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Abstract 

Remo	  Cocco	  
OPTIMIZING	  AD-‐HOC	  ON-‐DEMAND	  DISTANCE	  VECTOR	  (AODV)	  ROUTING	  

PROTOCOL	  USING	  GEOGRAPHICAL	  LOCATION	  DATA	  
2013	  

Dr.	  Vasil	  Hnatyhsin,	  Ph.D	  
	  

This	   thesis	   summarizes	   the	   body	   of	   research	   regarding	   location-‐aided	   routing	  

protocols	   for	  mobile	   ad-‐hoc	   networks	   (MANET).	   This	   study	   focuses	   on	   the	   use	   of	  

geographical	   location	  information	  to	  reduce	  the	  control	  traffic	  overhead	  caused	  by	  

the	   route	   discovery	   process	   in	   the	   ad-‐hoc	   on-‐demand	   distance	   vector	   (AODV)	  

routing	  protocol.	  During	  this	  process,	  AODV	  will	  flood	  the	  entire	  network	  with	  route	  

request	   packets.	   This	   introduces	   significant	   packet-‐handling	   overhead	   into	   the	  

network.	   This	   thesis	   introduces	   Geographical	   AODV	   (GeoAODV),	   which	   uses	  

geographical	   location	   information	   to	   limit	   the	   search	   area	   during	   the	   route	  

discovery	   process	   to	   include	   only	   promising	   search	   paths.	   Also,	   this	   thesis	  

benchmarks	   GeoAODV's	   performance	   against	   Location	   Aided	   Routing	   (LAR)	   and	  

examines	  four	  mechanisms	  for	  reducing	  the	  control-‐packet	  overhead	  introduced	  by	  

the	   route	   discovery	   process:	   LAR	   Distance,	   LAR	   Zone,	   GeoAODV,	   and	   GeoAODV	  

Rotate.	   OPNET	   Modeler	   version	   16.0	   was	   used	   to	   implement	   each	   of	   these	  

mechanisms	  and	   compare	   their	  performance	  via	  network	   simulations.	  The	   results	  

indicate	   that	   location-‐aided	   routing	   can	   significantly	   reduce	   the	   aforementioned	  

control-‐packet	  overhead.	  	  
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Chapter 1  

Introduction 

	  

Routing is one of the quintessential components of a computer network’s functionality. In 

a broad sense, it is the process of determining a path to a desired destination. For example, 

a network administrator could compute all the routes in the network and then deploy 

them to all nodes manually. However, this approach is impractical and very error-prone 

for even a small network. As a result, a large number of routing protocols have been 

created that dynamically determine the routes in the network without human involvement. 

Without routing protocols, routing information would have to be manually and 

continually maintained by network administrators; networks would have been unable to 

scale to the size that it must in order to operate within modern day networks. 

 

After route discovery, the data can be delivered to various destinations in the network on 

a hop-by-hop basis. As a packet travels through the network, each intermediate node 

(called a “hop”) independently determines the interface on which the packet has to be 

sent out in order to reach its destination. This process is known as forwarding. It utilizes a 

data structure known as a forwarding table, which maps a network or node address to the 

next hop on the route to a particular destination. Forwarding is achieved by consulting the 

forwarding table to determine the next node (i.e., the outgoing interface) to which a data 

packet must be sent in order to eventually arrive at the desired destination. This process is 

repeated at each intermediate node on the packet’s path. 
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The forwarding table is sometimes confused with the routing table. A routing table is 

built and maintained by a routing protocol deployed in the network. A router could be 

simultaneously connected to multiple networks, each of which may be running a different 

routing protocol. Each routing protocol process maintains its own routing table. The 

forwarding table is an aggregation of all of the routing tables at a particular router. Each 

time a routing protocol receives control information and updates its routing table, it also 

instructs the router to update the global forwarding table. Thus, a routing table contains 

routing information collected by a particular routing protocol. This information is internal 

to a particular routing protocol process and may be used only by that process. On the 

other hand, a forwarding table contains routing information collected by all the routing 

processes deployed on a node. It is used to determine where an arriving packet ought to 

be forwarded to next. Colloquially, the terms routing table and forwarding table are used 

interchangeably. This study will adhere to that convention in order to avoid confusion. 

 

Table 1.1 A Sample Forwarding Table 

Address Next Hop 

Default 150.250.64.1 

150.250.64.0/24 150.250.64.69 

224.0.0.0/8 150.250.64.69 
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The primary intent of any routing protocol is to build and maintain the routing and 

forwarding tables. A routing protocol is a set of rules that defines how nodes should 

interoperate and exchange data in order to build routing tables and ultimately achieve 

efficient end-to-end forwarding. Some popular routing protocols are Open Shortest Path 

First (OSPF), Intermediate System to Intermediate System (IS-IS), and Interior Gateway 

Routing Protocol (IGRP). 

 

Generally, routing protocols are classified into one of two categories: Link-State or 

Distance-Vector. In link-state routing algorithms, each node acts independently to map 

the entire network topology as a graph. This is achieved by sending information about 

each node’s neighbors to all other nodes in the network.  Each node then uses the graph 

of the network topology it has created to compute the most efficient route to each 

destination in the network.  

 

In contrast to link-state algorithms, distance-vector algorithms do not distribute routing 

information to all the nodes in the network. Instead, each node only informs its neighbors 

about topological changes in the network. These changes are represented as an array of 

distance-vectors (i.e., known distances from the current node to each node in the 

network). As a result, distance-vector algorithms are considered computationally simpler 

and create less control traffic overhead than do the link-state algorithms. 
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An ad-hoc network is a network that can operate in an environment without preexisting 

infrastructure and allow for minimal configuration during deployment [1]. In an ad-hoc 

network, each node acts independently both as an end node and as a router. Each node 

may send, receive, and forward data traffic. These attributes are very desirable in areas 

where a network is needed but in which no prior infrastructure exists (e.g., search and 

rescue, disaster relief systems, military operations). 

 

A Mobile Ad-hoc NETwork (MANET) is a wireless ad-hoc network in which nodes may 

move. Consider an area that was just stricken by a natural disaster (e.g., hurricane, 

tornado, tsunami). Natural disasters can wipe out existing networking infrastructure, 

making communication in the affected area difficult or impossible. The ability of a 

MANET to function in areas with no prior infrastructure makes them extremely useful in 

disaster scenarios. However, mobility and lack of infrastructure also present an 

interesting problem in terms of routing, for which specialized routing protocols are 

needed.  

 

Routing protocols in ad-hoc networks can be classified into three different categories: 

proactive, reactive, or hybrid. Proactive routing protocols will actively seek routes to 

destination nodes, even if there is no traffic traveling through the network. A proactive 

routing protocol seeks routes in anticipation that they will be needed later. The advantage 

to proactive routing protocols is that routes are readily available as soon as there is data to 

transmit. However, they may result in unnecessary overhead when searching for routes 
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that will never be used. In a MANET environment where computing resource and 

bandwidth are scarce, this could be a major deficiency that will prevent the protocols 

from being widely deployed.  

 

On the other hand, reactive protocols only compute routes on demand (i.e., only when a 

node has data to transmit and the path to the destination is unknown). The advantage of 

reactive routing protocols is that routes are only computed when they are needed, which 

minimizes the amount of control overhead introduced into the network. However, the 

data has to wait while the routing protocol searches for the route. Hybrid routing 

protocols achieve optimal performance by combining the advantages of reactive and 

proactive approaches.  

 

There are a large number of routing protocols for MANET environments including 

Dynamic Source Routing (DSR), Zone Routing Protocol (ZRP), Optimized Link State 

Routing (OLSR), and Ad-hoc On-demand Distance Vector routing (AODV). This work 

studies the performance of the AODV protocol and various optimizations that reduce the 

control message overhead through the use of geographical location information. 

 

AODV, as the name implies, is a reactive distance-vector routing protocol. AODV 

consists of two primary phases: route discovery and route maintenance. The route 

maintenance phase is responsible for removing outdated or broken path entries from the 
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routing table and is of no interest to this study. This work examines the route discovery 

phase, which utilizes a flooding technique to locate a path to the destination.  

 

AODV only initiates route discovery when a node, often referred to as the originator, 

receives data from the application layer that is to be delivered to some destination for 

which there is not a known route. The originator starts the route discovery phase by 

broadcasting a Route Request (RREQ) message. The RREQ message is rebroadcast by 

each intermediate node until it reaches either the destination node or a node with a fresh 

route to the destination. At that point, the node generates a Route Reply (RREP) message 

back to the originator. The route discovery phase terminates when an RREP message that 

contains a route to the destination arrives at the originator node. As the RREP traverses 

the network back to the originator node, it retraces the path of the RREQ message, which 

was recorded by the intermediate nodes as the RREQ message was traveling through the 

network. Similarly, intermediate nodes that receive an RREP message update their 

routing tables with the route to the destination node. Once the route discovery phase 

completes, the originator node sends data to its destination over the newly discovered 

path.  

 

Once a route has been discovered and stored, it will only remain in a routing table for a 

finite amount of time. When a route is stored, it is initially marked as active. Active 

routes will remain useable either for the Lifetime value received in the RREP message or 
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for a minimum preconfigured default time period. When the timer eventually expires, the 

routes are marked for deletion and are scheduled to be removed from the routing table.  

 

AODV uses three types of control packets during the route discovery phase. These 

control packets are Route REQuest (RREQ), Route REPly (RREP), and Route ERRor 

(RERR) [2]. An RREQ packet is used anytime AODV needs to discover a route to a 

specific node. An RREP is used to reply to an RREQ with a definitive route to the node. 

RERR packets are used to disseminate various error details to other nodes in the network. 

AODV maintains route entries of its active one-hop neighbors by periodically 

broadcasting Hello messages with the IP header TTL field set to one. Hello messages 

have the same format as the RREP messages and can carry the IP address and the 

destination sequence number for the current node. The sequence number is a unique 

counter created and maintained by each AODV-capable node. This value is included in 

all messages that carry routing information. The sequence number represents the   

freshness of carried data and also prevents routing loops. An AODV node with multiple 

routes to the same destination is required to select the freshest route (i.e., the route that 

has the largest destination sequence value).  An AODV node increments its sequence 

number each time it initiates a new route discovery process and whenever it generates an 

RREP message. This ensures that other nodes in the network can differentiate between 

RREP messages generated from different route request phases. 
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In order to reduce the overall control message overhead, AODV employs an expanding 

ring search technique. The originator node sets the TTL field in the IP header of the 

RREQ message to a certain initial value. If the route discovery process fails to find a path 

to the destination, then the originator node increments the value of the TTL field and 

repeats the process again. This continues until either the originator node finds a path to 

the destination or the whole network has been searched without finding a path (i.e., an 

RREQ message with IP TTL field set to the preconfigured TTL threshold value was sent 

out, but a route to the destination was not found). This search technique prevents 

unnecessary network-wide dissemination of RREQs. 

