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ABSTRACT

Russell Paul Ondusko III
USE OF LINEAR PREDICTIVE FEATURES AND PATTERN RECOGNITION TECHNIQUES
TO DEVELOP A VECTOR QUANTIZATION BASED BLIND SNR ESTIMATION SYSTEM

2007/08
Dr. Ravi Ramachandran

Master of Science in Electrical and Computer Engineering

Signal-to-noise ratio is defined as the ratio of a given transmitted signal to the background noise

of the transmission medium. Signal-to-noise ratio (SNR) is a common concept found in all forms

of electrical communications. The easiest way to measure the signal-to-noise ratio is through

intrusive means in which a corrupt signal is compared to its original signal. This technique is

inefficient and impractical because it requires the original signal and can only be used to

theoretically test the noise properties of a channel rather than estimate the SNR of a

communicated signal. Characteristics of speech signals can be used to develop non-intrusive

methods for estimating the SNR of a signal. These methods do not require knowledge of the

original speech signal for analysis.

In this thesis a Vector Quantization (VQ) based pattern recognition system approach is

applied to estimate the SNR of speech signals. Features for the VQ system are derived from the

speech signals through linear predictive analysis. The system is trained and tested on a range of 0

to 30 dB SNR in which codebook size, codebook spacing, training sets, and decision methods are

studied to determine the best system architecture for a robust SNR estimation system for speech

signals. The optimal feature for estimating the SNR of any speech signal regardless of the

spectrum of the background noise is determined through analysis of testing results. An ensemble

of classifiers approach is used to perform both decision level and distance level fusion using

various combination rules to determine the best feature combination and fusion technique for a

robust SNR estimating system for speech signals.
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CHAPTER 1- INTRODUCTION

1.1 Measures of Speech Quality

Speech signals, like any signal, are subject to additive noise from many sources.

Transmission of an analog speech signal is subject to noise corruption from its channel,

wired or wireless. The channel the signal passes through has a large bearing on the type

of noise in the signal. Quantization noise will occur during the process of digitizing a

speech signal. Applications of speech signals, including speaker identification and speech

detection, are highly dependent on the amount of noise in a signal. Confidence metrics

have been developed for such applications based on the quality of the incoming speech

signal [1][2]. These confidence metrics have many applications but could be most

important in security based applications. Two methods that exist to judge speech quality

are the Mean Opinion Score and having knowledge of a signal before it has been

degraded by noise. The mean opinion score technique requires multiple votes on the

quality of speech signal from human listeners. Generally this is done by giving the signal

a score from 1 to 5 with 1 being highly corrupt and 5 being clean. This technique is time

consuming, lacks the detail and resolution of a sophisticated analysis technique, and is

highly susceptible to error since it is solely based on human opinion. Having knowledge

of a signal before corruption is an accurate way to judge signal quality, however, the

process is intrusive and not always feasible. The goal of this thesis is to develop an

efficient, accurate, non-intrusive, method for determining speech signal quality. The



signal to noise ratio of a speech signal has been identified as a good measure of speech

signal quality. A pattern recognition system will be devised to use linear predictive

feature data to train and test a VQ Classifier based system to provide an estimate of the

signal to noise ratio, or SNR, of a speech signal regardless of the spectrum of the additive

noise.

1.2 Objectives of Thesis

The main objectives of this thesis are:

1. To investigate six linear predictive based speech signal features identified from

use in speaker recognition systems and their contribution to a signal to noise

ratio estimating system.

2. To implement a pattern recognition approach to signal to noise ratio estimation

using vector quantization classifiers.

3. To investigate classifier parameters when designing the VQ system and their

effect on signal to noise ratio estimation.

4. To study the ability of a VQ based pattern recognition system to estimate signal to

noise ratio of multiple noise types including additive white Gaussian noise, pink

noise, Continental Poor Voice (CPV) noise, and Continental Mid Voice (CMV)

noise.

5. To train a system robust to all trained and untrained noise spectrum types.

6. To study feature fusion techniques to identfy the best feature combination and

fusion scheme for a robust system.



1.3 Expected Contribution

This thesis details the research performed to construct a robust, non-intrusive pattern

recognition based signal to noise ratio estimating system to provide speech signal quality

estimates. The goals are to create a system which performs better than a tested benchmark

system and to achieve less than a 3 dB average SNR estimation error within the range of

0 to 30 dB SNR.

1.4 Focus and Organization

This thesis studies the creation and performance of a VQ Classifier based pattern

recognition system which uses linear predictive features derived from speech signals

corrupted to known SNR levels to accurately estimate the signal to noise ratio of the

entire speech signal. The thesis is divided into the following chapters:

Chapter 1 is an introduction to the motive and approach of developing a pattern

recognition based SNR estimating system.

Chapter 2 is a literature review of methods used to estimate signal to noise ratio

and noise estimation in general and a background on algorithms employed in the system

presented. This chapter provides information on six linear predictive features, vector

quantization, the genetic algorithm as an optimization technique, and the minima

controlled recursive averaging algorithm which is used as a benchmark.

Chapter 3 defines the approach used for the specific application presented here

and explains how all algorithms previously explained are used to generate this specific

system. This includes a step by step analysis of the system design and research direction.



The contribution of each training parameter, each feature, and each post processing step

is analyzed through their effect on an error based performance measure.

Chapter 4 presents and discusses the results obtained through experimentation at

each step of the research process.

Chapter 5 summarizes the results and draws conclusions as to the final design of a

robust signal to noise ratio estimator for the purpose of providing information on speech

quality for the purpose of developing confidence metrics.



CHAPTER 2 - BACKGROUND

Noise is present in almost any form of electrical signal. Communication systems are

notoriously subject to channel noise. The increased popularity of speech signal

applications creates a need to investigate noise and its effect on speech signals, a common

communication signal. Applications such as speaker detection and speech detection are

popular areas of research and whose performance is highly dependent on noise in the

speech signals. Many systems exist to study and remove noise from speech signals

including noise estimation and speech enhancement. Various techniques are employed in

these systems, spectral estimation being one of them.

Noise estimation had been a thoroughly researched signal processing tool,

employing many methods to improve its accuracy. Spectrum estimation is a widely

adopted technique with many forms of implementation in which signal properties are

used to estimate the spectrum of the signal noise. Pattern recognition is a less popular

approach to noise estimation in a system. Our application involves estimating the SNR of

a speech signal for input into other systems and not for direct signal processing. This

provides a unique opportunity to apply a pattern recognition approach to estimating the

noise in a speech signal, a signal type which already has many pattern recognition based

applications such as speech and speaker identification.

This chapter provides a literature review on noise estimation techniques for

speech signals and an explanation of the terminology and algorithms employed to study a

pattern recognition approach to the problem of noise estimation in a speech signal.



2.1 SNR Estimation Techniques

Noise estimation in speech signals is important for many applications. Noise estimation is

usually the first step in a larger process such as speech enhancement. Many techniques

have been researched to estimate noise in speech signals.

Pattern recognition has been used for the purpose of SNR estimation in speech

signals for an application attempting noise suppression [3]. This technique focused on

determining the SNR in different frequency bands for separate frames, as opposed to the

SNR of an entire sentence. The SNR range was from -10 to 20 dB. The speech based

feature studied in this application was amplitude modulation spectrograms (AMS), which

are based on neurophysiologic findings on amplitude modulation processing in mammals.

The AMS feature was calculated for 32 millisecond frames with 16 millisecond overlap

and a 16 kHz sampling rate andresults in a 15 x 15, two-dimensional complex AMS

feature for each frame, with one temporal dimension and one dimension related to

frequency bands. This pattern recognition approach was trained using forty-two different

types of non-artificial noise mostly from traffic, machinery, and social environments, and

testing was performed on fifty-four types of noise including those trained on. The pattern

recognition technique employs a single standard feed-forward neural network [4]. This

neural network has an input layer of 255 neurons, one for each location in the 15 x 15

AMS matrix; 160 neurons in the hidden layer; and 15 neurons in the output layer, one to

estimate the SNR of each frequency band. The output of this neural network at each band

is a value between 0.5 and .95 within which there is a linear trend corresponding from -10

to 20 dB. The AMS feature based system provides frame by frame SNR estimation for



fifteen frequency bands with an average error across all frequency bands of 5.6 dB.

Though this pattern recognition method differs in output and application from our own,

information from this method could be used in further investigation. It was found that

SNR estimation was more difficult in higher frequency bands.

Spectrum estimation is a common noise estimation technique in which the actual

spectrum of the noise signal is estimated. Spectrum estimation has many applications in

noise including spectral subtraction for signal enhancement. Standard spectral estimation

is typically performed for an entire signal, which does not take into account non-

stationary noise. Non-stationary noise is noise whose spectrum changes in time. One

advancement in noise spectrum estimation in speech signals involves the use of low

frequency regions of the signal to track spectral amplitude [5]. This technique improves

on Boll's method [6], a well known spectral subtraction method which obtains the noise

spectrum from non-speech segments of a signal. Using spectral subtraction to remove

noise from a speech signal often adds musical noise to the signal. Musical noise consists

of tones added to a speech signal from isolated patches of noise which have not been

removed and is generally combated by adjusting the noise spectrum being subtracted by a

constant weighting factor. A constant weighting factor, however, will not perform well in

the presence of non-stationary noise. The amplitude of the noise can be tracked easily

during non-speech segments of a speech signal. In [5] the tendency of speech data to fall

within 50 Hz to 3.5 kllz is utilized to develop a noise amplitude tracking method. Using

the high frequency end of the signal spectrum would result in the need for high sampling

rates to properly apply this technique, so the frequency range of 0 to 50 Hz was studied.



The technique compares the low frequency spectrum of any segment of a speech signal to

the low frequency spectrum of identified non-speech portions of the speech signal to

provide a more variable noise spectrum amplitude. This application is rooted heavily in

spectral subtraction for speech enhancement and is useful for obtaining estimates of noise

levels in segments of a speech signal as opposed to an overall estimate for the total

speech signal.

Higher order statistics have also been a focus of research for noise estimation and

determining signal to noise ratio in speech signals [7]. Higher order statistics focuses on

separating signal and noise energies. In work done by E. Nemer, et al. [7], segments of a

speech signal are broken up into frequency sub-bands. The kurtosis and energy of each

subband for each segment is calculated. It is assumed that the noise has a normal

Gaussian distribution so the kurtosis of noise is zero. Assuming the kurtosis of noise is

zero the calculated energy is both the noise and speech signal energy together, while the

kurtosis is just the speech signal kurtosis. The energy of the speech signal can be

estimated from the kurtosis, and the noise energy is obtained by subtracting the speech

signal energy from the total calculated energy from the subband. This process can provide

an SNR estimate for each subband in each segment of a speech signal. Using this data a

total signal SNR could be estimated, however only in the presence of normally

distributed noise.

A Minima Controlled Recursive Averaging (MCRA) algorithm has been applied

to noise spectrum estimation for the purpose of speech enhancement [8]. This algorithm

estimates noise based on past spectral power values and signal presence probability. The



algorithm uses the Short Time Fourier Transform to obtain both time and frequency data

in the signal. The STFT breaks the signal into frames and frequency sub-bands for

analysis. The algorithm estimates speech presence probability in a frequency subband of

a signal frame from the local energy of the noisy speech signal and a local minimum. A

signal presence probability is generated for each frame to perform noise estimation. A

local energy matrix is obtained by smoothing the magnitude squared of the STFT in both

time and frequency. Next a local minimum matrix is obtained through the recursive

process of taking the minimum between the local energy in the local energy matrix and

the minimum calculated for the prior temporal point. To obtain a local minimum, as

opposed to a signal minimum, a temporary variable is used to hold the minimum of the

previous temporal point, which is reinitialized after a set number of sub-bands. The ratio

between the minimum local energy matrix and the local energy matrix is used to estimate

signal presence probability by assuming signal presence in a specific frame at a specific

subband if the ratio at that point is above a set threshold. Since this algorithm was

implemented for the purpose of speech enhancement, the threshold is set to be more

sensitive to signal presence. This is so it is less likely to remove actual speech data during

spectral subtraction. The noise spectrum in a frame of the speech signal is now obtained

by averaging past spectral powers using a smoothing parameter which varies with signal

presence probability. The MCRA algorithm is employed as a benchmark for the method

discussed in this paper.

There are many techniques for estimating noise in a speech signal. The technique

developed in this thesis estimates the signal to noise ratio of an entire speech signal. Most
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techniques estimate a frame based SNR which may be further split into various sub-

bands, which is required for their specific applications. Obtaining full sentence SNR

estimates would require a proper technique for combining multiple SNR estimates in a

speech signal.

2.2 Linear Predictive Features

One of the most important factors in the success of a pattern recognition system is the

feature data used. The feature data must differ between classes significantly enough to

provide a means of classification. Without the ability to extract meaningful, usable

information from a signal, pattern recognition could not occur. A set of features was

chosen for speech signal SNR estimation based on their popularity in other pattern

recognition based speech applications including speech and speaker recognition. These

features are derived from a linear predictive analysis of a speech signal, and display a

change in behavior as noise in a signal increases. The Levinson Durbin Algorithm [1 is

used to derive a linear predictive filter for each frame of a speech signal being analyzed.

This filter vector is then used to derive all features used in this application. The features

of interest are the LP Cepstrum (CEP), ACW Cepstrum, PFL Cepstrum, Reflection

Coefficients (REFL), Log Area Ratios (LAR), and Line Spectral Frequencies (LSF). The

behavior of these features has been observed to be dependent on the amount of noise in a

signal. The magnitudes of the LP Cepstrum, Reflection Coefficients, Log Area Ratios,

ACW Cepstrum, and PFL Cepstrum all increase as noise in a signal increases. The angles

which comprise the Line Spectral Frequencies become more evenly spaced as the noise

in a signal increases. The ACW Cepstrum and PFL Cepstrum are designed to be more
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robust to noise, and are expected to classify the amount of noise in a speech signal less

accurately than the other features.

2.2.1 Levinson Durbin Algorithm

The Levinson-Durbin recursion algorithm [9] is used to calculate the predictor

coefficients for a linear predictive filter. First, the p order autocorrelation matrix for the

signal frame being analyzed is calculated, where p is the desired order of the linear

predictive filter. The diagonal of the autocorrelation matrix is set as the variable R, where

the first value in R is position 0 and the last value is position p. Second, all variables used

in the algorithm are initialized to zero. These variables include the filter coefficients, a

temporary filter variable, and the reflection coefficients:

a(i)=0
aprev (i)= 0
refl (i) 0=O
i=1-p

where a is the linear predictive filter, aprev is a temporary variable used in the algorithm,

refl is the reflection coefficient vector, and p is the desired filter order. A final variable

denoted Energy is initialized as the energy of the frame, or the first value, R(0) of the

autocorrelation matrix. Finally the algorithm runs a loop to recursively update the filter

coefficients according to the following psuedo-code:

11



fb:f1- p

- C

a'' '

. LJZ' -;

2.2.2 LP Cepstrum

The cepstrum is defined as the inverse of the power spectrum of a signal which is the

inverse transform of the logarithm of a signals z transform. The cepstrum cxlln]

corresponding to the signal x[n] has a z transform:

Cx (z)= log(X (z))

The LP Cepstrum [ 10] can be computed from the linear predictive filter coefficients

calculated from the Levinson-Durbin algorithm:

n-1

'i
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2.2.3 Reflection Coefficients

The Reflection Coefficients are calculated within the Levinson-Durbin Algorithm as the

refl vector. The polynomial z-transform of the Linear Predictive filter,

P

A(z) = 1 - akzk , can be obtained by the recursion[10]:

k=1

A°)( z)=0

A(')(z)=A(' ')(z)-ki z- 1 A'-' )(z - 1)

A(z) = A' p) (z)

where ki are called the PARCOR reflection coefficients.

2.2.4 Log Area Ratio

Log Area Ratios [11] are obtained directly from the reflection coefficients of a signal:

A 1-k
gi = log[ ' i = log[ k] where 1Sip

A l 1+k]

where g; are the log area ratios, A is the predictor coefficient polynomial, and ki are the

reflection coefficients.

2.2.5 Adaptive Component Weighted Cepstrum

The ACW Cepstrum [10] was developed as a feature more robust to noise for the purpose

of speech signal recognition applications. Due to its robustness to noise it is not expected

to perform well as a pattern recognition feature for determining noise level in a speech

signal. However, it was added to the feature set to determine its ability in estimating

speech signal SNR and to see if it could contribute in the later stages of the system. The
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ACW Cepstrum is derived from the partial fraction expansion of the reciprocal of the

linear predictive filter:

1 P "~ n [(1 - fk1) /A(z)] P r

A(z) k= l kZ - 1  f k - 1

It has been observed that the residues rk deviate as the signal becomes more corrupt.

These residues are set to one, removing their deviation due to noise to create a feature

more robust to noise. After setting the rk values to one there is an altered transfer function:

N(z) n- 1 1 p P

A(z) 1 - Z
- ' A(z) k = 

i=(1 -

p-1

1- -bkz-k
N(z) k=lA(z) = P p-1

A(z) -'az - k

k=1

The ACW Cepstrum is then calculated from the polynomial N(z)/A(z) in the same

manner the LP Cepstrum is calculated from A(z).

