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Abstract 
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 IN NONSTATIONARY ENVIRONMENTS 
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An increasing number of real-world applications are associated with streaming 

data drawn from drifting and nonstationary distributions. These applications demand new 

algorithms that can learn and adapt to such changes, also known as concept drift. Proper 

characterization of such data with existing approaches typically requires substantial 

amount of labeled instances, which may be difficult, expensive, or even impractical to 

obtain. In this thesis, compacted object sample extraction (COMPOSE) is introduced - a 

computational geometry-based framework to learn from nonstationary streaming data - 

where labels are unavailable (or presented very sporadically) after initialization. The 

feasibility and performance of the algorithm are evaluated on several synthetic and real-

world data sets, which present various different scenarios of initially labeled streaming 

environments. On carefully designed synthetic data sets, we also compare the 

performance of COMPOSE against the optimal Bayes classifier, as well as the arbitrary 

subpopulation tracker algorithm, which addresses a similar environment referred to as 

extreme verification latency. Furthermore, using the real-world National Oceanic and 

Atmospheric Administration weather data set, we demonstrate that COMPOSE is 

competitive even with a well-established and fully supervised nonstationary learning 

algorithm that receives labeled data in every batch. 
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Chapter 1  

 

Introduction 

The fundamental goal of machine learning is to emulate (albeit at a limited scale) 

the decision making capabilities of the brain, so it is not surprising to find topics in 

machine learning often parallel human learning methodology. The cognitive development 

of humans from infancy through adolescence then into adulthood can be likened to three 

broad categories of machine learning – unsupervised, supervised, and semi-supervised 

learning, respectively.  

The following section draws parallels between human cognitive development and 

the aforementioned three broad divisions of machine learning. Once an understanding of 

general machine learning concepts has been established, nonstationary learning – a task 

humans accomplish innately - is presented as a challenging twist to traditional machine 

learning paradigms. Throughout this next section machine learning terms are gradually 

introduced in (parenthetical italics) and by the end of the chapter we will be using only 

machine learning terms. 

The remainder of the chapter presents a global picture of the problem this thesis 

addresses before narrowing the scope and identifying the specific contributions of this 

manuscript. An organizational overview of the remainder of this thesis can be found at 

the end of this chapter. 
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1.1 Human Cognition and Machine Learning 

1.1.1 Three broad divisions of machine learning. At infancy, we observe 

defining characteristics (features) – such as color, shape, size, etc. – of objects (instances) 

all around us. However, at this stage of cognitive development we do not necessarily 

know the names (classes or labels) of all the objects. For example, a toddler playing with 

blocks may form groups (clusters) of like featured objects, but is unable to follow 

instruction to sort them by color since he has not learned colors at this stage of 

development. This scenario is very similar to unsupervised learning algorithms which try 

to group data into “natural” clusters - where “natural” is defined by the similarity 

measure used by the clustering algorithm [1] - based solely on analysis of their features. 

The resulting clusters are assigned cluster identifiers using non-descript roman numerals 

or alpha-numeric characters, but these identifiers do not contain any information about 

true class membership. 

At youth, we rely heavily on parents and school teachers to provide connections 

between an object and its accepted name (training). Through repetition and a multitude of 

examples we are eventually able to make predictions about an object’s correct label 

(classification) even though we have not been formally taught the information prior. For 

example, after being told that roses, daffodils, and tulips are all flowers we are likely to 

assume anything with green leaves and brightly colored petals can be referred to as a 

flower. This scenario draws a strong correlation to supervised learning algorithms which 

use a set of labeled data to train a classifier - a mathematical model that maps features to 

corresponding labels – which is to provide class labels for other unknown instances. 
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By the time we reach adulthood we generally require fewer and fewer labeled 

examples in order to make an educated guess in unfamiliar situations. In machine 

learning, this concept is the foundation of semi-supervised learning. Combining the 

ability of unsupervised learning to form logical clusters with the ability of supervised 

learning to assign class labels, semi-supervised learning algorithms use a relatively small 

number of labeled instances to assign class information to the cluster identifiers, and 

therefore the unlabeled instances contained within that cluster. Providing an explicit 

example is rather difficult; however, studies, such as [2] and [3], have been conducted to 

determine if humans actually utilize semi-supervised learning presented in the machine 

learning context. In [3], the more rigorously executed study, Zhu et. al. presented 22 

subjects with a two class categorization task of visually complex unrecognizable 

supershapes of which a select subset is presented in Figure 1.1. Each shape presented in 

Figure 1.1 is produced using the same function evaluated using the value displayed 

below the shape. Supershapes, defined by the Superformula proposed by Geilis in [4], are 

continuously flowing shapes (i.e. they gradually morph from one state to another) and 

can be governed by one variable. 

 

Figure 1.1. Example of supershapes  

Supershapes morph from one state to another gradually. This transition can be 

parameterized by a single variable. Each shape pictured is produced by the same 

function evaluated using the value below the image. (figure obtained from [4]) 

 
 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5  
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The data were characterized by a bimodal Gaussian – each mode representing an 

opposing class. Subjects were given one sample from the center of each mode as training 

data, and were then asked to categorize a large set of additional instances. The subjects 

were divided into two groups: one received unlabeled data sampled from a similar 

bimodal distribution shifted to the left of the original Gaussian, and the other group was 

presented unlabeled data from a similar bimodal distribution shifted to the right. Results 

showed both groups developed initial decision boundaries near the middle of the two 

training instances until they were exposed to the shifted unlabeled data. Subjects from the 

left shifted distributions moved their decision boundary to the left while subjects from the 

right shift altered the decision boundary to the right. This experiment demonstrates that 

humans do in fact utilize a semi-supervised learning methodology. 

1.1.2 Nonstationary environments. To make learning in any of these three 

categories more realistic to human cognition, we must add one of the most challenging 

aspects of the human brain to emulate – adapting to an environment that is constantly 

changing. Infants learn to distinguish their family members’ faces in different lighting 

conditions even though they may not know their names; children under the age of ten are 

able to identify a speaker over the phone even with a poor connection or voice alterations 

due to illness; and adults make thousands of decisions daily while driving in various 

weather conditions or deciding to buy/sell shares in an ever fluctuating financial market.  

In machine learning, the challenge of making decisions in a changing 

environment is referred to as nonstationary learning. Nonstationary learning is extremely 

challenging since it requires algorithms to maintain a delicate balance of retaining 

relevant knowledge and forgetting concepts that are no longer applicable. In machine 
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learning, this challenging balance is known as the stability vs. plasticity dilemma [5]: 

stability refers to the ability to retain previously acquired knowledge making a stable 

learning environment; whereas plasticity refers to the ability of the classifier to adapt to 

new concepts, and acquire new knowledge. 

Once again machine learning approaches emulate humans’ decision making 

processes of i) using pooled experiences; or in some cases ii) recalling only their most 

recent experience. For example, when deciding whether a particular meal is enjoyable, a 

person relying on pooled experiences may recall several (or sometimes all) occasions 

they have tasted that dish before making a decision. The collection of experiences may 

include positive and negative feelings toward the meal, but in the end an overall decision 

is made to either like or dislike the dish. In machine learning, ensemble systems use this 

same decision making construct. Ensembles used in nonstationary environments are a 

collection of classifiers that are typically constructed at different periods in time; each 

classifier containing information about the state of the environment at the time it was 

constructed. Combining the classifiers’ knowledge produces a final collective decision of 

the ensemble. Each classifier’s vote in the final decision can be weighted, giving more 

influence to recent classifiers, as they are most likely to represent the current state of 

knowledge on the environment. Returning to our meal example, a person’s taste buds 

change every few years, so an experience in recent months should have more impact than 

a meal seven years prior.  

Conversely, another person may allow only the most recent food encounter, good 

or bad, to sway their opinion of the meal. Eating a dish that causes gastrointestinal 

discomfort may prevent one from eating that dish in the future. In machine learning, this 



6 

 

is similar to a single classifier system; they are updated to incorporate new information 

reflecting the change in the environment. Single classifier systems are managed in 

through incremental updates, adding the most recent experience to a single classifiers 

decision making ability, or by completely reconstructing a new classifier each time a 

change is detected.    

Ensemble systems and incremental learners have both advantages and 

disadvantages and selecting the appropriate style of learner is largely application 

dependent. Examples of each variety are discussed in more depth in Section 0.  

1.2  Problem Statement 

A fundamental assumption made by most learning algorithms is that data are 

drawn from a fixed but unknown distribution. This assumption implies that future 

unlabeled instances the model is expected to classify come from the same distribution as 

the data on which the model was developed in the first place. The previous section 

presented a few scenarios that contradict this static distribution scenario; in fact, many 

real world machine learning applications involve evolving surroundings (e.g. cancer 

detection, weather predictions, web ad placement, etc.).  

Nonstationary environments present a challenging problem for all machine 

learning algorithms. However, the benefit gained from tracking environments using 

unsupervised methods is limited – most applications require explicit class information be 

related rather than a cluster identifier. Therefore, most nonstationary learning research 

utilizes supervised or semi-supervised algorithms. A majority of research conducted has 

used supervised learners and has produced methods proven to be very effective at 
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learning in and adapting to changing environments [6]–[17]. However, supervised 

learning algorithms’ dependence on large sets of labeled examples for training has two 

drawbacks – labeled data are expensive and time consuming to obtain, as they require 

human annotation. When working in a nonstationary environment, where data often 

arrive as a stream, taking time to gather large sets of labeled examples is often 

impractical. For this reason, semi-supervised learning algorithms have been gaining 

increasing attention for nonstationary learning applications. The reliance of semi-

supervised learners on relatively small sets of labeled data paired with their ability to 

utilize cluster information available from abundant, inexpensive, readily available 

unlabeled instances makes semi-supervised learning very attractive for nonstationary 

applications. 

Most semi-supervised approaches to learning in non-stationary environments, for 

which a summary of relevant work is provided in Chapter 3, often assume that labeled 

data are available with every batch of incoming data.  However, more recent research, 

typically referenced as verification latency, has added an important and practical 

constraint: labeled data are not available at every time step, nor even in regular intervals, 

which significantly complicates the learning process. Verification latency, as denoted by 

Marrs et. al. [18], describes a scenario where true class labels are not made available until 

sometime after the classifier has made a prediction on the current state of the 

environment. The duration of this lag may not be known a priori, and may vary with 

time; yet classifiers must propagate information forward until the model can be verified. 

This thesis searches for a solution to the problem of learning concepts from 

nonstationary environments in a cost effective and time efficient manner. The next 
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section narrows the scope of the thesis providing the constraints considered when 

implementing a solution to this problem. 

1.3 Scope of Thesis 

This thesis explores non-stationary data in an extreme verification latency 

scenario, where the lag duration is set to infinity – meaning no labeled data is ever 

received after initialization. We refer to this scenario as initially labeled streaming 

environment (ILSE), and propose a framework for learning in such an environment. A 

theoretically justified solution to this extreme learning environment can then provide 

effective algorithms for learning from environments that do not receive labeled data for 

extended periods of time, whether that period is finite or otherwise. Real-world examples 

of such an extreme learning setting are perhaps few today, but are rapidly growing due to 

massive automated and autonomous acquisition of sensor, web user, weather, financial 

transaction, energy usage, and other data. Furthermore, such applications can be 

extremely important: network intrusion with malicious software (malware) attacks – 

where malware programmers are able to modify the malware faster than network security 

can identify and neutralize it, is a major current day challenge. Creating a labeled 

database for this scenario is difficult and expensive, because the data – which arrive 

continuously (i.e., streaming) – need to be isolated on a virtual machine, features need to 

be extracted from the header data, and then evaluated by a human expert. Many 

automation applications provide other examples, such as robots, drones, and autonomous 

vehicles encountering surrounding environment changing at a pace too quick for a human 

to verify all actions. 
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1.4 Organization of Thesis 

Chapter 2 provides background of topics that have motivated this research – 

primarily semi-supervised learning, nonstationary learning, and verification latency. 

Chapter 3 outlines the current state of knowledge in the field through a literature review 

on those topics that motive this research. Chapter 4 introduces and explains the 

methodology of the COMPOSE algorithm developed for this thesis. Chapter 5 presents 

the experimental setup and results of experiments on synthetic and real world data, 

followed by a discussion of the results. Chapter 6 presents a summary of conclusions and 

suggestions for future work. Finally, the contributions this thesis has made to machine 

learning are summarized in Chapter 7.  
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Chapter 2  

 

Background 

This chapter provides background on the individual topics that motivated this 

research. A general overview of semi-supervised learning methodology, nonstationary 

learning approaches, and concerns with verification latency are presented. 

2.1 Semi-Supervised Learning 

Semi-supervised learning is a combination of unsupervised and supervised 

learning methods. It offers an advantage of reduced cost through limited use of labeled 

data, as obtaining labeled data is often costly and time consuming. Semi-supervised 

learning is rationalized in two ways: unsupervised learning with additional constraints 

(i.e., labeled data); or conversely, supervised learning with additional information 

provided (i.e., unlabeled data) [19]. These differing views ultimately achieve the same 

result; however, considering both perspectives can be helpful when considering the 

fundamental assumptions of semi-supervised learning and reviewing semi-supervised 

algorithms.  

One or more of the four general assumptions listed below are utilized by semi-

supervised learning algorithms [19], [20]: 

i) the smoothness or local consistency assumption - if instances in a high 

density region are close to each other with respect to some similarity or 

distance measure, their class labels should be similar, while instances in a 

low density region need not belong to the same class. 
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ii) the cluster or global consistency assumption - instances in the same cluster 

should belong to the same class. 

iii) the low-density separation assumption - decision boundaries should lie in 

low-density regions. 

iv) the manifold assumption - high dimensional data reside on a lower 

dimensional manifold.  

The first three assumptions are often combined to produce a more general definition of 

semi supervised learning that assumes class boundaries to reside where data are least 

dense, and the transition between classes should be gradual. The manifold assumption 

addresses a well-known problem in all of machine learning and statistics – the curse of 

dimensionality. When dimensionality increases linearly, volume of the feature space 

increases exponentially; therefore, more instances are required to adequately populate the 

feature space. Many learning applications do not have enough data to populate a high 

dimensional space, making learning difficult. By projecting the high dimensional data 

onto a lower dimensional manifold, the remaining three assumptions can be enforced in 

the lower dimensions, thus making learning feasible. Illustrating the manifold assumption 

in high dimensionality is difficult; however, a reduction from a three dimensional to one 

dimensional feature space is shown in Figure 2.1. The two distributions, represented with 

red and blue labeled data and black unlabeled data, in (a) are projected “downward” onto 

the 𝑓1 and 𝑓2 plane to produce the distribution in (b); then this distribution is projected 

“downward” again onto the f1 axis. The result is a lower dimensional feature set that can 

then be analyzed using the other three assumptions to determine a decision boundary. It is 

important to note that not every manifold is created using an orthogonal basis, nor each 
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manifold produces a learnable reduced dimensionality dataset. If the data from (b) had 

been projected onto the 𝑓2 axis instead of 𝑓1 the resultant dataset would have been 

substantially more difficult to learn, if not impossible. There have been several 

techniques proposed to produce “optimal” manifolds. The most well-known and 

commonly used approaches are principle component analysis, independent component 

analysis, canonical correlation analysis, and Fisher’s linear discriminant. In some of these 

methods the original features are combined to produce a new representative feature set in 

a lower dimension. 

 

Figure 2.1. Example of manifold assumption 

A manifold is a projection of higher dimensions in to lower dimensions – this method is 

common in semi-supervised learning where sufficient data may not be available to 

adequately populate the feature space. The two distributions in (a), represented by red 

and blue labeled data and black unlabeled data, are projected onto the 𝑓1𝑓2 plane 

producing (b). The dimensionality is reduced further by projecting the data in (b) onto the 

𝑓1 axis producing (c). The order and direction of the projections impact the end result 

greatly. If (b) had been projected onto the 𝑓2 axis instead the data may not be separable. 

 

 (a) (b) (c) 
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Regardless of the assumptions utilized, all semi-supervised algorithms rely on 

some variation of a common iterative recipe: 1) train a classifier from available labeled 

data, 2) classify the remaining unlabeled data, 3) add instances whose confidence exceeds 

a threshold to the permanently labeled training set, and 4) remove instances that do not 

meet this threshold. This process has produced several well-established semi-supervised 

algorithms, primarily for use in static environments, which typically fall into one of three 

general categories:  

i) generative algorithms, such as [21], [22], which assume that the data are 

provided by a fixed yet unknown distribution, and that the decision 

boundaries can be represented based on class posteriors; 

ii) low-density separation algorithms, such as [23], [24], which  use density 

information from unlabeled instances to modify a decision boundary created 

by using only labeled data; 

iii) graph-based algorithms, such as [25], [26], which construct a graph, 𝐺 =

(𝑉, 𝐸) with vertices, 𝑉, representing instances and edges, 𝐸, representing 

relationships between vertices. Class information is transferred from labeled 

instances to neighboring unlabeled instances based on the relationship 

defined by the connecting edges. 

