header field set to 1.

	 42	

	

Figure 4.2 The RREQ Packet Structure used in the Simulation

LAR assumes that all nodes in the network have access to location information and to the

traveling speed of all other nodes in the network. OPNET offers a data definition sub-

package, known as oms_data_def, which was used to model this behavior. This sub-

package can be used to manage a global database that is shared by all nodes in the

simulation. To implement the ubiquitous availability of LAR’s geographical information,

	 43	

the AODV process model was modified to have each node record its coordinates and

traveling speed in the global database during the process initialization. Similarly, during

the simulation run, individual nodes periodically update this database with new values for

their coordinates and traveling speed. The periodicity of this update is a user-configurable

parameter and can be specified during simulation set-up.

Figure 4.3 The RREP Packet structure used in the Simulation

OPNET automatically creates a global attribute database. The AODV process model can

simply use this database as needed. Specifically, the oms_data_def_entry_insert function

was used to add an entry into a network-wide database and the

oms_data_def_entry_access function was used to retrieve specific information as needed.

The entries in the global attribute database are keyed based on the node’s IP address.

	 44	

Unlike LAR, GeoAODV nodes maintain their own local database to store discovered

location information. This database is called the GeoTable and it is populated during the

route discovery phase and through periodic HELLO messages. The GeoTable is

implemented as a hash map that stores node locations and is indexed by the node’s IP

address. This table is updated through the additional information (i.e., coordinates of the

originator and destination nodes) carried in the modified RREQ and RREP packets. The

GeoTable data structure is modeled after an AODV routing table and is defined in the

aodv.ex.h header file. This file contains definitions of various data structures, including

the AODV routing table. The AODV routing table is defined as a C structure called

AodvT_Route_Table with the entries defined as AodvT_Route_Entry. The AODV routing

table keeps track of all valid routes to potential destination nodes in the network. Each

time a new route is discovered, AODV updates its routing table and the common IP

forwarding table. This functionality was modified to additionally insert destination

coordinates into the GeoTable upon route discovery. OPNET generally implements

packet forwarding within the IP module, which relies on the common IP forwarding table

to determine the next hop address. The common IP forwarding table is updated by active,

possibly different routing protocols used in the simulation study.

AODV also maintains a separate hash map indexed by the destination node’s IP address,

which keeps track of all requests that are originated-by and forwarded-by this node. The

AODV request table is implemented in the C structure called AodvT_Request_Table. This

table keeps track of all requests that were initiated by a node. It also allows the node to

determine if it should generate a new request when an application data packet arrives and

	 45	

there is no known route to the destination. If a request for the packet’s destination was

already generated, then the packet is simply queued; otherwise, AODV generates a new

request. Each entry in the AODV request table consists of such information as request id,

insertion time, current TTL value, number of retries, etc. These table entries are

implemented as the AodvT_Orig_Request_Entry C structure. This data structure was

modified to also keep track of the flooding angle value used during the most recent round

of the route discovery process. If the current route discovery round fails to find a route to

the destination, then the flooding value stored in the AODV request table is increased and

the node attempts another round of route discovery.

The AODV request table is used in a similar fashion to implement the AODV expanding

ring technique, where the node increases the TTL value in the generated route request

packet after each failed attempt to discover a route to the destination [18]. The AODV

request table is also used to identify duplicate RREQs that arrive at the node. The

information about each RREQ that arrived at the node is stored in the AODV Route

Request Table. Each subsequent request with the same id is simply discarded. Note that

in broadcast environments such as a MANET, it is very likely that after forwarding (i.e.,

broadcasting) an RREQ packet, the node will receive duplicates of the same packet as

they are forwarded (i.e., rebroadcasted) by the node’s neighbors.

Lastly, AODV stores a hash map that keeps track all of the neighboring nodes located

one-hop away. This table is called the connectivity table and is implemented as a C

structure named AodvT_Conn_Info. The connectivity table is populated using periodic

	 46	

HELLO messages. It is indexed using the node’s IP address and contains the time at

which the most recent HELLO message from that node was received. This table was not

modified during implementation.

Geo-Assisted Routing Implementation

Creating and maintaining multiple supporting data structures described above was

necessary in order to implement Location-Aided routing protocols. The logic for dealing

with RREQ and RREP packet arrivals also required modification. Specifically, the

following function responsible for handling control packet arrivals were updated in the

aodv_rte process model: aodv_rte_rreq_pkt_arrival_handle and

aodv_rte_rrep_pkt_arrival_handle.

When an RREQ packet arrives, AODV checks if the packet should be rebroadcasted. The

internals of the aodv_geo_rebroadcast function use the information retrieved from the

message to make the appropriate decision about rebroadcasting the packet. This code can

be found in Appendix C. A different mechanism is employed depending on the types of

the routing protocols used in the simulation:

• AODV – the node conducts regular AODV processing and rebroadcasts the packet

only if the packet is not a duplicate and the node does not know the route to the

destination.

• LAR Zone – in addition to regular AODV processing, the node verifies that it is

within the LAR request zone, before rebroadcasting the packet. This is

accomplished in several steps. First, the location coordinates for the originator

	 47	

and destination nodes, as well as the traveling speed of destination node, are

retrieved from the global table. Next, the request zone is computed. Finally, a

determination is made as to whether the current node is located within the

computed request zone. This is all implemented in the function called

aodv_geo_LAR_within_request_zone.

• LAR Distance – in addition to regular AODV processing, the node verifies that it

is located closer to the destination than was the previous node, before

rebroadcasting the packet. This is accomplished by calculating the distance from

previous node to the destination node and the distance from the current node to

the destination node and finally comparing these values. This logic is

implemented in the function called aodv_geo_LAR_distance.