2.2.6 Postfilter Cepstrum

The Postfilter Cepstrum [10] is a weighted form of the LP cepstrum originally designed

to enhance noisy speech. This feature was also designed to be robust to noise in a signal,

so it is not expected to perform well for the classification of a noise level in a speech

signal. The postfilter cepstrum can be calculated using a technique based on the predictor

coefficients:

Hps (z) = where 0 < fl < a <1
A(z / a)
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or from a technique using the LP Cepstrum:

PFL, = CEP (a - ")

a =1.0

p = 0.9

2.2.7 Line Spectral Frequencies

Line Spectral Frequencies [12] are calculated from the Linear predictive filter A(z). A(z)

is an all pole filter which can be broken into symmetric and anti-symmetric polynomials

P(z) and Q(z):

P(z) = A(z) + z-(P+ )A(z - 1)

Q(z) = A(z) - z-(P l)A(z -1)

where p is again the order of prediction. The LSF feature is computed as the angles

between 0 degrees and 180 degrees not inclusive of the polynomials P(z) and Q(z).

2.3 Vector Quantization

Vector Quantization involves compressing a data set of vectors into a smaller data set to

represent the whole. Clustering algorithms are used to compress the vector data to retain

the best overall representation of the original data. Vector quantization can be used for the

simple application of data compression, but can also be used for signal coding and use in

pattern recognition systems. Vector quantization for pattern recognition involves

compressing sets of data representing different classes into separate VQ codebooks. The

codebook refers to a set of compressed data representing a single class. Each vector in a

codebook is referred to as a codeword. Several algorithms can be used to perform vector

quantization, and the Linde-Buzo-Gray algorithm was used in this application.
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2.3.1 Linde-Buzo-Gray Algorithm

The Linde-Buzo-Gray algorithm [13] is a clustering algorithm which was designed for

vector quantization. The process requires a data set, codebook size, and a distance

measure. The data set is the set of vectors which will be compressed into the codebook.

The codebook size must be a power of two due to the manner in which this particular

algorithm clusters. The distance measure is the method with which distances will be

measured between data points in the algorithm and is generally squared euclidean

distance. The algorithm begins by creating a codebook of size one by taking the mean of

the data. The mean is taken separately for each vector dimension. The second step

involves developing a codebook of size two. The data point is "perturbed" to make a

second data point. Perturbation occurs by changing one vector dimension slightly in the

original data point. Voronoi regions are established for each of the data points

encompassing all original data points closest to the compressed and perturbed data points.

The codebook is expanded to two vectors by finding the mean vector for each Voronoi

region. The average distance from each data vector to its assigned codeword is calculated,

and if the total distance for each region is below a set threshold the two new codewords

are kept. If the threshold is not met the algorithm returns to a codebook of size one and

attempts to expand using a different perturbation. Each codebook expansion after occurs

in the same manner in which each codeword is perturbed, Voronoi regions are

established, new codewords are created, and distance thresholds are checked.

2.4 Genetic Algorithms

Genetic Algorithms are search algorithms which mimic the observed Darwinian
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evolutionary behavior [14],[15]. Darwinian evolution operates on the principle that

organisms more fit to survive are more likely to breed fit offspring. This observed

behavior can be adapted for many applications and is often used for optimization. The

main variables for use of a genetic algorithm include population variables, genetic

operators, and stopping criteria. Stopping criteria is common to all optimization and

search techniques to assure the algorithm achieves a desired result if a desired result is

attainable within the constraints of the search.

Population variables include population size, chromosome phenotype, and

chromosome genotype. Population size refers to how many chromosomes will be in the

population, which can change for each iteration of the population. Chromosome

phenotype refers to the physical structure of the chromosome. Chromosome length is a

common phenotype for single dimensional chromosomes. The type of data at each

position in a chromosome is another phenotype. It is difficult to breed offspring from

chromosomes of different phenotype. Chromosome genotype is the data that is used to

generate the chromosome. For example, if a chromosome were representing a filter the

genotype would be the filter coefficients.

Genetic operators include the general operations included in genetics and how

they are applied to a specific application. The most common genetic operators are fitness,

selection, crossover, and mutation. Fitness refers to an organism's ability to survive in its

environment. This concept can be applied to other applications by determining a

chromosome's behavior in a system as compared to the desired result. System error is an

example of a fitness measure that could be applied to a chromosome. Selection refers to
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the process of deciding which chromosomes from a population should be mated to create

a chromosome for the next population. This process is based on the fitness associated

with each chromosome in the population. Selection criteria must be established for a

specific application including number of parent chromosomes used to generate a single

offspring and how fitness is used to determine parents. In many applications two

chromosomes are selected as parents, and chromosome fitness is used to generate a

probability distribution from which to randomly choose each parent. Two factors in

deciding the number of parents a chromosome may have are deciding whether a

chromosome can reproduce asexually with itself and whether a chromosome can

reproduce multiple times in a single selection process. For example, once a chromosome

has been picked as a parent of an offspring should it be taken from the pool of candidates

when selecting the next parent for that same offspring or any other offspring in the next

population. Crossover refers to the method in which the parents of an offspring will be

combined. Methods for crossover depend heavily on the type of data contained within the

chromosomes. One common technique involves selecting each data point in the child

chromosome randomly from one of its parents. For example consider two chromosomes

of length ten holding alphanumerical data are being bred into an offspring:

C 1 =alf4dd3el 1{l>pc1 >.5}
C2 =v223 e f 1s2 4 .5>pc.>OJ

pc .10 .23 .56 .64 .12 .78 .95 .51 .36 .74

C c11d - v 2 f4 e d3 e2 1

where Cl1 is the first parent, C2 is the second parent, pc is a random crossover probability

vector with values between 0 and 1 inclusive, i is a position in a chromosome or
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probability vector, Cchild is the child chromosome, and the crossover rule builds the child

chromosome from randomly selecting a parent for each position in the chromosome. For

numerical data the crossover technique could involve operations such as taking the mean

of its parents. Mutation in a genetic algorithm refers to data in the child chromosome

which is not inherited from a parent chromosome. Mutation in Darwinian evolution

provides the opportunity for the advancement or change of a species if the change

benefits the organism and helps prevent population saturation. In a genetic algorithm

mutation plays the same role. Mutation allows a change in the search pattern of the

algorithm that would not be found simply by parent crossover, and it prevents the entire

population from being duplicate copies of one specific chromosome. Rules are designed

for mutation to specifically fit the application of the algorithm. These rules could include

mutation probability, or the likelihood a piece of data in a child chromosome will mutate

from its original value obtained from crossover, and mutation type, or how that data can

change. High mutation probability effectively removes the search behavior of the

algorithm by creating child chromosomes with no relation to the parent chromosomes,

while low mutation probability promotes population convergence.

Some genetic algorithms use a rule called elitism [1 5]. Elitism exploits the fitness

of a good solution in a population by allowing it to copy itself into the child population.

Elitism could promote convergence, but is useful in assuring that good solutions are not

lost by creating new populations. Elitism can be used to copy good performing

chromosomes into the child population by any number of rules which suit the application.

Often, the best performing chromosome is saved in the next population iteration, however
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other rules could be developed such as saving a certain percent of chromosomes or all

chromosomes which fall in a desired fitness range.

2.5 MCRA Benchmark

A benchmark test is needed to compare the results of the method presented in this thesis

with another SNR estimation technique. The a posteriori SNR estimation from the

MCRA algorithm was selected as the benchmark algorithm [8]. Most of the noise

estimation calculation is done in the power spectral domain. The signal is divided into

spectral frames and the energy of those frames is used to determine the signal presence

probability by comparing the ratio between the energy of the noisy speech and the

minimum energy in a particular frame. The principle behind this algorithm is that there is

more energy in the regions where there are both speech and noise. The signal presence

probability is used to adjust a smoothing parameter that averages past spectral power

values. Through almost every step of the estimation process smoothing is performed to

smooth the transition between regions with speech and silent portions of the signal. The

smoothing takes into account the strong correlation of speech in consecutive frames. The

smoothing parameters are also defined to preserve speech assigning a higher probability

of speech presence in particular frames of the signal. The average of past spectral values

produces an estimate of the power spectrum of the noise.

2.5.1 Signal Energy Calculation

A corrupted speech signal, denoted by y(n), is divided into overlapping frames through a

windowing function. The signal is then analyzed using the Short Time Fourier Transform.

The original signal is composed of both clean speech represented by x(n) and d(n) the
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noise accompanying the clean speech, where n represents the discrete time index.

where k is the frequency bin index, 1 is the time frame index, h is an N sized analysis

window, and M is the time frame update size. Y(k,l), X(k,l), and D(k,l) represent the

STFT of observed signal, the clean signal and the noise signal respectively. The goal is to

estimate variance of the noise in each subband represented by 2d(k,1)=E[ID(k,1)I2]. The

variance will then be used to estimate a posterior SNR, by comparing the variance of the

noise in each subband to the energy of the original signal in each subband.

2.5.2 Signal Presence Probability

To decide if speech is present or absent in a subband of a particular frame the ratio

between the local energy of a frame and the minimum energy of the signal during that

time frame is used in a decision rule. To obtain the local energy of the speech signal the

magnitude squared of the STFT of the noisy signal is smoothed in both time and

frequency. In frequency the windowing function is applied to the energy, and in our case

the window is a local average of two bins near point of interest and that point.

A first order recursive averaging is preformed on the signal in time to smooth the signal

further and produce the spectral power of the signal with respect to time.

The as is the smoothing parameter and is a value between 0 and 1. The smoothed version
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of the calculated power spectrum is then used to calculate the minimum energy of the

signal in a given frame. Initially the minimum local energy, Smin(k,i), and a temporary

variable matrix are initialized to the indexed energy in the signal, S(k,l). The minimum

computation is completed by completing a sample wise comparison of the local minimum

energy and the minimum of the previous frame. The lower value of the two is selected as

the minimum for that that particular frame. Since the minimum energy, Smin(k,1) is

updated each time, the minimum of the previous frame is the minimum of all the frames

before it within some resolution defined by L. When L frames have been read the

minimum is taken as the lesser of the local energy and the previous frame of the

temporary matrix. The ratio between the local energy of the original signal and the

calculated minimum is then calculated.

., k,") = S. . : to .ii

A Bayes minimum cost decision rule is then used to decide if there speech is absent or

present at a particular location in the signal. A conversion of the decision rule, created by

Cohen,

was employed to create an indicator matrix to denote speech absence or presence. The

indicator matrix I(k,1) is assigned a value of 1 when Sr(k,1) > 8, and a value of 0 when

Sr(k,1) < 8. The indicator matrix is used to estimate the speech presence probability.

p)(k. /) = a / p~,-1 (1 U- a )I U!1)
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The up is another smoothing parameter between 0 and 1. The estimator has three features

that make it robust to different types of noise. The 6 is not sensitive to either the type of

level of noise in a particular signal. The estimator also used up to take into account the

increased probability of speech presence in frames near each other. When Sr < 8 falsely

deciding speech absence is small, due to the ratio of spectral power of the signal to the

estimated spectral power of the noise.

2.5.3 Noise Spectrum Estimation

When estimating the noise spectrum, techniques are employed to assign a greater

probability to speech presence. The original implementation of this technique was used in

the creation of a speech enhancement system. In such a system predicting speech absence

when it is present can severely distort the enhanced signal. A temporal recursive

smoothing is preformed on the noisy speech signal during periods of speech absence.

--t

The ad is another smoothing parameter between 0 and 1. The smoothing parameter is

adjusted in time by the signal presence probability p(k,1). The noise power spectrum is an

average of past spectral power values.

t tai _ i -,= E .... 1
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2.5.4 A Posteriori Signal to Noise Estimation

The posterior SNR is then estimated by comparing the power of the STFT of the noisy

signal to the estimated variance of the noise in a particular subband. The posterior SNR is

defined thusly because it is calculated from past spectral power values.

N N

| Y(k,1) |2 N (k,1)

SegSNR(1) = 10 log k=1 1N k

SAd (k,1)
k=1
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CHAPTER 3- APPROACH

3.1 Feature Extraction

Sentences from the TIMIT database are used to collect feature information from speech

signals [16]. The New England Dialect portion of the database is used, which includes 38

speakers uttering 10 sentences, totaling 380 sentences. This data set is broken into two

smaller sets for training and testing. Each experiment is run twice using one data set for

just training the VQ codebooks and the other set for just testing the system. Both sets are

used for training and testing to obtain more data on system error. The first step in feature

extraction, figure 1, is adding noise to a speech signal. Next, the Levinson Durbin

algorithm was used to perform linear predictive (LP) analysis of the sentence. This step

broke the sentence into frames of 240 data points with 160 overlapping points and

generated a 12th order LP filter for each frame. Two processes, Feature Extraction and

Energy Calculations, run in parallel. Feature extraction uses the LP based filters to

calculate the respective 12 th dimensional features for each frame. Energy calculations

observe each frame to determine which signal frames may have originally corresponded

to silent portions in the speech. Energy thresholding removes all features corresponding

to frames whose energy falls below a constant energy threshold to remove the silent

portions of the signal. Finally, the feature vectors for that signal are passed to the VQ

system for training or testing.

25



Feature
Extractionc .. ........ . I ... ......... .......... ................... ........

Clean
Signal N LP Levinson Energy VQ

Durbin Thresholding System

z Energy
Calculations

Noise

Figure 1. Block Diagram of Feature Extraction Process

3.2 Performance Scoring

3.2.1 VQ Classification

VQ Classification is a pattern recognition technique in which the VQ system identifies

which class input data falls under and provides this class as an output. Using VQ

classification in this context would refer to assigning to the sentence the SNR value of the

codebook with the smallest Euclidean distance from all feature vectors of a sentence.

This is referred to in our experimentation as a hard decision. This approach to obtaining

speech signal SNR with a VQ system was used mostly to determine the feasibility of

using the features selected for implementation in the VQ system.

3.2.2 VQ Estimation

VQ Estimation was an alternative approach to VQ classification which is referred to as a

soft decision. VQ estimation exploits the fact that the classes being identified are actually

on a linear scale. This allows the use of more than one VQ codebook to estimate the

value being identified, as opposed to designating a specific class. In this case the SNR is

estimated through a combination of the codebooks with the smallest Euclidean distance
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from the feature vectors of the speech signal. The signal SNR is estimated by converting

the distances of the three closest codebooks into probabilities, assigning the highest

probability to the smallest distance:

i-- sd)
pi S

where pi is the probability assigned to one of the three smallest distances, s is the sum of

the three smallest distances, and di is the distance being transformed; and summing the

SNR codebook values multiplied by their respective probability:

N

SNR =ZSNR, •p
i=1

where SNR is the final sentence SNR estimate, SNRi is the SNR value associated with

codebook i, pi is probability i in order from smallest probability to largest, and N is the

number of estimations used in the decision which will equal 3. It is expected that the soft

decision estimation technique would reduce the error in obtaining the SNR of a sentence

as compared to the hard decision classification method.

3.2.3 Absolute Error

The nature of this pattern recognition application allows the development of using SNR

error as a performance measure. The output of the VQ system for an input speech signal

is the classified or estimated SNR of the signal. During testing the actual SNR of the

input signal is known. Since the output of the system is not a class but a value within a

linear range the absolute error of the signal is easily obtained for use as a performance

measure. The AE, Absolute Error, is simply the absolute value of the actual speech signal

test SNR subtracted from the estimated speech signal SNR. This provides a performance
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measure for a single sentence. During testing each SNR level is tested using all test

speech signals. The system performance is tested at a single SNR level by taking the

AAE, Average Absolute Error, for the SNR level. The AAE is obtained by taking the

mean of all speech signals with the same SNR when input into the VQ system:

AAE,= ISNR,-i

where AAE is the absolute average error at SNR level i, SNR is the group of individual

SNR estimates for sentences corrupted at SNR level i, and i is the SNR of the input test

sentences. This performance measure shows system performance at one point within the

SNR test range. Total system performance is obtained by calculating the OAAE, Overall

Average Absolute Error. OAAE is found by taking the mean of all AAEs calculated for

the system:

OAAE= ( AAEi)
i=o 31

where OAAE is the total system performance, and AAE is the AAE calculated at each test

SNR level i. The OAAE is the performance of the system over the entire test range.

3.3 Codebook Variables

3.3.1 Codebook Size

VQ Codebooks are created by compressing data using the Linde-Buzo-Gray Algorithm.

The algorithm compresses data to a power of two codebook vectors. The most effective

codebook size should be found for proper performance. A codebook compressed too

small may not retain the information needed to distinguish the data for that SNR level,

while a codebook made too large may also cause overlap between SNR levels, as well as
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increase training and testing time. The first step in experimentation is to determine a

proper codebook size for the selected features. Training and testing was performed with

codebook sizes of 16 code vectors to 256 code vectors. An increase in performance as the

codebook size increases until reaching a peak where performance would begin to drop as

the classes began to overlap is expected, but it is not expected that the trend will perform

the same for individual features.

3.3.2 Codebook Spacing

Due to the unique nature of this pattern recognition application there are not a set number

of classes to recognize. The classes of this pattern recognition system are the SNR levels

of the signals used to train the VQ codebooks. The input to the system could come from a

sentence of any SNR level, most often within the specified system range. VQ Codebooks

could be created using sentences from any SNR level. It was decided codebooks will be

created at evenly spaced intervals within the system's range of 0 dB SNR to 30 dB SNR.

First, codebooks will be created at 5 dB spacing, creating a system of seven total

codebooks from 0 to 30 dB. This system will be used to quickly identify the feasibility of

the selected features and determine a proper codebook size for each feature. Codebook

spacing will be reduced to 3 dB increments, creating a system of 11 total codebooks and

1 dB increments, creating a system of 31 codebooks. These systems will be tested to

determine the effect on reducing codebook size on the performance of the system.

