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ABSTRACT

Patrick A. Giordano Jr.
OPTIMIZATION OF OPTICAL COMPUTED TOMOGRAPHY TECHNIQUES FOR

THE SYNTHESIS OF PARTICLE AGGERGATE MODELS
2007/08

Dr. Shreekanth Mandayam
Master of Science in Engineering (Specialization in Electrical Engineering)

The characterization of 3-D shapes of particles in geomaterial aggregate mixtures is

important for understanding the micro-mechanics of granular materials. Also, numerical

synthesis of 3-D particle shapes from their corresponding shape descriptors is required

for developing discrete element models (DEMs) that can be used to predict particle

contact-forces, and ultimately the shear strength of the aggregate mixture.

Previous work has shown that Fourier-based 3-D shape descriptors can be

constructed for aggregate mixtures, using a statistical combination of 2-D projections.

Furthermore, optical tomography methods using the Algebraic Reconstruction Technique

(ART) algorithm has proved capable of synthesizing 3-D shapes from 2-D projections,

with accuracy comparable to that obtained by an X-ray microtomograph (the "gold"

standard).

This thesis extends and revalidates prior work using images obtained from a

larger set of geomaterial mixtures - an extensive sand database has been constructed.

Inexpensive optical microscopy methods for synthesizing composite 3-D shapes

representative of the entire mixture using multiple 2-D images of particles scattered on an

image plane, is explored. An optimization technique based on the Euclidean distance



metric has been developed for selecting a subset of such 2-D images for synthesis using

the ART algorithm. Results demonstrating the success of this technique are shown to

depend on the statistics of the particle mixtures. The algorithm is successful in

synthesizing particles similar in shape to the optical and X-ray tomography methods for

those aggregate mixtures with fairly homogeneous shapes.
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CHAPTER 1 : INTRODUCTION

The task of shape characterization can either be simple or difficult given the complexity

of the shape. The most common shapes such as the circle, square, and triangle can be

easily described. All that is needed to describe the shape is its name, and there will be

adequate information to recreate that shape. It is possible to observe, for example, a

square with a given length of 10 cm. With the added information about the length of one

of the sides of the square and a priori information that all sides in a square are the same

length, all the information required to specifically describe the observed shape is known.

The problem lies however, when the shape falls outside of those commonly known. As

the complexity increases, it becomes only possible to describe the shape as an "n-sided"

polygon. At this point, it becomes impossible to be able to accurately describe the shape

by a name alone. Take for example a square; the name by itself carries adequate

information to describe its shape, whereas with the case of an "n-sided" polygon, there

are an infinite number of possibilities, hence, "n-sided."

One method to describe an arbitrarily complex shape would be to create a set of

numbers that can describe the boundary of the shape. This could be a simple task where

the length and angle of each part of the shapes boundary is found and used to describe

itself, or complex where there is a way to relate features using a smaller set of numbers.

A set of numbers offers a quantitative way to examine shape characteristics and allows

for the use of computers to quantify the results. These numbers can be used as the

descriptors, which describe the overall shape of the object. From these descriptors it is

also possible to track the trends that would allow for "rounder" shapes to be placed in a

different group then those shapes that may be more "angular".

1



1.1 Applications involving shape characterization

The significance of shape characterization can be effectively seen in the law enforcement

community, where the proper classification of fingerprints can be the difference in

proving guilt or innocence. Another application includes facial recognition, where a

person's face is digitally mapped so that a computer will be able to correctly distinguish

one person from another. This can be done in many ways, for instance, a person's

distance between eyes can be measured or the roundness of their face can all be used as

descriptors. However, the goal is to choose descriptors whose values are different for

every person that the system could ever see.

An area of application for civil engineering is in the characterization of

geomaterial aggregates. The properties of a particular soil are affected by the shape

characteristics of the thousands of particles in the soil. The size and shape of these sand

particles determine the interaction behaviors of the mixture. This can affect the load

characteristics of the particles as well as the flow characteristics.

1.2 Motivation

The requisite for an automated shape description system is generally found in

applications using computer vision. Most of the work in this area has focused on 2-D

shape characterization.

The focus of this thesis is built upon describing the 3-D shapes of particle

aggregate mixtures, particularly sand particles. The geomaterial properties of a particular

soil are affected by the shape characteristics of sand grains of that soil. The size and



shape of these sand particles determine the interparticle interaction of the mixture. This

can affect the load as well as the flow characteristics of the particles. There are three

major categories that affect the stress and strain behavior of different soil mixtures;

inherent particle characteristics, geology and environmental factors [1]. This is depicted

in Figure 1-1.

Inherent Particle Geological Factors Environmental
Characteristics Factors

Age, stress
Hardness and specific history, Drained

gravity distribution natural loading,
monotonic

Shape and Depositional Un-drained loading,Un-drained loading,angularity conditions, initial monotonic stress
relative density path and stress

path and stress

Particle size and level, cyclic stress

size distribution Initial mean path, stress level
effective normal and

shear stress levels

Figure 1-1: Factors affecting the stress-strain behavior of soil [1].

These factors can then be quantified for deeper analysis by using standard

techniques readily used in practice. One such example is sieve analysis which is a device

used to calculate the particle size as well as the size distribution of the mixture. The

process begins with the soil being placed on a mesh screen and is sifted such that the soil

with a size smaller than the mesh will fall through. These particles are then sifted again

using a finer mesh until the lowest level of desired measurement is achieved. During this

process the mass retained on each of the aforementioned mesh grids is recorded. The

measurement of specific gravity distribution can also be measured using water

displacement techniques.



The friction angle, also known as the particle to particle interaction inside a

mixture, is solely affected by the shape of the sand particles. Friction angles are crucial to

the understanding of the properties of soils because there is a direct correlation between

them and the overall strength of the mixture. One of the most important pieces of

information about a particle mixture is the overall minimum and maximum void ratios.

Void ratios can be described as the space present when a load is placed on a mixture of

particles, which is highly dependent on the shape characteristics of the particles [1].

When analyzed, more jagged sands will yield higher shear strength than a mixture whose

characteristics are more rounded in nature.

The shape and angularity of a particle has yet to be effectively described

mathematically. There are two current methods used to solve this problem, radius

expansion and spherical harmonics. However, these techniques are only useful for

characterizing the 2-D boundaries. Qualitatively, the relationship between shear strength

and shape exists, however quantification of shape parameters would allow for a better

relationship to be obtained. Once the ability for particle reconstruction in 3-D is made

more readily possible, more detailed models can be obtained for observing the inter

particle microstructure interaction, which will ultimately lead to better models for

predicting the shear strength of a particle mixture.

The major difficulty lies in the fact that finding valid data which describes the 3-D

characteristics of a mixture is non-trivial and very arduous. One of the current methods

involves using optical microscopy; however, these models can only be used reliably for

charting behavior trends due to the high level of inaccuracy [2]. For the highest level of

accuracy it is essential to achieve a reliable 3-D model. This is in practice done with



expensive equipment such as an X-ray tomography system. In Figure 1-2 an X-ray

tomographic reconstruction of a single particle of Melt sand can be observed. One of the

noticeable features of this particle is the extremely high level of detail in the final

reconstructed model. This high level of detail comes at the cost of an even higher level of

computational complexity which can range from one to five hours, and this is only for the

scanning phase.

Figure 1-2: X-ray tomographic reconstruction of a single particle of Melt sand.

The notion of describing 3-D shapes by finding a set of shape numbers is far from

a trivial task. When we discuss the oblects that we wish to model in 3-D we are looking

at the non-trivial, flat and continuous, but in fact, complex objects which exist in not only

for the x and y axis. but in the z-axis as well. T his makes the collection of points

necessary for the objects reconstruction very difficult due to the immense volume of

coordinates. )irectly reconstructing the 3-D particles is impractical when thousands of

particles from the different soil mixtures are needed such that the mixture can be

accurately characterized. 1To circumvent this growing complexity it is necessary to find a

practical and reliable 2-D solution for this problem. [he equipment for this procedure is

relatively inexpensive when compared to a tomographic X-ray imaging system, and



would only consist of and optical microscope and digital camera. This practical and

reliable 2-D technique must also be able to find distinct numerical descriptors which can

characterize the different shapes of sand, as well as be able to accurately reconstruct the

original particle mathematically. The optical tomography approach to solving this 3-D

problem will allow for massive particle synthesis with very low computational

complexity and hardware costs.

1.3 Objectives, scope, and organization

The goal of this thesis is to develop techniques for the synthesis of particle aggregates

using algebraic reconstruction techniques from images obtained using optical

microscopy. This work is intended to demonstrate measurable improvement, compared to

previous work, in shape characterization for particle aggregates. Specifically, the research

objectives are to:

1. Design and develop automated optical 3-D tomography system, for the shape

characterization of particle aggregates.

2. Design and develop experimental protocols and databases of optical and X-ray

tomography scans of a set of geomaterial aggregate mixtures.

3. Demonstrate the ability of the optical microscopy techniques to reconstruct 3-D

shapes.

4. Demonstrate the consistency, separability and uniqueness of the 3-D shape-

descriptor algorithm by exercising the method on a varying set of particle aggregate

mixtures.



The reconstruction algorithm, validated in previous research was done so using four

aggregate mixtures, which were scanned on the optical and X-ray tomography system

and will be used to further refine the premise of particle synthesis using random images

drawn from a mixture such that it can be validated.

This thesis is organized as follows. Chapter 1 describes the problems associated

with 3-D shape description and the specific application for geomaterial aggregates.