	  

Despite the expanding ring search technique, the route discovery process in AODV often 

results in a large number of control packets traveling through the network. This consumes 

already scarce network resources (e.g., bandwidth, processing power, battery power). 

Furthermore, anytime there is a demand for a route that is either marked for deletion or 

does not exist in the routing table, the routing protocol must rediscover the path. This can 

be costly in volatile MANETs, as the constant change in the topology of the network 

frequently causes routes to become unavailable. Continuously re-computing routes 

creates substantial overhead in the network, which will eventually lead to performance 

degradation. Many enhancements have been suggested to cut down on the number of 

control packets. Among these are approaches that use the geographical coordinates of 

each node to predict which paths are most promising. Using geographical coordinates to 

optimize routing is known as location–aided or geo-assisted routing.  
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This study examines AODV optimizations that mitigate the aforementioned issues by 

reducing the scope of the control message broadcast during the route discovery phase. 

Chapter 2 provides an overview of LAR and other related protocols. Chapter 3 discusses 

in detail our proposed location-aided improvements to AODV protocol called GeoAODV. 

The implementation of GeoAODV is covered in Chapter 4. Chapter 5 describes the 

comparison study of GeoAODV and other location-aided routing protocols using OPNET 

Modeler Simulation package. The study is concluded in Chapter 6.  
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Chapter 2 

 Related Works 

	  

Introduction 

Geo-assisted routing utilizes the geographical location of the nodes to decrease the 

amount of overhead in the network, which is created by control packets used during the 

route discovery process. There are numerous geographically-aided routing protocols for 

MANETs including Location Aided routing [3, 4], Modified Location Aided Routing [5], 

Prediction Based Location Update Algorithm [6], AODV Directional Forward Routing [7, 

8, 9], Geo-Assisted Multicast Inter-Domain routing [10], and Geographical-AODV [11, 

12, 13, 14, 15].  

 

Location Aided Routing (LAR) 

Location Aided Routing (LAR) is an extension of the AODV protocol for reducing the 

control message overhead by using geographical location information [3, 4]. LAR relies 

on knowing the destination node’s coordinates and velocity. There are two main 

variations of LAR known as LAR Zone and LAR Distance. These approaches are 

described below. 

 

LAR Zone 

LAR Zone uses geographical location information to identify the area that is likely to 

contain the path to the destination. The LAR Zone approach defines two areas: the 
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expected zone and the request zone. The expected zone is the area where the destination 

node is most likely to be located at the time of route discovery. It is defined as a circular 

area centered at the destination’s last known location. The radius of the expected zone is 

the maximum distance that the destination node could have traveled since the time its 

location coordinates were obtained, as shown in Equation (2.1): 

r = v × (t1 – t0) (2.1) 

where, 

• r is the radius of the expected zone 

• v is the average traveling speed of the destination node 

• t0 is the time when the destination coordinates were obtained 

• t1 is the current time  

 

	  

Figure 2.1 Request Zone for AODV and LAR Zone protocols 
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The request zone is an area that is likely to contain the path to destination. It is defined as 

the smallest rectangle that contains the expected zone and has its sides parallel to the X- 

and Y-axes. A possible arrangement of the expected and request zones is shown in Figure 

2.1. In Figure 2.1 (a), the source node S is located outside the request zone. In Figure 2.1 

(b), the source node S is located within the expected zone for destination node D.  

 

Only the nodes within the request zone participate in the route discovery process and 

rebroadcast RREQ messages. Specifically, when an RREQ packet arrives at an 

intermediate node, the node first determines whether or not it belongs to the request zone 

using the data carried in the incoming RREQ message. This determines whether the 

regular AODV route discovery processing should then be performed. If the node is part 

of that search area (i.e., is in the request zone), then the RREQ packet is processed and 

possibly rebroadcast; otherwise, the packet is discarded.  
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Figure 2.2 Summary of LAR Distance Protocol 
	  

LAR Distance 

LAR Distance is another variation of location-aided routing protocol based on AODV. 

LAR Distance relies on the distance between the current node and the destination to 

determine if the RREQ should be rebroadcast. Consider the scenario illustrated in Figure 

2.2. When node N1 receives an RREQ from node N0, it checks if it is located closer to the 

destination than the node from which it received an RREQ (i.e., N0). If the distance 

between N0 and destination D is greater than the distance between N1 and D, then N1 

rebroadcasts the RREQ; otherwise, the message is discarded. Specifically, the RREQ 

message is forwarded only if inequality (2.2) holds true: 

 

 

 

N1	  

D	  

S	  

N0	  

|N1	  D|	  

|N0D|	  

N2	  

|N2	  D|	  

RREQ	  

Rebroadcast	  

	  
Discard	  

RREQ	  

RREQ	  

Rebroadcast	  

	  

Original	  RREQ	  

Broadcast	  	  

	  

N3	  
Discard	  

RREQ	  

|N3D|	  
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α × Dist (N0 D) + β ≤  Dist (N1 D)  (2.2) 

where, 

• α and β are configuration parameters 

• N1 is the node which received the RREQ 

• N0 is the node which forwards RREQ to N1 

• D is the destination node 

 

Modified Location Aided Routing 

Modified Location Aided Routing (MLAR) is a routing algorithm that optimizes LAR via 

several enhancements [5]. The first enhancement that MLAR makes is redefining the 

request zone area. While LAR calculates the request and expected zones relative to the 

X- and Y-axes, MLAR defines the request zone as the rectangle that is independent of the 

axes and relative to a line connecting the source and destination nodes. Figure 2.3 (a) 

shows an example of the MLAR rectangular shaped request zone. The source node 

determines the area of the MLAR request zone by computing the coordinates of the 

vertices in the MLAR request zone rectangle. These coordinates are computed relative to 

the line between source and destination and thus need to be translated into Cartesian 

coordinates before being used. MLAR relies on equations (2.3) and (2.4) to perform this 

translation, where (x1, y1) denotes the vertex coordinates and l denotes the distance 

between source and destination. 
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𝑥 = 𝑥!×(𝑦! − 𝑦!)/𝑙 + 𝑦!×(𝑥! − 𝑥!)/𝑙 + 𝑥!  (2.3) 

 

𝑦 = 𝑥!×(𝑥! − 𝑥!)/𝑙 + 𝑦!×(𝑦! − 𝑦!)/𝑙 + 𝑦!  (2.4) 

 

	  

Figure 2.3: Alternative Definition of the Request Zone: (a) Rectangular shaped  (b) 
Cone-shaped  

 

MLAR also makes use of fixed nodes, or posts, which are nodes that move very little or 

not at all. If one of these nodes exists in the request zone, then the route discovery 

process is performed in two steps. First, find a route to the post. Then, the post will finish 

the route discovery process from there. The hope is that the post already has a route to the 

destination. In the event of failure, MLAR will enlarge the request zone instead of 

immediately reverting to flooding.  
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MLAR also examined an alternative cone-shaped definition of the request zone, shown in 

Figure 2.3 (b). The cone-shaped request zone is defined via three lines Δ1, Δ2, and Δ3. 

Lines Δ1 and Δ2 originate at the source and are tangent to the expected zone. Line Δ3 

is perpendicular to the line between source and destination and travels through the 

destination node. In this variation of MLAR, only nodes that belong to the triangle 

defined by lines Δ1, Δ2, and Δ3 will participate in route discovery. The MLAR 

approach was shown to further reduce the overhead created in the network. Furthermore, 

the MLAR with a cone-shaped request area performed better than MLAR with a 

rectangular-shaped area. That is why the GeoAODV approach adopts the idea of a cone-

shaped request zone area. 

 

Geographical AODV (GeoAODV) 

Geographical AODV (GeoAODV) is an AODV-based routing protocol that utilizes the 

knowledge of a node’s location to reduce the route discovery overhead. GeoAODV 

employs an idea similar to that of MLAR with the cone-shaped request zone. However, 

unlike LAR protocols, GeoAODV relies on a distributed process to share location 

coordinates among the nodes in the network, instead of assuming that these coordinates 

are readily available. GeoAODV also limits the search area to a portion of the network 

that is likely to contain a route to the destination [4, 11]. By limiting the search area, 

GeoAODV decreases the amount of control traffic introduced into the network and thus 

improves the network’s overall performance. GeoAODV is described in detail in 

subsequent chapters. 
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Prediction-Based Location Update  

The Prediction-Based Location Update (PLU) algorithm [6] aims to improve upon 

current location update algorithms, which are used to distribute location data across a 

MANET and keep it up-to-date. Location update algorithms are also known as location 

update schemes or Location Information Services (LIS). The primary goal of any LIS is 

to reduce the number of Location Update Packets (LUP) sent into the network while still 

keeping a high level of accuracy with respect to location information. Therefore, these 

schemes are usually benchmarked on the accuracy of the location data distributed across 

the MANET and by the overhead introduced into the network.  There are three main 

approaches for providing location information services: Location Information Flooding 

(LIF), DREAM Location Service, and Simple Location Service [6].  

 

Table 2.1 A Sample Location Table 

Node Address Location Information  

(Cartesian coordinate) 

150.250.191.218 (15.6, 10.0) 

150.250.190.144 (30.0, 90.7) 

150.250.64.69 (-8.0, 109.6) 

 

In the LIF approach, all the nodes in the network keep a location table, which maps node 

addresses to location information. An exemplative mapping is shown in Table 2.1. This 

table is updated based on periodic broadcasts of location information by individual nodes. 
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This solution is simple and easily implemented. However, it relies on flooding, which 

consumes too many of the available resources in the network.  

 

DREAM Location Service (DLS) is an extension built on top of the Distance Routing 

Effect Algorithm for Mobility (DREAM) [16]. DLS uses the distance between two nodes 

to determine how frequently the nodes should send LUPs to one another. DLS classifies 

all nodes in the network into one of two distinct groups: nearby or faraway. It updates the 

location information of the nearby nodes more frequently than that of the faraway nodes. 

Faraway nodes move slower in relation to the node sending the updates and thus do not 

require frequent updates.  

 

Simple Location Service (SLS) performs the location information update identically to 

DLS, except for one variation [17]. Instead of a node sending only its own coordinates, 

each node broadcasts its entire location table to neighboring nodes. All downstream 

nodes merge the table received with their own table and also periodically share their 

location tables with their own neighboring nodes.  By reducing the frequency with which 

LUPs are sent, DLS and SLS reduce the amount of overhead in the network. 

 

The PLU algorithm relies on location prediction and one-hop broadcasting of location 

updates to decrease the control-packet overhead introduced by the routing protocol [6]. 

The algorithm uses a timer to trigger PLU to send updates using one of the 
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aforementioned LIF schemes. This algorithm is broken into two stages. In the first stage, 

the timer is calculated based on the range and velocity of the node. In the second stage, 

the timer is calculated based on how much the node is expected to move.  