Reducing the codebook spacing is expected to reduce system error by closing the gaps in

classification.
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3.4 Codebook Architecture

3.4.1 Individual Noise Spectrum Systems

The VQ based pattern recognition approach will first be tested on systems designed for

signals corrupted by individual noise types. The systems are trained on feature data

extracted from sentences corrupted by additive noise generated with the same frequency

spectrum. Testing is performed by comparing feature data extracted from speech signals

not used in the training set against the codebooks to obtain a vector containing the

distances from the speech signal's feature data as compared to each of the codebooks.

Testing is performed separately for each of the six LP features. Initial results will be

obtained from testing systems with only feature data extracted from signals corrupted

with the same noise spectrum type. To test system robustness to noise spectrum type,

each individual spectrum system will be tested using feature data extracted from signals

corrupted by different noise spectrum types. The ability to estimate speech signal SNR is

expected to be present when a system is tested using feature data extracted from signals

corrupted with the same noise spectrum type but not from signals corrupted by different

noise spectrum types. The three noise spectrum types to be used in this experiment will

be AWGN (additive white Gaussian noise), Pink Noise, and CPV (continental poor

voice) Noise.

3.4.2 Robust Multi-Spectrum System

An SNR estimating system cannot be built to work with only a specific noise spectrum.

In a real world application the system must work with all noise spectra, or any noise

spectra which are likely to appear under the conditions of its use. A robust system can be
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designed by extracting training data from signals corrupted by AWGN, pink noise, and

CPV noise individually. Feature data will be extracted from each sentence after being

corrupted by just AWGN at the set SNR level, just Pink noise at the set SNR level, and

just CPV noise at the set SNR level. This will increase the data being compressed into

each codebook by a factor of three. The system must also be tested against an untrained

noise spectrum, so the system testing will include AWGN, Pink noise, CPV noise, and an

untrained CMV noise. It is expected that the system will perform well for all trained

noise spectra. By blending the three noise spectra in the training data the system is

expected to perform well for the untrained noise spectrum.

3.4.3 Feature Fusion

Feature fusion is an ensemble of classifiers technique [17] which combines information

from two or more features in an attempt to use complementary data from the features to

reduce the VQ system estimation error. Feature fusion could reduce error in this

application if a combination of features and fusion method is found which generally

brings the SNR estimate closer to the actual speech signal SNR.

3.4.3.1 Decision Level Fusion

Decision level fusion, figure 2, combines the SNR estimates of a combination of the six

features into one final estimate. This can be done by averaging the SNR estimates, taking

the median of the estimates, or taking a trimmed mean of the estimates. The trimmed

mean method uses the average of all but the highest and lowest estimates being used.

These decision rules can be used due to the nature of this pattern recognition application.

Since the purpose of the application is to estimate an SNR value within a specific range
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and not to classify an input from multiple dissimilar classes, fusion of multiple feature

outputs is possible. Decision level fusion will reduce system error if a combination of

features has complementary data or if the collection of decisions brings the SNR estimate

closer to the speech signal's SNR. Complementary data using just two features, for

example, would occur if one feature generally estimates a higher SNR than the actual

SNR while another feature estimates a lower SNR then the actual SNR.

C:EP IV , :1 Decision eCEP

System d31 Logic
d-1

Lst D ecisitn eE SF

FeLRure -DecisioLR 
eFu se

Extraction - d-1 oVa "Decision ePFL
n(t..PFFSystem d31 Logic

V-.,Q  I D ec is ion eACW
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Figure 2. Block Diagram of Decision Level Fusion
The process of determining the individual feature SNR estimates, eCEP
through eREFL,remains unchanged. The estimates are then combined

into one final SNR estimate, eFuse.

3.4.3.1.1 Optimization

Decision level fusion could potentially be improved by weighting the features used.

Unweighted decision level fusion gives equal importance to all features in the set being

used to estimate the speech signal SNR. Only the mean decision level technique can be

easily adapted to weighting. All features in a set will be given a weight and the total of
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the weights should sum to one. The weights are multiplied by their respective feature's

SNR estimate and the weighted estimates are summed into the final estimate. Each

feature's weight then corresponds to its fraction of the final speech signal SNR estimate.

For this application using a Genetic Algorithm optimization technique is used to

obtain the weights. The algorithm is initialized with a population of random weights for a

feature set. Each set of weights is a chromosome in the population. Each set of random

weights in the population sums to one to properly perform weighted decision level fusion.

The OAAE is calculated separately for each chromosome and is then used as the

chromosome's fitness. The next generation of the population is then formed. The next

generation population has been kept at the same size as the previous population, and for

this experiment the population consists of 10 sets of weights. Using elitism the best

performing set of weights is saved as the first chromosome in the new population. Child

chromosome formation consists of combination and mutation. Combination consists of

blending the weights of two parent chromosomes into one child. First two parent sets

must be selected. Each chromosome in the current population is mapped to a distribution

from zero to one giving each weight set a portion of the distribution associated with its

fitness as compared to the other sets fitnesses. The size of the distribution for a single

weight set, or probability it will be chosen as a parent, is determined in the same way soft

decision is performed. The probability is obtained by subtracting the sets fitness from the

sum of all fitnesses and dividing this value by the sum of all fitnesses. The weights are

now mapped to the selection distribution in specific non-overlapping ranges

corresponding to their probability of parent selection. Two random values between zero
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and one are generated, and their position on the range selects which two parents are

selected. Using this method, the same weight set can be selected as both parents.

Combination of the two chosen parents was then done by randomly selecting which

parent to choose each weight. A random value was generated between zero and one to

determine each specific weight's parent. If the value was greater than 0.5 it was taken

from the first parent, otherwise it was taken from the second parent. The process is

completed for nine children in the new population, making ten children including the elite

chromosome. Mutation is the next step in creating a child population. Since the weights

are randomly selected from either parent, each weight set will not necessarily sum to one

as required. Mutation was completed simply by dividing each weight by the sum of its

weight set so the sets sum to one. This algorithm is run on a single combination of

features until one of three stopping criteria are reached. The three criteria include

reaching the maximum population, falling below an error threshold, or when the

population reaches a saturation state. The maximum population threshold occurs after the

creation of the 10 00 th population. The error threshold occurs if the OAAE of a weighted

combination set has fallen below 1 dB. The saturation threshold occurs when all sets in a

child population are the same, and is the most likely stopping criteria to occur. If this

threshold is reached the best set of weights has been found and each subsequent child

population would only produce the same weight sets.

This experiment was used to determine the best set of weights and best features

for use in decision fusion. The experiment was run on each combination of features, a

total of 100 times for each combination to acquire statistics about the algorithm and its
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decisions on the best weight sets. Weight sets were obtained by using the Genetic

Algorithm to optimize the performance of classifying the training data with the VQ

system. The training data includes all sentences used to create the codebooks at all

codebook SNR levels after corruption by AWGN, pink noise, and CPV noise separately.

Once each weight set is obtained using the training data it is used to determine the effect

of those weights when combining the testing data. The testing data includes all sentences

not used to create the codebooks corrupted by AWGN, pink noise, CPV noise, and CMV

noise. The output of this algorithm provides the weights selected for each feature for all

trials of all combinations, the number of populations created before a stopping criteria has

been reached, and the OAAE of the test signals for AWGN, pink noise, CPV noise, and

CMV noise using each specific weight set. The weight and OAAE information can be

used to select the best weights to use in the final application as well as give information

on the performance of this optimization technique. The number of trials combined with

the OAAE data received from the algorithm is useful for reporting the efficiency and

performance of this algorithm for this application. It is expected that using the Genetic

Algorithm optimization technique to find the best combination and weight set will reduce

error in the final system. One benefit of this approach is that after the experiment is run

and a weight set and feature combination is decided on there is little added complexity to

the VQ system.

3.4.3.2 Distance Level Fusion

Distance level fusion functions by combining the distances of each feature at each

codebook to then estimate the SNR based on the combination of distances, as opposed to
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the combination of feature estimates. Distance level fusion, figure 3, requires that the

values which represent the distances from each codebook be compatible for all features

used in the fusion. Since each feature's distance values are representative of the typical

component values for each feature, the distances must be transformed to be properly

combined. First, the distances are transformed for each individual feature by dividing

them by the sum of all distances for that feature for that particular sentence. This

technically provides an inverse probability, however the SNR estimate is made on the

smallest distances which correlate to the lowest probabilities. After the distances for each

feature have been transformed using this method, they can be combined using several

techniques. The rules used to combine distances of multiple features include the mean

distance, minimum distance, median distance, and trimmed mean distance. The mean

distance averages the transformed distances from a specific codebook level for all

features used in the fusion. The minimum distance approach takes the smallest

transformed distance from a specific codebook level of all the features involved in the

fusion. The median distance approach uses the median of the transformed distances from

a specific codebook level of all the features involved in the fusion. Finally, the trimmed

mean approach takes the average of the transformed distances from a specific codebook

level, leaving out the largest and smallest transformed distance.
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Figure 3. Block Diagram of Distance Level Fusion
After the distances are calculated for each feature from their specific
codebook set they are transformed, p-1CEP and p31 CEP refer to the

transformed CEP distance. The transformed distances are combined
into an individual distance for that SNR level, p-1 through p31, and normal

decision logic is used to obtain the final SNR estimate, eFuse.

3.4.4 MCRA Benchmark

The Minima Controlled Recursive Averaging algorithm was used as a benchmark to

compare the SNR estimation technique presented in this thesis to an existing noise

estimation algorithm. The MCRA algorithm was designed to estimate the noise spectrum

in frames of a speech signal for the purpose of speech enhancement. As a benchmark for

an SNR estimation system, the estimated noise spectrum was used to calculate an SNR

level for the signal. The MCRA algorithm uses the Short Time Fourier Transform to

break a signal into frames to perform noise spectrum estimation in each frame. The STFT

brakes the signal into frames of 240 data points with 80 overlapping points. The

parameters for the algorithm were selected based on the original implementation by

Cohen, et al. these parameters included d=0.9, us=0.8, Op=0.18, 8=4.8, a rectangular
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window of size 3 was is used to smooth the signal energy in spectral domain, and a

hamming window is used in the calculation of short-time Fourier transform. The

algorithm estimates the noise signal for each frame to provide an SNR estimate for each

frame of the speech signal. The VQ based pattern recognition approach to SNR

estimation presented in this thesis estimates the SNR level of the whole speech signal, as

opposed to the frame SNR estimation provided by the MCRA algorithm. The frame SNR

estimates of the MCRA algorithm are combined into one SNR estimate for the entire

speech signal. In work done by Cui et al. [18] an algorithm is used which provides frame

based SNR estimates while a single SNR estimate is needed for the entire signal. To

correct this problem a floor is set on frame based SNR estimates at 0 dB, and all

estimates below 0 dB are set to 0 dB. The total signal SNR is obtained by averaging all

non-zero frame SNR estimates. The floor is set at 0 dB to remove valleys in the frame

estimates caused by pauses in the speech signal. For the MCRA benchmark test, three

techniques are implemented to obtain the single SNR estimate of the signal from the

multiple frame SNR estimates. The first estimate is obtained by averaging all frame SNR

estimates. The second estimate is obtained by averaging all frame SNR estimates above 0

dB, not inclusive. The third estimate is obtained by averaging all frame SNR estimates

above a percentage of the maximum frame SNR estimate. This technique sets the floor at

0.65 multiplied by the maximum frame SNR estimate.
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CHAPTER 4 - IMPLEMENTATION AND RESULTS

4.1 Feasibility Study

The feasibility of developing a signal to noise ratio estimating system using a

pattern recognition approach which utilizes linear predictive features was completed by

studying the system's performance and defining system parameters with just AWGN. The

two main parameters of the system included VQ codebook size and the spacing between

VQ codebooks. VQ codebook size indicates how many codewords, or vectors of data,

there are in a codebook after the compression process. Larger codebooks take longer to

train, however the training process is only completed once before system implementation.

Larger codebook sizes also require the comparison of test features to more codewords

during the testing process, adding additional computational complexity to the system.

Codebook spacing indicates what SNR levels are trained into codebooks. This allows

better resolution during the testing process. Decreasing codebook spacing also increases

training and testing time by creating more codebooks to train during training and more

codewords to compare during testing. During this feasibility study the motivation for

implementing a softer SNR decision method, or an estimating method, was developed

based on observing the error distribution of initial systems. Implementing this approach

adds little computational complexity to the system.

4.1.1 Initial AWGN Performance Results

Additive white Gaussian noise was utilized for the initial system tests. Codebooks of 32
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to 256 codewords in steps of powers of two were created to test system performance to

select a codebook size for each linear predictive feature. After selecting codebook sizes

for each of the linear predictive features the codebook spacing, or resolution, was tested.

Codebooks were spaced with 5 dB SNR resolution initially. Later 3 dB SNR resolution

and 1 dB SNR resolution were tested. Since the SNR spectrum being studied was 0 to 30

dB, using a 5 dB resolution meant having at least a 2.5 dB error built into the system for

signals corrupted at SNR levels in the center of two codebooks assuming a correct

classification of one of the adjacent codebooks. 5 dB resolution also means an error of a

multiple of 5 dB with incorrect classification. Using a 3 dB resolution reduced the built in

error to 1.5 dB for signals corrupted at a level between codebooks and decreased the

incorrect classification error to a multiple of 3 dB. A resolution of 1 dB reduces these

sources of error again. System testing was only completed on integer SNR levels between

0 dB and 30 dB SNR, so the error between 1 dB spaced codebooks is not seen in these

results.

4.1.2 Codebook Size

The first experiment performed to determine the feasibility of using a VQ

Classifier based pattern recognition approach to providing an SNR estimate for a speech

signal was to test different codebook sizes for each of the six features on a simple system.

The system tested was trained in 5 dB increments from 0 to 30 dB SNR with codebooks

sizes of 32 codewords, 64 codewords, 128 codewords, and 256 codewords. The systems

were tested based on their classification performance and not average error. Confidence

intervals were calculated to give an understanding of how these systems could be
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expected to perform in a real application as opposed to the small trial size used. Tables 1

through 6 show the performance results for the systems to compare which size codebook

to choose for each feature. Performance results in this experiment are shown in

percentage of signals correctly classified. For all features it was observed that at each

level of testing the largest codebook size, 256 codewords, performed overall the best.

This codebook size was picked to be the standard size for each feature for all further

experiments. Observing each features behavior in their 256 codebook systems show

promising performance for further research using all six linear predictive features. The

AWC Cepstrum and PFL Cepstrum, however, have the steepest drop in performance as

the SNR of the test signals increases indicating that they will perform the poorest for

AWGN. The ACW Cepstrum and PFL Cepstrum were kept for further testing to

determine if they will contribute to performance in more complex systems. Another

observed behavior from each of the codebook sizes is the drop in performance as the

SNR of the test signals increases with a peak at the highest tested SNR. It can be inferred

that more highly corrupt sentences, with lower SNR, have a greater difference in feature

vector behavior than cleaner signals, and the peak at the clean extrema of the test range

likely occurs because the system tends to classify a signal as a neighboring class and the

30 dB codebook only has one neighbor.
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Table 1: Cepstrum Codebook Size Performance
Measured in Percent Properly Classified

Cepstrum VQ Size
95%

SNR (dB Confidence 32 64 128 256
30 Upper Bound 67.5 79.96 82.86 89.41

Calculated
Mean 60.53 73.68 76.84 84.21

Lower Bound 53.56 67.41 70.83 79.01

25 Upper Bound 63.9 63.9 59.75 63.9
Calculated

Mean 56.84 56.84 52.63 56.84

Lower Bound 49.78 49.78 45.51 49.78

20 Upper Bound 61.31 68 75.05 69.53
Calculated

Mean 54.21 61.05 68.42 62.63
Lower Bound 47.11 54.1 61.79 55.73

15 Upper Bound 70.54 79.48 75.05 78.5
Calculated

Mean 63.68 73.16 68.42 72.11
Lower Bound 56.83 66.84 61.79 65.71

10 Upper Bound 81.41 80.93 86.17 84.76
Calculated

Mean 75.26 74.74 80.53 78.95
Lower Bound 69.11 68.54 74.88 73.14

5 Upper Bound 87.11 88.03 85.23 90.77
Calculated

Mean 81.58 82.63 79.47 85.79
Lower Bound 76.05 77.23 73.72 80.81

0 Upper Bound 93.42 94.28 95.54 97.15
Calculated

Mean 88.95 90 91.58 93.68
Lower Bound 84.48 85.72 87.62 90.22
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Table 2: Line Spectral Frequency Codebook Size Performance
Measured in Percent Properly Classified

Line
Spectral

Frequency VQ Size
95%

SNR (dB) Confidence 32 64 128 256
30 Upper Bound 67.5 73.05 71.05 70.04

Calculated
Mean 60.53 66.32 64.21 63.16

Lower Bound 53.56 59.58 57.38 56.28
25 Upper Bound 48.07 57.65 61.83 70.54

Calculated
Mean 41.05 50.53 54.74 63.68

Lower Bound 34.04 43.4 47.64 56.83
20 Upper Bound 77.52 72.05 75.54 77.03

Calculated
Mean 71.05 65.26 68.95 70.53

Lower Bound 64.59 58.47 62.35 64.03
15 Upper Bound 78.01 83.33 82.38 83.81

Calculated
Mean 71.58 77.37 76.32 77.89

Lower Bound 65.15 71.4 70.25 71.98
10 Upper Bound 87.57 86.17 91.22 90.77

Calculated
Mean 82.11 80.53 86.32 85.79

Lower Bound 76.64 74.88 81.42 80.81
5 Upper Bound 94.28 94.7 98.65 97.92

Calculated
Mean 90 90.53 95.79 94.74

Lower Bound 85.72 86.35 92.93 91.55
0 Upper Bound 97.54 98.65 99 99.34

Calculated
Mean 94.21 95.79 96.32 96.84

Lower Bound 90.88 92.93 93.63 94.35
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Table 3: Reflection Coefficient Codebook Size Performance
Measured in Percent Properl Classified

