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Abstract 
Daniel P. Rogers 

LIGNIN-DERIVED THERMOSETTING VINYL ESTER RESINS FOR HIGH PERFORMANCE 

APPLICATIONS 

2015 

Joseph F. Stanzione, III 

Master of Science in Chemical Engineering 

 

Vinyl ester (VE) resins are utilized to produce polymer matrix composites for use 

in a wide range of applications due to possessing relatively high moduli, strengths, and 

glass transition temperatures while maintaining low weight and cost. VE resins often 

contain high concentrations of a petroleum-based reactive diluent (RD), such as styrene. 

Many of the commonly used RDs have been designated as hazardous air pollutants, 

potential carcinogens, and volatile organic compounds. Renewable VE resins and RDs 

with similar performance to petroleum-based RDs are desired to potentially mitigate the 

aforementioned hazards as well as to facilitate the transition from petrochemical 

feedstocks to bio-based feedstocks. Lignin, which is an abundant renewable resource 

with a high aromatic content, has the potential to replace petrochemical feedstocks for 

VE resins and RDs. Lignin is produced in excess of 50x10
6
 tons annually as low value 

fuel for energy recovery, yet has the potential to produce high value chemicals and 

polymer precursors. In this work, a review of the literature was conducted in order to 

create multiple lignin-derived bio-oil mimics that were functionalized and subsequently 

polymerized to make high performance thermosetting plastics. In addition, lignin-derived 

compounds were investigated for use as RDs in a VE resin system to potentially reduce 

or eliminate the need for petrol derived RDs. The thermo-mechanical properties of all 

plastics were investigated via dynamic mechanical analysis and various structure property 

relationships are proposed. 
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Chapter 1 

Introduction 

1.1 Overview and Organization 

 Building a sustainable world is one of the most challenging and important projects 

of the 21
st
 century. The drive for a sustainable future has been fueled by the unintended 

environmental and economic consequences caused by rapidly growing societies and 

economies. One of the most promising prospects for a sustainable future is through the 

production of energy, fuels, and chemicals from biological resources in next generation 

biorefineries. In these biorefineries, petrochemical feedstocks are replaced with biomass, 

which is renewable, to produce the same or similar chemicals. Biorefineries are likely to 

be regional, were local resources are used as a feedstock.[1] In addition, biorefineries 

would provide a framework for the United States to produce industrial chemicals and 

polymers independently without the need for imports from other countries.[1] In 2005, 

the U.S. Department of Energy and Department of Agriculture predicted that biomass 

would be used as a feedstock in the production of 25 % of all chemical and materials by 

2030.[2] 

 In order to ensure the profitability and success of biorefineries, all biomass 

components (cellulose, hemicellulose, and lignin) need to be utilized.[3] A large hurdle 

for the success of these biorefineries is the use of lignin, which is a highly aromatic bio-

polymer that has received considerable attention in academia/industry for the production 

of aromatic specialty chemicals, polymers, and composites.[1, 3-11] Polymer and 

composite materials are traditionally derived from petrol feedstocks; however, there have 

been recent advances in the degradation and use of lignin-derived compounds for 
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thermosetting epoxy and vinyl ester resins (VERs) applications.[3, 7, 12-14] This thesis 

investigates the use of lignin as a sustainable feedstock for the production of vinyl ester 

thermosetting resins. In subsequent Chapter 1 sections, background information relevant 

to the work presented in this thesis is provided. A general introduction to thermosetting 

VERs is given, followed by an introduction to lignin. Motivation for the use of lignin as a 

feedstock for VERs is given along with information on lignin applications, 

delignification, and depolymerization. Lastly, a brief summary on the work presented in 

this thesis is provided. 

1.2 Vinyl Ester Resins 

 In 2008, the United States produced 58 million metric tons of polymers, with the 

largest majority being attributed to plastics (84 %).[15] In addition, production of 

polymers consumed 20 % of all the industrial organic chemicals produced in the U.S.[15] 

Polymers can be classified into two distinct categories: thermoplastics and 

thermosets.[15-17] Thermoplastic polymers will melt upon heating, producing a free 

flowing polymer network, and can be thermally processed. Thermosets have covalent 

bonds that connect polymer chains to produce intricate three dimensional polymer 

networks with infinite molecular weights. Thermosets do not melt upon heating, but are 

subject to decomposition at high temperatures and are insoluble in all solvents. 

Thermosetting resins account for approximately 25 % of all plastics produced and can be 

used to make plastics, elastomers, coatings, adhesives, inks, paints, cements, and 

composites.[17] 

A large class of thermosetting polymers is VERs, which are the focus of this 

thesis. VERs are used in a variety of composite applications and typically provide high 
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thermal stability, moduli (>2 GPa at 25°C), strength, glass transition temperature (Tg, 

>120 °C), chemical resistance, and low water absorption.[18, 19] Due to the high 

performance characteristics and low processing costs, these resins are often used in the 

construction, marine, and transportation industries.[20] Specifically, VERs are widely 

used in solvent storage tanks, pipes, and swimming pools.[19] Uncured VERs are 

characterized by having an ester group with a carbon-carbon double bond that is located 

at the end of the polymer chain.[21] Acrylate and methacrylate vinyl ester function 

groups are shown in Figure 1.  

 

 

 

 

(a) (b) 

Figure 1. Structure of (a) methacrylate and (b) acrylate vinyl ester functional groups. 

 

 

 

VERs were first commercialized by Shell Chemical Co. in 1965, with Dow 

Chemical Co. following shortly thereafter.[19] It is common for VERs to replace UPE 

resins because of their increased chemical resistance.[19] UPE resins typically have 

unreacted carbo- carbon double bonds, hydroxyl groups, and carboxylic acids after curing 

that are prone to hydrolytic, oxidation, and halogenation reactions, whilst VERs only 

have ester linkages at the end of the polymer chain.[19] The chemical structure of an 

UPE resin is shown in Figure 2.[19] 
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Figure 2. Example unsaturated polyester resin (UPE).[19] 

 

 

 

VERs can be synthesized by the reaction of an epoxy resin with either acrylic or 

methacrylic acid.[17-19, 22] An example of this is the synthesis of a commercial VER, 

VE828, through the methacrylation of diglycidyl ether of Bisphenol A (DGEBA), which 

is shown in Figure 3.[22] 

 

 

 

 

Figure 3. VE828 synthesis via the reaction between DGEBA and methacrylic acid, 

adapted from La Scala et al.[22] 

 

 

 

VE resins typically undergo bulk-free radical polymerization that is initiated with 

an organic peroxide or hydroperoxide; however, due to the high viscosity of VERs (long 

polymer backbone), a reactive diluent (RD), such as styrene, vinyl toluene, or methyl 
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methacrylate, is used to reduce the viscosity of the resin.[19, 22] Typically, the viscosity 

of VERs is reduced to 200-1000 cP prior to processing.[19] Upon curing, the RD and 

VER react together to form an intricate thermosetting polymer network.[17] Most RDs 

used in VERs are non-renewable; however, it is possible that, when functionalized, 

lignin-derived phenolic compounds can be used as renewable substitutes.[12] Using bio-

based material to develop renewable RDs would increase the total sustainable content of 

the cured vinyl ester plastic. In addition, lignin derivatives have the potential to produce 

low viscosity VERs, which have the potential to replace the need for many of the petrol-

derived VERs that are in production today.[12] 

1.3 Lignin 

 Lignin is a highly cross-linked, aromatic, amorphous biopolymer that has been 

considered one of the most important bioresources for the production of sustainable fuels 

and industrial chemicals in the 21
st
 century. Produced in excess of 2×10

10
 tons annually 

within the biosphere, lignin is the second most abundant biopolymer, behind cellulose.[5, 

7, 23, 24] Due to the fact that lignin is rich in aromaticity, it has the potential to produce 

high value chemicals and polymer precursors and has received considerable attention 

from industry and academia as a possible renewable feedstock that can reduce global 

dependence on fossil fuels.[1, 3, 4, 25, 26] In addition, lignin is produced in excess of 

50x10
6
 tons annually as a waste byproduct of paper mills, where most is burned as a low 

value fuel for energy production.[3] Due to the aromaticity of lignin, along with the fact 

that it is produced in large quantities industrially, lignin is an attractive feedstock for 

chemical applications.  
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Lignin is found within the cell walls of vascular plants and, on a dry basis, 

accounts for 15 to 36 % of woody biomass.[3, 27] It is formed via a radical based 

biosynthesis of p-coumaryl alcohol, guaiacyl, and syringyl.[4, 25] These chemicals, 

which are referred to as monolignols, are shown in Figure 4.[27] 

 

 

 

 

Figure 4. Chemical structure of monolignols: p-coumaryl alcohol R1=R2=H / coniferyl 

alcohol R1=OMe, R2=H / sinapyl alcohol R1=R2=OMe, adapted from Chakr et al.[27] 

 

 

 

Due to the enzyme initiated dehydrogenative polymerization mechanism, lignin 

has an amorphous structure in contrast to the repeating macromolecular structures of 

cellulose and hemicellulose.[1] There are many compositional models for the structure of 

lignin that can be found in the literature; however, it is accepted that lignin does not have 

a universally defined structure.[28] A general chemical structure of lignin is shown in 

Figure 5, which was adapted from Jia et al.[29] 
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Figure 5. General structure of lignin, which was adapted from Jia et al.[29] 

 

 

 

Prior to separation from cellulose and hemicellulose, lignin is referred to as 

protolignin.[1] The term lignin is normally used for isolated protolignin, which has 

chemical structure different than that of protolignin.[1, 4, 28] The most common 

phenylpropane linkage in lignin is β-O-4. The percentage of linkages in softwood 

protolignin are shown in Table 1, which was adapted from Chakar et al.[27] 
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Table 1. 

Estimated percentage of linkages in softwood protolignin, adapted from Chakar et 

al.[27] 

Linkage 
Percentage of Total 

Linkages 

β-O-4 45-50 

α-O-4 6-8 

β-5 9-12 

5-5 18-25 

4-O-5 4-8 

β-1 7-10 

β-β 3 

 

 

 

The exact chemical structure of lignin depends of a number of factors, some of 

which include the type of biomass, environmental conditions in which the protolignin 

was synthesized, and the type of delignification process used for separation.[4, 27] For 

example, the structure of lignin is highly dependent on the polysaccharide gel within the 

cell wall.[4] In addition, different types of biomass will have a varying concentration of 

p-coumaryl alcohol, guaiacyl, and syringyl units.[25] 

1.3.1 Delignification. The process of separating lignin from cellulose and 

hemicellulose in biomass is referred to as delignification. The first delignification process 

was designed in 1874 and utilized calcium-based sulfite liquors[1]. With the invention of 

the Tomlinson recovery furnace in the 1930s, the Kraft process was widely adopted, 

which as of 2004, accounted for the production of 95 % of all industrial lignin.[1, 7] The 

purpose of the Kraft pulping process is to remove an adequate amount of lignin to 

produce a pulp that can be used to manufacture paper products.[27] The Kraft process 

provides a notable improvement over the calcium-based sulfite pulp process due to the 

fact that cations and sulfur compounds can be recovered and reused.[1, 27] In addition, 
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99 % of lignin that is produced in the Kraft process is burned as a low value fuel for 

energy recovery.[1] 

 The Kraft process utilizes an aqueous solution of sodium hydroxide and sodium 

sulfide, which is referred to as white liquor.[1, 27] Wood chips are introduced into the 

white liquor and the bulk solution is heated and allowed to equilibrate at 150 to 170 °C 

for two hours.[27] During this period, the hydroxide and hydrosulfide anions will cleave 

phenylpropane linkages and produce hydroxyl groups, which increase the solubility of 

lignin in the alkali liquor.[27] The resulting alkali liquor after the lignin extraction is 

referred to as black liquor.[1, 27] The black liquor is typically evaporated down and 

burned for energy recovery.[1] Residual lignin is removed through subsequent bleaching 

techniques, as further alkali-based reactions will begin to significantly cleave 

carbohydrate bonds after a two hour time period.[27] Lignin can be recovered from the 

black liquor by acidification with carbon dioxide and sulfuric acid; however, Kraft lignin 

typically has a low, yet significant, sulfur content.[27] There are several studies that 

utilize Kraft lignin as a feedstock for the production of single aromatic chemicals.[13, 26, 

30-35] With improved technology, it may be possible to develop a cost effective process 

to recover and refine lignin from the black liquor in Kraft processes.[1] 

 Other methods of delignification include organosolv processes, which are solvent-

based. These processes utilize organic solvents and are characterized by higher 

efficiency, fewer byproducts, reduced emissions, and reduced capital costs when 

compared to alkali processes.[28] In addition, organosolv lignins are considered higher 

quality than Kraft lignins due to an increased concentration of phenyl hydroxyls and 

carbonyls, a decreased Tg that allows for easier thermal processing, and an absence of 