Some semi-supervised algorithms developed for static environments have recently 

been modified or and are included a wrapper-based approach enabling them to work in 

nonstationary environments; these approaches are discussed in the literature review 

featured in Chapter 3. 

  



14 

 

2.2 Nonstationary Environments 

Environments that provide data with changing distributions over time, such that 

𝑝𝑡(𝒙, 𝑦) ≠ 𝑝𝑡+1(𝒙, 𝑦), are referred to as nonstationary environments. Here 𝒙 ∈ 𝑋 is an 

instance from the feature space 𝑋, belonging to the class (concept) 𝑦 ∈ 𝑌 from the class 

space 𝑌, at time stamp 𝑡. The components of the distribution that differ between each 

time step can be categorized into four scenarios, listed below and depicted in Figure 2.2, 

all of which may occur independently or simultaneously:  

i) the number of instances per class – class priors, 𝑝(𝑦) 

ii) the shape of the distribution – class-conditional, 𝑝(𝒙|𝑦), or sample 

distribution, 𝑝(𝒙) 

iii) the class assignment – posterior distributions of class membership, 𝑝(𝑦|𝒙) 

iv) the addition/subtraction of a class – number of target concepts, |𝑌| 

A significant body of research has focused on various combinations of the first 

three scenarios – known as concept drift – limiting the environment to fixed number 

classes (concepts). In this thesis, the fourth scenario is also addressed so the all-

encompassing term nonstationary environment is used throughout.  

Early work on learning in nonstationary environments has primarily been on 

defining the problem, and identifying types of nonstationary environments that may be 

learned [16], [27]–[29]. This is not trivial, as each of the aforementioned drift scenarios 

can be abrupt or gradual, slow or fast, random or systematic, cyclical or otherwise. 

Changes can also be perceived, rather than real, due to insufficient, unknown or 

unobservable features – referred to as hidden context, where an underlying unknown 

phenomenon provides a true and static description over time [16], [30], [31]. 
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(i) 𝑝𝑡(𝑦) ≠ 𝑝𝑡+1(𝑦) (ii) 𝑝𝑡(𝑥|𝑦1) ≠ 𝑝𝑡+1(𝑥|𝑦1) (iii) 𝑝𝑡(𝑦|𝑥) ≠ 𝑝𝑡+1(𝑦|𝑥) (iv) |𝑌𝑡| ≠ |𝑌𝑡+1| 

 𝑝𝑡(𝑥) ≠ 𝑝𝑡+1(𝑥)   

Figure 2.2. Types of change in nonstationary environments 

(i) the class priors change between time steps; (ii) the class-conditional or sample 

distributions change between time steps; (iii) the posterior distributions of class 

membership change between time steps; (iv) the number of target classes (concepts) is 

changed through addition or deletion of a class (concept) 

Nonstationary learning algorithms can be characterized in several ways, such as 

online vs. batch approaches; single classifier vs. ensemble-based approaches; or active 

approaches (explicitly seeking to determine when a change/drift has occurred before 

taking corrective action) vs. passive approaches [9] (assuming drift may occur at any 

time, and update a model every time new data arrive).  

2.2.1 Online vs. batch approaches. Nonstationary data are presented in a 

stream – a time controlled progression of data – usually in one of two formats: online, 

where a single instance is available at each time step requiring a learner to adapt as each 

instance is acquired; or batch, where several instances are accumulated from the stream 

then presented to the learner. Both formats are depicted in Figure 2.3 with periods in time 
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annotated for discussion. In an online setting each instance (star) is received and 

processed as acquired; however, the batch method waits until a block of instances (four, 

in the example illustrated in Figure 2.3) are received before these instances are presented 

to the learner (batches are divided by vertical dashed lines). At discussion point (a) we 

see what is clearly an outlier from the batch view; however when viewed from the online 

perspective it is exceedingly difficult to determine if this is an outlier or change in 

concept. At discussion point (b), we see a similar case from the batch perspective; one 

instance appears to be an outlier even though it is truly the start of a change in concept. 

An often made assumption, although rarely true, is concept change does not occur within 

a batch. As a result, batch learners often lag in reacting to changing concepts whereas 

online learners are able to react much faster to a change. At discussion point (c) we find 

the rare occurrence where batch learning does not lag behind an online learner and 

instead has a distinct advantage; the concept change occurs between batches instead of 

within a batch as in (b). These three discussion points illustrate why online learning is 

considered to be substantially more difficult than batch learning - less data make concept 

generalization more difficult. Sometimes an incremental learning constraint is imposed 

making nonstationary learning even more difficult. Incremental learning dictates 

previously seen data are not accessible after the learner has initially seen the data. This 

additional assumption is shown in Figure 2.3 as gray shading over the previously 

encountered instances. 
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Figure 2.3. Online vs. batch nonstationary streaming data 

Depicts special discussion points for the comparison of online and batch data 

formats. In discussion point: (a) an outlier that would be easily recognized by 

batch learner may be considered a concept change to an online learner; (b) the 

batch assumption “change does not occur within a batch” delays the batch 

learner from realizing the concept change until the next batch; (c) the batch 

learner has a clear advantage over online learners. 

2.2.2 Active vs. passive approaches. Active approaches determine when a 

change has occurred before taking corrective action to update the learner, whereas 

passive approaches assume drift may occur at any time, and update the model every time 

new data arrive. Active nonstationary learning algorithms include window based 

approaches, such as STAGGER [27] and FLORA [16], and their variants [32]–[37], 

which use a sliding window to choose a block of new data to train a new classifier when 

change is detected. Other approaches use control charts to detect drift, including Alippi 

and Roveri’s just-in-time (JIT) classifiers [6], [38], [39], and the more recent intersection 

of confidence intervals (ICI) rule [40] are examples of such approaches. Information 

theoretic measures [41]–[43], Hoeffding bounds or Hellinger distance [44], [45] of 
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individual features have also been used for detecting drift and updating a classifier [41], 

[42], [46].  

2.2.3 Single vs. ensemble approaches. Many nonstationary learning algorithms 

are single-classifier approaches, which typically adapt to change by either: i) updating the 

adjustable parameters of the classifier to reflect changes present in newly received data 

[34], [47], [48]; or ii) replacing the current classifier with a new classifier trained on 

newly received data. Both suffer from the stability-plasticity dilemma [5]. Stability is 

required to retain previous knowledge but too much stability hinders learning new 

concepts. Plasticity, on the other hand, allows new information to be readily learned but 

too much plasticity results in previously acquired knowledge being forgotten too quickly. 

Algorithms strive to balance stability and plasticity. A learner that is entirely stable would 

not adapt to changes in the environment and a learner that is entirely plastic is plagued 

with catastrophic forgetting [49] – no previous knowledge is ever retained. While non-

stationary learning is possible with fully plastic learners, adding in stability often 

increases performance. 

Ensemble based approaches use a combination of several classifiers to make a 

decision, hence avoiding stability-plasticity problems, albeit at increased computational 

cost. Combining decisions of several classifiers, often created at different time steps, 

provides a natural mechanism to update the collective knowledge of the ensemble. 

Classifiers are added, removed, or updated to provide a better balance of stability vs. 

plasticity. Ensemble approaches track the environment by adding new (and possibly 

removing old) classifiers to build an ensemble of classifiers with each incoming dataset. 

These approaches typically use a passive drift detection and a fixed ensemble size, where 
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the oldest member (as in Street’s Streaming Ensemble Algorithm [14], and Bifet’s 

adaptive Hoeffding tree bagging [50]) or the least contributing ensemble member (as in 

Kolter’s Dynamic Weighted Majority (DWM) [51]) is replaced with a new one. Voting is 

the most common approach for combining the classifiers, though there is disagreement 

on whether a weighted [15] or simple majority voting  should be used [52]. Hybrid 

approaches that combine active detection, sliding window and ensembles have also been 

proposed, such as in Abdulsalam et al.’s random forests with entropy [43], Masud et al.’s 

concept drift with time constraints [53], He et al.’s IMORL and ADAIN [10], [54], and 

Bifet’s integration of a Kalman filter with Adaptive Sliding Window (ADWIN)  [7], [55], 

part of his Massive Online Analysis (MOA) suite [56], which also includes Learn
++

.NSE 

[9], [57], [58] for mining data streams with concept drift. 

2.3 Verification Latency 

Verification latency, as first defined by Marrs et. al. [18], describes a scenario 

where true class labels are not available until sometime after the classifier has made a 

prediction on the current environment. The duration of this lag may not be known a 

priori, and may vary with time; yet classifiers must propagate information forward until 

the model can be verified. 

Verification latency is a problem that plagues an increasing number of real-world 

nonstationary learning environments (e.g. credit card fraud, autonomous drone 

navigation, medical diagnosis, etc.), but is often disregarded in research due to its 

complexity. In most nonstationary learning problems, drift is assumed to be limited or 

gradual, and labeled data are assumed to arrive with every batch of incoming data. 
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Regular availability of labeled data and assumptions of relatively small shifts in the 

underlying concepts allows verification latency effects to be ignored in most research. 

However, when underlying distributions change rapidly, or access to labeled data is 

restricted, latency in model verification becomes drastically more important.  

 To illustrate this importance, let us consider a slowly evolving cancer and 

compare it to a credit card fraud situation. Cancer detection often relies on several 

markers to indicate the presence of cancer. In a slowly evolving cancer the thresholds that 

indicate cancer will slowly fluctuate, and these changes can be documented as each new 

possible cancer detected is evaluated and biopsied. The time taken to biopsy and denote 

changes in the markers introduces latency but since the system is slowly changing the 

delay is not devastating to classifier performance. In the case of credit card fraud, most 

transactions are normal and the classifiers monitoring the credit accounts learn our 

purchasing habits. When a fraudulent transaction occurs, it can go unnoticed for up to a 

month when the billing cycle closes and the balance is sent to the user. In this case a 

rapid change in purchasing may go undetected for several days, during which extensive 

damage can be done. Latency in identifying the difference between a fraudulent and 

normal transaction has had detrimental impact on the overall system. 

The consequences of verification latency have been circumvented by applying 

(often) unrealistic assumptions to the environment (i.e. the regular availability of labeled 

data and small shifts in concepts as mentioned above). However, there have been several 

attempts to start relaxing some of these assumptions [59 - 65] which are discussed more 

thoroughly in the literature review in Chapter 3.  
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Chapter 3  

 

Literature Review 

This chapter highlights algorithms utilizing semi-supervised learning in non-stationary 

environments relevant in the development of this work. A brief summary of each 

algorithm is presented with a focus on the following criteria: 

 Types of learners utilized 

 Limitations of tracking different types of non-stationary environments 

 Required frequency of labeled data 

3.1 Recurring Concept Drifts From Limited Labeled Streaming Data (REDLLA) 

Li et. al [59] propose REDLLA to explore REcurring concept Drifts from Limited 

LAbeled streaming data. Recurring concepts are difficult to address due to the stability 

plasticity dilemma [5] – one must retain old knowledge that is still relevant, yet replace 

obsolete knowledge to adapt to new concepts. To address this recurring concept problem, 

REDLLA maintains a decision tree along with a table of previously seen concepts. The 

algorithm assumes data arrive in batches of mixed labeled and unlabeled instances at 

every time step. The algorithm has been shown effective with 10% of the instances 

arriving with labels.  

REDLLA constructs a decision tree on receipt of the first batch of data (step 1 in  

Figure 3.1). Each instance in every subsequent batch is sorted through the tree 

and grouped at the appropriate leaf (step 2 in Figure 3.1). Each instance grouped at a 

specific leaf increases the instance count of that leaf, 𝑛𝐿, while the instance features are 

added to an attribute array, 𝑎𝑡𝑡𝑟𝐴𝑟𝑟𝑎𝑦, and if labeled, its class is recorded into a class 
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array, 𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦 (steps 3-5 in Figure 3.1). In every leaf, if the instance count, 𝑛𝐿, 

exceeds a user defined threshold, 𝑛𝑚𝑖𝑛, the unlabeled instances are labeled using a 𝑘-

means clustering  algorithm with simple majority voting of labeled instances placed in 

the same cluster, where 𝑘 is set equal to the number of different classes present in 

𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦 (step 6 in Figure 3.1). The 𝑘-means clustering algorithm uses a distance 

metric to partition all instances, both labeled and unlabeled, into 𝑘 different clusters 

around the closest mean, where the number of means is a predetermined value, 𝑘. The 

means can be provided by the user or can be determined through an iterative process. 

When simple majority voting is utilized, the labeled instances found within a cluster are 

tallied and the class with most instances is then assigned to all instances in the cluster, 

even if previously labeled. The results of the simple majority vote are used to update the 

𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦 (step 7 in Figure 3.1). After all instances have been labeled, split tests are 

conducted using information gain criteria, an impurity based method using entropy 

measures explained in [34], and new leaves are grown while the current leave becomes a 

decision node (step 8 in Figure 3.1).  

To determine if the tree has encountered any recurring concepts, the algorithm 

performs a check at a user defined detection period interval, 𝐷𝑃 (in Figure 3.1) this 

check is expressed as |𝐸| % 𝐷𝑃 = 0 where % is the modulus operator and |𝐸| is the 

number of instances received in the data stream). For every leaf in the current tree, the 

radius, 𝑟𝑐,𝑛𝑒𝑤, of each cluster, 𝑐 is calculated as the averaged Euclidean distance of every 

instance to its cluster mean, 𝑚𝑐. The cluster mean and radius are recorded into a 

temporary array, 𝑀𝑛𝑒𝑤 = {𝑟𝑐, 𝑚𝑐}. If the leaf was newly created during the last split test, 

array 𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤 and this concept is added to table, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐿𝑖𝑠𝑡 (steps 9-11 in Figure 
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3.1). If the leaf existed during the previous detection period, the Euclidean distance, 𝑑𝑐, 

between the means of similar classes in 𝑀𝑛𝑒𝑤 and 𝑀𝑙𝑎𝑠𝑡 are calculated, where 𝑀𝑙𝑎𝑠𝑡 is the 

cluster information from the last detection period. The clusters in 𝑀𝑛𝑒𝑤 are then 

evaluated and placed into one of three categories: i) potential drift, where 0 ≤ 𝑑𝑐 ≤

𝑚𝑎𝑥 (𝑟𝑐,𝑙𝑎𝑠𝑡, 𝑟𝑐,𝑛𝑒𝑤), and the previous concepts are updated to reflect the minute drift, 

𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤; ii) noise artifacts, where 𝑚𝑎𝑥(𝑟𝑐,𝑙𝑎𝑠𝑡, 𝑟𝑐,𝑛𝑒𝑤) < 𝑑𝑐 < 𝑟𝑐,𝑙𝑎𝑠𝑡 + 𝑟𝑐,𝑛𝑒𝑤, and 

𝑀𝑛𝑒𝑤 is discarded so that the next detection period uses the current 𝑀𝑙𝑎𝑠𝑡 for comparison 

purposes; or iii) true drift, where 𝑑𝑐 ≥ 𝑟𝑐,𝑙𝑎𝑠𝑡 + 𝑟𝑐,𝑛𝑒𝑤. When true drift is detected, 

𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤 and 𝑀𝑛𝑒𝑤 is added to 𝑐𝑜𝑛𝑐𝑒𝑝𝐿𝑖𝑠𝑡 only if there is no other “similar” 

concepts in 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐿𝑖𝑠𝑡. “Similarity” is determined using the same Euclidean distance 

metric described above (steps 12-15 in Figure 3.1).  

To ensure the tree does not over fit, pruning is conducted at a user defined 

pruning period interval, 𝑃𝑃. Pruning is conducted using a bottom up error based 

approach to remove leaves with an error rate greater than 50%. The tree performance is 

calculated at a predefined user incremental output period, 𝑂𝑃, where the performance is 

calculated using accumulated sum of a user defined  loss function between predicted and 

observed values. 
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Inputs: Stream of data: 𝐸; Minimum number of split-examples: 𝑛𝑚𝑖𝑛 ; Detection Period: 𝐷𝑃; 

Pruning Period: PP; Incremental Output Period: 𝑂𝑃. 

1. Create a leaf for tree, 𝑇 

Do for each instance 𝑒 ∈ 𝐸 

 2. Sort 𝑒 into available leaf, 𝐿.  

 3. Increase count of instances sorted to leaf, 𝑛𝐿 

 4. Add features of 𝑒 to 𝑎𝑡𝑡𝑟𝐴𝑟𝑟𝑎𝑦  

 If 𝑒 is labeled 

  5. Add class of 𝑒 to 𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦 

 End If 

End 

Do for each leaf 𝐿 ∈ 𝑇 

 If 𝑛𝐿 ≥ 𝑛𝑚𝑖𝑛  

  6. Label the unlabeled instances in leaf using 𝑘-Means clustering and simple majority voting of 

labeled instances contained within the cluster. 𝑘 is set equal to number of classes present in 

𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦. 

