
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

10-21-2015

COMPOSE: Compacted object sample extraction a framework for COMPOSE: Compacted object sample extraction a framework for

semi-supervised learning in nonstationary environments semi-supervised learning in nonstationary environments

Karl Dyer

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Dyer, Karl, "COMPOSE: Compacted object sample extraction a framework for semi-supervised learning in
nonstationary environments" (2015). Theses and Dissertations. 553.
https://rdw.rowan.edu/etd/553

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fetd%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/553?utm_source=rdw.rowan.edu%2Fetd%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

COMPOSE: COMPACTED OBJECT SAMPLE EXTRACTION

FOR SEMI-SUPERVISED LEARNING IN NONSTATIONARY

ENVIRONMENTS EXPERIENCING GRADUAL DRIFT

by

Karl Bachman Dyer

A Thesis

Submitted to the

Department of Electrical and Computer Engineering

College of Engineering

In partial fulfillment of the requirement

For the degree of

Master of Science in Electrical and Computer Engineering

at

Rowan University

August 26, 2015

Thesis Chair: Robi Polikar, Ph.D.

© 2015 Karl Bachman Dyer

 iii

Acknowledgements

I would like to thank Dr. Robi Polikar for taking a chance on a mechanical

engineering and welcoming me into his Signal Processing & Pattern Recognition Lab. He

has been a constant source of encouragement and has been extremely helpful in my

professional and life choices. I would like to thank my committee members, Dr. Nidhal

Bouaynaya and Dr. Krishan Bhatia, for their help through thesis process. Special thanks

to Greg Ditzler and Rob Capo who have been extremely helpful in code development,

paper reviews, and a sounding board for some “off the wall” ideas. Finally, I would like

to thank my family and friends who have supported and encouraged me to continue

pressing forward throughout my academic journey.

 iv

Abstract

Karl B. Dyer

COMPOSE: COMPACTED OBJECT SAMPLE EXTRACTION

A FRAMEWORK FOR SEMI-SUPERVISED LEARNING

 IN NONSTATIONARY ENVIRONMENTS

2015-2016

Robi Polikar, Ph.D.

Master of Science in Electrical and Computer Engineering

An increasing number of real-world applications are associated with streaming

data drawn from drifting and nonstationary distributions. These applications demand new

algorithms that can learn and adapt to such changes, also known as concept drift. Proper

characterization of such data with existing approaches typically requires substantial

amount of labeled instances, which may be difficult, expensive, or even impractical to

obtain. In this thesis, compacted object sample extraction (COMPOSE) is introduced - a

computational geometry-based framework to learn from nonstationary streaming data -

where labels are unavailable (or presented very sporadically) after initialization. The

feasibility and performance of the algorithm are evaluated on several synthetic and real-

world data sets, which present various different scenarios of initially labeled streaming

environments. On carefully designed synthetic data sets, we also compare the

performance of COMPOSE against the optimal Bayes classifier, as well as the arbitrary

subpopulation tracker algorithm, which addresses a similar environment referred to as

extreme verification latency. Furthermore, using the real-world National Oceanic and

Atmospheric Administration weather data set, we demonstrate that COMPOSE is

competitive even with a well-established and fully supervised nonstationary learning

algorithm that receives labeled data in every batch.

 v

Table of Contents

Abstract .. iv

List of Figures ... vii

List of Tables ... ix

Chapter 1 Introduction ... 1

1.1 Human Cognition and Machine Learning ... 2

1.1.1 Three broad divisions of machine learning. ... 2

1.1.2 Nonstationary environments. ... 4

1.2 Problem Statement .. 6

1.3 Scope of Thesis ... 8

1.4 Organization of Thesis .. 9

Chapter 2 Background ... 10

2.1 Semi-Supervised Learning .. 10

2.2 Nonstationary Environments ... 14

2.2.1 Online vs. batch approaches. .. 15

2.2.2 Active vs. passive approaches. ... 17

2.2.3 Single vs. ensemble approaches. .. 18

2.3 Verification Latency .. 19

Chapter 3 Literature Review.. 21

3.1 Recurring Concept Drifts From Limited Labeled Streaming Data (REDLLA) .. 21

3.2 Weight Estimation Algorithm (WEA) .. 25

3.3 Semisupervised Stream Clustering (SmSCluster) ... 27

3.4 Relational K-means Transfer Semi-Supervised Support Vector Machine 31

3.5 The Ensemble Classifier and Clusters Model ... 33

3.6 Arbitrary Sub-Population Tracker Algorithm (APT) .. 35

Chapter 4 The COMPOSE Framework ... 40

4.1 Fundamental Premise of the COMPOSE Framework ... 40

4.2 Evolution of the COMPOSE Framework .. 42

4.3 Algorithm Description ... 44

 vi

Table of Contents (Continued)

4.4 𝜶-Shape Construction ... 47

4.4.1 Terminology. .. 47

4.4.2 Effect of 𝜶 parameter on 𝜶-shape. ... 48

4.4.3 𝜶-Shape construction. .. 49

4.5 α-Shape Compaction ... 55

4.5.1 Version 1.0 – skeletal offsets. .. 55

4.5.2 Version 1.1 – fast Fourier transform based erosion. 56

4.5.3 Version 1.2 – α -shape unwrapping. ... 64

Chapter 5 Experiments and Discussions ... 67

5.1 Experimental Setup and Results on Synthetic Datasets 67

5.1.1 Unimodal and multimodal Gaussians. ... 70

5.1.2 Unimodal Gaussian with added class. .. 74

5.1.3 Unimodal Gaussians in 3D. .. 76

5.2 Experimental Setup and Results of Real-World Data ... 78

5.3 Computation Time Tests ... 80

5.4 Choice of Free Parameters and Their Effects .. 83

Chapter 6 Conclusions and Future Work .. 86

6.1 Summary of Future Work ... 89

Chapter 7 Summary of Contributions .. 90

References ... 91

 vii

List of Figures

Figure Page

Figure 1.1. Example of supershapes ... 3

Figure 2.1. Example of manifold assumption ... 12

Figure 2.2. Types of change in nonstationary environments .. 15

Figure 2.3. Online vs. batch nonstationary streaming data ... 17

Figure 3.1. REDLLA pseudocode .. 24

Figure 3.2. WEA pseudocode ... 27

Figure 3.3. SmSCluster psuedocode ... 30

Figure 4.1. Graphical representation of COMPOSE stages .. 41

Figure 4.2. How COMPOSE accounts for various drift types .. 42

Figure 4.3. COMPOSE pseudocode ... 46

Figure 4.4. Examples of simplexes ... 48

Figure 4.5. Effects of varying α parameter ... 49

Figure 4.6. α-Shape construction psuedocode .. 50

Figure 4.7. Delaunay triangulation ... 51

Figure 4.8. α-Shape construction simplex comparison ... 52

Figure 4.9. Sample α-shape classifications ... 54

Figure 4.10. Skeletal offset ... 56

Figure 4.11. α-Shape discretizing function pseudocode ... 57

Figure 4.12. Discretizing an α-shape .. 58

Figure 4.13. α-Shape compaction pseudocode ... 61

Figure 4.14. α-Shape compaction using FFT based erosion ... 64

 viii

List of Figures (Continued)

Figure Page

Figure 4.15. Graphical representation of unwrapped α-shape .. 65

Figure 5.1. Experiment 1 – unimodal Gaussians .. 71

Figure 5.2. Results of unimodal Gaussian experiment ... 72

Figure 5.3. Experiment 2 – multimodal Gaussians ... 73

Figure 5.4. Results of multimodal Gaussian experiment .. 74

Figure 5.5. Experiment 3 – class added Gaussian .. 75

Figure 5.6. Results of class added Gaussian experiment .. 76

Figure 5.7. Experiment 4 – 3D Gaussians .. 77

Figure 5.8. Results of 3D Gaussian experiment ... 78

Figure 5.9. Results of NOAA weather dataset .. 80

Figure 5.10. Computation time of experiments .. 83

Figure 5.11. Constant α and varied CP ... 84

Figure 5.12. Constant CP and varied α .. 85

 ix

List of Tables

Table Page

Table 4.1. Evolution of COMPOSE framework ... 43

Table 5.1. Parametric equations governing unimodal Gaussian experiment drift 71

Table 5.2. Parametric equations governing multimodal Gaussian experiment drift 73

Table 5.3. Parametric equations governing class added Gaussian experiment drift 75

Table 5.4. Parametric equations governing 3D Gaussian experiment drift 77

Table 5.5. COMPOSE and APT computation comparison ... 83

1

Chapter 1

Introduction

The fundamental goal of machine learning is to emulate (albeit at a limited scale)

the decision making capabilities of the brain, so it is not surprising to find topics in

machine learning often parallel human learning methodology. The cognitive development

of humans from infancy through adolescence then into adulthood can be likened to three

broad categories of machine learning – unsupervised, supervised, and semi-supervised

learning, respectively.

The following section draws parallels between human cognitive development and

the aforementioned three broad divisions of machine learning. Once an understanding of

general machine learning concepts has been established, nonstationary learning – a task

humans accomplish innately - is presented as a challenging twist to traditional machine

learning paradigms. Throughout this next section machine learning terms are gradually

introduced in (parenthetical italics) and by the end of the chapter we will be using only

machine learning terms.

The remainder of the chapter presents a global picture of the problem this thesis

addresses before narrowing the scope and identifying the specific contributions of this

manuscript. An organizational overview of the remainder of this thesis can be found at

the end of this chapter.

2

1.1 Human Cognition and Machine Learning

1.1.1 Three broad divisions of machine learning. At infancy, we observe

defining characteristics (features) – such as color, shape, size, etc. – of objects (instances)

all around us. However, at this stage of cognitive development we do not necessarily

know the names (classes or labels) of all the objects. For example, a toddler playing with

blocks may form groups (clusters) of like featured objects, but is unable to follow

instruction to sort them by color since he has not learned colors at this stage of

development. This scenario is very similar to unsupervised learning algorithms which try

to group data into “natural” clusters - where “natural” is defined by the similarity

measure used by the clustering algorithm [1] - based solely on analysis of their features.

The resulting clusters are assigned cluster identifiers using non-descript roman numerals

or alpha-numeric characters, but these identifiers do not contain any information about

true class membership.

At youth, we rely heavily on parents and school teachers to provide connections

between an object and its accepted name (training). Through repetition and a multitude of

examples we are eventually able to make predictions about an object’s correct label

(classification) even though we have not been formally taught the information prior. For

example, after being told that roses, daffodils, and tulips are all flowers we are likely to

assume anything with green leaves and brightly colored petals can be referred to as a

flower. This scenario draws a strong correlation to supervised learning algorithms which

use a set of labeled data to train a classifier - a mathematical model that maps features to

corresponding labels – which is to provide class labels for other unknown instances.

3

By the time we reach adulthood we generally require fewer and fewer labeled

examples in order to make an educated guess in unfamiliar situations. In machine

learning, this concept is the foundation of semi-supervised learning. Combining the

ability of unsupervised learning to form logical clusters with the ability of supervised

learning to assign class labels, semi-supervised learning algorithms use a relatively small

number of labeled instances to assign class information to the cluster identifiers, and

therefore the unlabeled instances contained within that cluster. Providing an explicit

example is rather difficult; however, studies, such as [2] and [3], have been conducted to

determine if humans actually utilize semi-supervised learning presented in the machine

learning context. In [3], the more rigorously executed study, Zhu et. al. presented 22

subjects with a two class categorization task of visually complex unrecognizable

supershapes of which a select subset is presented in Figure 1.1. Each shape presented in

Figure 1.1 is produced using the same function evaluated using the value displayed

below the shape. Supershapes, defined by the Superformula proposed by Geilis in [4], are

continuously flowing shapes (i.e. they gradually morph from one state to another) and

can be governed by one variable.

Figure 1.1. Example of supershapes

Supershapes morph from one state to another gradually. This transition can be

parameterized by a single variable. Each shape pictured is produced by the same

function evaluated using the value below the image. (figure obtained from [4])

 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

4

The data were characterized by a bimodal Gaussian – each mode representing an

opposing class. Subjects were given one sample from the center of each mode as training

data, and were then asked to categorize a large set of additional instances. The subjects

were divided into two groups: one received unlabeled data sampled from a similar

bimodal distribution shifted to the left of the original Gaussian, and the other group was

presented unlabeled data from a similar bimodal distribution shifted to the right. Results

showed both groups developed initial decision boundaries near the middle of the two

training instances until they were exposed to the shifted unlabeled data. Subjects from the

left shifted distributions moved their decision boundary to the left while subjects from the

right shift altered the decision boundary to the right. This experiment demonstrates that

humans do in fact utilize a semi-supervised learning methodology.

1.1.2 Nonstationary environments. To make learning in any of these three

categories more realistic to human cognition, we must add one of the most challenging

aspects of the human brain to emulate – adapting to an environment that is constantly

changing. Infants learn to distinguish their family members’ faces in different lighting

conditions even though they may not know their names; children under the age of ten are

able to identify a speaker over the phone even with a poor connection or voice alterations

due to illness; and adults make thousands of decisions daily while driving in various

weather conditions or deciding to buy/sell shares in an ever fluctuating financial market.

In machine learning, the challenge of making decisions in a changing

environment is referred to as nonstationary learning. Nonstationary learning is extremely

challenging since it requires algorithms to maintain a delicate balance of retaining

relevant knowledge and forgetting concepts that are no longer applicable. In machine

5

learning, this challenging balance is known as the stability vs. plasticity dilemma [5]:

stability refers to the ability to retain previously acquired knowledge making a stable

learning environment; whereas plasticity refers to the ability of the classifier to adapt to

new concepts, and acquire new knowledge.

Once again machine learning approaches emulate humans’ decision making

processes of i) using pooled experiences; or in some cases ii) recalling only their most

recent experience. For example, when deciding whether a particular meal is enjoyable, a

person relying on pooled experiences may recall several (or sometimes all) occasions

they have tasted that dish before making a decision. The collection of experiences may

include positive and negative feelings toward the meal, but in the end an overall decision

is made to either like or dislike the dish. In machine learning, ensemble systems use this

same decision making construct. Ensembles used in nonstationary environments are a

collection of classifiers that are typically constructed at different periods in time; each

classifier containing information about the state of the environment at the time it was

constructed. Combining the classifiers’ knowledge produces a final collective decision of

the ensemble. Each classifier’s vote in the final decision can be weighted, giving more

influence to recent classifiers, as they are most likely to represent the current state of

knowledge on the environment. Returning to our meal example, a person’s taste buds

change every few years, so an experience in recent months should have more impact than

a meal seven years prior.

Conversely, another person may allow only the most recent food encounter, good

or bad, to sway their opinion of the meal. Eating a dish that causes gastrointestinal

discomfort may prevent one from eating that dish in the future. In machine learning, this

6

is similar to a single classifier system; they are updated to incorporate new information

reflecting the change in the environment. Single classifier systems are managed in

through incremental updates, adding the most recent experience to a single classifiers

decision making ability, or by completely reconstructing a new classifier each time a

change is detected.

Ensemble systems and incremental learners have both advantages and

disadvantages and selecting the appropriate style of learner is largely application

dependent. Examples of each variety are discussed in more depth in Section 0.

1.2 Problem Statement

A fundamental assumption made by most learning algorithms is that data are

drawn from a fixed but unknown distribution. This assumption implies that future

unlabeled instances the model is expected to classify come from the same distribution as

the data on which the model was developed in the first place. The previous section

presented a few scenarios that contradict this static distribution scenario; in fact, many

real world machine learning applications involve evolving surroundings (e.g. cancer

detection, weather predictions, web ad placement, etc.).

Nonstationary environments present a challenging problem for all machine

learning algorithms. However, the benefit gained from tracking environments using

unsupervised methods is limited – most applications require explicit class information be

related rather than a cluster identifier. Therefore, most nonstationary learning research

utilizes supervised or semi-supervised algorithms. A majority of research conducted has

used supervised learners and has produced methods proven to be very effective at

7

learning in and adapting to changing environments [6]–[17]. However, supervised

learning algorithms’ dependence on large sets of labeled examples for training has two

drawbacks – labeled data are expensive and time consuming to obtain, as they require

human annotation. When working in a nonstationary environment, where data often

arrive as a stream, taking time to gather large sets of labeled examples is often

impractical. For this reason, semi-supervised learning algorithms have been gaining

increasing attention for nonstationary learning applications. The reliance of semi-

supervised learners on relatively small sets of labeled data paired with their ability to

utilize cluster information available from abundant, inexpensive, readily available

unlabeled instances makes semi-supervised learning very attractive for nonstationary

applications.

Most semi-supervised approaches to learning in non-stationary environments, for

which a summary of relevant work is provided in Chapter 3, often assume that labeled

data are available with every batch of incoming data. However, more recent research,

typically referenced as verification latency, has added an important and practical

constraint: labeled data are not available at every time step, nor even in regular intervals,

which significantly complicates the learning process. Verification latency, as denoted by

Marrs et. al. [18], describes a scenario where true class labels are not made available until

sometime after the classifier has made a prediction on the current state of the

environment. The duration of this lag may not be known a priori, and may vary with

time; yet classifiers must propagate information forward until the model can be verified.

This thesis searches for a solution to the problem of learning concepts from

nonstationary environments in a cost effective and time efficient manner. The next

8

section narrows the scope of the thesis providing the constraints considered when

implementing a solution to this problem.

1.3 Scope of Thesis

This thesis explores non-stationary data in an extreme verification latency

scenario, where the lag duration is set to infinity – meaning no labeled data is ever

received after initialization. We refer to this scenario as initially labeled streaming

environment (ILSE), and propose a framework for learning in such an environment. A

theoretically justified solution to this extreme learning environment can then provide

effective algorithms for learning from environments that do not receive labeled data for

extended periods of time, whether that period is finite or otherwise. Real-world examples

of such an extreme learning setting are perhaps few today, but are rapidly growing due to

massive automated and autonomous acquisition of sensor, web user, weather, financial

transaction, energy usage, and other data. Furthermore, such applications can be

extremely important: network intrusion with malicious software (malware) attacks –

where malware programmers are able to modify the malware faster than network security

can identify and neutralize it, is a major current day challenge. Creating a labeled

database for this scenario is difficult and expensive, because the data – which arrive

continuously (i.e., streaming) – need to be isolated on a virtual machine, features need to

be extracted from the header data, and then evaluated by a human expert. Many

automation applications provide other examples, such as robots, drones, and autonomous

vehicles encountering surrounding environment changing at a pace too quick for a human

to verify all actions.

9

1.4 Organization of Thesis

Chapter 2 provides background of topics that have motivated this research –

primarily semi-supervised learning, nonstationary learning, and verification latency.