10 

 

sulfur.[36] Examples of organosolv processes include Alcell (ethanol), Acetosolv (acetic 

acid), Formacell (formic acid), and Organocell (methanol).[1] It is likely that next 

generation biorefineries will utilize organosolv delignification processes in order to 

produce lignins of higher quality as a feedstock for chemical applications. The ability to 

produce high quality lignins makes organosolv biorefineries economically viable.[37] In 

addition to chemical and solvent delignification processes, enzymatic delignification also 

has been investigated in academia.[1, 38-40] It is estimated that enzymatic delignification 

has the potential to be both efficient and environmentally friendly; however, significant 

progress is necessary in order for enzymatic delignification to be used to produce lignin 

on an industrial scale.[38] 

1.3.2 Lignin applications. As stated previously, the majority of lignin is burned 

as a low value energy source in the pulp and paper industry. However, with advances in 

lignin delignification technologies sparked by increased academic and industrial research, 

it is likely that there will be many profitable alternatives to using lignin as an energy 

source. In a 2008 review by Derek Steward, many applications for lignin-derived 

compounds were proposed, which span areas that include phenolic resins, epoxies, 

adhesives, and polyolefins.[41] High volume and low market value applications include 

biofuels and soil, asphalt, and fuel additives that would sell for approximately $100 per 

ton.[3] Low volume and high market value applications include resins, plastics, and 

specialty chemicals that could potentially sell for $11,000 per ton.[3] Currently, the cost 

of low grade lignin (Kraft black liquor) is about $50 per ton, while high purity lignin 

(organosolv) costs upwards of $800 per ton.[3] An example of a specialty chemical 

product that is derived from lignin is vanillin. The majority of vanillin was produced 
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from lignin derivatives in the 1980s, but due to the large amount of waste produced in the 

vanillin to lignin process, only 15 % of vanillin is produced in this manner (2004).[34] 

Today, the bio-refinement company Borreegaard is the only company to produce lignin-

derived vanillin on an industrial scale. In the near future, vanillin may be produced from 

Kraft lignin in an integrated process that can be implemented into paper mills.[35] 

1.3.3 Lignin depolymerization. In order to ensure the success of next generation 

lignocellulose biorefineries, it is essential that lignin be used for a higher value 

application than low value energy production. Due to the aromaticity of protolignin, 

lignin has the potential to become a feedstock for high value specialty chemicals and 

polymers when selectively depolymerized into single-aromatic or multi-aromatic 

compounds. One of the major barriers in the use of lignin as a chemicals and polymers 

feedstock is due to the cost effectiveness of depolymerization technologies. The 

heterogeneity of lignin, in addition to the variance in chemical structures of different 

types of lignin (due to the type of biomass and process used in delignification), make it 

difficult to depolymerize lignin on an industrial scale.[3] Technological developments in 

lignin depolymerization are beginning to emerge that will make lignin processing into 

specialty chemicals and polymers profitable.[3] 

Lignin can be selectively broken down by a variety of methods, which include 

pyrolytic, catalytic, enzymatic, oxidative, and fractionation techniques.[1, 3, 26, 30, 33, 

38, 39, 42-46] The most prominent lignin depolymerization method is pyrolysis, where 

lignin is heated to high temperatures (typically 400 K to 1000 K) at atmospheric pressure 

in the absence of oxygen. The main products of lignin pyrolysis are char, condensable 

gasses, and non-condensable gasses, all of which have the potential for profitable 
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applications.[3, 26] It was proposed by De Wild et al. that current, state of the art, 

industrial sized biomass pyrolysis reactors are not capable of effectively depolymerizing 

lignin.[3] However, the Energy Research Center of the Netherlands (ECN) has made 

recent advances and developed a lignin bio-refinery approach (LIBRA) process that is 

capable of pyrolyzing lignin continuously on a pilot scale.[3] Typical organic yields from 

this process range from 22 % to 29 % of dry lignin weight and typically contains 6-7 % 

of monomeric phenols.[3] Another challenge in the degradation of lignin is the cost 

effective refinement of the organic phase, often referred to as a lignin-derived bio-oil.[3] 

Technologies such as distillation, membrane separation, ultracentrifugation, and 

extraction may be needed in order to separate oligomers from single aromatic 

compounds.[3] 

In recent years, numerous studies have been conducted on the chemical 

composition of the condensable gases organic phase.[26, 30-33, 42-56] With recent 

advances in pyrolysis-gas chromatography-mass spectroscopy systems (Py-GC-MS), new 

light has been shed on the resulting lignin-derived bio-oil compositions for many 

different pyrolysis conditions and lignin types. Table 2 shows the pyrolysis conditions 

and lignin types for the lignin-derived bio-oil compositional studies used in this 

thesis.[26, 30-33] 
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Table 2. 

Delignification pyrolysis conditions for the studies utilized in this thesis 

Source Wood Types Delignification 

Process 

Fast 

Pyrolysis 

Catalyst 

Fast 

Pyrolysis 

Temp. (°C) 

[30] Information Not 

Given 

Kraft HZSM-5, 

FCC, Olivine 

470-560 

[26] Softwood Kraft MW Thermal 627-967 

[33] Pine, Milled 

Wood 

Kraft Information 

Not Given 

300-500 

[32] Alcell lignin, 

Asian lignin 

Organosolv & Soda 

Pulping Process 

Information 

Not Given 

400-800 

[31] Softwood, 

Hardwood 

Kraft Information 

Not Given 

575-700 

 

 

 

Information on why these studies were chosen can be found in Chapter 3 of this thesis. It 

should be noted that there are several other studies that investigate the composition of 

lignin-derived bio-oils.[42, 43, 45-56] 

1.4 Summary 

 In order to ensure the success and profitability of next generation sustainable bio-

refineries, all components of lignocellulosic biomass need to be utilized towards high 

value applications. The aromatic structure of lignin makes for a versatile feedstock that 

can be used to produce a variety of specialty chemicals, polymers, and fuels. Recent 

advances in delignification and lignin depolymerization technologies have opened the 

door for application based research geared towards producing sustainable, 

environmentally friendly, and profitable products. 

Chapter 3 is an extension of the work done by Dr. Stanzione, whereby 

methacrylated lignin bio-oil mimcs are utilized to produce sustainable thermosetting 

VERs. A review of the literature was conducted in order to generate multiple lignin-
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derived bio oil mimics. The mimics were functionalized and polymerized as a whole in 

order to investigate the use of lignin-derived bio-oils without the need for extensive 

separations. A follow-up to this research is presented in Chapter 4, where individual 

lignin model compounds were functionalized and utilized as RDs in a commercial VER, 

VE828. Chapter 5 concludes the work presented in this thesis and provides 

recommendations for future work. 
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Chapter 2 

Characterization Techniques 

2.1 Introduction 

The fundamental characterization techniques that were used in this thesis are 

discussed. The principles on which these techniques are based on, as well as relevant 

governing equations, are given. Specific information on how these instruments and 

techniques were utilized in experimental setups can be found in subsequent chapters. 

2.2 Nuclear Magnetic Resonance (NMR) 

 Nuclear magnetic resonance (NMR) spectroscopy was developed in the late 1950s 

and has since become one of the most important and useful tools to confirm or determine 

the structure of organic molecules. To do this, NMR spectroscopy takes advantage of 

radio-frequency radiation by nuclei and the nuclear transition from one energy level to 

another.[57] It can be used to determine the number and connectivity of hydrogen and 

carbon atoms through 
1
H-NMR spectroscopy and 

13
C-NMR spectroscopy, 

respectively.[57]  

 An atomic nucleus with an odd mass number and/or an odd atomic number has a 

nuclear magnetic moment, which is a result of its nuclear spin. Each nucleus has a 

specific spin state that is determined by the nuclear spin quantum number, I, based on the 

equation 2I + 1. For example, 
1
H, 

2
H, 

12
C, and 

13
C have nuclear spin quantum numbers of 

½, 1, 0, and ½, respectively, with 2I+1 spin states.[57, 58] A nucleus that has a nuclear 

spin quantum number of zero, for example 
12

C, has only one spin state and is therefore 

inactive in NMR spectroscopy. 
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 In the absence of a magnetic field, the orientation of each nucleus is random. 

When a magnetic field, B0, is applied to a nucleus, it will orient itself in one of its 2I + 1 

spin states, with the higher and lower energy state designated alpha (α) and beta (β), 

respectively. The lower energy state is when the nucleus is aligned with the magnetic 

field and the higher energy state is when the nucleus is aligned against the magnetic 

field.[57]  

The energy difference between the two energy states is proportional to the 

strength of the magnetic field, as shown in Equation 1,  

 ∆𝐸 = 𝛾
ℎ

2𝜋
𝐵0 (1) 

where γ is the gyromagnetic ratio (26,753 sec
-1

 for 
1
H) and h is Plank’s constant.[59] If a 

nucleus is irradiated with energy equal to the energy difference between the α and β 

energy states, the nucleus will can absorb a photon and flip into a different energy state. 

When the nucleus changes energy states, it is considered to be in resonance. The energy 

of a photon is shown in Equation 2,  

 ∆𝐸 = ℎ𝑣 (2) 

where 𝑣 is the frequency of its electromagnetic wave. Equations 1 and 2 can be combined 

to determine the frequency of the electromagnetic waves, which is also referred to as the 

resonance frequency of the nucleus (Equation 3).[59] 

 𝑣 =
1

2𝜋
𝛾𝐵0 (3) 

The number of protons in α and β energy states is given by the Boltzmann distribution as 

shown in Equation 4, 
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𝑁𝛽

𝑁𝛼
= 𝑒

−ℎ𝑣
𝑘𝑇  (4) 

where N represents the number of protons in the α or β energy state, k is Boltzmann’s 

constant, and T is absolute temperature. [57, 59] 

The electrons on each nuclei and neighboring nuclei generate an induced 

magnetic field that shields B0.[59] The magnetic field at the nucleus of an atom is less 

than B0; therefore, a stronger magnetic field is necessary in order for resonance to occur 

at a specific frequency. Depending on electrons in the nearby environment, a nucleus will 

be shielded by different amounts. For example, a proton bonded to an oxygen atom will 

be less shielded than a proton bonded to a carbon atom due to the electronegativity of the 

oxygen atom.[59] By measuring the strength of the magnetic field that is required for 

resonance, information on the number protons and the structure of the molecule can be 

determined.[59] In a NMR spectrum, nuclear resonance absorption is plotted versus 

chemical shift (ppm). The chemical shift is defined as the shift downfield form 

tetramethylsilane (Hz) divided by the total spectrometer frequency (MHz).[59] 

 Tetramethylsilane (TMS) is used as a reference compound because the protons on 

the methyl groups are highly shielded when compared to carbon based molecules. As a 

result, most organic compounds will appear downfield of the TMS peak. Molecules are 

often dissolved in deuterated solvents that have one spin state and are therefore inactive 

in NMR spectroscopy. Common solvents are dimethylsulfoxide, chloroform, and 

water.[59] 

2.3 Fourier Transform Infrared Spectroscopy (FTIR) 

 Fourier transform infrared spectroscopy is a powerful tool that can be used to 

detect the type of chemical bonds present within a molecule. The IR spectrum is 
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considered one of the more characteristic spectrums and is divided into three general 

regions; far IR, mid IR, and near IR.[59, 60] The wavelengths of these regions are 400-10 

cm
-1

, 4000-400 cm
-1

, and 14285-4000 cm
-1

, respectively.[59, 60] In order to obtain this 

spectrum, IR radiation is irradiated through the sample and the resulting frequencies that 

are absorbed are detected and measured at a given energy.[57, 60] The energy at a given 

frequency is due to the vibrational frequency of molecular bonds and groups within a 

molecule. 

 When a molecule is irradiated with IR radiation, the rotational and vibrational 

energy levels are changed.[59] In addition, different frequencies correspond to energy 

level changes within different functional groups. The change in energy level of each 

functional group can be quantified and detected by the spectrophotometric system. 

Energy level changes normally range from 2 to 10 kcal/mol.[60] In order for a functional 

group to absorb IR radiation, it must have a dipole moment.[57] A change in the dipole 

moment of a function group due to IR radiation causes stretching and bending vibrational 

frequencies. There are many different types of vibrational modes, which include 

stretching and bending. A change in bond length is classified as stretching and a change 

in bond angle is referred to as bending. Chlorine, oxygen, and nitrogen are examples of 

species that are inactive in IR spectroscopy due to the absence of a dipole moment.[59] 

 Traditional IR spectroscopy utilizes dispersive technology, whereby IR radiation 

is dispersed at all frequencies and only one frequency can be measured at a time.[60] As 

a result, extensive scan times are necessary to obtain an IR spectrum. FTIR utilizes an 

interferogram pattern, where a beam splitter is used to split the IR source into two parts, 

one of which is reflected and the other is transmitted.[60] For mid-IR systems, a KBr 
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beam splitter that is coated with germanium is used.[59, 60] The two beams travel 

different distances, which result in constructive or destructive interference patterns when 

recombined. The energy at each IR frequency is detected and quantified, resulting in an 

interferogram. The interferogram is in the time domain, so a Fourier transform is applied 

for conversion into the frequency domain to provide an interpretable spectra.[59, 60] In 

this thesis, near-IR spectroscopy was utilized to determine the extent of cure of all vinyl 

ester plastics. For the resins presented in this work, the near-IR region normally has fewer 

overlapping peaks than the mid-IR region. In addition, the near-IR peaks are of a lower 

intensity, which allows for the use of thicker samples.[59] Specifics on extent of cure 

calculations can be found in the experimental sections of Chapters 3 and 4. 