  7. Update 𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦 to reflect results of 𝑘-Means cluster and label for previously unlabeled 

instances. 

  8. Conduct split-test and grow new children leaves 

 End If 

 If |𝐸| % 𝐷𝑃 = 0 

  9. Calculate radius, 𝑟𝑐 , of each cluster, 𝑐, where the radius is the averaged Euclidean distance 

of each instance to the cluster mean, 𝑚𝑐 .   

  10. Create array 𝑀𝑛𝑒𝑤 = {𝑟𝑐 , 𝑚𝑐} 

  If 𝐿 is a new leaf (i.e. created in 8.) 

   11. Create array 𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤  and place 𝑀𝑙𝑎𝑠𝑡  into array 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐿𝑖𝑠𝑡 
  Else 

   12. Calculate Euclidean distance, 𝑑𝑐 , between means of similar classes in 𝑀𝑛𝑒𝑤  and 𝑀𝑙𝑎𝑠𝑡 , 

where 𝑀𝑙𝑎𝑠𝑡  is the an array containing the radius and mean of each cluster from the 

previous detection period. 

   Select 

    Case 1: 0 ≤ 𝑑𝑐 ≤ max⁡(𝑟𝑐,𝑙𝑎𝑠𝑡 , 𝑟𝑐,𝑛𝑒𝑤 )  Potential Drift 

     13. Update model to reflect minor changes, 𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤  

    Case 2: max(𝑟𝑐,𝑙𝑎𝑠𝑡 , 𝑟𝑐,𝑛𝑒𝑤 ) < 𝑑𝑐 < 𝑟𝑐,𝑙𝑎𝑠𝑡 + 𝑟𝑐,𝑛𝑒𝑤   Noise Artifact 

     14. Discard 𝑀𝑛𝑒𝑤  (i.e. do nothing so 𝑀𝑛𝑒𝑤  will be overwritten) 

    Case 3: 𝑑𝑐 ≥ 𝑟𝑐,𝑙𝑎𝑠𝑡 + 𝑟𝑐,𝑛𝑒𝑤   True Drift 

     15. Compare 𝑀𝑛𝑒𝑤  to 𝑀ℎ𝑖𝑠𝑡  using the same distance metric, 𝑑𝑐 , where 𝑀ℎ𝑖𝑠𝑡  is a list of all 

the previous concepts in 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐿𝑖𝑠𝑡. If no matching concept is found 𝑀𝑛𝑒𝑤  is added to 

𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐿𝑖𝑠𝑡 as a new concept and 𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤  

   End Select 

  End If 

 End If 

 If |𝐸| % 𝑃𝑃 = 0 
  16. Conduct bottom up error based pruning of branches with error rate greater than 50% 

 End If 

 If |𝐸| % 𝑂𝑃 = 0 

  17.  The performance for current model using an accumulated sum of loss function between 

predicted and observed values. 

 End If 

End  
Figure 3.1. REDLLA pseudocode 
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3.2 Weight Estimation Algorithm (WEA) 

Diztler et. al [60] propose WEA, a Weight Estimation Algorithm to learn 

nonstationary concepts in streaming data using any supervised learning algorithm as the 

base classifier for a learning ensemble. WEA assumes data arrive in a batch format of 

labeled data followed by unlabeled data. The unlabeled data are assumed to (possibly) 

originate from a drifted distribution (i.e. labeled and unlabeled data are from different 

distributions).  

WEA, psuedocode presented in Figure 3.2, works iteratively; adding to the 

ensemble, as new data arrive. At each time step, 𝑡, WEA trains a fully supervised 

BaseClassifier on the available labeled data, and then constructs a Gaussian Mixture 

Model (GMM), ℳ𝑐
𝑡, with a user defined number of components, 𝐾𝑐, for each class, 𝑐, in 

the labeled data (steps 1 and 2 in Figure 3.2). When unlabeled data are received, possibly 

from a drifted distribution, a second GMM, 𝒩𝑡, is constructed with its number of 

components totaling the sum of the all components in ℳ𝑐
𝑡 (step 3 in Figure 3.2). The 

Bhattacharyya distance between each component in 𝒩𝑡 and each component in ℳ𝑐
𝑡 is 

calculated, and the label of the closest component in ℳ𝑐
𝑡 is assigned producing a labeled 

GMM of the unlabeled data, 𝒩𝑐
𝑡 (step 4 in Figure 3.2). The Bhattacharyya distance is 

used as the distance metric since this paper defines its limited drift assumption to be the 

Bhattacharyya distance between a known component and its future position must be less 

than the Bhattacharyya distance between the known component and any other future 

component of a differing class. A user defined number, 𝑞𝑡, of synthetic samples are 

drawn from the now labeled GMM,  𝒩𝑐
𝑡. These synthetic instances are used to compute 

the error of each classifier in the ensemble. If the error exceeds 50% incorrect 
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classification the error is set to 50% (steps 5 and 6 in Figure 3.2). The classifier weights, 

which are proportional to the calculated error, are determined and used to produce a 

weighted majority ensemble hypothesis on the unlabeled data (steps 7 and 8 in Figure 

3.2). 

WEA was tested on synthetic data and compared to a similar ensemble algorithm 

Learn
++

.NSE, which only utilizes labeled data. The results demonstrated comparable 

performance between the two algorithms when the labeled and unlabeled data were 

drawn from a slowly drifting distribution. However, as the drift increased, WEA 

performed significantly better than Learn
++

.NSE. When drift became too great and 

violated the Bhattacharyya distance limited drift assumption, WEA’s performance 

dropped significantly.  
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Inputs: Labeled training data ℒ𝑡 = {𝒙𝑖 ∈ 𝒳; 𝑦𝑖 ∈ 𝒴} where 𝑖 = 1,… ,𝑚𝑡; 

  Unlabeled data 𝒰𝑡 =  𝒙𝑖 ∈ 𝒳   where 𝑖 = 1,… , 𝑛𝑡; 

  𝐾𝑐  – number of centers for the 𝑐th class in a GMM; 

  𝑞𝑡  – number of instances generated to estimate classifier error; 

  BaseClassifier learning algorithm 

 

Do for 𝑡 = 1,2,… 

 1. Call BaseClassifier on ℒ𝑡  to generate hypothesis ℎ𝑡 :𝒳 → 𝒴 

 2. Generate GMM with 𝐾𝑐  centers for each class present in ℒ𝑡 , ℳ𝑐
𝑡 = 𝐺𝑀𝑀(𝐾𝑐 , ℒ𝑡) 

 3. Generate GMM with 𝐾𝑐  centers from unlabeled data 𝒰𝑡 , 𝒩𝑡 = 𝐺𝑀𝑀(Σ𝐾𝑐 , 𝒰𝑡) 

 4. Assign each component in 𝒩𝑡  the label of the closest component in ℳ𝑐
𝑡 , where distance 

metric is the Bhattacharyya distance, 𝒩𝑐
𝑡 = 𝐵ℎ𝑎𝑡𝑡𝑎𝑐ℎ𝑎𝑟𝑦𝑦𝑎(𝒩𝑡 ,ℳ𝑐

𝑡) 

 5. Generate 𝑞𝑡  synthetic instances from 𝒩𝑐
𝑡  used to compute error, 𝜀 , of each classifier. 

      𝜀 𝑘
𝑡 =

1

𝑞 𝑡
  ℎ𝑘(𝒙𝑙) = 𝑦𝑙 
𝑞 𝑡

𝑙=1  𝑤here 𝑘 = 1,2,… , 𝑡 

 If 𝜀 𝑘
𝑡 > 1/2  

  6. Limit the error, 𝜀 𝑘
𝑡 = 1/2 

 End If 

 7. Compute the classifier voting weights for the unlabeled data, 

𝑊𝑘
𝑡 ∝ log

1 − 𝜀 𝑘
𝑡

𝜀 𝑘
𝑡  

 8. Classify the unlabeled data in 𝒰𝑡  using weights, 

𝐻𝑡(𝒙𝑗 ∈ 𝒰
𝑡) = arg max

𝑐∈Ω
 𝑊𝑘

𝑡 ℎ𝑘(𝒙𝑗 ) = 𝑦𝑗  

𝑡

𝑘=1

 

    where Ω is the set consisting of all classes in the problem 

End 
 

Figure 3.2. WEA pseudocode 

 

3.3 Semisupervised Stream Clustering (SmSCluster) 

Masud et. al. [61] propose an ensemble of clusters to track nonstationary concepts 

in streaming data when limited labeled data are available. This algorithm assumes both 

labeled and unlabeled data are available in every batch, and updates the ensemble to 

select the best preforming clusters to classify the most recent data. The SmSCluster 

process is outlined in the pseudocode presented in Figure 3.3.  

At each timestamp, data are clustered into 𝐾 user defined clusters by minimizing 

an impurity cost function through the Expectation-Maximization Algorithm [21] (step 1 
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in Figure 3.3). The impurity cost function is the sum of i) the  Euclidean distance 

between each instance and the cluster centroid and ii) the Euclidean distance between 

labeled data and the cluster centroid scaled by an impurity measurement. The impurity 

measurement is the product of an aggregated dissimilarity count (𝐴𝐷𝐶) and the entropy 

(𝐸𝑛𝑡) of the cluster. The author defines the aggregated dissimilarity count as a tally of all 

labeled instances not belonging to the majority class of a cluster and uses a standard 

definition of entropy,  

 𝐸𝑛𝑡𝑖 =  −
|ℒ𝑖(𝑐)|

|ℒ𝑖|
∗ 𝑙𝑜𝑔 (

|ℒ𝑖(𝑐)|

|ℒ𝑖|
)𝐶

𝑐=1 , 

where 𝐶 is the number of classes and  ℒ𝑖 is the labeled data in cluster 𝑖. 

Once the clusters have been created, a model, 𝑀𝑡, for that timestamp is created 

containing a statistical summary of the 𝐾 clusters formed (step 2 in Figure 3.3). The 

statistics recorded for each cluster are: 

 the total number of instances: 𝑁 

 the total number of labeled instances: 𝐿𝑡 

 a vector with the total number of labeled instances in each class: 𝐿𝑝 𝑐 𝑐=1
𝐶  

 the cluster centroid: 𝒖 

 a vector containing the sum of each dimension 𝑟 ∈ 𝑑 of all cluster data: 

𝑆𝑢𝑚 𝑟 𝑟=1
𝑑  

These statistics must be recorded in order for future clusters to be merged when a 

new class is experienced. When a new class is introduced at the current time step, 

previous models have no knowledge of this new class, skewing the ensemble voting 

process. In order to overcome this problem the new class information is injected into 

previous models using the following process. In each model, the closest two classes 
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having the same majority class are determined and then combined to generate new 

statistics from their previous values (step 3 in Figure 3.3). A subset of data from the 

newly experienced class is then injected with a user defined probability 𝜌 (step 4 in 

Figure 3.3).  After each model has been injected with a random subset (if needed), the 

performance of each model is acquired by testing that model’s classification rate on the 

labeled data from the current timestamp (step 5 in Figure 3.3). The 𝑚 highest performing 

models are selected to the ensemble and then used to label the unlabeled data from the 

current timestamp. 

The ensemble voting is executed in the following manner: for each unlabeled 

instance, the 𝑄 closest clusters are identified using a distance metric between unlabeled 

instance and cluster centroid. The normalized frequency, 
𝐿𝑝 𝑐 

𝐿𝑡
, obtained from the 

summary statistics are calculated and summed across the 𝑄 clusters. The unlabeled 

instance in then assigned the class of the highest cumulative normalized frequency. 
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Inputs: Data arriving at time 𝑡 – 𝒟𝑡 = {𝑥𝑖 ∈ 𝒳; 𝑦𝑖 ∈ 𝒴} and 𝒴 = {𝜙, 1, … , 𝐶} where 𝜙 =
𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 and 𝐶 is the total number of classes; 

 𝐾 – number of clusters to be created; 

 Q – number of nearest neighbors for kNN classification; 

 𝜌 – probability of injection; 

 𝑚 – number of models in ensemble 

Do for 𝑡 = 1,2,… 

1. Create K clusters using the E-M algorithm on the K-means with Minimization of Cluster 

Impurity cost function 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶      𝒙− 𝒖𝒊 
2

𝒙∈𝒳𝑖

+   𝒙− 𝒖𝒊 
2

𝒙∈ℒ𝑖

∗ 𝐴𝐷𝐶𝑖 ∗ 𝐸𝑛𝑡𝑖 

𝐾

𝑖=1

 

    where 

     𝑢𝑖  is the centroid of cluster 𝑖 
     ℒ𝑖  is the set of all labeled point in cluster 𝑖 
     𝐴𝐷𝐶𝑖 is the aggregated dissimilarity count of cluster 𝑖 
     𝐸𝑛𝑡𝑖  is the entropy of cluster 𝑖 
 

2. Create a model 𝑀𝑡 ∈ 𝑀 which contains summary of statistics for each created cluster in 1. 

The statistics for each cluster 𝑀𝑖
𝑡  include: 

𝑁 : the total number of points 

𝐿𝑡 : the total number of labeled points 

𝐿𝑝 𝑐 𝑐=1
𝐶  : a vector with the total number labeled points in each class 

𝒖 : the centroid of the cluster  

𝑆𝑢𝑚 𝑟 𝑟=1
𝑑  : a vector containing the sum of each dimension 𝑟 ∈ 𝑑 of all cluster data 

  

 If clusters in 𝑀𝑡  contain a new class not in clusters in 𝑀𝑗 ∈ 𝑀 where 𝑗 = 1,… ,𝑚  

 Do for 𝑗 = 1,… ,𝑚 

  3. Merge the closest two clusters having the same majority class in 𝑀𝑗  

  4. Injecting cluster 𝑀𝑖
𝑡  containing new class 𝑐  into 𝑀𝑗with probability 𝜌. 

 End 

 End If 

 5. Test each model 𝑀𝑗 ∈ 𝑀 and 𝑀𝑡  on the labeled data in 𝐷𝑡  and obtain its accuracy 

 6. 𝑀 ← best 𝑚 models in 𝑀 ∪ {𝑀𝑡} based on accuracy 

7. For all unlabeled data, 𝐷𝑡{𝒙; 𝑦 = 𝜙}, find the 𝑄 nearest labeled clusters in 𝑀 by computing 

the distance between the point and the centroid of the cluster. 

8. Calculate the normalized frequency of each of the Q nearest clusters, 
𝐿𝑝[𝑐]

𝐿𝑡
 

9. Sum the normalized frequencies of the Q nearest clusters and assign the data point the class 

label of the highest cumulative normalized frequency.   

End 
 

Figure 3.3. SmSCluster psuedocode 

 

  



31 

 

3.4 Relational K-means Transfer Semi-Supervised Support Vector Machine 

Zhang et. al. [62] identify four types of data in nonstationary streams involving 

mixed labeled and unlabeled data: labeled data (Type I) and unlabeled data (Type III) 

from the same distributions as the next-to-arrive batch of data; and labeled (Type II) and 

unlabeled (Type IV) data from similar distributions as the next-to-arrive data batch. 

Zhang et. al. propose a Transfer Semi-Supervised Support Vector Machine (TS
3
VM) 

model to learn data types I, II, and III and a relational k-means (RK) based model to learn 

Type IV data. They proceed to combine the two models together producing RK-TS
3
VM 

for learning from nonstationary streaming data with labeled and unlabeled instances.  

The TS
3
VM model is formulated by incrementally incorporating type I, II, and III 

data. Learning from type I data, 𝑇1 = {(𝒙𝑖, 𝑦𝑖)|𝒙𝑖 ∈ ℝ
𝑑 , 𝑦𝑖 ∈ {−1,1}}

𝑖=1

𝐿1
, where 𝒙𝑖 and 𝑦𝑖 

are the feature vector and class label, respectively, of the 𝑖𝑡ℎinstance in a 𝑑 dimensional 

set of 𝐿1 instances, is achieved by training a generic semi-supervised support vector 

machine (SVM) model where the margin is maximized between classes and the 

misclassification rates are minimized given in Equation 3.1: 

 𝑚𝑖𝑛𝜃  
1

2
 𝒘 2 + 𝐶  𝐻(𝑦𝑖𝑓𝜃(𝒙𝑖))

𝐿1
𝑖=1  (3.1) 

where 𝑤 is the projection direction, 𝐶 is the penalty of instances inside the margin, 

𝐻(𝑡) = 𝑚𝑎𝑥(0, 1 − 𝑡) is the hinge loss function, the function 𝑓𝜃(𝑥) = (𝑤𝑥 + 𝑏), 

𝜃 = (𝑤, 𝑏) is the classification boundary.  