• GeoAODV – in addition to regular AODV processing, the node verifies that it

belongs to the GeoAODV request zone, before rebroadcasting the packet. This is

accomplished in several steps. First, the location coordinates of the originator and

destination nodes are retrieved, as well as the flooding angle from the arriving

RREQ packet. Next, the GeoAODV request zone is computed. Finally, a

determination is made as to whether the current node is located within the request

zone. This is all implemented in the function called aodv_geo_compute_angle.

• GeoAODV Rotate – in addition to regular AODV processing, the node verifies

that it belongs to the GeoAODV Rotate request zone, before rebroadcasting the

packet. This is accomplished in several steps. First, the location coordinates for

the previous and destination nodes are retrieved, as well as the flooding angle

from the arriving RREQ packet. Next,the GeoAODV request zone is computed.

	 48	

Finally, a determination is made as to whether the current node is located within

the request zone. This is all implemented in the function called

aodv_geo_compute_angle.

	 49	

Chapter 5

Simulation Study

	

In order to evaluate and compare the performance of GeoAODV with that of other

MANET routing protocols, a series of simulation studies were executed. Each series was

configured with a different set of model attribute values and simulated different network

conditions. Specifically, in this study the performance of AODV, GeoAODV Static,

GeoAODV Rotate, LAR Zone, and LAR Distance in the MANET network were studied

with the number of communicating nodes and traveling velocities being varied.

Figure 5.1 Network Topology used in the Simulation Study

	 50	

Simulation Setup

The network topology used in this simulation study is depicted in Figure 5.1. It consisted

of fifty WLAN nodes randomly placed within an area of 1,500 meters by 1,500 meters.

The study was parameterized along two sets of model attributes: the number of

communicating nodes and traveling velocity. Specifically, the number of communicating

nodes was varied between 2, 5, 10, 20, and 30, while the node traveling velocity was set

to: 0 meters/second (stationary nodes), 5 meters/second, 10 meters/second, and a random

value which was obtained using a uniform distribution in the interval [0, 20]. Thus, 20

different network settings for each of five routing protocols were examined. This created

a total of 100 unique scenarios. Furthermore, each of the unique scenarios was executed

six times. The results for that scenario were averaged in order to acquire a single, more

accurate figure. The upshot was a total of 600 simulation runs, which took close to 120

hours to complete on a Windows XP machine with 2.4 GHz dual-core CPU and 3 GB of

RAM.

When configuring communicating nodes, each source-destination pair was randomly

selected. Every communicating node was configured to wait 100 seconds before

transmitting any data, in order to allow other network protocols to initialize and distribute

any necessary protocol information throughout the network. The nodes were configured

to move according to the Random Waypoint model. In this model, a node starts by

pausing for a random amount of time. It then selects a random direction within the

network domain and moves in that direction with a specified velocity. The node

continues to repeat this process. In this simulation study, the pause time was determined

	 51	

using an exponential distribution with a mean outcome of ten seconds. Once the node

reaches the boundary of the network domain, it will redirect itself and continue traveling

within the confines of the specified 1500 meters by 1500 meters network.

Figure 5.2 Summary of WLAN configuration

Each node in the simulation study was represented with the manet_station node model,

which is typically used to simulate Wireless LAN (WLAN) nodes. The default values for

	 52	

all of the WLAN configuration parameters of the nodes were used in this simulation

study. A summary of WLAN configuration settings is provided in Figure 5.2.

Table 5.1 Summary of Node Configuration

Configuration	 Parameter	 Value	

Channel	 Data	 Rate	 11	 Mbps	

Transmit	 Power	 0.0005	 Watts	

Packet	 Reception	 Power	 Threshold	 -‐95	 dBm	

Start	 of	 Data	 Transmission	 Normal	 (100,	 5)	 seconds	

End	 of	 Data	 Transmission	 End	 of	 simulation	

Duration	 of	 Simulation	 300	 seconds	

Packet	 Inter-‐Arrival	 Time	 Exponential	 (1)	 second	

Packet	 Size	 Exponential	 (1024)	 bytes	

Mobility	 Model	 Random	 Waypoint	

Pause	 Time	 exponential(10)	

Destination	 Random	

Communicating nodes were configured to start transmission after roughly 100 seconds

had elapsed within the simulation. The actual time was computed using a normal

distribution with a mean outcome of 100 seconds and a 5 second variance. Nodes

continue sending data until the end of simulation. The source nodes generated a packet of

approximately 1,024 bytes every second. The actual packet size and packet inter-arrival

times were computed using an exponential distribution. A summary of key MANET

configuration parameters for this simulation study is presented in Table 5.1.

	 53	

Finally, both versions of the GeoAODV protocol were configured such that the initial

flooding angle value was set to 90 degrees. The flooding angle value was incremented by

90 degrees after each unsuccessful route discovery attempt, until GeoAODV ultimately

reverts to regular AODV (i.e., 360 degrees). If AODV fails to find a route, then

GeoAODV fails the route discovery process. The LAR protocols were configured to have

the MANET nodes publish their location and traveling velocities into a global database

once every second. The configuration parameters for the LAR distance protocol, α and β,

were set to 1 and 0, respectively. In this study, the default AODV configuration settings

were used. A summary of these configuration settings is presented in Figure 5.3.

Figure 5.3 Summary of AODV Node Configuration

	 54	

Analysis of the Results

A few simplifying assumptions were made in this simulation. For example, the end-to-

end delay associated with the retrieval of GPS coordinates was not accounted for. In this

evaluation of the GeoAODV protocols, the overhead introduced by the addition of new

fields in the RREQ and RREP packet headers were similarly disregarded. With respect to

the LAR protocols, the assumption was made that location information and traveling

velocities are available everywhere in the network at no additional cost. This study

primarily focused on the total amount of control traffic generated by each of the

examined protocols. The raw results can be found in Appendix D. The results of this

study suggest that all location-aided routing protocols outperform AODV by generating

significantly fewer control packets during route discovery. A summary of the collected

results is presented in Figures 5.4 – 5.8.