2.4 Gel Permeation Chromatography (GPC) 

 Gel permeation chromatography is a useful analytical tool in the polymer 

engineering field that can be used to determine the average molecular weight and 

molecular weight distribution of a polymer mixture.[61, 62] GPC is a form of size 

exclusion chromatography, where molecules are separated based upon their size when 

dissolved in solvent.[61, 62] It is common for polymers to swell differently when 

dissolved; therefore, it is necessary to report what standards and solvent were used in this 

technique. In GPC, the dissolved polymer, typically at a concentration of 2 mg/mL, is 

forced through a packed column at a flow rate of 1-2 mL/min.[61] The packed column is 

filled with highly porous beads with a pore diameter in the range of 10-10
7
 Å.[61, 62] A 

typical packing material is a styrene-divinylbenzene cross-linked gel. As the dissolved 

polymer flows through the packing material, smaller molecular chained molecules are 

hindered by the pores in the packing material. Larger molecules are too big to fit into 
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these pores and are therefore not hindered. Because of this, the larger molecules will elute 

through the column first, followed by the smaller molecules.[62] Many different 

detectors are utilized in order to monitor the concentration of polymer in the eluent, such 

as refractive index, ultraviolet light, or laser light scattering.[61] In this dissertation, a 

refractive index detector was used. The intensity of the refractive index can be plotted as 

a function of elution time to generate a chromatogram. This chromatogram can be 

compared to a known molecular weight distribution of a standard such as polystyrene, for 

example. 

2.5 Dynamic Mechanical Analysis (DMA) 

 Dynamic mechanical analysis (DMA) is a widely used rheological tool that 

measures the viscoelastic properties of materials as a function of time, temperature, and 

frequency. Generally, a sinusoidal force is applied to a sample and the response to the 

force is measured. The applied sinusoidal force is a function of amplitude (ε
0
), frequency 

(ω), and time (t), and is given by Equation 5.[63, 64] 

 𝜀 = 𝜀0sin(𝜔𝑡) (5) 

In viscoelastic materials, such as polymers and composites, there is a time delay, 

expressed as a phase angle (δ), between the applied sinusoidal strain force to the resulting 

stress response (σ). The stress response is given by Equation 6.[64] 

 𝜎 = 𝜎0cos(𝜔𝑡 + 𝛿) (6) 

The stress response can be expressed by in-phase and out-of-phase moduli, which are 

given by the real and imaginary parts of the stress response.[63] The in-phase storage 

modulus (Eʹ) is a measure of stored elastic energy during deformation and the out-of-



21 

 

phase loss modulus (Eʹʹ) is a measure of the heat lost during deformation.[64, 65] The 

equations for storage and loss modulus are given by Equations 7 and 8, respectively. 

 
𝐸′ =

𝜎0

𝜀0
cos(𝛿) 

(7) 

 
𝐸′′ =

𝜎0

𝜀0
sin(𝛿) 

(8) 

The complex Young’s modulus of viscoelastic materials is given by Equation 9, which is 

a sum of Eʹ and Eʹʹ.[65] 

 𝐸∗ = 𝐸′ + 𝑖𝐸′′ = √𝐸′2 + 𝐸′′2 (9) 

The storage modulus is often divided by the loss modulus to produce the loss tangent, 

which is given by Equation 10.[65] 

 𝐸′′

𝐸′
= tan(𝛿) 

(10) 

An example of a DMA thermogram that relates storage modulus and loss modulus to 

temperature is shown in Figure 6. 
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Figure 6. Example DMA thermogram that relates storage modulus and loss modulus to 

temperature. 

 

 

 

There are three general regions that a cross-linked amorphous polymer can exhibit[65]. 

The first region is the glassy region, where the polymer is glass like and brittle. The 

storage modulus in the glassy region is normally at a maximum due to strong 

intramolecular interactions between polymer chains.[65] After subsequent heating, the 

polymer enters the glass transition region, which is defined as the onset of coordinated 

bulk molecular movement of polymer chains.[65] The glass transition temperature can be 

defined as the temperature at which the loss modulus or loss tangent peaks.[65] The loss 

modulus normally peaks at lower temperatures that then loss tangent; therefore, the loss 
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modulus is used as a conservative glass transition temperature. During the glass 

transition, the storage modulus normally decreases by a factor of 1000. The final region is 

the rubbery region, where the storage modulus remains relatively constant.[65] Linear 

amorphous polymers will exhibit additional rubbery flow regions and liquid flow 

regions.[65] 
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Chapter 3 

Development and Characterization of Lignin-derived Bio-oil Mimic Resins for High 

Performance Applications 

 

3.1 Introduction 

In future biorefineries, lignocellulosic black liquor waste from the pulp and paper 

industry could be broken down into individual phenolic compounds through pyrolytic 

processes; however, extensive separation processes would be necessary to isolate the 

organic compounds that are produced.[3] In order to reduce separations costs, it is 

possible that the phenolic pyrolysis products could be used as is, without any 

modifications. Also, it is possible that the pyrolysis process could be tailored to produce 

desired organic products. For example, Choi and Meier produced a lignin-derived bio-oil 

without catechols by using selective zeolite catalysts, which could open the possibility of 

producing thermoplastic resins from such bio-oils with little modification.[30] In this 

study, lignin-derived bio-oils produced through fast pyrolysis processes are investigated 

for their potential use as a chemical source in the development of bio-based VERs 

without the need for extensive separations. 

Stanzione et al. investigated the use of lignin-derived bio-oils as a feedstock for 

thermosetting VERs by blending a bio-oil mimic based upon the composition of the bio-

oil created by Jegers et al.[12, 33] This chapter presents an extension of the work done by 

Stanzione et al., whereby lignin-derived bio-oils were investigated as a source for VERs. 

In this work, multiple lignin-derived bio-oil mimics were made to easily prove whether 

such bio-oils can be used to produce high performance plastics. The composition of each 

lignin-derived bio-oil mimic was determined based on five lignin-derived bio-oil 

compositional studies.[26, 30-33] These studies were selected because fast pyrolysis 
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techniques were utilized and detailed compositional analyses of the lignin-derived bio-oil 

products were provided. Each bio-oil was mixed and converted into a VER through a 

one-step methacrylation reaction with methacryloyl chloride. The resins were analyzed 

by 
1
H NMR spectroscopy, GPC, and FTIR. The thermomechanical properties of the 

functionalized bio-oil resins and plastics are reported and compared to both each other 

and a commercial VER equivalent. 

3.2 Experimental 

3.2.1 Materials. All chemicals were used as received. Guaiacol (≥99 %), catechol 

(≥99 %), 4-methylcatechol (98 %), p-cresol (≥99 %), vanillin (99 %), phenol (≥99 %)  

methacryloyl chloride (97 %, contains 200ppm monomethyl ether inhibitor), 

trimethylamine (99 %), dichloromethane (99.9 %, Optima™), tetrahydrofuran (99.9 %, 

ACS reagent grade), and hydrochloric acid (32 %) were purchased from Fisher Scientific. 

Sodium sulfate (≥99 %), 4-methylguaiacol (≥99 %), 4-ethylguaiacol (≥98 %), 4-

propylguaiacol (≥98 %), and 4-vinylguaiacol (≥ 98%) were purchased from Sigma-

Aldrich. Deuterated dimethyl sulfoxide (DMSO-d6) was purchased from Acros Organics. 

Compressed argon was purchased from Praxair (99.998 %). A mixture of 50 % trivalent 

organic chromium complexes and 50 % phthlate esters, AMC-2, was purchased from 

AMPAC Fine Chemicals (Rancho Cordova, CA) and used as a catalyst in the 

methacrylation of diglycidyl ether of bisphenol A (Epon 828). Epon 828 was purchased 

from Momentive (see Section 4.2.2). Trigonox® 239, which contains 45 % cumene 

hydroperoxide, was purchased from AkzoNobel Polymer Chemicals and utilized as a free 

radical initiator.  
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3.2.2 Lignin-derived bio-oil compositions. Lignin-derived bio-oils are 

characterized by having a high percentage of phenolic compounds. Also, many of the 

same phenolic compounds appear in high concentrations across multiple sources. Three 

lignin-derived bio-oil mimics were made by blending the phenolics that appear most 

often in the organic phase of lignin pyrolysis products. Figure 7 shows the phenolic 

compounds that were used to create the lignin-derived bio-oil mimics. Each chemical can 

be categorized into guaiacols, phenols, or catechols. Guaiacol type molecules include 

guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-propylguaiacol, 4-vinylguaiacol, and 

vanillin. Phenol type molecules include p-cresol and phenol. Catechol type molecules 

include catechol and 4-methylcatechol. 
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Figure 7. Phenolic chemicals that were utilized in creating the bio-oils presented in this 

thesis. 

 

 

 

The composition of lignin-derived bio-oil mimic 1 (BO1) was determined using 

the data from Farag, Jessop, and Chaouki (2014)[26], Choi and Meier (2013)[30], Jegers 

and Klein (1985)[33], and Shen, Lou, Wang, and Fang (2010).[31] Lignin-derived bio-oil 
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mimic 2 (BO2) was created by incorporating data from an additional lignin-derived bio-

oil study by Jiang, Nowakowski, and Bridgewater (2010).[32] These studies were 

selected because fast pyrolysis was utilized and detailed compositional analyses of the 

bio-oil products were provided. In addition, four of the five sources utilized lignin 

generated through the Kraft process and similar experimental conditions were used 

throughout. 

Although many of the same chemicals appear in high concentrations across 

multiple sources, there are variations in the type and concentration of chemicals in the 

pyrolysis products. In BO1 and BO2, the concentration of each oil phase pyrolysis 

phenolic product was averaged across all sources and conditions within each source. 

Compounds not present in a pyrolysis product were excluded from the average. Also, the 

number of times each compound appeared across every source was counted and is 

referred to as the count. An objective function was used in order to equally weigh the 

average concentration and the count of each compound, which is shown in Equation 11. 

 
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =

𝐴𝑉𝐺𝑤𝑡.%

𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑉𝐺𝑤𝑡.%
+

𝐶𝑜𝑢𝑛𝑡

𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝐶𝑜𝑢𝑛𝑡
 

(11) 

 

The compounds with the highest objective number were utilized in BO1 and BO2. Table 

3 shows the average weight percent and count of the chemicals with an objective greater 

than or equal to 1 for BO1. A similar table was made for BO2 and is shown in Table 4. 
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Table 3. 

Average weight percent, count, and objective number for the single aromatic molecules 

used to generate BO1 

 

Compound Average wt. % Count Objective 

Guaiacol 15.2 20 2.0 

4-Methylguaiacol 10.7 19 1.7 

Phenol 5.8 20 1.4 

4-Methylcatechol 8.0 17 1.4 

Catechol 7.9 16 1.3 

4-Ethylguaiacol 5.5 18 1.3 

4-Ethylcatechol 4.3 16 1.1 

4-Methylphenol 3.6 17 1.1 

2-Methylphenol 4.4 15 1.0 

4-Propylguaiacol 4.2 15 1.0 

4-Ethylphenol 3.1 16 1.0 

Syringol 12.8 3 1.0 

 

 

 

Table 4. 

Average weight percent, count, and objective number for the single aromatic molecules 

used to generate BO2 

 

Compound Average wt. % Count Objective 

4-Methylcatechol 8 17 0.9 

Guaiacol 11.4 30 1.5 

4-Vinylguaiacol 11.1 19 1.1 

4-Methylguaiacol 10.7 19 1.1 

4-Methylphenol 4.4 15 0.7 

Catechol 6.5 25 1.1 

4-Ethylguaiacol 5.5 18 0.8 

Phenol 4.3 30 1.2 

4-Propylguaiacol 4.2 15 0.7 

4-Ethylphenol 2.7 19 0.7 

o-Methylphenol 3.6 17 0.7 

4-Ethylcatechol 4.3 16 0.7 

5-hydroxyvanillin 24 4 1.1 

Syringol 7.9 13 0.8 
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4-ethylcatechol, 2-methylphenol, and 4-ethylphenol were excluded in BO1 due to 

the similarity in structure to phenolics of higher concentration. Instead, the weight 

percent of these compounds were added to compounds of similar structure. The weight 

percent of 2-methylphenol and 4-ethylphenol were added to 4-methylphenol, and the 

weight percent of 4-ethylcatechol was added to 4-methylcatechol. Syringol was not 

included in BO1 due to its low count, despite having a relatively high average weight 

percent. 