Reflecti
on

Coeffici VQ
ent Size

SNR 95%
(dB) Confidence 32 64 128 256

Upper
30 Bound 72.05 76.53 77.52 76.04

Calculated
Mean 65.26 70 71.05 69.47
Lower
Bound 58.47 63.47 64.59 62.91
Upper

25 Bound 53.42 53.42 58.18 71.89
Calculated

Mean 46.32 46.32 51.05 65.08
Lower
Bound 39.21 39.21 43.93 58.26
Upper

20 Bound 70.54 77.52 69.53 72.05
Calculated

Mean 63.68 71.05 62.63 65.26
Lower
Bound 56.83 64.59 55.73 58.47
Upper

15 Bound 70.54 76.53 81.9 82.86
Calculated

Mean 63.68 70 75.79 76.84
Lower
Bound 56.83 63.47 69.68 70.83
Upper

10 Bound 82.38 82.86 82.86 86.64
Calculated

Mean 76.32 76.84 76.84 81.05
Lower
Bound 70.52 70.83 70.83 75.47
Upper

5 Bound 84.76 89.86 90.32 88.95
Calculated

Mean 78.95 84.74 85.26 83.68
Lower
Bound 73.14 79.61 80.21 78.42
Upper

0 Bound 99 97.92 97.92 99.34
Calculated

Mean 96.32 94.74 94.74 96.84
Lower
Bound 93.63 91.55 91.55 94.35
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Table 4: Log Area Ratio Codebook Size Performance
Measured in Percent Properly Classified

Log
Area
Ratio VQ Size
SNR 95%
(dB) Confidence 32 64 128 256
30 Upper Bound 65.96 75.05 75.54 79.48

Calculated
Mean 58.95 68.42 68.95 73.16

Lower Bound 51.93 61.79 62.35 66.84
25 Upper Bound 51.83 57.65 62.35 63.18

Calculated
Mean 44.74 50.53 55.26 56.08

Lower Bound 37.65 43.4 48.17 48.99
20 Upper Bound 60.79 69.02 71.05 72.55

Calculated
Mean 53.68 62.11 64.21 65.79

Lower Bound 46.58 55.19 57.38 59.03
15 Upper Bound 75.05 74.05 74.05 79.96

Calculated
Mean 68.42 67.37 67.37 73.68

Lower Bound 61.79 60.68 60.68 67.41
10 Upper Bound 88.03 82.38 86.17 83.33

Calculated
Mean 82.63 76.32 80.53 77.37

Lower Bound 77.23 70.25 74.88 71.4
5 Upper Bound 88.95 91.22 90.32 91.22

Calculated
Mean 83.68 86.32 85.26 86.32

Lower Bound 78.42 81.42 80.21 81.42
0 Upper Bound 97.92 97.54 97.92 99.34

Calculated
Mean 94.74 94.21 94.74 96.84

Lower Bound 91.55 90.88 91.55 94.35
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Table 5: ACW Cepstrum Codebook Size Performance
Measured in Percent Properly Classified

ACW
Cepstrum VQ Size

95%
SNR (dB) Confidence 32 64 128 256

30 Upper Bound 60.27 74.55 78.01 72.05
Calculated

Mean 53.16 67.89 71.58 65.26
Lower Bound 46.04 61.24 65.15 58.47

25 Upper Bound 49.14 46.44 52.36 58.47
Calculated

Mean 42.11 39.47 45.26 51.32

Lower Bound 35.07 32.5 38.17 44.18
20 Upper Bound 53.42 68 64.42 58.18

Calculated
Mean 46.32 61.05 57.37 51.05

Lower Bound 39.21 54.1 50.32 43.93
15 Upper Bound 56.07 55.55 61.31 75.05

Calculated
Mean 48.95 48.42 54.21 68.42

Lower Bound 41.82 41.3 47.11 61.79
10 Upper Bound 66.47 65.45 74.55 76.53

Calculated
Mean 59.47 58.42 67.89 70

Lower Bound 52.47 51.39 61.24 63.47
5 Upper Bound 76.04 75.54 80.93 79.96

Calculated
Mean 69.47 68.95 74.74 73.68

Lower Bound 62.91 62.35 68.54 67.41
0 Upper Bound 92.98 97.15 96.36 97.54

Calculated
Mean 88.42 93.68 92.63 94.21

Lower Bound 83.86 90.22 88.91 90.88
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Table 6: PFL Cepstrum Codebook Size Performance
Measured in Percent Properly Classified

PFL
Cepstrum VQ Size

95%
SNR (dB) Confidence 32 64 128 256

30 Upper Bound 65.45 66.98 77.03 77.52
Calculated

Mean 58.42 60 70.53 71.05
Lower Bound 51.39 53.02 64.03 64.59

25 Upper Bound 46.44 57.65 55.02 57.41
Calculated

Mean 39.47 50.53 47.89 50.26
Lower Bound 32.5 43.4 40.77 43.12

20 Upper Bound 56.07 53.96 53.96 65.45
Calculated

Mean 48.95 46.84 46.84 58.42
Lower Bound 41.82 39.73 39.73 51.39

15 Upper Bound 66.47 72.05 77.52 76.04
Calculated

Mean 59.47 65.26 71.05 69.47

Lower Bound 52.47 58.47 64.59 62.91
10 Upper Bound 70.54 74.05 70.54 76.04

Calculated
Mean 63.68 67.37 63.68 69.47

Lower Bound 56.83 60.68 56.83 62.91
5 Upper Bound 79.48 83.81 79.48 86.64

Calculated
Mean 73.16 77.89 73.16 81.05

Lower Bound 66.84 71.98 66.84 75.47
0 Upper Bound 90.32 94.7 97.92 97.92

Calculated
Mean 85.26 90.53 94.74 94.74

Lower Bound 80.21 86.35 91.55 91.55

4.1.3 Codebook Spacing

Since the classes being classified by this pattern recognition approach are actually

SNR levels which fall on a linear range and training data is obtained by corrupting a set

of speech signals to the required levels of corruption, it is possible to increase the

resolution of the classification system by creating codebooks of data corrupted to levels

closer on the linear range. Three systems were created by spacing codebooks at 5 dB
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intervals, 3 dB intervals, and 1 dB intervals. Table 7 shows the classification overall

absolute average error for each of these three systems for comparison. It can be seen that

the as the system resolution increases, or the spacing between codebooks decreases, the

OAAE decreases. This can be attributed to the fact that when an error is made at a higher

resolution it is usually on a lower magnitude. Also, less spacing between codebooks

provides smaller ranges that are not covered for direct classification which requires these

ranges to be rounded to a local trained SNR level. In table 7 it can be seen that the OAAE

for each of the linear predictive features reduces between at least .23 dB for the

Reflection Coefficients and at most .29 dB for the PFL Cepstrum. Figures 4 through 9

compare the average absolute error at integer test SNR levels between 0 dB SNR and 30

dB SNR for the Line Spectral Frequencies, LP Cepstrum, Reflection Coefficients, Log

Area Ratios, ACW Cepstrum, and PFL Cepstrum features respectively. Each graph shows

the same general behavior when comparing the use of different SNR resolutions. When

codebooks are spaced 5 dB apart, the trained SNR levels have the lowest error while the

error increases as the distance from a codebook increases. The same behavior can be seen

for 3 dB spaced codebooks, but the error at trained levels is higher and the error at

untrained levels is lower than with 5 dB spacing. The system with 1 dB resolution has

been trained at all tested levels. It has higher error at its trained levels than the 5 dB and 3

dB systems have at their trained levels, however it has much lower error in the areas

which the 5 dB and 3 dB systems peak between trained levels. The general behavior

observed is that as the resolution increases, or the spacing decreases, the behavior of the

AAE smooths which results in a lower OAAE, providing better overall system
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performance.

Table 7: AWGN Results Comparing Codebook Resolution Through OAAE in dB
Feature Codebook Space Classification OAAE

LSF I dB 1.76
LSF 3 dB 1.87
LSF 5 dB 2.02
CEP I dB 1.85
CEP 3dB 1.96
CEP 5dB 2.09
REFL I dB 1.84
REFL 3 dB 1.92
REFL 5dB 2.07
LAR I dB 1.83
LAR 3 dB 1.94

LAR 5 dB 2.08
ACW I dB 2.09

ACW 3 dB 2.23
ACW 5 dB 2.35
PFL I dB 2.01
PFL 3 dB 2.16
PFL 5 dB 2.30

Comparision of LSF AE for dB, 3 dB, and 1 dB Codebook Resolution

0 1 1 1 I 1

0 5 10 15 20 25 30
Test SNP (dB)

Figure 4. Comparison of LSF Resolution Classification AAE
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Comparision of CEP AAE for . dB, 3 dB, and 1 dB Codeb,ok Resolution
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Test SNR (dB)

Figure 5. Comparison of CEP Resolution Classification AAE

Comparision of REFL AAE for 5 dB, 3 dB, and 1 dB Codebook Resolution

Vf

111 1

0 5 10 15 20 25 30
Test SNR (dB)

Figure 6. Comparison of REFL Resolution Classification AAE
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Cornparision of LARP AAE for 5 dB, 3 dB, and 1 dB Codebook FResIlution
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Figure 7. Comparison of LAR Resolution Classification AAE

Comparision ofAC\N AAE for 6 dB, 3 dB, and 1 dB Codebook Resolution
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Figure 8. Comparison of ACW Resolution Classification AAE
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Figure 9. Comparison of PFL Resolution Classification AAE

4.1.4 VQ Estimation

4.1.4.1 Motivation

Based on the results of the histograms in figures 10 through 15, corresponding to the

error distribution of the Line Spectral Frequencies, LP Cepstrum, Reflection Coefficients,

Log Area Ratios, ACW Cepstrum, and PFL Cepstrum respectively, a soft decision scoring

method was developed to estimate the SNR of a sentence based on the distances to the

VQ codebooks of each SNR level. This method normalized each distance into a

probability:

s - di

S* (dn -1)

where pi is the probability calculated for a specific SNR codebook i, s is the sum of the
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calculated distances obtained for each codebook, di is the distance calculated for the

specific SNR codebook i, and dn is the number of total SNR levels. This equation assigns

a higher probability to smaller distances. These probabilities add up to 1 and can be used

to estimate the sentence's SNR:

dn

SNR = Ypi*SNR i
1

where SNRi is the SNR the probability pi was calculated for. By definition, a hard

decision is a decision or classification on the SNR based on the smallest distance only. A

soft decision or estimation is obtained from a combination of the data gained from the

pattern recognition process. It was observed that using the soft scoring method presented

on all codebook distances, the estimated SNR would always be close to the middle SNR

value of the test. In the case of this experiment, testing from 0 to 30 dB at intervals of 5

dB, the SNR was always estimated to be approximately 15 dB. This was due to the nature

of the distances being used to calculate the probabilities. Though the distances are smaller

for the SNR levels close to the correct level and larger for those SNR levels father from

the correct SNR level, the distances are relatively close. Use of the three smallest

distances as opposed to every distance was motivated since incorrect classifications are

observed to classify the SNR of a sentence as a neighboring SNR level.
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Cepstrum 0 dB Error Distribution
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4.1.4.2 AWGN Results

Implementing the softer decision estimation method it was expected tos ee error

reduce. Table 8 compares the OAAE obtained for each of the three resolutions when a

soft decision is used which provides an estimation based on a weighted average of the

three smallest codebook decisions. It is observed that the soft decision estimation

technique effectively reduces error for the 3 dB and 1 dB codebook space resolutions for

all linear predictive features. When codebooks are spaced 5 dB apart the OAAE of the

system increases in all cases. Figures 16 through 18 compare the hard decision

classification method to the soft decision estimation method for the Line Spectral

Frequency feature for the systems built with 5 dB spacing, 3 dB spacing, and 1 dB

spacing respectively. All features show similar behavior, so the LP Cepstrum, Reflection

Coefficients, Log Area Ratios, ACW Cepstrum, and PFL Cepstrum only compare the

system with 1 dB spacing in figures 19 through 23 respectively. When comparing the

hard decision classification method to the soft decision estimation method using the LSF

system with 5 dB spacing, the same general behavior is observed for both methods,

however the estimation method performs more poorly at lower SNR levels and peaks to

approximately 5 dB at either extrema of the tested range. This peak is attributed to the

weighted averaging of three SNR levels denoted by the codebooks associated with the

lowest distances. This averaging, though weighted, generally averages the three closest

trained SNR levels evenly causing any signal below 5 dB to be estimated close to 5 dB

and any signal above 25 dB to be estimated close to 25dB. The same behavior is observed

at the extrema for 3 dB spacing and 1 dB spacing, however to a lesser degree due to the
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resolution of the system. It is also observed for the 3 dB spaced system and all I dB

spaced systems that the sot decision estimation method generally provides SNR

estimates of corrupted signals with less error, especially in the cleaner region associated

with higher SNR levels. The behavior of the estimation method peaking at the extrema

and having the gap widen when compared to classification error as signals become less

corrupt is observed in all six features. This leads to the conclusion of using a final system

which employs the soft decision estimation technique with codebooks created with 1 dB

resolution. Table 8 shows that the best performing feature for the AWGN system is the

Log Area Ratio with an OAAE of 1.59 dB for the soft decision estimation method at 1 dB

resolution.

Table 8: AWGN Results Comparing VQ Classification and VQ Estimation OAAE in
dB

Feature Codebook Space Hard Decision Soft Decision
LSF 1 dB 1.76 1.61
LSF 3 dB 1.87 1.78
LSF 5 dB 2.02 2.35
CEP 1 dB 1.85 1.68
CEP 3 dB 1.96 1.82
CEP 5 dB 2.09 2.33
REFL 1 dB 1.84 1.62
REFL 3 dB 1.92 1.72
REFL 5 dB 2.07 2.21
LAR 1 dB 1.83 1.59
LAR 3dB 1.94 1.71
LAR 5 dB 2.08 2.23

ACW 1 dB 2.09 1.85
ACW 3 dB 2.23 1.94
ACW 5 dB 2.35 2.33
PFL 1 dB 2.01 1.78
PFL 3 dB 2.16 1.89
PFL 5 dB 2.30 2.32
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4.2 Noise Spectrum Robustness

Low OAAE errors for all linear predictive features on a system designed

specifically for AWGN has been achieved. A system designed for AWGN only takes into

account one spectrum of noise. To develop a SNR estimation system robust to the

spectrum of the additive noise in the signal, other types of noise must be tested and

further made into a single system which will perform well regardless of the spectrum of

the noise corrupting a signal. First, a VQ system was designed specifically for Pink noise

to test its ability to estimate the SNR of a signal corrupted with Pink noise. Second, a

system was designed specifically for CPV noise. After testing these systems on the noise

spectrum for which they were trained, each of three systems designed for Soft Decisiona

specific noise spectrum; including AWGN, Pink noise, and CPV noise; were tested on the

two spectra not included in their training. Finally, a system was developed by using all

three noise spectra for training to determine the system's ability to act as a speech signal

SNR estimator that is robust to the unspecified noise spectrum corrupting the input

signal. To further test the robustness of this system a fourth untrained noise spectrum,

CMV noise, was tested against this robust system.

4.2.1 Pink Noise

The system designed for Pink noise performed with the same OAAE and AAE

behavior as the system for AWGN when comparing their separate results. The OAAE for

both the hard decision classification method and the soft decision estimation method at

the three tested resolutions can be seen in table 9. One notable difference is that the soft

decision estimation method does improve the system designed with 5 dB SNR resolution
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for all features. The OAAE for each feature increases for the Pink system when compared

to the AWGN system indicating that Pink noise SNR is harder to classify then AWGN

SNR. The best feature for the Pink noise system, as seen in table 9, is the Reflection

coefficients with an OAAE for the soft decision estimation method at 1 dB resolution of

1.85 dB. Figures 24 through 29 show a comparison of the hard decision classification

method and the soft decision estimation method for the Line Spectral Frequencies, LP

Cepstrum, Reflection Coefficients, Log Area Ratio, ACW Cepstrum, and PFL Cepstrum

features respectively. The same overall behavior is observed for each of these features

when regarding Pink noise as with AWGN. These results show that the system will work

when estimating the SNR of a signal corrupted by Pink noise if Pink noise is used to train

the system.