Chapter 2 discusses the method used for sand particle characterization and common

tomographic reconstruction techniques for 3-D objects. Chapter 3 describes the use of a

correlation metric based on the Euclidean distance to enable the 3-D reconstruction

algorithm, which was developed for the single particle case and verified using the X-ray

tomographic scanner, to have the ability to create specific, separable composite models

for each of the aggregate mixtures. Chapter 4 contains the results of the synthesized

composite models using the 3-D characterization and reconstruction algorithms, on

images drawn from a collection of different particles of sand from the same mixture. The

experimental setups are also described in this chapter as well as further refinements.

Chapter 5 has a summary of accomplishments and recommendations for future work and

is the conclusion of this thesis.

1.4 Expected contributions

A comprehensive database of the 3-D shapes of 7 aggregate mixtures, obtained from X-

ray and optical tomography methods will be developed. It is also expected that an optical

and X-ray tomography system be designed and optimized for automation under a specific

set of protocols. This thesis will also address the issues that arise from the optical

7



tomography reconstruction of multiple facets of multiple images, so that synthesis of 3-D

particles can further be optimized to the point where statistical manipulation of the

numerical shape descriptors can be used to synthesize composite models.



CHAPTER 2: BACKGROUND

In order to be effective, shape description techniques must possess the following

qualities' [3].

Uniqueness.

The algorithm must be able to distinguish between different shapes. This

is done by assigning a set of numbers which are unique to each shape.

Parsimony.

The algorithm should use the smallest possible set of numbers to describe

a particular shape. This will reduce the descriptor values overall noise

susceptibility.

Independence:

Each descriptor should be independent of the next. One descriptor should

not be based on the outcome of another.

Invariance:

The descriptors should not be dependent upon the orientation of the shape.

Similar shapes should have similar descriptors even if they are rotated, translated,

or scaled versions of themselves.

For most applications a good method will encompass the four qualities listed

above. There are however, certain cases for which invariance is not important. Such a

case would be when identification is necessary of the orientation of a shape. For the 2-D

shape characterization technique, attempts are made such that the four listed qualities are



achieved, where possible. The following three qualities enhance the overall robustness of

the technique [3].

Reconstruction:

The collected descriptors can be used to reconstruct a shape, as well as

possibly reducing the overall amount of data necessary for storage and processing

purposes.

Interpretation:

This is the amount of physical relationship between the descriptor and the

actual shape [4]. Here it is possible to see if certain values of the descriptors lead

to different shape characteristics when used for reconstruction.

Automatic Collection:

Lends to the algorithm's ability to automatically collect and analyze data

for external and internal processing procedures. This will also lead to less if any

human error and ultimately makes processing faster [4].

2.1 Previous work

The majority of the previous work in this field of 2-D shape descriptions has been

summarized in the following Table 2-1

Table 2-1: Summary of previous techniques used in shape description.
Proponents Method Explanation Application
Wentworth Elongation and One of the first to Used a variety of sand

[5] flatness, roundness characterize form and types including,
of sharp corners roundness. Opened the conglomerate, breccia,

field for many of the and sandstone
subsequent studies



Wadell [5] Sphericity First method developed Wadell attempted to
to measure the sphericity quantify the shape of

of a particle to quartz particles
characterize its form

Sebestyn and "unrolling" a closed The concept of creating Benson introduced this
Benson [3] outline a 1-D function from a 2- concept to geology

D boundary. Introduced using a paleontology
by Benson into the field application

of geology.
Ehrlich and Radius expansion Introduced Fourier Used a range of

Weinberg [6] analysis for radius particles from smooth
expansion into to very angular
sedimentology.

Medalia [3] Equivalent ellipses Fits an ellipse to have Tested on carbon
similar properties to the black aggregates for
actual shape. Does not both

need outline. 2-D and 3-D
Davis and Chord to perimeter Measures chord lengths Measured
Dexter [3] between various points irregularities of many

along an outline. soils
Zahn and Angular bend Zahn and Roskies Developed method

Roskies [3] discretized an outline using arbitrary closed
into a series of straight curved shapes.

lines and angles
Garboczi, Spherical harmonics A process similar to 3-D Applied to aggregates
Martys, Fourier analysis, and used in concrete

Saleh, and requires 3-D captured using X-Rays
Livingston information.

[7,8]
Sukumaran Shape and Compares shapes to Algorithms applied to

and angularity factor circles and measures various types
Ashmawy [9] their deviation. Uses a including Michigan

mean and standard Dune, Daytona Beach
deviation of many and a few kinds of

particles to compare Ottawa.
mixes.

Corriveau [4] 3D shape Determines 1D Fourier Algorithm applied to
characterization Transforms of the various sand types
using multiple boundaries of multiple such as Michigan

projective projections of a 3D Dune, Daytona Beach,
representations shape to generate #1 Dry and Standard

statistical 3D shape Melt
descriptors.



3D Shape An algebraic Algorithm applied to
Barrot [10] reconstruction from reconstruction technique Michigan Dune,

single particle (ART) for the synthesis Daytona Beach, #1
multiple projective of three-dimensional Dry, Standard Melt,

representations models of particle Kahala Beach, Ala
aggregates from Wai, Rhode Island

projective sand aggergates
representations

The subsequent section will illustrate in further detail the 2-D techniques from

Table 2-1. These techniques only require images from an optical microscope for

processing. Two methods from this section were implemented in the 3-D shape

characterization technique described by [4]. Sections 2.3-2.6 contain an explanation of a

pair of techniques used for obtaining 3-D shape descriptors from 3-D data, the technique

for 3D shape characterization for particle aggregates using multiple projective

representations described in [10].

2.2 2-D shape description techniques

There are two categories of shape description techniques; the first is boundary

description, where the "edge" or boundary is used to describe the shape of the particle.

For this to be successful the boundary must first be transformed generally into a 1-D

function by using a technique such as "unrolling". The other category involves a

technique which attempts to describe the shape by its planar surface, but, the entire image

must maintain orientation invariance for this case to be valid [3]. The following sections

will describe both the boundary and planar techniques of shape description.



2.2.1 Boundary techniques

Boundary shape description techniques can be disassembled into two main sub

categories. Fourier analysis techniques and distributional techniques. The Fourier

analysis technique involves converting the boundary into a periodic function so that the

transform can be applied. When this condition is met, the technique then will allow for

reconstruction through the inverse Fourier transform property, as well as data

compression through the exclusion of the high frequency values that correspond to the

fine detail of the shape. As long as the low frequency values containing the general shape

information are stored. Fourier analysis can be a parsimonious. effective shape

description technique that offers reconstruction. not available to simpler generic shape

description techniques. In the following Figure 2-1. the concept of retaining the low

frequencies while excluding the high frequency detail information is illustrated.

5000 Desc, r;i, '

4000

a 3000

~2030

2000 r

0 10 20 30 40
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Figure 2-1: Fourier analysis with resulting descriptors.



Distributional approaches do not inherently allow reconstruction, but are often

more invariant to orientation, since they are not concerned about the sequence of the

boundary. Also the distributional approaches are usually more statistically friendly

proving more useful for such cases. The rest of this section will describe the boundary

description methods and then offer possible Fourier or distributional analyses that could

be done amid them.

2.2.1.1 Radius expansion

A common technique used for describing the boundary of a shape is radius expansion.

The radius expansion method attempts to describe the shape by first finding the centriod

of the object, and then traversing the border at specified angles, all the while calculating

the distances to the border [3. 11], and can be seen in Figure 2-2. The distance can be

calculated in polar coordinates, first at zero degrees, and then continually checked at

certain degree intervals all around the border. The number of degrees between each point

observed decides the resolution of this technique.

__ Centroid

Figure 2-2: Illustration of radius expansion.



Once all of the points are gathered. using a set angle, a periodic function can then

be created and further analyzed. The problem lies. innately in the shape that is being

analyzed, specifically when two or more values exist for a specific angle [5] which is

illustrated in Figure 2-3.

Y

R1 (O)

0

0
rzo--6)
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Figure 2-3: Multiple valued radius expansion solution.

Since the methods' end result is a periodic function, the Fourier series analysis

can be performed effectively. A distributional approach may be used as wxell, such as

finding a radius histogram of the shape. This distribution tracks how many times certain

radius ranges occur, but fails to include the angles at which they take place, therefore,

would not be usable for reconstructing the. Another disadvantage is that twio dissimilar

shapes may have similar distributions. Take for instance, a star and a kidney shape.

Although they are visually very different, they both have many large and small

L-",-



amplitudes and could appear to be the same object when only comparing their radius

distributions.

2.2.1.2 Angular bend

Angular bend is another method that can be utilized by the Fourier and distribution

analyses. Firstly, a point is chosen on the boundary as well as the step size utilized to step

to the next point. The angle that separates the two discrete points is then recorded until

the entire boundary has been measured allowing for reconstruction using Fourier series.

The only difference from the radius expansion technique thus far is that compression is

not possible. Since all of the errors are cumulative in the reconstruction. So this follows

that the accuracy of each point is dependent upon the accuracy of the previous point. If

the Fourier series were to be truncated then the reconstruction cannot be guaranteed to be

accurate. The reconstructed boundary will either not be fully connected or cross over

itself. The distributional approach as like before, finds a histogram, in the case of radius

distribution it is the slopes and cannot be used for reconstruction because the order in

which the slopes were taken is not recorded [6]. Figure 2-4 illustrates the overall

procedure.



L

Figure 2-4: Example using angular bend.

2.2.1.3 Complex coordinates

For boundary characterization using the Fourier analysis technique, the final method to

be discussed is complex coordinates. Complex coordinates also, like angular bend

traverses the boundary beginning at a chosen starting point and collecting the x and y

coordinate pairs which make up the boundary. To reduce this problem to 1-D the

coordinate pairs can be reduced to a complex pair by setting the y axis to imaginary

creating a new set of points in the form x + jy . This conversion will create a 1-D

complex periodic function that will make it a candidate for Fourier analysis. This is a

more advantageous to use over the previous techniques since the function decays faster in

the Fourier domain allowing for greater data compression, without sacrificing accuracy in

the final solution. Based on the qualities discussed earlier, this technique is the most

promising of the three boundary methods previously discussed and consequently was

used in [4]. Figure 2-5 shows an example of this method.
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Figure 2-5: Example illustrating the complex coordinates boundary method.