A similar procedure was used to create BO2, where the weight percents of 4-

ethylphenol and o-methylphenol were added to 4-methylphenol, and the weight percent 

of 4-ethylcatechol was added to 4-methylcatechol. Syringol and 5-hydroxyvanillin were 

excluded from BO2 because of low counts, despite having relatively high average weight 

percents, especially 5-hydroxyvanillin. Due to the fact that the average wt. % across all 

sources in BO1 and BO2 did not add up to 100 %, the weight percents were scaled 

appropriately in order for BO1 and BO2 to sum to 100 %. 

Lignin-derived bio-oil mimic 3 (BO3) was created based on Choi and Meier 

(2013), who used zeolite catalysts to produce a lignin-derived pyrolysis oil phase product 

without catechols.[30] Specifically, the catalysts were HZSM-5 (used in the pyrolysis 

processing of biomass[66-68]), FCC (commonly used in the refining of petroleum[69]), 

and Olivine (commonly used in tar cracking steam gasification processes[69]).[30] 

Levoglucosan, isoeugenol, acetoguaiacone, and 3-methylguaiacol were excluded from 

BO3 due to low concentrations and high costs. It is anticipated that due to their low 

concentrations, there would not be a significant effect on polymer properties. In addition, 

BO3 contains approximately 8 wt. % of acetic acid, which was not incorporated in BO3 
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and is anticipated to be easily separated industrially via techniques such as vacuum 

distillation.[12] The compositions of BO1, BO2, and BO3 are shown in Table 5. BO3 is 

characterized by the absence of catechols and the presence of 4-vinylguaiacol (the only 

crosslinking monomer). 

 

 

 

Table 5. 

Concentrations of all lignin-derived bio-oil mimics 

Compound BO1 wt. % BO2 wt. % BO3 wt. % 

Guaiacol 21 15 55.5 

4-Methylcatechol 17 16 0 

4-Methylguaiacol 15 14 15.7 

4-Methylphenol 15 14 0 

Catechol 11 8 0 

Phenol 8 6 2.0 

4-Ethylguaiacol 7 7 8.2 

4-Propylguaiacol 6 5 2.1 

4-vinylguaiacol 0 15 10.5 

Vanillin 0 0 6.0 

 

 

 

3.2.3 Synthesis of MLMCs. The phenolics in BO1, BO2, and BO3 were blended 

and methacrylated as shown in Figure 8. 
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Figure 8. Esterification reaction used to methacrylate lignin-derived bio-oil mimics. 
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methyl methacrylate, are not as reactive and require a catalyst with heating.[57, 59, 72] In 
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order to avoid the complications associated with the impurities in the work done by 

Stnazione et al., methacryloyl chloride was chosen.  

To 500 mL round bottom flasks, 25 g of each lignin-derived bio-oil mimic was 

dissolved in 60 mL of methylene chloride with a stoichiometric amount of 

trimethylamine. Each reaction flask was placed in an ice bath. A 1.05 molar excess of 

methacryloyl chloride was dissolved in methylene chloride (1:1 weight ratio) and added 

drop wise to the dissolved bio-oil under an argon atmosphere. The mixture was subject to 

vigorous mixing throughout the dropping process. As methacryloyl chloride reacts with 

the phenolics, hydrochloric acid is formed, which forms a trimethylamine-HCl salt 

precipitate.  

Subsequent washes with sodium hydroxide (2.5M) and hydrochloric acid (1M) 

were performed before drying over sodium sulfate and concentrating under reduced 

pressure. A methacrylated bio-oil is referred to as MBO, where MBO1, MBO2 and 

MBO3 represent the methacrylated versions of BO1, BO2, and BO3, respectively. 

MBO1, MBO2, and MBO3 were characterized by means of 
1
H NMR (400.13 

MHz, 16 scans at 298.2K) using a Varian Mercury 400 MHz Nuclear Magnetic 

Resonance System. The 
1
H NMR of each individual methacrylated compound was 

compared to the 
1
H NMR of each MBO. FTIR spectroscopy characterization was 

performed on a Nicolet 6700 FTIR. In the mid-IR range, 32 cumulative scans were taken 

at a resolution of 2 cm
-1

. Also, gel permeation chromatography (GPC) was performed 

using a Waters 2695 GPC fitted with Waters Styragel HR4, HR2, and HR1 columns in 

series using Optima™ THF (1 mL min
-1

) as the mobile phase. A Waters 2414 Refractive 

Index Detector was used and GPC samples were prepared in a concentration of 2 mg/mL. 
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3.2.4 Resin curing. Each MBO was free radically polymerized using Trigonox® 

239 (1.5 wt % of total resin mass) as a free radical initiator.[13, 73, 74] The resins were 

degassed until no visible bubbles remained, transferred into a silicone rubber mold, and 

purged with argon for 20 minutes. All MBOs were cured at 90 °C for 4 hours with a 

subsequent post cure at 160 °C for 2 hours. The plastics were allowed to cool overnight 

to room temperature before removal from the vacuum oven. 

3.2.5 Extent of cure. Near-infrared (near-IR) spectra of the uncured and cured 

MBO resins were obtained using a Nicolet iS50 FT-IR in order to determine the extent of 

cure of the plastics. Near-IR spectra were taken in the 4000-7000 cm
-1

 range with 32 

cumulative scans at a 2 cm
-1

 resolution. The cured plastics (typically of 3-4 mm 

thickness) were cleaned with acetone and dried thoroughly before the near-IR spectra was 

taken. The MBO resins were placed in a glass vessel with a thickness of 3 mm when 

obtaining the near-IR spectra. The extent of cure was measured by calculating the percent 

decrease of the methacrylate bond (6165 cm
-1

) after curing.[12] The phenol group peak 

(4623 cm
-1

) was used as an internal standard because it is not affected by the cure. 

Equation 12 was used to calculate the extent of cure for each MBO resin. ABSwavelength 

refers to the peak height at the subscripted wavelength. 

 

𝑋 =

(
𝐴𝐵𝑆6165𝑐𝑚−1

𝐴𝐵𝑆4263𝑐𝑚−1
)
𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑

− (
𝐴𝐵𝑆6165𝑐𝑚−1

𝐴𝐵𝑆4263𝑐𝑚−1
)
𝑟𝑒𝑎𝑐𝑡𝑒𝑑

(
𝐴𝐵𝑆6165𝑐𝑚−1

𝐴𝐵𝑆4263𝑐𝑚−1
)
𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑

 

(12) 

 

3.2.6 Polymer properties. Dynamic mechanical analysis (DMA) was used to 

determine the thermo-mechanical properties of each thermoset, which includes the glass 

transition temperature (Tg), storage modulus (Eʹ) at 25 °C, rubbery temperature, rubbery 
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Eʹ, and effective molecular weight between crosslinks (Mc). Mc was calculated using 

Equation 16, 

 
𝑀𝑐 =

3𝑅𝑇𝜌

𝐸
 

(16) 

where R is the ideal gas constant, T is absolute temperature, and ρ is the sample density at 

room temperature. The rubbery Eʹ  and T were defined as the point at which the storage 

modulus increases with increasing temperature, in the rubbery region.[75] The density of 

the polymer was determined using Archimedes’ principle at room temperature.[76] 

Typical DMA sample dimensions were 35 x 12 x 3 mm
3
 and a single cantilever geometry 

was used. The temperature was increased from 0 to 250 °C at a rate of 2 °C per minute, 

while oscillating at 1 Hz with a 7.5 µm deflection. A Poissons ratio of 0.35 was used. 

3.3 Results and Discussion 

3.3.1 Resin characterization. After aqueous washing purification, MBO1 and 

MBO2 are transparent liquids with a yellow hue, while MBO3 is a clear, colorless liquid. 

The 
1
H NMR spectra for MBO1, MBO2, and MBO3 are shown in Figure 9, Figure 10, 

and Figure 11, respectively. The numbers on each peak correspond to the methacrylated 

compound numbers that are shown in Figure 8. 
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Figure 9. 
1
H NMR spectra of MBO1 after aqueous washing. The peak labels correspond 

to the methacrylated compound numbers in Figure 8. 
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Figure 10. 
1
H NMR spectra of MBO2 after aqueous washing. The peak labels correspond 

to the methacrylated compound numbers in Figure 8. 
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Figure 11. 
1
H NMR spectra of MBO3 after aqueous washing. The peak labels correspond 

to the methacrylated compound numbers in Figure 8. 

 

 

 

The methacrylation reaction utilizes excess methacryloyl chloride and 

triethylamine in dichloromethane. Unreacted phenolics, methacryloyl chloride, and 

triethylamine-HCl salts are removed through aqueous washing, which was confirmed via 

1
H NMR analysis. Excess triethylamine and dichloromethane are evaporated off during 

the drying procedure. Based on the 
1
H NMR spectra of each methacrylated phenolic 

present in MBO1, MBO2, and MBO3, all peaks are accounted for in Figure 9, Figure 10, 

and Figure 11, except the peaks labeled “oligomers”. When compared to the methacrylic 

anhydride methacrylation route, the resulting MBO resin does not contain unreacted 

phenolics, methacrylic anhydride, methacrylic acid, or methacrylated inhibitors 
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present.[12] These impurities in methacrylated bio-oils synthesized via methacrylic 

anhydride have been reported to sum to approximately 14 mol %.[12]  

The oligomers are hypothesized to form during the methacryloyl chloride 

methacrylation reaction due to small pockets of heat that spark the auto-polymerization of 

all methacrylates present. The auto-polymerization is thought to be readily terminated as 

the small pocket cools back to the bulk reaction temperature (ice bath conditions) and the 

radical is suppressed. In a study by Rojo et al., oligomers were formed when 

methacrylating eugenol with methacryloyl chloride under similar reaction conditions.[77] 

In order to determine the approximate molecular weight of MBO1, MBO2, and 

MBO3, GPC was performed. Figure 12 shows the GPC trace for MBO1, MBO2, MBO3, 

and polystyrene standards. 

  



40 

 

 

Figure 12. GPC trace for MBO1, MBO2, MBO3, and polystyrene standards. The number 

average molecular weights for the polystyrene (PS) standard are: a - 532,000 Da, b - 

59,300 Da, c - 8,650 Da, and d - 492 Da. 

 

 

 

For MBO1, MBO2, and MBO3, the GPC traces show that the molecular weights 

are less than 400 g/mol when compared to polystyrene standards. The GPC column was 

not able to provide adequate separation in order to determine exact molecular weights, 

but approximations can still be made. The predicted retention time of methacrylated 4-

methylcatechol (M-4MC) was compared to the GPC traces of MBO1, MBO2, and MBO3 

(Figure 13). The predicted retention time of M-4MC was determined using a standard 

curve generated from pure methacrylated phenol (MP), methacrylated guaiacol (MG), 

and methacrylated 4-propylguaiacol (M4PG, see Chapter 4 for synthesis) GPC traces. 

The standard curve can be found in Appendix C (Figure 36). 
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Figure 13. The GPC traces of MBO1, MBO2, and MBO3 are shown. The predicted 

retention time of methacrylated 4-methylcatechol (the highest MW methacrylated lignin 

model compound) is given by the vertical line at a retention time of 28.3 minutes. The 

peaks represented by * are hypothesized to be “oligomers”. 

 

 

 

The small peaks, represented by *, on the MBO1, MBO2, and MBO3 traces are 

hypothesized to signify “oligomers”. The predicted M-4MC retention time is 

hypothesized to not be at the local minimum after the oligomer (*) peak due to error 

within the standard curve. The R
2
 value for the standard curve was found to be 0.8627 

and was generated with three data points. In addition, the GPC columns utilized are 

designed for high molecular weight polymers and not single aromatic monomers. 

Overall, the GPC data shows that there are no high molecular weight polymer chains 
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present in MBO1, MBO2, and MBO3. In order characterize the “oligomers”, future 

experimentation involving TLC, flash chromatography, HPLC, and subsequent proton 

and carbon NMR of isolated “oligomers” are recommended. 

3.3.2 Extent of cure. Photos of MBO1, MBO2, and MBO3 are shown in Figure 

14. 

 

 

 

                 

        (a)                 (b)                   (b) 

Figure 14. Photos of cured (a) MBO1, (b) MBO2, and (c) MBO3. 

 

 

 

When polymerized, MBO1, MBO2, and MBO3 are hard, transparent plastics. 