To incorporate type II data, 𝑇2 = {(𝒙𝑖 , 𝑦𝑖)|𝒙𝑖 ∈ ℝ
𝑑 , 𝑦𝑖 ∈ {−1,1}}

𝑖=𝐿1+1

𝐿2
, where 𝐿2 

indicates the number of type two instances, into the SVM model a multitask learning 

approach is taken. In multi-task learning two objectives are optimized simultaneously, 
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but are controlled by weights; a greater weight indicates preference in task optimization. 

For this two task problem, labeled data from both same and similar distributions, the 

multi-task learning objective is given in Equation 3.2: 

 𝑚𝑖𝑛𝜃  
1

2
 𝒘 2 + 𝐶1 𝒗1 

2 + 𝐶2 𝒗2 
2 + 𝐶  𝐻(𝑦𝑖𝑓𝜃(𝒙𝑖))

𝐿2
𝑖=1  (3.2) 

Where 𝐶1 and 𝐶2 are the weights controlling task preference, 𝑣1 and 𝑣2 are discrepancies 

between the global optimal decision boundary 𝑤 and the decision boundary for each local 

task, 𝑓𝜃(𝑥) = (𝒘 + 𝒗1)𝒙𝑖 + 𝒃 for 1 ≤ 𝑖 ≤ 𝐿1 and 𝑓𝜃(𝑥) = (𝒘 + 𝒗2)𝒙𝑖 + 𝒃 for 𝐿1 + 1 ≤

𝑖 ≤ 𝐿2, and 𝜃 = (𝒘, 𝒗1, 𝒗2, 𝒃). 

 When incorporating type III data, 𝑇3 = {(𝒙𝑖)|𝒙𝑖 ∈ ℝ
𝑑}𝑖=𝐿2+1
𝑈 , the SVM must 

consider unlabeled data, which is accomplished by modifying the hinge loss function to 

be a symmetric hinge loss function [63]. A symmetric hinge loss function simply requires 

the absolute value of the data be taken since no class information is available and 

instances be penalized for residing inside the margin. The updated semi-supervised SVM 

is shown in Equation 3.3: 

  𝑚𝑖𝑛𝜃  

1

2
 𝒘 2 + 𝐶1 𝑣1 

2 + 𝐶2 𝑣2 
2 +

𝐶 𝐻(𝑦𝑖𝑓𝜃(𝒙𝑖)) + 𝐶
∗ 𝐻(|𝑓𝜃(𝒙𝑖)|)

𝑈
𝑖=𝐿2+1

𝐿2
𝑖=1

 (3.3) 

Where 𝐶∗ is the penalty of unlabeled instance residing inside the margin, 𝜃 =

(𝒘, 𝒗1, 𝒗2, 𝒃), and 𝑓𝜃(𝑥𝑖) = (𝒘 + 𝒗1)𝒙𝑖 + 𝒃 for 1 ≤ 𝑖 ≤ 𝐿1, 𝑓𝜃(𝑥𝑖) = (𝒘 + 𝒗2)𝒙𝑖 + 𝒃 

for 𝐿1 + 1 ≤ 𝑖 ≤ 𝐿2, 𝑓𝜃(𝑥) = 𝒘𝒙𝑖 + 𝒃 for 𝐿2 + 1 ≤ 𝑖 ≤ 𝐿 + 𝑈, 𝐿 = 𝐿1 + 𝐿2 and U is the 

number of unlabeled instances. When working with the unlabeled data, there is a 

possibility that all unlabeled instances are assigned to one class with a very large margin, 

often this is an error and leads to poor performance. To rectify this potential problem, the 

author adds a balance constraint to Equation 3.3 stating the objective function is to be 
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minimized such that 
1

𝑈
 𝑓𝜃(𝒙𝑖)
𝑈
𝑖=𝐿2+1

=
1

𝐿2
 𝑦𝑖
𝐿2
𝑖=1 . This additional balance constraint 

estimates the class ratios from the labeled data in 𝑇1 and 𝑇2. 

 The author has incorporated data types I – III into the TS
3
VM model, however 

type IV data become much more difficult since they are unlabeled data from a different 

distribution than the target domain. To overcome this difficulty a relational k-means 

clustering model (RK) is devised. The Type IV data are grouped into clusters using k-

means clustering algorithm then the similarity between each cluster center and Type I 

data is calculated using a Euclidean distance.  

The combined models result in the RK-TS
3
VM algorithm which works as 

follows. When a new batch of data arrives identify the four types of data according to the 

labeled rate and the concept drift probability (both provided by user). The author assumes 

Type I and III data are the calculated percentage of instances located at the tail of the 

batch (most recent data generated) and Type II and IV are at the remaining instances at 

the head of the batch (oldest data in batch). Using the RK model, cluster centers of Type 

IV data are obtained. For each Type I, II, and III instances cluster center attributes are 

added by taking the inner product of the cluster centroid’s features with the instances 

features. The new instances generated from the inner product are then used to construct 

the TS
3
VM model - this model is used for prediction. 

3.5 The Ensemble Classifier and Clusters Model 

Zhang et. al. [64] propose The Ensemble Classifier and Clusters Model, which is 

able to learn nonstationary streaming concepts from batches that do not provide labeled 

data in all time steps; however, the algorithm does require labeled data periodically to 
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properly update the ensemble. The ensemble maintains 𝑛 base models for which the 

model may be a classifier or a cluster depending whether the most recent batch contains 

labeled data. The ensemble contains 𝑎 classifier models, 𝜆1, … , 𝜆𝑎, and 𝑏 cluster models, 

𝜆𝑎+1, … , 𝜆𝑛; 𝑎 + 𝑏 = 𝑛. The objective of the ensemble 𝐸 is to provide a class label, 

𝑦 ∈ 𝑌 = {𝑐1,… 𝑐𝑟}, to a yet-to-arrive instance, 𝑥 ∈ ℝ𝑑, were 𝑑 is dimensionality of data 

and 𝑟 is the total number of classes. The ensemble objective is simply defined as 

 𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌𝑃(𝑦|𝑥, 𝐸) (3.4) 

When working with ensembles, the classification of an instance is often the 

weighted vote of all models in the ensemble, so the posterior probability would usually 

be defined as: 

 𝑃(𝑦|𝑥, 𝐸) =  𝑤𝑖𝑃(𝑦|𝑥, 𝜆
𝑖)𝑛

𝑖=1  (3.5) 

where 𝑤𝑖 is the weight of the 𝑖𝑡ℎ model in the ensemble. However, when relying on 

clusters as some ensemble models, there is no true class information available – only 

group (cluster) identifiers, 𝑔. To incorporate the clusters into the ensemble model, the 

posterior probability is estimated by integrating the class mappings together for each 

cluster such that the weighted ensemble posterior probability is better defined by: 

 𝑃(𝑦|𝑥, 𝐸) =
 𝑤𝑖𝑃(𝑦|𝑥, 𝜆

𝑖)𝑎
𝑖=1 +

  𝑤𝑗𝑃(𝑦|𝑔𝑘
𝑗
)𝑃(𝑔𝑘

𝑗
|𝑥, 𝜆𝑗)𝑟

𝑘=1
𝑛
𝑗=𝑎+1

 (3.6) 

The difficulty with calculating this ensemble posterior probability is 𝑃(𝑔𝑘
𝑗
|𝑥, 𝜆𝑗) 

must be estimated and the weights cannot be determined through common performance 

metrics on the most recent batch of data since often the data are unlabeled. To overcome 

these problems the authors use a graph, 𝐺 = (𝑉, 𝐸), in which the vertices, 𝑉, represent 

the cluster center of each model (classifier and cluster models alike), and the edges, 𝐸, 
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represent the similarity between the vertexes. The graph is used to propagate labels (and 

therefore estimate cluster posteriors), and define ensemble weights using the edges to 

develop a similarity metric. 

When the incoming batch of data is received, the algorithm treats it as if the batch 

is unlabeled and creates 𝑣 groups {𝑔1
𝑛+1, … , 𝑔𝑣

𝑛+1}. If the batch of data is labeled, the 

class labels are assigned to the recently constructed 𝑣 groups and a classifier, 𝜆𝑛+1 is 

constructed. The graph is then updated, adding the 𝑣 new groups as vertexes, and 

removing old vertexes {𝑔1
1, … , 𝑔𝑣

1}. The class label of each unlabeled group in the model 

is estimated using label propagation from the labeled groups to the unlabeled groups and 

the weights are determined using the following similarity metric: 

 𝑤𝑖 =
1

𝑍
∗

1

‖𝜆𝑖−𝜆𝑛‖
2 (3.7) 

where 𝑍 =  
1

‖𝜆𝑖−𝜆𝑛‖
2

𝑛
𝑖=1  serves as a regularizing term. 

The ensemble can then be constructed and the weighted average of all the models is used 

to classify the incoming data. 

3.6 Arbitrary Sub-Population Tracker Algorithm (APT) 

Krempl proposes APT, the Arbitrary Sub-Population Tracker algorithm [65], 

which is the only algorithm we have discovered that attempts to address the same 

extreme verification latency issues as our COMPOSE Framework. Before discussing the 

mechanics of APT, let us outline the assumptions the APT model makes about the 

environment, where 𝑃(𝑋) represents the feature distribution, 𝑃(𝑍) represents the 
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component prior distribution (i.e. mixing proportions), and 𝑃(𝑌) represents the 

distribution of class labels:  

a) the underlying population of the feature space consists of several sub-

populations that evolve differently over time;  

b) the data generated from this feature space can be represented with a mixture 

model of several components that drift over time; 

c) each sub-population of the feature space must be represented by labeled data 

at initialization, where a sub-population is defined as a mode in the class 

conditional distribution 𝑃(𝑌|𝑋) (i.e., a bimodal class distribution would 

consist of two separate subpopulations to be tracked within a single class); 

d) furthermore every instance must be labeled at initialization; 

e) the drift must be gradual and “systematic”, meaning it can be represented as a 

piecewise linear function; 

f) the drift only affects the conditional feature distributions 𝑃(𝑋|𝑍); 

g) so the conditional posterior distributions, 𝑃(𝑌|𝑍), remains fixed (i.e. a 

component’s class label cannot change); 

h) and the prior distribution of components, 𝑃(𝑍), is static (or changes very 

gradually if model is relaxed as discussed below); 

i) the posterior distribution is independent of the (latent) component 

membership, 𝑃(𝑌|𝑍) = 𝑃(𝑌|𝑍, 𝑋)  

j) covariance of each component remains constant 

Since the author does not assume the conditional feature distributions of the components, 

𝑃(𝑋|𝑍), to be Gaussian or any other parametric distribution, he uses a kernel estimator, a 
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non-parametric approach, to represent density distributions. A kernel estimator uses M 

samples, 𝑋 = {𝑥1, … , 𝑥𝑀}, to model the density distribution, 𝑓(𝑥), underlying a sample, 

𝑥. The standard kernel estimator is given in Equation 3.8 and works with several different 

kernel functions, 𝐾𝑋(𝑥 − 𝑥𝑚) (e.g. radial basis, polynomial, Gaussian, etc.). Krempl 

presents his paper using the common choice of the Gaussian kernel; however, any kernel 

function will work. The generic D-dimensional Gaussian Kernel is given in Equation 3.9.  

 𝑓(𝑥) =
1

𝑀
 𝐾𝑋(𝑥 − 𝑥𝑚)
𝑀
𝑚=1  (3.8) 

 𝐾𝑋(𝑥 − 𝑥𝑚) = (2𝜋)
− 
𝐷

2 |𝛴−1|
1

2 𝑒𝑥𝑝 {−
1

2
(𝑥 − 𝑥𝑚)

𝑇𝛴−1(𝑥 − 𝑥𝑚)} (3.9) 

where 𝛴, is the covariance or generally referred to as the bandwidth of a kernel function. 

Krempl takes this standard kernel estimator and makes some minor changes to better fit 

the APT model to the nonstationary learning environment. Equation 3.10 shows a the 

adjusted kernel estimator function accounting for different time steps and a modified 

Gaussian kernel, 𝑔𝑚(𝑥, 𝑡), is presented in equation 3.11. 

 𝑓(𝑥, 𝑡) =
1

𝑀
 𝑔𝑚(𝑥, 𝑡)
𝑀
𝑚=1  (3.10) 

 𝑔𝑚(𝑥, 𝑡) = (2𝜋)−
𝐷

2 |𝛴𝑧𝑚
−1|

1

2 𝑒𝑥𝑝 {−
1

2
𝑑𝑚
𝑇 𝛴𝑧𝑚

−1𝑑𝑚} (3.11) 

Where 𝛴𝑧𝑚 allows there to be a different bandwidth matrix (covariance) for each 

component 𝑧, and 𝑑𝑚 = 𝑥 − 𝑥̃𝑚(𝑡) is the difference between position 𝑥 where the 

density is being evaluated and the estimated position 𝑥̃𝑚 of the 𝑚𝑡ℎ component and time 

𝑡. The estimated position is calculated in Equation 3.12 as 

 𝑥̃𝑚(𝑡) = 𝑥𝑚 + (𝑡 − 𝑡𝑚) ∗ 𝜇𝑧𝑚
∆  (3.12) 

where 𝜇𝑧𝑚
∆  defines the component movement vector of the 𝑚𝑡ℎ component center. At 

initialization the initial cluster position is indicated by 𝜇𝑧𝑚
0 . 
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The mechanics of APT are simple: incoming data are classified through a two-

step procedure: i) use of expectation maximization to determine the optimal one-to-one 

assignment between the most recent batch of unlabeled data and the previous batch, now 

considered drift-adjusted labeled data; then ii) update the classifier to reflect the 

population parameters of newly received data and the drift parameters relating the 

previous time step to the current one.  

Following assumption h, stating 𝑃(𝑍) remains static, we are faced with a problem 

of creating a one-to-one mapping of an instance in time step 𝑡 to an instance in time step 

𝑡 + 1. When given a set of 𝑀 known examples (exemplars), and a set of 𝑁 new 

observations at positions 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} and at times 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑁}, this 

problem corresponds to the following likelihood maximization problem 

𝐿(𝛩; 𝑋, 𝑇) =∏∏𝑔𝑚(𝑥𝑛, 𝑡𝑛)
𝑧𝑛𝑚

𝑀

𝑚=1

𝑁

𝑛=1

 

where 𝛩 = {𝜇1
0, … , 𝜇𝐾

0 , 𝜇1
𝛥, … , 𝜇𝐾

𝛥} and 𝑧𝑛𝑚 is the observation-exemplar correspondence: 

𝑧𝑛𝑚 = {
1 𝑖𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟 𝑚
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                 

 

The bandwidth matrices 𝛴𝑧𝑚 used are determined at initialization and assumed to remain 

constant. 

To solve this likelihood maximization problem Krempl turns to a very standard 

approach of expectation maximization [21] which is formulated as: 

𝑚𝑎𝑥   𝑙(𝛩; 𝑋, 𝑇) =   𝑧𝑛𝑚(−2𝑑𝑛𝑚𝛴𝑧𝑚𝑑𝑛𝑚)

𝑀

𝑚=1

𝑁

𝑛=1

 

subject to 
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 𝑧𝑛𝑚 = 1

𝑁

𝑛=1

     ∀𝑚   ∈ 1,2, … ,𝑀 

 𝑧𝑛𝑚 = 1

𝑀

𝑚=1

     ∀𝑛   ∈ 1,2, … ,𝑁 

𝑀 = 𝑁 

𝑧𝑛𝑚 ∈ {0,1} 

Establishing a one-to-one relationship while identifying drift requires an 

impractical assumption that the number of instances remains constant throughout all time 

steps. Krempl relaxes this assumption by establishing a relationship in a batch method – 

matching a random subset of exemplars to a subset of new observation until all new 

observations have been assigned a relationship to an exemplar. Krempl suggests a 

bootstrap method that can make the one-to-one assignments more robust, but at 

additional computational cost.   
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Chapter 4  

 

The COMPOSE Framework 

This chapter introduces COMPOSE – a framework utilizing semi-supervised 

learning to track data in nonstationary environments experiencing verification latency. 

The term framework is used since COMPOSE accomplishes its objectives using a 

combination of two modular components: any semi-supervised learning algorithm; and a 

class boundary estimator paired with its compaction technique. The chapter presents the 

algorithm’s evolution through each revision accompanied by pseudocode, and detailed 

descriptions of each stage of the algorithm – constructing class boundaries, compacting 

these boundaries, and extracting relevant samples. 