 

The goal of the first stage is to carry out normal location updates. These updates are 

generated on a periodic basis. The amount of time between updates is a function of the 

transmission range and average velocity of a node. The idea is that the nodes with a long 

transmission range or low velocity generate updates less frequently, while the nodes with 

a short transmission range or high velocity are updated more frequently [6].   

 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙! =
!"#$%!"#$%
!×!!"#

 (2.6) 

 

where,  

• Interval1 is the interval of the first stage 

• Rangetrans is the node’s transmission range 

• vavg is the average speed of the node  

• α is a scaling factor.  
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While a longer update interval introduces fewer packets into the network, it also may lead 

to a situation where substantial changes in a node’s location are not propagated quickly 

enough. For this reason, PLU uses a second stage to distribute LUPs.   

 

The goal of the second stage is to trigger an update whenever a node’s location changes 

substantially. Using equations (2.7) and (2.8), PLU calculates a node’s predicted location 

and compares it against the previously predicted values. If the difference between the 

newly and previously calculated values is outside of a predefined threshold, then the node 

will broadcast a LUP containing its current location. The study showed that PLU was 

reasonably accurate; it had the lowest average location error for speeds greater than 6 m/s 

as compared to DLS, SLS, or flooding. Also, when PLU is used, 95% of location data in 

the network is less than 10 meters off from the actual location of a node.  

 

𝑥! = 𝑥! + 𝑣×(𝑡! − 𝑡!)×𝑐𝑜𝑠𝜃  (2.7) 

 

𝑦! = 𝑦! + 𝑣× 𝑡! − 𝑡! ×𝑠𝑖𝑛𝜃   (2.8) 

 

AODV-Directional Forward Routing 

AODV Directional Forward Routing (AODV-DFR) is another routing algorithm that 

takes advantages of location information to reduce the control traffic overhead. AODV-
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DFR is a hybrid routing algorithm that combines the ideas of proactive and reactive 

protocols with forward routing. Forward routing refers to the concept of storing the 

location of other nodes in the network in a node’s routing table. Each node keeps a 

direction cache, in addition to a routing table. The direction cache stores the last known 

traveling direction of the nodes in the network, along with an expiry time. In the AODV-

DFR approach, the nodes compute routes on-demand (i.e., reactively or as needed), while 

the routing updates are propagated in a proactive manner.  This approach allows AODV-

DFR to generate less control traffic overhead than conventional MANET routing 

protocols. 

 

Similarly to AODV, AODV-DFR starts the route discovery process only when there is 

data to transmit to a destination for which a path is currently unknown. However, AODV-

DFR nodes also periodically advertise their locations to their one-hop neighbors. During 

the route discovery process, AODV-DFR nodes maintain the reverse path to the source 

node by recording the information about the nodes from which the RREQ arrived (i.e., 

this node is the next hop on the path to the source). The recorded information also 

includes the traveling direction of the node, which is to be stored in the direction cache.  

 

The evaluation study showed that, by only exploring promising paths to the destination, 

AODV-DFR drastically reduces the amount of overhead introduced into a network in an 

environment with mobile nodes. When the nodes in the network are mobile, AODV-DFR 

generates about half as much traffic as AODV.   



	  22	  

 

Multicast and Geocast Routing in MANETs 

Multicast routing has emerged as an efficient means of communicating between large 

domains in MANETs. This is important when a message needs to reach a broad audience. 

For example, a search and rescue team may want to alert all of the volunteers that a 

missing person was found and that the search is over. However, finding a route to every 

node in a multicast group tree can introduce a larger amount of overhead than finding a 

route to a single node. This will ultimately degrade the performance of the network. In an 

ad-hoc network, multicast trees can become very complex. This makes it difficult for the 

multicast network to scale appropriately [10]. Several approaches have been explored to 

improve the performance in multicast environments such as Geo-Assisted Multicast 

Inter-Domain Routing (GMIDR), which relies on geo-routing and clustering to facilitate 

communication between the network domains. GMIDR employs elected group cluster 

heads (GCH) to provide communication to the entire multicast group. A multicast tree is 

built from the source node to each GCH, instead of to individual multicast group 

members. A GCH is responsible for receiving information from the source and delivering 

it to all the members of the multicast group. This approach was shown to significantly 

reduce the overhead associated with the multicast group management. 

 

Geocasting is a mechanism for sending messages to a specific geographical region, also 

known as a geocast region [4]. A simple method for achieving geocasting in MANET is 

to flood the geocast network region with data packets. The solution proposed in [4] relies 
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on the idea of LAR and employs geographical information to reduce the amount of 

overhead introduced into a network by the geocast flooding algorithms. Similar to LAR, 

this geocast solution defines a forwarding zone such that only the nodes within that area 

rebroadcast geocast packets to their neighbors. The geocast solution that employs a 

forwarding zone significantly reduces control traffic overhead and was able to provide 

accuracy of data delivery comparable to that of the regular geocast flooding.	  
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Chapter 3 

GeoAODV 

	  

Introduction to Geographical AODV 

Geographical AODV (GeoAODV)	   [11, 12, 13, 14, 15] is an extension of the AODV 

protocol, which, like the LAR protocol, attempts to reduce the amount of control message 

overhead during the route discovery process. GeoAODV is also a reactive protocol, 

which initiates the route discovery process only when the node has data to be transmitted 

to a destination for which a path is currently unknown. However, unlike AODV, 

GeoAODV conducts the route discovery only within a limited area. GeoAODV defines 

its search area in the same way as does the MLAR cone-shaped approach shown in 

Figure 2.3 [3].  

 

GeoAODV also defines the route discovery search area as a cone-shaped request zone, 

where the apex point is located in the position of the source node. However, GeoAODV 

determines the size of the cone-shaped area via a flooding angle. The source node 

dynamically controls the value of the flooding angle. MLAR assumes that the destination 

node coordinates and traveling speed, which are used to compute the expected zone and 

the cone-shaped request zone area, are readily available to everyone in the network. 

GeoAODV does not make this assumption. Instead, GeoAODV piggybacks location 

information onto control messages during the route discovery process. Effectively, 

GeoAODV dynamically distributes the node location information through the network 

during the route discovery process. Thus, GeoAODV initially performs the same way as 
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regular AODV. GeoAODV begins to search for a route to the destination in the cone-

shaped request zone only after the destination node’s location information has been 

distributed and the source node has GPS coordinates of the destination node. 

 

Another key difference between the MLAR protocol and GeoAODV is the dynamic 

adaptability of the cone-shaped area. If the path is not completely located within the 

request zone (i.e., if there is some constituent hop that is outside the zone), then MLAR 

fails to find a route to the destination. The authors of LAR and MLAR do not specify 

how the protocol should handle such an event. GoeAODV, on the other hand, 

dynamically increases the cone-shaped request zone angle, known as the flooding angle, 

until the protocol either finds a route to the destination or searches the whole network and 

determines that there is no such route. Note that the GeoAODV protocol operates the 

same way as does regular AODV once the flooding angle reaches 360 degrees. 

 

Overview of GeoAODV Operation 

The shape of the GeoAODV request zone can also be described as an isosceles triangle, 

where the source node is the vertex of the triangle and is located in the top corner 

opposite to the base (i.e., the source node is the origin point of the equal sides of the 

triangle). The destination node is located on the line that originates at the source node and 

is perpendicular to the base of the triangle. The width of the GeoAODV request zone (i.e., 

the isosceles triangle) is controlled via the angle between the equal sides. This protocol 

configuration parameter is denoted as α. Only the nodes located within the confines of 
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the GeoAODV request zone participate in route discovery (i.e., only the nodes within the 

request zone rebroadcast arriving RREQ packets). All the other nodes discard arriving 

RREQs. For example, Figure 3.1 illustrates an instance of GeoAODV where a RREQ 

from source node S arrives at an intermediate node N. Node N tries to determine if it 

belongs to the GeoAODV request zone for node S. In order to make this determination, 

an intermediate node N computes the angle θ that is formed between the source node, 

itself, and the destination. Since the source-destination vector always divides the flooding 

angle evenly, node N belongs to the request zone if angle θ is not larger than one half of 

the flooding angle α.  

 

θ ≤ 1
2×α (3.1) 

 

Thus, if inequality (3.1) holds, then node N is located within the request zone for source 

node S and will rebroadcast the RREQ packet. Otherwise, N is outside of the request 

zone and the RREQ will be discarded. The value of angle θ is computed according to 

equation (3.2), where SD denotes a vector between source node S and destination node D, 

SN denotes the vector between source node S and node N, and SD  and SN  are the 

absolute values of vectors SD and SN, respectively. 

 

θ = cos!! !"  ∙!"
!" × !"

   (3.2)  
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At the start of the route discovery process, GeoAODV sets the flooding angle α to some 

initial value. This initial value could be determined by the freshness of the destination’s 

GPS coordinates (i.e., the value of α increases proportionally to t!, the time passed since 

the last update of the destination’s location information). Once t!  crosses a certain 

threshold, the location information is considered stale. As a result α is set to 360 degrees 

and GeoAODV performs the same way as does regular AODV. Alternatively, the initial 

value of the flooding angle could be a function of the expected zone radius defined in 

equation (2.1).  

 

 

Figure 3.1 GeoAODV Protocol Operation 
 

Figure 3.1 illustrates an example of the GeoAODV protocol operation where source node 

S initiates the route discovery process in an attempt to find a path to destination node D. 
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Initially S uses the flooding angle with the value α1. The request zone defined by α1 is 

shown in Figure 3.1 as an isosceles triangle of a lighter grey color. During this round of 

route discovery, only intermediate node N1 rebroadcasts the RREQ packets. The 

remaining nodes are outside of the request zone defined by α1 and do not  participate in 

route discovery. These nodes (i.e., N2, N3, and N4) discard all arriving RREQs during 

this initial round. If the first round of route discovery fails, then the source node increases 

the flooding angle to some new value α2 and repeats the process again. During the 

second round of route discovery, the request zone is extended (shown in Figure 3.1 as a 

darker color isosceles triangle) and intermediate nodes N1, N2, and N3 rebroadcast 

RREQs. Intermediate node N4 discards all arriving RREQ packets, since it is located 

outside of the request zone defined by the flooding angle α2. 

 

Distributing Location Information in GeoAODV 

GeoAODV assumes that each node in the network knows its own position with precision 

through the use of a GPS-like device. However, GeoAODV nodes do not explicitly 

possess knowledge about the destination’s coordinates or traveling speed, and therefore 

must learn about other nodes’ positions during the lifetime of the network. The location 

information about other nodes in the network is obtained during the route discovery 

process. To store this information, each node in a GeoAODV network maintains a 

supplementary geographical location table, known as a GeoTable.  An entry in the 

GeoTable consists of: the location information (e.g., GPS coordinates), the freshness 

timer, the AODV sequence number, the identity of the destination node (e.g., IP address), 

and status. The freshness timer keeps track of when the node coordinates were last 
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updated, while the AODV sequence number allows an intermediate node to identify if the 

arriving control packet (e.g., RREQ, RREP) carries new location information. This 

process is similar to the manner in which the AODV protocol differentiates between new 

and old control packets. However, the GeoTable entries remain valid for longer periods 

of time than do the entries in the AODV routing table. This is because the location 

information can help determine the general direction in which the destination node may 

be located, even if a route to that destination has changed. Table 3.1 illustrates a possible 

GeoTable stored in a GeoAODV node. 

