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ABSTRACT

Ryan Winfield Fillman
TOWARDS A UNIVERSAL ULTRA-THIN FLUORINATED DIAMOND-LIKE

CARBON COATING FOR NANOIMPRINT LITHOGRAPHY IMPRINTERS
2008/09

Dr. Robert Krchnavek
Master of Science in Engineering

Nanoimprint lithography (NIL) has proven to achieve arbitrary, nanoscale features, over

large areas, without the use of costly step-and-repeat UV lithography tools. The fidelity

of the imprinted pattern depends on the elimination of the adhesion between the

imprinted polymer and the imprinter upon withdrawal of the imprinter. The plasma

deposition of a layer of fluorinated diamond-like carbon (F-DLC) has proven to be a

successful anti-adhesion layer but in the past has required an entire diamond-like carbon

(DLC) substrate. The requirement that the imprinter be made of DLC limits the imprinter

processing and can limit the capabilities of NIL.

DLC films are considered to be an amorphous state of carbon. They have

properties similar to diamond proving them to be very strong with chemical inertness and

low friction coefficients due to their sp 3 and sp2 bonds. Dopants such as fluorine can alter

the chemical properties of the DLC or the surface of the DLC. The incorporation of

fluorine in DLC films greatly reduces the surface free energy while retaining many of the

DLC properties.

In this work, ultra-thin F-DLC is used as a NIL imprinter coating with a surface

energy approaching 17.6 mJ/m 2 to provide a durable anti-wear, anti-stick layer. DLC is a

tough coating with a low surface energy and the fluorinated self-assembled monolayer on



top of the DLC lowers the surface energy further while retaining the strength properties

of the DLC. The application of an ultra-thin F-DLC anti-adhesion layer to standard NIL

imprinter processing (SiO 2 imprinters) as well as various other imprinter material systems

(inorganics, metals, polymers) has not been previously tested. It may lead to a universal

and ultra-thin (<5 nm) coating for eliminating adhesion between the imprinter and the

NIL sample resist.
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CHAPTER 1

Introduction

The semiconductor industry has been the driving force behind the significant

technological advances over the past 40 years. Advances in semiconductor technology

and manufacturing have provided the ability to drive down the cost of transistors while

shrinking the size of each individual transistor. Moore's law has become the goal of the

technology manufacturing industry over the years. This law states that the number of

transistors that can be placed inexpensively on an integrated circuit will increase

exponentially and effectively double every 18 months. Gordon E. Moore first observed

the transistor miniaturization trend in a 1965 paper in Electronics Magazine titled

"Cramming more components onto integrated circuits".

To this date, the semiconductor manufacturing industry has managed to maintain

this exponential curve. They have been able to produce electronics that double in

performance vs. cost every two years driving technological advancements. The ability to

pattern and generate electronic components of smaller size every year has been one of the

main challenges to continue following Moore's law. To do this, the manufacturing

industry currently uses optical lithography to transfer patterns from a mask onto a silicon

wafer. Although this method has proven to be the driving force in electronic component

scaling for the past 40 years, and continues to be, it has already begun to show its

limitations. For this reason, new lithographic techniques have been the focus of many

research groups along with the advancement of optical lithography technology.

Nanoimprint lithography has been demonstrated to be an alternative lithographic



technique for semiconductors. It has the capabilities of producing extremely small

(nanoscale) feature sizes over large areas while being a less expensive alternative to the

ever-increasing cost of commercial optical lithography systems (currently about $45

million) [I1]. However, there are still many problems that plague this technique that must

be resolved.

1.1 Optical Lithography

New lithography techniques are at the core of the semiconductor industry. There are

many techniques available to manufacturing industries today however the most widely

used technique is optical lithography. Prior to the 1970's, the majority of lithography was

performed using contact or close proximity printing using blue and near UV light. This

light was passed through a photomask onto a photoresist-coated semiconductor substrate.

This shadow imaging process is at the core of the optical lithography concept. After the

1970's, projection printing grew substantially through the production of the Perkin-Elmer

Micralign projection aligners. The primary advantage of projection lithography over

contact lithography is the mask did not get dirty because it never touched the photoresist.

The downside is that the optics were complex and maintaining the resolution required a

small field-of-view (- 15mm x 15mm). To remedy this, stepper systems began to be

introduced in the 1980's that imaged the wafers in a step-and-repeat method. In this

technique, each IC on a wafer was imaged separately with the machine controlling the

location of each typically side-by-side and row-by-row. This was known as step-and-

repeat due to the multiple imaging steps required to image an entire wafer along with the

accurate mechanical movements needed to align one pattern on top of another for multi



lay er chips. T hese optical steppers hav e been the main patterning technology for the past

30 y ears and xxill continue for as long as practical [2]. F igure 1- -I shoxxs the basic optic

components in the stepper systems.
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F'igure I- - Optical lithographix stepper basic components 121.

Since the late 1 960's, integrated circuits haxe been manufactured utilizing optical

lithography lor mass production. Since then, newx teclmidues to improv e the optical

exposure tools and resists hav e been created wxith a theoretical fe~ature size limit
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approaching 10 nanometers. Despite optical lithography's limited exposure size and high

tool cost, it remains the leading manufacturing tool in industry due to its high wafer

throughput.

1.2 Imprint Lithography

Major advancements in resolution of optical lithography have historically been achieved

through the use of shorter wavelengths of light. This requirement of shorter wavelengths

of light has caused a significant increase in the cost of photolithographic tools. But, as

shown in Figure 1-2, the increase in resolution directly translates into dramatic increases

in both transistors per chip and memory density. The development of light sources and

optics are responsible for the consistent increase in manufacturing cost. For instance,

193nm immersion has increased the costs of the lens and extreme ultra violet lithography

(EUVL) is expected to continue the increase in cost [1]. Industry is currently working

with 193nm immersion to achieve 45 and 32nm feature sizes. A transition to 10-14nm

EUVL is planned since 157nm CaF2 has been removed from Intel's Next Generation

Lithography (NGL) roadmap [3].



1('' $100,000,000
Indudes historical data for oth steppers and scnners of all "0

1 0' makes and modls from various manufadrurers inclding + 5n
ASET, ASML Cameca Instrhments, Censor AG. Canon, Eaton, +

1 1(P GCA, General Signal, Hitachi, Nikon, PerkijnEtier, SVGL andi

v I Ufltaleci h.OQO

$1,000,000 -

411 " Memory Density

1975 1980 1985 1990 1995 2000 2005 2010

Date

F igu re 1-2 - Transistor density and tool price as a function of (late 131.

Imprint lithography, uses a phx sical imprinting process instead of optical pattern transfer.

In this process. a 3-dimensional mask pattern is etched into the surface of the imprinter

material. Thspteni1hntaserdb phx sically pressing the mask against the

surface of the wxafer- that has been coated vith a material that allowxs for the pattern to be

transferred. The xxafer can be coated wxith a chemical layer that cataly zes a chemical

reaction in the resist allowxing for the pattern to be dev eloped I[1]. An alternative method.

as used in this wxork, uses a thin organic lax er. In this method. the imprinter is pressed

into the wxaler allowxing for the organic lay er to conform to the three dimensional pattern

from the imprinter. T he substrate can be heated to a liquid state and then cooled to harden

the pattern. A room temperature, light sensitiv e, liquid can also be exposed to a bright

ultraviolet light source through a transparent mask hardening the organic material. When



heat is used, the orLganic lax er can be cooled to allowx the orgtanic lax er to harden in the

inverse pattern of the imprinter. Imprint lithography remov es the limitations on feature

size of optical lithography as wxell as limitations on patterning large areas or xwalers. It

alloxws for feature sizes less than 1 Onm ov er entire wxafers but not wxithout implications

[41. When the liquid is hardened and the mask is pulled axxay. the pattern has a tendency

to stick to both the silicon and the imprinter. This causes the pattern to rip causing poor

pattern transfer and possibly destroying the imprinter. Other problems wxith this technique

include alignment, hardening. sr-face wxetting, and mask separation. The requirements of

the imprinting process wxill cause this technique to take more time for alignment than the

quick optical methods. I loxexer. NIL does alloxx for much smaller feature sizes oxver

larger sample si/es than optical lithography at a significantly reduced expense. F igure 1 -3

is a brief oxverxview of different Nil techniques.

Soft Lithography
YYJhzecides

1 PDMvS template Wvithi thiol

2. Imprint stamp

3 I ra anier molecules

Nil.

Li ~ L1 LJ L

2. Imprint at high T and P~

3.Remov e template

o DI 0Z

SIL
Wfilson

I. Quartz temnplate

2. Imprint, IA expose

3. Remove template

n oI 0

4. Pattern Transfer 4. Pattern Transfer

Figure 1-3 - variations on the NiL, technique III.

4. Pattern Transfer



In this work, a slight modification of Chou's process is used. A silicon dioxide on silicon

imprinter is used with 2% PMMA in Chlorobenzene as the organic material on the

substrate. An anti-adhesion layer is also described that eliminates the adhesion of the

imprinted polymer to the imprinter.