Chapter 3 outlines the current state of knowledge in the field through a literature review

on those topics that motive this research. Chapter 4 introduces and explains the

methodology of the COMPOSE algorithm developed for this thesis. Chapter 5 presents

the experimental setup and results of experiments on synthetic and real world data,

followed by a discussion of the results. Chapter 6 presents a summary of conclusions and

suggestions for future work. Finally, the contributions this thesis has made to machine

learning are summarized in Chapter 7.

10

Chapter 2

Background

This chapter provides background on the individual topics that motivated this

research. A general overview of semi-supervised learning methodology, nonstationary

learning approaches, and concerns with verification latency are presented.

2.1 Semi-Supervised Learning

Semi-supervised learning is a combination of unsupervised and supervised

learning methods. It offers an advantage of reduced cost through limited use of labeled

data, as obtaining labeled data is often costly and time consuming. Semi-supervised

learning is rationalized in two ways: unsupervised learning with additional constraints

(i.e., labeled data); or conversely, supervised learning with additional information

provided (i.e., unlabeled data) [19]. These differing views ultimately achieve the same

result; however, considering both perspectives can be helpful when considering the

fundamental assumptions of semi-supervised learning and reviewing semi-supervised

algorithms.

One or more of the four general assumptions listed below are utilized by semi-

supervised learning algorithms [19], [20]:

i) the smoothness or local consistency assumption - if instances in a high

density region are close to each other with respect to some similarity or

distance measure, their class labels should be similar, while instances in a

low density region need not belong to the same class.

11

ii) the cluster or global consistency assumption - instances in the same cluster

should belong to the same class.

iii) the low-density separation assumption - decision boundaries should lie in

low-density regions.

iv) the manifold assumption - high dimensional data reside on a lower

dimensional manifold.

The first three assumptions are often combined to produce a more general definition of

semi supervised learning that assumes class boundaries to reside where data are least

dense, and the transition between classes should be gradual. The manifold assumption

addresses a well-known problem in all of machine learning and statistics – the curse of

dimensionality. When dimensionality increases linearly, volume of the feature space

increases exponentially; therefore, more instances are required to adequately populate the

feature space. Many learning applications do not have enough data to populate a high

dimensional space, making learning difficult. By projecting the high dimensional data

onto a lower dimensional manifold, the remaining three assumptions can be enforced in

the lower dimensions, thus making learning feasible. Illustrating the manifold assumption

in high dimensionality is difficult; however, a reduction from a three dimensional to one

dimensional feature space is shown in Figure 2.1. The two distributions, represented with

red and blue labeled data and black unlabeled data, in (a) are projected “downward” onto

the 𝑓1 and 𝑓2 plane to produce the distribution in (b); then this distribution is projected

“downward” again onto the f1 axis. The result is a lower dimensional feature set that can

then be analyzed using the other three assumptions to determine a decision boundary. It is

important to note that not every manifold is created using an orthogonal basis, nor each

12

manifold produces a learnable reduced dimensionality dataset. If the data from (b) had

been projected onto the 𝑓2 axis instead of 𝑓1 the resultant dataset would have been

substantially more difficult to learn, if not impossible. There have been several

techniques proposed to produce “optimal” manifolds. The most well-known and

commonly used approaches are principle component analysis, independent component

analysis, canonical correlation analysis, and Fisher’s linear discriminant. In some of these

methods the original features are combined to produce a new representative feature set in

a lower dimension.

Figure 2.1. Example of manifold assumption

A manifold is a projection of higher dimensions in to lower dimensions – this method is

common in semi-supervised learning where sufficient data may not be available to

adequately populate the feature space. The two distributions in (a), represented by red

and blue labeled data and black unlabeled data, are projected onto the 𝑓1𝑓2 plane

producing (b). The dimensionality is reduced further by projecting the data in (b) onto the

𝑓1 axis producing (c). The order and direction of the projections impact the end result

greatly. If (b) had been projected onto the 𝑓2 axis instead the data may not be separable.

 (a) (b) (c)

13

Regardless of the assumptions utilized, all semi-supervised algorithms rely on

some variation of a common iterative recipe: 1) train a classifier from available labeled

data, 2) classify the remaining unlabeled data, 3) add instances whose confidence exceeds

a threshold to the permanently labeled training set, and 4) remove instances that do not

meet this threshold. This process has produced several well-established semi-supervised

algorithms, primarily for use in static environments, which typically fall into one of three

general categories:

i) generative algorithms, such as [21], [22], which assume that the data are

provided by a fixed yet unknown distribution, and that the decision

boundaries can be represented based on class posteriors;

ii) low-density separation algorithms, such as [23], [24], which use density

information from unlabeled instances to modify a decision boundary created

by using only labeled data;

iii) graph-based algorithms, such as [25], [26], which construct a graph, 𝐺 =

(𝑉, 𝐸) with vertices, 𝑉, representing instances and edges, 𝐸, representing

relationships between vertices. Class information is transferred from labeled

instances to neighboring unlabeled instances based on the relationship

defined by the connecting edges.

Some semi-supervised algorithms developed for static environments have recently

been modified or and are included a wrapper-based approach enabling them to work in

nonstationary environments; these approaches are discussed in the literature review

featured in Chapter 3.

14

2.2 Nonstationary Environments

Environments that provide data with changing distributions over time, such that

𝑝𝑡(𝒙, 𝑦) ≠ 𝑝𝑡+1(𝒙, 𝑦), are referred to as nonstationary environments. Here 𝒙 ∈ 𝑋 is an

instance from the feature space 𝑋, belonging to the class (concept) 𝑦 ∈ 𝑌 from the class

space 𝑌, at time stamp 𝑡. The components of the distribution that differ between each

time step can be categorized into four scenarios, listed below and depicted in Figure 2.2,

all of which may occur independently or simultaneously:

i) the number of instances per class – class priors, 𝑝(𝑦)

ii) the shape of the distribution – class-conditional, 𝑝(𝒙|𝑦), or sample

distribution, 𝑝(𝒙)

iii) the class assignment – posterior distributions of class membership, 𝑝(𝑦|𝒙)

iv) the addition/subtraction of a class – number of target concepts, |𝑌|

A significant body of research has focused on various combinations of the first

three scenarios – known as concept drift – limiting the environment to fixed number

classes (concepts). In this thesis, the fourth scenario is also addressed so the all-

encompassing term nonstationary environment is used throughout.

Early work on learning in nonstationary environments has primarily been on

defining the problem, and identifying types of nonstationary environments that may be

learned [16], [27]–[29]. This is not trivial, as each of the aforementioned drift scenarios

can be abrupt or gradual, slow or fast, random or systematic, cyclical or otherwise.

Changes can also be perceived, rather than real, due to insufficient, unknown or

unobservable features – referred to as hidden context, where an underlying unknown

phenomenon provides a true and static description over time [16], [30], [31].

15

(i) 𝑝𝑡(𝑦) ≠ 𝑝𝑡+1(𝑦) (ii) 𝑝𝑡(𝑥|𝑦1) ≠ 𝑝𝑡+1(𝑥|𝑦1) (iii) 𝑝𝑡(𝑦|𝑥) ≠ 𝑝𝑡+1(𝑦|𝑥) (iv) |𝑌𝑡| ≠ |𝑌𝑡+1|

 𝑝𝑡(𝑥) ≠ 𝑝𝑡+1(𝑥)

Figure 2.2. Types of change in nonstationary environments

(i) the class priors change between time steps; (ii) the class-conditional or sample

distributions change between time steps; (iii) the posterior distributions of class

membership change between time steps; (iv) the number of target classes (concepts) is

changed through addition or deletion of a class (concept)

Nonstationary learning algorithms can be characterized in several ways, such as

online vs. batch approaches; single classifier vs. ensemble-based approaches; or active

approaches (explicitly seeking to determine when a change/drift has occurred before

taking corrective action) vs. passive approaches [9] (assuming drift may occur at any

time, and update a model every time new data arrive).

2.2.1 Online vs. batch approaches. Nonstationary data are presented in a

stream – a time controlled progression of data – usually in one of two formats: online,

where a single instance is available at each time step requiring a learner to adapt as each

instance is acquired; or batch, where several instances are accumulated from the stream

then presented to the learner. Both formats are depicted in Figure 2.3 with periods in time

16

annotated for discussion. In an online setting each instance (star) is received and

processed as acquired; however, the batch method waits until a block of instances (four,

in the example illustrated in Figure 2.3) are received before these instances are presented

to the learner (batches are divided by vertical dashed lines). At discussion point (a) we

see what is clearly an outlier from the batch view; however when viewed from the online

perspective it is exceedingly difficult to determine if this is an outlier or change in

concept. At discussion point (b), we see a similar case from the batch perspective; one

instance appears to be an outlier even though it is truly the start of a change in concept.

An often made assumption, although rarely true, is concept change does not occur within

a batch. As a result, batch learners often lag in reacting to changing concepts whereas

online learners are able to react much faster to a change. At discussion point (c) we find

the rare occurrence where batch learning does not lag behind an online learner and

instead has a distinct advantage; the concept change occurs between batches instead of

within a batch as in (b). These three discussion points illustrate why online learning is

considered to be substantially more difficult than batch learning - less data make concept

generalization more difficult. Sometimes an incremental learning constraint is imposed

making nonstationary learning even more difficult. Incremental learning dictates

previously seen data are not accessible after the learner has initially seen the data. This

additional assumption is shown in Figure 2.3 as gray shading over the previously

encountered instances.

17

Figure 2.3. Online vs. batch nonstationary streaming data

Depicts special discussion points for the comparison of online and batch data

formats. In discussion point: (a) an outlier that would be easily recognized by

batch learner may be considered a concept change to an online learner; (b) the

batch assumption “change does not occur within a batch” delays the batch

learner from realizing the concept change until the next batch; (c) the batch

learner has a clear advantage over online learners.

2.2.2 Active vs. passive approaches. Active approaches determine when a

change has occurred before taking corrective action to update the learner, whereas

passive approaches assume drift may occur at any time, and update the model every time

new data arrive. Active nonstationary learning algorithms include window based

approaches, such as STAGGER [27] and FLORA [16], and their variants [32]–[37],

which use a sliding window to choose a block of new data to train a new classifier when

change is detected. Other approaches use control charts to detect drift, including Alippi

and Roveri’s just-in-time (JIT) classifiers [6], [38], [39], and the more recent intersection

of confidence intervals (ICI) rule [40] are examples of such approaches. Information

theoretic measures [41]–[43], Hoeffding bounds or Hellinger distance [44], [45] of

18

individual features have also been used for detecting drift and updating a classifier [41],

[42], [46].

2.2.3 Single vs. ensemble approaches. Many nonstationary learning algorithms

are single-classifier approaches, which typically adapt to change by either: i) updating the

adjustable parameters of the classifier to reflect changes present in newly received data

[34], [47], [48]; or ii) replacing the current classifier with a new classifier trained on

newly received data. Both suffer from the stability-plasticity dilemma [5]. Stability is

required to retain previous knowledge but too much stability hinders learning new

concepts. Plasticity, on the other hand, allows new information to be readily learned but

too much plasticity results in previously acquired knowledge being forgotten too quickly.

Algorithms strive to balance stability and plasticity. A learner that is entirely stable would

not adapt to changes in the environment and a learner that is entirely plastic is plagued

with catastrophic forgetting [49] – no previous knowledge is ever retained. While non-

stationary learning is possible with fully plastic learners, adding in stability often

increases performance.

Ensemble based approaches use a combination of several classifiers to make a

decision, hence avoiding stability-plasticity problems, albeit at increased computational

cost. Combining decisions of several classifiers, often created at different time steps,

provides a natural mechanism to update the collective knowledge of the ensemble.

Classifiers are added, removed, or updated to provide a better balance of stability vs.

plasticity. Ensemble approaches track the environment by adding new (and possibly

removing old) classifiers to build an ensemble of classifiers with each incoming dataset.

These approaches typically use a passive drift detection and a fixed ensemble size, where

19

the oldest member (as in Street’s Streaming Ensemble Algorithm [14], and Bifet’s

adaptive Hoeffding tree bagging [50]) or the least contributing ensemble member (as in

Kolter’s Dynamic Weighted Majority (DWM) [51]) is replaced with a new one. Voting is

the most common approach for combining the classifiers, though there is disagreement

on whether a weighted [15] or simple majority voting should be used [52]. Hybrid

approaches that combine active detection, sliding window and ensembles have also been

proposed, such as in Abdulsalam et al.’s random forests with entropy [43], Masud et al.’s

concept drift with time constraints [53], He et al.’s IMORL and ADAIN [10], [54], and

Bifet’s integration of a Kalman filter with Adaptive Sliding Window (ADWIN) [7], [55],

part of his Massive Online Analysis (MOA) suite [56], which also includes Learn
++

.NSE

[9], [57], [58] for mining data streams with concept drift.

2.3 Verification Latency

Verification latency, as first defined by Marrs et. al. [18], describes a scenario

where true class labels are not available until sometime after the classifier has made a

prediction on the current environment. The duration of this lag may not be known a

priori, and may vary with time; yet classifiers must propagate information forward until

the model can be verified.

Verification latency is a problem that plagues an increasing number of real-world

nonstationary learning environments (e.g. credit card fraud, autonomous drone

navigation, medical diagnosis, etc.), but is often disregarded in research due to its

complexity. In most nonstationary learning problems, drift is assumed to be limited or

gradual, and labeled data are assumed to arrive with every batch of incoming data.

20

Regular availability of labeled data and assumptions of relatively small shifts in the

underlying concepts allows verification latency effects to be ignored in most research.

However, when underlying distributions change rapidly, or access to labeled data is

restricted, latency in model verification becomes drastically more important.

 To illustrate this importance, let us consider a slowly evolving cancer and

compare it to a credit card fraud situation. Cancer detection often relies on several

markers to indicate the presence of cancer. In a slowly evolving cancer the thresholds that

indicate cancer will slowly fluctuate, and these changes can be documented as each new

possible cancer detected is evaluated and biopsied. The time taken to biopsy and denote

changes in the markers introduces latency but since the system is slowly changing the

delay is not devastating to classifier performance. In the case of credit card fraud, most

transactions are normal and the classifiers monitoring the credit accounts learn our

purchasing habits. When a fraudulent transaction occurs, it can go unnoticed for up to a

month when the billing cycle closes and the balance is sent to the user. In this case a

rapid change in purchasing may go undetected for several days, during which extensive

damage can be done. Latency in identifying the difference between a fraudulent and

normal transaction has had detrimental impact on the overall system.

The consequences of verification latency have been circumvented by applying

(often) unrealistic assumptions to the environment (i.e. the regular availability of labeled

data and small shifts in concepts as mentioned above). However, there have been several

attempts to start relaxing some of these assumptions [59 - 65] which are discussed more

thoroughly in the literature review in Chapter 3.

21

Chapter 3

Literature Review

This chapter highlights algorithms utilizing semi-supervised learning in non-stationary

environments relevant in the development of this work. A brief summary of each

algorithm is presented with a focus on the following criteria:

 Types of learners utilized

 Limitations of tracking different types of non-stationary environments

 Required frequency of labeled data

3.1 Recurring Concept Drifts From Limited Labeled Streaming Data (REDLLA)

Li et. al [59] propose REDLLA to explore REcurring concept Drifts from Limited

LAbeled streaming data. Recurring concepts are difficult to address due to the stability

plasticity dilemma [5] – one must retain old knowledge that is still relevant, yet replace

obsolete knowledge to adapt to new concepts. To address this recurring concept problem,

REDLLA maintains a decision tree along with a table of previously seen concepts. The

algorithm assumes data arrive in batches of mixed labeled and unlabeled instances at

every time step. The algorithm has been shown effective with 10% of the instances

arriving with labels.

REDLLA constructs a decision tree on receipt of the first batch of data (step 1 in

Figure 3.1). Each instance in every subsequent batch is sorted through the tree

and grouped at the appropriate leaf (step 2 in Figure 3.1). Each instance grouped at a

specific leaf increases the instance count of that leaf, 𝑛𝐿, while the instance features are

added to an attribute array, 𝑎𝑡𝑡𝑟𝐴𝑟𝑟𝑎𝑦, and if labeled, its class is recorded into a class

22

array, 𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦 (steps 3-5 in Figure 3.1). In every leaf, if the instance count, 𝑛𝐿,

exceeds a user defined threshold, 𝑛𝑚𝑖𝑛, the unlabeled instances are labeled using a 𝑘-

means clustering algorithm with simple majority voting of labeled instances placed in

the same cluster, where 𝑘 is set equal to the number of different classes present in

𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦 (step 6 in Figure 3.1). The 𝑘-means clustering algorithm uses a distance

metric to partition all instances, both labeled and unlabeled, into 𝑘 different clusters

around the closest mean, where the number of means is a predetermined value, 𝑘. The

means can be provided by the user or can be determined through an iterative process.

When simple majority voting is utilized, the labeled instances found within a cluster are

tallied and the class with most instances is then assigned to all instances in the cluster,

even if previously labeled. The results of the simple majority vote are used to update the

𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦 (step 7 in Figure 3.1). After all instances have been labeled, split tests are

conducted using information gain criteria, an impurity based method using entropy

measures explained in [34], and new leaves are grown while the current leave becomes a

decision node (step 8 in Figure 3.1).

To determine if the tree has encountered any recurring concepts, the algorithm

performs a check at a user defined detection period interval, 𝐷𝑃 (in Figure 3.1) this

check is expressed as |𝐸| % 𝐷𝑃 = 0 where % is the modulus operator and |𝐸| is the

number of instances received in the data stream). For every leaf in the current tree, the

radius, 𝑟𝑐,𝑛𝑒𝑤, of each cluster, 𝑐 is calculated as the averaged Euclidean distance of every

instance to its cluster mean, 𝑚𝑐. The cluster mean and radius are recorded into a

temporary array, 𝑀𝑛𝑒𝑤 = {𝑟𝑐, 𝑚𝑐}. If the leaf was newly created during the last split test,

array 𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤 and this concept is added to table, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐿𝑖𝑠𝑡 (steps 9-11 in Figure

23

3.1). If the leaf existed during the previous detection period, the Euclidean distance, 𝑑𝑐,

between the means of similar classes in 𝑀𝑛𝑒𝑤 and 𝑀𝑙𝑎𝑠𝑡 are calculated, where 𝑀𝑙𝑎𝑠𝑡 is the

cluster information from the last detection period. The clusters in 𝑀𝑛𝑒𝑤 are then

evaluated and placed into one of three categories: i) potential drift, where 0 ≤ 𝑑𝑐 ≤

𝑚𝑎𝑥 (𝑟𝑐,𝑙𝑎𝑠𝑡, 𝑟𝑐,𝑛𝑒𝑤), and the previous concepts are updated to reflect the minute drift,

𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤; ii) noise artifacts, where 𝑚𝑎𝑥(𝑟𝑐,𝑙𝑎𝑠𝑡, 𝑟𝑐,𝑛𝑒𝑤) < 𝑑𝑐 < 𝑟𝑐,𝑙𝑎𝑠𝑡 + 𝑟𝑐,𝑛𝑒𝑤, and

𝑀𝑛𝑒𝑤 is discarded so that the next detection period uses the current 𝑀𝑙𝑎𝑠𝑡 for comparison

purposes; or iii) true drift, where 𝑑𝑐 ≥ 𝑟𝑐,𝑙𝑎𝑠𝑡 + 𝑟𝑐,𝑛𝑒𝑤. When true drift is detected,

𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤 and 𝑀𝑛𝑒𝑤 is added to 𝑐𝑜𝑛𝑐𝑒𝑝𝐿𝑖𝑠𝑡 only if there is no other “similar”

concepts in 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐿𝑖𝑠𝑡. “Similarity” is determined using the same Euclidean distance

metric described above (steps 12-15 in Figure 3.1).