2.2.1.4 Chord to perimeter

The chord to perimeter technique can only be used to compile a distribution and cannot

be used in conjunction with a Fourier series analysis which is designed to compare the

shape to that of a circle. which can be described and recreated quite easily. [his

technique is done by calculating the distance between two points along the boundary. as

well as, the distance of the perimeter that it encases. This can be better described in

Figure 2-6; where the red line is the calculated distance between the two points and the

bottom hashed blue line represents the perimeter length.

Y 1



Perimeter Length

Figure 2-6: Example of the chord to perimeter technique.

From these measurements. a ratio can be calculated by taking the perimeter

covered between the two points and dividing by the total perimeter. This determines the

irregularity of the boundary. Small ratios are used to measure small irregularities and as

the ratio reaches one they begin to measure large irregularities. When these values are

compared with those obtained from a circle, an asphericity spectrum can be created. The

asphericity spectrum is simply a way to measure how similar a shape is to a circle. One

limitation to this is that the objects being examined must be fairly round for the method to

work properly, or else unusable results will be obtained [3]. This method also cannot be

used with Fourier analysis consequently making reconstruction from the descriptors

impossible.

2.2.2 Planar surface

Planar surface techniques use the entire image in its analysis, making it un-necessary to

locate the boundary. The major problem with this method is that the location of an object



in a picture could affect its calculations. In most shape description applications, this

could be a detrimental flaw and must be corrected in order to design effective shape

description algorithms.

2.2.2.1 Equivalent ellipses

The method of equivalent ellipses, shown in Figure 2-7, attempts to describe a

complicated shape by using an ellipse, calculating the moments of inertia and the

principle axes of the object. In using ellipses to characterize the object two factors must

be met, the first is anisomery, which is the ratio of the long and short axis, the second

factor is bulkiness. Bulkiness is the ratio of the area between the original object and that

of the generated ellipse [3]. This method is advantageous since it is easily interpreted to

physical characteristics of the shape.

Figure 2-7: Equivalent ellipse technique.



2.2.2.2 2-D invariant moments

The final method discussed in this section uses a combination of 2-D moments. These 2-

D invariant moments use mean, variance, and higher order moments to make statistically

well-behaved descriptors [12, 13]. Since the assumption that similar shapes are expected

to have similar moments, it can be concluded that they will be useful for characterization.

As mentioned earlier, planar techniques, as such with 2-D invariant moments, are prone

to errors due to scale and rotation changes. However, this problem was addressed by M.

K. Hu where he proposed using a combination of moments to create a set of seven

invariant moments, capable of characterizing any image [5].

The general equation for a two-dimensional moment of a continuous function,

f(x,y) is given as:

m = _m0  fm00 xP qf(x,y)dxdy (2.1)
pq

Where, p and q represent the order and x and y moments respectively. These

moments can be centralized by subtracting out the means, and these central moments can

be written as:

1pq oo f (x-x)P (y-y)q f (x, y)dxdy (2.2)

These continuous functions are not useful for discrete images, and can be

discretized by summing the values over all the pixels instead of calculating the function

integrals resulting in

, = (x-X)p (y-Y) f(x,y) (2.3)
x y



where, p and q represent the order of the x and y moments respectively as seen in the

continuous case Equation 2.1. The f(x,y) refers to the image's gray level value of the

pixel at each x and y. This equation obtains the contribution of each pixel to the central

moment, which then sums all contributions to determine the final value of the moment.

These moments can be normalized by dividing by the zeroth moments raised to the power

of y as defined below.

PLpq (2.4)
/100

where,

=pq +1 (2.5)
2

The use of normalized moments ultimately lead to the creation of the Hu's

invariant moments. The seven invariant moments are shown below. For the complete

derivation of these equations please refer to the work done in [14].

01 = 7720 + 702 (2.6)

2 = (720 + 7702)2 +477 1  (2.7)

3 = (7730 - 37712)2 + (3721 -703) (2.8)

0= (7730 - 3712)2 + (37721 703 )2 (2.9)

05 =(77 3-712)(730 ±+1712)[(7730 +712)2 -3(772 1 +q703)]

+(3721 -703)(721+ 703)[3(730+7712)2 (721+7703 )2

0, =(720 7702)[(7730 +7712) -(721 +7703)14+711(7730 +7712)(721 +7703) (2.11)



0 7 =(37721- 7703)(7703 +7721)[(7730 + 712) -3(7721 +7703 )2

+(3/]12 -/30)(/21 +703)[3(730 +]12)2 _(721 +703)22.12)

One of the most significant advantages of this method is its ease of

implementation and its small number of descriptors. Having only a few descriptors will

enhance the techniques ability to resistant to noise, in comparison with Fourier analysis,

which usually needs at least ten and oftentimes more. Hu's 7 invariant moments are a

fairly robust, easy-to-understand technique for describing shapes.

2.3 3-D shape description techniques

To describe 3-D shapes, most algorithms require the acquisition of the 3-D objects. In

this section two previously used three-dimensional description methods are presented and

it is assumed that the coordinates of the objects being analyzed have already been

obtained using a 3-D imaging system. The most common method to capture such objects

is the use of an X-ray computed tomography system. Though seemingly simple, to

accomplish, factors such as cost and resolution of a system along with the time the

reconstruction algorithm takes to build an object will vary depending on the utilized

application. The two techniques being examined are spherical harmonics and three-

dimensional invariant moments. Further discussions on the usefulness and efficiency of

these algorithms presented will be noted at the end of this section.



2.3.1 Spherical harmonics

Spherical harmonics express a shape in a more useful mathematical form [7, 8]. The

ability to characterize an object as a set of values can be extremely useful in models that

oftentimes use only spheres or ellipsoids to represent 3-D shape. Assuming that a 3-D

object has been obtained; this technique needs to locate the object using what is known as

a "burning" algorithm. A burning algorithm is a process in which the object is separated

from the background. The particle is then stored in a 3-D matrix, where each voxel,

which by definition is a 3-D pixel, is represented by either a zero, for the background, or

a one, for the object. The algorithm begins by searching the matrix until a one is

discovered. This value of one will indicate the object has been discovered and then the

algorithm will find all the adjacent voxels that are also labeled as ones. All matrix values

that are found to contain the object are stored as x, y, and z coordinates. In this way the

entire object can be captured as a sequence of coordinates.

Next, a center point which is common between all particle points must be located.

The centroid may be used for this, and is calculated by summing the location values in

each axis and then dividing by the total number of points. However, the center may not

necessarily be the centroid and may be arbitrarily chosen, but it is important that the

process remain consistent for all particles.

The characterization of the boundary shape can now be performed with the

calculation of the center point. The distance from the center point to the aggregate

surface is measured at specific angle intervals of 0 (ranging from 0 to 227) and 0 (ranging

from 0 to l7). Once all distances for 0 are measured, the value of 0 is incremented and

the process repeated. Once all values for 0 have been used, a function r(0,0) is created



from the data, which may be used for further analysis. The equation for spherical

components is:

r(0,0)=11 a(n,m)Ynm (0,0) (2.13)
n=O n=-n

Where, Y' (a, 0) is a spherical harmonic function of order (n, m) and a(n, m) is a

numerical coefficient. Orders for n are typically taken upwards of 30 for efficient

characterization [6, 7].

2.3.2 3-D invariant moments

3-D invariant moments are nothing more than an extension of the 2-D invariant moments

which were discussed earlier in this chapter. The equation for a 3-D moment is given by:

mpq, = J:J:J xfxx3P (x1, x2, x3 )dxidx2dx3  (2.14)

Where, p, q, and r signify the order of the moment and p(xi, x2, X3) represents the

density of the object. The density function is assumed to be piecewise and continuous,

making it bounded [14, 15]. Equation 2.14 can be converted to a central moment, by

subtracting out the centroid of the coordinates shown in the following two equations

stated below.

Ppqr = J , of (x1 -X)P (x2 -2)g (x3 -x3) P(x,x 2 ,x3 )dx 1dx 2 dx3  (2.15)

Where,

S - in010 - inmoo, (2.16)

i 0 m  0  00 m0 00

Finally the equation can now be normalized by



pqr - pqr (2.17)rpqr - p+q+r+3

(/u000) 3

Equation 2.17 can be used to generate 3-D moments; however, this comes at a

high price, the computational complexity is very high even for lower order moments. As

higher and higher order moments need to be calculated, their implementation becomes

computationally prohibitive [14, 15].

The three-dimensional shape description techniques discussed all require that the

3-D data of the particle be captured, which is usually accomplished with an X-ray

tomography system. Not only does each method rely on expensive equipment to do their

analysis, but they also need significant processing power, in order to achieve results in a

reasonable amount of time. Even if such technology is available, the specific nature of

analyzing each individual grain of sand may not be completely necessary. The

generalization acquired by using 2-D descriptors could actually yield more effective

results, by using an estimation based on statistics.

2.4 Principal component analysis

The objective principal component analysis (PCA) is to take advantage of the similarities

and differences contained within the data. In a multi-dimensional dataset, PCA isolates

the most important components within the data which allows for dimensionality

reduction with a small loss of discriminatory information. More importantly for the

shape characterization application, it allows n-dimensional data to be visualized in 3-D

which is known as PC-space.