1.3 Current Applications of Imprint Lithography

Imprint lithography has many possible applications in the semiconductor and electronics

manufacturing areas. There are a number of companies that are currently selling imprint

tools such as Nanonex, Obducat, EV Group, Suss Microelectronics, NND, Hitachi and

Jenoptiks [4]. Obducat has developed thermal imprint tools capable of patterning wafers

up to six inches in diameter. It operates at temperatures and pressures as high as 350°C

and 80 bar as well as having the ability to imprint both sides of a wafer. EV Group is

offering the EVG520HE that is a thermal imprint tool capable of operating at

temperatures as high as 550'C and 40 bar. Suss offers similar tools, the SB6E and MA6,

and has recently released the Stepper 200 that can operate as either a thermal or UV

imprint tool with imprint times less than 1 minute per wafer [4]. In the United States, the

company Nanonex offers thermal imprint tools. The NX-3000 from Nanonex allows for

alignment and can handle substrates as large as 200mm. One advantage of the Nanonex

tools is that they apply an air-cushion press (ACP) to uniformly apply pressure when

contacting the template and wafer [4]. Two companies from Asia also offer commercial

imprint systems such as NND out of Korea and Hitachi from Japan. NND has the

Nanosis 610 that is designed for wafers up to 150mm in diameter and Hitachi has a new

thermal imprint system that can handle full wafers up to 300mm in diameter. Hitachi is

7



currently utilizing these technologies for fabricating patterned magnetic media such as

magnetic hard drives and continue to modify and improve their designs.

1.4 Summary

As optical lithography processing techniques evolve and continue to increase in initial

cost, alternative next generation lithography (NGL) tools will be needed to keep the cost

of advanced electronics appealing. The limited pattern size for optical lithography may

also drive companies to begin investing in other NGL tools. Nanoimprint lithography

tools appear to have the highest potential to replace optical lithography, however there

are still many problems that need to be overcome. These issues deal mainly with the

direct contact between the imprinter and the substrate along with the required alignment.

These will need significant research to eliminate these issues for wide commercial

application in manufacturing. While NIL has been emphasized as a technique to replace

optical lithography, the ability for NIL to pattern entire wafers in a single step opens up

new opportunities for technological advancement. For example, Hitachi is currently

using the NIL technique for patterning magnetic hard drives allowing for a significant

increase in bit density. NIL is very practical for the hard drive manufacturing industry

since it does not require the alignment of multiple layers such as in the semiconductor

manufacturing industry. Furthermore, this could not have easily been achieved using

optical lithography because of stitching (misalignment) errors between patterns in the

step-and-repeat process. Imprint lithography has the potential to impact several

technological areas, such as mechanical or biological, because of the nanoscale resolution

over very large areas.



CHAPTER 2

Nanoimprint Lithography Background and Implementation

2.1 Chapter Overview

Nanoimprint lithography has been briefly discussed in the introduction of this thesis. This

chapter provides a more detailed description of nanoimprint lithography along with the

techniques that have been and are utilized at Rowan University. Advantages and

disadvantages are also given for current anti-stick coatings used in NIL processing and

for those previously investigated at Rowan University.

2.2 Introduction

As stated before, imprint lithography utilizes a physical imprint process instead of optical

pattern transfer. A 3-dimensional mask pattern is etched into the surface of the SiO 2 on Si

imprinter material and transferred by physically pressing the mask against the substrate.

The substrate surface contains a thin layer (100nm) of 2% polymethymethacrylate

(PMMA) in chlorobenzene that is heated above the glass transition temperature while

applying pressure between the imprinter and the substrate. This allows the PMMA to

flow and conform to the three dimensional pattern on the imprinter. After a sufficient

amount of time, the imprinter and substrate are then cooled to room temperature and the

imprinter is removed leaving the transferred pattern behind in the PMMA on the

substrate. Figure 2-1 shows a graphical representation of each step of the imprinting

process.

9
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heated above the PMMA transition
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Pressure is then applied between the
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Figure 2-1 - Basic NIL processing with thermal imprinting.
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This method allows for feature sizes less than 10nm, but the feature size is dependent on

the method of patterning the imprinter. There are many advantages and disadvantages to

this method of lithography and they will be addressed later in this chapter. An anti-

adhesion layer can solve some of the problems with NIL but many anti-stick coatings are

unreliable or can cause pattern defects.

2.3 Imprinting Machine Designs

The imprinter applies controlled pressure and controlled heat to both the imprinter and

the sample (polymer coated substrate). Dan Marks designed the original imprinter in

2005 at Rowan University [5]. This design was a large and heavy structure with two

parallel plates where the top plate could be controlled with pressurized nitrogen. The

original imprinter design can be seen Figure 2-2.

11



Figure 2-2 - Original imprinter design createdI by Dan :Marks.

The imprinter has a stainless steel frame wxith a P'arker PST Series pneumatic press that

utilized nitrogen to apple pressure hetmxeen the imprinter and the substrate. T he bottom of

the pneumatic press and the top of the bottom steel plate have a white block of Macor K

and an aluminum block attached to them 161. T he Macor R block is utilized due to its lowx

thermal conducti ity. 1.45 CM- C. to isolate the high temperatures required fOr the

imprinting blocks from the rest of the stainless steel structure. I Igh temperature, room

temperature x ulcanizing (R TV). adhesive is used to attach the MacorR to the frame and

the aluminum block to the Macor . The aluminum blocks have 3 large holes for the

heatinu elements and 2 small holes for the thermocouple fecdback to control the

temperature across both the top and bottom aluminum blocks. [he temperature of these



blocks s controlled throug-h \\ A IL ( \\SI- RI! S 93 temnperaturc control lers and an

additional sVitch on the control box designates the direction 0! the pneumatic press. 1The

original controllier design also utilized controls Ior timed heating and cooling, but these

wxere remov ed due to problems wxith the sx stem. After this original im printer wxas

designed. txxo other v'ersions of the imprinter wxere created. Oine of these models wxas the

same design but on a smaller scale for smaller wxafer imprinting. T he third imprinter

design. dcxveloped by Brian Balut and Ray Odgers. included an actix e cooling sy stem and

xxas slightly larger than the small imprinting press design. IThis imprinter is the model

that wxas used through this research due to the ahilit\ to include activ e cooling and can be

seen in ligure 2-3).

F i-ure 2-3 -( mi renit Ii)inte1r des~ign.



I he aicti\ e cool ing mnodi lication included two copper pipes that w\ere connected to either

side of' the loxxer aluminum block and the block w~as hollowxed out to allowx air or wxater

flow through the block. Although the ability to w~ater cool the substrate w\ould hav e sped

up imprinting times, the copper pipes w~ere removed since it w~as not an essential part of

the imprinter. I he modified control box can also be seen in Figure 2-4 xwhere only the

essential parts to the imprinting process vwere kept.

1i.

F iguLre 2-4 - ( urrenit jiprinter control miechaisiim.



The metallic switch near the middle of the control console dictated the direction of the

pneumatic press. The direction of the press was controlled through the use of a single

solenoid spool valve. This valve, when enabled or disabled, controls the direction of the

piston. The two control boxes on the right control the temperatures of the top and bottom

aluminum blocks allowing for individual temperature control of each block.

2.4 Imprinter

Electron-beam lithography was utilized to generate the initial pattern on the imprinter for

NIL. This technique was used due to its capabilities of high-resolution pattern generation

and ability to customize the types of patterns on the SiO 2/Si (250nm thermally grown

SiO 2 on silicon) imprinters. First, 10mm x 10mm SiO2/Si substrates were cut and

cleaned thoroughly using sonication, acetone, and methanol. Previous research had used

mechanical cleaning of the substrates, but the lint free cloths would typically leave

particles on the substrate that would cause streaking when applying the PMMA layer. For

this method, the SiO 2/Si substrates were placed in a beaker of acetone and sonicated for 5

minutes in an AQUASONIC model 50T as seen in Figure 2-5.

15
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Paost sonication. the samples x~ere taken out of the acetone bath and spra\ ed w\ith

methanol before being dried w ith drx nitrogen gas. I his pr ocess prov ed superior to the

mechanical cleaning method. It also prov ided P~MMA lav ers on the SiC)2 that are v ery

smooth and no detrimental detects.

After cleansing, the samples were coated w~ith 2%o pok rnethvlmethacrx late

(PMMNA) in chlorobenzene. a tx pical electron beam resist. I xxo lax ers of PMM'A xxere

used to increase the resolution of the pattern exposure and to aid in the subsequent liftoff



The first layer of PMMA was 100k PMMA and the second layer was 950k PMMA,

where 100k and 950k represent the molecular weight of the PMMA. The 100k PMMA

was spun onto the substrate for 45 seconds at 4000rpm, using a Laurell spinner, to

generate a 50nm layer of PMMA. It was then heated on a Barnstead Thermolyne hot

plate to 180°C for 2 minutes. After the substrate cooled, the second layer of 950k PMMA

was spun onto the substrate for 45 seconds at 4000rpm for a thickness of approximately

50nm. The substrate was then heated again to 180°C. Both of the resists were spun onto

the SiO2/Si substrate at 4000rpm for 45s to generate a total layer thickness of

approximately 100nm.

The sample was e-beam written using a Nanometer Pattern Generation System

(NPGS) from JC Nabity Lithography Systems in Bozeman, Montana on a LEO 1530VP

SEM. The NPGS software has the ability to control the electron beam of the SEM to

manipulate the location of the electron beam while exposing the e-beam resist (PMMA)

in those locations. One problem that arises when controlling the e-beam of the SEM is the

degree that the focus changes from one point to another on a substrate. This is due to the

optics of the electron beam and the degree that the substrate is not perfectly perpendicular

to the e-beam. The NPGS software allows for the calibration of the focus of the e-beam

across the substrate by performing calculations based on 4 or 5 focal points around the

substrate. Since the PMMA surface of the substrate is very smooth, 50nm gold colloids

are placed at each of the 4 corners of the substrate before placing it in the SEM. This

provides 4 focal points at the extremities of the substrate for generating the focal plane

with the NPGS software. Each point was focused at 300,000x to allow for more accuracy

in the NPGS software calculations. After the NPGS software calculates the plane, it is
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important for the [(N S crror term to be less than 0.001 to ensure a I oculsed beam across

the substrate.