Figure 5.4 Number of Control Packets in Scenarios with 2 Communicating Nodes

0	
25	
50	
75	
100	
125	
150	
175	
200	

0	 5	 10	 random	

RR
EP
	 +
	 R
RE
Q
	 G
en
er
at
ed
	

Node	 Speed	 (m/s)	

2	 Communicating	 Nodes	

AODV	

LAR	 Distance	

LAR	 Zone	

GeoAODV	

GeoAODV	 Rotate	

	 55	

Specifically, the results show that the LAR Zone protocol consistently generates the

smallest number of control packets among all of the studied protocols, while GeoAODV

Rotate is a close second. This can be attributed to the fact that the simulation does not

account for the cost associated with retrieval of node coordinates and traveling speeds in

LAR Zone (i.e., these values are assumed to be available as needed). On the other hand,

GeoAODV makes no such assumption and dynamically distributes location information

during the route discovery process.

Figure 5.5 Number of Control Packets in Scenarios with 5 Communicating Nodes

Additionally, the nodes require some time to gather location information about the

location of other nodes in the network before location-aided improvements of GeoAODV

can begin being utilized. As a result, GeoAODV initially operates the same way as does

regular AODV. GeoAODV can only take advantage of the limited flooding optimization

after location information has been distributed in the network. In addition, it may take up

to 3 rounds of route discovery using different values of the flooding angle before

0	
100	
200	
300	
400	
500	
600	
700	
800	

0	 5	 10	 random	

RR
EP
	 +
	 R
RE
Q
	

Node	 Speed	 (m/s)	

5	 Communicating	 Nodes	

AODV	

LAR	 Distance	

LAR	 Zone	

GeoAODV	

GeoAODV	 Rotate	

	 56	

GeoAODV realizes that limited broadcast optimizations do not help. In this case, route

discovery is conducted using the AODV protocol. The LAR protocols, on the other hand,

revert to AODV after a single failure.

Figure 5.6 Number of Control Packets in Scenarios with 10 Communicating Nodes

The difference in performance between two LAR protocols can be attributed to how often

the protocols do not find a route to destination and thus are forced to conduct route

discovery using AODV. The search area of the LAR Distance protocol is very limited.

The current node rebroadcasts the RREQ message only if it is closer to the destination

than was the previous node. Thus, it is not surprising that LAR Distance fails to find a

route to the destination more frequently than does LAR Zone. As a result, the LAR

Distance protocol often behaves like AODV and generates a large number of control

packets. LAR Zone, on the other hand, conducts route discovery over a wide area and

thus is less likely to revert to AODV. This results in LAR Zone consistently

outperforming the LAR Distance protocol.

0	

500	

1000	

1500	

2000	

2500	

0	 5	 10	 random	

RR
EP
	 +
	 R
RE
Q
	 G
en
er
at
ed
	

Node	 Speed	 (m/s)	 	

10	 Communicating	 Nodes	

AODV	

LAR	 Distance	

LAR	 Zone	

GeoAODV	

GeoAODV	 Rotate	

	 57	

	

Figure 5.7 Number of Control Packets in Scenarios with 20 Communicating Nodes

Figure 5.8 Number of Control Packets in Scenarios with 30 Communicating Nodes

Comparing the GeoAODV protocols showed that GeoAODV Rotate consistently

outperforms GeoAODV Static. While both variations of GeoAODV exhibit roughly the

same number of failures at finding a route to the destination, GeoAODV Rotate

0.00	

1000.00	

2000.00	

3000.00	

4000.00	

5000.00	

6000.00	

0	 5	 10	 random	

RR
EP
	 +
	 R
RE
Q
	 G
en
er
at
ed
	

Node	 Speed	 (m/s)	 	

20	 Communicating	 	 Nodes	

AODV	

LAR	 Distance	

LAR	 Zone	

GeoAODV	

GeoAODV	 Rotate	

0	

2000	

4000	

6000	

8000	

10000	

0	 5	 10	 random	

RR
EP
	 +
	 R
RE
Q
	 G
en
er
at
ed
	

Node	 Speed	 (m/s)	 	

30	 Communicating	 	 Nodes	

AODV	

LAR	 Distance	

LAR	 Zone	

GeoAODV	

GeoAODV	 Rotate	

	 58	

dynamically reorients the direction of the request zone and thus excludes more nodes that

are unlikely to be part of a route to the destination. This results in GeoAODV Rotate

forwarding fewer RREQ packets through the network and thus introducing lower control

traffic overhead than does the GeoAODV Static protocol.

Collected results show that the control traffic overhead increases correspondingly with

the increase in the number of communicating nodes, as expected. What was surprising

was how all the protocols, except for LAR Zone, performed in the simulation scenario

with 30 communication nodes. As shown in Figure 5.8, LAR Distance, GeoAODV Static,

and GeoAODV Rotate generated almost the same amount of control traffic as did AODV.

Such behavior could be attributed to the fact that when there are many communicating

nodes, the chance of failing to find a route using limited broadcast increases. This would

cause these protocols to revert to regular AODV more frequently. As a result, all of the

advantages gained by successfully employing limited flooding are lost when the

protocols fail to find a route and have to conduct a network-wide flooding. LAR Zone

appears to be less susceptible to this problem and exhibits the best performance, as shown

in Figure 5.8. Nevertheless, the GeoAODV Rotate protocol consistently remains a

second-best option, outperforming all of the other protocols, except for LAR zone, in all

evaluated scenarios.

	

	 59	

Chapter 6

Conclusions

	

This research indicates that the GeoAODV Rotate protocol could be a viable option for

routing traffic in a MANET where the nodes are equipped with GPS devices. Specifically,

the results of the simulation study indicate that GeoAODV Rotate outperforms the

AODV, LAR Distance, and GeoAODV protocols. In many cases, its performance is

comparable to LAR Zone. It should also be noted that, in this simulation study, it was

assumed that LAR could retrieve location information instantaneously and that the delay

introduced by retrieving such information was unaccounted for.