PCA assumes that the most discerning information about a dataset lies along the

axis with the greatest variance. Thus, the first principal component is the axis with the

greatest variance, and each subsequent component would be the axis with the next

greatest variance [16]. These components axes are found by calculating the mean vector,

the mean of all instances about each descriptor, and covariance matrix of the data.

Eigenvalues and eigenvectors of the covariance matrix are calculated and sorted in

decreasing order by eigenvalue. The principal components consist of the projection of

the data along the corresponding eigenvectors, with the eigenvectors having the greatest

eigenvalues containing the most discerning information and those with the smallest

eigenvalues merely contributing to the "noise" in the data, otherwise containing little or

no relevant overall information. By projecting the data onto only the major principal

components, the data's dimensionality can be reduced and separability between instances

can be theoretically increased. Figure 2-8 shows PCA on a 2-D dataset. The two axes

represent the data according to the data with the best variance chosen and are shown in

red. In [4], PCA was applied to Fourier descriptor data to reduce the dimensionality from

15 dimensions to 3 dimensions and will be discussed more in the next section.
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Figure 2-8: 2-1) PCA example.

2.5 3-D shape characterization for particle aggregates using
multiple projective representations

The primary technique described in [4] focused on finding a 2-D approach for acquiring

3-D shape descriptors. where the complex coordinate Fourier analysis and invariant

moments were instituted. The benefit of this technique is that it does not rely on an

expensive X-ray tomography unit. rather, a relatively inexpensive setup consisting of an

optical microscope and digital camera. This section will focus solely on the complex

Fourier analysis technique since reconstruction of projections is not possible with

invariant moments.



This method of 3-D shape description combines the techniques of boundary

unrolling, complex Fourier analysis and PCA to capitulate a method possessing the four

most desired attributes of a shape characterization algorithm: uniqueness, parsimony,

independence, and invariance. Also as a secondary attribute, it possesses the following:

reconstruction and automatic collection. There are two major parts to this algorithm:

statistical mix characterization and particle synthesis.

In the statistical mix characterization step, single projections of multiple particles

are captured using a standard digital camera and microscope. This is done such that the

sand is scattered on a surface and an image is captured of all the particles. Next, each

image is processed so that only the boundary of each particle remains. The boundary for

each particle is "unrolled" and converted into a complex periodic function, as discussed

earlier in this chapter. The 1-D function for each particle is re-sampled and normalized to

ensure that the same number of points (and corresponding frequencies) exist between all

particles and that the magnitudes of the FFT's lie within the same range, providing

invariance in the algorithm. After the desired Fourier coefficients are chosen, PCA is

performed on the transformed data to yield the final number of descriptors which is

constant for all of the particles. For each particle, the result would be n descriptors [DI

D2 ... Dn]. Due to the normalization and re-sampling step, the first descriptor of a particle

would represent the same frequencies as the first descriptor of every other particle, with

the only difference being variations in magnitude. The same holds true for the remaining

second through nth descriptors. This allows distributions of descriptors to be formed,

allowing for the characterization of an entire mix of sand particles by simply using n



means and variances (the Central Limit Theorem allows for the assumption that these

distributions are Gaussian).

Particle synthesis occurs in three steps: descriptor generation, projection

formation, and projection combination. Descriptor generation is accomplished by

generating a random number, multiplying by the variance of the desired descriptor, and

adding the mean of the desired descriptor. A value for that descriptor is created that lies

within the distribution found for that particular mix. The process is repeated n times

(once for each of the n descriptors) to produce a descriptor set. The newly formed

descriptor set is the input for the projection generation step, which is the reversal of the

PCA, Fourier transform and "unrolling" steps mentioned earlier. Ultimately creating the

boundary image of a projection, which may then be filled in or left as is depending on the

requirements of the algorithm used for the projection combination step. In the final step

of the process, informal algorithms were developed in [4], such as extrusion, rotation and

a "tomographic" reconstruction algorithm for the purpose of projection combination.

However, in this thesis the Algebraic Reconstruction Technique (a popular, formal

tomographic reconstruction algorithm) has been used for the projection combination step

used in particle synthesis and is discussed in the next section. Figure 2-9 shows the

overall approach for this method.
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Figure 2-9: Overall approach for the 3-1) shape characterization for particle aggregates using multiple projective representations method. Ipper-lefi:
optical images are taken of a mix of particles. Bottom left: Boundaries of each optical image are characterized using Fourier analysis to yield 2-I)

descriptors for each image. Top center: A 3-D composite particle N ith shape characteristics representative of the entire mix can be formed by combining
several optical images. Top right: 2-D projections of the 3-1) composite particle are taken. Bottom right: 2-D projections are characterized like the

optical images. Bottom center: 2-I) descriptors of the optical images and/or projections are combined to form 3-I) descriptors in the form of statistical
distributions. Both sets of images are expected to yield the same 3-D descriptors.
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2.6 Tomographic reconstruction methods

Tomography can be described as the process of collecting the refraction or transmission

data by illuminating an object from several different directions. There are several

methods of performing reconstruction on the cross sectional images acquired through

tomography, which can be performed in two ways; iterative or non-iterative. One of the

most widely used methods is the non-iterative method, used in the Feldkamp algorithm

for performing filtered backprojection (FBP). For the iterative methods, the algebraic

reconstruction technique (ART) is used.

2.6.1 Filtered back projection (FBP)

In this section, the filtered backprojection (FBP) method of reconstruction will be

discussed. It will begin with the definition of a projection, followed by the derivation of

the Fourier Slice Theorem and concluded with the derivation of the FBP method for

parallel projections.

2.6.1.1 Definition of a projection

A 2-D object may be described as a function f(x,y) and a series of line integrals

characterized by the parameters (, t). Figure 2-10 shows an object and the corresponding

line integrals.
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Figure 2-10: An objectf(x,) and its projection, P~,(1)141.

The equation of the line AB show~n in above Figure 2-10 is given by Equation 2.18

xeoOBJsinO 0 t (2.18)

thusly this equation can be used to describe the line integral PO(I) as followxs

P"(1) =f /f(xv)ds (2.19)

Equation 2.19 can then be re-written wxith the delta f inction~6 seen as

I,(t)- f f f'(x, y)((xcosO+ysinO-i)cldj' (2.20)

The function Pt)(t) is known as the Radon transform of the function ftxy). A

projection is then formed by combining a set of line integrals. TFhe most common types

of projections are parallel and fan beam projections. Fan beam projectionis are easily

NIoIccIton



sorted into parallel beam. with current algorithms that are commonly found in high end

scanning and reconstruction systems, and for that will not be discussed in the remainer of

this section. Fxamples of parallel beam projections are shown in Figure 2-11.

Fgr (t) An

Figure 2-11: A pair of parallel projections taken at different angles.

2.6.1.2 Fourier slice theorem

The Fourier slice theorem is derived by taking the 1-D Fourier transform of a parallel

projection and understanding that it is the same as a slice of the 2-[) [ourier transform of

the original object, thusly the Fourier slice theorem. This implies that given the

projection data for an object, it should be possible to estimate the original object by

inverting a 2-D Fourier transform.



The 2-D Fourier transform of the object can be described by Equation 2.21

F(u,v) = j j f(x,y)e-j 2
zxx+vy)dxdy (2.21)

-00

The Fourier transform of a projection, Po(t) is defined as:

So)= f PJ(t)e-j2-ldt (2.22)
-0

Consider the simplest example of the Fourier slice theorem which is where 0= 0.

Then, consider the Fourier transform along the line of the object in the O domain given

by v = 0, taking Equation 2.21 and reducing to the following:

F(u,) = f f f(x, y)e-' 2 ,-dxdy (2.23)

Since the phase factor is no longer dependent on y, Equation 2.23 can be divided into two

parts:

F(u,0) = j f f(x, y)dyl e1 (2.24)

The term of Equation 2.24 in brackets is the equation for a projection along lines of

constant x (from the definition of a parallel projection):

Peo(x) = f f(x,y)dy (2.25)

Substituting into Equation 2.25 into Equation 2.24 yields:

F(u,0) = f Pe(x)e-' 2',dx (2.26)



On the right hand side of Equation 2.26 is the 1-D Fourier transform of the

projection Po=o; this gives the following relationship between the vertical projection and

the 2-D transform of the object function:

F(u.0) = S), (u) (2.27)

This result is obtained regardless of the orientation between the object and

coordinate system, leads to the Fourier Slice Theorem. The theorem states that the

Fourier transform of a parallel projection of a 2-D object f(x,y) taken at an angle 0 is the

same as the Fourier transform of 2D the same object (u, v) along a line at angle 0 with

respect to the u axis [17]. Figure 2-12 illustrates this concept.

Projcction

Fourier
Transformn

Object

Spatial domain Frequency domain

Figure 2-12: Fourier transform of a I-D projection as related to a slice of the Fourier transform of a
2-1) object by the Fourier slice theorem.