4.1 Fundamental Premise of the COMPOSE Framework 

COMPOSE is intended for learning from gradually drifting distributions 

generated by nonstationary environments that produce streaming data with no labels. 

Gradual drift is often considered more challenging to detect than abrupt change, as the 

data distribution 𝑝𝑡(𝒙) at time 𝑡 and 𝑝𝑡+1(𝒙) at time 𝑡 + 1 may have significant overlap, 

which makes distinguishing (detecting change between) the two difficult. COMPOSE 

turns this difficulty into an opportunity and takes advantage of the overlapping nature of 

incrementally changing distributions at consecutive time steps. The entire COMPOSE 

process is presented in a block diagram with accompanying illustrations in Figure 4.1.  

At 𝑡 = 0, COMPOSE is provided with (possibly very few) labeled data, depicted 

by opposing classes of (red) squares and (blue) circles (Figure 4.1a), and relatively 

abundant unlabeled data, represented by (black) diamonds (Figure 4.1b). At all other 
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Figure 4.1. Graphical representation of COMPOSE stages 

 

time steps 𝑡 > 0, COMPOSE receives only unlabeled data. A semi-supervised learning 

algorithm is trained with the labeled and unlabeled data, to label the currently unlabeled 

instances, as indicated with change of color and shape in Figure 4.1c. COMPOSE 

creates a boundary object from the current data, defining a tight envelope representing the 

distribution of each class. Class boundaries are represented by solid outlines, enveloping 

shaded regions in Figure 4.1d. The boundary object of each class is compacted (i.e., 

shrunk) by a specified percentage, the compaction percentage, to determine the core 

support region of each distribution as shown by the darker shaded region with dashed 

outline in Figure 4.1e. Instances drawn from the core support region of the current 

distribution 𝑝𝑡(𝒙), shown as non-faded instances of Figure 4.1f, are the most likely 

candidates to represent data drawn from the next distribution 𝑝𝑡+1(𝒙) that may have 

experienced translational, rotational, or volumetric (i.e. expansion/contraction) drift. The 

final step of one iteration of COMPOSE extracts (now labeled) instances from the core 

support region(s) to be used as labeled data in the near future – these instances are 

referred to as the core supports of that class (Figure 4.1f). It is possible to have multiple 
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core support regions for any class. When new unlabeled data are received, they are 

combined with the core supports to retrain a semi-supervised learning algorithm to adapt 

to the drifting (nonstationary) environment, as COMPOSE iteratively updates itself. The 

progression of a single class distribution over a series of time steps is illustrated in Figure 

4.2, experiencing translational (Figure 4.2a), rotational (Figure 4.2b), and volumetric 

(Figure 4.2c) drift. In each case, the core support region from the previous time step  

(boundaries indicated with dashed lines) indicate an area from which relevant instances 

can be extracted to label the next time step, 𝑡. It is important to emphasize that – unlike 

other  semi-supervised learning algorithms used in nonstationary settings – all future 

labeled data are “earned” (generated) by COMPOSE through core support extraction, and 

not paid for, purchased or requested from the user. 

 

Figure 4.2. How COMPOSE accounts for various drift types 

Examples of (a) translational, (b) rotational, and (c) 

volumetric drift showing the core support region of previous 

time step provides an optimal area to draw instances from to 

train current data. 

4.2 Evolution of the COMPOSE Framework 

COMPOSE’s fundamental principles, presented in the previous section, have 

remained consistent through its several minor revisions and one major revision presented 
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in Table 4.1. Each of the minor revisions has increased the accuracy of the framework 

while decreasing the computational complexity and the major revision involved a name 

change to include more class boundary estimation techniques.  

Table 4.1. 

 

Evolution of COMPOSE framework 

Version 1.0  Any SSL algorithm, α-shape class boundary estimation, skeleton 

method compaction (limited to two dimensions)  

Version 1.1  Any SSL algorithm, α-shape class boundary estimation, “FFT 

erosion”  compaction of class boundary to relax  

Version 1.2  Any SSL algorithm, α-shape class boundary estimation, layer 

lookup table compaction of α-shape 

Version 2.0  Any SSL algorithm, any class boundary estimation, compaction 

matched to boundary estimation technique (framework renamed) 

 

At conception, and throughout Version 1.x, COMPOSE stood for COMpacted 

POlytope Sample Extraction. The terms “sample extraction” and “compacted” are easily 

diagramed in Figure 4.1 of the previous section; however, the term “polytope” is not 

adequately discussed. Quite simply, a polytope is a multi-dimensional geometric shape 

with flat sides (e.g., a polygon is a two dimensional polytope). This term is often used 

when discussing α-shapes, the class boundary estimation method used in Version 1.x. α-

shapes are explained in detail in Section 4.4, and the progression of compaction methods 

for Version 1.x are presented in Section 4.5. 

Version 2.x of the framework has changed the name to COMPacted Object 

Sample Extraction (but retaining the same acronym) to encompass alternative methods 

for generating class boundaries. Experiments have been conducted to prove alternative 
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methods exist to generate compactable class boundaries, but they are outside the scope of 

this thesis and are only described briefly as future work in Chapter 6. 

4.3 Algorithm Description 

Conventional semi-supervised algorithms, used in stationary environments, 

require sufficient amount of labeled as well as unlabeled data. In a nonstationary 

environment experiencing verification latency (as described in Section 2.3), not only are 

future labeled data rare or nonexistent, data also drift, preventing conventional semi-

supervised algorithms from learning in such a setting. COMPOSE is designed to address 

this limitation by extracting relevant data, labeled by the semi-supervised learner in the 

current time step, to be combined with the next batch of unlabeled data. This important 

modification allows semi-supervised learning algorithms to be utilized in nonstationary 

environments.  

The distribution 𝑝𝑡(𝒙) providing the unlabeled data at time 𝑡 may have drifted 

from the distribution 𝑝𝑡−1(𝒙) at time 𝑡 − 1. Consistent with other nonstationary 

environment algorithms, we assume limited (gradual) drift, such that the extracted 

labeled data overlap the newly received unlabeled data. Therefore, the distribution 𝑝𝑡(𝒙) 

must overlap with the distribution 𝑝𝑡−1(𝒙). This minimum overlap requirement can be 

formally written as  {𝒙: 𝑝𝑡−1(𝑋 = 𝒙|𝑌) > 0 ∩ 𝑝𝑡(𝑋 = 𝒙|𝑌) > 0} ≠ ∅ . Of course, as the 

amount of overlap between distributions of subsequent time steps increase, the ability and 

performance of COMPOSE in tracking the nonstationary distribution is improved. The 

remainder of this section uses version 1.2 of the COMPOSE framework to explain in 

detail how COMPOSE i) creates 𝛼-shapes from the data; ii) compacts (shrinks) the 𝛼-
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shapes to create core regions; and iii) extracts core supports from the compacted 𝛼-shapes 

to serve as labeled data for future time steps. The outline of the algorithm is listed in the 

pseudocode in Figure 4.3.  

The algorithm has three inputs: i) BaseClassifier, which can be any semi-

supervised learning algorithm, for classifying unlabeled data at each time step, 𝑡; ii) 𝛼, 

specifying the level of detail of the 𝛼-shape boundary object; and iii) 𝐶𝑃, the compaction 

percentage. The algorithm is initialized at 𝑡 = 0 with a set of labeled data, ℒ0 = {𝒙𝑙
𝑡 ∈

𝑋}, and corresponding labels, 𝒴0 =  𝑦𝑙
𝑡 ∈ 𝑌 = {1,… , 𝐶} , 𝑙 =   1, … ,𝑀 where 𝑀 is the 

total number of labeled instances and 𝐶 is the total number of classes (step 1 in Figure 

4.3). At each subsequent time step 𝑡, new unlabeled data 𝒰𝑡 = {𝑥𝑢
𝑡 ∈ 𝑋} are received, 

𝑢 = 1,… ,𝑁 where 𝑁 is the total number of unlabeled instances (step 2). Both labeled and 

unlabeled data are passed to BaseClassifier to generate a hypothesis ℎ𝑡: 𝑋 → 𝑌. A 

combined dataset 𝔇𝑡 is constructed by merging ℒ𝑡 and 𝒰𝑡, where class labels for  𝒰𝑡 are 

provided by ℎ𝑡 (step 3). With labels for all instances of 𝔇𝑡 now available, COMPOSE 

then extracts core supports for each class, selected from the core support region of the 

current distribution (steps 4 – 7). The underlying premise here is that the core support 

region of the data at the current time step – compared to any other time step – is most 

likely to have maximum overlap with the drifted distribution in the next time step, 

regardless of the nature of drift. Therefore, these core supports can be used to serve as 

labeled data for the next time step’s SSL classifier. Specifically, the labeled dataset for 

the next time step (ℒ𝑡+1, 𝒴𝑡+1) is first initialized as an empty set (step 4). For each class, 

𝑐 = 1,… , 𝐶 identified by ℎ𝑡; an α-shape class boundary object ℬ𝑐 is constructed using the 

method described in Section 4.4 (denoted as function 𝑓(∎) in step 5). The class boundary 
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object  ℬ𝑐 is then compacted (i.e., shrunk) using the method described in Section 4.5 to 

produce the core support region ℬ𝑐
′  (denoted as function 𝑔(∎) in step 6) such that desired 

core supports specified by compaction percentage 𝐶𝑃 are obtained. Then, all instances 

that reside in the compacted region ℬ𝑐
′  are extracted as core supports and are retained to 

serve as labeled data for the next time step. Core supports obtained from each class are 

appended to finalize the labeled data (ℒ𝑡+1, 𝒴𝑡+1) in step 7. 

Inputs: SSL algorithm – BaseClassifier; α-shape detail 

level – 𝛼;  compaction percentage - 𝐶𝑃 

1. Receive labeled data  

ℒ0 = {𝒙𝑙
𝑡 ∈ 𝑋}, 𝒴0 = {𝑦𝑙

𝑡 ∈ 𝑌 = {1,… , 𝐶}, 𝑙 = 1,… ,𝑀} 
Do for 𝑡 = 0,1,… 

 2. Receive unlabeled data, 𝒰𝑡 = {𝑥𝑢
𝑡 ∈ 𝑋, 𝑢 = 1,… ,𝑁} 

 3. Call BaseClassifer with ℒ𝑡 , 𝒴𝑡 , and 𝒰𝑡  

   Obtain ℎ𝑡 : 𝑋 → 𝑌,  

   Let 𝔇𝑡 = {(𝒙𝑙
𝑡 , 𝑦𝑙

𝑡): 𝑥 ∈ ℒ𝑡∀𝑙} ∪ {(𝒙𝑢
𝑡 , ℎ𝑢

𝑡 ): 𝑥 ∈ 𝒰𝑡∀𝑢}  

 4. Set ℒ𝑡+1 = ∅, 𝒴𝑡+1 = ∅ 

 Do for each class  𝑐 = 1,… , 𝐶 

  5. Construct α-shape boundary, ℬ𝑐 = 𝑓(𝛼,𝔇𝑐
𝑡 ) 

  Do Until number of core supports  𝐶𝑆𝑐 = 𝐶𝑃 ∗  𝔇𝑐
𝑡  

6. Compact α-shape boundary, ℬ𝑐
′ = 𝑔(ℬ𝑐) 

  End  

  7. Extract core supports, 𝐶𝑆𝑐 = {𝑥: 𝑥 ∈ ℬ𝑐
′ } ∪ 𝔇𝑐

𝑡 , and 

add to labeled data for next time step 

ℒ𝑡+1 = ℒ𝑡+1 ∪ 𝐶𝑆𝑐   
    𝒴𝑡+1 = 𝒴𝑡+1 ∪ {𝑦𝑢 : 𝑢 ∈  |𝐶𝑆𝑐 | , 𝑦 = 𝑐}   
 End 

End 
 

Figure 4.3. COMPOSE pseudocode 
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4.4 𝜶-Shape Construction    

In this section, we present the terminology used when discussing 𝛼-shapes and 

their construction, explore how 𝛼-shapes are affected by changing the 𝛼 parameter, and 

explain how to construct an 𝛼-shape from data. 

4.4.1 Terminology. We first introduce the basic terminology used within the 

context of constructing 𝛼 shapes. A 𝑑–simplex, or simply a simplex throughout this 

thesis, is the convex hull of 𝑑 + 1 vertices, connected via edges, where 𝑑 is the 

dimensionality of the data. Examples of low dimensionality simplexes are provided in 

Figure 4.4: a 2-simplex is a triangle defined by three vertices; and a 3-simplex is a 

tetrahedron defined by four vertices. Each 𝑑– simplex is constructed from multiple 

(𝑑 − 1)-simplexes, called faces (e.g., each face of a triangle is a line; each face of a 

tetrahedron is a triangle). The circumsphere of a simplex is the hyper-sphere uniquely 

defined by the vertices of a simplex (e.g., a circle is defined by the three vertices of the 

triangle it circumscribes; a sphere is defined by the four vertices of the tetrahedron it 

circumscribes). 
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Figure 4.4. Examples of simplexes 

A d-simplex resides in dimensionality, d, has d+1 vertices and d+1 faces. A single face of 

each simplex is show in red. 

4.4.2 Effect of 𝜶 parameter on 𝜶-shape. An α-shape is a set of connected 

faces creating a hull that describes a finite set of points at a specified level of detail, 

defined by the free parameter 𝛼 > 0. For a sufficiently large 𝛼, the resultant α-shape is 

the convex hull of the points. As α decreases, the α-shape may become concave, form 

holes, or include completely disconnected regions. These three aspects of α-shapes make 

them attractive for machine learning as they can properly represent voids and nested 

classes that many algorithms utilizing convex hulls or other simpler methods (such as 

calculating the centroid of a distribution) cannot. Figure 4.5 demonstrates how α changes 

the representation of a data set in an 𝛼-shape. Figure 4.5a shows a large 𝛼 resulting in the 

convex hull of the (blue) diamonds including a large region void of data, as well as an 

 

 

 

 

 

 

 

 

 2-Simplex 3-Simplex 

 Dimensionality: 2 Dimensionality: 3 

 Total Edges/Faces: 3 Total Edges/Faces: 4 

 Face Shape: Line Face Shape: Triangle 

 Vertices: 3 Vertices: 4 
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opposing class of (red) circles. As 𝛼 decreases in Figure 4.5b-d, the true feature space 

from which the set of diamonds was sampled becomes more apparent – the letter P. 

However, if 𝛼 is chosen too small, as in Figure 4.5e, the α-shape becomes a group of 

disconnected regions, which is undesirable. The 𝛼 parameter can be chosen heuristically, 

based on prior knowledge or experience, or based on sample density as proposed by 

Teichmann and Capps in [66]. 

 
 (a) (b) (c) (d) (e) 

Figure 4.5. Effects of varying 𝛼 parameter 

The shaded region demonstrates an α-shape constructed on the set of blue diamonds at 

different levels of detail specified by α, decreasing from (a) to (e).  

4.4.3 𝜶-Shape construction. The pseudocode of the α-shape construction 

function is given in Figure 4.6, whose inputs are i) the 𝛼 parameter specifying the desired 

level of detail, and ii) single-class data 𝔇 (as labeled by the semi-supervised learner in 

the previous step of the algorithm). α-shape construction begins with a Delaunay 

tessellation of 𝔇 (step 1 in Figure 4.6). Delaunay tessellations are an extension of 

Delaunay triangulations into higher dimensions. Delaunay tessellations nest simplexes 

such that no point in the set may lie inside the circumsphere of any simplex in the 

tessellation. The union of all the simplexes in the tessellation produces the convex hull of  
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Input: α-shape probing radius – 𝛼;  Data features – 𝔇 

1. Construct Delaunay tessellation of data, 𝑇 = 𝑄(𝔇) 

2. Initialize 𝛼-shape as Delaunay tessellation ℬ = 𝑇 

Do for each face, ℱ ∈ 𝑇 

 3. Find simplexes, 𝑠1 and 𝑠2 ∈ 𝑇, that share ℱ 

 4. Find radii of circumspheres, 𝜇 = 𝑟(∎) 
    If ℱ is an edge of 𝑇      

     Radius of simplex, 𝜇1 = 𝑟(𝑠1) 

     Denote as boundary,  𝜇2 = 𝐼𝑛𝑓 

    Else    

     𝜇1 = min 𝑟(𝑠1), 𝑟(𝑠2)  
     𝜇2 = max 𝑟(𝑠1), 𝑟(𝑠2)  
    End If 

 5. Categorize ℱ and update ℬ accordingly 

    Case 1: 𝛼 > 𝜇2  ℱ is interior 

    Case 2: 𝜇1 < 𝛼 < 𝜇2  ℱ is regular, ℬ = ℬ\{𝑠2} 

    Case 3: 𝛼 < 𝜇1 ℱ is singular, ℬ = ℬ\{𝑠1, 𝑠2} 

End 
 

Figure 4.6. α-Shape construction psuedocode 

the set. To demonstrate this process pictorially, an example of a two-dimensional 

Delaunay triangulation is provided in Figure 4.7. The data provided, 𝔇, is shown in 

Figure 4.7a.  Figure 4.7b demonstrates a possible simplex (triangle) constructed from the 

data; however, this is a non-Delaunay simplex since there are two data points (that are not 

vertices) residing inside the circle circumscribing the possible simplex. Figure 4.7c 

demonstrates another possible simplex on the same data; this time the selection is a 

Delaunay simplex because the circle circumscribing the simplex contains no additional 

data points. Continuing to select simplexes in this fashion results in the Delaunay 

triangulation shown in Figure 4.7c, note there are no data points inside any of the 

circumscribing circles. 
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 (a) (b) (c) (d) 

Figure 4.7. Delaunay triangulation 

Delaunay triangulation requires a dataset (a) and then constructs triangles from the data 

such that no other data point resides in the circumsphere of any triangle. An improper 

triangle selection is shown in (b) since the two data points with the red X reside inside the 

black circle circumscribing the proposed triangle. A proper Delaunay triangle is show in 

(c) since no data resides in the circumcircle. The complete Delaunay triangulation is 

shown in (d). 