One of the possible reasons for the performance differences between GeoAODV and

LAR Zone is the fact that LAR implementations assume location information to be

globally available on-demand. GeoAODV makes no such assumptions and dynamically

distributes location information during the route discovery phase. Also, GeoAODV must

distribute geographical information throughout the network before the geo-assisted

optimizations can be utilized. During the time that this information is being distributed,

GeoAODV must operate the same way as AODV. After having achieved this distribution,

GeoAODV will begin to take advantage of the limited flooding zone. Furthermore,

GeoAODV may go through the route discovery phase up to three times (potentially more,

if the flooding angle increment was set to a smaller value) using different values of the

flooding angle (i.e., 90°, 180°, 270°) before it gives up and conducts route discovery

using the AODV protocol (i.e., 360°). The LAR protocols, on the other hand, revert to

AODV after a single failure.

	 60	

The difference in the number of control packets generated between the LAR Distance and

LAR Zone protocols can be accredited to the fact that the LAR Distance protocol reverts

to the regular AODV route discovery process more often than does LAR Zone. The

search area for LAR Distance is very limited, (i.e., the LAR Distance node only

rebroadcasts an RREQ message if it is closer to the destination than was the previous

node). Thus, it is no surprise that LAR Distance does not find a route to the destination

more frequently than does LAR Zone. This ultimately causes LAR Distance to behave

like AODV and generate a relatively large number of control packets. On the other hand,

LAR Zone is not as restrictive and thus will revert to AODV less often. This results in

LAR Zone consistently outperforming the LAR Distance protocol.

GeoAODV Rotate also consistently outperformed GeoAODV (GeoAODV Static). While

both variations exhibit a similar number of failures at finding a route to the destination,

GeoAODV Rotate dramatically reduces the number of forwarded control packets by

dynamically adjusting the request zone during the route discovery process. Thus,

GeoAODV Rotate introduces fewer control packets into the network than does

GeoAODV Static.

Results show that there is a direct correlation between the number of communicating

nodes and the number of control packets traveling through the network. As the number of

communicating nodes increases, so too does the number of nodes that initiate the route

discovery procedure and generate control traffic. As expected, an increase in the number

	 61	

of communicating nodes corresponds to an increased presence of control traffic in the

network. It was surprising to observe that, in a simulation study with 30 communicating

nodes, the performances of GeoAODV Static and LAR Distance protocols were similar

to that of AODV, rather than to GeoAODV Rotate and LAR Zone. One possible

explanation for this behavior could be the increased likelihood for the GeoAODV Static

and LAR Distance protocols to fail to find a route and revert to AODV in the high-traffic

simulation. Overall, GeoAODV Rotate was consistently the second-most efficient routing

choice and is the clear option in networks where geographical information is not

available on-demand and must be distributed.

Future Work

While this study has been completed, there are numerous directions for further

investigation of location-aided routing. Specifically, it would be interesting to see how

GeoAODV Rotate performs in different environmental settings. Additionally, there is a

need to develop mechanisms for more accurate incrementing of the flooding angle value

after route discovery failures. Future studies could rerun created simulation models with a

larger number of repetitions (each with a different seed value), and further analyze the

collected results. A study examining the performance of the GeoAODV Rotate during the

pre- and post-convergence periods and how fast GeoAODV Rotate converges to a stable

state could shed light on how GeoAODV Rotate compares to LAR Zone once the

network has converged. Studying how accurately GeoAODV Rotate distributes location

information in the network could help improve the performance of the protocol.

	 62	

Additionally, a new study of location-aided routing could focus on other aspects of

protocol performance (e.g., the number of route discovery failures, the time to find a

route to destination). It may focus on possible optimizations of the GeoAODV Rotate

protocol, including a more intelligent selection of the initial value of the flooding angle

and dynamically adjusting the flooding angle at intermediate nodes (i.e., increasing the

flooding angle value when an intermediate node knows that there are no neighboring

nodes within the request zone defined by the flooding angle). Another direction that

research could take is exploring improvements to the LAR protocols. This would allow

for increasing the search area after a route discovery failure, instead of immediately

reverting back to AODV. One possibility would be for LAR Distance to adjust the values

of configuration parameters α and β (seen in Figure 2.2) or for LAR Zone to expand the

request zone by transmitting the source node coordinates as if the source node is located

farther away from the destination node than it really is. Lastly, the study of location-aided

routing could be expanded to other protocols (e.g., the Greedy Perimeter Stateless

Routing (GPSR) protocol [23], the Geographical Routing Protocol (GRP) [24]).

	 63	

References

[1] J Li, C Blake, D De Couto, H Imm ,L R Morris, “Capacity of Ad Hoc Wireless
Networks”, Proceeding MobiCom '01 Proceedings of the 7th annual international
conference on Mobile computing and networking, pp. 61-69, 2001

[2] Perkins, C.; Belding-Royer, E.; Das, S. (July 2003). Ad hoc On-Demand Distance
Vector (AODV) Routing. IETF. RFC 3561. Retrieved 2012-01-26.

[3] Y. Ko and N. H. Vaidya, “Location-aided routing (LAR) in mobile ad hoc networks,”
Wireless Networks, 6(4), July 2000, pp. 307-321.