To ensure the tree does not over fit, pruning is conducted at a user defined

pruning period interval, 𝑃𝑃. Pruning is conducted using a bottom up error based

approach to remove leaves with an error rate greater than 50%. The tree performance is

calculated at a predefined user incremental output period, 𝑂𝑃, where the performance is

calculated using accumulated sum of a user defined loss function between predicted and

observed values.

24

Inputs: Stream of data: 𝐸; Minimum number of split-examples: 𝑛𝑚𝑖𝑛 ; Detection Period: 𝐷𝑃;

Pruning Period: PP; Incremental Output Period: 𝑂𝑃.

1. Create a leaf for tree, 𝑇

Do for each instance 𝑒 ∈ 𝐸

 2. Sort 𝑒 into available leaf, 𝐿.

 3. Increase count of instances sorted to leaf, 𝑛𝐿

 4. Add features of 𝑒 to 𝑎𝑡𝑡𝑟𝐴𝑟𝑟𝑎𝑦

 If 𝑒 is labeled

 5. Add class of 𝑒 to 𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦

 End If

End

Do for each leaf 𝐿 ∈ 𝑇

 If 𝑛𝐿 ≥ 𝑛𝑚𝑖𝑛

 6. Label the unlabeled instances in leaf using 𝑘-Means clustering and simple majority voting of

labeled instances contained within the cluster. 𝑘 is set equal to number of classes present in

𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦.

 7. Update 𝑐𝑙𝑎𝑠𝑠𝐴𝑟𝑟𝑎𝑦 to reflect results of 𝑘-Means cluster and label for previously unlabeled

instances.

 8. Conduct split-test and grow new children leaves

 End If

 If |𝐸| % 𝐷𝑃 = 0

 9. Calculate radius, 𝑟𝑐 , of each cluster, 𝑐, where the radius is the averaged Euclidean distance

of each instance to the cluster mean, 𝑚𝑐 .

 10. Create array 𝑀𝑛𝑒𝑤 = {𝑟𝑐 , 𝑚𝑐}

 If 𝐿 is a new leaf (i.e. created in 8.)

 11. Create array 𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤 and place 𝑀𝑙𝑎𝑠𝑡 into array 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐿𝑖𝑠𝑡
 Else

 12. Calculate Euclidean distance, 𝑑𝑐 , between means of similar classes in 𝑀𝑛𝑒𝑤 and 𝑀𝑙𝑎𝑠𝑡 ,

where 𝑀𝑙𝑎𝑠𝑡 is the an array containing the radius and mean of each cluster from the

previous detection period.

 Select

 Case 1: 0 ≤ 𝑑𝑐 ≤ max⁡(𝑟𝑐,𝑙𝑎𝑠𝑡 , 𝑟𝑐,𝑛𝑒𝑤)  Potential Drift

 13. Update model to reflect minor changes, 𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤

 Case 2: max(𝑟𝑐,𝑙𝑎𝑠𝑡 , 𝑟𝑐,𝑛𝑒𝑤) < 𝑑𝑐 < 𝑟𝑐,𝑙𝑎𝑠𝑡 + 𝑟𝑐,𝑛𝑒𝑤  Noise Artifact

 14. Discard 𝑀𝑛𝑒𝑤 (i.e. do nothing so 𝑀𝑛𝑒𝑤 will be overwritten)

 Case 3: 𝑑𝑐 ≥ 𝑟𝑐,𝑙𝑎𝑠𝑡 + 𝑟𝑐,𝑛𝑒𝑤  True Drift

 15. Compare 𝑀𝑛𝑒𝑤 to 𝑀ℎ𝑖𝑠𝑡 using the same distance metric, 𝑑𝑐 , where 𝑀ℎ𝑖𝑠𝑡 is a list of all

the previous concepts in 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐿𝑖𝑠𝑡. If no matching concept is found 𝑀𝑛𝑒𝑤 is added to

𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐿𝑖𝑠𝑡 as a new concept and 𝑀𝑙𝑎𝑠𝑡 = 𝑀𝑛𝑒𝑤

 End Select

 End If

 End If

 If |𝐸| % 𝑃𝑃 = 0
 16. Conduct bottom up error based pruning of branches with error rate greater than 50%

 End If

 If |𝐸| % 𝑂𝑃 = 0

 17. The performance for current model using an accumulated sum of loss function between

predicted and observed values.

 End If

End
Figure 3.1. REDLLA pseudocode

25

3.2 Weight Estimation Algorithm (WEA)

Diztler et. al [60] propose WEA, a Weight Estimation Algorithm to learn

nonstationary concepts in streaming data using any supervised learning algorithm as the

base classifier for a learning ensemble. WEA assumes data arrive in a batch format of

labeled data followed by unlabeled data. The unlabeled data are assumed to (possibly)

originate from a drifted distribution (i.e. labeled and unlabeled data are from different

distributions).

WEA, psuedocode presented in Figure 3.2, works iteratively; adding to the

ensemble, as new data arrive. At each time step, 𝑡, WEA trains a fully supervised

BaseClassifier on the available labeled data, and then constructs a Gaussian Mixture

Model (GMM), ℳ𝑐
𝑡, with a user defined number of components, 𝐾𝑐, for each class, 𝑐, in

the labeled data (steps 1 and 2 in Figure 3.2). When unlabeled data are received, possibly

from a drifted distribution, a second GMM, 𝒩𝑡, is constructed with its number of

components totaling the sum of the all components in ℳ𝑐
𝑡 (step 3 in Figure 3.2). The

Bhattacharyya distance between each component in 𝒩𝑡 and each component in ℳ𝑐
𝑡 is

calculated, and the label of the closest component in ℳ𝑐
𝑡 is assigned producing a labeled

GMM of the unlabeled data, 𝒩𝑐
𝑡 (step 4 in Figure 3.2). The Bhattacharyya distance is

used as the distance metric since this paper defines its limited drift assumption to be the

Bhattacharyya distance between a known component and its future position must be less

than the Bhattacharyya distance between the known component and any other future

component of a differing class. A user defined number, 𝑞𝑡, of synthetic samples are

drawn from the now labeled GMM, 𝒩𝑐
𝑡. These synthetic instances are used to compute

the error of each classifier in the ensemble. If the error exceeds 50% incorrect

26

classification the error is set to 50% (steps 5 and 6 in Figure 3.2). The classifier weights,

which are proportional to the calculated error, are determined and used to produce a

weighted majority ensemble hypothesis on the unlabeled data (steps 7 and 8 in Figure

3.2).

WEA was tested on synthetic data and compared to a similar ensemble algorithm

Learn
++

.NSE, which only utilizes labeled data. The results demonstrated comparable

performance between the two algorithms when the labeled and unlabeled data were

drawn from a slowly drifting distribution. However, as the drift increased, WEA

performed significantly better than Learn
++

.NSE. When drift became too great and

violated the Bhattacharyya distance limited drift assumption, WEA’s performance

dropped significantly.

27

Inputs: Labeled training data ℒ𝑡 = {𝒙𝑖 ∈ 𝒳; 𝑦𝑖 ∈ 𝒴} where 𝑖 = 1,… ,𝑚𝑡;

 Unlabeled data 𝒰𝑡 = 𝒙𝑖 ∈ 𝒳 where 𝑖 = 1,… , 𝑛𝑡;

 𝐾𝑐 – number of centers for the 𝑐th class in a GMM;

 𝑞𝑡 – number of instances generated to estimate classifier error;

 BaseClassifier learning algorithm

Do for 𝑡 = 1,2,…

 1. Call BaseClassifier on ℒ𝑡 to generate hypothesis ℎ𝑡 :𝒳 → 𝒴

 2. Generate GMM with 𝐾𝑐 centers for each class present in ℒ𝑡 , ℳ𝑐
𝑡 = 𝐺𝑀𝑀(𝐾𝑐 , ℒ𝑡)

 3. Generate GMM with 𝐾𝑐 centers from unlabeled data 𝒰𝑡 , 𝒩𝑡 = 𝐺𝑀𝑀(Σ𝐾𝑐 , 𝒰𝑡)

 4. Assign each component in 𝒩𝑡 the label of the closest component in ℳ𝑐
𝑡 , where distance

metric is the Bhattacharyya distance, 𝒩𝑐
𝑡 = 𝐵ℎ𝑎𝑡𝑡𝑎𝑐ℎ𝑎𝑟𝑦𝑦𝑎(𝒩𝑡 ,ℳ𝑐

𝑡)

 5. Generate 𝑞𝑡 synthetic instances from 𝒩𝑐
𝑡 used to compute error, 𝜀 , of each classifier.

 𝜀 𝑘
𝑡 =

1

𝑞 𝑡
 ℎ𝑘(𝒙𝑙) = 𝑦𝑙
𝑞 𝑡

𝑙=1 𝑤here 𝑘 = 1,2,… , 𝑡

 If 𝜀 𝑘
𝑡 > 1/2

 6. Limit the error, 𝜀 𝑘
𝑡 = 1/2

 End If

 7. Compute the classifier voting weights for the unlabeled data,

𝑊𝑘
𝑡 ∝ log

1 − 𝜀 𝑘
𝑡

𝜀 𝑘
𝑡

 8. Classify the unlabeled data in 𝒰𝑡 using weights,

𝐻𝑡(𝒙𝑗 ∈ 𝒰
𝑡) = arg max

𝑐∈Ω
 𝑊𝑘

𝑡 ℎ𝑘(𝒙𝑗) = 𝑦𝑗

𝑡

𝑘=1

 where Ω is the set consisting of all classes in the problem

End

Figure 3.2. WEA pseudocode

3.3 Semisupervised Stream Clustering (SmSCluster)

Masud et. al. [61] propose an ensemble of clusters to track nonstationary concepts

in streaming data when limited labeled data are available. This algorithm assumes both

labeled and unlabeled data are available in every batch, and updates the ensemble to

select the best preforming clusters to classify the most recent data. The SmSCluster

process is outlined in the pseudocode presented in Figure 3.3.

At each timestamp, data are clustered into 𝐾 user defined clusters by minimizing

an impurity cost function through the Expectation-Maximization Algorithm [21] (step 1

28

in Figure 3.3). The impurity cost function is the sum of i) the Euclidean distance

between each instance and the cluster centroid and ii) the Euclidean distance between

labeled data and the cluster centroid scaled by an impurity measurement. The impurity

measurement is the product of an aggregated dissimilarity count (𝐴𝐷𝐶) and the entropy

(𝐸𝑛𝑡) of the cluster. The author defines the aggregated dissimilarity count as a tally of all

labeled instances not belonging to the majority class of a cluster and uses a standard

definition of entropy,

 𝐸𝑛𝑡𝑖 = −
|ℒ𝑖(𝑐)|

|ℒ𝑖|
∗ 𝑙𝑜𝑔 (

|ℒ𝑖(𝑐)|

|ℒ𝑖|
)𝐶

𝑐=1 ,

where 𝐶 is the number of classes and ℒ𝑖 is the labeled data in cluster 𝑖.

Once the clusters have been created, a model, 𝑀𝑡, for that timestamp is created

containing a statistical summary of the 𝐾 clusters formed (step 2 in Figure 3.3). The

statistics recorded for each cluster are:

 the total number of instances: 𝑁

 the total number of labeled instances: 𝐿𝑡

 a vector with the total number of labeled instances in each class: 𝐿𝑝 𝑐 𝑐=1
𝐶

 the cluster centroid: 𝒖

 a vector containing the sum of each dimension 𝑟 ∈ 𝑑 of all cluster data:

𝑆𝑢𝑚 𝑟 𝑟=1
𝑑

These statistics must be recorded in order for future clusters to be merged when a

new class is experienced. When a new class is introduced at the current time step,

previous models have no knowledge of this new class, skewing the ensemble voting

process. In order to overcome this problem the new class information is injected into

previous models using the following process. In each model, the closest two classes

29

having the same majority class are determined and then combined to generate new

statistics from their previous values (step 3 in Figure 3.3). A subset of data from the

newly experienced class is then injected with a user defined probability 𝜌 (step 4 in

Figure 3.3). After each model has been injected with a random subset (if needed), the

performance of each model is acquired by testing that model’s classification rate on the

labeled data from the current timestamp (step 5 in Figure 3.3). The 𝑚 highest performing

models are selected to the ensemble and then used to label the unlabeled data from the

current timestamp.

The ensemble voting is executed in the following manner: for each unlabeled

instance, the 𝑄 closest clusters are identified using a distance metric between unlabeled

instance and cluster centroid. The normalized frequency,
𝐿𝑝 𝑐

𝐿𝑡
, obtained from the

summary statistics are calculated and summed across the 𝑄 clusters. The unlabeled

instance in then assigned the class of the highest cumulative normalized frequency.

30

Inputs: Data arriving at time 𝑡 – 𝒟𝑡 = {𝑥𝑖 ∈ 𝒳; 𝑦𝑖 ∈ 𝒴} and 𝒴 = {𝜙, 1, … , 𝐶} where 𝜙 =
𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 and 𝐶 is the total number of classes;

 𝐾 – number of clusters to be created;

 Q – number of nearest neighbors for kNN classification;

 𝜌 – probability of injection;

 𝑚 – number of models in ensemble

Do for 𝑡 = 1,2,…

1. Create K clusters using the E-M algorithm on the K-means with Minimization of Cluster

Impurity cost function

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶ 𝒙− 𝒖𝒊
2

𝒙∈𝒳𝑖

+ 𝒙− 𝒖𝒊
2

𝒙∈ℒ𝑖

∗ 𝐴𝐷𝐶𝑖 ∗ 𝐸𝑛𝑡𝑖

𝐾

𝑖=1

 where

 𝑢𝑖 is the centroid of cluster 𝑖
 ℒ𝑖 is the set of all labeled point in cluster 𝑖
 𝐴𝐷𝐶𝑖 is the aggregated dissimilarity count of cluster 𝑖
 𝐸𝑛𝑡𝑖 is the entropy of cluster 𝑖

2. Create a model 𝑀𝑡 ∈ 𝑀 which contains summary of statistics for each created cluster in 1.

The statistics for each cluster 𝑀𝑖
𝑡 include:

𝑁 : the total number of points

𝐿𝑡 : the total number of labeled points

𝐿𝑝 𝑐 𝑐=1
𝐶 : a vector with the total number labeled points in each class

𝒖 : the centroid of the cluster

𝑆𝑢𝑚 𝑟 𝑟=1
𝑑 : a vector containing the sum of each dimension 𝑟 ∈ 𝑑 of all cluster data

 If clusters in 𝑀𝑡 contain a new class not in clusters in 𝑀𝑗 ∈ 𝑀 where 𝑗 = 1,… ,𝑚

 Do for 𝑗 = 1,… ,𝑚

 3. Merge the closest two clusters having the same majority class in 𝑀𝑗

 4. Injecting cluster 𝑀𝑖
𝑡 containing new class 𝑐 into 𝑀𝑗with probability 𝜌.

 End

 End If

 5. Test each model 𝑀𝑗 ∈ 𝑀 and 𝑀𝑡 on the labeled data in 𝐷𝑡 and obtain its accuracy

 6. 𝑀 ← best 𝑚 models in 𝑀 ∪ {𝑀𝑡} based on accuracy

7. For all unlabeled data, 𝐷𝑡{𝒙; 𝑦 = 𝜙}, find the 𝑄 nearest labeled clusters in 𝑀 by computing

the distance between the point and the centroid of the cluster.

8. Calculate the normalized frequency of each of the Q nearest clusters,
𝐿𝑝[𝑐]

𝐿𝑡

9. Sum the normalized frequencies of the Q nearest clusters and assign the data point the class

label of the highest cumulative normalized frequency.

End

Figure 3.3. SmSCluster psuedocode

31

3.4 Relational K-means Transfer Semi-Supervised Support Vector Machine

Zhang et. al. [62] identify four types of data in nonstationary streams involving

mixed labeled and unlabeled data: labeled data (Type I) and unlabeled data (Type III)

from the same distributions as the next-to-arrive batch of data; and labeled (Type II) and

unlabeled (Type IV) data from similar distributions as the next-to-arrive data batch.

Zhang et. al. propose a Transfer Semi-Supervised Support Vector Machine (TS
3
VM)

model to learn data types I, II, and III and a relational k-means (RK) based model to learn

Type IV data. They proceed to combine the two models together producing RK-TS
3
VM

for learning from nonstationary streaming data with labeled and unlabeled instances.

The TS
3
VM model is formulated by incrementally incorporating type I, II, and III

data. Learning from type I data, 𝑇1 = {(𝒙𝑖, 𝑦𝑖)|𝒙𝑖 ∈ ℝ
𝑑 , 𝑦𝑖 ∈ {−1,1}}

𝑖=1

𝐿1
, where 𝒙𝑖 and 𝑦𝑖

are the feature vector and class label, respectively, of the 𝑖𝑡ℎinstance in a 𝑑 dimensional

set of 𝐿1 instances, is achieved by training a generic semi-supervised support vector

machine (SVM) model where the margin is maximized between classes and the

misclassification rates are minimized given in Equation 3.1:

 𝑚𝑖𝑛𝜃
1

2
 𝒘 2 + 𝐶 𝐻(𝑦𝑖𝑓𝜃(𝒙𝑖))

𝐿1
𝑖=1 (3.1)

where 𝑤 is the projection direction, 𝐶 is the penalty of instances inside the margin,

𝐻(𝑡) = 𝑚𝑎𝑥(0, 1 − 𝑡) is the hinge loss function, the function 𝑓𝜃(𝑥) = (𝑤𝑥 + 𝑏),

𝜃 = (𝑤, 𝑏) is the classification boundary.

To incorporate type II data, 𝑇2 = {(𝒙𝑖 , 𝑦𝑖)|𝒙𝑖 ∈ ℝ
𝑑 , 𝑦𝑖 ∈ {−1,1}}

𝑖=𝐿1+1

𝐿2
, where 𝐿2

indicates the number of type two instances, into the SVM model a multitask learning

approach is taken. In multi-task learning two objectives are optimized simultaneously,

32

but are controlled by weights; a greater weight indicates preference in task optimization.