	  

Table 3.1 An example of a GeoTable 

IP Address Coordinates Timer Sequence Number Status 

192.168.0.8 (104.7, -365.7) 10 1234567220 Fresh 

192.168.0.77 (134.0, -59.1) 55 9446543201 Deleted 

192.168.0.90 (4.0, 256.8) 38 9446543201 Fresh 

192.168.0.234 (-47.2, 56) 13 7357907642 Stale 

	  

	  

The formats of RREQ and RREP packets were modified to carry additional information 

(e.g., the locations of the source and destination nodes, the flooding angle). This 

information is used to populate the GeoTable, as well as to determine if an intermediate 
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node should participate in route discovery. At the start of the route discovery process, the 

source node consults its GeoTable and generates an RREQ packet that will carry: the 

node’s own location information, the initial value of the flooding angle, and the last 

known location of the destination node. If the source node does not contain a GeoTable 

entry for the destination node, then the flooding angle is set to 360 degrees and 

GeoAODV shall operate in the same way as does regular AODV.  

 

Upon the arrival of an RREQ message, all nodes (even those that will discard the RREQ 

packet) update their GeoTables with the source node’s location information. An 

intermediate node only updates its GeoTable with the destination’s location information 

if the destination sequence number carried in the RREQ is larger than that stored in the 

node’s GeoTable. Otherwise, an intermediate node discards the destination coordinates 

carried in the RREQ packet. Similar processing occurs when an RREP is sent back. Each 

intermediate node updates its GeoTable with the source and destination location 

information carried in the packet. GeoAODV also utilizes periodic AODV Hello 

messages (which have the same header format as RREQ packets) to distribute location 

information among the neighboring nodes.  

 

Stale GeoTable entries are identified using the sequence number and freshness timer.  

The nodes periodically purge stale entries from the table, similarly to the manner in 

which AODV updates its routing table. This is done using two timers. The first timer is 

known as the freshness timer. It is used to identify when an entry becomes stale. When an 

entry becomes stale, the node changes the entry’s status to stale and starts the second 
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timer. Stale entries are eligible for deletion. When the second timer expires, the entry is 

marked for deletion and can be removed from the GeoTable. Each node periodically 

purges all the entries that are marked for deletion from the table. 

 

Generally, the GeoTable retains entries longer than the AODV routing table. This is 

because the routes can become unavailable quickly in a highly dynamic MANET 

environment where the nodes are moving around. However, even incorrect geographical 

location information can still be helpful in limiting the route discovery search area by 

providing a general direction in which the destination node is likely to be located. 

Typically, this is sufficient to determine the request zone area where the route discovery 

process should be conducted. 

 

GeoAODV  

The GeoAODV protocol operates as follows. When the source node or an originator 

receives a request to transmit data, it checks its forwarding table. If a route to the 

destination is known, then the node transmits the data. If a route to destination is 

unknown, then the node queues the data and initiates the route discovery process.  

The first step of the route discovery process is to determine the value of the flooding 

angle. If the GeoTable contains the location information for the destination node, then the 

flooding angle is computed based on the freshness of the location coordinates, otherwise, 

the flooding angle is set to its maximum value of 360 degrees. Next, the originator node 

creates an RREQ packet and broadcasts it in the network. The generated RREQ carries 

the following values: the computed flooding angle value, the originator’s location 
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coordinates, the originator sequence number, the last known destination coordinates (if 

available), and the destination sequence number (if available). 

 

Upon RREQ arrival at an intermediate node, GeoAODV performs the following steps 

before the packet is rebroadcast. First, the node updates its GeoTable with the most up-to-

date source and destination information. Next, the node performs the regular AODV 

validation to determine if the arriving RREQ is a duplicate. If so, then the packet is 

discarded. Otherwise, the node checks its routing table to see if it knows a route to the 

destination. If such a route is available, then the intermediate node discards the RREQ 

packet and sends an RREP message back to the source node. Note that the RREP 

message will contain fresher destination location and sequence number information, as 

well as the intermediate node’s location coordinates and sequence number. This feature 

facilitates distribution of the node location information throughout the network.  

 

If the RREQ packet was not discarded and if no RREP was generated, then the 

intermediate node performs the GeoAODV validation to determine if it is within the 

originator’s request zone. If the node is outside the request zone, then the packet is 

discarded. Otherwise, the node rebroadcasts the RREQ packet. Note that if the node’s 

GeoTable contains destination information that is fresher than that which is carried in the 

RREQ packet, then the node may update the RREQ’s destination location and sequence 

number fields. 



	  33	  

 

When the destination node receives an RREQ packet, it updates its GeoTable and sends 

an RREP message back to the originator. Note that while the RREP message is unicast 

back the originator node, each packet transmission in the MANET environment is 

overheard by all the neighboring nodes. Thus, all the neighboring nodes along the path 

between the destination and the originator will overhear the RREP message and will each 

update their GeoTable with the most up-to-date location information for the destination 

and originator nodes. Once the RREP packet arrives at the originator, the route discovery 

process is complete and the originator begins sending data to the destination node.  

 

If the originator does not receive an RREP within a certain amount of time during the 

first round of route discovery, then it is assumed that a route to the destination within the 

current request zone cannot be found. In this case, the originator node increases the value 

of the flooding angle and repeats the route discovery process, this time searching a wider 

area. Eventually, the GeoAODV request zone could be morphed into a network-wide 

search, as in regular AODV. Figure 3.2 illustrates how the GeoAODV request zone is 

expanded during each round of route discovery until it becomes the regular AODV 

request zone. 
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Figure 3.2 GeoAODV Request Zone  
	  

GeoAODV Rotate Protocol 

This study considered two variations of the GeoAODV protocol: GeoAODV Static and 

GeoAODV Rotate. GeoAODV Static operates as described above. The GeoAODV Static 

request zone remains unchanged during each round of route discovery (i.e., the source 

node is always the vertex opposite to the base of the isosceles triangle). GeoAODV 

Rotate operates slightly differently. It re-orients the request zone towards the destination 

at each intermediate node by making the previous node a new vertex of the triangle (i.e., 

each intermediate node re-computes the request zone based on the location of the 

previous hop, rather than on the location of the source node).  
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Figure 3.3 GeoAODV Rotate Protocol 
 

Figure 3.3 illustrates the idea of GeoAODV Rotate. Node N1 belongs to the request zone 

that was computed based on the location of node S. Node N2 belongs to the new, re-

oriented request zone that was computed based on the location of node N1. Although they 

belong to different request zones, both nodes N1 and N2 participate in route discovery. 

On the other hand, node N3, which receives an RREQ from N1, will not participate in 

route discovery. This is because node N3 is located outside the new request zone that was 

computed using the location of N1, its previous hop. Were GeoAODV Static to be used 

instead, all the nodes in the Figure 3.3 would participate in the route discovery process. 

This is because they all belong to the request zone that was computed based on the 

location of source node S. 
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Chapter 4 

Implementation 

	  

Overview of Implementation 

A network simulation was chosen as the means by which to compare the performance of 

GeoAODV Rotate against AODV, GeoAODV, LAR Zone, and LAR Distance. A 

simulation-based approach offers an effective way to accurately and inexpensively 

measure and analyze large-scale systems [18]. Implementing a network simulation using 

standard models is straightforward. However, modifying existing models can be a tedious 

and often time-consuming process. OPNET Modeler [19] provides a highly cohesive and 

flexible platform to modify existing networking protocols and is one of the most popular 

commercial network simulations in the world [18]. OPNET Modeler version 16.0 was 

used to implement GeoAODV and LAR routing protocols. OPNET’s existing AODV 

process model was modified, along with several other process models and external files 

that are responsible for modeling MANET routing protocols. These implementations 

were verified and benchmarked.  Then, the performances of the implemented protocols 

were compared.  

 

AODV Implementation 

In OPNET Modeler, a process model is used to represent a singular networking process 

such as a routing protocol, a load-balancing mechanism, or an upper-layer protocol [18]. 

Process models are implemented using the Proto-C programming language, which uses a 

mixture of state transition diagrams and the C programming language. Proto-C also 
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provides an expansive set of APIs to help model various systems. In particular, the 

OPNET Modeler implements AODV MANET routing protocol through the aodv_rte 

process model [20, 21, 22].  

 

 

Figure 4.1 OPNET’s aodv_rte Process Model State Diagram 
 

Figure 4.1 provides a screenshot of the OPNET process model state diagram for the 

AODV MANET routing protocol. The AODV process model is made up of two states: 

init and wait. The init state is denoted in Figure 4.1 by a green circle with the incoming 

arrow to the left of it. It is responsible for initializing any data structures and related 

processes required for AODV’s operation. This includes the AODV packet queue, 

AODV request table, AODV route table, statistic collectors, etc. While in this state, the 

node parses the routing protocol configuration and is configured accordingly. Note that 

each MANET node that employs AODV during the simulation will have an instance of 

the AODV process model associated with it.   
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While in the init state, AODV also sets-up all user-specified configuration parameters for 

the routing protocol. During the simulation set-up, the OPNET user may configure each 

protocol by providing the values for protocol configuration parameters, which are also 

known as model attributes.  For example, the AODV process model includes model 

attributes such as Active Route Timeout, Hello Interval, Net Diameter, and several others. 

To properly model GeoAODV and LAR protocol operation, several new model attributes 

were added to the AODV process model. The following model attributes were added:  

• Geo-Assisted Protocol Type – specifies which AODV-based protocol will be used 

in the simulation: AODV, GeoAODV, GeoAODV Rotate, LAR Distance, or LAR 

Zone 

• GeoAODV Initial Flooding Angle – specifies the value of the flooding angle used 

by a MANET node when starting the GeoAODV route discovery 

• GeoAODV Flooding Angle Increase – specifies the amount by which the value of 

the flooding angle will be increased after each round route discovery failure. 

Several other model attributes were added as well.  

 

OPNET performs the actual parsing of the model attributes for all MANET routing 

protocols in a single process model called manet_mgr, which subsequently sends parsed 

attributes to the corresponding MANET routing protocol process model. The aodv_rte 

process model initializes corresponding internal data structures to user-specified 

configuration values in its attributes_parse_buffers_create function. The complete code 

for GeoAODV and LAR’s init function can be found in Appendix A. 
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Once the protocol initialization is complete, the AODV process model moves into the 

wait state, which implements the actual operation of the AODV protocol. In this state, the 

AODV protocol waits for either a packet arrival or the Hello timer to expire. Upon packet 

arrival, AODV discovers the packet type (i.e., data packet or ADOV control packet), 

performs the corresponding packet processing (e.g., forward the data packet into the 

network if a route to destination is known or queue the data packet otherwise, perform 

AODV protocol operations upon the control packet arrival), and returns to the wait state. 