There are several algorithms that accomplish Delaunay tessellations; we have 

used the Quickhull algorithm [67], denoted as 𝑄(∎) in step 1, for its speed and relative 

lower complexity whose upper bound is 𝒪(𝑛⌊(𝑑+1) 2⁄ ⌋), where 𝑛 is the number of points 

in the set and 𝑑 is dimensionality, and ⌊∎⌋ is the floor function. It is important to note any 

Delaunay tessellation algorithm will work within the COMPOSE algorithm. 

Once the convex hull of the data has been defined by the Delaunay tessellation, 

we initialize the α-shape, ℬ, to be the convex hull of the data (step 2). Each face, ℱ, is 

subsequently analyzed, categorized and, if necessary, certain simplexes containing that 

face are removed to produce the final α-shape (steps 3-5). To do so, we first iterate 

through every face, and identify the two simplexes, 𝑠1 and 𝑠2, that share ℱ (step 3, and 

Figure 4.8). The radii of the circumspheres of each simplex are then calculated by 

passing the simplex’s vertices to the circumsphere radius function (denoted 𝑟(∎) in step 

4, and described below) - the smaller radius is labeled 𝜇1 and the larger as 𝜇2 (Figure 
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4.8). If ℱ is located at the edge of the tessellation (i.e., it is not shared by a second 

simplex), the radius of the (non-existent) second simplex is set to infinity, 𝜇2 = ∞.  

 

Figure 4.8. α-Shape construction simplex comparison 

Face ℱ (centered in red) to be classified is shared by 

simplex with smaller radius on left (blue) and simplex 

with larger radius on right (green) 

The simplex passed to the circumsphere radius function is defined by its 𝑑 + 1 

non-coplanar vertices (instances) 𝒙𝑝, 𝑝 = 1,… , 𝑑 + 1, each vertex defined by 𝑑 coordinates 

(features): 

 𝒙𝑝 = {𝑥𝑝1, 𝑥𝑝2, … , 𝑥𝑝𝑑}  (4.1) 

From the equation for circumcircle of a triangle [68], extended to higher dimensions, the 

equation of the circumsphere is: 

 
|

|

 𝑥∎𝑑
2

𝑑 𝑥∎1 𝑥∎2 ⋯ 𝑥∎𝑑 1

 𝑥1𝑑
2

𝑑 𝑥11 𝑥12 ⋯ 𝑥1𝑑 1

 𝑥2𝑑
2

𝑑 𝑥21 𝑥22 ⋯ 𝑥2𝑑 1

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
 𝑥(𝑑+1)𝑑

2
𝑑 𝑥(𝑑+1)1 𝑥(𝑑+1)2 ⋯ 𝑥(𝑑+1)𝑑 1

|

|
= 0,  (4.2) 

where 𝒙∎ is used to represent any point (instance) on the hypersphere, and 𝑥∎𝑑  is its 𝑑𝑡ℎ 

feature. Cofactor expansion of the first row, valid for any point residing on the 

hypersphere, produces the equation of a hypersphere in general form: 
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  𝑥∎𝑑
2

𝑑 𝑴11 +   (−1)𝑑(𝑥∎𝑑)𝑴1(𝑑+1)𝑑  + 𝑴1(𝑑+2) = 0 (4.3) 

where 𝑴𝑖𝑗 represents a matrix minor – the determinant of the matrix after removing row 𝑖 

and column 𝑗. The result after completing the square and rearranging the terms is the 

standard form of a hypersphere: 

  (𝑥∎𝑑 − 𝑥0𝑑)
2

𝑑 = 𝑟2 (4.4) 

where 

 𝑥0𝑞 = (−1)
𝑞+10.5

𝑀1(𝑞+1)

𝑀11
, 𝑞 = 1,… , 𝑑 (4.5) 

  𝑟2 =  𝑥0𝑑𝑑 −
𝑀1(𝑑+2)

𝑀11
 (4.6) 

with 𝒙0 and 𝑟 being the center and radius of the hypersphere, respectively. 

Once computed, radii of the simplexes are compared to 𝛼 to determine if the face 

is interior, regular, or singular (step 5 in Figure 4.6). An interior face, where 𝛼 > 𝜇2, is 

completely encapsulated by the final α-shape resulting in both simplexes that share this 

face to remain within the α-shape. A regular face, where 𝜇1 < 𝛼 < 𝜇2, defines the 

boundary of the α-shape, these faces are shown as dark black faces in Figure 4.9. When 

analyzing a regular face, the simplex with the larger radius circumsphere, shown as red 

simplexes to the outside of dark black faces in Figure 4.9, is removed from the α-shape. 

The simplex with the smaller radius circumsphere remains, and are shown as green 

simplexes in Figure 4.9. A singular face, where 𝛼 < 𝜇1, as described by Edelsbrunner 

[69], traditionally has two sub-categories: attached and unattached. In either case both 

simplexes are removed, however the shared edge remains protruding from the α-shape as 

a “spoke” in the attached subcategory. The use of α-shapes in COMPOSE does not 

require differentiation between these two subcategories, as the singular-attached case 
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always disappears during the α-shape compaction function described in Section 4.5. 

Hence, all singular faces and both simplexes that share the singular face are removed 

from the final α-shape. Examples of each type of edge and the resultant α-shape after 

simplexes have been removed are shown in Figure 4.9. While an α-shape is traditionally 

defined as the union of all regular and singular faces, it suffices for COMPOSE to define 

an α-shape to be the union of all simplexes not removed from the Delaunay tessellation. 

 

Figure 4.9. Sample α-shape classifications 

Sample α-shape showing simplexes in Delaunay 

tessellation and how faces are classified in 

relation to placement in an α-shape. 

The construction of the α-shape is the most expensive module of the COMPOSE 

algorithm, especially with high dimensional data, with the Delaunay tessellation running 

in 𝒪(𝑛⌊(𝑑+1) 2⁄ ⌋) and producing 𝒪(𝑛⌊𝑑 2⁄ ⌋) simplexes each containing 𝑑 + 1 faces that 

must be compared to 𝛼. We discuss methods to reduce complexity of this portion of the 

algorithm in Chapter 6. 
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4.5 α-Shape Compaction 

This section highlights the changes in each version of COMPOSE explaining the 

reason for the changes and decrease in computational complexity achieved. 

4.5.1 Version 1.0 – skeletal offsets.  In version 1.0, as described in Table 4.1, 

the constructed α-shape was compacted using skeletal offsets – a method used 

extensively in image processing and computer aided drawing software to scale enclosed 

regions. Offsets are accomplished in two dimensions by translating the vertices of a 

polygon along its straight skeleton as described in [70]. The straight skeleton of a 

polygon is the combination of all arcs that bisect any two edges. An example of a shape 

and its straight skeleton are shown in Figure 4.10. This method of constructing a straight 

skeleton in two dimensions has a computational complexity of 𝒪(𝑣2 𝑙𝑜𝑔 𝑣 ), where 𝑣 is 

the number of vertices. This method scales to three dimensions – albeit at great cost – and 

has problems when attempting to scale to higher dimensions. For these reasons a new 

method for compacting alpha-shapes was explored. 
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Figure 4.10. Skeletal offset 

Original shape and its skeleton offset with 

sample of interior and exterior offsets. Note for 

a sufficiently large offsets, shape information 

may be lost (e.g., with a large enough offset the 

point at the top center of the shape may no 

longer be reflected as being part of the original 

shape). 

4.5.2 Version 1.1 – fast Fourier transform based erosion. Version 1.0 of 

COMPOSE relied on computing the straight skeleton to compact the α-shape. Straight 

skeletons work well with two dimensional data; however, the straight skeleton approach 

does not easily scale to higher dimensions. Version 1.1 of the COMPOSE framework 

utilizes a Fast Fourier Transform (FFT) based image processing technique – erosion – to 

compact α-shapes in higher dimensions. As with all image processing, the object being 

analyzed must be represented discretely. In our case the continuous feature domain 

encapsulated by an α-shape must be discretized. This could be compared to a camera 

which captures its surroundings (continuous) and represents them by an image with 

discrete pixels. Forming a discrete representation of the α-shape constructed in 
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continuous space is accomplished using the α-shape discretizing function described in 

Figure 4.11.  

 

Input: α-shape – ℬ; Resolution – 𝓇 

Do for each 𝑑 ∈ ℬ 

 1.  𝒱𝑑 = minℬ𝑑 , … ,
𝑘(min ℬ𝑑+max ℬ𝑑 )

𝓇+1
, … , maxℬ𝑑  

∀𝑘 = 2,… ,𝓇 − 1  
End 

2. Construct lattice, 𝑳 ∈ ℝ𝑑+1, from all permutations of 

points in 𝒱. 𝑳0 is binary indicator initialized to 𝟎.  
Do for each simplex, 𝑠 ∈ ℬ 

 Do for each point, 𝑃 ∈ 𝑳 

  3. Determine if 𝑃 resides inside 𝑠 using Barycentric 

coordinate function, 𝜆 = 𝑏(𝑠, 𝑃) 

    If 𝝀 ≥ 𝟎 

      𝑳0,𝑃 = 1 and record simplex that contained it 

    End 

 End 

End 
 

Figure 4.11. α-Shape discretizing function pseudocode 

 

The inputs to the discretizing function are the continuous valued α-shape ℬ (specifically, 

the coordinates of simplex vertices); and the starting resolution, 𝓇, dictating how many 

points are used in each dimension to represent the α-shape discretely. For each dimension 

of the α-shape (example shown in Figure 4.12a), a vector, 𝒱, with 𝓇 equally spaced 

points between the minimum and maximum coordinates is constructed (step 1 of Figure 

4.11 and depicted in Figure 4.12b). A lattice, denoted by tensor 𝑳, is constructed in 

ℝ𝑑+1space using all permutations of coordinates in the aforementioned vectors, 𝒱𝑑, and 

reserving 𝑳0 as a binary indicator representing whether the point specified by coordinates 
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𝑳1,…,𝑑 resides inside or outside the α-shape. Initially the indicator value in 𝑳0 for each 

point is set equal to zero indicating that the point resides outside the α-shape. 

Transforming the lattice into an accurate description of the α-shape is accomplished by 

using Barycentric coordinates to determine if each lattice point resides inside any simplex 

in the α-shape. Data points that reside inside the simplex are represented by yellow dots 

in Figure 4.12c and the corresponding 𝑳 tensor is shown in Figure 4.12d overlaying the 

simplex and grid. 

 
 (a) (b) (c) (d) 

Figure 4.12. Discretizing an α-shape 

The α-shape in (a) is discretized by overlaying a uniformly spaced grid as shown in (b) 

then determining the Barycentric coordinates of each point with regard to each simplex 

and marking any data point that resides within a simplex. These points are indicated by 

yellow dots in (c) and the corresponding 𝑳 tensor is shown in (d) overlaying the α-shape 

and grid of discrete points. 

Barycentric coordinates are often used to determine the center of mass of an 

object, but can also be used to determine if a point in the lattice resides in at least one 

simplex of the α-shape. Barycentric coordinates represent a point as the weighted sum of 

the vertices defining a simplex:  if all weights are positive (or one weight is equal to zero) 

the point resides inside (or on) the simplex. The inside simplex test function using 

Barycentric coordinates (denoted as function b(∎) in step 3 of Figure 4.11) requires the 

coordinates of i) the point being tested, 𝑳1,…,𝑑 and ii) the vertices of the simplex, 𝑠, being 
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evaluated. Using similar notation as Equation 4.1, let 𝑷𝟎 be a column vector representing 

the test point and 𝑷𝟏 through 𝑷𝑵 be column vectors representing the vertices of the 

simplex. The test point can be described as weighted components of the vertices: 

𝑥01 = 𝜆1𝑥11 + 𝜆2𝑥21 +⋯+ 𝜆𝑁𝑥𝑁1 

𝑥02 = 𝜆1𝑥12 + 𝜆2𝑥22 +⋯+ 𝜆𝑁𝑥𝑁2 

 ⋮ (4.7) 

𝑥0𝑑 = 𝜆1𝑥1𝑑 + 𝜆2𝑥2𝑑 +⋯+ 𝜆𝑁𝑥𝑁𝑑 

where 𝜆1,…,𝑁 are the weights of each simplex vertex and  𝜆 = 1. In order to solve this 

system of equations, we make the substitution 𝜆𝑁 = 1 −  𝜆𝑑𝑑  and place in matrix form, 

𝑻𝝀 = 𝑷𝟎 − 𝐏𝐍 where, 

 𝐓 = [

x11 − xN1 x21 − xN1 ⋯ xd1 − xN1
x12 − xN2 x22 − xN2 ⋯ xd2 − xN2

⋮ ⋮ ⋱ ⋮
x1d − xNd x2d − xNd ⋯ xdd − xNd

] (4.8) 

Since the vertices define a simplex, the equations are linearly independent and 𝐓 

is invertible; therefore, the weights can be determined by 𝛌 = 𝐓−1(𝐏𝟎 − 𝐏𝐍). 

Determining if the point resides inside the simplex requires a simple inequality test: if all 

weights are positive or any one is equal to zero, the point resides inside or on the simplex 

(λN must be included in the test and can be calculated using λN = 1 −  λdd ). If indeed 

the point resides inside the simplex, the corresponding indicator value, 𝐋0,1,…,d, must be 

changed to a “1” and the simplex number that contained the points is recorded. All points 

of the lattice can be tested through one matrix multiplication if the definition of 𝐏𝟎 is 

altered to be a matrix having a column for every point in the lattice, while the rows still 

represent each point’s dimensional coordinates. If this method is utilized, a matrix the 



60 

 

same size as 𝐏𝟎 is constructed by repeating vertex 𝐏𝐍 to maintain correct matrix 

dimensionality for subtraction.  

The complexity of the discretizing process is 𝒪(d2𝓇d), where d is the 

dimensionality of the data and 𝓇 is the resolution of the lattice. Timing tests varying the 

resolution and number of simplexes in different dimensional feature spaces showed that 

calculation time increases linearly with the number of simplexes, but exponentially with 

the dimensionality. Altering the resolution had a much greater impact in higher 

dimension, which is expected due to the 𝓇d term. 