Table 9: OAAE Results in db for System Designed with Pink Noise
Feature Codebook Space Hard Decision Soft Decision

LSF 1 dB 2.18 1.94
LSF 3 dB 2.25 1.98
LSF 5 dB 2.35 2.32
CEP 1 dB 2.24 2.01
CEP 3 dB 2.34 2.04
CEP 5 dB 2.43 2.36
REFL 1 dB 2.17 1.85
REFL 3 dB 2.30 1.94
REFL 5 dB 2.41 2.32
LAR 1 dB 2.22 1.89
LAR 3 dB 2.35 1.96
LAR 5 dB 2.46 2.34

ACW 1 dB 2.49 2.14
ACW 3 dB 2.63 2.24
ACW 5 dB 2.73 2.54
PFL 1 dB 2.44 2.09
PFL 3 dB 2.56 2.18
PEL 5 dB 2.69 2.51
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4.2.2 CPV Noise

The system designed for CPV noise performed with the same OAAE and AAE

behavior as the system for AWGN and Pink Noise. The OAAE for both the hard decision

classification method and the soft decision estimation method at the three tested

resolutions can be seen in table 10. Again the soft decision estimation method does

improve the system designed with 5 dB SNR resolution for all features, which is not

observed for AWGN. The OAAE for each feature increases for the CPV system when

compared to the AWGN and Pink noise systems indicating that CPV noise SNR is harder

to classify then either other types of noise corruption. The best feature for the CPV noise

system, as seen in table 10, is the LP Cepstrum with an OAAE for the soft decision

estimation method at 1 dB resolution of 2.06 dB. Figures 30 through 35 show a

comparison of the hard decision classification method and the soft decision estimation

method for the Line Spectral Frequencies, LP Cepstrum, Reflection Coefficients, Log

Area Ratio, ACW Cepstrum, and PFL Cepstrum features respectively. The same overall

behavior is observed for each of these features when regarding CPV noise as with AWGN

and Pink noise. Again, these results show that the system will work when estimating the

SNR of a signal corrupted by CPV noise if CPV noise is used to train the system.
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Table 10: OAAE Results in dB for System Designed with CPV Noise
Feature Codebook Space Hard Decision Soft Decision

LSF I dB 2.50 2.07
LSF 3 dB 2.62 2.15
LSF 5 dB 2.77 2.58
CEP 1 dB 2.50 2.06
CEP 3 dB 2.63 2.17
CEP 5 dB 2.79 2.64
REFL I dB 2.54 2.12
REFL 3 dB 2.72 2.27
REFL 5 dB 2.86 2.71
LAR I dB 2.63 2.16
LAR 3 dB 2.76 2.33
LAR 5dB 2.86 2.71

ACW I dB 3.06 2.40
ACW 3 dB 3.27 2.57
ACW 5 dB 3.37 2.92
PFL I dB 2.81 2.25
PFL 3 dB 3.01 2.40
PFL 5 dB 3.11 2.70

Comparision of 0EV Noise System LSF AAE for 1 dB Classification vs. Estimation
4.5 I
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Figure 30. Comparison of Classification and Estimation AAE for LSF in the CPV
System with 1 dB Spaced Codebooks
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Figure 31. Comparison of Classification and Estimation AAE for CEP in the CPV
System with 1 dB Spaced Codebooks

Comparision of CPV Noise System REFL AAE for 1 dB Classification vs. Estimation

5 10 15 20 26 30
Test SNR (dB)

Figure 32. Comparison of Classification and Estimation AAE for REFL in the CPV
System with 1 dB Spaced Codebooks
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Figure 33. Comparison of Classification and Estimation AAE for LAR in the CPV
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4.2.3 Cross Spectrum Testing

The first test of system robustness was to determine if the systems trained on just

AWGN, Pink noise, and CPV noise would perform well when encountering a type of

noise they were not trained on. Tables 11 through 16 show the OAAE for the hard

decision classification and soft decision estimation with all three system resolutions for a

system trained on AWGN and tested on Pink noise, trained on AWGN and tested on CPV

noise, trained on Pink noise and tested on AWGN, trained on Pink noise and tested on

CPV noise, trained on CPV noise and tested on AWGN, and trained on CPV noise and

tested on Pink noise respectively. Figures 36 through 41 show the AAE soft decision

estimation method results for each feature at 1 dB resolution on systems trained on

AWGN and tested on Pink noise, trained on AWGN and tested on CPV noise, trained on
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Pink noise and tested on AWGN, trained on Pink noise and tested on CPV noise, trained

on CPV noise and tested on AWGN, and trained on CPV noise and tested on Pink noise

respectively. The testing for these systems only included the Line Spectral Frequencies,

LP Cepstrum, Reflection Coefficients, and Log Area Ratios due to the poor performance

of these features. The OAAE results show that systems trained on only one type of noise

spectrum are not robust to other spectra. The AAE results all follow the same behavior

with poor classification at lower SNR levels corresponding to signals that are more

heavily corrupt with noise with better classification as the amount of noise in the test

signals reduces. This behavior suggests that feature data for cleaner signals is more alike

regardless of noise spectrum, which is intuitive. The results of this experiment show that

the training process must incorporate multiple noise spectra to create a robust system.

Table 11: OAAE in dB for System Trained on AWGN and Tested on Pink Noise
Feature Codebook Space Hard Decision Soft Decision

LSF 1 dB 7.41 7.22
LSF 3 dB 7.67 7.38
LSF 5 dB 7.94 7.64
CEP 1 dB 7.08 6.83
CEP 3 dB 7.30 6.96
CEP 5 dB 7.44 7.34
REFL 1 dB 6.83 6.56
REFL 3 dB 7.01 6.81
REFL 5 dB 7.62 7.33
LAR 1 dB 6.70 6.41
LAR 3 dB 6.74 6.54
LAR 5 dB 7.02 6.96
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Table 12: OAAE in dB for System Trained on AWGN and Tested on CPV Noise
Feature Codebook Space Hard Decision Soft Decision

LSF 1 dB 7.95 7.59
LSF 3 dB 8.18 7.16
LSF 5 dB 8.48 6.75
CEP 1 dB 7.93 7.50
CEP 3 dB 8.02 7.17
CEP 5 dB 8.40 6.80
REFL I dB 7.73 7.24
REFL 3 dB 8.13 7.07
REEL 5 dB 8.19 6.73
LAR I dB 7.91 7.39
LA R 3 dB 8.07 7.08

LAR 5dB 8.31 6.77

Table 13: OAAE in dB for System Trained on Pink Noise and Tested on AWGN
Feature Codebook Space Hard Decision Soft Decision

LSF 1 dB 12.01 11.71
LSF 3 dB 12.27 10.97
LSF 5 dB 9.40 10.78
CEP I dB 9.65 11.15
CEP 3 dB 11.87 11.32
CEP 5 dB 11.75 10.78
REFL I dB 12.72 11.86
REEL 3 dB 12.87 11.76
REFL 5 dB 14.44 10.52

LAR I dB 11.35 10.29
LAR 3 dB 10.30 10.87
LAR 5 dB 10.67 10.76

Table 14: OAAE in dB for System Trained on Pink Noise and Tested on CPV Noise
Feature Codebook Space Hard Decision Soft Decision

LSF I dB 12.84 12.35
LSF 3 dB 12.38 11.46
LSF 5 dB 11.23 10.98
CEP I dB 11.42 12.55
CEP 3 dB 12.50 11.50
CEP 5 dB 13.85 10.77
REFL I dB 12.94 12.67
REEL 3 dB 12.94 12.31
REEL 5 dB 14.97 11.08
[ ARDI d 11.3I11.5
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Table 15: OAAE in dB for System Trained on CPV Noise and Tested on AWGN
Feature Codebook Space Hard Decision Soft Decision

LSF 1 dB 7.87 7.74
LSF 3 dB 8.08 7.93
LSF 5 dB 8.51 8.46
CEP 1 dB 8.12 7.94
CEP 3 dB 8.50 8.29
CEP 5 dB 9.15 8.67
REFL 1 dB 8.07 7.78
REFL 3 dB 8.24 8.02
REFL 5 dB 8.56 8.24
LAR 1 dB 7.60 7.38
LAR 3 dB 7.65 7.56
LAR 5 dB 8.31 8.39

Table 16: OAAE in dB for System Trained on CPV Noise and Tested on Pink Noise
Feature Codebook Space Hard Decision Soft Decision

LSF 1 dB 9.26 9.02
LSF 3 dB 9.22 8.91
LSF 5 dB 9.80 9.12
CEP 1 dB 8.83 8.60
CEP 3 dB 9.15 8.75
CEP 5 dB 9.19 8.80
REFL 1 dB 8.78 8.55
REFL 3 dB 8.91 8.49
REFL 5 dB 9.52 8.88
LAR 1 dB 8.68 8.32
LAR 3 dB 8.35 8.15
LAR 5 dB 9.16 8.61
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Figure 36. AAE for All Features when Trained on AWGN and Tested on Pink Noise
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Figure 37. AAE for All Features when Trained on AWGN and Tested on CPV Noise
with 1 dB Resolution
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Figure 39. AAE for All Features when Trained on Pink Noise and Tested on CPV
Noise with 1 dB Resolution
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Figure 40. AAE for All Features when Trained on CPV Noise and Tested on AWGN
with 1 dB Resolution
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Figure 41. AAE for All Features when Trained on CPV Noise and Tested on Pink
Noise with 1 dB Resolution
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4.2.4 Multiple Spectrum System

Based on the results of the cross spectrum testing it was observed that the VQ

pattern recognition system does not perform well with noise types that are not used to

corrupt signals during training. A robust system was designed by training with multiple

noise types. During training each sentence is corrupted by AWGN, Pink Noise, and CPV

Noise individually for feature extraction, effectively tripling the amount of training data.

The robust system was designed using size 256 codebooks and 1 dB codebook resolution

for all features. It was expected that this system will perform well for all trained noise

types, however a robust system must perform well for untrained noise spectra as well.

Speech signals corrupted with CMV noise were used to determine the robust system's

performance on untrained noise.

4.2.4.1 Robust Spectrum Results

The robust system was tested by corrupting speech signals with AWGN, Pink

Noise, CPV Noise, and CMV noise. Tables 17 through 20 show the OAAE results for

AWGN, Pink Noise, CPV Noise, and CMV Noise for the robust system with confidence

intervals calculated for 95% confidence. The confidence intervals are small due to the

low standard deviation in the total error and the large test population size of 380 speech

signals for each of the 31 SNR levels tested creating 11780 total speech signals tested.

The OAAE results are shown for both the hard decision classification method and soft

decision estimation method. The OAAE results show that the estimation method again

performs better than the classification method. The AWGN OAAE results, Pink Noise

OAAE results, and CPV OAAE results show that the robust system has decreased
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performance and greater error than the systems trained on individual noise spectrum

types and tested on just that noise spectrum. For AWGN the best feature is now the Line

Spectral Frequencies with an OAAE of 3.08 dB for the soft decision estimation method,

for Pink Noise the best feature is the LP Cepstrum with and OAAE of 2.97 dB for the soft

decision estimation method, and for CPV noise the best feature is the LP Cepstrum with

an OAAE of 3.16 dB for the soft decision estimation method.

Table 17: AWGN OAAE in dB for Robust System

LSF 3.64 0.06 3.08 0.05
CEP 3.67 0.06 3.20 0.05
REFL 3.68 0.06 3.23 0.05
LAR 3.84 0.06 3.37 0.05

ACW 4.33 0.07 3.63 0.05
PFL 3.91 0.06 3.25 0.05

CPV Noise

OAAE in

OAAE

LSF 3.67 0.06 3.23 0.05
CEP 3.57 0.06 3.16 0.05
REFL 3.59 0.06 3.22 0.05
LAR 3.70 0.06 3.29 0.05

ACW 4.37 0.07 3.70 0.06
PFL 3.99 0.06 3.47 0.05

Classifier CI

The OAAE results based on the untrained noise spectrum type CMV Noise show

a large contrast to feature results of the trained noise spectra, which will need to be taken

into consideration when deciding specifications for the final system parameters to ensure

system robustness. The typically better performing features, the Line Spectral
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Table 18: Pink NoiseI
Classifier

LSF 3.57 0.06 3.00 0.05
CEP 3.47 0.05 2.97 0.05
REFL 3.47 0.06 2.98 0.05
LAR 3.48 0.06 2.98 0.05

ACW 4.47 0.07 3.80 0.05
PFL 4.31 0.06 3.58 0.05

CI
dB for Robust Syst

in dB for Robust SystemTable 19:

I~nin I I nvvrlull

r urr uu

Classifier CI Estimator CI

Estimator CI

Estimator CI



Frequencies and LP Cepstrum show that they are the least robust to untrained noise

spectra. The ACW Cepstrum, and PFL Cepstrum, which had always had the highest

system errors are the most robust to untrained noise spectra. The OAAE of the Reflection

Coefficients and Log Area Ratios is greater than when trained noise spectra are tested,

however these features are still robust to untrained noise spectra.

Table 20: CMV Noise OAAE in dB for RobustSystem
Classifier CI Estimator Cl

LSF 6.07 0.10 5.54 0.09
CEP 7.30 0.13 6.49 0.10
REFL 4.16 0.06 3.66 0.05
LAR 4.19 0.06 3.77 0.05

ACW 4.32 0.07 3.51 0.05
PFL 4.09 0.07 3.28 0.05

The soft decision estimation method AAE results for the robust system are show

in figures 42 through 47 for the Line Spectral Frequencies, LP Cepstrum, Reflection

Coefficients, Log Area Ratios, ACW Cepstrum, and PFL Cepstrum respectively. The

AAE for each feature on the trained noise spectrum types behave the same as they did for

the systems trained on just those noise spectra. The AAE increases as the SNR increases

and the amount of noise in the system decreases with peaks at the extrema of the test

range. The main difference in AAE behavior from previous results exists in the AAE for

each feature's performance with CMV Noise. The Line Spectral Frequencies and LP

Cepstrum behave in the same way as the systems trained on one single noise spectrum

type and tested on another. These features perform the worst at lower SNR levels

corresponding to an inability to estimate the SNR of a signal which is more heavily

corrupted with noise. The AAE results of these features also show that the influence of

the noise on the feature becomes more apparent within the 15 to 20 dB range. The
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Reflection Coefficients and Log Area Ratios show a decreased feature performance as the

amount of noise in the signal increases for CMV Noise. The Reflection Coefficients and

Log Area Ratios still perform better at the lower SNR levels with more highly corrupt

signals then in the range of higher SNR levels with cleaner signals. This means the

confusion caused when comparing clean signals is greater than the effect of classifying a

noise type that is not trained. The ACW Cepstrum, and PFL Cepstrum AAE behaves the

same for CMV noise as it does for the trained noise spectrum types. This shows the the

ACW cepstrum and PFL cepstrum, which were designed to create pattern recognition

systems robust to noise, are robust to noise spectrum type.

Robust System LSF Results
14

AWGN
-------- Pink

S. . ............ r...........C V
10

0

I I I I I

0 5 10 15 2025 30
Test SNR (dBI

Figure 42. Comparison of Robust System LSF Feature AAE for All Tested Noise
Types
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Figure 43. Comparison of Robust System CEP Feature AAE for All Tested Noise
Types
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Figure 44. Comparison of Robust System REFL Feature AAE for All Tested Noise
Types
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Figure 47. Comparison of Robust System PFL Feature AAE for All Tested Noise
Types

4.2.4.2 Beyond Range Codebook System

The last change for systems designed with single features was the addition of

codebooks beyond the test range of 0 to 3 0 dB SNR. A codebook was added at -1 dB and

31 dB to improve the soft decision estimation method in the robust systems. It was

expected that adding the extra codebooks would remove the peaks at the extrema of the

test range. These peaks are caused by the inability to estimate a signal at the extrema of

the codebook range. The soft decision estimation method averages three weighted

codebook values to obtain the SNR estimation. If the weights are approximately equal,

the estimation is close to the average of the three codebook SNR values. This averaging

technique will therefore never estimate a signal at the extrema of the test range without
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codebooks placed outside the test range. Tables 21 through 24 show the OAAE results

for the 33 codebook system for AWGN, Pink Noise, CPV Noise, and CMV Noise

respectively. The system was designed to improve the soft decision estimation method,

by smoothing the AAE error curve and removing the peaks at the extrema so

improvement is expected in the Estimator systems and not the Classifier systems. There

is little improvement in the Classifier systems, but the addition of the extra codebooks

does reduce error more for the Estimator system. For AWGN the best feature, the

Reflection Coefficients, the error is reduced from 3.08 to 3.03. The LP Cepstrum is still

the best feature for Pink Noise and CPV Noise, but only shows improvement from 3.16

dB to 3.13 dB for CPV Noise. The PFL Cepstrum only improves by a factor of .01 dB in

OAAE for SNR estimation, from 3.28 dB to 3.27 dB. The best performing features for

each noise spectrum type do not show great improvement in OAAE, however

improvement is shown in all features.

The soft decision estimation method AAE results for the 33 codebook robust

system are show in figures 48 through 53, for the Line Spectral Frequencies, LP

Cepstrum, Reflection Coefficients, Log Area Ratios, ACW Cepstrum, and PFL Cepstrum

respectively. The main difference in behavior is observed at the lowest SNR levels in the

test range. The peak caused by the estimation method at 0 dB SNR is reduced or removed

in many cases. In other cases the error curve is smoothed. In the special case of the Line

Spectral Frequencies and LP Cepstrum for CMV noise there is no discernible difference

in AAE behavior and no useful improvement OAAE by adding the extra codebooks.

There is no observable difference in behavior for any feature at the higher SNR levels of
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the test range from adding an extra codebook beyond the range.