MBO1 and MBO2 have a yellow hue, similar to that of their respective resins; however, 

MBO3 has an orange hue that is in contrast to its colorless resin. The yellowish hues are 

due to Trigonox 239, which was used as an initiator in the polymerization reactions. The 

near-IR spectrum of each MBO resin and cured MBO resin was obtained and are shown 

in Figure 15. 
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Figure 15. Near-IR extent of cure for MBO1, MBO2, and MBO3. The methacrylate C=C 

bond peaks are labeled * and the =CH2 peaks are labeled **. 
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extent of cure (Equation 12) for each MBO can be found in Table 6. 
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Table 6. 

Extent of Cure for MBO1, MBO2, and MBO3 

System Extent of Cure (%) 

MBO1 89.5 ± 0.8 

MBO2 88.0 ± 1.6 

MBO3 94.7 ± 1.2 

 

 

 

The extents of cures are similar to what was reported by Stanzione et al, whom reported 

an extent of cure of 92.9 % ± 0.8 for their MBO.[12] MBO2 has a slightly lower extent of 

cure at 88.0 %, while MBO3 has a slightly higher extent of cure at 94.7 %. It is possible 

the discrepancy between each MBO, including the MBO reported in Stanzione et al, is 

related to the amount of crosslinking monomers present. MBO 2 has the highest percent 

of crosslinking monomers at 38 mol % and has the lowest extent of cure. MBO1 has a 

lower percent of crosslinking monomers at 29 mol % and has a higher extent of cure than 

MBO2. This trend continues for MBO3 and is also consistent based on the bio-oil from 

Stanzione et al.[12] With a higher concentration of crosslinking monomers, the curing 

resin becomes diffusion limited quicker into the cure, and therefore the extent of cure is 

reduced.[78] Although there is a slight discrepancy in the extent of cure of each MBO 

cured resin, all are considered high, which ensures robust polymer properties that are 

minimally affected by low extent of cures. In the future, cure kinetics will be studied in 

order to confirm the extent of cure obtained via near-IR. 

3.3.3 Polymer properties. DMA was used to determine the thermo-mechanical 

properties of MBO1, MBO2, and MBO3, which includes glass transition temperatures 

(Tgs), storage moduli (Eʹs) at 25 °C, rubbery temperatures, rubbery Eʹs, and the effective 

molecular weights between crosslinks (Mcs). The storage and loss moduli of MBO1, 
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MBO2, and MBO3, are plotted as a function of temperature in Figure 16. Table 7 shows 

the thermo-mechanical properties for MBO1, MBO2, and MBO3. The storage modulus is 

a measure of stored energy and the loss modulus represents the heat lost during a loading 

cycle.[65] Tan δ is defined as the ratio of the loss modulus to the storage modulus and 

represents the damping factor or loss tangent.[65] 

 

 

 

 

Figure 16. DMA results for MBO1, MBO2, and MBO3. 
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Table 7. 

Thermo-mechanical properties of MBO1, MBO2, and MBO3  

 

 

 

System 
E′ at 25 

(GPa) 

E′(T) 

Inflection 

(°C) 

Peak of E″ 

(°C) 

Peak of tan δ 

(°C) 

Rubbery 

E′ 

(MPa) 

rubbery T 

(°C) 

ρ at 25 °C (g 

cm
-3

) 

eff. Mc 

(g mol
-1

) 

MBO 1 3.0 ± 0.2 124.2 ± 2.2 126.7 ± 3.0 151.8 ± 4.2 12.1 ± 3.2 201.8 ± 4.2 1.2 ± 0.00 1270 ± 303 

MBO2 3.3 ± 0.1 129.8 ± 1.2 128.8 ± 0.6 157.4 ± 0.6 40.7 ± 4.2 207.4 ±0.6 1.2 ± 0.00 356 ± 35 

MBO 3 3.6 ± 0.1 98.6 ± 0.5 100.4 ± 0.6 122.04 ± 0.6 9.8 ± 0.6 172.0 ± 0.6 1.3 ± 0.04 1463 ± 107 

Stanzione et 

al. MBO [12] 
3.2 ± 0.3 116 ± 1.7 115 ± 0.3 140 ± 0.1 5.0 ± 0.4 200 ± 23 1.219 ± 0.00 2882 ± 11 
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The Eʹs of MBO1, MBO2, and MBO3 at 25 °C are 3.0 ± 0.2 GPa, 3.3 ± 0.1 GPa, 

and 3.6 ± 0.1 GPa, respectively. The storage modulus reported by Stanzione et al. was 3.2 

± 0.3 GPa.[12] Generally, as the concentration of methoxy substituents increases, the 

storage modulus increases. MBO3 has the highest storage modulus where 97 mol % of 

the methacrylated phenolics have a methoxy group, while 44 mol % of the methacrylated 

phenolics in MBO1 have a methoxy group. In MBO2 and the MBO reported by 

Stanzione et al., 50 mol % and 72 mol % of the methacrylated phenolics have methoxy 

groups, respectively. The MBO reported by Stanzione et al. does not follow the trend in 

this study; however, it contains unreacted phenolics, methacrylic anhydride, methacrylic 

acid, and methacrylated topanol A that may have an effect on the storage modulus.[7, 78] 

When compared to a commercial VER, 1:1 VE828:St (see Chapter 4), the storage 

modulus of each MBO is higher due to the presence of the methoxy groups. The 

heightened Eʹ at 25 °C is a result of enhanced hydrogen bonding due to the methoxy 

group.[79] 

The loss modulus curves of MBO1, MBO2, and MBO3, as well as the MBO 

reported by Stanzione et al., display beta relaxations between 15-70 °C. This relaxation is 

caused by the gradual diminishment of hydrogen bonding and van der Waals attractions, 

which releases heat and, therefore, appears as a slight peak in loss modulus curves.[80] 

Hydrogen bonding is enhanced by the methoxy group that is present on guaiacol, 4-

methylguaiacol, 4-ethylguaiacol, 4-propylguaiacol, and 4-vinylguaiacol.[72]  

Using the theory of rubber elasticity, the effective molecular weights between 

crosslinks were determined.[75] The rubbery modulus was defined as the Eʹ at the local 

minimum within the rubbery region, which was between 171 °C and 203 °C for MBO1, 
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MBO2, and MBO3. The Mc values for MBO1, MBO2, and MBO3 were 1270 ± 303, 356 

± 35, and 1463 ± 107 g/mol, respectively. It is expected that the Mcs would decrease with 

an increasing concentration of crosslinking monomers. The Mc data for the cured MBO 

resins follow this trend; however, it is expected that MBO1 and MBO3 would have a 

larger difference between Mc values due to the difference in crosslinking monomers 

Within experimental error, there is not a clear difference in Mc values when comparing 

MBO1 and MBO3, although there is a 20 mol % difference in crosslinking monomers. 

The theory of rubber elasticity assumes that the plastic is lightly crosslinked, there are no 

intramolecular cyclizations, and all functional groups are equally reactive.[75] The 

similarity in the Mcs could be due to intermolecular cyclization occurring in MBO1 and 

not in MBO3. MBO1 has a higher concentration of di-functional molecules that have 

functional groups ortho to each other, which is hypothesized to increase the probability of 

intramolecular cyclization. This hypothesis is supported by experiments presented in 

Stanzione’s Ph.D. thesis.[72] Intramolecular cyclization causes the di-functional 

molecule to act as a chain extender instead of a crosslinking agent, which can be seen in 

Figure 17 (adapted from Ohya et al.).[81]  
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Figure 17. Intramolecular cyclization of methacrylated catechol, adapted from Ohya et 

al.[81]  

 

 

 

An increase in intramolecular cyclization would increase the molecular weight 

between crosslinks. Also, MBO2 and MBO3 contain 4-vinylguaiacol, which has a 

styrenic vinyl group that is known to have a curing reactivity that is higher than 

methacrylate vinyl ester groups.[82, 83] Future experiments are recommended in order to 

quantify the styrenic vinyl reactivity using FTIR spectroscopy in MBO2 and MBO3. 

Intermolecular cyclization also affects the polymer network by adding a bulky side 

group, the double ring structures that are formed, which physically and 

thermodynamically force greater separation between polymer chains. 

In this study, Tg was based on the peak of the Eʹʹ curve, which is quantitatively 

similar to the inflection of the Eʹ curve. The Tg is often predicted by the peak of the tan δ 

curve; however, the tan δ Tg is normally higher than that of the Eʹʹ and Eʹ curve. 

Therefore, the peak of the Eʹʹ curve was used as a conservative value. The Tg data for 
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MBO1, MBO2, and MBO3 show that as the concentration of crosslinking monomers 

increases, the Tg increases. However, it is expected that a 9 mol % increase in 

crosslinking monomers between MBO1 to MBO2 would raise the Tg of the plastic by 

more than approximately 5 °C. To explain this, it is possible that the styrene vinyl on 4-

vinylguaiacol has a marginal effect on the extent of crosslinking within the plastic; 

however, the low Mc for MBO2 implies that there is a significant increase in the amount 

of crosslinking when compared to MBO1. Also, intermolecular cyclization could be 

occurring; however, MBO1 has a slightly higher concentration of catechol and 4-

methylcatechol.  

Another explanation for the slight increase in Tg from MOB1 to MBO2 is through 

the presence of oligomers. Through 
1
H NMR analysis, it can be seen that each MBO has 

oligomers. It was not possible to definitively quantify the extent at which oligomerization 

occurred in each bio-oil; however, it is possible that MBO2 has a greater concentration of 

oligomers than MBO1 (see Figure 9 and Figure 10). Oligomers within the MBO resin 

are expected to act as plasticizers and therefore decrease the Tg of the cured plastic, 

assuming the reactive functionalities are less than two. If MBO2 has a higher 

concentration of oligomers than MBO1, the resulting Tgs would be closer in magnitude 

that what would be expected. Overall, the Tgs of MBO1 and MBO2 are comparable to 

that of a commercial VER, 1:1 VE828:St, which has a Tg of approximately 134 °C (see 

Chapter 4). 

The heterogeneity of a polymer can be qualitatively determined through the 

broadness of the tan δ thermogram. In addition, a broad tan δ thermogram implies that the 

polymer exhibits a broader glass transition region.[84] For all MBO polymers, the width 
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of the tan δ peaks remains relatively constant, as shown in Figure 18. For the MBO 

polymers, as the number of crosslinking agents within the polymer is increased, the tan δ 

peak height decreases. This suggests that increasing the number of crosslinking agents 

within the MBO resin increases elastic behavior in the resulting plastic. This trend was 

observed in a study by Scott et al. with a bisphenol-A diglycidyl ether dimethacrylate : 

styrene blend.[78] 

 

 

 

 

Figure 18. Tan δ results for MBO1, MBO2, and MBO3 as a function of temperature. 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160 180 200 220

T
a

n
 D

el
ta

Temperature ( C)

MBO1

MBO2

MBO3



 

52 

 

3.4 Conclusions 

In this work, three lignin-derived bio-oil mimics, which include guaiacols, 

catechols, and phenols, were generated using five literature sources.[26, 30-33] All 

sources utilized a fast pyrolysis process and four of the five sources started with a Kraft 

lignin feedstock, with the other using an Organosolv lignin feedstock. In order to 

generate a representative lignin-derived bio-oil concentration based upon multiple 

studies, the average concentration across all sources and the number of instances a 

phenolic appeared were equally weighed and taken into account. The first bio-oil utilized 

four of the five sources, the second utilized all five sources, and the third was based on 

Choi et al. Each bio-oil was methacrylated using methacryloyl chloride via an 

esterification reaction. Due to the qualitative low viscosity of each MBO, it may be 

suitable for use as a reactive diluent in vinyl ester resins. Curing the resin resulted in 

hard, transparent plastics that had properties that are similar to that of their commercial 

counterparts. Also, various structure property relationships have been observed. As the 

concentration of methoxy groups increased, the storage modulus of the cured BO resin 

increased. Also, as the concentration of crosslinking monomers increased, the Tg 

increased. With increased research focus on the development and composition of lignin-

derived bio-oils, this study has shown that it is possible to make viable vinyl ester 

thermosetting resins without the need to separate individual phenolic compounds. Also, 

this study has shown the variation in vinyl ester thermosetting plastic properties across 

multiple bio-oils of different phenolic concentrations.  
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Chapter 4 

Methacrylated Lignin Model Compounds for use as Reactive Diluents in Vinyl Ester 

Resins 

 

4.1 Introduction 

In this study, three lignin model compounds (LMCs), phenol, guaiacol, and 4-

propylguaiacol, were methacrylated and blended with a standard equivalent of a 

commercial vinyl ester resin (bismethacryl glycidyl ether of bisphenol A epoxy, VE828). 

These phenolic molecules were chosen because of their relatively high abundance in 

lignin-derived bio-oils (refer to Chapter 3), as well as their representative chemical 

structures.[26, 30, 31] Guaiacol and 4-propylguaiacol are guaiacol type molecules; where 

the difference between the two is that 4-propylguaiacol contains a propyl group para to 

the hydroxyl group. Phenol is a coumaryl-type molecule and does not have carbon chain 

substituents. Syringryl type molecules were not investigated due to their low reactivity 

and high expense; however, syringol is recommended in future studies to compliment this 

study.[72] Choosing phenol, guaiacol, and 4-propylguaiacol as the LMCs will provide 

insight into the effect of the methoxy group and the propyl group on the efficacy for these 

molecules to act as RDs in VERs. 