All patterns we re generated using 30kV on a 3 0 m aperature xxith a wxorking

distance of approximately 6mm. T he wxorking distance of 6mm is used as a compronmise

betwxeen tighter focal point at shorter xx orking distances and larger depth of field at longer

xworking distances. The patterns (venerated using the NIP(S sy stem wxere I100 tm x 1 00 tm

squares wxith array s of dots less than 3Onm in diameter and a pitch of 1 OOnm. Iigure 2-6

shoxxs the arrax of 3Onm dots that xx re generated xxithin the I OOp~m x I ()(4m squares.

200nm EHT - 3 0) kV Signal A = InLens Date 15 Apr 2009
1 I0nm= rim Photo No =4154 Time 16 0945

F'igure 2-6- Paittern generatedI using EBI. w~ith approxiniate 3011111 diameter (Jots separated by aI)Iroximnatehx
50nm from each other.
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After the patterns were exposed by the e-beam of the SEM, they were developed in a

1:3 mixture of MIBK:IPA for 60 seconds. Since PMMA is a positive e-beam resist, the

pattern that was exposed by the e-beam of the SEM became soluble in the developer and

was removed from the SiO 2/Si substrate. The MIBK:IPA solution did not remove the

unexposed PMMA leaving the desired pattern generated by the NPGS system surrounded

by PMMA.

Following the exposure and developing of the substrate, it was then placed in a

thermal evaporator for the deposition of approximately 20nm of chrome. The chrome was

evaporated onto the substrates using an Edwards E306A coating system by passing large

current through a chrome coated tungsten rod. The deposition rate was approximately

0.2 nm/min. This evaporation process coats both the PMMA and exposed SiO 2 with a

layer of Cr without coating the sidewalls of the PMMA. The thickness of the Cr layer is

critical when compared to the thickness of the PMMA. For the liftoff of the PMMA, it is

very important to ensure that the Cr on top of the PMMA is not connected to the Cr on

top of the SiO2. For this reason, the thickness of the Cr layer must be less than 1/3 the

total thickness of the PMMA layer. Liftoff was performed in a 1:1 mixture of methylene

chloride and acetone. This removed the PMMA while removing the Cr that was on top of

the PMMA. Sonication was used along with the liftoff process to help remove the

PMMA with the Cr on top. Sonication times were typically kept under 1 minute to help

protect the small (<30 nm) Cr features from ripping from the SiO 2 substrate surface. As

the feature sizes decrease, the sonication has a higher probability of destroying the Cr

features due to the fixed amount of energy that is transferred to these smaller features.

Figure 2-7 shows the pattern generated after Cr deposition and liftoff of the unexposed
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PIMN IA\ and Cr. III h lea\ s the pattern. exposed by the N PGiS SI N sv tiem. in chr-ome

and the surrounding areas remox ed to expose the SiO2 surtace.

1 Nm EHT =3.00kV Signal 4 =InLens Date .5Apr 2009

WC - 5nmm Photo No =4155 Time 161305

F igu re 2-7 - Patterns generatedl iNcre sets of I OOpm x I (10m squiares w ith the (lot pattern shiowni abox e in th is
51mx 5pm SFNI image.

I olloxx in the generation of the nanometer-sized Cr dots. the sample w~as subjected to

reactix e ion etching in an ()xtbrd Pl1asma Lab 80-- Reactix e Ion Etcher (RIFI) as seen in

Ilagure 2-8.
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F igure 2-8 - Plasm a Lab 84)-- Reactivec Ion Etcher.

T he plasma wxas formed using a combination of (4) and H, gas w ith a flow rate of

40SC('NI and I 2SCCM respecti\ cly. T he process uses a tbrxmard bias v oltage generating

a power of 40W for 5 minutes resulting in pillars wxith a height of I S0nm. This

combination anisotropicaIy etched the oxide lay er leav itg the Cr intact. With an etching



time of 4 minutes, the pillars created were about 100nm in height with a diameter the

same of the Cr dots (30nm). Each imprinter contained a pattern of 100 of these 100m x

100 m squares (10 x 10 pattern of squares) with 30nm diameter pillars of 100nm height

filling each square. This provided a vast number of pillars (108) to inspect on each sample

for the imprinter analysis post imprinting as seen in the results.

2.5 Imprinting

The preparation of samples to be imprinted was similar to the preparation for the e-beam

writing. Two layers of PMMA were spun onto the sample at 4000 rpm to produce a total

thickness of about 100nm. These two layers of PMMA help with the liftoff process of the

PMMA for the use of the substrates as patterned magnetic material or other processing.

The imprinting was performed in a custom built imprinting press as described earlier in

this chapter. The imprinter was placed in the top press with the lower press containing

the sample to be imprinted. Both sample and the imprinter were then heated above the

glass transition temperature, nominally 105°C, to 210°C through the use of heaters in

each of the aluminum plates. It is important to pass the transition temperature of the

PMMA to allow fluid motion of the PMMA while not heating the substrates far above

230°C due to the potential degradation of the PMMA. Double sided adhesive conductive

carbon discs were utilized for attaching the imprinter and sample to the aluminum plates.

The carbon discs provide an excellent method for affaching the imprinter and sample to

the aluminum plates while enabling a degree of flexibility and cushion between the

Si/SR)2 wafers and the aluminum plates. Previous research for the imprinter press by

Dan Marks had proved that 1 70°C at 40psi for 4 minutes was an optimal imprinting
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temperature, pressure, and time for the imprinter and sample using the smaller imprinter

press design [5]. Due to the use of the alternate imprinter design, these optimal

imprinting factors had to be recalibrated and it was found that 210°C was a better

temperature for a similar imprinting pressure and time. After both the sample and the

imprinter were above the glass transition temperature, the press was released allowing the

samples to come into contact with each other with an initial pressure of 10 psi. The

pressure was gradually increased to 40 psi over a time period of 1 minute forcing the

imprinter into the sample while maintaining the temperature of both the imprinter and the

sample. After 4 additional minutes, both the imprinter and sample were cooled to about

30°C before separating the sample from the imprinter. This process is similar to that

developed by Dan Marks during his work at Rowan University with only a temperature

modification required due to the modification of the imprinter design [5]. Instead of

increasing the temperature of the imprinter and the sample, it is also possible to increase

the pressure or imprinting time to produce similar results. However, increasing the

pressure between the imprinter and the sample resulted in a higher probability of the

Si/SiO2 imprinter or sample breaking under the additional pressure. Increasing the

imprinting time was a viable method to allow for the imprinter features to penetrate the

PMMA, but increasing imprinting time is not desirable. The higher temperature used in

this work allowed for a similar imprinting time and lower pressure during the imprinting

process while not degrading the PMMA on the sample to be imprinted.
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2.6 Nanoimprint Lithography Drawbacks

Although nanoimprint lithography will allow for much smaller features than optical

lithography, there are still many drawbacks to the technique that will need to be

addressed. To investigate the PMMA flow, two techniques have been tested with the

imprinted substrate. When the PMMA is baked after spinning but prior to imprinting,

pressures on the scale of 90psi are needed to transfer the pattern along with higher

temperatures on the order of 210°C. However, this technique does lower the chances of

the PMMA sticking to the imprinter. On the other hand, if the PMMA is not baked prior

to imprinting, there is a higher probability of the PMMA sticking to the imprinter.

However, lower temperatures and pressures around 170°C and 40psi are required to

transfer the pattern when pressure is applied between the imprinter and the sample during

heating. It is believed that this is due to the chlorobenzene that is still in the PMMA

allowing it to flow better at lower temperatures making it easier to transfer the pattern.

However, this also is problematic since the PMMA can sometimes flow too much

causing limited pattern transfer. Previous research has shown that resist flow can be

enhanced if the solvent is still present in the resist. In this research, room temperatures

were used to transfer the pattern into the solvent enhanced resist (Shipley, S1813) [7].

The problem of the PMMA sticking to the imprinter post cooling of the substrate is a

major issue in nanoimprint lithography that needs to be addressed and the increased flow

of the solvent enhanced resist increases the probability of adhesion to the imprinter.

Alignment issues are another problem with nanoimprint lithography. It has been found

that poor alignment of the imprinter to the substrate sometimes causes the substrate or the

imprinter to break during the imprint process. One solution to this problem that has been
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found is to always use a substrate that is larger than the imprinter. This also helps with

the buildup of PMMA on the edges of the substrate (edge bead) that can also cause the

substrate to break due to the different heights of the PMMA. It is also known that

nanoimprint lithography takes a couple minutes to process due to the time needed to heat

and cool the substrate. One solution to this is to add the cooling system back to the

imprinter, but this still requires minutes to transfer the pattern as opposed to optical

lithography that takes mere seconds. Some researchers have switched to a process called

Step and Flash Imprint Lithography (SFIL). SFIL does not require the heating and

cooling of the substrate but it does use a UV curable etch barrier that is not easily

removable with a solvent. Essentially, SFIL is the same as NIL except that the UV resist

is photo sensitive, liquid at room temperature and only hardens when exposed to a UV

light source. This causes the imprinter design to be more expensive since it utilizes a UV

light source although it is still much cheaper than the current light sources used in optical

lithography. SFIL does have the added advantage that the imprint process takes less time

and alleviates the problems due to thermal distortion of the resist on the substrate.