After the alpha-shape has been discretized, the compaction process using FFT 

based erosion is conducted. The inputs to the discrete α-shape compaction function 

(pseudocode presented in Figure 4.13) are the discretized α-shape, which contains all 

coordinates and in/out indicators of the lattice constructed earlier; and the offset distance 

ℴ, which determines how far inward the α-shape is to be eroded/compacted. Erosion is 

completed by convolving the binary “image”, constructed above, with a d-dimensional 

hypercubic binary structuring element 𝓢(i.e., “filter”). The structuring element is 

constructed such that the length of one side of the hypercube is equal to the offset 

distance and the binary value of each “pixel” is one (step 1 of Figure 4.13).  
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Input: Discrete α-shape – 𝓐′ ; Offset distance – ℴ 

1. Construct structuring object for erosion 

𝓢 ∈ ℝ𝑑 , 𝑐𝑎𝑟𝑑(𝓢) = ℴ𝑑  

2. Zero pad 𝓛 and 𝓢 to a hypercube with a side length 

 𝑐𝑎𝑟𝑑(𝓢)
𝑑

+   𝑐𝑎𝑟𝑑(𝓐′)
𝑑

− 1 

3. Convolve 𝓛 and 𝓢 in frequency domain  

𝓔 = 𝑑𝐹𝐹𝑇(𝓐′).∗ 𝑑𝐹𝐹𝑇(𝓢), 
   where .∗ is point by point multiplication 

4. Take inverse 𝑑-dimensional FFT  

𝑬 = 𝐼𝑑𝐹𝐹𝑇(𝓔) 
5. Threshold 𝑬 to convert to binary compacted α-shape 

(𝑬 = 0) = 0 and (𝑬 > 0) = 1 

6. Extract centermost region of 𝑬, having same 

cardinality and structure as 𝓐′  

𝓐′′ = 𝑐𝑒𝑛𝑡𝑒𝑟(𝑬), where 𝑐𝑎𝑟𝑑(𝓐′′ ) = 𝑐𝑎𝑟𝑑(𝓐′) 
7. Create an α-shape of core support region 

𝓐′ = 𝑓(𝛼, ℒ ∀ ℒ0 = 0) 

8. Determine which instances of 𝔇 are inside 𝓐′  using 

Barycentric coordinates 
  

Figure 4.13. α-Shape compaction pseudocode 

 

As with any filtering process, filter delay is inevitable. However, to negate the effect of 

the filter delay, which would be the equivalent of translating the α-shape in the feature 

space, both the “image” and the structuring element are zero padded such that the length 

of each side of the padded hypercube is  card(𝓢)
d

+  card(𝓐′)d
− 1 (step 2 of 

Figure 4.13). This is equivalent to zero padding sequences of length N, M to length 

N +M− 1 to make linear and discrete convolution the same. Once both the “image” and 

structuring element are zero padded to the same size, convolution is efficiently conducted 

by taking the d-dimensional FFT of each and multiplying them point by point in the 

spatial frequency domain,𝓔 = dFFT(𝓐′).∗ dFFT(𝓢), (step 3 of Figure 4.13). Converting 

the convolved image back to the spatial domain, where it must compared to a zero 
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threshold, is accomplished using the inverse d-dimensional FFT (step 4 of Figure 4.13). 

This process effectively analyzes the rate of change between each pixel and its 

neighboring pixels in every dimension. In regions completely outside or inside the α-

shape, there is no change in neighboring pixels, they are all zeros or ones, respectively. 

However, for pixels on the boundary of the α-shape, multiplication of pixels will result in 

some values originally having a value one being changed to zero. The end result is the 

boundary moving inwards, towards the core supporting region of the α-shape. To convert 

the eroded image back to a binary representation, the image is compared to a zero 

threshold such that any pixel with a value greater than zero is set to one and zero values 

remain unchanged (step 5 of Figure 4.13). The eroded image is still larger in each 

dimension than the original input due to padding. To extract the true eroded α-shape and 

discount the pixels contributed by 𝓢, the centermost pixels having the same cardinality as 

𝓐′ are extracted (step 6 of Figure 4.13). The complexity of this portion of the algorithm 

is 𝒪(𝓇2d log(𝓇d)).  

Recall during the discretizing α-shape function that we constructed a lookup table 

indicating which discrete points reside in each simplex in the α-shape. The points in this 

table are passed through the compaction function, resulting in only the discrete 

compacted points still having a value of one. Conducting a reverse lookup in this table, 

allows us to determine which simplexes contain a discrete compact point. The vertices of 

these simplexes then constitute the core supports of the current distribution and are 

retained by COMPOSE as labeled data to be combined with the next batch of (possibly 

drifted) unlabeled data. Note that these points selected from the core support of the 
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current distribution are most likely instances to be in the region of support of the drifted 

distribution. 

Figure 4.14 illustrates the aforementioned set of steps as an example. The figure 

contains an enlarged view of an α-shape for one class and depicts COMPOSE’s process 

for selecting the core supports. Recall that the α-shapes are constructed for each class 

label in the data. The α-shape, shaded in light yellow in Figure 4.14, is constructed for 

the data (red) classified by the SSL algorithm (BaseClassifier) as belonging to some 

particular class. The discrete lattice, shown by black dots, spans the hyper cubic 

(rectangular region in this 2D figure) space containing the α-shape. Using Barycentric 

coordinates, discrete points that fall inside the α-shape are identified, which are indicated 

with blue stars. The binary representation of the discrete space (black points = 0, blue 

stars= 1) is compacted, where compacted points are shown as bold blue circles. Using the 

point-simplex look-up table, the vertices of each simplex containing a compacted point 

are highlighted with a black diamond and extracted as labeled data at the next time step. 
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Figure 4.14. α-Shape compaction using FFT based erosion 

The process of extracting core supports (black diamonds) 

from an α-shape (shaded yellow region bounded by solid 

black line). The process includes constructing the discrete 

lattice (black points), identifying those (red plus) points that 

fall inside discretized α-shape (blue stars), compacting the 

inside points (blue circled stars), and identifying the vertices 

of simplexes that contain the compacted points to use as 

labeled data. 

4.5.3 Version 1.2 – α -shape unwrapping. The great number of tunable 

parameters of Version 1.1 and computational resources required for high resolution 

“images” in high dimensions required further improvement. In Version 1.2, the most 

eloquent of the three versions, compaction is achieved by iteratively removing a layer of 

simplexes from the edges of the α-shape, as if unwrapping an onion, until the desired 

compaction percentage is achieved – percentage of compaction is the only parameter 

specified. The compaction threshold is found by multiplying the number of instances in 
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the initial α-shape by (1 − CP), yielding the target number of instances to remove. Each 

time a layer of simplexes is peeled off, the number of instances in the compacted α-shape 

is reduced. Compaction is complete when the number of remaining core supports is less 

than or equal to the compaction threshold. 

This method is illustrated in Figure 4.15, where each simplex removed numbered 

by the layer in which it is removed. The first (outermost) layer removed is indicated by 

“1” and shaded in red; the last layer is in light blue and contains “6”. The data remaining 

after the compaction become the core supports, indicated by white stars clustered at the 

center of the α-shape. 

 

Figure 4.15. Graphical representation of unwrapped α-shape 

Layers are removed in numerical order starting with (red) “1” and ending with 

(blue) “6” until core supports remain, represented by (white) stars. Compaction 

percentage used for this figure was 85%. 
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Identifying which simplexes reside at the edge of an α-shape is a simple task, as 

boundary simplexes have one or more faces that are not shared with another simplex. By 

creating a list of all faces and identifying to which simplex each belongs, a simple sort 

can identify unmatched faces. The simplex IDs associated with the unmatched faces are 

the simplexes located at the edge of the α-shape. The complexity of this method is 𝒪(s2), 

where s is the total number of simplexes in the α-shape, which is linearly related to the 

total number of instances. This compaction function, unlike the original skeleton based 

compaction algorithm and the FFT based erosion is independent of dimensionality, and 

hence significantly reduces the complexity of the overall approach.  
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Chapter 5  

 

Experiments and Discussions 

5.1 Experimental Setup and Results on Synthetic Datasets 

We have tested each version of COMPOSE on carefully designed synthetic data 

sets, using nonstationary Gaussian data, and demonstrated that later versions of the 

COMPOSE framework: 1) perform just as well, if not better, than earlier versions; 2) 

extend to higher dimensions than earlier versions; and 3) can adapt to the introduction of 

a new class. 

COMPOSE version 1.0, which used skeletal offsets for object compaction, was 

limited to two-dimensional data, so only Experiments 1 and 2, presented in Figure 5.1 

and Figure 5.3 respectively, were run. As COMPOSE progressed to version 1.2 (denoted 

as COMPOSE* in figures), Experiments 1 and 2 were rerun to demonstrate the later 

version performed just as well, if not better, than the earlier version. Two new synthetic 

Gaussian Experiments, Experiments 3 and 4 presented in Figure 5.5 and Figure 5.7 

respectively were developed to test the ability of version 1.2 to process higher 

dimensional data and adapt to newly introduced classes in data. To better evaluate the 

capabilities of COMPOSE, each of the four experiments referenced above were repeated 

using the APT algorithm (presented in Section 3.6), the only other algorithm currently 

available for the extreme verification latency problem, and the optimal Bayes classifier, 

which provides an upper bound to performance. The Bayes classifier was trained in a 

fully supervised manner, having full access to correct labels for all instances at all time 

steps. This is a scenario that is deliberately designed to be unfair against COMPOSE and 

APT, as these algorithms maintained the initially labeled streaming environment 
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assumption where labels were provided only for a subset of the data, and only during the 

initial time step. All comparisons to Bayes classifier should be interpreted within this 

context.  

In each of the four experiments listed above, we assumed Gaussian distributions 

starting at some initial state at an arbitrary time t = 0. COMPOSE was initialized using 

only 5% of randomly selected data labeled, though we ensured each class is represented 

by at least one labeled instance; ATP, however, requires a full set of labeled data at 

initialization. At each subsequent step t, the distributions drift according to the  

parametric equations shown in Tables 5.1, 5.2, 5.3, and 5.4, and illustrated in Figures 5.1, 

5.3, 5.5, and 5.7, respectively for Experiments 1 - 4, with 100 new unlabeled instances 

presented per Gaussian mode. The experiments end after 100 steps, at some arbitrary 

time, t = 1. All experiments were repeated 50 times for COMPOSE and five times for 

ATP, providing the 95% confidence intervals indicated as the shaded regions around the 

performance curves. ATP was run only five times due to its significantly longer 

computation time as discussed in Section 5.3 below.  

COMPOSE’s independence of SSL algorithm used as the BaseClassifier is 

demonstrated by Experiments 1 and 2 whose results are shown in Figure 5.2 and Figure 

5.4, respectively. Regardless of BaseClassifier selected, the performance closely follows 

the performance trend of Bayes rule. Our statement of independence does not claim that 

each classifier will perform equally well when paired with COMPOSE, it simply states 

that each classifier will follow a similar performance trend. It is important to note that 

each classifier has its strengths and weaknesses depending on the environment it is 

classifying. For example, of the three BaseClassifiers used with COMPOSE, label 
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spreading performed the poorest, which may be attributed to the placement of labeled 

instances. When labeled instances from a particular class span a larger area in feature 

space (albeit, possibly with less density), it is easier for that class to spread its label, since 

spreading can proceed in more directions and overtake a larger area of unlabeled 

instances faster. In a nonstationary environment that provides labeled instances at every 

time step directly from the underlying distribution, the labeled data are more likely to be 

scattered throughout the unlabeled data. Using COMPOSE, however, labeled data are 

located in a tighter cluster due to sampling from a compacted α-shape. This tight cluster 

of labeled data decreases the effectiveness of classification through label spreading. SSL 

algorithms that do not use label spreading, however, do not suffer from such a restriction.  

After demonstrating classifier independence, the remaining experiments in this 

thesis are presented with cluster-and-label chosen as the semi-supervised algorithm. This 

algorithm was selected due to minimal free parameters it needs, and its ability to easily 

adapt to a multiclass problem – unlike, e.g., S3VM, which does not readily work in 

multiclass problems. 

There are several variations of cluster-and-label; we used k-means to perform the 

clustering, and majority vote of labeled instances in the clusters for labeling the clusters. 

The algorithm begins with k = 5, the number of clusters to find, which iteratively 

reduces itself by one if it is unable to find a solution where every cluster contains at least 

one labeled point. COMPOSE free parameters (α and CP) were selected heuristically 

(shown within figures), were not optimized, and remained fixed throughout the 

experiments.  
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5.1.1 Unimodal and multimodal Gaussians. The two experiments in this 

section were featured in the initial publication of COMPOSE Version 1.0 [71], and serves 

as a benchmark for comparison of Version 1.2 [72]. The experiments are governed by 

parametric equations provided in Tables 5.1, 5.2. As shown in Figures 5.2 and 5.4, 

version 1.2 of the COMPOSE framework (denoted by solid red line and marked 

COMPOSE*) performs better in both experiments when compared to its earlier 

counterpart (using cluster-and-label as the SSL). Performance of COMPOSE Version 1.0 

with other SSL algorithms are also shown for comparison.  

During periods of increased class overlap, time steps 60 – 70 in Figure 5.2, 

COMPOSE outperforms APT with statistical significance. During the remainder of the 

experiment both ILSE algorithms have similar performances, tracking Bayes classifier 

(black curve) extremely close.  

The primary weakness of APT – the assumption that all subpopulations must be 

present at initialization – is most vividly seen in the second experiment that featured a 

scenario that split a unimodal distribution into a multimodal distribution, which have then 

merged to return to a unimodal distribution later. APT failed to track these diverging 

distributions, as illustrated in Figure 5.4, because the diverging distribution creates a new 

subpopulation that APT did not know at initialization. COMPOSE however, is able to 

track the distributions before the split, throughout the split, as well as after their merge. 

Furthermore, COMPOSE follows the performance of Bayes closely. This is a quite 

noteworthy accomplishment, considering the unfair circumstances under which 

COMPOSE operates against the Bayes classifier.  
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Figure 5.1. Experiment 1 – unimodal Gaussians 

 

 

 

Table 5.1. 

 

Parametric equations governing unimodal Gaussian experiment drift 

    

Class 
0 ≤ t < 0.2 0.2 ≤ t < 0.4 0.4 ≤ t < 0.6 

x y x y x y x y x y x y 

C1 2 + 

20t 
3 1 + 5t 1 6 + 

10t 

3 + 

10t 
2 1 + 5t 8 - 5t 5 2 - 5t 2 - 5t 

C2 8 - 20t 7 1 + 5t 1 + 5t 4 - 10t 7 - 10t 2 2 + 5t 2 + 5t 5 - 5t 2 - 5t 3 

           
    

  
Class 

0.6 ≤ t < 0.8 0.8 ≤ t ≤ 1     

  
x y x y x y x y     

  
C1 7 - 20t 5 + 

10t 

1 + 

2.5t 

1 + 

2.5t 
3 7 - 20t 1.5 1.5     

  
C2 3 + 

20t 
4 - 10t 1 3 7 2 + 

25t 

1 + 

2.5t 

3 - 

7.5t 
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Figure 5.2. Results of unimodal Gaussian experiment 
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Figure 5.3. Experiment 2 – multimodal Gaussians 

 

 

 

Table 5.2. 

 

Parametric equations governing multimodal Gaussian experiment drift 

    

Class 
0 ≤ t < 0.2 0.2 ≤ t < 0.4 0.4 ≤ t < 0.6 

x y x y x y x y x y x y 

C11 2 +6t 2 + 6t 1 1 3.2 + 

6t 

3.2 + 

6t 
1 1 4.4 + 

6t 

4.4 + 

6t 
1 1 

C12 8 - 6t 2 + 6t 1 1 6.8 - 

6t 

3.2 + 

6t 
1 1 5.6 - 

6t 

4.4 + 

6t 
1 1 

C21 8 - 10t 8 1 1 6 - 10t 8 - 

2.5t 
1 1 4 - 

7.5t 

7.5-

7.5t 
1 1 

C22 8 8 - 10t 1 1 8 - 

2.5t 
6 - 10t 1 1 7.5-

7.5t 

4 - 

7.5t 
1 1 

                          
    Class 

0.6 ≤ t < 0.8 0.8 ≤ t ≤ 1     
    x y x y x y x y     
    C11 5.6 + 

6t 

5.6 + 

6t 
1 1 6.8 + 

6t 

6.8 + 

6t 
1 1     

    C12 4.4 - 

6t 

5.6 + 

6t 
1 1 3.2 - 

6t 

6.8 + 

6t 
1 1     

    C21 2.5-

2.5t 
6 - 10t 1 1 2 4 - 10t 1 1     

    C22 6 - 10t 2.5-

2.5t 
1 1 4 - 10t 2 1 1     
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Figure 5.4. Results of multimodal Gaussian experiment 

 

5.1.2 Unimodal Gaussian with added class. One of the new experiments 

added during testing of version 1.2 initializes two Gaussian distributions at t = 0, and 

then adds a third class at time step 40, as governed by the parametric equations of Table 

5.3, and as illustrated in Figure 5.5. The third class is added with only 5% of its data 

labeled – with  labels provided only during this time step – which constitutes the 

initialization of the new class for COMPOSE. In contrast, the full training set (i.e., all 

instances labeled) for the new class is provided to ATP. We also note that the labeled 

data provided only at this time step comes only from the new class to comply with ILSE 

assumptions. Figure 5.6 compares COMPOSE performance against that of APT and 

Bayes classifier. COMPOSE outperforms APT with statistical significance during time 

intervals with substantial class overlap (time steps t = 0.2 to 0.6). During other times, the 
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differences in performances are not statistically significant. All classifiers experience a 

performance drop when the new class is added, which of course is expected.  

 

Figure 5.5. Experiment 3 – class added Gaussian 

 

 

Table 5.3. 