If the Hello timer expires, then the AODV process will broadcast a HELLO message to 

all of its immediate neighbors and return to the wait state. 

 

To implement the LAR Distance, LAR Zone, GeoAODV, and GeoAODV Rotate 

protocols, we modified the aodv_rte process model by dividing the protocol processing 

into six logical modules [19]: 	  

• aodv_packet_queue – module for managing the incoming and outgoing packet 

data 

• aodv_pkt_support – module for creating AODV control packets and headers 

• aodv_request_table – module that manages AODV’s request table 

• aodv_route_table – module that manages AODV’s routing table 

• aodv_support – module for various supporting functions, including collecting 

statistics and printing debugging information 

• manet_support – module that exposes MANET functionality to other MANET 

protocols and neighboring layers.  
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Upon	  packet	  arrival,	   the	  AODV	  process	  model	  calls	   the	  aodv_rte_pkt_arrival_handle	  

function.	   If	   the	   arriving	   packet	   is	   an	   application	   data	   packet,	   then	  AODV	   calls	   the	  

app_pkt_arrival_handle	   function.	   If	   it	   is	   a	   control	   packet,	   then	   it	   is	   handled	   by	   the	  

control	   message	   handler.	   Specifically,	   the	   AODV	   process	   model	   contains	   the	  

following	  functions	  for	  processing	  incoming	  AODV	  control	  packets:	  

• rreq_pkt_arrival_handle	  –	  handles	  the	  arrival	  of	  the	  route	  request	  packets	  

• rrep_pkt_arrival_handle	  – handles	  the	  arrival	  of	  the	  route	  reply	  packets	  	  

	  

Additionally,	   the	   aodv_rte	   process	   model	   includes	   the	   route_request_send	   and	  

route_reply_send	   functions.	   These	   are	   responsible	   for	   generating	   and	   forwarding	  

RREQ	   and	   RREP	  messages,	   respectively.	   The	   rreq_pkt_arrival_handle	   function	  was	  

modified	  to	  disregard	  packets	  that	  should	  not	  be	  rebroadcasted.	  	  

	  

Location Information Sharing 

GeoAODV distributes location information in the network through the use of AODV 

control messages. For that purpose, internal OPNET data structures that represent control 

information carried by the RREQ and RREP packets were modified. Specifically, the 

AodvT_Rreq and AodvT_Rrep data structures were modified to include the following 

information: the value of the flooding angle (i.e., the request level), the GPS coordinates 

of the originator, and the GPS coordinates of the destination node. This code can be seen 

in Appendix B. The new structure of an RREQ packet is shown in Figure 4.2. To 

properly create and process the new RREP and RREQ packet formats, two new functions 
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were added in the aodv_pkt_support.ex.c OPNET external support file. These functions 

are known as aodv_pkt_support_rreq_option_create_geo and 

aodv_pkt_support_rrep_option_create_geo. Note that the AODV HELLO messages use 

the same header fields as the RREP messages and thus also carry location information. A 

HELLO message is simply an RREP packet with its IP TTL header field set to 1.  
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Figure 4.2 The RREQ Packet Structure used in the Simulation 
 

LAR assumes that all nodes in the network have access to location information and to the 

traveling speed of all other nodes in the network. OPNET offers a data definition sub-

package, known as oms_data_def, which was used to model this behavior. This sub-

package can be used to manage a global database that is shared by all nodes in the 

simulation. To implement the ubiquitous availability of LAR’s geographical information, 
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the AODV process model was modified to have each node record its coordinates and 

traveling speed in the global database during the process initialization.  Similarly, during 

the simulation run, individual nodes periodically update this database with new values for 

their coordinates and traveling speed. The periodicity of this update is a user-configurable 

parameter and can be specified during simulation set-up.  

 

 

Figure 4.3 The RREP Packet structure used in the Simulation 
 

OPNET automatically creates a global attribute database. The AODV process model can 

simply use this database as needed. Specifically, the oms_data_def_entry_insert function 

was used to add an entry into a network-wide database and the 

oms_data_def_entry_access function was used to retrieve specific information as needed. 

The entries in the global attribute database are keyed based on the node’s IP address.  

 



	  44	  

Unlike LAR, GeoAODV nodes maintain their own local database to store discovered 

location information. This database is called the GeoTable and it is populated during the 

route discovery phase and through periodic HELLO messages. The GeoTable is 

implemented as a hash map that stores node locations and is indexed by the node’s IP 

address. This table is updated through the additional information (i.e., coordinates of the 

originator and destination nodes) carried in the modified RREQ and RREP packets. The 

GeoTable data structure is modeled after an AODV routing table and is defined in the 

aodv.ex.h header file. This file contains definitions of various data structures, including 

the AODV routing table. The AODV routing table is defined as a C structure called 

AodvT_Route_Table with the entries defined as AodvT_Route_Entry. The AODV routing 

table keeps track of all valid routes to potential destination nodes in the network. Each 

time a new route is discovered, AODV updates its routing table and the common IP 

forwarding table. This functionality was modified to additionally insert destination 

coordinates into the GeoTable upon route discovery. OPNET generally implements 

packet forwarding within the IP module, which relies on the common IP forwarding table 

to determine the next hop address. The common IP forwarding table is updated by active, 

possibly different routing protocols used in the simulation study.  

 

AODV also maintains a separate hash map indexed by the destination node’s IP address, 

which keeps track of all requests that are originated-by and forwarded-by this node. The 

AODV request table is implemented in the C structure called AodvT_Request_Table. This 

table keeps track of all requests that were initiated by a node. It also allows the node to 

determine if it should generate a new request when an application data packet arrives and 
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there is no known route to the destination. If a request for the packet’s destination was 

already generated, then the packet is simply queued; otherwise, AODV generates a new 

request. Each entry in the AODV request table consists of such information as request id, 

insertion time, current TTL value, number of retries, etc. These table entries are 

implemented as the AodvT_Orig_Request_Entry C structure. This data structure was 

modified to also keep track of the flooding angle value used during the most recent round 

of the route discovery process. If the current route discovery round fails to find a route to 

the destination, then the flooding value stored in the AODV request table is increased and 

the node attempts another round of route discovery.  

 

The AODV request table is used in a similar fashion to implement the AODV expanding 

ring technique, where the node increases the TTL value in the generated route request 

packet after each failed attempt to discover a route to the destination [18]. The AODV 

request table is also used to identify duplicate RREQs that arrive at the node. The 

information about each RREQ that arrived at the node is stored in the AODV Route 

Request Table. Each subsequent request with the same id is simply discarded. Note that 

in broadcast environments such as a MANET, it is very likely that after forwarding (i.e., 

broadcasting) an RREQ packet, the node will receive duplicates of the same packet as 

they are forwarded (i.e., rebroadcasted) by the node’s neighbors.  

 

Lastly, AODV stores a hash map that keeps track all of the neighboring nodes located 

one-hop away. This table is called the connectivity table and is implemented as a C 

structure named AodvT_Conn_Info. The connectivity table is populated using periodic 
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HELLO messages. It is indexed using the node’s IP address and contains the time at 

which the most recent HELLO message from that node was received. This table was not 

modified during implementation.  

 

Geo-Assisted Routing Implementation 

Creating and maintaining multiple supporting data structures described above was 

necessary in order to implement Location-Aided routing protocols. The logic for dealing 

with RREQ and RREP packet arrivals also required modification. Specifically, the 

following function responsible for handling control packet arrivals were updated in the 

aodv_rte process model: aodv_rte_rreq_pkt_arrival_handle and 

aodv_rte_rrep_pkt_arrival_handle. 

 

When an RREQ packet arrives, AODV checks if the packet should be rebroadcasted. The 

internals of the aodv_geo_rebroadcast function use the information retrieved from the 

message to make the appropriate decision about rebroadcasting the packet.  This code can 

be found in Appendix C. A different mechanism is employed depending on the types of 

the routing protocols used in the simulation: 

• AODV – the node conducts regular AODV processing and rebroadcasts the packet 

only if the packet is not a duplicate and the node does not know the route to the 

destination.  

• LAR Zone – in addition to regular AODV processing, the node verifies that it is 

within the LAR request zone, before rebroadcasting the packet. This is 

accomplished in several steps. First, the location coordinates for the originator 
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and destination nodes, as well as the traveling speed of destination node, are 

retrieved from the global table. Next, the request zone is computed. Finally, a 

determination is made as to whether the current node is located within the 

computed request zone. This is all implemented in the function called 

aodv_geo_LAR_within_request_zone.  

• LAR Distance – in addition to regular AODV processing, the node verifies that it 

is located closer to the destination than was the previous node, before 

rebroadcasting the packet. This is accomplished by calculating the distance from 

previous node to the destination node and the distance from the current node to 

the destination node and finally comparing these values. This logic is 

implemented in the function called aodv_geo_LAR_distance. 

• GeoAODV – in addition to regular AODV processing, the node verifies that it 

belongs to the GeoAODV request zone, before rebroadcasting the packet. This is 

accomplished in several steps. First, the location coordinates of the originator and 

destination nodes are retrieved, as well as the flooding angle from the arriving 

RREQ packet. Next, the GeoAODV request zone is computed. Finally, a 

determination is made as to whether the current node is located within the request 

zone. This is all implemented in the function called aodv_geo_compute_angle. 

• GeoAODV Rotate – in addition to regular AODV processing, the node verifies 

that it belongs to the GeoAODV Rotate request zone, before rebroadcasting the 

packet. This is accomplished in several steps. First, the location coordinates for 

the previous and destination nodes are retrieved, as well as the flooding angle 

from the arriving RREQ packet. Next,the GeoAODV request zone is computed. 
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Finally, a determination is made as to whether the current node is located within 

the request zone. This is all implemented in the function called 

aodv_geo_compute_angle. 
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Chapter 5  

Simulation Study 

	  

In order to evaluate and compare the performance of GeoAODV with that of other 

MANET routing protocols, a series of simulation studies were executed. Each series was 

configured with a different set of model attribute values and simulated different network 

conditions. Specifically, in this study the performance of AODV, GeoAODV Static, 

GeoAODV Rotate, LAR Zone, and LAR Distance in the MANET network were studied 

with the number of communicating nodes and traveling velocities being varied.  

 

 

Figure 5.1 Network Topology used in the Simulation Study 
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Simulation Setup 

The network topology used in this simulation study is depicted in Figure 5.1. It consisted 

of fifty WLAN nodes randomly placed within an area of 1,500 meters by 1,500 meters.  