For this two task problem, labeled data from both same and similar distributions, the

multi-task learning objective is given in Equation 3.2:

 𝑚𝑖𝑛𝜃
1

2
 𝒘 2 + 𝐶1 𝒗1

2 + 𝐶2 𝒗2
2 + 𝐶 𝐻(𝑦𝑖𝑓𝜃(𝒙𝑖))

𝐿2
𝑖=1 (3.2)

Where 𝐶1 and 𝐶2 are the weights controlling task preference, 𝑣1 and 𝑣2 are discrepancies

between the global optimal decision boundary 𝑤 and the decision boundary for each local

task, 𝑓𝜃(𝑥) = (𝒘 + 𝒗1)𝒙𝑖 + 𝒃 for 1 ≤ 𝑖 ≤ 𝐿1 and 𝑓𝜃(𝑥) = (𝒘 + 𝒗2)𝒙𝑖 + 𝒃 for 𝐿1 + 1 ≤

𝑖 ≤ 𝐿2, and 𝜃 = (𝒘, 𝒗1, 𝒗2, 𝒃).

 When incorporating type III data, 𝑇3 = {(𝒙𝑖)|𝒙𝑖 ∈ ℝ
𝑑}𝑖=𝐿2+1
𝑈 , the SVM must

consider unlabeled data, which is accomplished by modifying the hinge loss function to

be a symmetric hinge loss function [63]. A symmetric hinge loss function simply requires

the absolute value of the data be taken since no class information is available and

instances be penalized for residing inside the margin. The updated semi-supervised SVM

is shown in Equation 3.3:

 𝑚𝑖𝑛𝜃

1

2
 𝒘 2 + 𝐶1 𝑣1

2 + 𝐶2 𝑣2
2 +

𝐶 𝐻(𝑦𝑖𝑓𝜃(𝒙𝑖)) + 𝐶
∗ 𝐻(|𝑓𝜃(𝒙𝑖)|)

𝑈
𝑖=𝐿2+1

𝐿2
𝑖=1

 (3.3)

Where 𝐶∗ is the penalty of unlabeled instance residing inside the margin, 𝜃 =

(𝒘, 𝒗1, 𝒗2, 𝒃), and 𝑓𝜃(𝑥𝑖) = (𝒘 + 𝒗1)𝒙𝑖 + 𝒃 for 1 ≤ 𝑖 ≤ 𝐿1, 𝑓𝜃(𝑥𝑖) = (𝒘 + 𝒗2)𝒙𝑖 + 𝒃

for 𝐿1 + 1 ≤ 𝑖 ≤ 𝐿2, 𝑓𝜃(𝑥) = 𝒘𝒙𝑖 + 𝒃 for 𝐿2 + 1 ≤ 𝑖 ≤ 𝐿 + 𝑈, 𝐿 = 𝐿1 + 𝐿2 and U is the

number of unlabeled instances. When working with the unlabeled data, there is a

possibility that all unlabeled instances are assigned to one class with a very large margin,

often this is an error and leads to poor performance. To rectify this potential problem, the

author adds a balance constraint to Equation 3.3 stating the objective function is to be

33

minimized such that
1

𝑈
 𝑓𝜃(𝒙𝑖)
𝑈
𝑖=𝐿2+1

=
1

𝐿2
 𝑦𝑖
𝐿2
𝑖=1 . This additional balance constraint

estimates the class ratios from the labeled data in 𝑇1 and 𝑇2.

 The author has incorporated data types I – III into the TS
3
VM model, however

type IV data become much more difficult since they are unlabeled data from a different

distribution than the target domain. To overcome this difficulty a relational k-means

clustering model (RK) is devised. The Type IV data are grouped into clusters using k-

means clustering algorithm then the similarity between each cluster center and Type I

data is calculated using a Euclidean distance.

The combined models result in the RK-TS
3
VM algorithm which works as

follows. When a new batch of data arrives identify the four types of data according to the

labeled rate and the concept drift probability (both provided by user). The author assumes

Type I and III data are the calculated percentage of instances located at the tail of the

batch (most recent data generated) and Type II and IV are at the remaining instances at

the head of the batch (oldest data in batch). Using the RK model, cluster centers of Type

IV data are obtained. For each Type I, II, and III instances cluster center attributes are

added by taking the inner product of the cluster centroid’s features with the instances

features. The new instances generated from the inner product are then used to construct

the TS
3
VM model - this model is used for prediction.

3.5 The Ensemble Classifier and Clusters Model

Zhang et. al. [64] propose The Ensemble Classifier and Clusters Model, which is

able to learn nonstationary streaming concepts from batches that do not provide labeled

data in all time steps; however, the algorithm does require labeled data periodically to

34

properly update the ensemble. The ensemble maintains 𝑛 base models for which the

model may be a classifier or a cluster depending whether the most recent batch contains

labeled data. The ensemble contains 𝑎 classifier models, 𝜆1, … , 𝜆𝑎, and 𝑏 cluster models,

𝜆𝑎+1, … , 𝜆𝑛; 𝑎 + 𝑏 = 𝑛. The objective of the ensemble 𝐸 is to provide a class label,

𝑦 ∈ 𝑌 = {𝑐1,… 𝑐𝑟}, to a yet-to-arrive instance, 𝑥 ∈ ℝ𝑑, were 𝑑 is dimensionality of data

and 𝑟 is the total number of classes. The ensemble objective is simply defined as

 𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌𝑃(𝑦|𝑥, 𝐸) (3.4)

When working with ensembles, the classification of an instance is often the

weighted vote of all models in the ensemble, so the posterior probability would usually

be defined as:

 𝑃(𝑦|𝑥, 𝐸) = 𝑤𝑖𝑃(𝑦|𝑥, 𝜆
𝑖)𝑛

𝑖=1 (3.5)

where 𝑤𝑖 is the weight of the 𝑖𝑡ℎ model in the ensemble. However, when relying on

clusters as some ensemble models, there is no true class information available – only

group (cluster) identifiers, 𝑔. To incorporate the clusters into the ensemble model, the

posterior probability is estimated by integrating the class mappings together for each

cluster such that the weighted ensemble posterior probability is better defined by:

 𝑃(𝑦|𝑥, 𝐸) =
 𝑤𝑖𝑃(𝑦|𝑥, 𝜆

𝑖)𝑎
𝑖=1 +

 𝑤𝑗𝑃(𝑦|𝑔𝑘
𝑗
)𝑃(𝑔𝑘

𝑗
|𝑥, 𝜆𝑗)𝑟

𝑘=1
𝑛
𝑗=𝑎+1

 (3.6)

The difficulty with calculating this ensemble posterior probability is 𝑃(𝑔𝑘
𝑗
|𝑥, 𝜆𝑗)

must be estimated and the weights cannot be determined through common performance

metrics on the most recent batch of data since often the data are unlabeled. To overcome

these problems the authors use a graph, 𝐺 = (𝑉, 𝐸), in which the vertices, 𝑉, represent

the cluster center of each model (classifier and cluster models alike), and the edges, 𝐸,

35

represent the similarity between the vertexes. The graph is used to propagate labels (and

therefore estimate cluster posteriors), and define ensemble weights using the edges to

develop a similarity metric.

When the incoming batch of data is received, the algorithm treats it as if the batch

is unlabeled and creates 𝑣 groups {𝑔1
𝑛+1, … , 𝑔𝑣

𝑛+1}. If the batch of data is labeled, the

class labels are assigned to the recently constructed 𝑣 groups and a classifier, 𝜆𝑛+1 is

constructed. The graph is then updated, adding the 𝑣 new groups as vertexes, and

removing old vertexes {𝑔1
1, … , 𝑔𝑣

1}. The class label of each unlabeled group in the model

is estimated using label propagation from the labeled groups to the unlabeled groups and

the weights are determined using the following similarity metric:

 𝑤𝑖 =
1

𝑍
∗

1

‖𝜆𝑖−𝜆𝑛‖
2 (3.7)

where 𝑍 =
1

‖𝜆𝑖−𝜆𝑛‖
2

𝑛
𝑖=1 serves as a regularizing term.

The ensemble can then be constructed and the weighted average of all the models is used

to classify the incoming data.

3.6 Arbitrary Sub-Population Tracker Algorithm (APT)

Krempl proposes APT, the Arbitrary Sub-Population Tracker algorithm [65],

which is the only algorithm we have discovered that attempts to address the same

extreme verification latency issues as our COMPOSE Framework. Before discussing the

mechanics of APT, let us outline the assumptions the APT model makes about the

environment, where 𝑃(𝑋) represents the feature distribution, 𝑃(𝑍) represents the

36

component prior distribution (i.e. mixing proportions), and 𝑃(𝑌) represents the

distribution of class labels:

a) the underlying population of the feature space consists of several sub-

populations that evolve differently over time;

b) the data generated from this feature space can be represented with a mixture

model of several components that drift over time;

c) each sub-population of the feature space must be represented by labeled data

at initialization, where a sub-population is defined as a mode in the class

conditional distribution 𝑃(𝑌|𝑋) (i.e., a bimodal class distribution would

consist of two separate subpopulations to be tracked within a single class);

d) furthermore every instance must be labeled at initialization;

e) the drift must be gradual and “systematic”, meaning it can be represented as a

piecewise linear function;

f) the drift only affects the conditional feature distributions 𝑃(𝑋|𝑍);

g) so the conditional posterior distributions, 𝑃(𝑌|𝑍), remains fixed (i.e. a

component’s class label cannot change);

h) and the prior distribution of components, 𝑃(𝑍), is static (or changes very

gradually if model is relaxed as discussed below);

i) the posterior distribution is independent of the (latent) component

membership, 𝑃(𝑌|𝑍) = 𝑃(𝑌|𝑍, 𝑋)

j) covariance of each component remains constant

Since the author does not assume the conditional feature distributions of the components,

𝑃(𝑋|𝑍), to be Gaussian or any other parametric distribution, he uses a kernel estimator, a

37

non-parametric approach, to represent density distributions. A kernel estimator uses M

samples, 𝑋 = {𝑥1, … , 𝑥𝑀}, to model the density distribution, 𝑓(𝑥), underlying a sample,

𝑥. The standard kernel estimator is given in Equation 3.8 and works with several different

kernel functions, 𝐾𝑋(𝑥 − 𝑥𝑚) (e.g. radial basis, polynomial, Gaussian, etc.). Krempl

presents his paper using the common choice of the Gaussian kernel; however, any kernel

function will work. The generic D-dimensional Gaussian Kernel is given in Equation 3.9.

 𝑓(𝑥) =
1

𝑀
 𝐾𝑋(𝑥 − 𝑥𝑚)
𝑀
𝑚=1 (3.8)

 𝐾𝑋(𝑥 − 𝑥𝑚) = (2𝜋)
−
𝐷

2 |𝛴−1|
1

2 𝑒𝑥𝑝 {−
1

2
(𝑥 − 𝑥𝑚)

𝑇𝛴−1(𝑥 − 𝑥𝑚)} (3.9)

where 𝛴, is the covariance or generally referred to as the bandwidth of a kernel function.

Krempl takes this standard kernel estimator and makes some minor changes to better fit

the APT model to the nonstationary learning environment. Equation 3.10 shows a the

adjusted kernel estimator function accounting for different time steps and a modified

Gaussian kernel, 𝑔𝑚(𝑥, 𝑡), is presented in equation 3.11.

 𝑓(𝑥, 𝑡) =
1

𝑀
 𝑔𝑚(𝑥, 𝑡)
𝑀
𝑚=1 (3.10)

 𝑔𝑚(𝑥, 𝑡) = (2𝜋)−
𝐷

2 |𝛴𝑧𝑚
−1|

1

2 𝑒𝑥𝑝 {−
1

2
𝑑𝑚
𝑇 𝛴𝑧𝑚

−1𝑑𝑚} (3.11)

Where 𝛴𝑧𝑚 allows there to be a different bandwidth matrix (covariance) for each

component 𝑧, and 𝑑𝑚 = 𝑥 − 𝑥̃𝑚(𝑡) is the difference between position 𝑥 where the

density is being evaluated and the estimated position 𝑥̃𝑚 of the 𝑚𝑡ℎ component and time

𝑡. The estimated position is calculated in Equation 3.12 as

 𝑥̃𝑚(𝑡) = 𝑥𝑚 + (𝑡 − 𝑡𝑚) ∗ 𝜇𝑧𝑚
∆ (3.12)

where 𝜇𝑧𝑚
∆ defines the component movement vector of the 𝑚𝑡ℎ component center. At

initialization the initial cluster position is indicated by 𝜇𝑧𝑚
0 .

38

The mechanics of APT are simple: incoming data are classified through a two-

step procedure: i) use of expectation maximization to determine the optimal one-to-one

assignment between the most recent batch of unlabeled data and the previous batch, now

considered drift-adjusted labeled data; then ii) update the classifier to reflect the

population parameters of newly received data and the drift parameters relating the

previous time step to the current one.

Following assumption h, stating 𝑃(𝑍) remains static, we are faced with a problem

of creating a one-to-one mapping of an instance in time step 𝑡 to an instance in time step

𝑡 + 1. When given a set of 𝑀 known examples (exemplars), and a set of 𝑁 new

observations at positions 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} and at times 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑁}, this

problem corresponds to the following likelihood maximization problem

𝐿(𝛩; 𝑋, 𝑇) =∏∏𝑔𝑚(𝑥𝑛, 𝑡𝑛)
𝑧𝑛𝑚

𝑀

𝑚=1

𝑁

𝑛=1

where 𝛩 = {𝜇1
0, … , 𝜇𝐾

0 , 𝜇1
𝛥, … , 𝜇𝐾

𝛥} and 𝑧𝑛𝑚 is the observation-exemplar correspondence:

𝑧𝑛𝑚 = {
1 𝑖𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟 𝑚
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The bandwidth matrices 𝛴𝑧𝑚 used are determined at initialization and assumed to remain

constant.

To solve this likelihood maximization problem Krempl turns to a very standard

approach of expectation maximization [21] which is formulated as:

𝑚𝑎𝑥 𝑙(𝛩; 𝑋, 𝑇) = 𝑧𝑛𝑚(−2𝑑𝑛𝑚𝛴𝑧𝑚𝑑𝑛𝑚)

𝑀

𝑚=1

𝑁

𝑛=1

subject to

39

 𝑧𝑛𝑚 = 1

𝑁

𝑛=1

 ∀𝑚 ∈ 1,2, … ,𝑀

 𝑧𝑛𝑚 = 1

𝑀

𝑚=1

 ∀𝑛 ∈ 1,2, … ,𝑁

𝑀 = 𝑁

𝑧𝑛𝑚 ∈ {0,1}

Establishing a one-to-one relationship while identifying drift requires an

impractical assumption that the number of instances remains constant throughout all time

steps. Krempl relaxes this assumption by establishing a relationship in a batch method –

matching a random subset of exemplars to a subset of new observation until all new

observations have been assigned a relationship to an exemplar. Krempl suggests a

bootstrap method that can make the one-to-one assignments more robust, but at

additional computational cost.

40

Chapter 4

The COMPOSE Framework

This chapter introduces COMPOSE – a framework utilizing semi-supervised

learning to track data in nonstationary environments experiencing verification latency.

The term framework is used since COMPOSE accomplishes its objectives using a

combination of two modular components: any semi-supervised learning algorithm; and a

class boundary estimator paired with its compaction technique. The chapter presents the

algorithm’s evolution through each revision accompanied by pseudocode, and detailed

descriptions of each stage of the algorithm – constructing class boundaries, compacting

these boundaries, and extracting relevant samples.

4.1 Fundamental Premise of the COMPOSE Framework

COMPOSE is intended for learning from gradually drifting distributions

generated by nonstationary environments that produce streaming data with no labels.

Gradual drift is often considered more challenging to detect than abrupt change, as the

data distribution 𝑝𝑡(𝒙) at time 𝑡 and 𝑝𝑡+1(𝒙) at time 𝑡 + 1 may have significant overlap,

which makes distinguishing (detecting change between) the two difficult. COMPOSE

turns this difficulty into an opportunity and takes advantage of the overlapping nature of

incrementally changing distributions at consecutive time steps. The entire COMPOSE

process is presented in a block diagram with accompanying illustrations in Figure 4.1.

At 𝑡 = 0, COMPOSE is provided with (possibly very few) labeled data, depicted

by opposing classes of (red) squares and (blue) circles (Figure 4.1a), and relatively

abundant unlabeled data, represented by (black) diamonds (Figure 4.1b). At all other

41

Figure 4.1. Graphical representation of COMPOSE stages

time steps 𝑡 > 0, COMPOSE receives only unlabeled data. A semi-supervised learning

algorithm is trained with the labeled and unlabeled data, to label the currently unlabeled

instances, as indicated with change of color and shape in Figure 4.1c. COMPOSE

creates a boundary object from the current data, defining a tight envelope representing the

distribution of each class. Class boundaries are represented by solid outlines, enveloping

shaded regions in Figure 4.1d. The boundary object of each class is compacted (i.e.,

shrunk) by a specified percentage, the compaction percentage, to determine the core

support region of each distribution as shown by the darker shaded region with dashed

outline in Figure 4.1e. Instances drawn from the core support region of the current

distribution 𝑝𝑡(𝒙), shown as non-faded instances of Figure 4.1f, are the most likely

candidates to represent data drawn from the next distribution 𝑝𝑡+1(𝒙) that may have

experienced translational, rotational, or volumetric (i.e. expansion/contraction) drift. The

final step of one iteration of COMPOSE extracts (now labeled) instances from the core

support region(s) to be used as labeled data in the near future – these instances are

referred to as the core supports of that class (Figure 4.1f). It is possible to have multiple

42

core support regions for any class. When new unlabeled data are received, they are

combined with the core supports to retrain a semi-supervised learning algorithm to adapt

to the drifting (nonstationary) environment, as COMPOSE iteratively updates itself. The

progression of a single class distribution over a series of time steps is illustrated in Figure

4.2, experiencing translational (Figure 4.2a), rotational (Figure 4.2b), and volumetric

(Figure 4.2c) drift. In each case, the core support region from the previous time step

(boundaries indicated with dashed lines) indicate an area from which relevant instances

can be extracted to label the next time step, 𝑡. It is important to emphasize that – unlike

other semi-supervised learning algorithms used in nonstationary settings – all future

labeled data are “earned” (generated) by COMPOSE through core support extraction, and

not paid for, purchased or requested from the user.

Figure 4.2. How COMPOSE accounts for various drift types

Examples of (a) translational, (b) rotational, and (c)

volumetric drift showing the core support region of previous

time step provides an optimal area to draw instances from to

train current data.