[4] Young-Bae Ko and Nitin H. Vaidya, “Flooding-Based Geocasting Protocols for
Mobile Ad Hoc Networks.” Mobile Networks and Applications archive, Volume 7,
Issue 6, December 2002, Pages 471 – 480

[5] Sidi-Mohammed Senouci and Tinku Mohamed Rasheed, “Modified Location-Aided
Routing Protocols for Control Overhead Reduction in Mobile Ad Hoc Networks,”
Telecommunications, 2003. ICT 2003. 10th International Conference on, 23 Feb
23rd 2003 - Mar 1st 2003

[6] Jun Sen, Kun Yang, and Shaochun Zhong, “A Prediction Based Location Update
Algorithm in Wireless Mobile Ad-Hoc Networks,” International Conference on
Computer Networks and Mobile Computing, 2005

[7] Jiwei Chen, He Zhou, Yeng-zhong Lee, Mario Gerla, and Yantai Shu, “AODV-DFR:
Improving Ad Hoc Routing Scalability to Mobility and Load, “2006 IEEE
International Conference on Mobile Adhoc and Sensor Systems (MASS), , Oct. 2006

[8] Jiwei Chen, Yeng-Zhong Lee, He Zhou, Mario Gerla, and Yantai Shu, “Robust Ad
Hoc Routing for Lossy Wireless Environment,” Military Communications
Conference, 2006. MILCOM 2006. IEEE. 23-25 Oct. 2006

	 64	

[9] Jiwei Chen, Mario Gerla and Yeng Zhong Lee, “TCP Performance over Geo-routing
for High Mobile Ad Hoc Networks,” Wireless Communications & Mobile
Computing, Volume 4 Issue 2, March 2004. Pages 203 – 222

[10] Konglin Zhu, Biao Zhou, Xiaoming Fu and Mario Gerla, “Geo-assisted Multicast
Inter-Domain Routing (GMIDR) Protocol for MANETs,” 2011 IEEE International
Conference on Communications (ICC), 5-9 June 2011

[11] V. Hnatyshin, and H. Asenov, "Design and Implementation of an OPNET model for
simulating GeoAODV MANET routing protocol", Proc. of the OPNETWORK 2010
International Conference, Session: Wireless Ad Hoc and Wireless Personal Area
Networks, Washington DC, August 2010.

[12] H. Asenov, and V. Hnatyshin, "GPS-Enhanced AODV routing," in Proceedings of
the 2009 International Conference on Wireless Networks (ICWN'09), Las Vegas,
Nevada, USA (July 13-16, 2009)

[13] Vasil Hnatyshin, Remo Cocco, Malik Ahmed, Dan Urbano, "Improving
Geographical AODV Protocol by Dynamically Adjusting the Request Zone," In
Proc. of OPNETWORK 2012 International Conference, Washington, DC, August
2012

[14] Remo Cocco, Vasil Hnatyshin, Malik Ahmed, Dan Urbano, "Improving
Geographical AODV Protocol by Dynamically Adjusting the Request Zone,"
presented at 35th IEEE Sarnoff Symposium, Newark, NJ 2012. Short paper

[15] V. Hnatyshin, M. Ahmed, R. Cocco, and D. Urbano, "A Comparative Study of
Location Aided Routing Protocols for MANET", In Proceedings of 4th IEEE IFIP
Wireless Days 2011 conference, Niagara Falls, Canada (PDF).

[16] S. Basagni, I. Chlamtac, V. R. Syrotiuk etal. “A distance routing effect algorithm for
mobility (DREAM).” The ACM/IEEE Int' l Conf on Mobile Computing and
Networking (MOBICOM), Dallas, 1998

	 65	

[17] T. Camp, J. Boleng, and L. Wilcox. “Location information services in mobile ad hoc
networks”. In Proceedings of ICC, 2001.

[18] Vasil Hnatyshin, Hristo Asenov, and John Robinson, “PRACTICAL
METHODOLOGY FOR MODELING WIRELESS ROUTING PROTOCOLS
USING OPNET MODELER”,

[19] OPNET Modeler ver. 16.0. OPNET Technologies, Inc®, www.opnet.com last
visited 6/12/12.

[20] E. M. Royer and C. E. Perkins. An Implementation Study of the AODV Routing
Protocol, Proc. of the IEEE Wireless Communications and Networking Conference,
Chicago, IL, September 2000.

[21] C. E. Perkins and E. M. Royer. Ad hoc On-Demand Distance Vector Routing, Proc.
of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, New
Orleans, LA, February 1999.

[22] D. Espes, Z. Mammeri. Adaptive expanding search methods to improve AODV
Protocol, IST Mobile and Wireless Communications Summit, July 2005.

[23] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless
networks,” in MobiCom ’00: Proceedings of the 6th annual international conference
on Mobile computing and networking. New York, NY, USA: ACM Press, August
2000, pp. 243–254.

[24] OPNET Modeler 16.1 Documentation, OPNET Technologies, Inc., 2012.

	 66	

Appendix A Initiation Functions

// Purpose: Initialize global GeoAODV parameters
// In/Out: NONE
static void aodv_rte_geo_init() {
 Objid aodv_parms_id;
 Objid aodv_parms_child_id;
 Objid parent_id;
 char name[128];
 double x, y;
 double LAR_update_start_time;

 FIN (aodv_rte_geo_init());

 parent_id = op_topo_parent(own_mod_objid);
 op_ima_obj_attr_get(parent_id, "name", name);
 op_ima_obj_attr_get(parent_id, "x position", &x);
 op_ima_obj_attr_get(parent_id, "y position", &y);
 parent_id = op_topo_parent(parent_id);
 op_ima_obj_attr_get(parent_id, "name", name);

 /* Read the AODV Parameters */
 op_ima_obj_attr_get (own_mod_objid,
 "manet_mgr.AODV Parameters", &aodv_parms_id);
 aodv_parms_child_id = op_topo_child (aodv_parms_id,
 OPC_OBJTYPE_GENERIC, 0);

 // Read GeoType
 op_ima_obj_attr_get(aodv_parms_child_id, "Position-Based Routing",
 &geo_routing_type);

 op_ima_obj_attr_get(aodv_parms_child_id, "LAR Update Interval",
 &LAR_update_interval);
 op_ima_obj_attr_get(aodv_parms_child_id, "LAR Update Start Time",
 &LAR_update_start_time);

 // Attribute for GeoExpand.
 op_ima_obj_attr_get(aodv_parms_child_id, "GeoExpand Angle Padding",
 &angle_padding);

 op_ima_obj_attr_get(aodv_parms_child_id, "Node Location DB",
 &location_data_distributed);