The derivation of the Fourier slice theorem can now be generalized by

considering the coordinate system (Is) to be a rotated version of the original (xy) system

as given by:



L sj c - -sin B cosi ] (2.28)

In the (t, s) system a projection along lines of constant t is

()= f f(t,s)ds (2.29)

Substituting the definition of a projection given by Equation 2.29 into its Fourier

transform given by Equation 2.22 yields

= f f f(t, s)ds] e-' 2 t dt (2.30)

The RHS of (2.30) is the 2D Fourier transform at a spatial frequency of

(u = wcosO,v = wsinO)or

S9 (co) = F(w,O6) = F(w cos 0, co sin 0) (2.31)

Equation 2.35 proves the Fourier slice theorem as well as is the core of straight

ray tomography. So, if projections on an object are captured at angles, 01,02 ... k , the

function F(u,v) on the radial lines can be determined by calculating their respective

Fourier transforms. If an infinite number of projections are taken, the values

for F(u, v) would be known in the entire uv-plane. If F(u, v) is known, the object function

f(x,y) can be recovered using the inverse Fourier transform seen in Equation 2.32:

f(x,y) = j f F(u,v)eI2 "+vY)dudv (2.32)

A AA A
Take the function f(x,y), and assume that it is bounded by - - < x < A- - < y <-,

2 22 2

now Equation 2.32 can be rewritten as follows:



f(xy) = 1 m ej ((nA)x+(nA)y) (2.33)

A A A A
where ---<x< , - <y<-

2 2 2 2

however, when preformed in practice only a finite number of Fourier coefficients will be

known, so (2.33) can be written as

1 "2 (
f(x,) = Fm e((mA)x+(nA)y)(2.34)

A M=-Nn=N AA

A A A A
where -- <x<- <y<-

2 2 2 2

N is arbitrarily assumed to be an even integer, which will define the spatial

m n
resolution in the reconstructed image. If the N 2 Fourier coefficients F(m ,) are

AA

known, Equation 2.34 can be implemented using the FFT algorithm. Since the number of

projections taken is finite, the function F(u,v) is only known along a finite number of

radial lines, like in Figure 2-13. In order to use the equation seen in 2.35, interpolation

between the radial points must be performed. The error resulting from this interpolation

translates into image degradation, as the higher frequency components have a greater

interpolation error than the low frequency ones. This is due to the distance between the

radial points increasing as the distance from the center increases.



Higher Frequency

Frequency domain

Figure 2-13: Estimation of the Fourier transform of a 2-D object. Each radial line is the FFT of aprojection where the dots represent the actual location of the object's Fourier transform.

2.6.1.3 The rationale behind the FBP algorithm

The justification behind the filtered backprojection algorithm is rather intuitive and

straightforward because each projection can be considered as a nearly independent

measurement of the object. This can be better illustrated after taking the Fourier

transform of each projection at its associated angle. The reason the projections are said to

be nearly independent is ultimately seen in the result where the only information that is

common between two projections at different angles is the 0th frequency or DC term.

The act of measuring a projection can be considered a 2-D filtering operation, due

to the Fourier Slice Theorem. For instance, take a single projection and its Fourier

transform. By the Fourier Slice Theorem, this projection gives the object's two-

dimensional Fourier transform along a single line. If the values resulting from the

Fourier transform of this projection are inserted into their proper places and all other
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projections arc set to zero, a very simple (yet very distorted) reconstruction can be

obtained by simply performing the inverse Fourier transform. The previous example was

merely to demonstrate that the reconstruction formed is equivalent to the original object's

Fourier transform multiplied by the filter shown in [igure 2-14b.

y1IIZIIZI~

a) b) c)

Figure 2-14: Frequency domain data aailable from one projection. a) Shows the ideal situation
where a reconstruction could be formed by adding the reconstruction from each angle until the

entire Fourier domain is filled. h) Shows what is actually measured. The filtered hackprojection
algorithm takes the data shown in b) and weights it so that the data in c) are an approximation to

those in a).

A simple reconstruction procedure is simply the sum of object projections filtered

by pie-shaped wedges as illustrated in Figure 2-14a. Due to the property of linearity

inherent in the Fourier transform this summation may be performed in either the spatial

or frequency domain. When processed in the spatial domain, the result is

backprojection.

The name of this algorithm implies two steps: the filtering step. which can be

thought of as a simple weighting of each projection in frequency. and the backprojection

step, which is finding the elemental reconstructions corresponding to each wedge Jilter

mentioned earlier. The filtering step is done to take the value of the Fourier transform of

the projection. S,'j)). and multiplx it by the width of the wedge at its corresponding

frequency. Therefore. if there were K projections over 180' at a given frequency (, each

wedge would have a width of The effects of this weighting are demonstrated in

Figure 2-14c. Comparing this to Figure 2-14a. it can be seen that the weighted projection
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2zr co So(w) has the same "mass" as the pie-shaped wedge. Accordingly, the weighted
K

projections are indeed approximations to the pie-shaped wedge, but the error can be made

arbitrarily small by using a sufficient number of projections.

The final reconstruction is then achieved by summing the spatial domain

representations of the weighted projections. Accordingly each projection only gives the

Fourier transform of the object along a single line, this inversion can be performed very

quickly, which is better known as backprojection, since it can be perceived as the

smearing of each filtered projection over the image plane. The entire FBP algorithm can

be written as the following:

For each of the K angles, 0, between 0 and 180 °

Measure the projection, P, (t)

Fourier transform Po (t) to find So (w)

Multiply So (co) by the weighting function
K

Sum over the image plane the inverse Fourier transforms of the filtered

projections (the backprojection process) [17]

2.6.1.4 The theory of the FBP algorithm

This section will address the theory behind the backprojection algorithm for parallel

beam projections. The object function, f(x, y) can be expressed in terms of its Fourier

transform as



f (x, y) =J f F(u,v)e2 2(u+y)dudv (2.35)

The Cartesian coordinate system in the frequency domain, (u,v) may be exchanged for a

poiar coordinate system, (w, 0) by substituting the following

u =w cos08 (2.36)

v = wsinO9 (2.37)

and then changing the differential terms to

dudv= wdw dO (2.38)

the inverse Fourier transform of Equation 2.37 may then be rewritten as

f (x,Y) = f fJF(,)e )T(xos9+ysin)wodw dO (2.39)
00

Equation 2.39 may be split into two integrals considering 0 from 00 to 1800 and 1800 to

3600

f(x, y) = f f F~o, O)ej22r(xcosO+ysin0)a) dwodO +

7r (2.40)
f f F(o, 0+±180)ei(xcos( 9

+180)+ysin(0+180'))co do. dO

and then using the property

F(w,O± +180°) = F(-, 8) (2.41)

Using this property Equation 2.40 can be written as follows

f (x, y) = J~f F(w,O9)Iow ej2-dw 10 (2.42)

where,

t= xcos +y sinO0 (2.43)



By Substituting the Fourier transform of the projection at angle 6, So(w), for the two-

dimensional Fourier transform F(co, 0), results in

f(x,y)= S (w) co ej2tdo dO (2.44)
o L-o

This can be again rewritten as seen in Equation 2.45 as

f(x, y) = Qo (x cos 0 + y sin O)dO (2.45)
0

where,

Qo(t) = S,(w) c e2o2'dow (2.46)

Equation 2.45 is an estimate of f(x, y), given the projection data

transform Soo(), and Equation 2.46 represents a filtering operation on the projection

data, where the frequency response is given by Iwl. Thus, Qo (w) is a "filtered projection".

These filtered projections are then summed for different angles of 0 to form the estimate

of the original f(x, y) .

In Equation 2.47 each filtered projection, Qois "backprojected", meaning for

every point (x, y) in the image plane, there is a corresponding value of

t = x cos 0 + y sin 0 for a given value of 0. Qo contributes to the reconstruction of its

value at t. The previous process can be better illustrated in Figure 2-15. For an angle 0,

it can be easily be revealed that the value of t is the same for all (x,y) along the line LM.

The significance of this is that the filtered projection, Q, will make the same contribution



to the reconstruction at each of the pixels lying on this line. In other words, the filtered

projection Qocan be considered to be backprojected over the image plane, or more

simply put smeared back.

t = (xcos9, + y sin 0,)

AY

Q9(t

Figure 2-15: Filtered projection being backprojected onto the reconstruction plane along the lines of
the constant, t. the filtered projection at a point t, makes the same contribution to all pixels that lie on

the line LM in the x-y plane.

In theory, the integration must be carried out over all spatial frequencies, but in

practice the amount of energy present in the high frequency components of the Fourier

transform is negligible. For all practical purposes the Fourier transform of a projection

can be considered to be bandlimited. Let R be a frequency higher than the highest

frequency component in each projection, then by the sampling theorem the projections

can be sampled at intervals of

(2.47)
1

T=
20



without the introduction of significant error.

Assume that at large values of Itl the projection data is equivalent to zero. A

projection can then be represented as

-N N
J(mT), m= ,...,0,...,-1 (2.48)

2 2

For a large value of N, the Fourier transform S9(w) of a projection can be approximated

using the Fast Fourier Transform, FFT, algorithm by

S(COS)m; Sj 2521_ 1 N/ k j2,(rnk/N) (2.49)

Equation 2.49 yields the samples of the Fourier transform of a projection, given

its occurring samples in space. Subsequently, the "modified projection", Q9 must be

evaluated digitally. Since the Fourier transforms S9 have been assumed to be

bandlimited, Equation 2.47 can be approximated by

QO(t)= jS(w) C e2tdw (2.50)

N 2S N/2 ( 2Q\ Im M ei2,,20 Nt (2.51)
N N/2 N N

given that N is of a large quantity. To determine the projections Q9 for only those t which

the projections P are sampled

2I m m N ej2" "klN) (2.52)
(3 -N/2 )

k==-N12....,-1, 0,1,-N1 N2 (2.53)



This filtered projection may be multiplied with another function (such as a

Hamming window) to reduce the effects of observation noise. The reconstructed object

may be obtained from a discrete approximation to Equation 2.45 by

K
f(x, y)= - Qo, (xcos 8, + y sin 0,) (2.54)

where the K angles 0i are those for which the projections Po (t) are known.

2.6.2 Algebraic reconstruction algorithms

Tomographic reconstruction can also be approached by assuming that the cross sections

are an array of unknowns, which can be solved by using a system of linear equations. In

comparison to the previous technique, (FBP), this method lacks the ability for speed and

accuracy. However, when a large number of projections are unavailable or not evenly

distributed this method can still provide a solution. The algebraic reconstruction

technique otherwise known as ART will be discussed in detail, as well as the

simultaneous iterative reconstruction technique SIRT and simultaneous algebraic

reconstruction technique SART.