4.2 Evolution of the COMPOSE Framework

COMPOSE’s fundamental principles, presented in the previous section, have

remained consistent through its several minor revisions and one major revision presented

43

in Table 4.1. Each of the minor revisions has increased the accuracy of the framework

while decreasing the computational complexity and the major revision involved a name

change to include more class boundary estimation techniques.

Table 4.1.

Evolution of COMPOSE framework

Version 1.0 Any SSL algorithm, α-shape class boundary estimation, skeleton

method compaction (limited to two dimensions)

Version 1.1 Any SSL algorithm, α-shape class boundary estimation, “FFT

erosion” compaction of class boundary to relax

Version 1.2 Any SSL algorithm, α-shape class boundary estimation, layer

lookup table compaction of α-shape

Version 2.0 Any SSL algorithm, any class boundary estimation, compaction

matched to boundary estimation technique (framework renamed)

At conception, and throughout Version 1.x, COMPOSE stood for COMpacted

POlytope Sample Extraction. The terms “sample extraction” and “compacted” are easily

diagramed in Figure 4.1 of the previous section; however, the term “polytope” is not

adequately discussed. Quite simply, a polytope is a multi-dimensional geometric shape

with flat sides (e.g., a polygon is a two dimensional polytope). This term is often used

when discussing α-shapes, the class boundary estimation method used in Version 1.x. α-

shapes are explained in detail in Section 4.4, and the progression of compaction methods

for Version 1.x are presented in Section 4.5.

Version 2.x of the framework has changed the name to COMPacted Object

Sample Extraction (but retaining the same acronym) to encompass alternative methods

for generating class boundaries. Experiments have been conducted to prove alternative

44

methods exist to generate compactable class boundaries, but they are outside the scope of

this thesis and are only described briefly as future work in Chapter 6.

4.3 Algorithm Description

Conventional semi-supervised algorithms, used in stationary environments,

require sufficient amount of labeled as well as unlabeled data. In a nonstationary

environment experiencing verification latency (as described in Section 2.3), not only are

future labeled data rare or nonexistent, data also drift, preventing conventional semi-

supervised algorithms from learning in such a setting. COMPOSE is designed to address

this limitation by extracting relevant data, labeled by the semi-supervised learner in the

current time step, to be combined with the next batch of unlabeled data. This important

modification allows semi-supervised learning algorithms to be utilized in nonstationary

environments.

The distribution 𝑝𝑡(𝒙) providing the unlabeled data at time 𝑡 may have drifted

from the distribution 𝑝𝑡−1(𝒙) at time 𝑡 − 1. Consistent with other nonstationary

environment algorithms, we assume limited (gradual) drift, such that the extracted

labeled data overlap the newly received unlabeled data. Therefore, the distribution 𝑝𝑡(𝒙)

must overlap with the distribution 𝑝𝑡−1(𝒙). This minimum overlap requirement can be

formally written as {𝒙: 𝑝𝑡−1(𝑋 = 𝒙|𝑌) > 0 ∩ 𝑝𝑡(𝑋 = 𝒙|𝑌) > 0} ≠ ∅ . Of course, as the

amount of overlap between distributions of subsequent time steps increase, the ability and

performance of COMPOSE in tracking the nonstationary distribution is improved. The

remainder of this section uses version 1.2 of the COMPOSE framework to explain in

detail how COMPOSE i) creates 𝛼-shapes from the data; ii) compacts (shrinks) the 𝛼-

45

shapes to create core regions; and iii) extracts core supports from the compacted 𝛼-shapes

to serve as labeled data for future time steps. The outline of the algorithm is listed in the

pseudocode in Figure 4.3.

The algorithm has three inputs: i) BaseClassifier, which can be any semi-

supervised learning algorithm, for classifying unlabeled data at each time step, 𝑡; ii) 𝛼,

specifying the level of detail of the 𝛼-shape boundary object; and iii) 𝐶𝑃, the compaction

percentage. The algorithm is initialized at 𝑡 = 0 with a set of labeled data, ℒ0 = {𝒙𝑙
𝑡 ∈

𝑋}, and corresponding labels, 𝒴0 = 𝑦𝑙
𝑡 ∈ 𝑌 = {1,… , 𝐶} , 𝑙 = 1, … ,𝑀 where 𝑀 is the

total number of labeled instances and 𝐶 is the total number of classes (step 1 in Figure

4.3). At each subsequent time step 𝑡, new unlabeled data 𝒰𝑡 = {𝑥𝑢
𝑡 ∈ 𝑋} are received,

𝑢 = 1,… ,𝑁 where 𝑁 is the total number of unlabeled instances (step 2). Both labeled and

unlabeled data are passed to BaseClassifier to generate a hypothesis ℎ𝑡: 𝑋 → 𝑌. A

combined dataset 𝔇𝑡 is constructed by merging ℒ𝑡 and 𝒰𝑡, where class labels for 𝒰𝑡 are

provided by ℎ𝑡 (step 3). With labels for all instances of 𝔇𝑡 now available, COMPOSE

then extracts core supports for each class, selected from the core support region of the

current distribution (steps 4 – 7). The underlying premise here is that the core support

region of the data at the current time step – compared to any other time step – is most

likely to have maximum overlap with the drifted distribution in the next time step,

regardless of the nature of drift. Therefore, these core supports can be used to serve as

labeled data for the next time step’s SSL classifier. Specifically, the labeled dataset for

the next time step (ℒ𝑡+1, 𝒴𝑡+1) is first initialized as an empty set (step 4). For each class,

𝑐 = 1,… , 𝐶 identified by ℎ𝑡; an α-shape class boundary object ℬ𝑐 is constructed using the

method described in Section 4.4 (denoted as function 𝑓(∎) in step 5). The class boundary

46

object ℬ𝑐 is then compacted (i.e., shrunk) using the method described in Section 4.5 to

produce the core support region ℬ𝑐
′ (denoted as function 𝑔(∎) in step 6) such that desired

core supports specified by compaction percentage 𝐶𝑃 are obtained. Then, all instances

that reside in the compacted region ℬ𝑐
′ are extracted as core supports and are retained to

serve as labeled data for the next time step. Core supports obtained from each class are

appended to finalize the labeled data (ℒ𝑡+1, 𝒴𝑡+1) in step 7.

Inputs: SSL algorithm – BaseClassifier; α-shape detail

level – 𝛼; compaction percentage - 𝐶𝑃

1. Receive labeled data

ℒ0 = {𝒙𝑙
𝑡 ∈ 𝑋}, 𝒴0 = {𝑦𝑙

𝑡 ∈ 𝑌 = {1,… , 𝐶}, 𝑙 = 1,… ,𝑀}
Do for 𝑡 = 0,1,…

 2. Receive unlabeled data, 𝒰𝑡 = {𝑥𝑢
𝑡 ∈ 𝑋, 𝑢 = 1,… ,𝑁}

 3. Call BaseClassifer with ℒ𝑡 , 𝒴𝑡 , and 𝒰𝑡

 Obtain ℎ𝑡 : 𝑋 → 𝑌,

 Let 𝔇𝑡 = {(𝒙𝑙
𝑡 , 𝑦𝑙

𝑡): 𝑥 ∈ ℒ𝑡∀𝑙} ∪ {(𝒙𝑢
𝑡 , ℎ𝑢

𝑡): 𝑥 ∈ 𝒰𝑡∀𝑢}

 4. Set ℒ𝑡+1 = ∅, 𝒴𝑡+1 = ∅

 Do for each class 𝑐 = 1,… , 𝐶

 5. Construct α-shape boundary, ℬ𝑐 = 𝑓(𝛼,𝔇𝑐
𝑡)

 Do Until number of core supports 𝐶𝑆𝑐 = 𝐶𝑃 ∗ 𝔇𝑐
𝑡

6. Compact α-shape boundary, ℬ𝑐
′ = 𝑔(ℬ𝑐)

 End

 7. Extract core supports, 𝐶𝑆𝑐 = {𝑥: 𝑥 ∈ ℬ𝑐
′ } ∪ 𝔇𝑐

𝑡 , and

add to labeled data for next time step

ℒ𝑡+1 = ℒ𝑡+1 ∪ 𝐶𝑆𝑐
 𝒴𝑡+1 = 𝒴𝑡+1 ∪ {𝑦𝑢 : 𝑢 ∈ |𝐶𝑆𝑐 | , 𝑦 = 𝑐}
 End

End

Figure 4.3. COMPOSE pseudocode

47

4.4 𝜶-Shape Construction

In this section, we present the terminology used when discussing 𝛼-shapes and

their construction, explore how 𝛼-shapes are affected by changing the 𝛼 parameter, and

explain how to construct an 𝛼-shape from data.

4.4.1 Terminology. We first introduce the basic terminology used within the

context of constructing 𝛼 shapes. A 𝑑–simplex, or simply a simplex throughout this

thesis, is the convex hull of 𝑑 + 1 vertices, connected via edges, where 𝑑 is the

dimensionality of the data. Examples of low dimensionality simplexes are provided in

Figure 4.4: a 2-simplex is a triangle defined by three vertices; and a 3-simplex is a

tetrahedron defined by four vertices. Each 𝑑– simplex is constructed from multiple

(𝑑 − 1)-simplexes, called faces (e.g., each face of a triangle is a line; each face of a

tetrahedron is a triangle). The circumsphere of a simplex is the hyper-sphere uniquely

defined by the vertices of a simplex (e.g., a circle is defined by the three vertices of the

triangle it circumscribes; a sphere is defined by the four vertices of the tetrahedron it

circumscribes).

48

Figure 4.4. Examples of simplexes

A d-simplex resides in dimensionality, d, has d+1 vertices and d+1 faces. A single face of

each simplex is show in red.

4.4.2 Effect of 𝜶 parameter on 𝜶-shape. An α-shape is a set of connected

faces creating a hull that describes a finite set of points at a specified level of detail,

defined by the free parameter 𝛼 > 0. For a sufficiently large 𝛼, the resultant α-shape is

the convex hull of the points. As α decreases, the α-shape may become concave, form

holes, or include completely disconnected regions. These three aspects of α-shapes make

them attractive for machine learning as they can properly represent voids and nested

classes that many algorithms utilizing convex hulls or other simpler methods (such as

calculating the centroid of a distribution) cannot. Figure 4.5 demonstrates how α changes

the representation of a data set in an 𝛼-shape. Figure 4.5a shows a large 𝛼 resulting in the

convex hull of the (blue) diamonds including a large region void of data, as well as an

 2-Simplex 3-Simplex

 Dimensionality: 2 Dimensionality: 3

 Total Edges/Faces: 3 Total Edges/Faces: 4

 Face Shape: Line Face Shape: Triangle

 Vertices: 3 Vertices: 4

49

opposing class of (red) circles. As 𝛼 decreases in Figure 4.5b-d, the true feature space

from which the set of diamonds was sampled becomes more apparent – the letter P.

However, if 𝛼 is chosen too small, as in Figure 4.5e, the α-shape becomes a group of

disconnected regions, which is undesirable. The 𝛼 parameter can be chosen heuristically,

based on prior knowledge or experience, or based on sample density as proposed by

Teichmann and Capps in [66].

 (a) (b) (c) (d) (e)

Figure 4.5. Effects of varying 𝛼 parameter

The shaded region demonstrates an α-shape constructed on the set of blue diamonds at

different levels of detail specified by α, decreasing from (a) to (e).

4.4.3 𝜶-Shape construction. The pseudocode of the α-shape construction

function is given in Figure 4.6, whose inputs are i) the 𝛼 parameter specifying the desired

level of detail, and ii) single-class data 𝔇 (as labeled by the semi-supervised learner in

the previous step of the algorithm). α-shape construction begins with a Delaunay

tessellation of 𝔇 (step 1 in Figure 4.6). Delaunay tessellations are an extension of

Delaunay triangulations into higher dimensions. Delaunay tessellations nest simplexes

such that no point in the set may lie inside the circumsphere of any simplex in the

tessellation. The union of all the simplexes in the tessellation produces the convex hull of

50

Input: α-shape probing radius – 𝛼; Data features – 𝔇

1. Construct Delaunay tessellation of data, 𝑇 = 𝑄(𝔇)

2. Initialize 𝛼-shape as Delaunay tessellation ℬ = 𝑇

Do for each face, ℱ ∈ 𝑇

 3. Find simplexes, 𝑠1 and 𝑠2 ∈ 𝑇, that share ℱ

 4. Find radii of circumspheres, 𝜇 = 𝑟(∎)
 If ℱ is an edge of 𝑇

 Radius of simplex, 𝜇1 = 𝑟(𝑠1)

 Denote as boundary, 𝜇2 = 𝐼𝑛𝑓

 Else

 𝜇1 = min 𝑟(𝑠1), 𝑟(𝑠2)
 𝜇2 = max 𝑟(𝑠1), 𝑟(𝑠2)
 End If

 5. Categorize ℱ and update ℬ accordingly

 Case 1: 𝛼 > 𝜇2 ℱ is interior

 Case 2: 𝜇1 < 𝛼 < 𝜇2 ℱ is regular, ℬ = ℬ\{𝑠2}

 Case 3: 𝛼 < 𝜇1 ℱ is singular, ℬ = ℬ\{𝑠1, 𝑠2}

End

Figure 4.6. α-Shape construction psuedocode

the set. To demonstrate this process pictorially, an example of a two-dimensional

Delaunay triangulation is provided in Figure 4.7. The data provided, 𝔇, is shown in

Figure 4.7a. Figure 4.7b demonstrates a possible simplex (triangle) constructed from the

data; however, this is a non-Delaunay simplex since there are two data points (that are not

vertices) residing inside the circle circumscribing the possible simplex. Figure 4.7c

demonstrates another possible simplex on the same data; this time the selection is a

Delaunay simplex because the circle circumscribing the simplex contains no additional

data points. Continuing to select simplexes in this fashion results in the Delaunay

triangulation shown in Figure 4.7c, note there are no data points inside any of the

circumscribing circles.

51

 (a) (b) (c) (d)

Figure 4.7. Delaunay triangulation

Delaunay triangulation requires a dataset (a) and then constructs triangles from the data

such that no other data point resides in the circumsphere of any triangle. An improper

triangle selection is shown in (b) since the two data points with the red X reside inside the

black circle circumscribing the proposed triangle. A proper Delaunay triangle is show in

(c) since no data resides in the circumcircle. The complete Delaunay triangulation is

shown in (d).

There are several algorithms that accomplish Delaunay tessellations; we have

used the Quickhull algorithm [67], denoted as 𝑄(∎) in step 1, for its speed and relative

lower complexity whose upper bound is 𝒪(𝑛⌊(𝑑+1) 2⁄ ⌋), where 𝑛 is the number of points

in the set and 𝑑 is dimensionality, and ⌊∎⌋ is the floor function. It is important to note any

Delaunay tessellation algorithm will work within the COMPOSE algorithm.

Once the convex hull of the data has been defined by the Delaunay tessellation,

we initialize the α-shape, ℬ, to be the convex hull of the data (step 2). Each face, ℱ, is

subsequently analyzed, categorized and, if necessary, certain simplexes containing that

face are removed to produce the final α-shape (steps 3-5). To do so, we first iterate

through every face, and identify the two simplexes, 𝑠1 and 𝑠2, that share ℱ (step 3, and

Figure 4.8). The radii of the circumspheres of each simplex are then calculated by

passing the simplex’s vertices to the circumsphere radius function (denoted 𝑟(∎) in step

4, and described below) - the smaller radius is labeled 𝜇1 and the larger as 𝜇2 (Figure

52

4.8). If ℱ is located at the edge of the tessellation (i.e., it is not shared by a second

simplex), the radius of the (non-existent) second simplex is set to infinity, 𝜇2 = ∞.

Figure 4.8. α-Shape construction simplex comparison

Face ℱ (centered in red) to be classified is shared by

simplex with smaller radius on left (blue) and simplex

with larger radius on right (green)

The simplex passed to the circumsphere radius function is defined by its 𝑑 + 1

non-coplanar vertices (instances) 𝒙𝑝, 𝑝 = 1,… , 𝑑 + 1, each vertex defined by 𝑑 coordinates

(features):

 𝒙𝑝 = {𝑥𝑝1, 𝑥𝑝2, … , 𝑥𝑝𝑑} (4.1)

From the equation for circumcircle of a triangle [68], extended to higher dimensions, the

equation of the circumsphere is:

|

|

 𝑥∎𝑑
2

𝑑 𝑥∎1 𝑥∎2 ⋯ 𝑥∎𝑑 1

 𝑥1𝑑
2

𝑑 𝑥11 𝑥12 ⋯ 𝑥1𝑑 1

 𝑥2𝑑
2

𝑑 𝑥21 𝑥22 ⋯ 𝑥2𝑑 1

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
 𝑥(𝑑+1)𝑑

2
𝑑 𝑥(𝑑+1)1 𝑥(𝑑+1)2 ⋯ 𝑥(𝑑+1)𝑑 1

|

|
= 0, (4.2)

where 𝒙∎ is used to represent any point (instance) on the hypersphere, and 𝑥∎𝑑 is its 𝑑𝑡ℎ

feature. Cofactor expansion of the first row, valid for any point residing on the

hypersphere, produces the equation of a hypersphere in general form:

53

 𝑥∎𝑑
2

𝑑 𝑴11 + (−1)𝑑(𝑥∎𝑑)𝑴1(𝑑+1)𝑑 + 𝑴1(𝑑+2) = 0 (4.3)

where 𝑴𝑖𝑗 represents a matrix minor – the determinant of the matrix after removing row 𝑖

and column 𝑗. The result after completing the square and rearranging the terms is the

standard form of a hypersphere:

 (𝑥∎𝑑 − 𝑥0𝑑)
2

𝑑 = 𝑟2 (4.4)

where

 𝑥0𝑞 = (−1)
𝑞+10.5

𝑀1(𝑞+1)

𝑀11
, 𝑞 = 1,… , 𝑑 (4.5)

 𝑟2 = 𝑥0𝑑𝑑 −
𝑀1(𝑑+2)

𝑀11
 (4.6)

with 𝒙0 and 𝑟 being the center and radius of the hypersphere, respectively.

Once computed, radii of the simplexes are compared to 𝛼 to determine if the face

is interior, regular, or singular (step 5 in Figure 4.6). An interior face, where 𝛼 > 𝜇2, is

completely encapsulated by the final α-shape resulting in both simplexes that share this

face to remain within the α-shape. A regular face, where 𝜇1 < 𝛼 < 𝜇2, defines the

boundary of the α-shape, these faces are shown as dark black faces in Figure 4.9. When

analyzing a regular face, the simplex with the larger radius circumsphere, shown as red

simplexes to the outside of dark black faces in Figure 4.9, is removed from the α-shape.