The study was parameterized along two sets of model attributes: the number of 

communicating nodes and traveling velocity. Specifically, the number of communicating 

nodes was varied between 2, 5, 10, 20, and 30, while the node traveling velocity was set 

to: 0 meters/second (stationary nodes), 5 meters/second, 10 meters/second, and a random 

value which was obtained using a uniform distribution in the interval [0, 20]. Thus, 20 

different network settings for each of five routing protocols were examined. This created 

a total of 100 unique scenarios. Furthermore, each of the unique scenarios was executed 

six times. The results for that scenario were averaged in order to acquire a single, more 

accurate figure. The upshot was a total of 600 simulation runs, which took close to 120 

hours to complete on a Windows XP machine with 2.4 GHz dual-core CPU and 3 GB of 

RAM. 

 

When configuring communicating nodes, each source-destination pair was randomly 

selected. Every communicating node was configured to wait 100 seconds before 

transmitting any data, in order to allow other network protocols to initialize and distribute 

any necessary protocol information throughout the network. The nodes were configured 

to move according to the Random Waypoint model. In this model, a node starts by 

pausing for a random amount of time. It then selects a random direction within the 

network domain and moves in that direction with a specified velocity. The node 

continues to repeat this process. In this simulation study, the pause time was determined 
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using an exponential distribution with a mean outcome of ten seconds. Once the node 

reaches the boundary of the network domain, it will redirect itself and continue traveling 

within the confines of the specified 1500 meters by 1500 meters network.   

  

 

Figure 5.2 Summary of WLAN configuration 
 

Each node in the simulation study was represented with the manet_station node model, 

which is typically used to simulate Wireless LAN (WLAN) nodes. The default values for 
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all of the WLAN configuration parameters of the nodes were used in this simulation 

study. A summary of WLAN configuration settings is provided in Figure 5.2.  

 

Table 5.1 Summary of Node Configuration 

Configuration	  Parameter	   Value	  

Channel	  Data	  Rate	   11	  Mbps	  

Transmit	  Power	   0.0005	  Watts	  

Packet	  Reception	  Power	  Threshold	   -‐95	  dBm	  

Start	  of	  Data	  Transmission	   Normal	  (100,	  5)	  seconds	  

End	  of	  Data	  Transmission	   End	  of	  simulation	  

Duration	  of	  Simulation	   300	  seconds	  

Packet	  Inter-‐Arrival	  Time	   Exponential	  (1)	  second	  

Packet	  Size	   Exponential	  (1024)	  bytes	  

Mobility	  Model	   Random	  Waypoint	  

Pause	  Time	   exponential(10)	  

Destination	   Random	  

 

Communicating nodes were configured to start transmission after roughly 100 seconds 

had elapsed within the simulation. The actual time was computed using a normal 

distribution with a mean outcome of 100 seconds and a 5 second variance. Nodes 

continue sending data until the end of simulation. The source nodes generated a packet of 

approximately 1,024 bytes every second. The actual packet size and packet inter-arrival 

times were computed using an exponential distribution. A summary of key MANET 

configuration parameters for this simulation study is presented in Table 5.1. 
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Finally, both versions of the GeoAODV protocol were configured such that the initial 

flooding angle value was set to 90 degrees. The flooding angle value was incremented by 

90 degrees after each unsuccessful route discovery attempt, until GeoAODV ultimately 

reverts to regular AODV (i.e., 360 degrees). If AODV fails to find a route, then 

GeoAODV fails the route discovery process. The LAR protocols were configured to have 

the MANET nodes publish their location and traveling velocities into a global database 

once every second. The configuration parameters for the LAR distance protocol, α and β, 

were set to 1 and 0, respectively. In this study, the default AODV configuration settings 

were used. A summary of these configuration settings is presented in Figure 5.3. 

 

 

Figure 5.3 Summary of AODV Node Configuration 
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Analysis of the Results 

A few simplifying assumptions were made in this simulation. For example, the end-to-

end delay associated with the retrieval of GPS coordinates was not accounted for. In this 

evaluation of the GeoAODV protocols, the overhead introduced by the addition of new 

fields in the RREQ and RREP packet headers were similarly disregarded. With respect to 

the LAR protocols, the assumption was made that location information and traveling 

velocities are available everywhere in the network at no additional cost. This study 

primarily focused on the total amount of control traffic generated by each of the 

examined protocols. The raw results can be found in Appendix D. The results of this 

study suggest that all location-aided routing protocols outperform AODV by generating 

significantly fewer control packets during route discovery. A summary of the collected 

results is presented in Figures 5.4 – 5.8. 

 

 

Figure 5.4 Number of Control Packets in Scenarios with 2 Communicating Nodes 
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Specifically, the results show that the LAR Zone protocol consistently generates the 

smallest number of control packets among all of the studied protocols, while GeoAODV 

Rotate is a close second. This can be attributed to the fact that the simulation does not 

account for the cost associated with retrieval of node coordinates and traveling speeds in 

LAR Zone (i.e., these values are assumed to be available as needed). On the other hand, 

GeoAODV makes no such assumption and dynamically distributes location information 

during the route discovery process. 

 

 

Figure 5.5 Number of Control Packets in Scenarios with 5 Communicating Nodes 
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GeoAODV realizes that limited broadcast optimizations do not help. In this case, route 

discovery is conducted using the AODV protocol. The LAR protocols, on the other hand, 

revert to AODV after a single failure.  

 

 

Figure 5.6 Number of Control Packets in Scenarios with 10 Communicating Nodes 
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Figure 5.7 Number of Control Packets in Scenarios with 20 Communicating Nodes 
 

 

Figure 5.8 Number of Control Packets in Scenarios with 30 Communicating Nodes 
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dynamically reorients the direction of the request zone and thus excludes more nodes that 

are unlikely to be part of a route to the destination. This results in GeoAODV Rotate 

forwarding fewer RREQ packets through the network and thus introducing lower control 

traffic overhead than does the GeoAODV Static protocol. 

 

Collected results show that the control traffic overhead increases correspondingly with 

the increase in the number of communicating nodes, as expected. What was surprising 

was how all the protocols, except for LAR Zone, performed in the simulation scenario 

with 30 communication nodes. As shown in Figure 5.8, LAR Distance, GeoAODV Static, 

and GeoAODV Rotate generated almost the same amount of control traffic as did AODV. 

Such behavior could be attributed to the fact that when there are many communicating 

nodes, the chance of failing to find a route using limited broadcast increases. This would 

cause these protocols to revert to regular AODV more frequently. As a result, all of the 

advantages gained by successfully employing limited flooding are lost when the 

protocols fail to find a route and have to conduct a network-wide flooding. LAR Zone 

appears to be less susceptible to this problem and exhibits the best performance, as shown 

in Figure 5.8. Nevertheless, the GeoAODV Rotate protocol consistently remains a 

second-best option, outperforming all of the other protocols, except for LAR zone, in all 

evaluated scenarios. 
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Chapter 6 

Conclusions 

	  

This research indicates that the GeoAODV Rotate protocol could be a viable option for 

routing traffic in a MANET where the nodes are equipped with GPS devices. Specifically, 

the results of the simulation study indicate that GeoAODV Rotate outperforms the 

AODV, LAR Distance, and GeoAODV protocols. In many cases, its performance is 

comparable to LAR Zone. It should also be noted that, in this simulation study, it was 

assumed that LAR could retrieve location information instantaneously and that the delay 

introduced by retrieving such information was unaccounted for.  

 

One of the possible reasons for the performance differences between GeoAODV and 

LAR Zone is the fact that LAR implementations assume location information to be 

globally available on-demand. GeoAODV makes no such assumptions and dynamically 

distributes location information during the route discovery phase.  Also, GeoAODV must 

distribute geographical information throughout the network before the geo-assisted 

optimizations can be utilized. During the time that this information is being distributed, 

GeoAODV must operate the same way as AODV. After having achieved this distribution, 

GeoAODV will begin to take advantage of the limited flooding zone. Furthermore, 

GeoAODV may go through the route discovery phase up to three times (potentially more, 

if the flooding angle increment was set to a smaller value) using different values of the 

flooding angle (i.e., 90°, 180°, 270°) before it gives up and conducts route discovery 

using the AODV protocol (i.e., 360°). The LAR protocols, on the other hand, revert to 

AODV after a single failure. 
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The difference in the number of control packets generated between the LAR Distance and 

LAR Zone protocols can be accredited to the fact that the LAR Distance protocol reverts 

to the regular AODV route discovery process more often than does LAR Zone. The 

search area for LAR Distance is very limited, (i.e., the LAR Distance node only 

rebroadcasts an RREQ message if it is closer to the destination than was the previous 

node). Thus, it is no surprise that LAR Distance does not find a route to the destination 

more frequently than does LAR Zone. This ultimately causes LAR Distance to behave 

like AODV and generate a relatively large number of control packets. On the other hand, 

LAR Zone is not as restrictive and thus will revert to AODV less often. This results in 

LAR Zone consistently outperforming the LAR Distance protocol. 

 

GeoAODV Rotate also consistently outperformed GeoAODV (GeoAODV Static). While 

both variations exhibit a similar number of failures at finding a route to the destination, 

GeoAODV Rotate dramatically reduces the number of forwarded control packets by 

dynamically adjusting the request zone during the route discovery process. Thus, 

GeoAODV Rotate introduces fewer control packets into the network than does 

GeoAODV Static. 

 

Results show that there is a direct correlation between the number of communicating 

nodes and the number of control packets traveling through the network. As the number of 

communicating nodes increases, so too does the number of nodes that initiate the route 

discovery procedure and generate control traffic. As expected, an increase in the number 
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of communicating nodes corresponds to an increased presence of control traffic in the 

network. It was surprising to observe that, in a simulation study with 30 communicating 

nodes, the performances of GeoAODV Static and LAR Distance protocols were similar 

to that of AODV, rather than to GeoAODV Rotate and LAR Zone. One possible 

explanation for this behavior could be the increased likelihood for the GeoAODV Static 

and LAR Distance protocols to fail to find a route and revert to AODV in the high-traffic 

simulation. Overall, GeoAODV Rotate was consistently the second-most efficient routing 

choice and is the clear option in networks where geographical information is not 

available on-demand and must be distributed.  