Table 21: AWGN OAAE in dB for Robust 33 Codebook System

LSF 3.66 0.06 3.03 0.05
CEP 3.67 0.06 3.16 0.05
REFL 3.68 0.06 3.15 0.05
LAR 3.84 0.06 3.31 0.05

ACW 4.33 0.07 3.55 0.05

ClassifierPCLEstimator .0

PE 3.92 0.0 3.1 0.0

Table 22: Pink Noise OAAE in dB for Robust 3;

LSF 3.66 0.06 2.99 0.05
CEP 3.52 0.05 2.97 0.05
REFL 3.53 0.06 2.97 0.05
LAR 3.53 0.06 2.97 0.05

ACW 4.51 0.07 3.75 0.05
PFL 437 007 3.57 0.05

Table 23:CPV Noise OAAE n dB for Robust 33 Codeboo

LS F 3.74 0.06 3.21 0.05
CEP 3.60 0.06 3.13 0.05
RE FL 3.65 0.06 3.21 0.05
LAR 3.74 0.06 3.27 0.05

ACW 4.42 0.07 3.65 0.06
P FL 4.02 0.06 3.42 0.05

Table 24: CMV Noise OAAE in dB for Robust 33 Codebook System

LS F 6.12 0.10 5.59 0.09
CEP 7.38 0.13 6.55 0.11
REFL 4.19 0.06 3.65 0.05
LAR 4.21 0.06 3.76 0.05

ACW 4.33 0.07 3.45 0.05
P FL 4.12 0.07 3.27 0.05.
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4.3 Feature Fusion

The last method investigated to improve the VQ based pattern recognition system

for estimating the SNR of a speech signal was feature fusion. Currently the VQ system

offers a separate estimate for the SNR of a sentence from each of the six studied features,

determined by the sum of the Euclidean distances of each feature vector of the sentence

from each VQ codebook. Decision and distance level fusion were both tested. Decision

level fusion involves determining the best way to combine the final estimate of each

feature for a sentence to reduce the error of a final estimate. A genetic algorithm was used

as an optimization technique to further improve decision level fusion by applying weights

to each feature's SNR estimate. Distance level fusion involves combining the weights of

each feature from each codebook to make a single final decision based on the distance of

all involved features from each codebook.

4.3.1 Unweighted Fusion

The Combination Rules studied for unweighted decision level fusion include

mean fusion, median fusion, and trimmed mean fusion, and the combination rules for

distance level fusion include minimum distance fusion, mean distance fusion, median

distance fusion, and trimmed mean distance fusion. There were six features totaling 57

possible combinations for feature fusion. Tables 25 through 31 show the OAAE obtained

for AWGN, Pink Noise, CPV Noise, an average of all three trained noise types, and CMV

Noise for each feature combination using mean decision combination, median decision

combination, trimmed mean decision combination, minimum distance combination, mean

distance combination, median distance combination, and trimmed mean distance
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combination respectively. These results were obtained by combining soft decision

estimations or distances in the robust 33 codebook system for each test sentence. Based

on these results mean decision combination provides the best method of feature

combination for reducing error in the SNR estimation, giving the greatest reduction in

error for each of the tested noise spectrum types. Decision level fusion is observed to

work better than distance level fusion. Median decision combination and trimmed mean

decision combination also reduce the error, however not as well as mean decision

combination. The lowest OAAE obtained for AWGN individually is 2.7 dB provided by

mean decision combination of the Line Spectral Frequencies, LP Cepstrum, Reflection

Coefficients, and PFL Cepstrum. The lowest OAAE obtained for Pink Noise individually

is 2.61 dB provided by median decision combination of the Line Spectral Frequencies,

LP Cepstrum, Reflection Coefficients, and Log Area Ratios. The lowest OAAE obtained

for CPV Noise individually is 2.92 dB provided by mean decision combination of the

Line Spectral Frequencies, LP Cepstrum, Reflection Coefficients, and PFL Cepstrum.

The lowest OAAE obtained for and average of all three trained noise spectra is 2.76 dB

provided by mean decision combination of the Line Spectral Frequencies, LP Cepstrum,

Reflection Coefficients, and PFL Cepstrum. The lowest OAAE obtained for CMV

individually is 2.93 dB provided by mean decision combination of the Reflection

Coefficients, ACW Cepstrum, and PFL Cepstrum. As expected, while the LSF and LP

Cepstrum generally aid in improving the results for the three trained noise types, their

existence in a feature combination typically results in a high OAAE for CMV noise.

Table 32 shows the three overall best feature combinations. Figure 54 and figure 55 show
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the AAE for the two best unweighted fusion combinations. These combinations were

obtained by the improvement each feature combination had as compared to the best

performing feature for each noise spectrum type. The best combination is the mean

decision level fusion of the Reflection Coefficients, Log Area Ratios, ACW Cepstrum,

and PFL Cepstrum with an average improvement of .19 dB over all noise spectrum types.

Intuitively this combination works best because it combines all features that perform well

for CMV Noise.
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Table 25: Decision Level Mean Fusion Combination OAAE R esults in dB
Mean

Eeatures Soft Decision

LSF, CEP
LSF, REFL
LSF, LAR

LSF, ACW
LSF, PFL

AWGN
2.87
2.84
2.92
2.87

Pink CPV Trained
2.74 3.00 2.87
2.71 3.03 2.86
2.71 3.07 2.90
2.97 3.14 2.99

- -___ 1- 4. -
2.77 2.93 3.07 2.92

5.83
4.32
4.35
3.96
3.97

CEP, REEL 2.92 2.70 2.98 2.87 4.82
CEP, LAR 3.02 2.73 3.04 2.93 4.85
CEP, ACW 2.98 2.99 3.09 3.02 4.45
CEP, PFL 2.84 2.93 3.03 2.93 4.41
REEL, [AR 3.03 2.75 3.10 2.96 3.49
REEL, ACW 2.99 3.00 3.17 3.05 3.14
REEL, PEL 2.86 2.95 3.09 2.96 3.07
LAR, ACW 3.08 2.99 3.18 3.08 3.20
[AR, PEL 2.92 2.93 3.12 2.99 3.14
ACW, PEL 3.05 3.36 3.27 3.23 3.01

LSF, CEP, REEL 2.79 2.62 2.94 2.79 4.90
LSF, CEP, [AR 2.85 2.64 2.98 2.82 4.92
LSF, CEP, ACW 2.78 2.78 2.99 2.85 4.61
LSF, CEP, PEL 2.72 2.76 2.95 2.81 4.61
LSF, REEL, LAR 2.85 2.64 3.01 2.83 3.95

LSF, REEL, ACW 2.77 2.77 3.02 2.85 3.66
LSF, REEL, PEL 2.72 2.75 2.99 2.82 3.65
LSF, [AR, ACW 2.83 2.76 3.04 2.88 3.68
LSE, [AR, PEL 2.76 2.74 3.02 2.84 3.67
LSE, ACW, PEL 2.77 2.96 3.07 2.93 3.46
CEP, REEL, [AR 2.92 2.64 2.98 2.85 4.29
CEP, REEL, ACW 2.84 2.77 2.99 2.87 3.99
CEP, REEL, PEL 2.77 2.76 2.96 2.83 3.96
CEP, [AR, ACW 2.91 2.78 3.01 2.90 4.02
CEP, [AR, PEL 2.83 2.75 2.99 2.85 3.99
CEP, ACW, PEL 2.84 2.98 3.03 2.95 3.75
REEL, [AR, ACW 2.93 2.80 3.07 2.93 3.16
REEL, [AR, PEL 2.84 2.78 3.04 2.88 3.12
REEL, ACW, PEL 2.85 2.98 3.08 2.97 2.93
[AR, ACW, PEL 2.90 2.97 3.10 2.99 2.98

LSE, CEP, REEL, [AR 2.81 2.59 2.95 2.78 4.46
LSE, CEP, REEL, ACW 2.74 2.68 2.94 2.78 4.22
LSE, CEP, REEL, PEL 2.70 2.67 2.92 2.76 4.22
LSE, CEP, [AR, ACW 2.79 2.67 2.96 2.81 4.24
LSE, CEP, [AR, PFL 2.74 2.66 2.95 2.78 4.24
LSE, CEP, ACW, PEL 2.71 2.81 2.96 2.83 4.03
LSE, REEL, [AR, ACW 2.79 2.68 3.00 2.82 3.54
LSE, REEL, [A R, PEL 2.74 2.67 2.98 2.80 3.53
LSE, REEL, ACW, PEL 2.71 2.80 3.00 2.84 3.35
LSE, [AR, ACW, PEL 2.75 2.79 3.02 2.85 3.36

CEP, REEL, [AR, ACW 2.85 2.69 2.97 2.84 3.79
CEP, REEL, [AR, PEL 2.79 2.68 2.96 2.81 3.77
CEP, REEL, ACW, PEL 2.76 2.82 2.97 2.85 3.57
CEP, [AR, ACW, PEL 2.81 2.81 2.99 2.87 3.60
REEL, [AR, ACW, PEL 2.82 2.82 3.03 2.89 2.98

LSE, CEP, REEL, [AR, ACW 2.76 2.63 2.94 2.78- 4.01
LSE, CEP, REEL, [AR, PEL 2.73 2.62 2.93 2.76 4.01

LSE, CEP, REEL, ACW, PEL 2.69 2.72 2.93 2.78 3.84
LSE, CEP, [AR, ACW, PEL 2.72 2.71 2.95 2.80 3.85
LSE, REEL, [AR, ACW, PEL 2.73 2.72 2.98 2.81 3.31
CEP, REEL, [AR, ACW, PEL 2.77 2.73 2.96 2.82 3.50

LSE, CEP, REEL, [AR, ACW, PEL 2.71 2.66 2.93 2.77 3.72
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Table 26: Decision Level Median Fusion Combination OAAE Relssults in dB
Median

Features

LSF, CEP
LSF, REEL
LSF, [AR

LSF, ACW
LSF, PFL

AWGN
2.87
2.84
2.92
-2.87_
2.77

Soft Decision
Pink CPV Trained CMV
2.74 3.00 2.87 5.83
2.71 3.03 2.86 4.32
2.71 3.07 2.90 4.351
2.97 3.14 2.99 3.96
2.93 3.07 2.92; 3.97

CEP, REFL 2.92 2.70 2.98 2.87 4.82
CEP, LAR 3.02 2.73 3.04 2.93 4.85
CEP, ACW 2.98 2.99 3.09 3.02 4.45
CEP, PEL 2.84 2.93 3.03 2.93 4.41
REEL, LAR 3.03 2.75 3.10 2.96 3.49
REEL, ACW 2.99 3.00 3.17 3.05 3.14
REEL, PEL 2.86 2.95 3.09 2.96 3.07
LAR, ACW 3.08 2.99 3.18 3.08 3.20
[AR, PFL 2.92 2.93 3.12 2.99 3.14
ACW, PFL 3.05 3.36 3.27 3.23 3.01

LSF, CEP, REEL 2.85 2.67 2.98 2.83 4.93
LSF, CEP, [AR 2.90 2.70 3.03 2.88 4.96
LSF, CEP, ACW 2.86 2.80 3.04 2.90 4.88
LSF, CEP, PFL 2.81 2.80 3.00 2.87 4.88
LSF, REFL, [AR 2.92 2.69 3.06 2.89 3.68
LSF, REFL, ACW 2.86 2.78 3.07 2.90 3.46
LSF, REFL, PEL 2.79 2.78 3.03 2.87 3.44
LSF, [AR, ACW 2.91 2.78 3.11 2.93 3.49
LSF, [AR, PFL 2.83 2.75 3.06 2.88 3.46
LSF, ACW, PEL 2.88 3.05 3.14 3.02 3.10
CEP, REFL, [AR 2.98 2.73 3.06 2.92 3.77
CEP, REFL, ACW 2.91 2.82 3.05 2.93 3.50
CEP, REFL, PFL 2.85 2.80 3.02 2.89 3.48
CEP, [AR, ACW 2.97 2.79 3.09 2.95 3.56
CEP, [AR, PFL 2.90 2.78 3.04 2.91 3.54
CEP, ACW, PFL 2.93 3.06 3.12 3.04 3.10
REFL, [AR, ACW 3.00 2.81 3.14 2.98 3.26
REEL, [AR, PFL 2.93 2.79 3.10 2.94 3.23
REFL, ACW, PFL 2.95 3.08 3.16 3.06 3.00
[AR, ACW, PEL 2.99 3.06 3.19 3.08 3.02

LSF, CEP, REFL, [AR 2.83 2.61 2.98 2.81 4.23
LSF, CEP, REFL, ACW 2.77 2.67 2.97 2.80 4.07
LSF, CEP, REFL, PFL 2.74 2.67 2.95 2.79 4.06
LSF, CEP, [AR, ACW 2.82 2.67 3.00 2.83 4.09
LSF, CEP, [AR, PFL 2.78 2.66 2.97 2.80 4.08
LSF, CEP, ACW, PFL 2.75 2.81 2.99 2.85 3.80
LSF, REFL, [AR, ACW 2.83 2.67 3.04 2.85 3.36
LSF, REFL, [AR, PEL 2.78 2.66 3.01 2.82 3.34
LSE, REFL, ACW, PFL 2.76 2.81 3.03 2.87 3.10
LSF, [AR, ACW, PEL 2.80 2.79 3.05 2.88 3.11

CEP, REFL, [AR, ACW 2.89 2.70 3.02 2.87 3.42
CEP, REFL, [AR, PFL 2.84 2.69 3.00 2.84 3.40
CEP, REFL, ACW, PFL 2.80 2.83 3.01 2.88 3.12
CEP, [AR, ACW, PEL 2.84 2.81 3.03 2.89 3.16
REFL, [AR, ACW, PEL 2.86 2.82 3.08 2.92 3.00

LSF, CEP, REEL, [AR, ACW 2.82 2.64 3.00 2.82 3.61
LSF, CEP, REFL, [AR, PFL 2.78 2.64 2.98 2.80 3.60
LSF, CEP, REEL, ACW, PFL 2.75 2.73 2.99 2.82 3.40
LSF, CEP, [AR, ACW, PEL 2.79 2.71 3.01 2.84 3.41

LSF, REEL, [AR, ACW, PFL 2.80 2.73 3.03 2.85 3.17
CEP, REEL, [AR, ACW, PEL 2.85 2.74 3.03 2.87 3.19

LSE, CEP, REEL, [AR, ACW, PEL 2.75 2.65 2.98 2.79 3.34
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Table 27: Decision Level Trimmed Mean Fusion Combination OAAE Results in dB
Trimmed Mean

Features Soft Decision

AWGN Pink CPV Trained CMV
LSF, CEP 2.87 2.74 3.00 2.87 5.83
LSF, REFL 2.84 2.71 3.03 2.86 4.32
LSF, LAR 2.92 2.71 3.07 2.90 4.35

LSF, ACW 2.87 2.97 3.14 2.99 3.96
LSF, PFL 2.77 2.93 3.07 2.92 3.97

CEP, REFL 2.92 2.70 2.98 2.87 4.82
CEP, LAR 3.02 2.73 3.04 2.93 4.85

CEP, ACW 2.98 2.99 3.09 3.02 4.45
CEP, PFL 2.84 2.93 3.03 2.93 4.41
REFL, LAR 3.03 2.75 3.10 2.96 3.49
REFL, ACW 2.99 3.00 3.17 3.05 3.14
REFL, PFL 2.86 2.95 3.09 2.96 3.07
LAR, ACW 3.08 2.99 3.18 3.08 3.20
LAR, PFL 2.92 2.93 3.12 2.99 3.14

ACW, PFL 3.05 3.36 3.27 3.23 3.01
LSF, CEP, REFL 3.16 2.97 3.13 3.09 6.55
LSF, CEP, LAR 3.16 2.97 3.13 3.09 6.55

LSF, CEP, ACW 3.16 2.97 3.13 3.09 6.55
LSF, CEP, PFL 3.16 2.97 3.13 3.09 6.55
LSF, REFL, LAR 3.15 2.97 3.21 3.11 3.65

LSF, REFL, ACW 3.15 2.97 3.21 3.11 3.65
LSF, REFL, PFL 3.15 2.97 3.21 3.11 3.65
LSF, LAR, ACW 3.31 2.97 3.27 3.18 3.76
LSF, LAR, PFL 3.31 2.97 3.27 3.18 3.76
LSF, ACW, PFL 3.55 3.75 3.65 3.65 3.45

CEP, REFL, LAR 3.15 2.97 3.21 3.11 3.65
CEP, REFL, ACW 3.15 2.97 3.21 3.11 3.65
CEP, REFL, PFL 3.15 2.97 3.21 3.11 3.65
CEP, LAR, ACW 3.31 2.97 3.27 3.18 3.76
CEP, LAR, PFL 3.31 2.97 3.27 3.18 3.76

CEP, ACW, PFL 3.55 3.75 3.65 3.65 3.45
REFL, LAR, ACW 3.31 2.97 3.27 3.18 3.76
REFL, LAR, PFL 3.31 2.97 3.27 3.18 3.76

REFL, ACW, PFL 3.55 3.75 3.65 3.65 3.45
LAR, ACW, PFL 3.55 3.75 3.65 3.65 3.45

LSF, CEP, REFL, LAR 2.92 2.70 2.98 2.87 4.82
LSF, CEP, REFL, ACW 2.92 2.70 2.98 2.87 4.82
LSF, CEP, REFEL, PFL 2.92 2.70 2.98 2.87 4.82
LSF, CEP, LAR, ACW 3.02 2.73 3.04 2.93 4.85
LSF, CEP, LAR, PFL 3.02 2.73 3.04 2.93 4.85

LSF, CEP, ACW, PFL 2.98 2.99 3.09 3.02 4.45
LSF, REFL, LAR, ACW 3.03 2.75 3.10 2.96 3.49
LSF, REEL, LAR, PFL 3.03 2.75 3.10 2.96 3.49