 // Initialize location databases
 if (geo_routing_type != AODV_TYPE_REGULAR){
 op_intrpt_schedule_self (op_sim_time() + LAR_update_start_time,
 AODVC_LAR_UPDATE);

 aodv_geo_LAR_init(module_data_ptr, aodv_addressing_mode, x, y);
 }

 // The geo table is always created, whether we're using
 //distributed or centralized.
 geo_table_ptr = aodv_geo_table_create(aodv_addressing_mode);

 FOUT;
}

	 67	

// Purpose: This function performs initializations for LAR, including
// inserting the initial LAR_Data entries for the global
// database.
//
// In: module_data_ptr - a pointer to the node's module
// data (used to retrieve the IP. (usually retrieved
// like this: (IpT_Rte_Module_Data*) op_pro_modmem_access ())
// address_mode - the address mode we're using (this
// format will be used for the IPs used as keys for storing
// LAR_Data).
// x, y - the node's initial position.
void aodv_geo_LAR_init(IpT_Rte_Module_Data* module_data_ptr,
InetT_Addr_Family address_mode, double x, double y) {

 // The following variables are used to initialize
 // data for LAR updates.
 LAR_Data *lar_data;

 // Added to put a false entry in the central hello messages.
 // This is because nodes should insert its entry into the table
 // when it is about to send a hello messsage.
 LAR_Data *hello_message_database_invalid_data;
 int num_interfaces;
 int ifnum;
 cha address[INETC_ADDR_STR_LEN];

 FIN (aodv_geo_LAR_init(<args>));

 aodv_addressing_mode = address_mode;

 // Store initial position
 // You want to store the following information:
 // 1. x, y coordinates
 // 2. time when they were recorded
 // 3. velocity

 // Create the initial entry in the global database,
 // which will be updated at each LAR interrupt.
 lar_data = new_LAR_Data(x, y);
 hello_message_database_invalid_data =
 new_LAR_Data(DEFAULT_X, DEFAULT_Y);
 num_interfaces = inet_rte_num_interfaces_get (module_data_ptr);

 for (ifnum = 0; ifnum < num_interfaces; ifnum++) {
 // In case there are multiple interfaces at this node,
 // create an entry for each one referencing the same data
 // so that no matter which IP the data is pulled from,
 // the data will be the same.
 get_node_ip(address, module_data_ptr, ifnum);
 oms_data_def_entry_insert(LAR_OMS_CATEGORY, address, lar_data);
 oms_data_def_entry_insert(HELLO_OMS_CATEGORY, address,
 hello_message_database_invalid_data);
 }

 FOUT;
}

	 68	

Appendix B Modified AODV Packet Strucutres

/* Route Request Option */
typedef struct {
 Boolean join_flag;
 Boolean repair_flag;
 Boolean grat_rrep_flag;
 Boolean dest_only;
 Boolean unknown_seq_num_flag;
 int hop_count;
 int rreq_id;
 InetT_Address dest_addr;
 int dest_seq_num;
 InetT_Address src_addr;
 int src_seq_num;
 AodvT_LAR_Info geo_lar_options;
} AodvT_Rreq;

/* Route Reply Option */
typedef struct {
 Boolean repair_flag;
 Boolean ack_required_flag;
 int hop_count;
 InetT_Address dest_addr;
 int dest_seq_num;
 InetT_Address src_addr;
 double lifetime;
 double dst_x;
 double dst_y;
} AodvT_Rrep;

/* Encapsulate all GEO/LAR options */
typedef struct {
 Point2D src;
 Point2D prev;
 Point2D dst;
 int request_level;
 double velocity;
} AodvT_LAR_Info;

	 69	

Appendix C RREQ Rebroadcast Logic and Functions

static void aodv_rte_rreq_pkt_arrival_handle (Packet* ip_pkptr,
 Packet* aodv_pkptr, IpT_Dgram_Fields* ip_dgram_fd_ptr,
 IpT_Rte_Ind_Ici_Fields* intf_ici_fdstruct_ptr,
 AodvT_Packet_Option* tlv_options_ptr) {

 /* Code excluded for brevity */

 // Destroy the packet if we shouldn't rebroadcast.
 if (aodv_geo_rebroadcast(
 geo_lar_options->src.x, geo_lar_options->src.y,
 prev_x, prev_y,
 curr_x, curr_y,
 geo_lar_options->dst.x, geo_lar_options->dst.y,
 (double) ((geo_lar_options->request_level+1) * 90),
 angle_padding,
 geo_routing_type,
 geo_lar_options->velocity
) == OPC_FALSE) {
 op_pk_destroy (aodv_pkptr);
 manet_rte_ip_pkt_destroy (ip_pkptr);
 FOUT;
 }

 /* Code excluded for brevity */
}

// Purpose: Given positions of the nodes, flooding angle, and aodv
// type determine if the current node should rebroadcast
// RREQ or not
//
// In: orig_x, orig_y - position of the node that originated
// the RREQ
// prev_x, prev_y - position of the node where the RREQ was
// received from
// curr_x, curr_y - position of the node that received the
// RREQ
// dest_x, dest_y - position of the destination node
// flooding_angle - acceptable angle to forward the RREQ
// aodv_type - type of aodv being used
//
// Out: TRUE if the current node should rebroadcast the RREQ
// FALSE if the RREQ should be destroyed
Boolean aodv_geo_rebroadcast(
 // Coordinates of the node that originated RREQ
 double orig_x, double orig_y,
 // Coordinates of the node that send RREQ
 double prev_x, double prev_y,
 // Coordinates of the node that received RREQ
 double curr_x, double curr_y,
 // Coordinates of the destination node
 double dest_x, double dest_y,
 // Angle in degrees of the flooding angle
 double flooding_angle,
 // The maximum value by which the flooding angle
 // can expand (for Geo_Expand only)
 double angle_padding,