  

Future Work 

While this study has been completed, there are numerous directions for further 

investigation of location-aided routing. Specifically, it would be interesting to see how 

GeoAODV Rotate performs in different environmental settings. Additionally, there is a 

need to develop mechanisms for more accurate incrementing of the flooding angle value 

after route discovery failures. Future studies could rerun created simulation models with a 

larger number of repetitions (each with a different seed value), and further analyze the 

collected results. A study examining the performance of the GeoAODV Rotate during the 

pre- and post-convergence periods and how fast GeoAODV Rotate converges to a stable 

state could shed light on how GeoAODV Rotate compares to LAR Zone once the 

network has converged. Studying how accurately GeoAODV Rotate distributes location 

information in the network could help improve the performance of the protocol.  
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Additionally, a new study of location-aided routing could focus on other aspects of 

protocol performance (e.g., the number of route discovery failures, the time to find a 

route to destination). It may focus on possible optimizations of the GeoAODV Rotate 

protocol, including a more intelligent selection of the initial value of the flooding angle 

and dynamically adjusting the flooding angle at intermediate nodes (i.e., increasing the 

flooding angle value when an intermediate node knows that there are no neighboring 

nodes within the request zone defined by the flooding angle). Another direction that 

research could take is exploring improvements to the LAR protocols. This would allow 

for increasing the search area after a route discovery failure, instead of immediately 

reverting back to AODV. One possibility would be for LAR Distance to adjust the values 

of configuration parameters α and β (seen in Figure 2.2) or for LAR Zone to expand the 

request zone by transmitting the source node coordinates as if the source node is located 

farther away from the destination node than it really is. Lastly, the study of location-aided 

routing could be expanded to other protocols (e.g., the Greedy Perimeter Stateless 

Routing (GPSR) protocol [23], the Geographical Routing Protocol (GRP) [24]). 
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Appendix A Initiation Functions 

// Purpose: Initialize global GeoAODV parameters 
// In/Out:  NONE 
static void  aodv_rte_geo_init() { 
  Objid aodv_parms_id; 
  Objid aodv_parms_child_id; 
  Objid parent_id; 
  char name[128]; 
  double x, y; 
  double LAR_update_start_time; 
 
  FIN (aodv_rte_geo_init()); 
 
  parent_id = op_topo_parent(own_mod_objid); 
  op_ima_obj_attr_get(parent_id, "name", name); 
  op_ima_obj_attr_get(parent_id, "x position", &x); 
  op_ima_obj_attr_get(parent_id, "y position", &y); 
  parent_id = op_topo_parent(parent_id); 
  op_ima_obj_attr_get(parent_id, "name", name); 
 
  /* Read the AODV Parameters  */ 
  op_ima_obj_attr_get (own_mod_objid,  
    "manet_mgr.AODV Parameters", &aodv_parms_id); 
  aodv_parms_child_id = op_topo_child (aodv_parms_id, 
    OPC_OBJTYPE_GENERIC, 0); 
 
  // Read GeoType 
  op_ima_obj_attr_get(aodv_parms_child_id, "Position-Based Routing", 
    &geo_routing_type); 
 
  op_ima_obj_attr_get(aodv_parms_child_id, "LAR Update Interval", 
    &LAR_update_interval); 
  op_ima_obj_attr_get(aodv_parms_child_id, "LAR Update Start Time", 
    &LAR_update_start_time); 
 
  // Attribute for GeoExpand. 
  op_ima_obj_attr_get(aodv_parms_child_id, "GeoExpand Angle Padding", 
    &angle_padding); 
 
  op_ima_obj_attr_get(aodv_parms_child_id, "Node Location DB", 
    &location_data_distributed); 
 
  // Initialize location databases 
  if ( geo_routing_type != AODV_TYPE_REGULAR ){   
    op_intrpt_schedule_self (op_sim_time() + LAR_update_start_time, 
      AODVC_LAR_UPDATE); 
 
    aodv_geo_LAR_init( module_data_ptr, aodv_addressing_mode, x, y ); 
  } 
 
  // The geo table is always created, whether we're using  
  //distributed or centralized. 
  geo_table_ptr = aodv_geo_table_create(aodv_addressing_mode); 
 
  FOUT; 
} 
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// Purpose:  This function performs initializations for LAR, including  
//           inserting the initial LAR_Data entries for the global  
//           database. 
// 
// In:       module_data_ptr - a pointer to the node's module  
//           data (used to retrieve the IP. (usually retrieved  
//           like this: (IpT_Rte_Module_Data*) op_pro_modmem_access ()) 
//           address_mode - the address mode we're using (this  
//           format will be used for the IPs used as keys for storing  
//           LAR_Data). 
//           x, y - the node's initial position. 
void aodv_geo_LAR_init( IpT_Rte_Module_Data* module_data_ptr, 
InetT_Addr_Family address_mode, double x, double y ) { 
 
  // The following variables are used to initialize 
  // data for LAR updates. 
  LAR_Data *lar_data; 
 
  // Added to put a false entry in the central hello messages. 
  // This is because nodes should insert its entry into the table 
  // when it is about to send a hello messsage.  
  LAR_Data *hello_message_database_invalid_data; 
  int num_interfaces; 
  int ifnum; 
  cha address[INETC_ADDR_STR_LEN]; 
 
  FIN (aodv_geo_LAR_init( <args> )); 
 
  aodv_addressing_mode = address_mode; 
 
  // Store initial position 
  // You want to store the following information: 
  // 1. x, y coordinates 
  // 2. time when they were recorded 
  // 3. velocity 
 
  // Create the initial entry in the global database,  
  // which will be updated at each LAR interrupt. 
  lar_data = new_LAR_Data(x, y); 
  hello_message_database_invalid_data =  
    new_LAR_Data(DEFAULT_X, DEFAULT_Y); 
  num_interfaces = inet_rte_num_interfaces_get (module_data_ptr); 
   
  for (ifnum = 0; ifnum < num_interfaces; ifnum++) { 
    // In case there are multiple interfaces at this node, 
    // create an entry for each one referencing the same data 
    // so that no matter which IP the data is pulled from,  
    // the data will be the same. 
    get_node_ip(address, module_data_ptr, ifnum); 
    oms_data_def_entry_insert(LAR_OMS_CATEGORY, address, lar_data); 
    oms_data_def_entry_insert(HELLO_OMS_CATEGORY, address, 
      hello_message_database_invalid_data); 
  } 
 
  FOUT; 
} 
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Appendix B Modified AODV Packet Strucutres 

/* Route Request Option */ 
typedef struct { 
  Boolean join_flag; 
  Boolean repair_flag; 
  Boolean grat_rrep_flag; 
  Boolean dest_only; 
  Boolean unknown_seq_num_flag; 
  int hop_count; 
  int rreq_id; 
  InetT_Address dest_addr; 
  int dest_seq_num; 
  InetT_Address src_addr; 
  int src_seq_num; 
  AodvT_LAR_Info geo_lar_options; 
} AodvT_Rreq; 
 
/* Route Reply Option */ 
typedef struct { 
  Boolean repair_flag; 
  Boolean ack_required_flag; 
  int hop_count; 
  InetT_Address dest_addr; 
  int dest_seq_num; 
  InetT_Address src_addr; 
  double lifetime; 
  double dst_x; 
  double dst_y; 
} AodvT_Rrep; 
 
/* Encapsulate all GEO/LAR options */ 
typedef struct { 
  Point2D src; 
  Point2D prev; 
  Point2D dst; 
  int request_level; 
  double velocity; 
} AodvT_LAR_Info; 
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Appendix C RREQ Rebroadcast Logic and Functions 

static void aodv_rte_rreq_pkt_arrival_handle (Packet* ip_pkptr,  
  Packet* aodv_pkptr, IpT_Dgram_Fields* ip_dgram_fd_ptr,  
  IpT_Rte_Ind_Ici_Fields* intf_ici_fdstruct_ptr,  
  AodvT_Packet_Option* tlv_options_ptr) { 
   
  /* Code excluded for brevity */ 
   
  // Destroy the packet if we shouldn't rebroadcast. 
  if (aodv_geo_rebroadcast( 
      geo_lar_options->src.x, geo_lar_options->src.y, 
      prev_x,  prev_y, 
      curr_x,  curr_y, 
      geo_lar_options->dst.x, geo_lar_options->dst.y, 
      (double) ((geo_lar_options->request_level+1) * 90), 
      angle_padding, 
      geo_routing_type, 
      geo_lar_options->velocity 
    ) == OPC_FALSE) { 
    op_pk_destroy (aodv_pkptr); 
    manet_rte_ip_pkt_destroy (ip_pkptr); 
    FOUT; 
  } 
   
  /* Code excluded for brevity */ 
} 
 
// Purpose: Given positions of the nodes, flooding angle, and aodv 
//          type determine if the current node should rebroadcast 
//          RREQ or not 
// 
// In:      orig_x, orig_y - position of the node that originated 
//                           the RREQ 
//          prev_x, prev_y - position of the node where the RREQ was 
//                           received from 
//          curr_x, curr_y - position of the node that received the 
//                           RREQ 
//          dest_x, dest_y - position of the destination node 
//          flooding_angle - acceptable angle to forward the RREQ 
//          aodv_type      - type of aodv being used 
// 
// Out:     TRUE if the current node should rebroadcast the RREQ 
//          FALSE if the RREQ should be destroyed 
Boolean aodv_geo_rebroadcast( 
  // Coordinates of the node that originated RREQ 
  double orig_x, double orig_y, 
  // Coordinates of the node that send RREQ 
  double prev_x, double prev_y, 
  // Coordinates of the node that received RREQ 
  double curr_x, double curr_y, 
  // Coordinates of the destination node 
  double dest_x, double dest_y, 
  // Angle in degrees of the flooding angle 
  double flooding_angle, 
  // The maximum value by which the flooding angle 
  // can expand (for Geo_Expand only) 
  double angle_padding, 
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  // Type of AODV being used 
  int aodv_type, 
  // The calculated velocity of the destination node (LAR) 
  double dest_velocity) { 
 
  double angle; 
 
  FIN (aodv_geo_rebroadcast( <args> )); 
 
  if (flooding_angle >= MAX_ANGLE) { 
    // We're flooding, so you have to rebroadcast. 
    // This takes care of regular AODV too since flooding_angle will 
    // always be 360 for regular AODV when it is computed in 
    // aodv_geo_compute_expand_flooding_angle. 
    FRET (OPC_TRUE); 
  } 
 
  // If we're not in broadcast mode, we can do what each type of AODV 
  // would normally do. 
 
  switch(aodv_type) { 
    case (AODV_TYPE_LAR_DISTANCE): 
      // if current node is at least as close as the previous node 
      // from destination then rebroadcast RREQ (return true), else 
      // drop (return false) 
      FRET(aodv_geo_LAR_distance(prev_x, prev_y, 
        curr_x, curr_y, 
        dest_x, dest_y) 
      ); 
 
    case AODV_TYPE_GEO_STATIC: 
      // GeoAODV implementation: 
      // Compute the angle formed by the destination, source and 
      // current nodes. If computed angle is not larger than flooding 
      // angle (e.g. the value is carried via request level) then 
      // forward RREQ, else drop RREQ 
 