LSF, REEL, ACW, PFL 2.99 3.00 3.17 3.05 3.14
LSF, LAR, ACW, PFL 3.08 2.99 3.18 3.08 3.20

CEP, REEL, LAR, ACW 3.03 2.75 3.10 2.96 3.49
CEP, REEL, LAR, PFL 3.03 2.75 3.10 2.96 3.49
CEP, REEL, ACW, PFL 2.99 3.00 3.17 3.05 3.14
CEP, LAR, ACW, PFL 3.08 2.99 3.18 3.08 3.20
REEL, LAR, ACW, PFL 3.08 2.99 3.18 3.08 3.20

LSF, CEP, REEL, LAR, ACW 2.92 2.64 2.98 2.85 4.29
LSF, CEP, REEL, LAR, PFL 2.92 2.64 2.98 2.85 4.29
LSF, CEP, REEL, ACW, PFL 2.84 2.77 2.99 2.87 3.99
LSF, CEP, [AR, ACW, PFL 2.91 2.78 3.01 2.90 4.02

LSF, REEL, [AR, ACW, PFL 2.93 2.80 3.07 2.93 3.16
CEP, REEL, [AR, ACW, PFL 2.93 2.80 3.07 2.93 3.16

2.85 2.69 2.97 2.84 3.79

99

LSF, CEP, REFL, LAR, ACW, PFL



Table 28: Distance Level Minimum Fusion Combination OAAE Results in dB
Minimum Distance1

Features Soft Decision__
_____________________AWGN Pink CPV Trained CMV

LSEF, CEP1 3.03- 2.99 3.21 3.08 5.59_ _
c~r r1 r-r-

LSF, LAR 3.03 2.99 3.21 3.08 5.59 _
LSF, LAR 3.03 2.99 3.21 3.08 5.59

LSF, ACW .3 29 .2 .8 55

LSF, PFL 3.03 2.99 3.21 3.08 5.59
CEP, REFL 3.16 2.97 3.13 3.09 6.55
CEP, LAR 3.16 2.97 3.13 3.09 6.55
CEP, ACW 3.16 2.97 3.13 3.09 6.55
CEP, PEL 3.16 2.97 3.13 3.09 6.55
REEL, [AR 3.15 2.97 3.21 3.11 3.65
REFL, ACW 3.15 2.97 3.21 3.11 3.65
REFL, PEL 3.15 2.97 3.21 3.11 3.65
[AR, ACW 3.31 2.97 3.27 3.18 3.76
LAR, PFL 3.31 2.97 3.27 3.18 3.76

ACW, PFL 3.55 3.75 3.65 3.65 3.45
LSF, CEP, REFL 3.03 2.99 3.21 3.08 5.59
LSF, CEP, [AR 3.03 2.99 3.21 3.08 5.59
LSF, CEP, ACW 3.03 2.99 3.21 3.08 5.59
LSF, CEP, PFL 3.03 2.99 3.21 3.08 5.59

LSF, REEL, LAR 3.03 2.99 3.21 3.08 5.59
LSF, REFL, ACW 3.03 2.99 3.21 3.08 5.59
LSF, REEL, PEL 3.03 2.99 3.21 3.08 5.59
LSF, [AR, ACW 3.03 2.99 3.21 3.08 5.59
LSF, [AR, PFL 3.03 2.99 3.21 3.08 5.59

LSF, ACW, PFL 3.03 2.99 3.21 3.08 5.59
CEP, REEL, [AR 3.16 2.97 3.13 3.09 6.55
CEP, REEL, ACW 3.16 2.97 3.13 3.09 6.55
CEP, REEL, PEL 3.16 2.97 3.13 3.09 6.55
CEP, [AR, ACW 3.16 2.97 3.13 3.09 6.55
CEP, [AR, PEL 3.16 2.97 3.13 3.09 6.55

CEP, ACW, PEL 3.16 2.97 3.13 3.09 6.55
REEL, [AR, ACW 3.15 2.97 3.21 3.11 3.65
REEL, [AR, PEL 3.15 2.97 3.21 3.11 3.65
REEL, ACW, PEL 3.15 2.97 3.21 3.11 3.65
[AR, ACW, PEL 3.31 2.97 3.27 3.18 3.76

LSE, CEP, REEL, [A R 3.03 2.99 3.21 3.08 5.59
LSE, CEP, REEL, ACW 3.03 2.99 3.21 3.08 5.59
LSE, CEP, REEL, PEL 3.03 2.99 3.21 3.08 5.59
LSE, CEP, [AR, ACW 3.03 2.99 3.21 3.08 5.59
LSF, CEP, [AR, PEL 3.03 2.99 3.21 3.08 5.59

LSE, CEP, ACW, PEL 3.03 2.99 3.21 3.08 5.59
LSE, REEL, [AR, ACW 3.03 2.99 3.21 3.08 5.59
LSF, REEL, [A R, PEL 3.03 2.99 3.21 3.08 5.59

LSE, REEL, ACW, PEL 3.03 2.99 3.21 3.08 5.59
LSE, [A R, ACW, PEL 3.03 2.99 3.21 3.08 5.59

CEP, REEL, [AR, ACW 3.16 2.97 3.13 3.09 6.55
CEP, REEL, [AR, PEL 3.16 2.97 3.13 3.09 6.55
CEP, REEL, ACW, PEL 3.16 2.97 3.13 3.09 6.55
CEP, [AR, ACW, PEL 3.16 2.97 3.13 3.09 6.55
REEL, [AR, ACW, PEL 3.15 2.97 3.21 3.11 3.65

LSE, CEP, REEL, [AR, ACW 3.03 2.99 3.21 3.08 5.59
LSE, CEP, REEL, [AR, PEL 3.03 2.99 3.21 3.08 5.59
LSE, CEP, REEL, ACW, PEL 3.03 2.99 3.21 3.08 5.59
LSE, CEP, [AR, ACW, PEL 3.03 2.99 3.21 3.08 5.59
LSE, REEL, [AR, ACW, PEL 3.03 2.99 3.21 3.08 5.59
CEP, REEL, [AR, ACW, PEL 3.16 2.97 3.13 3.09 6.55

LSE, CEP, REEL, [AR, ACW, PEL 3.03 2.99 3.21 3.08 5.59
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Table 29: Distance Level Mean Fusion Combination OAAE Results in dB
Mean Distance 1

Features Soft Decision
AWGN Pink CPV Trained CMV

LSF, CEP 2.97 2.83 3.12 2.97 5.90
LSF, REFL 2.98 2.78 3.10 2.95 4.06
LSF, LAR 3.01 2.83 3.17 3.00 4.12

LSF, ACW 2.96 3.02 3.28 3.09 3.70
LSF, PFL 2.90 2.97 3.22 3.03 3.80

CEP, REFL 3.06 2.77 3.14 2.99 4.54
CEP, LAR 3.17 2.79 3.20 3.05 4.61
CEP, ACW 3.02 2.95 3.16 3.04 4.08
CEP, PFL 2.95 2.92 3.10 2.99 4.18
REFL, LAR 3.16 2.81 3.26 3.08 3.53
REFL, ACW 3.06 3.00 3.28 3.11 3.20
REFL, PFL 2.96 2.96 3.21 3.04 3.16
LAR, ACW 3.12 2.95 3.27 3.11 3.31
LAR, PFL 3.02 2.96 3.24 3.07 3.26

ACW, PFL 3.19 3.42 3.50 3.37 3.16
LSF, CEP, REFL 2.97 2.74 3.12 2.94 4.66
LSF, CEP, LAR 3.02 2.73 3.16 2.97 4.73
LSF, CEP, ACW 2.90 2.82 3.13 2.95 4.30
LSF, CEP, PFL 2.88 2.80 3.10 2.92 4.43
LSF, REFL, LAR 3.02 2.74 3.19 2.99 3.73
LSF, REFL, ACW 2.92 2.81 3.17 2.97 3.43
LSF, REFL, PFL 2.87 2.78 3.12 2.92 3.42
LSF, LAR, ACW 2.93 2.78 3.17 2.96 3.49
LSF, LAR, PFL 2.90 2.78 3.16 2.95 3.47
LSF, ACW, PFL 2.92 2.95 3.28 3.05 3.34

CEP, REFL, LAR 3.10 2.74 3.22 3.02 3.97
CEP, REFL, ACW 2.99 2.79 3.19 2.99 3.67
CEP, REFL, PFL 2.95 2.78 3.16 2.96 3.66
CEP, LAR, ACW 3.05 2.76 3.21 3.00 3.72
CEP, LAR, PFL 2.98 2.79 3.17 2.98 3.72
CEP, ACW, PFL 2.94 2.94 3.15 3.01 3.41
REFL, LAR, ACW 3.04 2.81 3.30 3.05 3.27
REFL, LAR, PFL 3.02 2.85 3.27 3.04 3.27
REFL, ACW, PFL 2.98 3.00 3.28 3.09 3.06
LAR, ACW, PFL 3.00 2.96 3.28 3.08 3.11

LSF, CEP, REEL, LAR 3.02 2.70 3.16 2.96 4.11
LSF, CEP, REEL, ACW 2.92 2.73 3.17 2.94 3.84
LSF, CEP, REEL, PFL 2.91 2.72 3.13 2.92 3.85
LSF, CEP, LAR, ACW 2.94 2.70 3.16 2.93 3.89
LSF, CEP, LAR, PFL 2.93 2.74 3.16 2.95 3.93
LSF, CEP, ACW, PFL 2.86 2.81 3.12 2.93 3.67

LSF, REEL, LAR, ACW 2.95 2.71 3.20 2.95 3.39
LSF, REEL, LAR, PFL 2.93 2.74 3.19 2.95 3.36
LSF, REFL, ACW, PFL 2.86 2.81 3.17 2.94 3.22
LSF, LAR, ACW, PFL 2.89 2.78 3.18 2.95 3.22

CEP, REEL, LAR, ACW 3.01 2.73 3.25 2.99 3.55
CEP, REEL, LAR, PFL 3.01 2.73 3.21 2.98 3.52

CEP, REEL, ACW, PFL 2.92 2.80 3.19 2.97 3.32
CEP, LAR, ACW, PFL 2.95 2.78 3.20 2.97 3.36
REEL, LAR, ACW, PFL 2.97 2.85 3.29 3.04 3.11

LSF, CEP, REEL, LAR, ACW 2.94 2.69 3.19 2.94 3.66
LSF, CEP, REEL, LAR, PFL 2.96 2.68 3.18 2.94 3.66

LSF, CEP, REEL, ACW, PFL 2.87 2.73 3.17 2.92 3.49
LSF, CEP, [AR, ACW, PFL 2.91 2.72 3.16 2.93 3.53
LSF, REEL, [AR, ACW, PFL 2.91 2.74 3.21 2.95 3.22
CEP, REEL, [AR, ACW, PFL 2.95 2.74 3.24 2.98 3.30

LSF, CEP, REEL, [AR, ACW, PFL 2.92 2.69 3.19 2.93 3.43
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Table 30: Distance Level Median Fusion Combination OAAE Results in dB
Median Distance

Features Soft Decision
JAWGN Pink CPV Trained CMV

LSF, CEP
LSF, REFL

2.97
2.98

2.83
2.78

3.12
3.10

2.97 5.90
2.95 4.06

LSF, LAR 3.01 2.83 3.17 3.00 4.12
LSF, ACW 2.96 3.02 3.28 3.09 3.70
LSF, PFL 2.90 2.97 3.22 3.03 3.80

CEP, REFL 3.06 2.77 3.14 2.99 4.54
CEP, LAR 3.17 2.79 3.20 3.05 4.61

CEP, ACW 3.02 2.95 3.16 3.04 4.08
CEP, PFL 29 .2 31 .9 41

REFL, LAR 3.16 2.81 3.26 3.08 3.53
REFL, ACW 3.06 3.00 3.28 3.11 3.20
REFL, PFL 2.96 2.96 3.21 3.04 3.16
LAR, ACW 3.12 2.95 3.27 3.11 3.31
LAR, PFL 3.02 2.96 3.24 3.07 3.26

ACW, PFL 3.19 3.42 3.50 3.37 3.16
LSF, CEP, REEL 2.95 2.79 3.12 2.95 4.79
LSF, CEP, LAR 3.04 2.77 3.16 2.99 4.80

LSF, CEP, ACW 2.95 2.83 3.14 2.97 4.64
LSF, CEP, PEL 2.96 2.84 3.13 2.97 4.70
LSF, REFL, LAR 3.06 2.79 3.17 3.01 3.73

LSF, REFL, ACW 2.97 2.85 3.19 3.00 3.46
LSF, REEL, PFL 2.96 2.82 3.17 2.98 3.45
LSF, LAR, ACW 3.00 2.84 3.19 3.01 3.55
LSF, LAR, PFL 2.99 2.84 3.20 3.01 3.55
LSF, ACW, PFL 2.99 3.09 3.35 3.14 3.23

CEP, REEL, LAR 3.13 2.80 3.23 3.05 3.89
CEP, REEL, ACW 2.99 2.84 3.19 3.01 3.49
CEP, REEL, PEL 2.97 2.83 3.17 2.99 3.50
CEP, LAR, ACW 3.07 2.83 3.22 3.04 3.65
CEP, LAR, PEL 3.05 2.83 3.21 3.03 3.67
CEP, ACW, PEL 2.99 3.07 3.24 3.10 3.18

REEL, LAR, ACW 3.11 2.89 3.29 3.09 3.38
REEL, LAR, PEL 3.07 2.89 3.28 3.08 3.39
REEL, ACW, PEL 2.98 3.10 3.32 3.13 3.10
LA R, ACW, PEL 3.04 3.09 3.31 3.15 3.09

LSE, CEP, REEL, LAR 3.03 2.71 3.16 2.97 4.07
LSE, CEP, REEL, ACW 2.94 2.74 3.15 2.94 3.81
LSE, CEP, REEL, PEL 2.94 2.74 3.14 2.94 3.85
LSE, CEP, LAR, ACW 2.95 2.72 3.16 2.94 3.91
LSE, CEP, LAR, PEL 2.97 2.75 3.17 2.96 3.96
LSE, CEP, ACW, PEL 2.87 2.84 3.15 2.95 3.56

LSF, REEL, LAR, ACW 3.00 2.73 3.19 2.97 3.43
LSE, REEL, [AR, PEL 3.00 2.77 3.22 3.00 3.41

LSF, REEL, ACW, PEL 2.91 2.84 3.21 2.99 3.16
LSE, [A R, ACW, PEL 2.90 2.84 3.20 2.98 3.20

CEP, REEL, [AR, ACW 3.04 2.73 3.24 3.00 3.47
CEP, REEL, [AR, PEL 3.02 2.74 3.21 2.99 3.45
CEP, REEL, ACW, PEL 2.92 2.83 3.20 2.99 3.18
CEP, [AR, ACW, PEL 2.94 2.79 3.19 2.97 3.23
REEL, [AR, ACW, PEL 2.98 2.85 3.28 3.04 3.15

LSE, CEP, REEL, [AR, ACW 2.99 2.72 3.19 2.97 3.67
LSE, CEP, REEL, [AR, PEL 2.99 2.74 3.21 2.98 3.66
LSE, CEP, REEL, ACW, PEL 2.91 2.79 3.18 2.96 3.40
LSE, CEP, [AR, ACW, PEL 2.93 2.77 3.18 2.96 3.50
LSE, REEL, [AR, ACW, PEL 2.97 2.82 3.24 3.01 3.30
CEP, REEL, [A R, ACW, PEL 3.00 2.79 3.26 3.02 3.30

LSE, CEP, REEL, [AR, ACW, PEL 2.95 2.72 3.21 2.96 3.37
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Table 31: Distance Level Trimmed Mean Fusion Combination OAAE Results in dB
Trimmed Mean Distance

Features Soft Decision
SAWGN Pink CPV Trained CMV

LSF, CEP 2.97 2.83 3.12 2.97 5.90
LSF, REFL 2.98 2.78 3.10 2.95 4.06
LSF, LAR 3.01 2.83 3.17 3.00 4.12

LSF, ACW 2.96 3.02 3.28 3.09 3.70
LSF, PFL 2.90 2.97 3.22 3.03 3.80

CEP, REFL 3.06 2.77 3.14 2.99 4.54
CEP, LAR 3.17 2.79 3.20 3.05 4.61

CEP, ACW 3.02 2.95 3.16 3.04 4.08
CEP, PFL 2.95 2.92 3.10 2.99 4.18
REFL, LAR 3.16 2.81 3.26 3.08 3.53

REFL, ACW 3.06 3.00 3.28 3.11 3.20
REFL, PFL 2.96 2.96 3.21 3.04 3.16
LAR, ACW 3.12 2.95 3.27 3.11 3.31
LAR, PFL 3.02 2.96 3.24 3.07 3.26

ACW, PFL 3.19 3.42 3.50 3.37 3.16
LSF, CEP, REFL 2.95 2.79 3.12 2.95 4.79
LSF, CEP, LAR 3.04 2.77 3.16 2.99 4.80

LSF, CEP, ACW 2.95 2.83 3.14 2.97 4.64
LSF, CEP, PFL 2.96 2.84 3.13 2.97 4.70

LSF, REFL, LAR 3.06 2.79 3.17 3.01 3.73
LSF, REFL, ACW 2.97 2.85 3.19 3.00 3.46
LSF, REFL, PFL 2.96 2.82 3.17 2.98 3.45
LSF, LAR, ACW 3.00 2.84 3.19 3.01 3.55
LSF, LAR, PFL 2.99 2.84 3.20 3.01 3.55
LSF, ACW, PFL 2.99 3.09 3.35 3.14 3.23