The LMCs selected for this study were methacrylated utilizing an esterification 

reaction and purified through aqueous washes and subsequent column chromatography. 

Pure (≥97.5 mol %) methacrylated lignin model compounds (MLMCs) were blended 

with VE828 in a 1:1 weight ratio and bulk free radically polymerized to produce hard 

thermosets. The reactive diluent synthesis methods, as well as the extent of cure and vinyl 

ester polymer properties, are reported. In addition, styrene was utilized as a reactive 

diluent in a commercial VE828 resin for comparative purposes. 
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4.2 Experimental 

4.2.1 Materials. Phenol (≥99 %), guaiacol (≥99 %), dichloromethane (99.9 %, 

Optima™), hexanes (99.9 %, certified ACS), ethyl acetate (99.9 %, certified ACS), 

styrene (inhibited with 10-15 ppm 4-tert-butylcatechol),  and hydrochloric acid (32 %) 

were purchased from Fisher Scientific. Sodium sulfate (≥99 %), 4-propylguaiacol (≥98 

%), methacrylic anhydride (94 %, contains 2000 ppm Topanol A inhibitor), and 4-

dimethylaminopyridine (DMAP, 99 %) were purchased from Sigma-Aldrich. Deuterated 

dimethyl sulfoxide (DMSO-d6) and deuterated chloroform (CDCl3) were purchased from 

Acros Organics. Compressed argon was purchased from Praxair (99.998 %).  A mixture 

of 50 % trivalent organic chromium complexes and 50 % phthlate esters, AMC-2, was 

purchased from AMPAC Fine Chemicals (Rancho Cordova, CA) and used as a catalyst in 

the methacrylation of diglycidyl ether of bisphenol A (Epon 828). Epon 828 was 

purchased from Momentive. Trigonox® 239, which contains 45 % cumene 

hydroperoxide, was purchased from AkzoNobel Polymer Chemicals and utilized as a free 

radical initiator. 

4.2.2 Synthesis of vinyl ester resin. Bismethacryl glycidyl ether of bisphenol A 

epoxy (VE828) was synthesized through the reaction of diglycidyl ether of bisphenol-A 

(DGEBA/EPON828) and methacrylic acid, as shown in Figure 19.  
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Figure 19. Synthesis of VE828 from DGEBA and methacrylic acid in the presence of 

AMC-2 catalyst at 80-90 °C, adapted from La Scala et al.[22] 

 

 

 

The epoxy equivalent weight (EEQ) was 190 g/Eq and was determined using 

ASTM D1652. The molecular weight of Epon 828 is 340 + 284n, with n calculated to be 

0.14. Approximately 500 g of Epon 828 was poured into a 1000 mL three necked round 

bottom flask. Methacrylic acid was added in the amount of 1.01 times the stoichiometric 

value and AMC-2 was added in the amount of 1.0 wt. % of the DGEBA. Using a 

mechanical mixer, the reaction solution was mixed at room temperature until 

homogeneous and subsequently heated to 70 °C. After the onset of an exotherm, the 

reaction mixture was kept at approximately 90 °C. In order to monitor the reaction, an 

ASTM acid number titration, as described in La Scala et al., was utilized.[18, 22] The 

reaction was allowed to progress until the acid number was below 10.[22] An acid 

number of 7.2 was achieved for the VE828 used throughout this thesis. In addition, FTIR 

was used to determine the extent of reaction. FTIR spectroscopy characterization was 

performed on a Nicolet 6700 FTIR and can be found in Figure 20. In the mid-IR range, 

32 cumulative scans were taken at a resolution of 2 cm
-1
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Figure 20. Mid-IR spectra of Epon and VE828 with * representing hydroxyl groups and 

** representing carbonyl groups. 

 

 

 

Epon 828 and VE828 were further analyzed using gel permeation chromatography 

(GPC), which can be seen in Figure 21. Experiments were performed using a Waters 

2695 GPC fitted with Waters Styragel HR4, HR2, and HR1 columns in series using 

Optima™ THF (1 mL min
-1

) as the mobile phase. A Waters 2414 Refractive Index 

Detector was used and GPC samples were prepared at a concentration of 2 mg/mL. 
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Figure 21. GPC trace for VE828 and Epon 828, with * representing n=1 and ** 

representing n=0. 

 

 

 

Epon 828 has two peaks, with the first peak (25.9 min) being when n = 1 and the 

second peak (27.9 min) being when n = 0 (refer to Figure 19). After methacrylation, the 

peaks shift forward due to an increase in molecular weight. The absence of a broad peak 

indicates that homopolymerization of the epoxy functional groups did not occur.[22] The 

number average molecular weight (Mn) and weight average molecular weight (Mw) of 

VE828 were determined by comparison to polystyrene standards and through 
1
H NMR 

analysis (Table 8). The 
1
H NMR spectra for VE828 can be found in Appendix A. 
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Table 8. 

Experimentally determined molecular weights of VE828 on the bases of GPC and 
1
H 

NMR 

Resin 
GPC Exp. Mn 

(g/mol) 

GPC Exp. Mw 

(g/mol) 

Exp. 
1
H NMR Mn 

(g/mol) 
1
H NMR n 

VE828 654 564 578 g/mol 0.237 

 

 

 

 The procedure outlined in La Scala et al. was used to calculate the Mn of VE828 

through 
1
H NMR analysis.[22] The difference in molecular weights between GPC and 

1
H 

NMR is likely due to the GPC polystyrene standard curve. The low molecular weight PS 

standard at 492 g/mol is a group of peaks that span approximately 3 minutes, which 

introduces error into the calibration curve. In addition, the VE828 resin may swell 

differently than polystyrene in THF.[18] 

4.2.3 Synthesis of MLMCs. Phenol, guaiacol, and 4-propylguaiacol were 

methacrylated (Figure 22) and purified through aqueous washes and flash 

chromatography.  
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Figure 22. Reaction of lignin model compounds with methacrylic anhydride to produce 

methacrylated lignin model compound monomers. 

 

 

 

In a 500 mL three necked round bottom flask, 50 g of LMC was reacted with 1.05 

times the stoichiometric amount of methacrylic anhydride in the presence of DMAP 

catalyst (2 mol % of methacrylic anhydride). The mixture was purged with argon for 

approximately 10 minutes in order to remove oxygen and moisture and was subsequently 

sealed. The mixture was then heated to 55 °C and mixed via stir bar for 24 to 48 hours. 

Methylene chloride (500 mL) was added to the reaction mixture prior to aqueous 

washing. 

To remove methacrylic acid, unreacted methacrylic anhydride, and unreacted 

lignin model compounds, the organic phase was washed with a saturated sodium 

bicarbonate solution until carbon dioxide was no longer formed. The organic phase was 

washed with sodium hydroxide (2.5M), hydrochloric acid (1M), and water solutions. The 

MLMCs were then dried over sodium sulfate, filtered, and concentrated under reduced 

pressure. Flash chromatography is necessary to remove the remainder of impurities in the 

MLMC products. Flash chromatography was performed on a Grace Reveleris X2 system 
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using ethyl acetate and hexanes with a 0 to 20 % ethyl acetate gradient with 100g Grace 

silica columns. MLMC purification is possible through recrystallization, although this 

separation technique was not used in this study.[85] Industrially, it may be possible to 

purify the MLMCs through vacuum distillation, which would allow the recovery of 

methacrylic acid as a potential product. 

 All MLMCs and VE828 were characterized by 
1
H NMR (400.13 MHz, 32 scans 

at 298.2K) and 
13

C NMR (101 MHz, 256 scans at 298.2K) using a Varian Mercury 400 

MHz Nuclear Magnetic Resonance System. The 
1
H NMR and 

13
C NMR spectra can be 

found in the Appendix. 

Phenyl Methacrylate (PM). 
1
H NMR (DMSO-d6): δ 7.46− 7.15 (bm, 5H), 6.28 (t, 

1H), 5.90 (t, 1H), 2.00 (s, 3H). 
13

C NMR (DMSO-d6): δ 162.30, 150.61, 135.32, 129.54, 

127.73, 125.88, 121.83, 18.08 ppm. 

 Methacrylated Guaiacol (MG, 2-Methoxyphenyl Methacrylate). 
1
H NMR 

(DMSO-d6): δ 7.28−6.95 (bm, 4H), 6.28 (s, 1H), 5.89 (t,1H), 3.76 (s, 3H), 2.00 (s, 3H). 

13
C NMR (DMSO-d6): δ 165.17, 151.38, 139.82, 135.49, 128.13, 127.42, 123.32, 121.03, 

113.22, 56.15, 18.55 ppm. 

 Methacrylated-4-Propylguaiacol (M4PG, 4-Propyl-2-methoxyphenol 

Methacrylate). 
1
H NMR (DMSO- d6): δ 6.99−6.75 (bm, 3H), 6.25 (s, 1H), 5.86 (t, 1H), 

3.74 (s, 3H), 2.55 (t, 2H), 1.60 (m, 2H), 0.91 ppm (t, 3H). 
13

C NMR (DMSO- d6): δ 

164.83, 150.57, 141.23, 137.31, 135.12, 127.49, 122.34, 120.17, 112.76, 55.61, 37.21, 

24.21, 18.11, 13.68 ppm. 

4.2.4 Resin curing. Each MLMC was mixed with VE828 in a 1:1 weight ratio. 

Additionally, VE828 was mixed with styrene in a 1:1 weight ratio for use as a standard 
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equivalent to commercial resins. Each vinyl ester resin was free radically polymerized 

using Trigonox® 239 (1.5 wt % of total resin mass) as the initiator. The resins were 

degassed until no visible bubbles remained, transferred into a silicone rubber mold, and 

purged with argon for 20 minutes. The VE828:St resins were degassed for a shorter 

period of time to prevent the evaporation of styrene. All resins were cured at 90 °C for 4 

hours with a subsequent post cure at 180 °C for 2 hours. The thermosets were allowed to 

cool to room temperature before removal from the vacuum oven. 

4.2.5 Extent of cure. Near-infrared (near-IR) spectra of the uncured and cured 

VERs were obtained using a Nicolet iS50 FT-IR in order to determine the extent of cure. 

In the near-IR range, 32 cumulative scans were taken at a resolution of 2 cm
-1

 at room 

temperature. 

The cured thermosets (typically of 3-4 mm thickness) were cleaned with acetone 

thoroughly and subsequently dried before the near-IR spectra were taken. The VERs 

were contained in a glass vessel with a thickness of 3 mm when obtaining the near-IR 

spectra. The extents of cure were determined using Equations 14 and 15 for styrenic vinyl 

and methacrylate vinyl groups, respectively. Equations 14 and 15 compare the height 

and/or area of the styrenic vinyl and methacrylate vinyl peaks before and after curing 

relative to an internal standard that is not affected by the cure. ABSwavelength refers to the 

peak height at the subscripted wavelength. 

 

𝑋 =

(
𝐴𝐵𝑆6135𝑐𝑚−1

𝐴𝐵𝑆4263𝑐𝑚−1
)
𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑

− (
𝐴𝐵𝑆6135𝑐𝑚−1

𝐴𝐵𝑆4263𝑐𝑚−1
)
𝑟𝑒𝑎𝑐𝑡𝑒𝑑

(
𝐴𝐵𝑆6135𝑐𝑚−1

𝐴𝐵𝑆4263𝑐𝑚−1
)
𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑

 

(14) 
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𝑋 =

(
𝐴𝐵𝑆6165𝑐𝑚−1

𝐴𝐵𝑆4263𝑐𝑚−1
)
𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑

− (
𝐴𝐵𝑆6165𝑐𝑚−1

𝐴𝐵𝑆4263𝑐𝑚−1
)
𝑟𝑒𝑎𝑐𝑡𝑒𝑑

(
𝐴𝐵𝑆6165𝑐𝑚−1

𝐴𝐵𝑆4263𝑐𝑚−1
)
𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑

 

(15) 

 

4.2.6 Polymer Properties. DMA was used to determine the thermo-mechanical 

properties of each thermoset, which includes the glass transition temperature (Tg), storage 

modulus (Eʹ) at 25 °C, rubbery temperature, rubbery Eʹ, and effective molecular weight 

between crosslinks (Mc). Mc was calculated using Equation 16, 

 
𝑀𝑐 =

3𝑅𝑇𝜌

𝐸
 

(16) 

where R is the ideal gas constant, T is absolute temperature, and ρ is the sample density at 

room temperature. The rubbery Eʹ and T were defined as the point at which the storage 

modulus increases with increasing temperature in the rubbery region.[75] The density of 

the polymer was determined using Archimedes’ principle at room temperature.[76] 

Typical DMA sample dimensions were 35 x 12 x 3 mm
3
 and a single cantilever geometry 

was used. The temperature was increased from 0 to 250 °C at a rate of 2 °C per minute, 

while oscillating at 1 Hz with a 7.5 µm deflection. A Poissions ratio of 0.35 was used.  