The simplex with the smaller radius circumsphere remains, and are shown as green

simplexes in Figure 4.9. A singular face, where 𝛼 < 𝜇1, as described by Edelsbrunner

[69], traditionally has two sub-categories: attached and unattached. In either case both

simplexes are removed, however the shared edge remains protruding from the α-shape as

a “spoke” in the attached subcategory. The use of α-shapes in COMPOSE does not

require differentiation between these two subcategories, as the singular-attached case

54

always disappears during the α-shape compaction function described in Section 4.5.

Hence, all singular faces and both simplexes that share the singular face are removed

from the final α-shape. Examples of each type of edge and the resultant α-shape after

simplexes have been removed are shown in Figure 4.9. While an α-shape is traditionally

defined as the union of all regular and singular faces, it suffices for COMPOSE to define

an α-shape to be the union of all simplexes not removed from the Delaunay tessellation.

Figure 4.9. Sample α-shape classifications

Sample α-shape showing simplexes in Delaunay

tessellation and how faces are classified in

relation to placement in an α-shape.

The construction of the α-shape is the most expensive module of the COMPOSE

algorithm, especially with high dimensional data, with the Delaunay tessellation running

in 𝒪(𝑛⌊(𝑑+1) 2⁄ ⌋) and producing 𝒪(𝑛⌊𝑑 2⁄ ⌋) simplexes each containing 𝑑 + 1 faces that

must be compared to 𝛼. We discuss methods to reduce complexity of this portion of the

algorithm in Chapter 6.

55

4.5 α-Shape Compaction

This section highlights the changes in each version of COMPOSE explaining the

reason for the changes and decrease in computational complexity achieved.

4.5.1 Version 1.0 – skeletal offsets. In version 1.0, as described in Table 4.1,

the constructed α-shape was compacted using skeletal offsets – a method used

extensively in image processing and computer aided drawing software to scale enclosed

regions. Offsets are accomplished in two dimensions by translating the vertices of a

polygon along its straight skeleton as described in [70]. The straight skeleton of a

polygon is the combination of all arcs that bisect any two edges. An example of a shape

and its straight skeleton are shown in Figure 4.10. This method of constructing a straight

skeleton in two dimensions has a computational complexity of 𝒪(𝑣2 𝑙𝑜𝑔 𝑣), where 𝑣 is

the number of vertices. This method scales to three dimensions – albeit at great cost – and

has problems when attempting to scale to higher dimensions. For these reasons a new

method for compacting alpha-shapes was explored.

56

Figure 4.10. Skeletal offset

Original shape and its skeleton offset with

sample of interior and exterior offsets. Note for

a sufficiently large offsets, shape information

may be lost (e.g., with a large enough offset the

point at the top center of the shape may no

longer be reflected as being part of the original

shape).

4.5.2 Version 1.1 – fast Fourier transform based erosion. Version 1.0 of

COMPOSE relied on computing the straight skeleton to compact the α-shape. Straight

skeletons work well with two dimensional data; however, the straight skeleton approach

does not easily scale to higher dimensions. Version 1.1 of the COMPOSE framework

utilizes a Fast Fourier Transform (FFT) based image processing technique – erosion – to

compact α-shapes in higher dimensions. As with all image processing, the object being

analyzed must be represented discretely. In our case the continuous feature domain

encapsulated by an α-shape must be discretized. This could be compared to a camera

which captures its surroundings (continuous) and represents them by an image with

discrete pixels. Forming a discrete representation of the α-shape constructed in

57

continuous space is accomplished using the α-shape discretizing function described in

Figure 4.11.

Input: α-shape – ℬ; Resolution – 𝓇

Do for each 𝑑 ∈ ℬ

 1. 𝒱𝑑 = minℬ𝑑 , … ,
𝑘(min ℬ𝑑+max ℬ𝑑)

𝓇+1
, … , maxℬ𝑑

∀𝑘 = 2,… ,𝓇 − 1
End

2. Construct lattice, 𝑳 ∈ ℝ𝑑+1, from all permutations of

points in 𝒱. 𝑳0 is binary indicator initialized to 𝟎.
Do for each simplex, 𝑠 ∈ ℬ

 Do for each point, 𝑃 ∈ 𝑳

 3. Determine if 𝑃 resides inside 𝑠 using Barycentric

coordinate function, 𝜆 = 𝑏(𝑠, 𝑃)

 If 𝝀 ≥ 𝟎

 𝑳0,𝑃 = 1 and record simplex that contained it

 End

 End

End

Figure 4.11. α-Shape discretizing function pseudocode

The inputs to the discretizing function are the continuous valued α-shape ℬ (specifically,

the coordinates of simplex vertices); and the starting resolution, 𝓇, dictating how many

points are used in each dimension to represent the α-shape discretely. For each dimension

of the α-shape (example shown in Figure 4.12a), a vector, 𝒱, with 𝓇 equally spaced

points between the minimum and maximum coordinates is constructed (step 1 of Figure

4.11 and depicted in Figure 4.12b). A lattice, denoted by tensor 𝑳, is constructed in

ℝ𝑑+1space using all permutations of coordinates in the aforementioned vectors, 𝒱𝑑, and

reserving 𝑳0 as a binary indicator representing whether the point specified by coordinates

58

𝑳1,…,𝑑 resides inside or outside the α-shape. Initially the indicator value in 𝑳0 for each

point is set equal to zero indicating that the point resides outside the α-shape.

Transforming the lattice into an accurate description of the α-shape is accomplished by

using Barycentric coordinates to determine if each lattice point resides inside any simplex

in the α-shape. Data points that reside inside the simplex are represented by yellow dots

in Figure 4.12c and the corresponding 𝑳 tensor is shown in Figure 4.12d overlaying the

simplex and grid.

 (a) (b) (c) (d)

Figure 4.12. Discretizing an α-shape

The α-shape in (a) is discretized by overlaying a uniformly spaced grid as shown in (b)

then determining the Barycentric coordinates of each point with regard to each simplex

and marking any data point that resides within a simplex. These points are indicated by

yellow dots in (c) and the corresponding 𝑳 tensor is shown in (d) overlaying the α-shape

and grid of discrete points.

Barycentric coordinates are often used to determine the center of mass of an

object, but can also be used to determine if a point in the lattice resides in at least one

simplex of the α-shape. Barycentric coordinates represent a point as the weighted sum of

the vertices defining a simplex: if all weights are positive (or one weight is equal to zero)

the point resides inside (or on) the simplex. The inside simplex test function using

Barycentric coordinates (denoted as function b(∎) in step 3 of Figure 4.11) requires the

coordinates of i) the point being tested, 𝑳1,…,𝑑 and ii) the vertices of the simplex, 𝑠, being

59

evaluated. Using similar notation as Equation 4.1, let 𝑷𝟎 be a column vector representing

the test point and 𝑷𝟏 through 𝑷𝑵 be column vectors representing the vertices of the

simplex. The test point can be described as weighted components of the vertices:

𝑥01 = 𝜆1𝑥11 + 𝜆2𝑥21 +⋯+ 𝜆𝑁𝑥𝑁1

𝑥02 = 𝜆1𝑥12 + 𝜆2𝑥22 +⋯+ 𝜆𝑁𝑥𝑁2

 ⋮ (4.7)

𝑥0𝑑 = 𝜆1𝑥1𝑑 + 𝜆2𝑥2𝑑 +⋯+ 𝜆𝑁𝑥𝑁𝑑

where 𝜆1,…,𝑁 are the weights of each simplex vertex and 𝜆 = 1. In order to solve this

system of equations, we make the substitution 𝜆𝑁 = 1 − 𝜆𝑑𝑑 and place in matrix form,

𝑻𝝀 = 𝑷𝟎 − 𝐏𝐍 where,

 𝐓 = [

x11 − xN1 x21 − xN1 ⋯ xd1 − xN1
x12 − xN2 x22 − xN2 ⋯ xd2 − xN2

⋮ ⋮ ⋱ ⋮
x1d − xNd x2d − xNd ⋯ xdd − xNd

] (4.8)

Since the vertices define a simplex, the equations are linearly independent and 𝐓

is invertible; therefore, the weights can be determined by 𝛌 = 𝐓−1(𝐏𝟎 − 𝐏𝐍).

Determining if the point resides inside the simplex requires a simple inequality test: if all

weights are positive or any one is equal to zero, the point resides inside or on the simplex

(λN must be included in the test and can be calculated using λN = 1 − λdd). If indeed

the point resides inside the simplex, the corresponding indicator value, 𝐋0,1,…,d, must be

changed to a “1” and the simplex number that contained the points is recorded. All points

of the lattice can be tested through one matrix multiplication if the definition of 𝐏𝟎 is

altered to be a matrix having a column for every point in the lattice, while the rows still

represent each point’s dimensional coordinates. If this method is utilized, a matrix the

60

same size as 𝐏𝟎 is constructed by repeating vertex 𝐏𝐍 to maintain correct matrix

dimensionality for subtraction.

The complexity of the discretizing process is 𝒪(d2𝓇d), where d is the

dimensionality of the data and 𝓇 is the resolution of the lattice. Timing tests varying the

resolution and number of simplexes in different dimensional feature spaces showed that

calculation time increases linearly with the number of simplexes, but exponentially with

the dimensionality. Altering the resolution had a much greater impact in higher

dimension, which is expected due to the 𝓇d term.

After the alpha-shape has been discretized, the compaction process using FFT

based erosion is conducted. The inputs to the discrete α-shape compaction function

(pseudocode presented in Figure 4.13) are the discretized α-shape, which contains all

coordinates and in/out indicators of the lattice constructed earlier; and the offset distance

ℴ, which determines how far inward the α-shape is to be eroded/compacted. Erosion is

completed by convolving the binary “image”, constructed above, with a d-dimensional

hypercubic binary structuring element 𝓢(i.e., “filter”). The structuring element is

constructed such that the length of one side of the hypercube is equal to the offset

distance and the binary value of each “pixel” is one (step 1 of Figure 4.13).

61

Input: Discrete α-shape – 𝓐′ ; Offset distance – ℴ

1. Construct structuring object for erosion

𝓢 ∈ ℝ𝑑 , 𝑐𝑎𝑟𝑑(𝓢) = ℴ𝑑

2. Zero pad 𝓛 and 𝓢 to a hypercube with a side length

 𝑐𝑎𝑟𝑑(𝓢)
𝑑

+ 𝑐𝑎𝑟𝑑(𝓐′)
𝑑

− 1

3. Convolve 𝓛 and 𝓢 in frequency domain

𝓔 = 𝑑𝐹𝐹𝑇(𝓐′).∗ 𝑑𝐹𝐹𝑇(𝓢),
 where .∗ is point by point multiplication

4. Take inverse 𝑑-dimensional FFT

𝑬 = 𝐼𝑑𝐹𝐹𝑇(𝓔)
5. Threshold 𝑬 to convert to binary compacted α-shape

(𝑬 = 0) = 0 and (𝑬 > 0) = 1

6. Extract centermost region of 𝑬, having same

cardinality and structure as 𝓐′

𝓐′′ = 𝑐𝑒𝑛𝑡𝑒𝑟(𝑬), where 𝑐𝑎𝑟𝑑(𝓐′′) = 𝑐𝑎𝑟𝑑(𝓐′)
7. Create an α-shape of core support region

𝓐′ = 𝑓(𝛼, ℒ ∀ ℒ0 = 0)

8. Determine which instances of 𝔇 are inside 𝓐′ using

Barycentric coordinates

Figure 4.13. α-Shape compaction pseudocode

As with any filtering process, filter delay is inevitable. However, to negate the effect of

the filter delay, which would be the equivalent of translating the α-shape in the feature

space, both the “image” and the structuring element are zero padded such that the length

of each side of the padded hypercube is card(𝓢)
d

+ card(𝓐′)d
− 1 (step 2 of

Figure 4.13). This is equivalent to zero padding sequences of length N, M to length

N +M− 1 to make linear and discrete convolution the same. Once both the “image” and

structuring element are zero padded to the same size, convolution is efficiently conducted

by taking the d-dimensional FFT of each and multiplying them point by point in the

spatial frequency domain,𝓔 = dFFT(𝓐′).∗ dFFT(𝓢), (step 3 of Figure 4.13). Converting

the convolved image back to the spatial domain, where it must compared to a zero

62

threshold, is accomplished using the inverse d-dimensional FFT (step 4 of Figure 4.13).

This process effectively analyzes the rate of change between each pixel and its

neighboring pixels in every dimension. In regions completely outside or inside the α-

shape, there is no change in neighboring pixels, they are all zeros or ones, respectively.

However, for pixels on the boundary of the α-shape, multiplication of pixels will result in

some values originally having a value one being changed to zero. The end result is the

boundary moving inwards, towards the core supporting region of the α-shape. To convert

the eroded image back to a binary representation, the image is compared to a zero

threshold such that any pixel with a value greater than zero is set to one and zero values

remain unchanged (step 5 of Figure 4.13). The eroded image is still larger in each

dimension than the original input due to padding. To extract the true eroded α-shape and

discount the pixels contributed by 𝓢, the centermost pixels having the same cardinality as

𝓐′ are extracted (step 6 of Figure 4.13). The complexity of this portion of the algorithm

is 𝒪(𝓇2d log(𝓇d)).

Recall during the discretizing α-shape function that we constructed a lookup table

indicating which discrete points reside in each simplex in the α-shape. The points in this

table are passed through the compaction function, resulting in only the discrete

compacted points still having a value of one. Conducting a reverse lookup in this table,

allows us to determine which simplexes contain a discrete compact point. The vertices of

these simplexes then constitute the core supports of the current distribution and are

retained by COMPOSE as labeled data to be combined with the next batch of (possibly

drifted) unlabeled data. Note that these points selected from the core support of the

63

current distribution are most likely instances to be in the region of support of the drifted

distribution.

Figure 4.14 illustrates the aforementioned set of steps as an example. The figure

contains an enlarged view of an α-shape for one class and depicts COMPOSE’s process

for selecting the core supports. Recall that the α-shapes are constructed for each class

label in the data. The α-shape, shaded in light yellow in Figure 4.14, is constructed for

the data (red) classified by the SSL algorithm (BaseClassifier) as belonging to some

particular class. The discrete lattice, shown by black dots, spans the hyper cubic

(rectangular region in this 2D figure) space containing the α-shape. Using Barycentric

coordinates, discrete points that fall inside the α-shape are identified, which are indicated

with blue stars. The binary representation of the discrete space (black points = 0, blue

stars= 1) is compacted, where compacted points are shown as bold blue circles. Using the

point-simplex look-up table, the vertices of each simplex containing a compacted point

are highlighted with a black diamond and extracted as labeled data at the next time step.

64

Figure 4.14. α-Shape compaction using FFT based erosion

The process of extracting core supports (black diamonds)

from an α-shape (shaded yellow region bounded by solid

black line). The process includes constructing the discrete

lattice (black points), identifying those (red plus) points that

fall inside discretized α-shape (blue stars), compacting the

inside points (blue circled stars), and identifying the vertices

of simplexes that contain the compacted points to use as

labeled data.

4.5.3 Version 1.2 – α -shape unwrapping. The great number of tunable

parameters of Version 1.1 and computational resources required for high resolution

“images” in high dimensions required further improvement. In Version 1.2, the most

eloquent of the three versions, compaction is achieved by iteratively removing a layer of

simplexes from the edges of the α-shape, as if unwrapping an onion, until the desired

compaction percentage is achieved – percentage of compaction is the only parameter

specified. The compaction threshold is found by multiplying the number of instances in

65

the initial α-shape by (1 − CP), yielding the target number of instances to remove. Each

time a layer of simplexes is peeled off, the number of instances in the compacted α-shape

is reduced. Compaction is complete when the number of remaining core supports is less

than or equal to the compaction threshold.

This method is illustrated in Figure 4.15, where each simplex removed numbered

by the layer in which it is removed. The first (outermost) layer removed is indicated by

“1” and shaded in red; the last layer is in light blue and contains “6”. The data remaining

after the compaction become the core supports, indicated by white stars clustered at the

center of the α-shape.

Figure 4.15. Graphical representation of unwrapped α-shape

Layers are removed in numerical order starting with (red) “1” and ending with

(blue) “6” until core supports remain, represented by (white) stars. Compaction

percentage used for this figure was 85%.

66

Identifying which simplexes reside at the edge of an α-shape is a simple task, as

boundary simplexes have one or more faces that are not shared with another simplex. By

creating a list of all faces and identifying to which simplex each belongs, a simple sort

can identify unmatched faces. The simplex IDs associated with the unmatched faces are

the simplexes located at the edge of the α-shape. The complexity of this method is 𝒪(s2),

where s is the total number of simplexes in the α-shape, which is linearly related to the

total number of instances. This compaction function, unlike the original skeleton based

compaction algorithm and the FFT based erosion is independent of dimensionality, and

hence significantly reduces the complexity of the overall approach.

67

Chapter 5

Experiments and Discussions

5.1 Experimental Setup and Results on Synthetic Datasets

We have tested each version of COMPOSE on carefully designed synthetic data

sets, using nonstationary Gaussian data, and demonstrated that later versions of the

COMPOSE framework: 1) perform just as well, if not better, than earlier versions; 2)

extend to higher dimensions than earlier versions; and 3) can adapt to the introduction of

a new class.

COMPOSE version 1.0, which used skeletal offsets for object compaction, was

limited to two-dimensional data, so only Experiments 1 and 2, presented in Figure 5.1

and Figure 5.3 respectively, were run. As COMPOSE progressed to version 1.2 (denoted

as COMPOSE* in figures), Experiments 1 and 2 were rerun to demonstrate the later

version performed just as well, if not better, than the earlier version. Two new synthetic

Gaussian Experiments, Experiments 3 and 4 presented in Figure 5.5 and Figure 5.7

respectively were developed to test the ability of version 1.2 to process higher

dimensional data and adapt to newly introduced classes in data. To better evaluate the

capabilities of COMPOSE, each of the four experiments referenced above were repeated

using the APT algorithm (presented in Section 3.6), the only other algorithm currently

available for the extreme verification latency problem, and the optimal Bayes classifier,

which provides an upper bound to performance. The Bayes classifier was trained in a

fully supervised manner, having full access to correct labels for all instances at all time

steps. This is a scenario that is deliberately designed to be unfair against COMPOSE and

APT, as these algorithms maintained the initially labeled streaming environment

68

assumption where labels were provided only for a subset of the data, and only during the

initial time step. All comparisons to Bayes classifier should be interpreted within this

context.