CEP, REFL, LAR 3.13 2.80 3.23 3.05 3.89
CEP, REFL, ACW 2.99 2.84 3.19 3.01 3.49
CEP, REFL, PFL 2.97 2.83 3.17 2.99 3.50
CEP, LAR, ACW 3.07 2.83 3.22 3.04 3.65
CEP, LAR, PFL 3.05 2.83 3.21 3.03 3.67

CEP, ACW, PFL 2.99 3.07 3.24 3.10 3.18
REFL, LAR, ACW 3.11 2.89 3.29 3.09 3.38
REFL, LAR, PFL 3.07 2.89 3.28 3.08 3.39

REFL, ACW, PFL 2.98 3.10 3.32 3.13 3.10
LAR, ACW, PFL 3.04 3.09 3.31 3.15 3.09

LSF, CEP, REEL, LAR 3.03 2.71 3.16 2.97 4.07
LSF, CEP, REFL, ACW 2.94 2.74 3.15 2.94 3.81
LSF, CEP, REEL, PFL 2.94 2.74 3.14 2.94 3.85
LSF, CEP, LAR, ACW 2.95 2.72 3.16 2.94 3.91
LSF, CEP, LAR, PFL 2.97 2.75 3.17 2.96 3.96

LSF, CEP, ACW, PFL 2.87 2.84 3.15 2.95 3.56
LSF, REEL, LAR, ACW 3.00 2.73 3.19 2.97 3.43
LSF, REEL, LAR, PFL 3.00 2.77 3.22 3.00 3.41
LSF, REEL, ACW, PFL 2.91 2.84 3.21 2.99 3.16
LSF, LAR, ACW, PFL 2.90 2.84 3.20 2.98 3.20

CEP, REEL, LAR, ACW 3.04 2.73 3.24 3.00 3.47
CEP, REEL, LAR, PFL 3.02 2.74 3.21 2.99 3.45
CEP, REEL, ACW, PFL 2.92 2.83 3.20 2.99 3.18
CEP, LAR, ACW, PFL 2.94 2.79 3.19 2.97 3.23
REEL, LAR, ACW, PFL 2.98 2.85 3.28 3.04 3.15

LSF, CEP, REEL, LAR, ACW 2.97 2.68 3.18 2.94 3.61
LSF, CEP, REEL, LAR, PFL 2.98 2.70 3.18 2.96 3.63
LSF, CEP, REEL, ACW, PFL 2.89 2.74 3.15 2.93 3.40
LSF, CEP, [AR, ACW, PFL 2.88 2.74 3.16 2.93 3.46

LSF, REEL, [AR, ACW, PFL 2.92 2.76 3.22 2.97 3.21
CEP, REEL, [AR, ACW, PFL 2.94 2.73 3.24 2.97 3.22

LSF, CEP, REEL, [AR, ACW, PFL 2.93 2.70 3.18 2.94 3.37
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Table 32: Four Best Fusion Combinations OAAE in dB
__ Combination

Best Single Feature
Mean REFL, LAR, ACW, PFL

Median LSF, REFL, ACW, PFL
Mean REFL, ACW, PFL
Mean LAR, ACW, PFL

AWGN
3.03, LSF

2.82
2.76
2.85
2.9

Pul
2.97, CEP,

2.f
2.1
2.c

able 

21

nk
REFL, LAR
32

CPV
3.13, CEP

3.03

CM V
3.27, P FL

2.98

Avg. improvement

0.19
31 3.03 3.1 0.18

983.08 2.93 0.14
97 ___ 3.1 2.98 0.11

Mean LAR REFL..ACGV! .. PFL LUn eighted Fusion Conicination A-E,

w

1

0
10 15 20

Test S NR (d&,
3 0

Figure 54. AAE For all Tested Noise Types Under Best Unweighted Fusion
Combination
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Figure 55. AAE For all Tested Noise Types Under Second Best Unweighted Fusion
Combination

4.3.2 Weighted Fusion

Weighted fusion involves mean combination of features after adjusting the SNR

estimation provided by each involved feature based on a predetermined weight. One

method of obtaining the weights would be the use of an optimization technique. A genetic

algorithm was designed to determine the optimal weights for a feature set to improve

feature fusion. The weights are provided by the genetic algorithm by optimizing the soft

decision estimation of the training data against the system it was used to train and then

those weights are used to provide an estimate for the test data. The genetic algorithm was

run a total of 100 times per feature combination to find the best set of weights for each
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combination. Multiple trials were required due to the random nature of the algorithm.

Table 33 provides the OAAE results achieved through weighted combination. The best

weights are obtained by first averaging the OAAE provided for each noise type for

combination and weight set and then taking taking the minimum averaged OAAE for

each combination. Table 34 shows the best weighted feature combinations and their

improvement to each noise spectrum type individually and as an average for total system

improvement. Figure 56 and figure 57 show the AAE for the two best performing

weighted fusion combinations. The OAAE results show that using a genetic algorithm to

generate weights for mean fusion did reduce error especially for the three trained noise

spectra, however in many cases CMV noise error increased. The increase in CMV noise

estimation OAAE is likely due to the weights being generated on strictly training data

which did not include CMV noise. The two best fusion combinations both provide an

average improvement of .19 dB on average for all tested noise spectrum types. The

combination of the Reflection Coefficients, Log Area Ratios, ACW Cepstrum, and PFL

Cepstrum again provides the best combination with the least amount of features. The

Line Spectral Frequencies, Reflection Coefficients, Log Area Ratios, ACW Cepstrum,

and PFL Cepstrum also provides an average improvement in OAAE of .19 dB, and the

Line Spectral Frequencies, Reflection Coefficients, ACW Cepstrum, and PFL Cepstrum

provide an improvement in OAAE of .16 dB. These two systems however provide little

improvement for CMV Noise. These combinations perform best because they utilize

mostly features that perform well for the untrained noise spectrum type, CMV Noise.

Using this optimization technique to generate weights to improve feature combination
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has proven unsuccessful, as the best feature combination provides the same improvement

as the unweighted system with the same number of features and same improvement in

CMV noise. More improvement in CMV noise regardless of slight penalties against the

three trained noise types would motivate use of the weights to improve system

performance on noise spectra not used in training.
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Table 33: Decision Level Weighted Fusion OAAE Results in dB
GA Based Fusion OAAE

Features W P T CMV
LSF, CEP 2.87 2.77 3.03 5.70
LSF, REFL 2.84 271 3.03 4.23

LSF, LAR 2.91 2.72 3.07 4.41
LSF, ACW 2.90 3.02 3.17 3.86
LSF, PFL 2.82 3.04 3.13 3.65

CEP, REFL 3.02 2.81 3.08 3.99
CEP, LAR 3.02 2.73 3.03 5.04
CEP, ACW 3.09 3.16 3.21 3.97
CEP, PFL 2.92 3.16 3.16 3.66
REFL, LAR 3.03 2.76 3.10 3.49
REFL, ACW 2.97 2.89 3.11 3.26
REFL, PFL 2.86 2.96 3.09 3.07
LAR,ACW 3.08 2.88 3.14 3.32
LAR, PFL 2.95 2.87 3.12 3.20

ACW, PFL 3.02 3.35 3.25 3.01
LSF, CEP, REEL 2.83 2.70 3.02 4.28
LSF, CEP, LAR 2.84 2.64 2.97 5.10
LSF, CEP, ACW 2.84 2.92 3.09L4.05
LSF, CEP, PEL 2.79 3.00 3.09 3.72
LSE, REEL, LAR 2.85 2.64 3.01 3.89

LSE, REFL, ACW 2.88 2.90 3.10 3.32
LSE, REEL, PEL 2.77 2.87 3.04I3.25
LSF, LAR, ACW 2.89 2.84 3.09 3.48
LSF, LAR, PFL 2.78 2.80 3.04 3.45
LSF, ACW, PEL 2.82 3.07 3.11 3.24
CEP, REEL, LAR 2.97 2.73 3.05 3.79

CEP, REEL, ACW 2.93 2.91 3.10 3.29
CEP, REEL, PEL 2.85 2.95 3.08 3.09
CEP, LAR, ACW 3.01 2.95 3.13 3.48
CEP, LAR, PEL 2.86 2.92 3.08 3.35
CEP, ACW, PEL 2.89 3.13 3.12 3.27

REEL, LAR, ACW 2.92 2.74 3.05 3.24
REEL, LAR, PEL 2.82 2.86 3.06 3.05
REEL, ACW, PEL 2.84 2.86 3.05 3.07
LA R, ACW, PEL 2.89 2.88 3.08 3.04

LSE, CEP, REEL, LAR 2.82 2.59 2.95 4.40
LSE, CEP, REEL, ACW 2.82 2.81 3.03 3.65
LSE, CEP, REEL, PEL 2.75 2.87 3.03 3.38
LSE, CEP, LAR, ACW 2.79 2.71 2.98 4.07
LSE, CEP, LAR, PEL 2.77 2.83 3.02 3.63
LSE, CEP, ACW, PEL 2.78 2.97 3.05 3.46

LSE, REEL, LA R, ACW 2.80 2.73 3.02 3.42
LSE, REEL, LAR, PEL 2.75 2.77 3.01 3.27
LSE, REEL, ACW, PEL 2.75 2.87 3.02 3.12
LSF, LAR, ACW, PEL 2.78 2.86 3.04 3.18

CEP, REEL, LA R, ACW 2.89 2.77 3.03 3.37
CEP, REEL, LAR, PEL 2.85 2.96 3.10 3.04

CEP, REEL, ACW, PEL 2.82 2.96 3.05 3.02
CEP, LAR, ACW, PEL 2.83 2.92 3.03 3.33
REEL, LAR, ACW, PEL 2.80 2.83 3.03 2.98

LSE, CEP, REEL, LAR, ACW 2.82 2.74 3.01 3.48
LSE, CEP, REEL, LAR, PEL 2.72 2.73 2.96 3.65

LSE, CEP, REEL, ACW, PEL 2.77 2.87 3.02 3.30
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Table 34: Three Best Weighted Fusion Combinations OAAE in dB
Combination [ AWGN Pink CPV CMV Avg. Improvement

Best Single Feature 3.03, LSF 2.97, CEP, REFL, LAR 3.13, CEP 3.27, PFL 0
REFL, [AR, ACW, PFL 2.8 2.83 3.03 2.98 0.19

LSF, REFL, LAR, ACW, PFL 2.74 2.75 2.99 3.18 0.19
LSF, REFL, ACW, PFL 2.75 2.87 3.02 3.12 0.16

LAR. REFL. ACW f.%FL VWeighted Fusion Combination . AAE

fl0 10 15
Test SNR (dlB)

20

Figure 56. AAE For all Tested Noise Types Under Best Weighted Fusion
Combination
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Figure 57. AAE For all Tested Noise Types Under Second Best Weighted Fusion
Combination

4.4 MCRA Benchmark

The MCRA benchmark test was designed to be comparable to the VQ based pattern

recognition approach. No training was required as this is not a pattern recognition based

algorithm. All1380 sentences from the New England Dialect portion of the TIMIT

database were used for testing at all tested SNR levels. The same range was used for the

benchmark test as well and signals were tested at integer SNR levels within the range of 0

to 30 dB SNR inclusive. The base decision method involved obtaining the signal's SNR

level estimate from an average of the individual frame estimates. The first modified

method involved setting a floor at 0 dB and averaging all frame estimates above the floor
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not inclusive. The second modified method involved setting a floor at 65% of the

maximum frame SNR estimate and finding the average of all frame estimates above the

floor not inclusive. Table 35 shows the OAAE provided for each noise spectrum type

used to test the MCRA system. AWGN, Pink Noise, CPV Noise, and CMV Noise were

tested to adequately compare this method of SNR estimation to the robust VQ based

system. Figure 58 shows the AAE for just the 65% floor method for all four noise types.

It is observed that setting the floor at 0 dB actually increased the MCRA system OAAE.

Setting the floor at 65% of the maximum frame estimate reduced the OAAE and gave the

best SNR estimated for the MCRA system. The MCRA system does not require training

and provides SNR estimations with similar accuracy for all tested noise spectra.

Referring to table 32, the best combination for the VQ system performs better than the

MCRA system in OAAE between 1.28 dB for CPV Noise and 1.57 dB for Pink Noise.

Table 35: MCRA Benchmark OAAE in dB

Noise Type Base Method 0 dB Floor Method 65% Floor Method
AWGN 6.07 7.01 4.31

Pink Noise 6.15 6.97 4.39
CPV Noise 6.44 7.07 4.31
CMV Noise 6.37 7.08 4.31
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Figure 58. AAE For all Tested Noise Types Under Best MCRA Decision Method
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CHAPTER 5- CONCLUSIONS

5.1 Synopsis of Thesis

Chapter 1 provides an introduction to the problem, to estimate the SNR of a speech signal

with no prior knowledge of the original speech signal or the noise corrupting it. Chapter 2

provides background information for the SNR estimation method proposed by this thesis.

This background includes other noise estimation methods and an explanation of

algorithms used in this specific approach. Chapter 3 provides an synopsis of the approach

to developing a robust SNR estimation system for speech signals. Chapter 4 presents and

discusses the results obtained by performing the experiments detailed in the approach.

The results justify the motivation for the steps defined in the approach to create a robust

SNR estimation system.

5.2 Summary of Accomplishments

The goal of this thesis was to research and implement a system for estimating the SNR of

a speech signal using suitable features and a VQ pattern recognition approach. From the

results the system will estimate the SNR of a speech signal within the range of 0 to 30 dB

with an approximate error between 2.8 dB and 3 dB on average. A comparison of the

objectives of this thesis as listed in the Introduction chapter with the accomplishments of

the approach is listed:

7. To investigate six linear predictive based speech signal features identified from

use in speaker recognition systems and their contribution to a signal to noise

113



ratio estimating system.

The Line Spectral Frequencies, LP Cepstrum, Reflection Coefficients, Log Area

Ratios, ACW Cepstrum, and PFL Cepstrum were studied at every level of the

approach. The findings conclude, only after thorough experimentation, that the

Line Spectral Frequencies and LP Cepstrum are not suitable for a robust SNR

estimation system and the PFL Cepstrum is the most suitable for a robust SNR

estimation system.

8. To implement a pattern recognition approach to signal to noise ratio estimation

using vector quantization classifiers.

Vector Quantization classification proved to have the ability to classify SNR of

speech signals when using adequate features.

9. To investigate classifier parameters when designing the VQ system and their

effect on signal to noise ratio estimation.

The parameters of this VQ classifier system that were studied include the size of

the VQ codebooks and the spacing between the codebooks. It was shown that

increasing the size of the codebooks improved classification performance and

reducing the spacing between the created codebooks smoothed the error curve

reducing overall error.

10. To study the ability of a VQ based pattern recognition system to estimate signal to

noise ratio of multiple noise types including additive white Gaussian noise, pink

noise, Continental Poor Voice (CPV) noise, and Continental Mid Voice (CMV)

noise.
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Systems trained on individual noise spectrum types are capable of estimating the

SNR of the input speech signal corrupted by the trained noise type but are unable

to estimate the SNR of a speech signal corrupted by an untrained noise type.

11. To train a system robust to all trained and untrained noise spectrum types.

A robust system was created with training data from signals corrupted with

multiple noise spectra. This system was able to estimate the SNR of a speech

signal corrupted by any trained noise spectrum using any of the six studied

features. The system showed that the PFL Cepstrum and ACW Cepstrum were the

only features robust enough to estimate the SNR of a speech signal corrupted with

an untrained noise spectrum.

12. To study feature fusion techniques to identify the best feature combination and

fusion scheme for a robust system.

Feature fusion proved to reduce the error of the robust system by finding the best

combination of features and the best technique. Due mostly to their ability to

estimate the untrained CMV noise spectrum type, the decision level mean

combination of the Reflection Coefficients, Log Area Ratios, ACW Cepstrum, and

PFL Cepstrum was the best feature combination and method. Use of a genetic

algorithm to implement a weighted combination method proved to be not useful

and provided results only as good as unweighted combination.

5.3 Final Recommendations

The VQ pattern recognition approach has been thoroughly investigated for its ability to

estimate the SNR of a speech signal. Based on the results yielded from the approach,
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conclusions can be drawn for a system implementing this method. Codebook size should

be further investigated for the demands of a specific system, but codebooks designed with

256 code vectors performed the best for all features studied in the initial phase of

experiments. A resolution of 1 dB was the best codebook spacing found in our

experimentation. Use of a soft decision estimation method helps to reduce error found in

the hard decision classification approach. A system trained on one type of noise will not

be robust to input signals corrupted by other types of noise, however if a system is trained

on multiple noise spectra the PFL Cepstrum is the best single feature candidate. Use of

decision level mean fusion of the estimates provided by the Reflection Coefficients, Log

Area Ratios, ACW Cepstrum, and PFL Cepstrum reduces overall system error, showing

that these four features provide complementary data. Use of an optimization technique to

perform weighted fusion did not reduce system error on a scale greater than unweighted

fusion, though other optimization techniques could be studied. The VQ classifier pattern

recognition method proved to be a feasible approach for robust SNR estimation in speech

signals if provided with training on a adequate number of noise spectra.
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