2.7 Current Mold Anti-Stick Coatings

It is well understood that Mold Release Coatings (MRC) are necessary in NIL. The MRC

helps prevent the adhesion of the substrate polymer to the imprinter when the imprinter

comes into contact with the substrate polymer. As the feature sizes get smaller on NIL,

the MRC becomes more important because the smaller features increase the surface area

of the imprinter. All release coatings provide a method for lowering the surface energy of

the imprinter through molecules that covalently bond to the surface of the imprinter. Van
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der Waals Forces are the main forces that must be overcome on the surface of the

imprinter since it is intermolecular in nature. Molecules with weak dipoles are very

important for anti-stick properties of imprinters. The C-F bond is a very strong and stable

bond and therefore, fluorine coatings are the main research area for use in anti-stick

coatings. A similar type of coating in use in the kitchen is PTFE, or better known as

Teflon®. While Teflon® acts as a great anti-stick layer on kitchen pots and pans, it has a

surface tension of 18 mJ/m 2. One release agent that has been utilized in SFIL is

tridecafluoro- 1,1 ,2,2-tetrahydrooctyltrichlorosilane (trichlorosilane or TCS) and was

proven to have a surface tension closer to 12 mJ/m [8]. Previous work at Rowan

University by Robert Grove utilized TCS that was purchased from the American division

of Gelest. One disadvantage of this coating is that it cannot be applied simply to the SiO 2

surface of the Si imprinters. Therefore, the surface had to be treated with nitric acid for 5

minutes to hydroxylate the surface of the SiO2 meaning that the Si-O-Si bonds had to be

replaced with 2 Si-OH bonds. Although this technique has been proven to work well

most of the time, there were times when the substrate polymer still stuck to the imprinter.

Also, this process of treating the imprinter with TCS is a lengthy process that involves

acids, removal of water, and heating the imprinter to over 250°C and working in a glove

box. This has the potential to damage the imprinter especially when small feature sizes

are present on the imprinter. Failure to keep the TCS dry could also damage the anti-stick

layer requiring a new imprinter to be fabricated. Although this anti-adhesion technique

works well most of the time, there is much room for improvement and creating a simpler

process for applying a MRC is needed.

Fluorination of surfaces can also be achieved by the use of CF 4 plasma or other
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fluorocarbon based plasma. Previously CF 4 has been used for etching and fluorine

contamination has always been seen as an adverse effect. However, this technique has

also been used for imprinters to create a hydrophobic surface lowering the surface energy

of the imprinter. This technique has been applied to SiO 2 as a simple fluorine treatment

and also as a Fluorinated Diamond-Like Carbon (F-DLC) coating. The problems with

these techniques are that the fluorine treatment of SiO 2 weakens the imprinter features as

well as weakening the diamond-like properties of DLC when the fluorine is incorporated

into the DLC layer [9]. CF 4 plasma treatment has also been used for DLC substrates to

lower the surface energy. This protects the desired properties of DLC while lowering the

surface energy but the treatment has always been performed on DLC substrates and not

on SiO 2/Si substrates. This limits the imprinter material to DLC substrates as seen in

previous research [10].

2.8 Previous Work

Previous graduate students, Dan Marks [5] and Robert Grove [11], have performed a

large amount of research in the field of NIL at Rowan University. The primary goal of

Dan Marks thesis was to sputter Permalloy, a magnetic material, on top of the polymer

with closely packed holes. Much of his research dealt with the magnetic testing of these

Permalloy dots to see if they could be used for magnetic storage. The Permalloy was

determined to be too soft for magnetic force microscopy (MFM) but he was able to

design the first two imprinters at Rowan University [5]. During Robert Grove's research

time at Rowan University, Brain Balut and Ray Odgers designed the first active cooling

nanoimprint lithography system that was proven to reduce the cycle time of NIL. Robert
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Grove's goal for his thesis was to utilize Hydrogen Silsesquioxane (HSQ) to fabricate the

imprinter. HSQ acts as a negative e-beam resist and simplifies imprinter fabrication

considerably. Robert Grove's research with HSQ evaluated the time-dependent and

instability properties of the HSQ while developing a method to pattern magnetic media

[11].

2.9 Summary

Nanoimprint lithography has the potential to increase the density of magnetic hard drives

as well as provide a new lithographic technique for generating patterns with smaller

features than optical lithography. There are still many problems with NIL, but many have

been addressed at least to provide a better solution. However, one of the problems that

still plagues NIL is a simple and reliable method to remove the adhesion of the polymer

on the substrate to the imprinter. It has been proven that a fluorine surface can lower the

surface energy of an imprinter but the methods for application are time consuming and

are not consistent while potentially damaging the imprinter during the processing. This

thesis provides a possible solution to this problem through the use of a novel ultra-thin

DLC and F-DLC coating of the SiO2/Si imprinter along with an approach towards

creating a universal anti-adhesion technique for other imprinter materials.
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CHAPTER 3

Diamond-Like Carbon on Silicon Dioxide

3.1 Chapter Overview

This chapter reviews many of the desirable properties of Diamond-Like Carbon (DLC).

Many of the problems with analyzing ultra-thin layers of DLC are also addressed and

some research has made it possible to understand the excellent mechanical properties of

even ultra-thin DLC. A technique is also described for the deposition of a uniform ultra-

thin (< 5nm) layer of DLC as well as tests for the adhesion of this film to SiO 2 surfaces

since this has not been tested in previous research. The properties of this ultra-thin layer

are also analyzed and tested mainly for surface energy properties.

3.2 Introduction

Diamond-Like Carbon (DLC) has many applications including anti-static, anti-wear, anti-

fouling, anti-corrosion, and as gas permeation barriers [12]. DLC is an amorphous form

of carbon that closely resembles diamond in its hardness, lubricity, and resistance to

chemical attack. Most of these applications require films that are < 100 nm in thickness

that are difficult to analyze. These problems stem from difficulties in measuring the film

thickness and the fact that the film properties have to be measured with adequate surface

sensitivity.
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3.3 History of Diamond-Like Carbon

Carbon can exist in several allotropes including graphite, diamond, fullerenes, and carbon

nanotubes [12]. If the processing conditions are chosen properly for the deposition of

carbon films, it is possible to obtain a purely amorphous carbon phase. DLC is a term

used to describe all amorphous carbon that has a high degree of sp2 (trihedral) and sp3

(tetrahedral) bonding [12]. Research on DLC films has been performed for almost 40

years. In 1971, the first report of DLC films was by Aisenberg and Chabot [13]. Interest

in these amorphous carbon films stems from their unusual properties including being

resistant to chemical attack, high hardness, and good optical transparency. Along with

these properties, it can also be deposited at low temperatures making it compatible with a

wide range of materials. Some materials that have been found to be incompatible with the

plasma growth of DLC include common metals such as copper, gold, and nickel [14].

The bonding of DLC to Si surfaces has proven to be excellent but there has not been

research on the bonding quality between DLC and SiO 2. This is addressed later in this

chapter utilizing a qualitative method for determining the adhesion.

3.4 Previous Work

Raman microscopy, electron energy loss spectroscopy (EELS), X-ray reflectometry

(XRR), spectroscopic ellipsometry (SE), X-ray photon electron spectroscopy (XPS) and

surface Brillouin scattering (SBS) have all been used to test films as thin as 10nm

although the data is not always quantitative [12]. Previous work [12] has been performed

to study the intrinsic mechanical properties of ultra-thin DLC films using nanoindentation

data, Raman spectroscopy, optical interferometry, and X-ray reflectometry. In this work,
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it was concluded that the properties of amorphous carbon films on Si get denser, stiffer,

and harder as they get thicker. These calculations were performed on film thicknesses

varying from 2.2 nm up to 100 nm. However, it was also noted that the deposition

technique also determines if this is the case leaving opportunity for other deposition

techniques to not have this common property with ultra-thin films of DLC. One

deposition technique where this property of increasing hardness of the DLC film was not

found was with the sputter deposition techniques [12]. An important property of DLC is

that the hydrogen content is very important to the hardness of the DLC films. Less

hydrogen content resulted in the formation of carbon double bonds but also increases the

graphitic content of the DLC layer [12]. In this research, the ultra-thin DLC films were

sputter deposited with low hydrogen content, so it is believed that it still retains some of

the hardness properties of the bulk DLC films. However, this was not directly tested with

our deposition technique and it would involve an extensive research project in itself.

3.5 Ultra-Thin Deposition Technique

In this research, the ultra-thin DLC was deposited using a TM Vacuum Rotating substrate

Sputter Deposition System with a carbon target. A forward power of 200 Watts and bias

power of 30 Watts was used at room temperature under a pressure of 6mTorr with an

Ar:H2 flow rate of 30sccm and 9sccm respectively. This system configuration generated a

4nm/minute deposition rate on the rotating sample tray. Figure 3-1 shows the DLC

thickness as a function of the deposition time showing an approximately constant

deposition rate.
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Deposition Time of DLC
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Deposition Time (minutes)

Figure 3-1 - DLC1 thickness as a function of deposition time; Forwsard Powser: 20ON', Bias Powser: 30W., Pressure:
6mlorr, Flow Rates: 3:1 kr:H2.

D)eposition times are for the entire rotating tray w~here samples are only exposed to the

deposition at a fraction of the deposition time. The thicknesses of the DLC films vsere

measured using an Atmbios XP-2 profilometer post sputter deposition on multiple

samples to determine the accuracy of the deposition technique w~ith the rotating tray.

Figure 3-1 clearly show\s there is no significant delay time in wxhich the film needs to

nucleate on the surface.
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200 nm EHTI 3.00 kV Signal A = InLens Date :16 Jul 2009

H HWD = 2 mm Photo No. = 4184 Time 18:00 34

Figure 3-2 - 200rim thick DLC on SiO,/Si.