In each of the four experiments listed above, we assumed Gaussian distributions

starting at some initial state at an arbitrary time t = 0. COMPOSE was initialized using

only 5% of randomly selected data labeled, though we ensured each class is represented

by at least one labeled instance; ATP, however, requires a full set of labeled data at

initialization. At each subsequent step t, the distributions drift according to the

parametric equations shown in Tables 5.1, 5.2, 5.3, and 5.4, and illustrated in Figures 5.1,

5.3, 5.5, and 5.7, respectively for Experiments 1 - 4, with 100 new unlabeled instances

presented per Gaussian mode. The experiments end after 100 steps, at some arbitrary

time, t = 1. All experiments were repeated 50 times for COMPOSE and five times for

ATP, providing the 95% confidence intervals indicated as the shaded regions around the

performance curves. ATP was run only five times due to its significantly longer

computation time as discussed in Section 5.3 below.

COMPOSE’s independence of SSL algorithm used as the BaseClassifier is

demonstrated by Experiments 1 and 2 whose results are shown in Figure 5.2 and Figure

5.4, respectively. Regardless of BaseClassifier selected, the performance closely follows

the performance trend of Bayes rule. Our statement of independence does not claim that

each classifier will perform equally well when paired with COMPOSE, it simply states

that each classifier will follow a similar performance trend. It is important to note that

each classifier has its strengths and weaknesses depending on the environment it is

classifying. For example, of the three BaseClassifiers used with COMPOSE, label

69

spreading performed the poorest, which may be attributed to the placement of labeled

instances. When labeled instances from a particular class span a larger area in feature

space (albeit, possibly with less density), it is easier for that class to spread its label, since

spreading can proceed in more directions and overtake a larger area of unlabeled

instances faster. In a nonstationary environment that provides labeled instances at every

time step directly from the underlying distribution, the labeled data are more likely to be

scattered throughout the unlabeled data. Using COMPOSE, however, labeled data are

located in a tighter cluster due to sampling from a compacted α-shape. This tight cluster

of labeled data decreases the effectiveness of classification through label spreading. SSL

algorithms that do not use label spreading, however, do not suffer from such a restriction.

After demonstrating classifier independence, the remaining experiments in this

thesis are presented with cluster-and-label chosen as the semi-supervised algorithm. This

algorithm was selected due to minimal free parameters it needs, and its ability to easily

adapt to a multiclass problem – unlike, e.g., S3VM, which does not readily work in

multiclass problems.

There are several variations of cluster-and-label; we used k-means to perform the

clustering, and majority vote of labeled instances in the clusters for labeling the clusters.

The algorithm begins with k = 5, the number of clusters to find, which iteratively

reduces itself by one if it is unable to find a solution where every cluster contains at least

one labeled point. COMPOSE free parameters (α and CP) were selected heuristically

(shown within figures), were not optimized, and remained fixed throughout the

experiments.

70

5.1.1 Unimodal and multimodal Gaussians. The two experiments in this

section were featured in the initial publication of COMPOSE Version 1.0 [71], and serves

as a benchmark for comparison of Version 1.2 [72]. The experiments are governed by

parametric equations provided in Tables 5.1, 5.2. As shown in Figures 5.2 and 5.4,

version 1.2 of the COMPOSE framework (denoted by solid red line and marked

COMPOSE*) performs better in both experiments when compared to its earlier

counterpart (using cluster-and-label as the SSL). Performance of COMPOSE Version 1.0

with other SSL algorithms are also shown for comparison.

During periods of increased class overlap, time steps 60 – 70 in Figure 5.2,

COMPOSE outperforms APT with statistical significance. During the remainder of the

experiment both ILSE algorithms have similar performances, tracking Bayes classifier

(black curve) extremely close.

The primary weakness of APT – the assumption that all subpopulations must be

present at initialization – is most vividly seen in the second experiment that featured a

scenario that split a unimodal distribution into a multimodal distribution, which have then

merged to return to a unimodal distribution later. APT failed to track these diverging

distributions, as illustrated in Figure 5.4, because the diverging distribution creates a new

subpopulation that APT did not know at initialization. COMPOSE however, is able to

track the distributions before the split, throughout the split, as well as after their merge.

Furthermore, COMPOSE follows the performance of Bayes closely. This is a quite

noteworthy accomplishment, considering the unfair circumstances under which

COMPOSE operates against the Bayes classifier.

71

Figure 5.1. Experiment 1 – unimodal Gaussians

Table 5.1.

Parametric equations governing unimodal Gaussian experiment drift

Class
0 ≤ t < 0.2 0.2 ≤ t < 0.4 0.4 ≤ t < 0.6

x y x y x y x y x y x y

C1 2 +

20t
3 1 + 5t 1 6 +

10t

3 +

10t
2 1 + 5t 8 - 5t 5 2 - 5t 2 - 5t

C2 8 - 20t 7 1 + 5t 1 + 5t 4 - 10t 7 - 10t 2 2 + 5t 2 + 5t 5 - 5t 2 - 5t 3

Class

0.6 ≤ t < 0.8 0.8 ≤ t ≤ 1

x y x y x y x y

C1 7 - 20t 5 +

10t

1 +

2.5t

1 +

2.5t
3 7 - 20t 1.5 1.5

C2 3 +

20t
4 - 10t 1 3 7 2 +

25t

1 +

2.5t

3 -

7.5t

72

Figure 5.2. Results of unimodal Gaussian experiment

73

Figure 5.3. Experiment 2 – multimodal Gaussians

Table 5.2.

Parametric equations governing multimodal Gaussian experiment drift

Class
0 ≤ t < 0.2 0.2 ≤ t < 0.4 0.4 ≤ t < 0.6

x y x y x y x y x y x y

C11 2 +6t 2 + 6t 1 1 3.2 +

6t

3.2 +

6t
1 1 4.4 +

6t

4.4 +

6t
1 1

C12 8 - 6t 2 + 6t 1 1 6.8 -

6t

3.2 +

6t
1 1 5.6 -

6t

4.4 +

6t
1 1

C21 8 - 10t 8 1 1 6 - 10t 8 -

2.5t
1 1 4 -

7.5t

7.5-

7.5t
1 1

C22 8 8 - 10t 1 1 8 -

2.5t
6 - 10t 1 1 7.5-

7.5t

4 -

7.5t
1 1

 Class

0.6 ≤ t < 0.8 0.8 ≤ t ≤ 1
 x y x y x y x y
 C11 5.6 +

6t

5.6 +

6t
1 1 6.8 +

6t

6.8 +

6t
1 1

 C12 4.4 -

6t

5.6 +

6t
1 1 3.2 -

6t

6.8 +

6t
1 1

 C21 2.5-

2.5t
6 - 10t 1 1 2 4 - 10t 1 1

 C22 6 - 10t 2.5-

2.5t
1 1 4 - 10t 2 1 1

74

Figure 5.4. Results of multimodal Gaussian experiment

5.1.2 Unimodal Gaussian with added class. One of the new experiments

added during testing of version 1.2 initializes two Gaussian distributions at t = 0, and

then adds a third class at time step 40, as governed by the parametric equations of Table

5.3, and as illustrated in Figure 5.5. The third class is added with only 5% of its data

labeled – with labels provided only during this time step – which constitutes the

initialization of the new class for COMPOSE. In contrast, the full training set (i.e., all

instances labeled) for the new class is provided to ATP. We also note that the labeled

data provided only at this time step comes only from the new class to comply with ILSE

assumptions. Figure 5.6 compares COMPOSE performance against that of APT and

Bayes classifier. COMPOSE outperforms APT with statistical significance during time

intervals with substantial class overlap (time steps t = 0.2 to 0.6). During other times, the

75

differences in performances are not statistically significant. All classifiers experience a

performance drop when the new class is added, which of course is expected.

Figure 5.5. Experiment 3 – class added Gaussian

Table 5.3.

Parametric equations governing class added Gaussian experiment drift

Class
0 ≤ t < 0.2 0.2 ≤ t < 0.4 0.4 ≤ t < 0.6

x y x y x y x y x y x y

C1 2 - 5t 5 1.5 5 - 5t 1 5 - 10t 1.5 + 7.5t 3 1 3 - 5*t 3 - 10t 3 - 10t

C2 5 - 5t 8 5 - 15t 1.5 + 2.5t 4 + 20t 8 2 2 8 8 - 20t 2 - 5t 2 + 10t

C3 n/a n/a n/a n/a n/a n/a n/a n/a 5 5 + 15t 1 + 5t 1 + 5t

 Class

0.6 ≤ t < 0.8 0.8 ≤ t ≤ 1
 x y x y x y x y
 C1 1 - 5t 2 + 15t 1 + 15t 1 0 + 5t 5 + 15t 4 - 10t 1 + 10t
 C2 8 4 + 20 t 1 4 - 10t 8 8 - 30t 1 + 5t 2
 C3 5 + 5t 8 - 30t 2 2 +5t 6 - 25t 2 2 + 5t 3

76

Figure 5.6. Results of class added Gaussian experiment

5.1.3 Unimodal Gaussians in 3D. The other new experiment added during

testing of version 1.2, governed by equations of Table 5.4 and illustrated in Figure 5.7,

extends the feature space to three dimensions to demonstrate (and graphically illustrate)

that revised COMPOSE can actually scale to higher dimensions (also see 8-dimensional

real world dataset below). Figure 5.8 compares COMPOSE’s generalization performance

to that of Bayes classifier and ATP. The important observation here is that COMPOSE

can still follow Bayes extremely well, despite the unfair nature of the experimental setup,

and outperforms APT with statistical significance during the more difficult periods of

high overlap, and performing comparably during other time steps.

77

Figure 5.7. Experiment 4 – 3D Gaussians

Table 5.4.

Parametric equations governing 3D Gaussian experiment drift

Class
0 ≤ t < 0.2 0.2 ≤ t < 0.4 0.4 ≤ t < 0.6

x y z x y z x y z

C1 9 -25t 1 + 10t 8 - 15t 4 - 10t 3 + 15t 5 - 15t 2 + 15t 6 + 15t 2 - 5t

C2 0 + 10t 0 + 10t 3 - 10t 2 + 20t 2 + 20t 1 + 10t 6 - 20t 6 + 10t 3 + 10t

 Class

0.6 ≤ t < 0.8 0.8 ≤ t ≤ 1
 x y z x y z
 C1 5 + 25t 9 + 5t 1 - 5t 10 - 15t 10 - 10t 0 + 15t
 C2 2 + 25t 8 5 - 10t 7 - 10t 8 + 6t 3 - 5t

78

Figure 5.8. Results of 3D Gaussian experiment

5.2 Experimental Setup and Results of Real-World Data

We have also tested the latest version of COMPOSE using the National Oceanic

and Atmospheric Administration (NOAA) weather dataset collected over a 50 year span

from Offutt Air Force Base in Bellevue, Nebraska. Eight features (temperature, dew

point, sea level pressure, visibility, average wind speed, max sustained wind speed,

minimum temperature and maximum temperature) were used to determine whether each

day experienced rain or no-rain. The dataset contains 18,154 daily readings of which

5,693 are rain and the remaining 12,461 are no-rain. Data was grouped into 49 batches of

one year intervals, containing 365 instances (days) each; the remaining data was placed

into the 50th batch as a partial year.

This experiment was initialized with 5% of the 365 instances labeled. Every

subsequent time step received the full set of additional 365 – all unlabeled – instances.

79

Since this is real-world data (and not drawn from a distribution), and since all available

data are presented at each time step, only one trial is possible. Repeating trials would

result in the same performance each time, so a confidence interval cannot be obtained. In

Elwell et al.’s recent work [9], this dataset was used to test an ensemble of supervised

learners (Learn
++

.NSE – for Non-Stationary Environments) receiving labeled data with

every time step in a seasonal fashion – batches of 90 instances. We compare yearly batch

performance of COMPOSE and APT with that of Learn
++

.NSE (with SVM as well as

naïve Bayes used as BaseClassifier) in Figure 5.9. COMPOSE greatly outperforms APT,

but the most compelling demonstration of COMPOSE’s performance comes from

comparing COMPOSE to Learn
++

.NSE. COMPOSE trained in an ILSE setting (and with

only 18 labeled instances), is competitive with an ensemble of classifiers that are trained

in an entirely supervised manner, receiving fully labeled data at every time step.

80

Figure 5.9. Results of NOAA weather dataset

5.3 Computation Time Tests

As the experiments have shown, COMPOSE can learn in an initially labeled

streaming nonstationary environment, and successfully track the changing environment

using unlabeled data only. The ability of COMPOSE to learn in such a setting comes at a

cost: COMPOSE is a relatively computationally expensive algorithm, though not as

expensive as APT, at least for the datasets used in our experiments.

The complexity of COMPOSE version 1.2 has in fact been reduced from its

original version, where the skeleton algorithm used for compaction was its

computationally most expensive module. With the unwrapping compaction utilized in

version 1.2, the compaction function is no longer a computational bottle neck – in fact, it

is no longer dependent on dimensionality. The most expensive module in COMPOSE is

now the α shape generation, which runs in exponential time with respect to the number of

81

dimensions. We have run some timing experiments, described below, to better understand

the behavior of the algorithm with respect to its computational complexity.

Figure 5.10 shows the computation time, averaged over 50 trials for COMPOSE

and five trials for ATP, conducted on a modest 2.4 GHz processor (with 6GB RAM) for

each of the synthetic experiments described in the previous section. In each case, the

timing diagrams follow a similar trend: the initial few time steps are computed relatively

quickly while a basis of core supports are built up; then, within a few additional time

steps, the algorithm reaches a steady state and maintains approximately the same

processing time (per time step) for the remainder of the experiment, unless new classes

are added, which then adds a modest additional cost (see change in Unimodal Gaussian

Added Class experiment steady state computation time at time step 40).

Comparing the Unimodal Gaussian Experiment (with 100 unlabeled instances

added per class, resulting in 200 new instances per time step) and its 2.5s per time step

steady state processing time with the Multimodal Gaussian Experiment (with 100

unlabeled instances added for each of the four modes, resulting in 400 new instances per

time step) and its 5s per time step steady state processing time further shows that

COMPOSE runs in nearly linear time with respect to the cardinality of the data.

Comparing the Unimodal Gaussian Experiment, CP = 0.70, with the Unimodal

Added Class Experiment, CP = 0.60, suggests the greater the compaction percentage

the faster the algorithm runs, as there are fewer core supports to maintain.

Comparing any of the 2D experiments to the 3D experiment shows that the

computation time increases greatly with higher dimensional data. This increase in

computational complexity with respect to the dimensionality is the primary cost of the

82

current algorithm. However, we believe the cost is justified given the difficulty of the

task the algorithm seeks to solve. We should note that even with the 8-dimensional data,

where processing for each time step takes 20-30 minutes (on a modestly configured

computer), COMPOSE is well within useable limits for many applications that generate

data less frequently than every 30 minutes. Any application, for example, that generates

hourly or daily data can be easily used with current version of COMPOSE even with

higher dimensions. Furthermore, we should reemphasize that the primary bottle neck in

COMPOSE is not the data cardinality but rather its dimensionality. Therefore, the

algorithm can easily handle large databases with modest dimensionality.

It is also worth noting that all computation times mentioned above were obtained

using a modestly configured computer running an interpreted language (Matlab).

Optimizing the algorithm (many of its steps can be run in parallel), implementing it in a

compiled language and running it in a parallel computing setting can further improve its

computational efficiency, which is tasked in future work as described in Chapter 6.

Comparing computation times of COMPOSE and ATP, Table 5.5 shows a

significant difference. As expensive as COMPOSE is, it completed the synthetic dataset

experiments an order of magnitude faster than ATP on the same computer in the same

interpreted Matlab environment.

Finally, since the most expensive module in the current version of COMPOSE is

the alpha-shape generation – essentially a density estimation algorithm – alternative

density estimation approaches such as Gaussian mixture models may further improve the

computational efficiency. Evaluating such alternative density estimation approaches is

also within the scope of future work proposed in Chapter 6.

83

Figure 5.10. Computation time of experiments

Table 5.5.

COMPOSE and APT computation comparison

Dataset
COMPOSE

[minutes]

APT

[minutes]

2D Unimodal 4.16 3,600

2D Multimodal 8.33 20,303

2D Unimodal – Class Added 4.33 21,390

3D Unimodal 26.66 22,776

5.4 Choice of Free Parameters and Their Effects

To better understand the impact of each of COMPOSE’s free parameters, the α-

value and compaction percentage CP, we have repeated the synthetic data experiments

varying each parameter independently. We first looked at the effect of CP, keeping α

84

constant using a family of curves. A sample of these (using the multimodal Gaussian

data) is shown in Figure 5.11, which indicates that a proper choice of CP is necessary.

We also plotted performance keeping CP constant and allowing α-value to vary – whose

sample plots are presented in Figure 5.12 for three different values of CP. These results

show that when the compaction percentage is chosen incorrectly, too high as in Figure

5.12a or too low as in Figure 5.12c – the performance varies greatly with respect to α.

However, if CP is chosen properly, as in Figure 5.12b, the algorithm performance

becomes less sensitive to the α parameter.

From this analysis, we conclude that selecting the compaction percentage

correctly has the biggest impact on COMPOSE’s performance. There appears to be a

logical explanation for this: if α shapes are compacted too much, core supports relevant

to the future distribution are lost. If compacted too little, the core supports may overlap

with a rival class in the future time step and become misleading.

Figure 5.11. Constant α and varied CP

Typical family of curves with α-value

(α = 0.40 shown) held constant and

compaction percentage allowed to vary.

85

Figure 5.12. Constant CP and varied α

Family of curves with CP held constant and α-value allowed to vary. When CP is too

high, e.g., 0.8 as in (a), or too low, e.g., 0.6 as in (c), the algorithm is sensitive to

variations in α. When CP is selected close to optimal value, e.g., 0.68 as in (b), the

performance variation and the sensitivity to α decreases dramatically.

86

Chapter 6

Conclusions and Future Work

This thesis introduces and describes COMPOSE, for semi-supervised learning

from a nonstationary (drifting) environment experiencing extreme verification latency. In

this environment, the nonstationary data, drawn from a drifting distribution, arrive in a

streaming manner. Beyond an initial batch, the entire data stream is assumed unlabeled.

Our preliminary results have been quite promising, demonstrating that COMPOSE can

indeed learn and track the drifting distributions in such a challenging environment.

COMPOSE can track any streaming nonstationary environment as long as the

class conditional distributions overlap at subsequent instances. We refer to this condition

as limited drift. This is a practically reasonable assumption, as in most natural

phenomena – perhaps with the exception of catastrophic or abrupt failures – the changes

to the data distribution is usually gradual. One particularly pathological scenario is worth

mentioning as an extreme case that violates the limited drift assumption: a sudden change

of class labels while data distribution itself remains constant. In such a case there is

precisely zero overlap between pt(𝐱|y) and pt+1(𝐱|y). COMPOSE cannot track such a

change, since the algorithm receives no future labeled data in the ILSE setting. Toy

examples of this scenario include the shifting hyperplane as used in [14], and rotating

checkerboard example as used in [9], [57]. We know of no practical example of this

scenario. While COMPOSE is guaranteed to track subsequent overlapping distributions,

we have noticed the algorithm also performs well when the distributions do not overlap,

given the following condition is met – for any given class, its drifted distribution must be

closer than any other opposing class’s drifted distribution. This observation has not been

87

validated yet, and is mentioned in future work below, however, intuitively this

observation makes sense since most SSL classification is achieved through grouping

instances that reside in a similar or close feature domain.