	 70	

 // Type of AODV being used
 int aodv_type,
 // The calculated velocity of the destination node (LAR)
 double dest_velocity) {

 double angle;

 FIN (aodv_geo_rebroadcast(<args>));

 if (flooding_angle >= MAX_ANGLE) {
 // We're flooding, so you have to rebroadcast.
 // This takes care of regular AODV too since flooding_angle will
 // always be 360 for regular AODV when it is computed in
 // aodv_geo_compute_expand_flooding_angle.
 FRET (OPC_TRUE);
 }

 // If we're not in broadcast mode, we can do what each type of AODV
 // would normally do.

 switch(aodv_type) {
 case (AODV_TYPE_LAR_DISTANCE):
 // if current node is at least as close as the previous node
 // from destination then rebroadcast RREQ (return true), else
 // drop (return false)
 FRET(aodv_geo_LAR_distance(prev_x, prev_y,
 curr_x, curr_y,
 dest_x, dest_y)
);

 case AODV_TYPE_GEO_STATIC:
 // GeoAODV implementation:
 // Compute the angle formed by the destination, source and
 // current nodes. If computed angle is not larger than flooding
 // angle (e.g. the value is carried via request level) then
 // forward RREQ, else drop RREQ

 // Check if this is not a broadcast
 if(flooding_angle < 360) {

 // Compute the angle formed by the destination node,
 // originating node, and current node. Since the angle may be
 // located on either side of the vector formed by the
 // source-destination nodes we need to multiply the computed
 // value of angle by 2 before comparing it to the value of the
 // flooding angle, so that flooding angle is evenly devided by
 // the line formed via source-destination nodes
 angle = 2 * aodv_geo_compute_angle(dest_x, dest_y,
 orig_x, orig_y,
 curr_x, curr_y
);

 if (angle > flooding_angle) {
 FRET(angle <= angle_padding)
 }
 }

 // This is NOT a broadcast or the angle formed by orig, curr,

	 71	

 // and dest node is less than flooding angle
 FRET(OPC_TRUE);

 case AODV_TYPE_GEO_ROTATE:
 // GeoAODV Rotate implementation:

 // Set flooding angle to initial value degrees, forward to all
 // neighbors in the search area formed by the flooding angle
 // if fails to find the route then increment flooding angle
 // until it reaches 360 degrees and morphs into regular AODV

 // NOTE: angle at the intermediate node is computed based on the
 // previous node location

 // Check if this is not a broadcast
 if(flooding_angle < MAX_ANGLE) {
 // Compute the angle formed by the destination node,
 // originating node, and previous node. Since the angle may be
 // located on either side of the vector formed by the
 // previous-destination nodes we need to multiple the computed
 // value of angle by 2 before comparing it to the value of the
 // flooding angle, e.g. flooding angle is evenly divided by
 // the line formed via prev-destination nodes
 angle = 2 * aodv_geo_compute_angle(dest_x, dest_y,
 prev_x, prev_y,
 curr_x, curr_y
);

 if (angle > flooding_angle) {
 FRET(OPC_FALSE);
 }
 }

 // This is NOT a broadcast or the angle formed by orig, curr, and
 // dest node is less than flooding angle
 FRET(OPC_TRUE);

 case AODV_TYPE_LAR_ZONE:
 FRET(aodv_geo_LAR_within_request_zone(orig_x, orig_y,
 curr_x, curr_y,
 dest_x, dest_y,
 dest_velocity
));
 case AODV_TYPE_REGULAR:
 // Always rebroadcast in AODV
 FRET(OPC_TRUE);
 }

 FRET (OPC_TRUE);
}

// Purpose: Determine if the length of the vector formed by
// start-end points(vector SE) is
// greater than the length of the vector formed by middle-end
// points(vector ME)
//
// In: start_x, start_y - position of node where the RREQ was

	 72	

// generated (e.g. previous node, not
// an originator)
// mid_x, mid_y - position of node that receives the RREQ
// end_x, end_y - position of the destination node
//
// Out: True, if length(SE) >= length (ME)
// False, otherwise
Boolean aodv_geo_LAR_distance(double start_x, double start_y,
 double mid_x, double mid_y,
 double end_x, double end_y) {

 FIN (aodv_rte_rreq_within_distance(<args>));

 if (aodv_geo_vector_length(start_x, start_y, end_x, end_y) >=
 aodv_geo_vector_length(mid_x, mid_y, end_x, end_y)) {
 FRET(OPC_TRUE);
 }

 FRET(OPC_FALSE);
}

// Purpose: Compute the angle SME formed by three points:
// start (S), middle (M), end (E)
//
// In: start_x, start_y -- position of starting point S
// mid_x, mid_y -- position of the middle point M
// end_x, end_y -- position of ending point E
//
// Out: A value of the angle formed by the points S, M, E in units
// of degrees
double aodv_geo_compute_angle(double start_x, double start_y,
 double mid_x, double mid_y,
 double end_x, double end_y) {

 double vector_MS_x;
 double vector_MS_y;

 double vector_ME_x;
 double vector_ME_y;

 double angle_form_numer;
 double angle_form_denom;

 double angle;

 FIN (aodv_geo_compute_angle(<args>));

 vector_MS_x = mid_x - start_x;
 vector_MS_y = mid_y - start_y;

 vector_ME_x = mid_x - end_x;
 vector_ME_y = mid_y - end_y;

 angle_form_numer = (vector_MS_x * vector_ME_x) +
 (vector_MS_y * vector_ME_y);

 angle_form_denom =

	 73	

 aodv_geo_vector_length(mid_x, mid_y, start_x, start_y) *
 aodv_geo_vector_length(mid_x, mid_y, end_x, end_y);

 angle = acos(angle_form_numer / angle_form_denom) * (180 / PI);