2.6.2.1 Image and projection representation

By observing Figure 2-16, an image function which can be represented by f(x, y), is

superimposed with a square grid. Set the value for f(x, y) to be constant within a given

cell, and contain a value of f, (this is the constant value in thej th cell). Next, let N be the

total number of cells. In algebraic techniques, a ray is defined as a line with a measurable
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width, i. The ith ray in Figure 2-16 is highlighted to illustrate this concept. For most

cases i will be the same as a cell width. The line integral from the FBP method is now

replaced as a ray-sum in the ART technique.

Projections will be given a single index representation, like the image. Let pi be

the ray-sum measured with the ith ray as shown in Figure 2-16. The relationship between

the f,'s and the pi's can be expressed in the following form

w, f=p, i = 1,2,...,M (2.55)

where, M is the total number of rays (in all the projections) and wy is the weighting factor

which represents the contribution of thej th cell to the ith ray integral. More simply put, wy

is the part of the jth cell that is within the area of the ith ray, as shown for one of the cells

in Figure 2-16. Notice that the majority of the wy's are equal to zero since only a few

cells contribute to any given ray-sum.



I~~~ I i

The it" ray of width T ,, for this cell = area of ABC/82

Figure 2-16: Image shown with a grid superimposed onto it, where image values are assumed to be
constant within a cell.

One of the problems that we face as mentioned in previous chapters is

computational complexity. If the values represented by M and N are small, standard

matrix inversion methods could be used to solve the system of linear equations. though in

practice the values for M and N can be as large as if not exceeding 65.536 for a 256x256

image. The size of the weight matrix would then be 65,536x65.536. making direct matrix

inversion practically impossible, but more importantly infeasible. This impracticality is

also the case when there is noise present in the measurement data, and when M < N (even

for small N) and a least squares method must be used. Unfortunately, in the case where

M and N are large, even these methods may be computationally impractical. By today's



standards a 256x256 image is nearly obsolete, with the emphasis on higher resolution

images.

To solve the problem of large M and N values, there exists and iterative method

for solving Equation 2.55, that is based on the "method of projections" which was first

proposed by Kaczmarz [18] and the clarified by Tanabe [19]. To explain these methods

Equation 2.55 has be expanded

w f + w 12 f 2 + w 3 f 3 +.. . + INfN = P

21 +222 + 23 f 3 +... + W2NfN = P 2 (2.56)

WMf + wM 2f2 + wM3f3 + + MNfN = PM

A grid representation with a total of N cells gives image N degrees of freedom.

As a result, an image, represented by (fl, f2, ... , fN), may be considered to be a single

point in an N- dimensional space. Equation 2.56 represents multiple hyperplanes in this

space for each ray-sum, and when a unique solution to the system exists, it will be the

intersection of these hyperplanes. Consider the case of two variables fj and f2 shown in

Figure 2-17, which satisfy the following equations

W1 1 1 + w 12f 2 = (2.57)
w211 + w22f2 = P 2

The process involved for determining the solution as shown in Figure 2-17 is to

begin with an initial guess, project this first guess onto the first line, project the new point

onto the second line, project this latest point onto the first again, etc. The iterations will

always converge to the same point, if a unique solution exists.



f «i Initial Guess
p

f(2

W ,f, + w,,f, = pi

Figure 2-17: Kaczmarz's method of solving algebraic equations, shown for solving two unknowns.
Starting with an initial guess, the point is then projected onto the first of the lines. The result is

projected then onto the second line, re-projected onto the first, etc, until convergence is achieved 141.

Implementing this method on a computer begins making an initial guess. This is

denoted by /;O,/..... , or in vector format as/f"and is assigned a value of zero

for allf;'s. The vector j" is then projected onto the first equation, seen in Equation

2.57, to yield f wI, xhich is projected onto the second equation in (2.58) to give ''and

so on. When I is projected onto the hyperplane given by the ith equation to yield

f'h' the process can be described mathematically by

(2.58)

where. ti', (i,,. .ir,,. ) and 1', " T;, is the dot product of IT with itself. To derive

Equation 2.58. begin with the first entry in Equation 2.56

50
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A - P1  (2.59)

Equation (2.59) represents the hyperplane that is perpendicular to the vector M,. This is

shown in Figure 2-18 where OD is the same as ti,

0
-~ii+ - ft p,

I~Ii

I) .'

F
WiSfi + wf, pi

(1 ' PI)

Figure 2-18: Plot of the hyperplane ii f' = PI (represented h the hold line), which is

perpendicular to t',

Equation 2.59 states also that the projection of a vector OCU (for any point C' on the

hyperplane) on the vector w, is of constant length. The unit vector OU along m, is given

by

(2.60)OU
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With that the perpendicular distance of the hyperplane from the origin is

I A1= 56.6-C= 1 -v,.--

Jw1.w, (2.61)

To obtain 1(1), j(O) is subtracted from HG

(1) = (0) - HG (2.62)

where, the length of HG is

HG= OF - OA
(2.63)

- f ° OUIOAI

substituting for OU and QA yields

S ()(2.64)

Because HG is in the same direction as the unit vector OU, HG can then be expressed

in the following form

G G).w -P, (2.65)

substituting Equation 2.65 into Equation 2.62 yield the result found in Equation 2.59.

For real-world applications a large number of projections and reconstructions of

large area (in the case of 2-D images) are necessary to achieve adequate results, problems

with the calculation, storage and fast retrieval of the weight coefficients w. occur when

using Equation 2.62 when this is the case. To construct an image of a size of 100x100



from 100 projections and 100 rays per projection, the number of minimum number of

required weights would be 108, which can make fast storage and retrieval a problem

when reconstruction speed is an issue.

The size that the weight matrix can grow to, under modest image sizes, has led to

the development of multiple algebraic approaches to approximate Equation 2.58, in

which three cases will be discussed, for the first Equation 2.58 will be re-written

accordingly

f() = :
_

l
__ + p -, (2.66)

Sw,(2.66)

k=l

where,

qi = (0- 1 (2.67)

N

= f( i-1)wik (2.68)
k=1

Taking the (i-l)th solution is projected onto the ith hyperplane, the value for the gray level

of the jth element is calculated by correcting the current value Af)') which is given by

af) f(i)_ f-(i=1) p - q  (2.69)

k=l

Hence the pi value is the measured ray-sum, q, is the computed ray-sum based on the (i

- 1)th solution. To find Afj for the jth cell, the difference is calculated between the



N

measured and computed ray-sums, normalizing by wk , then assigning this value to all
k=l

of the cells within the ith ray, each value weighted by the appropriate w,.

2.6.2.2 Algebraic reconstruction technique (ART), simultaneous iterative
reconstruction technique (SIRT), simultaneous ART (SART)

For the greater part of ART implementations, the wik's in Equation 2.69 are replaced with

1's and 0's, which corresponds to the center of the kth image cell being within the ith ray.

N

The denominator then is given by wZwk = N,, or the number of cells whose center is
k=1

within the ith ray. Af) is then given by

Afj') -= p; - (2.70)
N

It follows in Equation 2.70 that the qi's are still calculated using Equation 2.69,

however the binary approximation for the wk's is used instead. A relaxation factor , is

used to dampen correction overshoot, which generates salt and pepper noise because of

the approximations for the w,k's. This factor lies in the interval [0,1], but usually is

chosen to be much less than one. [20] The final form of Af(') is

Af ') -q ' ,A (2.71)
N

SIRT uses Equation 2.70 as well, but in contrast does not update the value of the

jth cell immediately. Instead it computes the change Af(') in the jth pixel for all equations



in Equation 2.56, and at the end of the iteration the change for each cell is the average

value for all computed changes for that cell. This method provides superior

reconstructions, however, with a loss in convergence speed.

SART can produce reconstructions of decent quality and numerical accuracy as

quick as in a single iteration. To accomplish this traditional pixel basis is discarded in

favor of bilinear elements in order to reduce errors in the approximation of ray integrals

of a smooth image by finite sums. For circular reconstruction regions, partial weights are

assigned to the first and last picture elements on each ray. The correction terms are then

simultaneously applied for all the rays in one projection in order to further reduce the

noise resulting from the inconsistencies associated with real projection data.



CHAPTER 3 : APPROACH

As mentioned previously, the goal of this thesis is to develop techniques for the synthesis

of particle aggregates using algebraic reconstruction techniques from images obtained

using optical microscopy and is broken down accordingly into four specific tasks.

1. Design and develop automated optical 3-D tomography system, for the shape

characterization of particle aggregates.

2. Design and develop experimental protocols and databases of optical and X-ray

tomography scans of a set of geomaterial aggregate mixtures.

3. Demonstrate the ability of the optical microscopy techniques to reconstruct 3-D

shapes.

4. Demonstrate the consistency, separability and uniqueness of the 3-D shape-

descriptor algorithm by exercising the method on a varying set of particle

aggregate mixtures.

This chapter will address the issues with the current method of particle synthesis as

well as provide a possible solution, and will be structured in the following manner;

approach for the overall project, particle characterization, the tomographic reconstruction

algorithm, particle synthesis, problems associated with current techniques, proposed

optimized technique utilizing the Euclidean distance metric.

3.1 Overall research methodology

The overall project can be broken down into three major phases. The first phase is the

determination of statistical 3-D descriptors that can be used to characterize entire sets of



aggregate mixes. Second. is to synthesize particle aggregates for all sets of mixes. [he

final phase of the project is to use the synthesized aggregates in a Discrete Element

Model (DFM) for the purpose of predicting contact forces and shear strength. Figure 3-1

illustrates this process.