      // Check if this is not a broadcast 
      if(flooding_angle < 360) { 
 
        // Compute the angle formed by the destination node, 
        // originating node, and current node. Since the angle may be 
        // located on either side of the vector formed by the 
        // source-destination nodes we need to multiply the computed 
        // value of angle by 2 before comparing it to the value of the 
        // flooding angle, so that flooding angle is evenly devided by 
        // the line formed via source-destination nodes 
        angle = 2 * aodv_geo_compute_angle(dest_x, dest_y, 
          orig_x, orig_y, 
          curr_x, curr_y 
        ); 
 
        if (angle > flooding_angle) { 
          FRET(angle <= angle_padding) 
        } 
      } 
 
      // This is NOT a broadcast or the angle formed by orig, curr, 
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      // and dest node is less than flooding angle 
      FRET(OPC_TRUE); 
 
    case AODV_TYPE_GEO_ROTATE: 
      // GeoAODV Rotate implementation: 
 
      // Set flooding angle to initial value degrees, forward to all 
      // neighbors in the search area formed by the flooding angle 
      // if fails to find the route then increment flooding angle 
      // until it reaches 360 degrees and morphs into regular AODV 
 
      // NOTE: angle at the intermediate node is computed based on the 
      // previous node location 
 
      // Check if this is not a broadcast 
      if(flooding_angle < MAX_ANGLE) { 
        // Compute the angle formed by the destination node, 
        // originating node, and previous node. Since the angle may be 
        // located on either side of the vector formed by the 
        // previous-destination nodes we need to multiple the computed 
        // value of angle by 2 before comparing it to the value of the 
        // flooding angle, e.g. flooding angle is evenly divided by 
        // the line formed via prev-destination nodes 
        angle = 2 * aodv_geo_compute_angle(dest_x, dest_y, 
          prev_x, prev_y, 
          curr_x, curr_y 
        ); 
 
        if (angle > flooding_angle) { 
          FRET(OPC_FALSE); 
        } 
      } 
 
      // This is NOT a broadcast or the angle formed by orig, curr, and 
      // dest node is less than flooding angle 
      FRET(OPC_TRUE); 
 
    case AODV_TYPE_LAR_ZONE: 
      FRET(aodv_geo_LAR_within_request_zone(orig_x, orig_y, 
        curr_x, curr_y, 
        dest_x, dest_y, 
        dest_velocity 
      )); 
    case AODV_TYPE_REGULAR: 
      // Always rebroadcast in AODV 
      FRET(OPC_TRUE); 
  } 
 
  FRET (OPC_TRUE); 
} 
 
 
// Purpose: Determine if the length of the vector formed by 
//          start-end  points(vector SE) is 
//          greater than the length of the vector formed by middle-end 
//          points(vector ME) 
// 
// In:      start_x, start_y - position of node where the RREQ was 
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//                             generated (e.g. previous node, not 
//                             an originator) 
//          mid_x, mid_y - position of node that receives the RREQ 
//          end_x, end_y - position of the destination node 
// 
// Out:     True,  if length(SE) >= length (ME) 
//          False, otherwise 
Boolean aodv_geo_LAR_distance(double start_x, double start_y, 
  double mid_x,   double mid_y, 
  double end_x,   double end_y) { 
 
  FIN (aodv_rte_rreq_within_distance( <args> )); 
 
 
  if (aodv_geo_vector_length(start_x, start_y, end_x, end_y) >= 
      aodv_geo_vector_length(mid_x, mid_y, end_x, end_y)) { 
    FRET(OPC_TRUE); 
  } 
 
  FRET(OPC_FALSE); 
} 
 
// Purpose: Compute the angle SME formed by three points: 
//          start (S), middle (M), end (E) 
// 
// In:      start_x, start_y -- position of starting point S 
//          mid_x, mid_y -- position of the middle point M 
//          end_x, end_y -- position of ending point E 
// 
// Out:     A value of the angle formed by the points S, M, E in units  
//          of degrees 
double aodv_geo_compute_angle(double start_x, double start_y, 
  double mid_x, double mid_y, 
  double end_x, double end_y) { 
 
  double vector_MS_x; 
  double vector_MS_y; 
 
  double vector_ME_x; 
  double vector_ME_y; 
 
  double angle_form_numer; 
  double angle_form_denom; 
 
  double angle; 
 
  FIN (aodv_geo_compute_angle( <args> )); 
 
  vector_MS_x = mid_x - start_x; 
  vector_MS_y = mid_y - start_y; 
 
  vector_ME_x = mid_x - end_x; 
  vector_ME_y = mid_y - end_y; 
 
  angle_form_numer = (vector_MS_x * vector_ME_x) + 
    (vector_MS_y * vector_ME_y); 
 
  angle_form_denom = 
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    aodv_geo_vector_length(mid_x, mid_y, start_x, start_y) * 
    aodv_geo_vector_length(mid_x, mid_y, end_x, end_y); 
 
  angle = acos(angle_form_numer / angle_form_denom) * (180 / PI); 
 
  FRET(angle); 
} 
 
// Purpose: This method returns whether or not the current node is 
//          within the request zone. The request zone will be as 
//          specified by LAR Zone 
// 
// In:      src_x, src_y - the coordinates of the originating source 
//                         node 
//          curr_x, curr_y - the coordinates of the node to test 
//          dest_x, dest_y - the coordinates of the destination node. 
//          radius - the velocity of the destination, or the radius of 
//                   the expected zone per LAR1. 
// 
// Out:     OPC_TRUE if the node is within the request zone and 
//          OPC_FALSE otherwise. 
Boolean aodv_geo_LAR_within_request_zone(double src_x, double src_y, 
  double curr_x, double curr_y, 
  double dest_x, double dest_y, 
  double radius) { 
 
  // The corners of the rectangular request zone: ll = lower-left, 
  // ul = upper-left, ur = upper-right, lr = lower-right. 
  Point2D ll, ul, ur, lr; 
 
  // The location of the current node. 
  Point2D currentLocation; 
 
  // This is the request zone rectangle made up of the four points 
  // above. 
  Rectangle requestZone; 
 
  // The return value for this method (whether or not the current node 
  // is contained within the request zone. 
  Boolean contained; 
 
  FIN (aodv_geo_LAR_within_request_zone( <args> )); 
 
  currentLocation.x = curr_x; 
  currentLocation.y = curr_y; 
 
  // The lower-left corner of the request zone is as far left and as 
  // far down as possible. 
  ll.x = min(src_x, dest_x - radius); 
  ll.y = min(src_y, dest_y - radius); 
 
  // The upper-left corner of the request zone must be as far left and 
  // as far up as possible. 
  ul.x = ll.x; 
  ul.y = max(src_y, dest_y + radius); 
 
  // The upper-right corner of the request zone must be as far right 
  // and as far up as possible. 
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  ur.x = max(src_x, dest_x + radius); 
  ur.y = ul.y; 
 
  // The lower-right corner of the request zone must be as far right 
  // and as far down as possible. 
  lr.x = ur.x; 
  lr.y = ll.y; 
 
  //Encapsulate these four points into a rectangle. 
  requestZone.lower_left = ll; 
  requestZone.upper_left = ul; 
  requestZone.upper_right = ur; 
  requestZone.lower_right = lr; 
 
  contained = 
    aodv_geo_LAR_is_point_contained(&currentLocation, &requestZone); 
 
  FRET ( contained ); 
} 
 
// Purpose: Simple helper function that determines whether or not the 
//          given Point is within the bounds of the provided Rectangle. 
// 
// In:      location - the point to check. 
//          zone - the bounds to check against. 
// 
// Out:     OPC_TRUE if the given location is contained within the zone, 
//          and OPC_FALSE otherwise. 
Boolean aodv_geo_LAR_is_point_contained(Point2D *location, 
  Rectangle *zone) { 
 
  FIN (aodv_geo_LAR_is_point_contained( <args> )); 
 
  // assumes that all sides of the 
  // rectangle are parallel to their respective axes 
 
  // left of rectangle 
  if (location->x < zone->upper_left.x) 
    FRET ( OPC_FALSE ); 
 
  // above the rectangle 
  if (location->y > zone->upper_left.y) 
    FRET ( OPC_FALSE ); 
 
  // right of the rectangle 
  if (location->x > zone->upper_right.x) 
    FRET ( OPC_FALSE ); 
 
  // below rectangle 
  if (location->y < zone->lower_right.y) 
    FRET ( OPC_FALSE ); 
 
  // Otherwise, it's in the rectangle. 
  FRET (OPC_TRUE); 
 
} 
 
// Purpose: Compute the length of the vector 
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// 
// In:      start_x, start_y - starting point of the vector 
//          end_x, end_y - ending point of the vector 
// 
// Out:     length of the vector 
double aodv_geo_vector_length(double start_x, double start_y, 
  double end_x,   double end_y) { 
 
  double x, y; 
 
  FIN (aodv_geo_vector_length( <args> )); 
 
  x = end_x - start_x; 
  y = end_y - start_y; 
 
  FRET (sqrt(pow(x, 2.0) + pow(y, 2.0))); 
} 
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Appendix D Raw Results 

2 Communicating Nodes 
 Speed (m/s) 
Protocol 0 5 10 Random 
AODV 188.67 161.50 174.17 164.33 
LAR Distance 141.33 134.67 141.17 138.17 
LAR Zone 93.17 93.50 120.17 87.50 
GeoAODV 156.33 163.50 144.33 115.83 
GeoAODV Rotate 119.67 108.83 132.67 94.33 

 

5 Communicating Nodes 
 Speed (m/s) 
Protocol 0 5 10 Random 
AODV 714.17 592.17 632.00 654.17 
LAR Distance 436.00 431.17 429.67 416.00 
LAR Zone 260.33 324.00 286.67 279.00 
GeoAODV 462.83 379.00 461.67 399.83 
GeoAODV Rotate 342.67 377.50 388.67 378.50 
 
10 Communicating Nodes 
 Speed (m/s) 
Protocol 0 5 10 Random 
AODV 2283.67 2080.00 2185.83 2208.50 
LAR Distance 989.83 1105.17 1305.00 1129.17 
LAR Zone 623.33 759.50 764.17 704.83 
GeoAODV 1235.67 1404.83 1144.83 1214.33 
GeoAODV Rotate 720.67 786.00 862.67 816.00 
 
20 Communicating Nodes 
 Speed (m/s) 
Protocol 0 5 10 Random 
AODV 5570.33 4850.83 5066.67 5139.17 
LAR Distance 4944.83 4232.83 4272.17 4577.17 
LAR Zone 2177.67 1751.00 2043.33 1946.67 
GeoAODV 4994.17 4198.00 4173.67 4367.50 
GeoAODV Rotate 3069.00 2969.83 2555.83 2617.17 
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30 Communicating Nodes 
 Speed (m/s) 
Protocol 0 5 10 Random 
AODV 8411.00 7213.67 7537.00 7498.67 
LAR Distance 8071.67 7563.00 7789.17 7628.50 
LAR Zone 5359.50 4042.50 5218.17 4519.17 
GeoAODV 8169.17 7496.33 8050.00 7508.83 
GeoAODV Rotate 7153.00 6924.17 7183.33 6606.00 
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