Figure 3-2 clearly show~s the smooth DL C layer on top of the 510 2/Si. This also show~s

that the DL C film wxas unilbrm across the substrate. The ripples seen in Figure 3-2 may

he present due to the high pressure DLC deposition technique. High pressure was used to

ensure that the 1)1C w ould sputter onto the substrate at higher angles. No signs of this

ripple effect were seen in the ultra-thin D)1C lay ers.



3.6 Properties of Ultra-Thin DLC

The DLC films on Si0 2 were analyzed with an Atomic Force Microscope (AFM) and a

Scanning Electron Microscope (SEM) to determine surface roughness and degree of

pattern resolution decrease. When the ultra-thin DLC is sputter deposited onto the

imprinter, the DLC layer will build up on the surface and sidewalls of the features on the

imprinter. This increases the resolution of the features on the imprinter proportional to

the thickness of the DLC deposited. It was determined that the surface was very smooth

with less than 1 nm RMS in roughness using an AFM and verified visually using the

SEM. Since the surface energy of the surface of the imprinter is very important for an

anti-adhesion layer, the Sessile Drop technique was used to determine the contact angle

of the surface [15]. The contact angle characterizes the interfacial tension between a

solid and a liquid drop. A hydrophilic surface would have a very low contact angle

because the surface energy of the solid is greater than the liquids surface energy. A

hydrophobic surface, on the other hand, would form a higher contact angle since the

surface of the solid has a low surface energy that is much less than the surface tension of

the liquid. The Sessile Drop technique is a method of contact angle measurements that

utilizes optics to measure the angle of a drop on the substrate that is level. The surface

contact angle with de-ionized (DI) water at room temperature of the DLC in this research

was confirmed to be 60° as seen in prior DLC research. This means that the DLC surface

still has a high surface energy and poor anti-adhesion capabilities for NIL. It should be

noted that the contact angle would, in general, be a function of the material that is in the

liquid. For example, alcohols, oils, and H20 will have different contact angles.

Measuring the contact angle with H2 0 does not directly correspond to the imprinting
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material, i.e. PMMA well above the glass transition temperature. However, a high

contact angle for H20 on DLC and F-DLC surfaces has been shown, in previous work, to

directly correspond to a low surface energy on the substrate [10].

The "Tape Test" (ASTM D3359) was utilized to measure the adhesion strength of

each of the thin films to the Si0 2/Si substrate. This technique uses an adhesive tape that is

applied to the film and pulled off to determine the adhesion strength. The test was

performed on the thin DLC layer applied to the SiO2/Si substrate. Our tests indicate that

DLC on SiO2 (thermally oxidized Si) show no evidence of peeling, liftoff, or cracking

under the adhesion tape test.

3.7 Summary

The deposition technique in this research has not been thoroughly investigated. However,

the most desirable properties in the DLC layer is the carbon to carbon bonding in the

ultra-thin DLC layer. It has been proved in previous DLC research that the sputter

deposition technique provides a possible method to keep the hardness and strength

properties of DLC even with ultra-thin layers. Although these properties are not crucial to

this work towards a universal NIL imprinter coating, if the DLC is able to provide more

strength to the imprinter it can help protect the features on the imprinter from ripping and

sticking to the sample or breaking. The surface energy of the DLC is lower than the

surface energy of Si0 2, but it is still not quite low enough to provide a durable anti-stick

layer for NIL. The next chapter provides the analysis of a second coating of fluorine to

help lower the surface energy of the DLC layer even more with the use of CF4 plasma in

a RIB.
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CHAPTER 4

Fluorinated Diamond-Like Carbon on Silicon Dioxide

4.1 Chapter Overview

This chapter discusses the many advantages and disadvantages of a Fluorinated

Diamond-Like Carbon (F-DLC) layer. Previous work is reviewed on the hydrophobic

nature of F-DLC films and the correlation between fluorination and the degree of being

hydrophobic is analyzed. A method is also introduced for treating the surface of the ultra-

thin DLC film mentioned in the previous chapter to lower the surface energy while

retaining the mechanical stability of the fluorinated surface.

4.2 Introduction

Fluorine is the most electronegative element in the periodic table and when bound to

carbon, it forms one of the strongest bonds in organic chemistry. This high electro-

negativity leads to a high polarization of fluorine and applies a high electrostatic

characteristic to the C-F bond. Fluorine is highly polarized Fa- and carbon is highly

polarized Co+ resulting in a stable C-F bond that suppresses lone pair donation from

fluorine [16]. This is a desirable characteristic in an anti-adhesion layer and proves to

lower the surface energy of DLC significantly. This characteristic is applied to the ultra-

thin DLC layer through the deposition of a monolayer of fluorine on top of the

amorphous carbon. The processing of this deposition technique is discussed utilizing a

Reactive Ion Etcher (PIE) and CF4 plasma that is known to have an etching or deposition
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rate depending on the environment variables. The fluorine is also known as a dopant for

DLC and is minimized through environment variables in the RIE. The doping of the

DLC with fluorine could affect the strength of the ultra-thin DLC layer. While this is not

desired, it also does not affect the anti-stick characteristics of the fluorine layer. Figure 4-

1 shows DLC in a basic amorphous state. Figure 4-2 shows this same amorphous DLC

after being doped, deposited, and etched with fluorine.

DLC

Figure 4-1 - Diamond-Like Carbon structure.
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Figure 4-2 - Chemical representation of doping, deposition, and etching DLC.
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4.3 C-F Bonding

The C-F bond is a highly polarized bond that gives the C-F bond an electrostatic

characteristic. This creates a large dipole that interacts with other dipoles that are in the

vicinity. However, this polarized bond does not give the C-F bond good donor ability.

The three lone pairs of the fluorine that are bonded tightly to the carbon atoms cause a

high electro-negativity of the configuration. For this reason, they typically will not

interact as hydrogen bonding acceptors causing the C-F bond to be more hydrophobic in

nature. The C-F bond is the strongest in organic chemistry at 105.4 kcal mol1.

4.4 Previous Work

The control of the hydrophobic nature of DLC surfaces has been studied through the use

of CF 4 plasma etching and deposition along with the deposition of F-DLC [9]. The

contact angle of DI water in air on DLC was shown to be around 60° in the previous

chapter. The addition of fluorine as a dopant has also been shown to increase the

hydrophobic nature of the surface to around that of PTFE and has been confirmed

through a number of different works [9; 10; 17]. The contact angle of hydrocarbon-

fluorocarbon mixtures depends on the chemical structure present where -CF 2 and -CF 3

groups showing a higher hydrophobic behavior than -CF as seen through different

production techniques of F-DLC [9]. This chemical composition has been shown to

depend heavily on the deposition conditions and plasma chemistry used in the RIB.

Figure 4-3 shows the post DLC deposition CF4 treatment DI water contact angle when

the RIB chamber pressure is varied. Increasing the pressure increases the contact angle of
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the surface due to the increase in the level of hydrogenation (addition of hydrogen) of the

DLC surface allowing for a higher degree of fluorination to occur (replacing C-H bonds

with C-F bonds).

r)

9

I~j' fj b2 " ~k
C .r . d_ 0r4

Figure 4-3 - Contact angle of DI water on DLC treated with CF4 at varying pressures [9].

There has also been evidence that fluorine prefers to bond to sp 3 bonded carbon rather

than sp2 bonded carbon. Post fluorination technique, it has been shown that 75% of sp 3
bonds are fluorinated easily while only 30% of sp 2 bonds are fluorinated. Similar results

to [9] in contact angle would prove that we have a large number of sp 3 bonds in our ultra-

thin DLC layer.
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4.5 Fluorination Technique

The DLC layer was fluorinated using a Plasmalab 80+ Reactive Ion Etcher (RIE) with

CF 4 as the fluorine source. The CF 4 plasma has a known etch rate or deposition rate on

the DLC layer [9] causing part of the DLC layer to become fluorinated or a monolayer of

fluorine to be deposited onto the surface of the DLC. This etch rate or minimal deposition

rate is desired in the imprinter fabrication to minimize the resolution decrease in the

pattern on the imprinter. For SiO2/Si imprinters, DLC is directly deposited onto the SiO 2.

The fluorination of the DLC surface is then performed to lower the surface energy in the

CF 4 plasma in the RIE. Due to the linearity and small etching rate of the DLC layer in the

RIE CF 4 deposition technique, there is minimal (< nm) decrease in the resolution of the

pattern on the imprinter. This decrease in resolution has been confirmed through the use

of SEM imaging of actual imprinters that will be discussed in the next chapter.

4.6 Properties of Fluorinated DLC

The contact angle of these material layers was the primary focus of the layer testing using

the Sessile Drop Technique as discussed previously. Results of the advancing contact

angles with DI water are shown in this section. Figure 4-4 shows the advancing contact

angle measurements for the SiO2 substrate with both the DLC (lower line in figure) and

F-DLC layers. The contact angle increases from an average of 65 degrees to 110 degrees

with the application of the fluorinated layer and is independent of the DLC layer

thickness.
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Contact Angle of DLC and F-DLC
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Figure -4- ( ontact angle in degress of 1)1 water as a1 function of D[(C thick~ness.