4.3 Results and Discussion 

 4.3.1 Resin characterization. PM, MG, and M4PG are clear, transparent liquids 

at room temperature both after aqueous purification and flash chromatography 

purification. The estimated purity of each MLMC after aqueous purification was not 

determined in this work; however, data adapted from Stanzione’s dissertation is shown in 

Table 9 for comparative purposes.[72] All purities are based on 
1
H NMR analyses. The 
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aqueous washing procedure was not optimized and it may be possible to achieve a higher 

purity than what was achieved.[72] 

 

 

 

Table 9. 

Purity of MLMCs, on the basis of 
1
H NMR, after aqueous wash purification[72] 

Methacrylated 

Phenolic 

Methacrylated 

Phenolic 

(mol %) 

Unreacted 

LMC 

(mol %) 

Methacrylic 

Anhydride 

(mol %) 

Methacrylic 

Acid 

(mol %) 

Methacrylated 

Topanol A 

(mol %) 

PM 92.4 ± 3.0 
a
 1.8 ± 1.2 1.4 ± 1.0 4.5 ± 2.6 

MG 80.4 ± 0.4 4.5 ± 2.6 3.6 ± 2.7 3.9 ± 2.7 7.8 ± 2.8 

M4PG 82.1 ±1.7 6.8 ± 1.6 0.8 ± 0.2 0.3 ± 0.3 10.1 ± 0.6 
a The amount of unreacted phenolic cannot be determined through 1H NMR due to overlapping peaks in the aromatic 

region.[72] 

 

 

 

Methacrylated phenol has the highest purity largely due to the fact that the 

amount of unreacted phenol was not determined through 
1
H NMR analysis. However, the 

concentration of unreacted phenol is anticipated to be similar or less than that in MG and 

M4PG due to the higher reactivity of phenol.[57] After aqueous purification, all MLMCs 

have a significant amount of methacrylic anhydride, methacrylic acid, and methacrylated 

topanol A, all of which possess vinyl bonds that will react during the polymerization 

process. The presence of the unreacted methacrylic anhydride results in additional 

crosslinking within the polymer network. 

The MLMCs were further purified through flash chromatography. All MLMCs 

required purities greater than 97.5 mol % in order to be used in this study. MLMCs with 

purities greater than 97.5 mol % are referred to as pure. Table 10 shows the purities of the 

MLMCs after flash chromatography. 
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Table 10. 

Purity of MLMCs, on the basis of 
1
H NMR, after aqueous wash and flash 

chromatography purification 

Methacrylated 

Phenolic 

Methacrylated 

Phenolic 

(mol %) 

Unreacted 

LMC 

(mol %) 

Methacrylic 

Anhydride 

(mol %) 

Methacrylic 

Acid 

(mol %) 

Methacrylated 

Topanol A 

(mol %) 

PM 99.1 ± 0.2 0 0.3 ± 0.2 0.7 ± 0.0 0 

MG 97.8 ± 0.3 0 1.0 ± 0.1 0.4 ± 0.2 0.7 ± 0.4 

M4PG 99.4 ± 0.1 0 0.3 ± 0.1 0.33 ± 0.0 0 

 

 

 

Flash chromatography removed all unreacted LMCs and greatly reduced the 

amount of methacrylic anhydride, methacrylic acid, and methacrylated topanol A. The 

reactive impurities are predicted to be at a low enough concentration that they will not 

have a significant impact on resin or thermosetting polymer properties. The presence of 

methacrylic anhydride, methacrylic acid, and methacrylated topanol A in the MLMC 

product indicates that imperfect separation was achieved in the flash chromatography 

system. With different solvents, or perhaps a more gradual solvent gradient or step 

method with multiple column runs, near perfect separation could be achieved. Perfect 

separation was achieved between the MLMC product and LMC reactant. For the purpose 

of this study, the achieved purities of each MLMC were deemed acceptable. A GPC 

chromatogram of PM, MG, and M4PG can be found in Appendix A as an additional 

confirmation of purity and the absence of oligomers. In addition, the 
1
H NMR spectra of 

each pure RD can be found in the Appendix B. 

When MLMCs are blended with VE828 in a 1:1 ratio, a resin with a green hue is 

produced. The green hue is attributed to the AMC-2 catalyst that was used in the 

synthesis of VE828, which would need to be removed to produce a clear resin for 

commercial applications. The viscosities of each resin were not determined in this thesis, 
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but qualitatively the viscosity of the blends increased with increased substituents on the 

MLMC aromatic ring. Viscosity experiments are recommended for future studies. 

4.3.2 Extent of cure. Pictures of pure VE828:MLMC plastics are shown in 

Figure 23. 

 

 

 

                     

(a)                     (b)                   (c) 

Figure 23. Pictures of cured (a) 1:1VE828:PM, (b) 1:1 VE828:MG, (c) 1:1 

VE828:M4PG. 

 

 

 

FTIR near-IR spectroscopy was used to determine the extent of cure of each resin. 

Figure 24 shows the near-IR spectra for 1:1 blends of VE828 and purified PM, MG, and 

M4PG. The VE828 pure and impure MLMCs blends have similar spectra.[72] 
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Figure 24. Near-IR spectra for 1:1 blends of VE828 and purified PM, MG, and M4PG. 

The methacrylate C=C bond peaks are labeled * and the =CH2 peaks are labeled **. 

 

 

 

The absorption bands at 6165 cm
-1

 and 4625 cm
-1

 are a result of methacrylate (=C—H) 

bonds and internal phenyl groups, respectively. The methacrylate (=C—H) bond also 

absorbs at 4743 cm
-1

; however, this band was not used to determine the extent of cure 

due to the sharp baseline drop at nearby wavelengths, which makes peak area calculations 

unreliable. It can be seen that the methacrylate band at 6265 cm
-1

 decreases during the 

polymerization, which is a result of the vinyl bonds polymerizing. The extent of cure of 

VE828 blended with pure and impure reactive diluents is shown in Table 11. The impure 
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extent of cure data was adapted from Stanzione’s dissertation and is used for comparison 

purposes.[72] 

 

 

 

Table 11. 

Extent of cure of pure and impure VE828:RD resins 

System 
Extent of 

Cure Pure 

Extent of 

Cure 

Impure[72] 

1:1 VE828:St ~100 % ~100 % 

1:1 VE828:PM 94 % 94 % 

1:1 VE828:MG 95 % 95 % 

1:1 VE828:M4PG 99 % 99 % 

 

 

 

It can be seen that the impurities (unreacted MLMC, methacrylic anhydride, 

methacrylic acid, and methacrylated topanol A) do not have an effect on the extent of 

cure of the resin blends. The impurities may have an effect on cure kinetics (reactivity of 

the methacrylate vinyl bond) even though the extents of cures are similar.[78] The extent 

of cure only measures the decrease in methacrylate or styrenic vinyl bonds and does not 

give information about the composition of the polymer network formed during the cure. 

Cure kinetic studies are currently being conducted. 

4.3.3 Polymer properties. Polymerization of the VE828:St and MLMC blends 

resulted in visually identical, hard thermosets that were transparent with a green hue. It is 

anticipated that colorless plastics would be produced if a colorless catalyst and initiator 

(Trigonox® 239 has a yellow hue) were used. The percent bio-based content was 

calculated and can be seen in Table 12.[86, 87]  
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Table 12. 

Bio-based content of VE828-based thermosets 

System Bio-Based Content 

(%) 

1:1 VE828:St 0 

1:1 VE828:PM 29.7 

1:1 VE828:MG 31.9 

1:1 VE828:M4PG 36.6 

 

 

 

In these calculations, it was assumed that all LMCs were derived from lignin and 

methacrylic anhydride was derived form a petroleum feedstock. To calculate a 

percentage, the amount of bio-based carbon in each LMC blend was divided by the 

amount of total carbon in the LMC blend.[88] VE828 is derived from non-renewable 

resources. 

Thermo-mechanical properties of the resins were measured using DMA. DMA 

was performed on all pure VE828:MLMC blends, as well as VE828:St for commercial 

comparison. Figure 25, which is data adapted from Stanzione’s Ph.D. dissertation for 

comparative purposes, shows the storage modulus and loss modulus as a function of 

temperature for the impure 1:1 VE828:RD and 1:1 VE828St blend.[72] Table 13 shows 

the quantitative thermomechanical properties.[72] 
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Figure 25. VE828 blends made with impure reactive diluents and styrene for commercial 

comparison, adapted from Stanzione et al.[72] 
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Table 13. 

Thermo-mechanical properties of VE828 blends with impure MLMCs and styrene, adapted from Stanzione et al[72] 

Not Pure System 
E′ at 25 

(°C) 

E′(T) 

Inflection 

(°C) 

Peak of E″ 

(°C) 

Peak of tan 

δ (°C) 

Rubbery E′ 

(MPa) 

Rubbery T 

(°C) 

ρ at 25 °C 

(g cm
-3

) 

eff. MC (g 

mol
-1

) 

1:1 VE828:St 2.9 ± 0.1 133.7 ± 0.9 134.3 ± 0.5 143.0 ± 1.4 29.7 ± 2.4 170.6 ± 0.2 1.132 ± 0.003 424.6 ± 34.8 

1:1 VE828:PM 3.0 ± 0.4 129.0 ± 3.4 129.0 ± 4.0 142.0 ± 3.5 28.9 ± 6.2 190.0 ± 14.0 1.214 ± 0.009 485.0 ± 0.0 

1:1 VE828:MG 3.1 ± 0.4 118.0 ± 3.4 117.0 ± 4.0 134.0 ± 3.5 24.9 ± 6.2 185.0 ± 14.0 1.228 ± 0.009 564.0 ± 75 

1:1 VE828:M4PG 2.7 ± 0.4 111.0 ± 3.4 111.0 ± 4.0 129.0 ± 3.5 33.2 ± 6.2 170.0 ± 14.0 1.183 ± 0.009 401.0 ± 0.0 
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Figure 26 shows the storage modulus and loss modulus as a function of temperature for 

the pure 1:1 VE828:RD, as well as styrene for commercial comparison. Table 14 shows 

the quantitative thermo-mechanical properties for the pure 1:1 VE828:RD blends. 

 

 

 

 

Figure 26. VE828 blends made with pure reactive diluents and styrene for commercial 

comparison. 
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Table 14. 

Thermo-mechanical properties of VE828 blends with pure MLMCs and styrene 

Pure System 
E′ at 25 

(°C) 

E′(T) 

Inflection 

(°C) 

Peak of E″ 

(°C) 

Peak of tan 

δ (°C) 

Rubbery E′ 

(MPa) 

Rubbery T 

(°C) 

ρ at 25 °C 

(g cm
-3

) 

eff. MC  

(g mol
-1

) 

1:1 VE828:St 2.9 ± 0.1 133.7 ± 0.9 134.3 ± 0.5 143.0 ± 1.4 29.7 ± 2.4 170.6 ± 0.2 1.132 ± 0.003 424.6 ± 34.8 

1:1 VE828:PM 3.2 ± 0.1 128.2 ± 2.1 129.4 ± 2.2 142.4 ± 1.7 24.9 ± 1.3 185.2 ± 0.1 1.208 ± 0.003 557.4 ± 29.7 

1:1 VE828:MG 3.5 ± 0.1 124.7 ± 1.5 125.9 ± 1.5 139.8 ± 1.8 25.1 ± 0.6 174.8 ± 0.3 1.221 ± 0.001 543.4 ± 12.1 

1:1 VE828:M4PG 2.7 ± 0.2 121.8 ± 1.8 123.2 ± 1.8 137.8 ± 1.6 30.8 ± 0.9 171.8 ± 0.1 1.172 ± 0.002 422.3 ± 12.5 
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Qualitatively, both impure and pure VE828:RD blends have similar thermograms; 

however, the pure VE828:RD blends tend to have a sharper spike in the loss modulus 

curve. 

Commercial styrene diluted VERs typically have Eʹs greater than 2.0 GPa at 25 

°C, which is in agreement with what is reported in Table 13; however, the 1:1 VE828:St 

Eʹ is higher than what is reported by Stanzione et al.[12] In general, all pure and impure 

VE828:MLMC thermosets have a Eʹ that is comparable to styrene resins. Also, RD purity 

does not have a significant effect on the Eʹ at 25 °C, with the exception of VE828:MG 

that has a 0.4 GPa increase. It is expected that the methoxy group would increase the 

storage modulus due to increased intermolecular interactions, which can be seen when 

comparing VE828:PM to pure VE828:MG. The methoxy oxygen has been suggested to 

be a proton acceptor for hydrogen bonding in conjunction to the glycidyl hydroxyl group 

found on VE828.[79]  

Using the theory of rubbery elasticity, the Mcs of each cured resin were 

determined.[75] The rubbery modulus was defined as the Eʹ at the local minimum within 

the rubbery region. The VE828:M4PG blends showed Mcs that were lower than that of 

the VE828:St blend; however, the VE828:MG and PM blends had higher effective Mcs 

than the styrene blend. The increased Mc between VE828:MG/PM and VE828:St can be 

attributed to the molecular weight gained through the methacrylate group. 