Numerical Synthesize Discrete
Shape particle Element

Descriptors aggregates Model

S 34 1 .2 2 .6 0. 6 81iJ

K IZ
Calculate
shear

Prediction of contact forces strength

Figure 3-1: Overall approach for aggregate mix characterization, synthesis and discrete element
modeling of shear strength and contact forces.



3.2 Particle characterization

Particle characterization is the first step in the overall approach with the determination of

the 3-D descriptors done in [4]. The premise was that an aggregate mix could be

represented statistically by a relatively small set of statistical 3-D descriptors. This goal

was accomplished using a large number of 2-D images of particles, from the specific mix

to be characterized. Each particle inside the image was then processed such that only the

boundary of the object remained, then that boundary was "unrolled" by changing the

coordinates of each boundary point, represented by the form (x , y), in the image into a

complex quantity x + jy, by setting the "x" axis to the real component and setting the "y"

axis to the imaginary component. This boundary conversion in complex coordinates

allowed for the boundary to be expressed as a periodic, 1-D function, since the starting

point is also the ending point. In order to ensure scale invariance and for direct

coefficient comparison between different particles to be possible, each 1-D function had

to be re-sampled and the amplitude normalized. The preceding procedure ensures that

images with the same shape will produce the same Fourier coefficients, regardless of

scale; satisfying the invariance condition set forth in earlier in this thesis. To transform

these 1-D functions into the frequency domain, the Discrete Fourier Transform (DFT) is

used, and is described in Equation 3.1

N-1

Xn = x je kn/N (3.1)
k=O



where xk is the original 1D function, X, is the transformed function, N is set for the total

number of samples, and both n,k each range from 0,1,...N-1.

Principal Component Analysis (PCA) is then used to reduce the number of

descriptors which fulfills the requirement of parsimony, which states that the algorithm

should use the smallest possible set of numbers to describe a particular shape. PCA will

reduce the descriptor values overall noise susceptibility, which is accomplished by using

Equation 3.2

d'

S= ih + Y a, (3.2)
i=1

where, i is the transformed data set, m is the mean vector of the original data, a and e

are the eigenvalues and eigenvectors of the scatter matrix (number of images *

covariance of the data) of the original data, and d < d', d being the dimensionality of the

transformed data.

The final descriptor values are then used to calculate the mean and variance for

each descriptor D 1, D2... Dn. where n is the total number of descriptors used to adequately

describe the shape of the particle. The descriptors are then assumed to be statistically

independent of each other, which has been tested and proved in [4]. The descriptors may

then be used to synthesize sets of 2-D projections and ultimately 3-D particle synthesis

models [4]. Figure 3-2 illustrates the concept of sand particle characterization and the

premise behind particle synthesis.
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Figure 3-2: Approach for sand particle characterization using the 3-D statistical descriptor technique.
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3.3 Tomographic reconstruction

To ultimately synthesize particles, a reconstruction algorithm is necessary. The algebraic

reconstruction technique (ART) was chosen for the optical and microscopy systems since

it is a constrained optimization method, such that the solution is the best fit for the given

set of constraints. ART allows for a solution even with poor input projections and

missing angular data. 2-D ART is given by Equation 3.3

Af')= f- f( (1) p - (3.3)
N,

where, Af)') is the correction to the j th cell, f '-) is (i-1)th solution, ff') is the ith solution,

pi is the measured ray-sum along the ith ray, q, is the computed ray-sum for the same ray

based on the (i- 1)th solution, and N is the number of image cells whose centers are within

the ith ray. 3-D models are created by reconstructing 2-D slices of the object, given by

the set of projections, and then stacking the resulting cross sections to create the 3-D

model. Figure 3.3 illustrates this concept.



Original OT images Reconstructed Cross- 3-D Volume
Sections

-'
-. 4...- 0

Figure 3-3: Illustration of tie process of 2-I) ART to create 3-I) objects. Every row; of pixels is treated
as a set of I-I) projections. ART is then preformed of each set and thusly 2-D slices of the final 3-1)

ohject are created. The final step is to stack the reconstructed cross-sectional images.

3.4 Particle synthesis

Particle synthesis is the process in which 2-D projections are randomly generated to

create composite 3-D particles. T o create the random projections, statistical information

must be extruded from the individual particle aggregate mixes. Each synthesized

projection must retain the generalized shape parameters of the mix. For example. a

random projection from the Dry #1 sand mix must be separable from a projection

randomly generated from the statistical information from the Rhode Island mixture.

Values for the [ourier descriptors are randomly generated by using a Gaussian

distribution specific to the aggregate mixture being evaluated. This distribution produces

the 1-I) Fourier transform of the '*unrolled boundary for a projection. The inverse

Fourier Transform is then calculated. the I -D function is truncated so it is no longer

periodic, and then "rerolled" to form the 2-D boundary. To create an image, the

boundary is filled, resulting in a 2-D projection of a particle. After the desired number of



projections has been created, they are combined using a tomographic reconstruction

algorithm to synthesize the final particle. Figures 3-4 and 3-5 illustrate the projection

generation process from the beginning.

jx

x

D1-> D,,

I)1 Fi, -

DN (

DN [/1\. 6 \j

Figure 3-4: Illustration of the first phase of particle synthesis. a) A specific particle aggregate
mixture is chosen. b) Multiple images from the mixture are taken and the boundary of the object is

isolated. c) The boundary is un-rolled to a I-D periodic function. d) The 1-D function is processed by
the Fourier transform, this occurs for all images. Principal component analysis is performed to lower

the dimnensionality of the Fourier descriptors for each boundary image. e) The means and the
variances for each descriptor over the entire mix are recorded for synthesizing 2-D images.
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Figure 3-5: Final phase of particle synthesis. f) Based on the Gaussian distribution random
descriptors are generated that fall writhin the parameters of the aggregate mix. g) The descriptors are

then passed through the inverse Fourier transform. h) The I-D function is then re-rolled into the
boundary image of the new synthesized particle. i) To create multiple images steps f) through i) are

repeated until the necessary num her is aquired. j) The final 3-D, synthesized particle, is created using
the ART mentioned section 3.3.
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3.5 Issues associated with previous particle synthesis
methods

There exists within the generation of synthesis particle models, a problem that ultimately

results in a severe loss of surface resolution and whose 3-D models show no statistical

difference when compared against the synthesized models from different aggregates.

Previous work has validated that the optical tomography system in tandem with ART, can

produce models that are statistically similar to the X-ray computed tomography system.

The 3-D synthesis models in contrast to the OT models are created using the optical

microscopy (OM) system which captures projections that consists of hundreds of images

each of different particles. These 2-D images are no different from the images captured

from the optical tomography system which deals with a single particle at multiple

projection angles. The goal is to take the necessary number of images from a specific mix

and use them as the 2-D projections for ART. Currently, the projections are chosen at

random, however this selection procedure poses a significant problem: there is nothing

stopping the outliers from being selected consequently causing poor reconstructions. The

following is a result of having a high variance in the size metrics of two images. Figure 3-

6, shows a random selection of projections and the resulting high variance in sizes.
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Figure 3-6: Observed size variance for OM images.

As mentioned in section 3.3. The 2-D ART algorithm takes a single row of pixels

from the object and treats it as a 1-D projection, so that the 2-D cross section can be

formed. When the top of the smallest image is reached, there no longer exists data for

that specific projection angle which will provide less information for the cross section

calculation and ultimately cause the reconstructions to become poorly synthesized as seen

in Figure 3-7.

60

40

208....

Figure 3-7: A poorly synthesized Daytona Beach sand particle, created using random OM
projections.
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3.6 Proposed optimization technique for particle synthesis

A possible solution to the aforementioned problem is to best correlate the known angles

from an OT set of images to that of the images found in the OM dataset. Previous work

has shown the ability of ART to adequately reconstruct a model from the 2-D images

captured on a scanning platform, to that of a high-end X-ray scanner which creates

accurate models of the specimen. The information stored between the projection angles

of the OT image set can be used in selecting proper OM images, allowing for an

evaluation of the ability of ART to work in the case of particle synthesis. The imposed

minimum required number of images for the ART is 60, which is taken every 60 from 00

to 3600. This interval allows for reduced redundancy in the projection data. Each image

will go through the process of finding the boundary and calculating the Fourier

descriptors. To find the best set of 60 images from the OM set, the same Fourier

descriptor technique is employed on the 300 OM images, and a total of 128 descriptors

are calculated for each image where the first 32 are used for comparison purposes. The

scale invariance, as well as rotation invariance, ensures that we get the best optimized

match for the boundary of the OT image. Each OT image is then checked against the

entire OM database to find the best fit. To accomplish this, the shortest possible distance

must be achieved between the real and imaginary components of the Fourier descriptors

between the OT and OM images where each of the 32 descriptors has been assigned an

equal weight in the determination of the shape of the particle. The sum of the distances

between the real components and the imaginary components will yield the overall total

distance, which is summarized in Equation 3.4.



32

amn = Z (Dib,ea, - Dian,,re, "-2 + (Dibm,,i, - Dian,.i)2 (3.4)

i=1

where,

a,, is the matrix of distances, n is the current OT image, m is the current OM image and

n runs from 1-60 while m runs from 1-300. DI stands for the descriptor value with i

running from 1-32. b and a stand for OM an OT respectively. The real and imaginary

values for each the OT and OM are calculated over i number of descriptors denoted by

D,.

The distance value a,,, is recorded for each OT image for a corresponding OM

image. Each OM image is tested against all of the OT images forming a matrix of

distances as seen in Figure 3-8.

all ... aln

am 1  ** * amn

Figure 3-8: Illustration of the resulting distance matrix formed by Equation 3.4.