The thinnest IaN er of )1 C deposited xxas 3nmn xith an ultra-thin layer ol fluorine above

the 1)1 C xx ith minimal doping of the [)LC surfce. The contact angle measurements of a

surface are knoxxn to depend on the surface morpholog x along xxith the chemical

structure ol the surface. For this reason. the surface contact angle m~easurements xere

perlo~rmed on a plain silicon dioide surface xxith a thin layer of DLC. This removes the

possibilitN of pattern design or defects in the surface to provide an incorrect contact angle

bir the surface. Small features on the surface can alter the contact angle that is seen on a

macro scale due to the increase in the surface area xxith the small features. In addition, the



surface morphology w\as not altered during the C 1 A fluorine treatment of the 1)1 C layer

and results are similar to previous work [9]. Figure 4-5 shows the DI water contact angle

after each deposition step including the original SiO, on Si substrate. As can be seen,

each step increases the contact angle and therefore lowers the surface energy of the

inprinter pattern.

Contact Angle of Deposition Layers

120
Fluorination

110

100
Cr,
0,

o, 90
a,

80

E 70-
0

DLC

Si02

Imprinter Deposition Stage

Figure 4-5 - Contact angle of DI water after each deposition stage on a SiO,/Si imprinter.

An example of the contact angle measurement can be seen in the Figure 4-7 for a fluorine

treated ultra-thin 1)1LC layer on SiO,/Si.



Figure 4-6 S ample measurement of contact angle of )I water on fluorine ( F4 treated DL( surface.

Ihe D)I water contact angle on the CF4 treated [DLC proved to have extremely high angles

between 1 12' and 11 5. [his shows that the surface energy of the ultra-thin F-DLC layer

is less than 20m./m 2 and the ultra-thin DL C laver was a about 40m1/m2 as also seen in

previjous research 1101. T he surface energy is calculated using the solid-liquid interfacial

tension (y,,). the solid-vapour interfacial tension ( y,. ). and the liquid-vapour interfacial

tension (y,, ). These are all related to the contact angle through the Young equation

-Ysv + y,.,+ y,, cosO = 0 [15]. T he Good & Van Oss method models the surface energy

of a solid (y, as y,= y, + 2 yIy where y" is the dispersive component (Lifshitz-Van

der Waals interactions) and y are the polar components. These components can

then be related to each other with liquids ( y,) that have known dispersive and polar



components as yL(l+ cos6) = 2( ys, + , + [15]. To determine each of the

components of the F-DLC surface, the contact angle was measured with DI water,

glycerol, and ethylene glycol.

mJ mJ mJ mJ
Di Water 72.8 2 1+ cs(112)) = 2 (y)21.82 + ( )2 5 .5  

2 + 25.5 s

Glycerol 64.0 (I + cos(98)) = 2(y )34mJ + (y)57.43.92

mn 2  2 mmm

Ethylene Glycol 48.0 2 1+ cos(87)) = 2 (y7 1.92

Young Equation Ys = + 2 ss = 17.3898 + 2/0.120084*0.0934899 = 17.6017

Figure 4-7 - Sample surface energy calculation for the ultra-thin F-DLC layer.

Through these four equations and four unknowns, the surface energy of the F-DLC

can be determined. The surface energy for the F-DLC in this research was determined to

be 17.6 mJ/m2.

4.7 Summary

The C-F bond is one of the strongest bonds in organic chemistry and fluorine itself is the

most electro negative element in the periodic table. This electro-negativity characteristic

of fluorine gives the C-F bonds high electrostatic properties making it one of the best

elements for anti-adhesion applications. The fluorine doping of DLC can weaken the
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DLC layer through hydrogenation, replacing C-H bonds with C-F bonds. The chamber

conditions with CF 4 plasma are extremely important. Not only can it change the

deposition rate to an etching rate, but the chamber pressure also has a significant effect on

lowering the surface energy of the DLC, or increasing the contact angle with DI water. In

this chapter, a method for treating the surface of the ultra-thin DLC film was presented

through the use of CF 4 plasma with specific chamber conditions. This layer was then

analyzed with contact angle measurements to calculate the low surface energy of 17.6

mJ/m 2 similar to previous research with fluorinated DLC surfaces [10].

45



CHAPTER 5

Fluorinated Diamond-Like Carbon on SiO 2 Nanoimprinters

5.1 Chapter Overview

This chapter utilizes both the DLC and fluorination technique discussed in the previous

two chapters to present a method for generating a SiO 2/Si nanoimprinter with the anti-

adhesion layer applied. This technique is compared to previous work with entire DLC

substrates performed at Columbia University [10]. It will also provide some insight into

the durability and anti-stick properties of the new SiO 2/Si imprinters.

5.2 Introduction

DLC has been shown to have excellent adhesion to SiO 2 allowing for an ultra-thin DLC

layer to be deposited on a SiO2/Si imprinter. The fluorination of this DLC film in CF 4

plasma has also been shown to adhere and at the same time lower the surface free energy

of the DLC film. This is very desirable in a nanoimprinter to ensure the imprinted

polymer does not stick to the imprinter upon withdrawal of the imprinter. SiO 2 imprinters

are the most widely used form of imprinter due to its use of silicon and the ease of

fabrication. Other anti-stick layers have been used with these imprinters in the past [5],

but their reliability is partial at best while being difficult to apply. The use of a DLC layer

and a fluorination technique provides a simple method for application of the anti-

adhesion layer with increased reliability. Another advantage of the F-DLC layer coating

is that the reapplication of this coating is possible on SiO 2 imprinters.
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5.3 Previous Work

Previous F-DLC anti-adhesion layers have been applied to DLC substrate imprinters [10].

One advantage of this technique is that the DLC substrate can provide a much harder

imprinter and may be able to support the imprinting patterns. This work has shown that

the advantages of DLC for imprinting include its mechanical strength, low surface

energy, and its ability to be etched in an oxygen-based plasma. They also proved that

DLC substrates have a surface energy around 40 mJ/m2 and the fluorinated DLC surfaces

have a surface energy around 20 mJ/m 2 when the DLC films were 100-200nm thick on Si

substrates or were the entire substrate. The contact angle with DI water relating to the

surface energy measurements for the DLC and F-DLC was around 100 ° due to the use of

C4F6 and C4F8 plasmas. A disadvantage of using an entire DLC substrate is the cost and

availability of high quality DLC substrates.

5.4 Imprinter Creation Technique

The creation of a SiO 2 imprinter was covered previously in this thesis, but a brief

overview of the imprinter steps can be seen in Figures 5-1, 5-2, and 5-3. From left to right

and top to bottom, the imprinter substrate is first coated with two separate layers of

PMMA, 100k and 950k in 2% chlorobenzene. The SEM is then used to expose the e-

beam sensitive resist with the electron beam controlled by a NPGS system as seen in

stage 1.
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SiO 2  SiO2  SiO2

Si Si Si

Figure 5-1 - SiO, processing, stage I.

T he exposed e-beam resist (PMMA) is then developed removing the exposed resist and

leaving the SiO, exposed in the pattern desired. 1This step is then illowed by the

deposition of a thin (-20nm) layer of chrome while ensuring that there is no connection

between the Cr on the SiO, and the Cr on top of the PMMA. The PMMA is then lifted off

leaving the Cr laver on top of the SiO) in the desired pattern as seen in stage 2.

Si02 Si02 Si0

Si Si Si

Figure 5-2 - Si02 processing, stage 2.

T he substrate is then anisotropically etched in a CF4 and H, plasma in a RIF about 100nm

with the chrome protecting the SiO2 below it in the pattern desired. The final processing

for the SiO2 imprinter is to remove the chrome surface with ceric ammonium nitrate

leaving the desired pattern in the SiO, as seen in stage 3.



S1c 2  S102

Si Si

F~igure 5-3 -SiO, processing. statge 3.

Once the SIO, imprinter pattern is created in the SiO-' surtace. the anti-adhesion [-D)LC

la\ er can then be applied. 1 igure 5-4 showxs a graphical representation of the processinO

of the 1)1C and fluorination techniqlues. From left to right. the imprinter is etched using

ty~pical SiC)2 imprinter fabrication. I hen the Lltra-thin (< 5 rnm) DL C film is applied to the

surtace and side w\alls of' the SiO, imprinter using the sputter deposition sx stem as

discussed before. Finally.- this SIO,2 imprinter w~ith D)LC coating is then placed in the RIFL

for the deposition of fluorine.

Si Si Si

F igure 5-4 - SiO, imphlrinter a1nti-adhesionI F-DIW( applicaition.

As can be seen in F igure 5-4. the 1)1C and fluoine lax ers coat all sides of the SiC)2 . T his

is a result of the nature of sputtering for the DLC and the proper chamber conditions wxith



the RIL'[ It is \ ery important to Coat the sidewxalkV along w~ith the surface since the

majority of the adhesion betwxeen the imprinted poilymer and the imprinter occurs on the

sidew\alls.

5.5 Ultra-T1hin D)1C and F luorinated Lavers

T he ultra-thin 1)1LC and fluor-inated lavers hav e been applied to imprinters w ith various

teatures siz'es. While it is difficult to recognlize the difference between DL C and fluorine

treated [)LC. the application b b\can beseen baslight color change in the DL C surface of a

gold/copper hue to a greenish blue hue as seen in F igure 5-5.

F-DILC

1 00 vary ingi dose
I OOiamx I 00 am
squares w~ith 50nm
diameter pillars 1)1C

Figuire 5-5-OpticalI miicrograiph of SiO, imprinter w ith 1)1 A ((Gold) andl~ F-D)LC (blue-green) areas.