On the other hand, we note that COMPOSE can naturally work in the more

relaxed environment, where labeled data are provided regularly or intermittently. In such

a case, COMPOSE simply employs the provided labeled data as new core supports to be

used in future time steps. COMPOSE can then accommodate the aforementioned change

to class membership scenarios, as well as abrupt change scenarios.

Under the ILSE setting, the focus of this paper, preliminary results show that

COMPOSE outperforms APT in regions of class overlap, as well as scenarios where data

distributions diverge into multiple modes. APT requires all modes to be presented at

initialization and further assumes that any drift to the data distribution be structured.

Furthermore, while COMPOSE is computationally intensive algorithm, it appears to be

more efficient than APT.

Nevertheless, the α-shape construction used by COMPOSE is indeed a

computationally expensive process, one that is exponential in dimensionality. Future

work includes exploring more efficient ways of constructing α-shapes, or using alternate

density estimation techniques, such as Gaussian Mixture Models (GMM) or kernel

density estimation. While such changes may require modifications to the compaction

method, the foundational concepts of COMPOSE remain the same – select instances

from the geometric center (core region) of high density regions of each class to be used as

labeled data and combine with the unlabeled data of subsequent time step. This is why we

refer to COMPOSE more as a framework, rather than just an algorithm. COMPOSE can

88

be a family of algorithms, depending on how the core supports are determined, what SSL

algorithm is used as a BaseClassifier, or how the compaction is applied.

There is, of course, much room for improvement: articulating a more rigorous

definition of limited drift (e.g., defining limited drift with respect to Kullback- Leibler

divergence or Hellinger distance between two subsequent distributions), optimizing or

automating selection of algorithm parameters, and expanding the experimental work to

other real–world and even higher dimensional data, all constitute our current and future

work.

Despite its limitations and the aforementioned room for improvement, we believe

that COMPOSE shows significant promise in addressing extreme verification latency,

performing quite well against other approaches. It is worth mentioning that COMPOSE’s

limited drift assumption is much less restrictive than those of other algorithms. Perhaps

most remarkable is the performance comparison of COMPOSE against the Bayes

classifier, and Learn
++

.NSE (an ensemble of supervised learners). In these experiments,

the experimental conditions for comparison were deliberately set to be grossly unfair

against COMPOSE, where the competing algorithms were run in a fully supervised

mode.

Finally, we should mention that COMPOSE introduces tools from computational

geometry that are not often used in machine learning research but may have applications

to other machine learning problem domains. We hope that this work will stimulate new

discussions and new efforts, and perhaps open computational geometry based approaches

to other machine learning problems, where such approaches have been mostly

underexplored.

89

6.1 Summary of Future Work

The work presented in this thesis was the basis for a NSF grant proposal that was

later funded. For those that continue work on the COMPOSE framework I have compiled

a list of future tasks mentioned throughout this thesis for easy reference. Future works to

be considered are:

 Creating a rigorous definition of limited drift with respect to established

metrics such as Kullback- Leibler divergence or Hellinger distance.

 More efficient ways of constructing compactable boundary objects (such as α-

shapes) by exploring alternative density estimation techniques, such as

Gaussian Mixture Models (GMM) or kernel density estimation.

 Implementation and testing of various methods to incorporate receipt of future

labeled data if the extreme latency assumption can be relaxed, allowing

periodic receipt of labeled batches. When new data are received, does

COMPOSE perform better if reinitialized using the only the new labeled data

or is there some benefit to retaining core supports established before the

arrival of new labeled data?

 Implementing the current version of COMPOSE to maximize its use of

parallel processing and explore the decrease in computation time achieved.

 Explore dynamic selection of free parameter of the COMPOSE framework

such as the α value or compaction percentage.

90

Chapter 7

Summary of Contributions

This thesis makes several contributions to the machine learning community,

primarily in the fields of nonstationary environments and verification latency.

Verification latency still remains a largely underexplored are due to its complexity.

However, in our data driven, technologically advancing society this scenario will appear

more regularly and will need to be addressed. The COMPOSE framework takes some of

the early steps exploring this area of machine learning, showing that learning these

environments is possible, albeit presently at a high computational cost. The COMPOSE

framework has set the bar demonstrating:

 Semi-supervised learning algorithms are a good classifier selection to tackle

nonstationary environments with limited labeled data.

 Given properly selected labeled data the SSL algorithms follow similar

classification trends.

 Selecting data at the geometric core of a slowly drifting distribution to

propagate information to later drifted distributions works well.

91

References

[1] S. D. Duda R., Hart P., Pattern Classification, 2nd ed. New York, NY: John Wiley

& Sons, 2001, p. 17.

[2] S. B. Stromsten, “Classification Learning from Both Classified and Unclassified

Examples,” Stanford University, 2002.

[3] X. Zhu, T. Rogers, R. Qian, and C. Kalish, “Humans Perform Semi-supervised

Classification Too,” in Proceedings of the 22Nd National Conference on Artificial

Intelligence (AAAI’07), 2007, pp. 864–869.

[4] J. Gielis, “A generic geometric transformation that unifies a wide range of natural

and abstract shapes.,” Am. J. Bot., vol. 90, no. 3, pp. 333–338, Mar. 2003.

[5] S. Grossberg, “Nonlinear Neural Networks: Principles, Mechanisms, and

Architectures,” Neural Networks, vol. 1, no. 1, pp. 17–61, 1988.

[6] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers; part I: detecting

nonstationary changes,” IEEE Trans. Neural Networks, vol. 19, no. 7, pp. 1145–

1153, 2008.

[7] A. Bifet, “Adaptive Learning and Mining for Data Streams and Frequent Patterns,”

Universitat Politcnica de Catalunya, 2009.

[8] S. Chen and H. He, “Towards incremental learning of nonstationary imbalanced

data stream: a multiple selectively recursive approach,” Evol. Syst., vol. 2, no. 1,

pp. 35–50, 2011.

[9] R. Elwell and R. Polikar, “Incremental Learning of Concept Drift in Nonstationary

Environments,” IEEE Trans. Neural Networks, vol. 22, no. 10, pp. 1517–1531,

Oct. 2011.

[10] H. Haibo, C. Sheng, L. Kang, and X. Xin, “Incremental Learning From Stream

Data,” Neural Networks, IEEE Trans., vol. 22, no. 12, pp. 1901–1914, Dec. 2011.

[11] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: an ensemble method

for drifting concepts,” J. Mach. Learn. Res., vol. 8, pp. 2755–2790, 2007.

[12] J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence,

Dataset Shift in Machine Learning. Cambridge, Massachusetts: The MIT Press,

2009.

92

[13] P. P. Rodrigues, J. Gama, and J. P. Pedroso, “Hierarchical Clustering of Time-

Series Data Streams,” Knowl. Data Eng. IEEE Trans., vol. 20, no. 5, pp. 615–627,

2008.

[14] W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA) for large-scale

classification,” in Seventh ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining (KDD-01), 2001, pp. 377–382.

[15] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, “Dynamic

integration of classifiers for handling concept drift,” Inf. Fusion, vol. 9, no. 1, pp.

56–68, Jan. 2008.

[16] G. Widmer and M. Kubat, “Learning in the presence of concept drift and hidden

contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–101, 1996.

[17] I. Zliobaite and Z, “Combining similarity in time and space for training set

formation under concept drift,” Intell. Data Anal., vol. 15, no. 4/2011, pp. 589–

611, 2011.

[18] G. Marrs, R. Hickey, and M. Black, “The impact of latency on online classification

learning with concept drift,” Knowl. Sci. Eng. …, 2010.

[19] O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning. Cambridge,

MA: MIT Press, 2006.

[20] K. Chen and S. Wang, “Semi-Supervised Learning via Regularized Boosting

Working on Multiple Semi-Supervised Assumptions,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 33, no. 1, pp. 129–143, Jan. 2011.

[21] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from Incomplete

Data via the EM Algorithm,” J. R. Stat. Soc. Ser. B, vol. 39, no. 1, pp. 1–38, 1977.

[22] X.Zhu and A.Goldberg, Introduction to Semi-Supervised Learning. Morgan &

Claypool, 2009, pp. 31–32.

[23] T.Joachims, “Transductive Inference for Text Classification using Support Vector

Machines,” in Proc. 16th Int. Conf. Machine Learning, 1999, pp. 200–209.

[24] V.Vapnik and A.Sterin, “On structural risk minimization for overall risk in a

problem of pattern recognition,” Autom. Remote Control, vol. 10, pp. 1495–1503,

1977.

[25] D.Zhou, O.Bousquet, T.Lal, J.Weston, and B.Scholkopf, “Learning with Local and

Global Consistency,” in Advances in Neural Information Processing Systems, no.

16, Cambridge, MA: MIT Press, 2004, pp. 321–328.

93

[26] X.Zhu and Z.Ghahramani, “Learning from Labeled and Unlabeled Data with Label

Propagation,” Carnegie Mellon University, Pittsburgh, PA, 2002.

[27] J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy data,” Mach.

Learn., vol. 1, no. 3, pp. 317–354, Sep. 1986.

[28] D. P. Helmbold and P. M. Long, “Tracking drifting concepts by minimizing

disagreements,” Mach. Learn., vol. 14, no. 1, pp. 27–45, 1994.

[29] J. Case, S. Jain, S. Kaufmann, A. Sharma, and F. Stephan, “Predictive learning

models for concept drift,” Theor. Comput. Sci., vol. 268, no. 2, pp. 323–349, Oct.

2001.

[30] M. B. Harries, C. Sammut, and K. Horn, “Extracting hidden context,” Mach.

Learn., vol. 32, no. 2, pp. 101–126, 1998.

[31] I. Zliobaite, “Identifying hidden contexts in classification,” in 15th Pacific-Asia

Conference on Knowledge Discovery and Data Mining, PAKDD 2011, May 24,

2011 - May 27, 2011, 2011, vol. 6634 LNAI, no. PART 1, pp. 277–288.

[32] T. Joachims, “Detecting concept drift with support vector machinesA1 -

Klinkenberg,Ralf,” in 17th International Conference on Machine Learning, 2000,

pp. 487–494.

[33] R. Klinkenberg, “Learning drifting concepts: example selection vs. example

weighting,” Intell. Data Anal. Spec. Issue Increm. Learn. Syst. Capab. Deal. with

Concept Drift, vol. 8, no. 3, pp. 281–300, 2004.

[34] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams,” in

Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, 2001, pp. 97–106.

[35] M. Nunez, R. Fidalgo, and R. Morales, “Learning in Environments with Unknown

Dynamics: Towards more Robust Concept Learners,” J. Mach. Learn. Res., vol. 8,

pp. 2595–2628, 2007.

[36] P. Wang, H. Wang, X. Wu, W. Wang, and B. Shi, “A Low-Granularity Classifier

for Data Streams with Concept Drifts and Biased Class Distribution,” IEEE Trans.

Knowl. Data Eng., vol. 19, no. 9, pp. 1202–1213, 2007.

[37] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift detection,”

in Advances in Artificial Intelligence - SBIA 2004, 2004, vol. 3171, pp. 286–295.

[38] C. Alippi and M. Roveri, “Just-in-Time Adaptive Classifiers;Part II: Designing the

Classifier,” IEEE Trans. Neural Networks, vol. 19, no. 12, pp. 2053–2064, Dec.

2008.

94

[39] C. Alippi, G. Boracchi, and M. Roveri, “Just in time classifiers: managing the slow

drift case,” in International Joint Conference on Neural Networks (IJCNN 2009),

2009, pp. 114–120.

[40] C. Alippi, G. Boracchi, and M. Roveri, “Change Detection Tests Using the ICI

Rule,” in IEEE International Joint Conference on Neural Networks (IJCNN 2010),

2010, pp. 1190–1196.

[41] S. Hoeglinger and R. Pears, “Use of Hoeffding trees in concept based data stream

mining,” in International Conference on Information and Automation for

Sustainability (CIAFS 2007), 2007, pp. 57–62.

[42] P. Vorburger and A. Bernstein, “Entropy-based Concept Shift Detection,” in Sixth

International Conference on Data Mining (ICDM ’06.), 2006, pp. 1113–1118.

[43] H. Abdulsalam, D. Skillicorn, and P. Martin, “Classification Using Streaming

Random Forests,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 1, pp. 22–36, 2011.

[44] G. Ditzler and R. Polikar, “Hellinger distance based drift detection for

nonstationary environments,” in Computational Intelligence in Dynamic and

Uncertain Environments (CIDUE), 2011 IEEE Symposium on, 2011, pp. 41–48.

[45] T. R. Hoens, N. V Chawla, and R. Polikar, “Heuristic Updatable Weighted

Random Subspaces for Non-stationary Environments,” in 11th IEEE International

Conference on Data Mining (ICDM 2011), 2011, pp. 241–250.

[46] C. J. Tsai, C. I. Lee, and W. P. Yang, “Mining decision rules on data streams in the

presence of concept drifts,” Expert Syst. Appl., vol. 36, no. 2, Part 1, pp. 1164–

1178, Mar. 2009.

[47] L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, “Real-

time data mining of non-stationary data streams from sensor networks,” Inf.

Fusion, vol. 9, no. 3, pp. 344–353, 2008.

[48] L. Cohen, G. Avrahami, M. Last, and A. Kandel, “Info-fuzzy algorithms for

mining dynamic data streams,” Appl. Soft Comput., vol. 8, no. 4, pp. 1283–1294,

Sep. 2008.

[49] R. French, “Catastrophic forgetting in connectionist networks,” Trends Cogn. Sci.,

vol. 3, no. 4, pp. 128–138, 1999.

[50] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavalda, “New Ensemble

Methods For Evolving Data Streams,” in Knowledge and Data Discovery (KDD

2009), 2009, pp. 139–148.

95

[51] J.Kolter and M.Maloof, “Dynamic Weighted Majority: An Ensemble Method for

Drifting Concepts,” J.Mach.Learning Res., vol. 8, pp. 2755–2790, 2007.

[52] J. Gao, W. Fan, and J. Han, “On appropriate assumptions to mine data streams:

analysis and practice,” in International Conference on Data Mining, 2007, pp.

143–152.

[53] M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, “Classification and

Novel Class Detection in Concept-Drifting Data Streams under Time Constraints,”

IEEE Trans. Knowl. Data Eng., vol. 23, no. 6, pp. 859–874, 2011.

[54] H. He and S. Chen, “IMORL: Incremental Multiple-Object Recognition and

Localization,” IEEE Trans. Neural Networks, vol. 19, no. 10, pp. 1727–1738,

2008.

[55] A. Bifet, E. Frank, G. Holmes, and B. Pfahringer, “Accurate ensembles for data

streams: Combining restricted Hoeffding trees using stacking.,” in 2nd Asian

Conference on Machine Learning, 2010, vol. 13.

[56] A. Bifet, “MOA: Massive Online Analysis,” http://moa.cs.waikato.ac.nz. 30-Dec-

2010.

[57] R. Elwell and R. Polikar, “Incremental learning in nonstationary environments

with controlled forgetting,” in International Joint Conference on Neural Networks

(IJCNN 2009)., 2009, pp. 771–778.

[58] R. Elwell and R. Polikar, “Incremental learning of variable rate concept drift,” in

International Workshop on Multiple Classifier Systems, 2009, vol. 5519, pp. 142–

151.

[59] X. Li, Peipei; Wu, Xindong; Hu, “Mining Recurring Concept Drifts with Limited

Labeled Streaming Data,” in Proceedings of the 2nd Asian Conference on Machine

Learning (ACML2010), 2010, pp. 241–252.

[60] G. Ditzler and R. Polikar, “Semi-supervised learning in nonstationary

environments,” in Int. Joint Conf. on Neural Networks (IJCNN 2011), 2011, pp.

2741–2748.

[61] M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, “A Practical Approach

to Classify Evolving Data Streams: Training with Limited Amount of Labeled

Data,” in IEEE 8th Int. Conf. Data Mining (ICDM ’08), 2008, pp. 929–934.

[62] P. Zhang, X. Zhu, and L. Guo, “Mining Data Streams with Labeled and Unlabeled

Training Examples,” in IEEE 9th Int. Conf. Data Mining (ICDM ’09), 2009, pp.

8627–636.

96

[63] K. Bennett and A. Demiriz, “Semi-Supervised Support Vector Machines,” in

Proceedings of Neural Information Processing Systems, 1999, pp. 368–374.

[64] P. Zhang, X. Zhu, J. Tan, and L. Guo, “Classifier and Cluster Ensembles for

Mining Concept Drifting Data Streams,” in IEEE 10th Int. Conf. Data Mining

(ICDM ’10), 2010, pp. 1175–1180.

[65] G. Krempl, “The Algorithm APT to Classify in Concurrence of Latency and

Drift,” in Advances in Intelligent Data Analysis X SE - 22, vol. 7014, J. Gama, E.

Bradley, and J. Hollmén, Eds. Springer Berlin Heidelberg, 2011, pp. 222–233.

[66] M.Teichmann and M.Capps, “Surface Reconstruction with Anisotropic Density-

Scaled Alpha Shapes,” in Proc IEEE Visualization, 1998, pp. 67–72.

[67] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for

convex hulls,” ACM Trans. Math. Softw., vol. 22, no. 4, pp. 469–483, Dec. 1996.

[68] D. Pedoe, Circles: A Mathematical View, vol. 2. Dover Publications, 1979.

[69] H.Edelsbrunner and E.Mucke, “Three-Dimensional Alpha Shapes,” in

Assoc.Computing Machinery Trans.Graph., 1994, vol. 13, no. 1, pp. 43–72.

[70] O.Aichholzer, D.Alberts, F.Aurenhammer, and B.Gaertner, “Straight skeletons of

simple polygons,” in Proc. 4th Int. Symp. LIESMARS, 1995, pp. 114–124.

[71] K. B. Dyer and R. Polikar, “Semi-supervised learning in initially labeled non-

stationary environments with gradual drift,” in The 2012 International Joint

Conference on Neural Networks (IJCNN 2012), 2012, pp. 1–9.

[72] K. Dyer, R. Capo, and R. Polikar, “COMPOSE: A Semi-Supervised Learning

Framework for Initially Labeled Non-Stationary Streaming Data,” IEEE Trans.

Neural Networks Learn. Syst. Spec. issue Learn. Nonstationary Dyn. Environ.,

2014.

	COMPOSE: Compacted object sample extraction a framework for semi-supervised learning in nonstationary environments
	Recommended Citation

	tmp.1450379991.pdf.mHPg0