 Throughout this thesis, all blends have been reported in 1:1 weight ratios; 

however, looking at the data in terms of molar ratios will give a different perspective. 

The weight ratios are used for industrial purposes, where a certain weight of RD is added 

to the VER in order to reduce the viscosity of the blend for production purposes. Table 15 
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shows the corresponding molar ratios for 1:1 VE828:St, VE828:PM, VE828:MG, and 

VE828:M4PG.  

 

 

 

Table 15. 

 

VE828:RD weight ratio to molar ratio conversion 

VE828:RD Weight Ratio RD MW (g/mol) VE828:RD Molar Ratio 

1:1 VE828:St 104.2 15:85 

1:1 VE828:PM 162.2 22:78 

1:1 VE828:MG 192.2 25:75 

1:1 VE828:M4PG 234.3 29:71 

 

 

 

 Due to the molecular weight difference of each RD, the molar concentration of 

RD is not constant and varies from 71 % to 85 %. As stated earlier, the effective Mcs for 

1:1 VE828:MG and 1:1 VE828:PM are higher than that of 1:1 VE828:St. Based on the 

VE828:MLMC molar ratios, there is an increased molar concentration of VE828 as the 

molecular weight of the RD increases for 1:1 (wt) VE828:RD resins. As the 

concentration of VE828 increases, the amount of crosslinking in the polymer network 

increases due to the di-functionality of the VE828 resin. Therefore, 1:1 (wt) 

VE828:M4PG should have more crosslinks than 1:1 (wt) VE828:MG, which should have 

more crosslinks than 1:1 (wt) VE828:PM. With an increased crosslinking in the 

VE828:PM/MG plastics, the effective Mc is expected to decrease. However, the 

VE828:PM/MG effective Mc is higher than that of styrene, which suggests that the 

increase in molecular weight of the methacrylate groups has a greater effect on effective 

Mc than the additional crosslinking in the VE828:PM/MG blends. It is hypothesized that 

VE828:M4PG has a lower effective Mc than the other VE828:MLMC resins due to 
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physical interactions of the propyl group, whereby the propyl group hooks on adjacent 

polymer chains. 

Commercial vinyl ester resins that are diluted with styrene typically have Tgs 

greater than 120 °C.[18, 22, 89] The Tg based on the peak of the Eʹʹ curve is similar to 

that of the inflection point of the Eʹ curve, which is typical among VERs; however, the Tg 

based on the tan δ curve is higher than that based on the Eʹʹ or Eʹ curve.[90, 91] In order 

to use a more conservative value, the Tg is defined as the peak of the Eʹʹ curve.  

It can be seen that the Tg trend is the same for the impure and pure reactive 

diluents; however, the impure MG and M4PG RDs resulted in a substantially lower Tg 

than the pure analogs. The impure RDs contain unreacted phenolic, methacrylic 

anhydride, methacrylic acid, and methacrylated topanol A. The unreacted phenolics act as 

plasticizer and reduce the Tgs of the plastics. Methacrylic anhydride provides additional 

crosslinking to the polymer network, which would increase the Tg of the polymer. It is 

believed that impure VE828:PM has a similar Tg to that of pure VE828:PM because of 

the few unreacted phenol impurities in the resin. Also, it is believed that the significant 

amount of impurities, specifically the unreacted LMCs, in the MG and M4PG resins 

caused the substantially lower Tgs.  

Based on the pure VE828:MLMC thermosets, it can be seen that the methoxy and 

proypyl side groups have a marginal effect on the Tg of the resulting polymer. However, 

the molar ratios of VE828:RD are not constant for each reactive diluent, which will have 

an effect on the resulting Tg of the plastic. As stated earlier, the increase in the VE828 

molar concentration in the VE828:MLMC resins will increase the crosslinking of the 

plastic. The Tg data shows that even with increased crosslinking in each of the resins, the 



 

76 

 

Tg still decreases with increased ring substituents. The extent at which the Tg decreases 

due to ring substituents is greater than that of the Tg increase due to additional 

crosslinking. In order to determine the true effect of the ring substituents on polymer 

properties, the VE828:RD resins need to have the same molar VE828:RD ratio. Overall, 

the data suggests that both PM, MG, and M4PG are effective RD replacements, when 

pure, for styrene. Also, the impure and pure RDs have a marginal effect on the density of 

the plastic. 

The heterogeneity of a polymer can be qualitatively determined through the 

broadness of the tan δ thermogram. In addition, a broad tan δ thermogram means that the 

polymer exhibits a broader glass transition region.[84] For all the VE828-based 

thermosets, the width of the tan δ peaks qualitatively increased with aromatic side chain 

functionality on the MLMC, regardless of purity. The tan δ thermograms are shown in  

Figure 27 and Figure 28. Figure 27 contains data adapted from Stanzione’s Ph.D. 

dissertation for comparative purposes.[72] 
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Figure 27. The tan δ of VE828 resins diluted with impure MLMCs and styrene is shown 

as function of temperature, adapted from Stanzione et al.[72] 
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Figure 28. The tan δ of VE828 resins diluted with pure MLMCs and styrene is shown as 

function of temperature. 

 

 

 

For impure VE828:RD plastics, the height of the tan δ curve, which is an indication of 

viscous/elastic behavior, decreases with increased ring substituents. This trend was not 

observed in the pure VE828:RD plastics. In addition, it was found in Chapter 3 that as the 

number of MBO crosslinking agents increased, the height of the tan δ curve decreased; 

however, this trend was not observed in the pure VE828:RD resins. 

4.4 Conclusions 

In this study, three lignin model compounds (phenol, guaiacol, and 4-

propylguaiacol) were methacrylated via an esterification reaction with methacrylic 
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anhydride. PM, MG, and M4PG were shown to be suitable reactive diluent replacements 

for styrene in vinyl ester resins. Pure MLMCs were blended in 1:1 weight ratios with a 

commercial vinyl ester resin (VE828) and compared to data from Stanzione et al.[72] 

The pure MLMCs, when blended with VE828, produced thermosets with comparable Tg 

values to that of VE828 blended with styrene. The impure MLMCs had Tg values that 

were inferior to VE828 blended with styrene, with the exception of impure PM. This 

work shows that purity and ring substituents of the reactive diluents affect the polymer 

properties in VE resins. Cure kinetics, fracture toughness, and flexural strength tests are 

currently being conducted with all MLMCs to determine the effect of both purity and 

functional groups on polymer properties. Overall, all pure MLMCs were successfully 

used as reactive diluents in vinyl ester resins; however, increasing the purity of the 

MLMCs yields more desired thermomechanical properties when cured. 
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Chapter 5 

Conclusions and Recommendations 

5.1 Conclusions 

 The use of lignin as a feedstock for sustainable vinyl ester thermosetting plastics 

was investigated in this thesis. Lignin is a highly aromatic polymer that is produced in 

excess 50x10
6
 tons annually, which makes it an attractive feedstock for high value 

applications (thermosetting plastics). With increased attention in academia and industry 

to the depolymerization of lignin, especially via fast pyrolysis, research needs to be done 

on profitable applications for lignin depolymerization products (lignin-derived bio-oils). 

 In Chapter 3, the use of lignin-derived bio-oils as a feedstock for vinyl ester resins 

was investigated. Three representative lignin-derived bio-oil mimics were made based on 

five literature sources and were methacrylated to produce vinyl ester resins. The first bio-

oil mimic was based upon four sources, the second was based upon five sources, and the 

third was based upon Choi et. al.[26, 30-33] Each resin contained the same classes of 

molecules (phenols, guaiacols, catechols); however, there were variations between each. 

Most notably, the bio-oil mimic based upon Choi et. al. had a low concentration of 

crosslinking monomers, whereas bio-oil 1 and bio-oil 2 had a significantly higher amount 

of crosslinking monomers. Curing resulted in hard, transparent plastics with properties 

similar to that of commercial vinyl ester resins. The glass transition temperature of bio-oil 

1 and 2 were approximately 20 °C higher than bio-oil 3, likely do to the decreased 

concentration of crosslinking monomers present in bio-oil 3. This work showed that high 

quality lignin-derived bio-oils can be methacrylated as is to produce vinyl ester resins 

that can be cured into plastics with desirable thermomechanical properties. 
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In addition, the uses of lignin model compounds (phenol, guaiacol, and 4-

propylguaiacol) to produce reactive diluents in vinyl ester resins were investigated. All 

reactive diluents were purified to a concentration greater than 97.5 mol % in order to 

investigate the effects of ring substituents on polymer properties. The reactive diluents 

were mixed with a commercial vinyl ester resin to produce a qualitatively low viscosity 

solution. Curing resulted in plastics with properties similar to that of styrene diluted vinyl 

ester resins. Also, it was found that ring substituents (methoxy and propyl) on pure 

methacrylate reactive diluents have little effect on the Tg of 1:1 (wt) 

VE828:Methacrylated lignin model compound (MLMC) polymers, which is in contrast to 

what was found by Stanzione when impure reactive diluents were used. 

5.2 Recommendations 

 Throughout this work, flexural and fractural tests were not conducted due to 

instrument limitations. In addition, viscosity experiments were not performed. In future 

studies, it would be beneficial to perform these tests in order to further characterize both 

the resin and plastic. Fractural and flexural tests would provide insight into the strength 

and toughness of the plastics, in addition to structure property relationships. Viscosity 

testing is needed in order to determine industrial processing capabilities. Generally, the 

methacrylated bio-oil and VE828:MLMC resins need to have a viscosity that is within a 

200 – 1000 cP range.[28, 92] Too low of a viscosity can cause bubble formation and too 

high of a viscosity can cause increased injection time and ineffective fiber wetting.[28, 

92] In addition, vinyl ester resins are often used in composite applications.[19] The 

MLMC resins proposed in this thesis could be incorporated into glass fibers, aramid 

fibers, and carbon fibers, for example. Also, cure kinetic studies are recommended in 
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order to monitor and potentially optimize the curing procedure. In regard to DMA, it is 

recommended that thicker samples (5-5.5 mm) be used for analyses in the rubbery region. 

Thicker sample may give a more accurate depiction of the rubbery region, and thus 

provide greater accuracy when calculating Mc values.[93] 

 Relating to the work presented in Chapter 3, future experiments could include the 

synthesis of a MLMC bio-oil mixture through the one-pot two-step reaction proposed in 

Stanzione et al.[13] The one-pot two-step reaction utilizes methacrylic anhydride to 

methacrylate the LMCs and subsequently converts the methacrylic acid byproduct into a 

crosslinking agent.[13] It is hypothesized that this would increase the Tg of the MBO 

plastic due to additional crosslinking; however, the fractural and flexural properties of the 

plastic may decrease. Future experiments could also include the purification and 

methacrylation of a lignin-derived bio-oil that was recently received, in addition to 

incorporating the previously excluded syringol and 5-hydroxyvanillin phenolics into the 

bio-oil mimics. 

 Relating to the work presented in Chapter 4, it would be interesting to determine 

the magnitude of the effect of the methoxy and propyl substituent groups by keeping the 

VE828:MLMC molar ratios constant. Although the general effects of the substituents 

were determined in this work, further experimentation is necessary to determine the 

extent at which the physical properties are effected. Also, future experiments could 

include varying the concentration of the MLMCs in the VE828 resins for further 

characterization of the VE828:MLMC systems. 
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Appendix A 

1
H NMR Spectra 

 

 

Figure 29. 
1
H NMR spectra of pure (>97.5 mol %) phenol methacrylate. 
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Figure 30. 
1
H NMR spectra of pure (>97.5 mol %) methacrylated guaiacol. 
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Figure 31. 
1
H NMR spectra of pure (>97.5 mol %) methacrylated 4-propylguaiacol. 
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Figure 32: 
1
H NMR spectra of VE828. 
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Appendix B 

GPC Traces of Pure MLMCs 

 

Figure 33. GPC trace of pure (>97.5 mol %) methacrylated phenol. 
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Figure 34. GPC trace of pure (>97.5 mol %) methacrylated guaiacol. 
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Figure 35. GPC trace of pure (>97.5 mol %) methacrylated 4-propylguaiacol. 
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Appendix C 

GPC Standard Curve 

 

Figure 36. Standard curve generated using the retention times of pure (>97.5 mol %) PM, 

MG, and M4PG. 
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