T his color difference is due to the difference in thickness of the LC and [-1)1C film or

the change in the refractiv e index for the VF-DL1C Ia) er. T hese optical properties of thin

films are generated through the interference and reflection of' light w~aves as then reflect

and pass through the DL1C and V -1)1C lax ers. T he color also changes wxith the \ iew angle

of the observer to generate an effect that is known 1 as iridescence. Figure 5-6 show~s a 50

nm feature size imprinter wxith a thin (< 5 nm) coating of D)LC. [he sides of the pillar



walls show\ up in the Sl i\l as a brighter color w\hil Ichei top and bottom ol 11w llnprinters

havec a darker hue to them.

E& 16 m

F~ig.ure 5-6- Fop % ie" and 45 angle ieH ( inset) of ain imp rinlter w ith an ultra-thin IayeCr of DLC.

I: igure 5-7 showxs the same imprinter Xx ith the ultra-thin 1)1C lax er wxith an additional

fluorine layer on top of' the DL1C wxith minimal thickness increase or resolution decrease.



200 nm EHT = 3 00 kV Signal A = InLens

WD = 5 mm Photo No. = 4189
Date :22 May 2009
Time :15:04:58

Figure 5-7 - 45 SEM image of a SiO, imprinter with 50nm features swith both DIC and fluorine ultra thin
layers.

5.6 Nanoimprint Lithography Resolution Loss

Typical resolution loss due to the anti-adhesion F-DLC layer is less than 5nm. This is due

to the application of the DLC to the sidewalls of the pillars along with the top of pillars.

If a larger feature size increase does not matter for the imprinter pattern, it may be

beneficial to increase the thickness of the DLC layer on the imprinter. This has the

potential to increase the strength of the I)LC layer as mentioned in previous chapters.

This thicker DLC layer has the added benefit of protecting the features while allowing for

the re-application of the fluorination step multiple times without having to re-apply the

DLC layer. Alternatively, the precision with which DLC can be deposited allows for



creating smaller gaps between features. While this has not been exploited in this work

and is not the goal of this work, there are applications that could benefit from this

technique.

The reapplication of the F-DLC layer on top of the DLC layer may amplify any

defects in the DLC layer. To resolve this issue, the sample can be heated to 300°C or

placed in 02 plasma. These two solutions have the ability to remove the DLC layer for re-

application.

5.7 Imprinter Pattern Durability with F-DLC Coating

The F-DLC coating has proven to be a reliable and simple method for applying an anti-

adhesion layer on SiO2 imprinters. Multiple imprints with the same sample have been

possible and the reapplication of the DLC and fluorinated surface is also possible. The

visible color difference between the SiO2, DLC, and F-DLC layers creates an easy

method for determining the presence of the anti-adhesion layers.

The imprinter anti-adhesion F-DLC layer has been tested through multiple runs

with comparisons to SiO2/Si imprinting without an anti-adhesion layer. SiO2/Si

imprinters can produce good results but always result in portions of the PMMA sticking

to the imprinter or the features on the imprinter tearing and being left in the sample

PMMA. When the PMMA is not pre-baked to the sample, the adhesion of the PMMA to

the imprinter is guaranteed. The pre-bake step helps create a good adhesion between the

SiO2 sample and the PMMA. Without the pre-bake, the PMMA attempts to adhere to

both the imprinter and the sample equally resulting in adhesion to the imprinter. This

proved to be a good test for the anti-adhesion layer since the PMMA was guaranteed to
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stick to the imprinter. After multiple imprint attempts w~ith the SiO2 Si imprinter w ith the

anti-adhesion lay er. the pattern always transferred to the substrate wxithout adhering to the

imprinter even wxithout the pre-bake step. Figure 5-8 show\s an imprinted sample from a

SiO, imprinter w~ith the anti-adhesion F-DLC layer. As stated before. removing the pre-

bake step from the sample processing may help v.ith the flow of the PMMA and typically

produces better results.

EHT =3 00 kV/ ignal A = ILens

VVD = 3 mm Photo No. 4189
Date 16 Jul 2009
Time 18:5823

Figure 5-8 - Imlprinted1 Ph111 b.i F-n DLC SiO,.Si imprinter.

Figure 5-9 showxs an image of the imprinter after ten imprints. All ten imprints resulted in

good pattern transfer and minimal feature damage. After the tenth sample, the F-DI C'

layer wxas still intact onl the surface of the imprinter and w~as determined visually through

I100 nmr 1
,1dt



the color of the imprinter.

1 im EHT = 3 00 kV Signal A = Inlens Date 16 Jul 2009

WD - 3 mm Photo No. = 4186 Time 18-25-08

Figure 5-9 - F-DL( Si0 2/Si Imprinter after 10 imprints.

Quantitative analysis of imprinter reliability is difficult due to the large number of

nanoscale features that need to be analyzed. ach imprinter created in this research

contains 100 100[tm x 100[tm squares. Each of these squares contains about 1 million

nanoscale features to be analyzed. Since there are 100 of these squares, there are 100

million nanoscale features that have to be analyzed over the surface of the imprinter.

Since these features are on the scale of 30-5Onm, the SEM must be used for analysis

increasing the time needed to inspect each of the 1 00 million nanoscale features.

A secondary difficulty is that the optimal imprinting variables in the imprinting



process have not been finalized due to many variables in the current system design. To

determine the optimal imprinting variables would require hundreds of imprints and the

analysis of each imprint in the SEM. There is no definitive answer, at this time, to the

question of how many imprints are possible before the imprinter needs to be replaced or

re-coated.

Figure 5-10 shows multiple imprinting experiments, each with a new imprinter,

and the result of the pattern transfer analyzed through optical lithography with the F-DLC

coated imprinters. Results without the anti-adhesion F-DLC coating resulted in poor

pattern transfer or imprinter destruction every time.
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Temp Pressure Time Prebake Imprints Results
Trial 1 160°C 40 psi 4 min No 10 Pattern transfer was good

for every imprint without
adhering to the imprinter.
The imprinter broke after
10 imprints due to uneven
pressure.

Trial 2 170°C 40 psi 4 min No 12 Pattern transfer was good
for every imprint without
adhering to the imprinter.
Trial was ended after 12
imprints with a visible
anti-adhesion layer still
intact.

Trial 3 180°C 40 psi 4 min No 12 Pattern transfer was good
for every imprint without
adhering to the imprinter.
Trial was ended after 12
imprints with a visible
anti-adhesion layer still
intact.

Trial 4 180°C 70 psi 4 min Yes 0 Imprinter temperature or
pressure was not high
enough for reliable pattern
transfer.

Trial 5 190°C 70 psi 4 min Yes 0 Imprinter temperature or
pressure was not high
enough for reliable pattern
transfer.

Trial 6 200°C 70 psi 4 min Yes 0 Imprinter temperature or
pressure was not high
enough for reliable pattern
transfer.

Trial 5 210°C 70 psi 4 min Yes 5 Imprinter broke after 5
imprints due to uneven
pressure.

Trial 6 210°C 80 psi 4 min Yes 2 Imprinter broke after two
imprints due to uneven
pressure.

Figure 5-10 - Trial runs for imprinters with and without the anti-adhesion F-DLC layers.
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5.8 Summary

This chapter has shown the application of the ultra-thin F-DLC anti-adhesion layer on a

SiO2/Si imprinter with a feature size increase of less than 5nm. The reapplication of the

F-DLC and DLC layer has also been discussed through the removal of the DLC layer.

After multiple imprint attempts, it may destroy parts of the F-DLC or DLC layers

requiring the removal of both layers while protecting the SiO 2 imprinter features. The

results presented in this chapter show excellent anti-adhesion properties through

numerous tests and analysis through both an optical microscope and a SEM.
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CHAPTER 6

Fluorinated Diamond-Like Carbon on Plastic

6.1 Chapter Overview

This chapter reviews the application of the ultra-thin F-DLC anti-adhesion layer on

another imprinter material. Although this only shows one other type of imprinter

material, the buffer layer technique described may be applicable to a large number of

materials. While additional buffer layers slightly degrade the resolution of the imprinter,

it offers the advantages of F-DLC to a wide range of imprinter materials and may lead to

a universal anti-adhesion coating.

6.2 Introduction

The use of plastics as an imprinter material has a number of added benefits. Utilizing a

rolling imprinting machine, the throughput of the pattern transfer of NIL can be

drastically increased. These lithographic techniques require flexible material that can pass

through a roller system while being strong enough to transfer the pattern into another

material. This chapter discusses the application of the F-DLC anti-adhesion layer to a

particular thermoplastic, polypropylene (PP), but the technique may be applicable to

multiple types of flexible imprinters or imprinters that are very heat sensitive.
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6.3 Roll-to-Roll Nanoimprint Lithography

Nanoimprint lithography has the potential to provide a cheap alternative to transfer

nanometer-sized features on a large scale. However, current process and throughput of

NIL is a limiting factor for many applications of the technique. Roller imprinting has

been investigated in the past [18]. The main goal of this research was to allow the

continuous printing of nanostructures on a flexible material with throughput that

increases on the order of one or two magnitudes when compared to traditional NIL. The

Roll-to-Roll Nanoimprint Lithography (R2RNIL) utilizes the same mechanical

imprinting technique as NIL but utilizes flexible materials for the imprinter and the

imprinted substrate. Besides the increased throughput of R2RNIL, it also requires less

force to transfer a pattern while helping with the adhesion due to the rolling separation of

the imprinter and the imprinted substrate.

R2RNIL does have a couple of important requirements. First, the imprinter mold

needs to be generated on a flexible material. It needs to be flexible enough to wrap

around a roller while having enough strength and durability to imprint other materials. On

top of these requirements, the surface energy of the material must be low enough to

promote anti-adhesion for continuous imprinting. In previous research, the

fluoropolymer, ethylene-tetrafluoroethylene (ETFE) was used due to its high Young's

modulus (1.2GPa) at room temperatures as a sample being imprinted by a rolling Si

imprinter [18]. This imprinter system can be seen in Figure 6-1.
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Figure 6-1 - R2RNII pattern transfer and evaporation design sstem 1181.