 

Parametric equations governing class added Gaussian experiment drift 

 
    

Class 
0 ≤ t < 0.2 0.2 ≤ t < 0.4 0.4 ≤ t < 0.6 

x y x y x y x y x y x y 

C1 2 - 5t 5 1.5 5 - 5t 1 5 - 10t 1.5 + 7.5t 3 1 3 - 5*t 3 - 10t 3 - 10t 

C2 5 - 5t 8 5 - 15t 1.5 + 2.5t 4 + 20t 8 2 2 8 8 - 20t 2 - 5t 2 + 10t 

C3 n/a n/a n/a n/a n/a n/a n/a n/a 5 5 + 15t 1 + 5t 1 + 5t 

                          
    Class 

0.6 ≤ t < 0.8 0.8 ≤ t ≤ 1     
    x y x y x y x y     
    C1 1 - 5t 2 + 15t 1 + 15t 1 0 + 5t 5 + 15t 4 - 10t 1 + 10t     
    C2 8 4 + 20 t 1 4 - 10t 8 8 - 30t 1 + 5t 2     
    C3 5 + 5t 8 - 30t 2 2 +5t 6 - 25t 2 2 + 5t 3     
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Figure 5.6. Results of class added Gaussian experiment 

 

5.1.3 Unimodal Gaussians in 3D. The other new experiment added during 

testing of version 1.2, governed by equations of Table 5.4 and illustrated in Figure 5.7, 

extends the feature space to three dimensions to demonstrate (and graphically illustrate) 

that  revised COMPOSE can actually scale to higher dimensions (also see 8-dimensional 

real world dataset below). Figure 5.8 compares COMPOSE’s generalization performance 

to that of Bayes classifier and ATP. The important observation here is that COMPOSE 

can still follow Bayes extremely well, despite the unfair nature of the experimental setup, 

and outperforms APT with statistical significance during the more difficult periods of 

high overlap, and performing comparably during other time steps.  
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Figure 5.7. Experiment 4 – 3D Gaussians 

 

 

 

Table 5.4. 

 

Parametric equations governing 3D Gaussian experiment drift 
    

Class 
0 ≤ t < 0.2 0.2 ≤ t < 0.4 0.4 ≤ t < 0.6 

x y z x y z x y z 

C1 9 -25t 1 + 10t 8 - 15t 4 - 10t 3 + 15t 5 - 15t 2 + 15t 6 + 15t 2 - 5t 

C2 0 + 10t 0 + 10t 3 - 10t 2 + 20t 2 + 20t 1 + 10t 6 - 20t 6 + 10t 3 + 10t 

                    
    Class 

0.6 ≤ t < 0.8 0.8 ≤ t ≤ 1   
    x y z x y z   
    C1 5 + 25t 9 + 5t 1 - 5t 10 - 15t 10 - 10t 0 + 15t   
    C2 2 + 25t 8 5 - 10t 7 - 10t 8 + 6t 3 - 5t   
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Figure 5.8. Results of 3D Gaussian experiment 

 

5.2 Experimental Setup and Results of Real-World Data 

We have also tested the latest version of  COMPOSE using the National Oceanic 

and Atmospheric Administration (NOAA) weather dataset collected over a 50 year span 

from Offutt Air Force Base in Bellevue, Nebraska. Eight features (temperature, dew 

point, sea level pressure, visibility, average wind speed, max sustained wind speed, 

minimum temperature and maximum temperature) were used to determine whether each 

day experienced rain or no-rain. The dataset contains 18,154 daily readings of which 

5,693 are rain and the remaining 12,461 are no-rain. Data was grouped into 49 batches of 

one year intervals, containing 365 instances (days) each; the remaining data was placed 

into the 50th batch as a partial year.  

This experiment was initialized with 5% of the 365 instances labeled. Every 

subsequent time step received the full set of additional 365 – all unlabeled – instances. 
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Since this is real-world data (and not drawn from a distribution), and since all available 

data are presented at each time step, only one trial is possible. Repeating trials would 

result in the same performance each time, so a confidence interval cannot be obtained. In 

Elwell et al.’s recent work [9], this dataset was used to test an ensemble of supervised 

learners (Learn
++

.NSE – for Non-Stationary Environments) receiving labeled data with 

every time step in a seasonal fashion – batches of 90 instances. We compare yearly batch 

performance of COMPOSE and APT with that of Learn
++

.NSE (with SVM as well as 

naïve Bayes used as BaseClassifier) in Figure 5.9. COMPOSE greatly outperforms APT, 

but the most compelling demonstration of COMPOSE’s performance comes from 

comparing COMPOSE to Learn
++

.NSE. COMPOSE trained in an ILSE setting (and with 

only 18 labeled instances), is competitive with an ensemble of classifiers that are trained 

in an entirely supervised manner, receiving fully labeled data at every time step.  
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Figure 5.9. Results of NOAA weather dataset 

5.3 Computation Time Tests 

As the experiments have shown, COMPOSE can learn in an initially labeled 

streaming nonstationary environment, and successfully track the changing environment 

using unlabeled data only. The ability of COMPOSE to learn in such a setting comes at a 

cost: COMPOSE is a relatively computationally expensive algorithm, though not as 

expensive as APT, at least for the datasets used in our experiments.  

The complexity of COMPOSE version 1.2 has in fact been reduced from its 

original version, where the skeleton algorithm used for compaction was its 

computationally most expensive module. With the unwrapping compaction utilized in 

version 1.2, the compaction function is no longer a computational bottle neck – in fact, it 

is no longer dependent on dimensionality. The most expensive module in COMPOSE is 

now the α shape generation, which runs in exponential time with respect to the number of 
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dimensions. We have run some timing experiments, described below, to better understand 

the behavior of the algorithm with respect to its computational complexity.  

Figure 5.10 shows the computation time, averaged over 50 trials for COMPOSE 

and five trials for ATP, conducted on a modest 2.4 GHz processor (with 6GB RAM) for 

each of the synthetic experiments described in the previous section. In each case, the 

timing diagrams follow a similar trend: the initial few time steps are computed relatively 

quickly while a basis of core supports are built up; then, within a few additional time 

steps, the algorithm reaches a steady state and maintains approximately the same 

processing time (per time step) for the remainder of the experiment, unless new classes 

are added, which then adds a modest additional cost (see change in Unimodal Gaussian 

Added Class experiment steady state computation time at time step 40). 

Comparing the Unimodal Gaussian Experiment (with 100 unlabeled instances 

added per class, resulting in 200  new instances per time step) and its 2.5s per time step 

steady state processing time with the Multimodal Gaussian Experiment (with 100 

unlabeled instances added for each of the four modes, resulting in 400  new instances per 

time step) and its 5s per time step steady state processing time further shows that 

COMPOSE runs in nearly linear time with respect to the cardinality of the data.  

Comparing the Unimodal Gaussian Experiment, CP =  0.70, with the Unimodal 

Added Class Experiment, CP =  0.60, suggests the greater the compaction percentage 

the faster the algorithm runs, as there are fewer core supports to maintain. 

Comparing any of the 2D experiments to the 3D experiment shows that the 

computation time increases greatly with higher dimensional data. This increase in 

computational complexity with respect to the dimensionality is the primary cost of the 
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current algorithm. However, we believe the cost is justified given the difficulty of the 

task the algorithm seeks to solve. We should note that even with the 8-dimensional data, 

where processing for each time step takes 20-30 minutes (on a modestly configured 

computer), COMPOSE is well within useable limits for many applications that generate 

data less frequently than every 30 minutes. Any application, for example, that generates 

hourly or daily data can be easily used with current version of COMPOSE even with 

higher dimensions. Furthermore, we should reemphasize that the primary bottle neck in 

COMPOSE is not the data cardinality but rather its dimensionality. Therefore, the 

algorithm can easily handle large databases with modest dimensionality. 

It is also worth noting that all computation times mentioned above were obtained 

using a modestly configured computer running an interpreted language (Matlab). 

Optimizing the algorithm (many of its steps can be run in parallel), implementing it in a 

compiled language and running it in a parallel computing setting can further improve its 

computational efficiency, which is tasked in future work as described in Chapter 6. 

Comparing computation times of COMPOSE and ATP, Table 5.5 shows a 

significant difference. As expensive as COMPOSE is, it completed the synthetic dataset 

experiments an order of magnitude faster than ATP on the same computer in the same 

interpreted Matlab environment.  

Finally, since the most expensive module in the current version of COMPOSE is 

the alpha-shape generation – essentially  a density estimation algorithm – alternative 

density estimation approaches such as Gaussian mixture models may further improve the 

computational efficiency. Evaluating such alternative density estimation approaches is 

also within the scope of future work proposed in Chapter 6.  
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Figure 5.10. Computation time of experiments 

 

Table 5.5.  

 

COMPOSE and APT computation comparison 

   

Dataset 
COMPOSE 

[minutes] 

APT 

[minutes] 

2D Unimodal 4.16 3,600 

2D Multimodal 8.33 20,303 

2D Unimodal – Class Added 4.33 21,390 

3D Unimodal 26.66 22,776 

   

5.4 Choice of Free Parameters and Their Effects  

To better understand the impact of each of COMPOSE’s free parameters, the α-

value and compaction percentage CP, we have repeated the synthetic data experiments 

varying each parameter independently. We first looked at the effect of CP, keeping α 



84 

 

constant using a family of curves. A sample of these (using the multimodal Gaussian 

data) is shown in Figure 5.11, which indicates that a proper choice of CP is necessary. 

We also plotted performance keeping CP constant and allowing α-value to vary – whose 

sample plots are presented in Figure 5.12 for three different values of CP. These results 

show that when the compaction percentage is chosen incorrectly, too high as in Figure 

5.12a or too low as in Figure 5.12c – the performance varies greatly with respect to α. 

However, if CP is chosen properly, as in Figure 5.12b, the algorithm performance 

becomes less sensitive to the α parameter. 

From this analysis, we conclude that selecting the compaction percentage 

correctly has the biggest impact on COMPOSE’s performance. There appears to be a 

logical explanation for this: if α shapes are compacted too much, core supports relevant 

to the future distribution are lost. If compacted too little, the core supports may overlap 

with a rival class in the future time step and become misleading. 

 

Figure 5.11. Constant α and varied CP 

Typical family of curves with α-value 

(α = 0.40 shown) held constant and 

compaction percentage allowed to vary. 



85 

 

 

Figure 5.12. Constant CP and varied α 

Family of curves with CP held constant and α-value allowed to vary. When CP is too 

high, e.g., 0.8 as in (a), or too low, e.g., 0.6 as in (c), the algorithm is sensitive to 

variations in α. When CP is selected close to optimal value, e.g., 0.68 as in (b), the 

performance variation and the sensitivity to α decreases dramatically. 
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Chapter 6  

 

Conclusions and Future Work 

This thesis introduces and describes COMPOSE, for semi-supervised learning 

from a nonstationary (drifting) environment experiencing extreme verification latency. In 

this environment, the nonstationary data, drawn from a drifting distribution, arrive in a 

streaming manner. Beyond an initial batch, the entire data stream is assumed unlabeled. 

Our preliminary results have been quite promising, demonstrating that COMPOSE can 

indeed learn and track the drifting distributions in such a challenging environment. 

COMPOSE can track any streaming nonstationary environment as long as the 

class conditional distributions overlap at subsequent instances. We refer to this condition 

as limited drift. This is a practically reasonable assumption, as in most natural 

phenomena – perhaps with the exception of catastrophic or abrupt failures – the changes 

to the data distribution is usually gradual. One particularly pathological scenario is worth 

mentioning as an extreme case that violates the limited drift assumption: a sudden change 

of class labels while data distribution itself remains constant. In such a case there is 

precisely zero overlap between pt(𝐱|y) and pt+1(𝐱|y). COMPOSE cannot track such a 

change, since the algorithm receives no future labeled data in the ILSE setting. Toy 

examples of this scenario include the shifting hyperplane as used in [14], and rotating 

checkerboard example as used in [9], [57]. We know of no practical example of this 

scenario. While COMPOSE is guaranteed to track subsequent overlapping distributions, 

we have noticed the algorithm also performs well when the distributions do not overlap, 

given the following condition is met – for any given class, its drifted distribution must be 

closer than any other opposing class’s drifted distribution. This observation has not been 
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validated yet, and is mentioned in future work below, however, intuitively this 

observation makes sense since most SSL classification is achieved through grouping 

instances that reside in a similar or close feature domain.  

On the other hand, we note that COMPOSE can naturally work in the more 

relaxed environment, where labeled data are provided regularly or intermittently. In such 

a case, COMPOSE simply employs the provided labeled data as new core supports to be 

used in future time steps. COMPOSE can then accommodate the aforementioned change 

to class membership scenarios, as well as abrupt change scenarios. 

Under the ILSE setting, the focus of this paper, preliminary results show that 

COMPOSE outperforms APT in regions of class overlap, as well as scenarios where data 

distributions diverge into multiple modes. APT requires all modes to be presented at 

initialization and further assumes that any drift to the data distribution be structured. 

Furthermore, while COMPOSE is computationally intensive algorithm, it appears to be 

more efficient than APT. 

Nevertheless, the α-shape construction used by COMPOSE is indeed a 

computationally expensive process, one that is exponential in dimensionality. Future 

work includes exploring more efficient ways of constructing α-shapes, or using alternate 

density estimation techniques, such as Gaussian Mixture Models (GMM) or kernel 

density estimation. While such changes may require modifications to the compaction 

method, the foundational concepts of COMPOSE remain the same – select instances 

from the geometric center (core region) of high density regions of each class to be used as 

labeled data and combine with the unlabeled data of subsequent time step. This is why we 

refer to COMPOSE more as a framework, rather than just an algorithm. COMPOSE can 
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be a family of algorithms, depending on how the core supports are determined, what SSL 

algorithm is used as a BaseClassifier, or how the compaction is applied. 

There is, of course, much room for improvement: articulating a more rigorous 

definition of limited drift (e.g., defining limited drift with respect to Kullback- Leibler 

divergence or Hellinger distance between two subsequent distributions), optimizing or 

automating selection of algorithm parameters, and expanding the experimental work to 

other real–world and even higher dimensional data, all constitute our current and future 

work.  

Despite its limitations and the aforementioned room for improvement, we believe 

that COMPOSE shows significant promise in addressing extreme verification latency, 

performing quite well against other approaches. It is worth mentioning that COMPOSE’s 

limited drift assumption is much less restrictive than those of other algorithms. Perhaps 

most remarkable is the performance comparison of COMPOSE against the Bayes 

classifier, and Learn
++

.NSE (an ensemble of supervised learners). In these experiments, 

the experimental conditions for comparison were deliberately set to be grossly unfair 

against COMPOSE, where the competing algorithms were run in a fully supervised 

mode.  

Finally, we should mention that COMPOSE introduces tools from computational 

geometry that are not often used in machine learning research but may have applications 

to other machine learning problem domains. We hope that this work will stimulate new 

discussions and new efforts, and perhaps open computational geometry based approaches 

to other machine learning problems, where such approaches have been mostly 

underexplored. 
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6.1 Summary of Future Work 

The work presented in this thesis was the basis for a NSF grant proposal that was 

later funded. For those that continue work on the COMPOSE framework I have compiled 

a list of future tasks mentioned throughout this thesis for easy reference. Future works to 

be considered are: 

 Creating a rigorous definition of limited drift with respect to established 

metrics such as Kullback- Leibler divergence or Hellinger distance. 

 More efficient ways of constructing compactable boundary objects (such as α-

shapes) by exploring alternative density estimation techniques, such as 

Gaussian Mixture Models (GMM) or kernel density estimation. 

 Implementation and testing of various methods to incorporate receipt of future 

labeled data if the extreme latency assumption can be relaxed, allowing 

periodic receipt of labeled batches. When new data are received, does 

COMPOSE perform better if reinitialized using the only the new labeled data 

or is there some benefit to retaining core supports established before the 

arrival of new labeled data? 

 Implementing the current version of COMPOSE to maximize its use of 

parallel processing and explore the decrease in computation time achieved. 

 Explore dynamic selection of free parameter of the COMPOSE framework 

such as the α value or compaction percentage. 
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Chapter 7  

 

Summary of Contributions 

This thesis makes several contributions to the machine learning community, 

primarily in the fields of nonstationary environments and verification latency. 

Verification latency still remains a largely underexplored are due to its complexity. 

However, in our data driven, technologically advancing society this scenario will appear 

more regularly and will need to be addressed. The COMPOSE framework takes some of 

the early steps exploring this area of machine learning, showing that learning these 

environments is possible, albeit presently at a high computational cost. The COMPOSE 

framework has set the bar demonstrating: 

 Semi-supervised learning algorithms are a good classifier selection to tackle 

nonstationary environments with limited labeled data. 

 Given properly selected labeled data the SSL algorithms follow similar 

classification trends. 

 Selecting data at the geometric core of a slowly drifting distribution to 

propagate information to later drifted distributions works well.     
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