 FRET(angle);
}

// Purpose: This method returns whether or not the current node is
// within the request zone. The request zone will be as
// specified by LAR Zone
//
// In: src_x, src_y - the coordinates of the originating source
// node
// curr_x, curr_y - the coordinates of the node to test
// dest_x, dest_y - the coordinates of the destination node.
// radius - the velocity of the destination, or the radius of
// the expected zone per LAR1.
//
// Out: OPC_TRUE if the node is within the request zone and
// OPC_FALSE otherwise.
Boolean aodv_geo_LAR_within_request_zone(double src_x, double src_y,
 double curr_x, double curr_y,
 double dest_x, double dest_y,
 double radius) {

 // The corners of the rectangular request zone: ll = lower-left,
 // ul = upper-left, ur = upper-right, lr = lower-right.
 Point2D ll, ul, ur, lr;

 // The location of the current node.
 Point2D currentLocation;

 // This is the request zone rectangle made up of the four points
 // above.
 Rectangle requestZone;

 // The return value for this method (whether or not the current node
 // is contained within the request zone.
 Boolean contained;

 FIN (aodv_geo_LAR_within_request_zone(<args>));

 currentLocation.x = curr_x;
 currentLocation.y = curr_y;

 // The lower-left corner of the request zone is as far left and as
 // far down as possible.
 ll.x = min(src_x, dest_x - radius);
 ll.y = min(src_y, dest_y - radius);

 // The upper-left corner of the request zone must be as far left and
 // as far up as possible.
 ul.x = ll.x;
 ul.y = max(src_y, dest_y + radius);

 // The upper-right corner of the request zone must be as far right
 // and as far up as possible.

	 74	

 ur.x = max(src_x, dest_x + radius);
 ur.y = ul.y;

 // The lower-right corner of the request zone must be as far right
 // and as far down as possible.
 lr.x = ur.x;
 lr.y = ll.y;

 //Encapsulate these four points into a rectangle.
 requestZone.lower_left = ll;
 requestZone.upper_left = ul;
 requestZone.upper_right = ur;
 requestZone.lower_right = lr;

 contained =
 aodv_geo_LAR_is_point_contained(¤tLocation, &requestZone);

 FRET (contained);
}

// Purpose: Simple helper function that determines whether or not the
// given Point is within the bounds of the provided Rectangle.
//
// In: location - the point to check.
// zone - the bounds to check against.
//
// Out: OPC_TRUE if the given location is contained within the zone,
// and OPC_FALSE otherwise.
Boolean aodv_geo_LAR_is_point_contained(Point2D *location,
 Rectangle *zone) {

 FIN (aodv_geo_LAR_is_point_contained(<args>));

 // assumes that all sides of the
 // rectangle are parallel to their respective axes

 // left of rectangle
 if (location->x < zone->upper_left.x)
 FRET (OPC_FALSE);

 // above the rectangle
 if (location->y > zone->upper_left.y)
 FRET (OPC_FALSE);

 // right of the rectangle
 if (location->x > zone->upper_right.x)
 FRET (OPC_FALSE);

 // below rectangle
 if (location->y < zone->lower_right.y)
 FRET (OPC_FALSE);

 // Otherwise, it's in the rectangle.
 FRET (OPC_TRUE);

}

// Purpose: Compute the length of the vector

	 75	

//
// In: start_x, start_y - starting point of the vector
// end_x, end_y - ending point of the vector
//
// Out: length of the vector
double aodv_geo_vector_length(double start_x, double start_y,
 double end_x, double end_y) {

 double x, y;

 FIN (aodv_geo_vector_length(<args>));

 x = end_x - start_x;
 y = end_y - start_y;

 FRET (sqrt(pow(x, 2.0) + pow(y, 2.0)));
}

	 76	

Appendix D Raw Results

2 Communicating Nodes
 Speed (m/s)
Protocol 0 5 10 Random
AODV 188.67 161.50 174.17 164.33
LAR Distance 141.33 134.67 141.17 138.17
LAR Zone 93.17 93.50 120.17 87.50
GeoAODV 156.33 163.50 144.33 115.83
GeoAODV Rotate 119.67 108.83 132.67 94.33

5 Communicating Nodes
 Speed (m/s)
Protocol 0 5 10 Random
AODV 714.17 592.17 632.00 654.17
LAR Distance 436.00 431.17 429.67 416.00
LAR Zone 260.33 324.00 286.67 279.00
GeoAODV 462.83 379.00 461.67 399.83
GeoAODV Rotate 342.67 377.50 388.67 378.50

10 Communicating Nodes
 Speed (m/s)
Protocol 0 5 10 Random
AODV 2283.67 2080.00 2185.83 2208.50
LAR Distance 989.83 1105.17 1305.00 1129.17
LAR Zone 623.33 759.50 764.17 704.83
GeoAODV 1235.67 1404.83 1144.83 1214.33
GeoAODV Rotate 720.67 786.00 862.67 816.00

20 Communicating Nodes
 Speed (m/s)
Protocol 0 5 10 Random
AODV 5570.33 4850.83 5066.67 5139.17
LAR Distance 4944.83 4232.83 4272.17 4577.17
LAR Zone 2177.67 1751.00 2043.33 1946.67
GeoAODV 4994.17 4198.00 4173.67 4367.50
GeoAODV Rotate 3069.00 2969.83 2555.83 2617.17

	 77	

30 Communicating Nodes
 Speed (m/s)
Protocol 0 5 10 Random
AODV 8411.00 7213.67 7537.00 7498.67
LAR Distance 8071.67 7563.00 7789.17 7628.50
LAR Zone 5359.50 4042.50 5218.17 4519.17
GeoAODV 8169.17 7496.33 8050.00 7508.83
GeoAODV Rotate 7153.00 6924.17 7183.33 6606.00

	 	

	Optimizing ad-hoc on-demand distance vector (AODV) routing protocol using geographical location data
	Recommended Citation

	Microsoft Word - Optimizing Ad-Hoc On-Demand Distance Vector (AODV) Routing Protocol using Geographical Location Data.docx