While this technique can increase the throughput of NIL. it limits the imprinting substrate

to a flexible material. If this sxstem xere utilized in the reverse method, a flexible

material for the imprinter and Si tor the substrate, it could be applicable to the

semiconducting industry. A flexible plastic based imprinter could be used along with a

liV light source such as step-and-flash imprint lithography with Si wafers that roll on a

conveyor system. While this system would proxide a high throughput method of

imprinting, it wxould require a method for providing strength to the plastic imprinter

features while lowering the surface energy of the imprinter. For this portion of the

research, the thermoplastic polypropylene (PP) is used although this deposition technique

may be applicable to numerous other types of flexible thermoplastics.
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6.4 Polypropylene

To test the anti-adhesion method on another imprinter material system, ultra-thin F-DLC

was deposited onto PP using a glass buffer layer. The glass buffer layer is needed with

thermoplastics to protect the features of the PP from the DLC sputter deposition stage.

Figure 6-2 shows the PP deposition stages with the advancing contact angles of each

stage. PP has a relatively high contact angle with DI water at 70 degrees and both the

glass and DLC layers increase the surface energy of the PP and thus would increase the

adhesion to the imprinted polymer. While this is an unwanted effect, the glass and DLC

layers will help to protect and give strength to the PP features. The fluorination step then

brings the contact angle of the surface back to 115 degrees indicating that the surface

now has a low surface energy.
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Contact Angle of Deposition Layers

Polypropylene

Glass

DLC

Polypropylene Deposition Stage

F'igu re 6-2 - Contact angle in dlegress as a function of (deposition stage for Poly propylene.

6.5 Polypropy lene Imprinter Fabrication

Polypropy lene can be patterned using similar methods to SiO,. Other methods of

g)eneral ing micro and nanostructured polypropy lene surfaces include injection molding

119] and a nove ci orm of imprinting that utilizes an imprinter of Si or SiO2 on Si wxith a

coating of P~MMA that an adhesive PP then is attached to after cooling. When the

adhesiv e lPI is remov ed. the PMMA pattern separates from the imprinter leaving the

pattern on the PP I his patterning process can be seen in Figure 6-3 [20].
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Figure 6-3 - Polypropylene nanoin)Irint pattern transfer process for generating initial pattern 1201.

After the PP is patterned, the glass buffer layer is deposited follow~ed by the D)LC and

fluorination techniques as seen in Figure 6-4 from left to right.

Polypropylene Polypropylene Pal ypropylene

Figure 6-4 - Polypropylene F'-DLC anti-adhesion application. (Left: application of thin glass buffer layer,
(Center: Application of the DL.C layer, Right: Fluorination of the DLC laNxer).



Once the polypropylene is patterned, it can then be used as a UV R2RNIL. Since

polypropylene has a melting temperature of about 160°C, it is not ideal for thermal NIL

but this anti-adhesion layer is also applicable to other types of plastic or flexible materials

that may allow for higher melting temperatures.

6.6 Summary

Flexible imprinters have the possibility to increase the throughput of NIL. R2RNIL has

shown to be a technique for NIL that can utilize flexible materials for both the imprinter

and the substrates. In this work, polypropylene was used to demonstrate the application

of the ultra-thin F-DLC anti-adhesion layers to thermally sensitive plastics. These may

benefit the area of R2RNIL with UV curing resist along with applications in a number of

other areas where polypropylene is utilized. The glass buffer layer is used to protect the

PP from the DLC deposition stage and allows for the fluorination of the DLC layer while

protecting the PP. The glass buffer layer has excellent adhesion to the PP substrate and

the DLC has excellent adhesion to the glass buffer layer.
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CHAPTER 7

Conclusions

7.1 Chapter Overview

This chapter summarizes many of the conclusions that have been determined through this

research work. Imprinter fabrication and implementation problems are addressed and the

universal ultra-thin F-DLC layer is reviewed. Other imprinter coatings are also discussed

and a few results from imprinting with and without the ultra-thin F-DLC layer are

presented.

7.2 Imprinter Fabrication

DLC has been shown to be an excellent imprinter material when 100-200nm of DLC are

used or the entire substrate is DLC. The fluorination of this DLC substrate was also

discussed in previous research and shown to be an excellent method for lowering the

surface energy of the imprinters. However, the use of strictly DLC based imprinters

limits the fabrication methods for EBL and other techniques for generating nanometer

scaled patters. This research focused on applying this same anti-stick technique to SiO2

imprinters without weakening the structure of the SiO2 features. SiO 2 imprinters were

chosen because they are the most widely used imprinters. Feature sizes in NIL research

go below 1Onm and can be patterned over large areas in one step.
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7.3 Imprinter Coatings

Current anti-adhesion layers were also addressed and have been utilized previously at

Rowan University. It has been shown in the past that many of these techniques are

unreliable and sometimes only provide marginal success. These techniques also require

the modification of the chemistry of the surface of the SiO 2 while limited to SiO 2

imprinters due to the specific chemistry and most of these techniques are also very

difficult to apply. They involve wet chemistry to modify end groups and usually require a

dry box with water content << lppm. One major advantage of the F-DLC anti-adhesion

layer presented in this work is that the re-application of the fluorine or even DLC layers

is possible between imprinting steps.

7.4 Universal Imprinter Coatings

Many techniques have been used in nanoimprint lithography in an attempt to lower the

surface free energy of the surface. The surface free energy is determined through the

increase in the contact angle of the surface and determines the surface properties and the

interfacial interactions including adsorption, wetting, and adhesion. It is desirable to have

low adhesion of the surface of imprinters to ensure an accurate pattern transfer while

retaining the pattern on the imprinter. An imprinter with high adhesion typically results in

portions of the resist being torn from the imprinting sample as the imprinter is removed

as seen in Figure 7-1. This destroys the sample and also may alter the pattern on the

imprinter thus lowering the reproducibility of the pattern transfer.
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1 mEHT = 300 kV -r ae

V11D 5 mm Photo No =4140 Time 14 4409LE

F'igu re 7-1 Iminprinted samiple wsithout the F-I)LC anti-stick coatting on the imp rinter. T he left side of the image
show~s where the dot arra} transferred where the right side show~s the missing PIM1A that stuck to the
implrinter.

I he 1~-DIC technique has been show~n to be a reliable technique to minimize adhesion

betwxeen the imprinter and the sample. T he RIF processing also has minimal resolution

decrease of the pattern on the imprinter. Using thick DLC substrates w~ith a thin film of F-

D)LC as the imprinter has proven to retain the properties of DLC wxhile allowing for a

low~er surface energy due to the thin F-DLC lav er. H-owxever. requiring that the imprinter

be D)LC or F-IDLC based greatly reduces the techniques allowed for the fabrication of the

imprinter. Although this method utilizes an ultra-thin DLC layer, it still retains many of

the important 1)1C properties needed for nanoimprint lithography . It also allows for the

use of multiple imprinter generation techniques that could increase the possible resolution

over DLC or F-UL C imprinters. Hlowever, the reapplication of both the DLC and the F-

DL1C lay ers may be required after multiple imprints for increasing the lifespan of the



imprinter.

7.5 Summary

Nanoimprint lithography is a viable technique for creating nanoscale features over large

areas. Unfortunately, it is a contact technique and eliminating resist tearing and liftoff is

critical for its success. Various imprinter material systems have been developed to

achieve specific goals. However, these imprinters all have one thing in common - they

must not adhere to the imprinted resist. Through the use of F-DLC, we have suggested a

method for creating an anti-stick layer on a wide range of imprinter materials that has not

been previously tested as an ultra-thin coating. On materials where DLC adheres well,

fluorination significantly lowers the surface energy. On materials that do not promote

DLC adhesion, we have demonstrated adhesion of DLC through the use of an ultra-thin

SiO 2 buffer layer. This ultra-thin layer has been proven to retain a low surface energy

approaching 17.6mJ/m 2 along with the strength of the DLC. Although the feature size of

the initial imprinter is increased slightly due to the deposition of the anti-stick layers, the

reliability of the imprinter increases allowing for a reliable transfer of smaller feature

sizes.
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7.6 Future Recommendations

A more in-depth analysis of the DLC layers may be important to address. Many of the

deposition variables were not extensively varied in this work and it would be useful to

determine if other deposition variables could increase the hardness or strength of the

ultra-thin DLC layer.

The imprinting press design of the imprinter system at Rowan University could also

have a couple modifications performed. First off, the water-cooling on the system could

be re-connected to increase the pattern transfer speed of the NIL imprinter. One issue that

should be addressed is the slightly non-uniform pressure of the two parallel plates. The

SiO 2 wafers are not always perfectly flat with the two parallel plates and can cause the

substrates to not apply uniform pressure like some of the commercially available

imprinting systems. One reason for this is the use of the 9mm carbon tabs that are used

for sticking the SiO 2/Si wafers to the top and bottom of the imprinter press. A solution

that utilizes a vacuum to hold the samples in place could provide a more reliable imprint

when uniform pressure is considered.

Although this ultra-thin F-DLC technique has excellent anti-adhesion properties, it

has only been applied to two separate imprinter materials, SiO2/Si and PP. Future

research should attempt to apply the F-DLC coating to multiple imprinter types such as

SiC, Si3N4, Ni, quartz, other plastics, and other flexible imprinter types.
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