The selection procedure starts at the first OT image, where the shortest Euclidean

distance between the descriptors is found. The chosen OM image will then be taken out

of the selection procedure and will result in the top 60 OM images that most closely

resemble a known successfully reconstructed OT model, allowing for ART to be



evaluated for particle synthesis. The overall procedure for this process is illustrated in

Figure 3-9.
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Figure 3-9: Illustration of the improved synthesis selection procedure.
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CHAPTER 4: RESULTS

To test the synthesis procedure. three primary systems must be designed and optimized;

the OT. GM and X-ray CI system and will also be crucial in the formation of a

comprehensive online database. This section will be outlined in the following way: OT

system. X-ray CT system. GM system. online database, synthesis results. validation tests.

and discussion.

4.1 OTsystem

The first system that will be addressed is the optical tomography system (01). Figure 4-1

shows the 0T system used to capture the projection data.

licro positioning

Figure 4-1: The optical tomography syste. A single particle is rotated to create nultipule images at
different angles for the full rotation of the particle.
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The OT system consists of a QICAM 12-bit digital camera, a Gaertner Scientific

M101A microscope, and a Newmark Systems RT-3 rotary stage. The particles are placed

on an aluminum base that has been painted flat black, to reduce reflections, and are

mechanically centered using a high precision X-Y stage and stylus system. This system

allows for the imaging of sand particles at 360 ° around the z-axis. Figure 4.2 shows the

typical output of the scanning procedure of the OT system.

0 °  60 °  120 °  180 °  240 °  300 3600

Figure 4-2: Michigan I)unc sand particle. F or illustration purposes c\ crN 00 is shoN I. Ihe actual

system outputs in I" increments for a total of 360 images.

The OT system works by capturing the light transmitted and scatted through the

object and reconstructing the volumetric model using ART. Since light is being used the

system is very sensitive to external light sources which act as noise, and create low

contrast areas that are very difficult to fix after the scanning is complete. To address this

situation a light interference, sealed box has been designed to eliminate dust particles and

ambient light from corrupting the scanning procedure.

4.2 X-ray CT system

The X-ray computed tomography (CT) system is the "gold standard" of reconstructions.

This system is a desktop version of typical CAT scanners used in medical facilities which

provide high resolution detailed reconstructions, while maintaining the internal structure



of the scanned object. IThe scanning system used for this work is the Sky Scan 1072 X-ray

microtomograph seen in Figure 4-3

Figure 4-3: Skyscan 1072 X-ray microtomograph.

To reconstruct a 3-D object. 3-D information is required. 2-I) information cannot

be used directly. thus, processes like algebraic reconstruction have becn developed in an

attempt to create the 3-D) information from the 2-D projection data. To reconstruct a 3-D

object. an infinite set of cross sections are needed such that when they are stacked they

would form the 3-D structure. An X-ray system works by producing 2-1) shadow images.

as seen in Figure 4-4. of the complete internal structure of a 3-D object.

Figure 4-4: x-ray projection of a Michigan Dune sand particle.
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The captured 2-D shadow images are created as the X-rays pass through the

object and the gray level value is recorded which corresponds to the radio density of the

object. As the object is rotated around a fixed axis more shadow images contribute

information of the internal structure of the object. The simplest case can be seen in Figure

4-5 for parallel beam computed tomography.

X-Ray
\ Source

Shadow
image Object

Figure 4-5: Illustration of parallel beam x-ray capture of a shadow projection for one angle, fewer
slices are shown for illustration purposes. In practice, shadow images appear as in Figure 4-4.

The x-ray system will rotate the object for 180 ° and use the shadow projections to

create the cross sections. Only 180 of rotation in necessary to acquire the entire structure

of the object since X-rays pass completely through the object, thus any angle past 180 °

becomes redundant data, necessary only when the upmost accuracy is required.



4.3 OM system

The optical microscopy (OM) system evaluates multiple particles of the same mix

simultaneously and then uses that data to synthesize a particle which is indicative of a

specific aggregate mixture. The GM images arc captured by scattering particles on a slide

dish, using a Nikon Coolpix95O 2 Megapixel camera and a Nikon TS100 microscope.

Figure 4-6 is a photograph of the system setup.

' iN)Nikon C(oolpix9()5 4
~aT attach point

95~-1 -1

Figure 4-6: OM system setup. The screen to the right of the micIoscope is used to Nie" the particles
and is attached to the digital camera.

The unprocessed images that are taken from this setup can be seen in Figure 4-7.

The image background is set to green for easy removal, and better contrast. Images are

also processed such that the centroid of the object is the same for all the images.

Figure 4-7: Daytona sand particles captured using the OM system setup seen in Figure 3-10.



It is these images, after processing. that will ultimately be substituted for the OT

images used with the ART algorithm, allowing for a synthesized composite particle to be

created.

4.4 Online database

The comprehensive online database houses the seven different particle aggregates that

have been evaluated. This database allows the work done in this thesis to be shared with

collaborating universities and will be hosted through the Rowan University college of

engineering. The database is split into two primary categories; the computed tomography

and optical microscopy systems. Figure 4-8 shows the hierarchy of the online database.

= Number of Particles
Online geomaterial

database

Computed
Tomography

X-ray

tomography

Michigan Dune

Standard Melt

Dry #1

Rhode Island

Ala Wai Beach

Kahala Beach

Daytona Beach

Optical
tomography

Michigan Dune

Standard Melt

Dry #1

Rhode Island

Ala Wai Beach

Kahala Beach

Daytona Beach

Optical
Microscopy

Michigan Dune

Standard Melt
Dry #1

Daytona Beach ' )9]

Figure 4-8: Hierarchy to illustrate the different systems as well as the particle groups that make up
the online geomaterial database.



Each block in the above diagram contains from start to finish all of the 3-D

modeling as well as accompanying rawx data. The computed tomography 4 X-ray

tomography block contains the following images and models as seen in Figure 4-9.

Online geomaterial
database

Raw shadow
images
(.tiff)

Re-constructed
cross-sections

(.bmp)

Completed
model

reconstruction

(binary .stl)

X-rav
- Computed T omography ~ tomography

- /

ai .A

Figure 4-9: Layout of the X-ray tomography database.

The optical tomography folder is set up in a similar way. with the primary

difference being the inclusion of the algorithms used to process the raw images and the
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resulting MATLAB data files. These files have been specifically written such that a user

only has to provide which aggregate mixture is being used, and then all the processing

and model creation is completed. All MATLAB model files have been supplemented

with more detailed visual reconstructions. This was accomplished by converting the

models using MAYA. a 3-D modeling program. The supplemental models will allow for

programs that are specifically designed for 3-D modeling to visualize the data. Figure 4-

10 shows the overall layout of the optical tomography folder.

Online geomaterial Optical
database - Computed Tomography tomography

Raw optical
images - o

(.bmp) U
All processing and

model creation
algorithms

Completed
model in

multiple formats -/
(.mat .stl .obj)

Figure 4-10: Layout of the optical tomography database, and supplied components.



The final subset of the online database is the optical microscopy system. This set

of data includes all of the raw images captured w ith the GM system as well as an

assortment of processing code. Figure 4-11 shows this layout.

Online geomaterial
database - Optical Microscopy

Raw optical
images
(.bmp)

All processing and
model creation

algorithms

Completed
model in Jij

multiple formats _ r
(.mat stl .obj)

Figure 4-11: Illustration of the optical microscopy subset of the online geomaterial database.



4.5 Synthesis results

A total of four aggregate sand mixtures will be used to study the effects of the new

synthesis procedure: Daytona Beach. Dry #1. Michigan Iune, and Standard Melt. Each

mixture contains multiple test cases. and will be accompanied by an ellipsoid model

which is generated by taking the images that make up the 3-I model and looking at the

variances of the first three descriptors, using the data to create a radius in a certain

direction. The x direction is controlled by the variance of the first descriptor, the y

direction. by the variance of the second descriptor, the z direction, by the variance of the

third descriptor and finally the center of the ellipsoid is the mean of the three descriptors.

This can be seen illustrated in Figure 4-12.

Radius in X -
Variane of Coordinate ofVariance of

First Descripti £ scriptor Means

variance

z

Ri aciius i ri x
Variance of

Third Descriptor

Figure 4-12: Illustration of the ellipsoid model.

4.5.1 Daytona Beach

The naming standard for the particles used in the database is the date in which the

particles were scanned. The first particle seen in Figure 4-13. is DB 5/16/2005. The three
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particle reconstructions seen in Figure 4-13. show the "true" X-ray reconstruction versus

the previously validated 01 reconstruction versus the GM reconstructions, whose

projections were chosen based upon the best possible fit to the corresponding angle of the

OT projections.

Figure 4-13: DB 5/1 6/2005- From left to right: X-ray CT, OT and synthesized OM reconstructions.

The following Figures 4-14, and 4-15 are the ellipsoid models corresponding to the three

reconstructions.
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Figure 4-14: The DB1 5/16/2005 ellipsoid model illustrating the X-ray CT, 01, and OM descriptor
v ariances.
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Figure 4-15: Alternate view of 1)8 5/16/2005 ellipsoid model illustrating the X-ray CT, 01, and OM
descriptor variances.

The next Daytona Beach particle, DB 5/31/2005 can be seen in Figure 4-16.

Figure 4-16: DB8 5/31/2005- From left to right: X-ray CT, 01 and synthesized OM reconstructions.



The corresponding ellipsoid model can be seen in Figures 4-17 and 4-18, Figure

4-18 is an alternate view of the same ellipsoid model seen in Figure 4-17.
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Figure 4-17: The DB 5/31/2005 ellipsoid model illustrating the X-ray CT, OT, and OM descriptor
variances.
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Figure 4-18: Alternate view of DB 5/16/2005 ellipsoid model illustrating the X-ray CT, OT, and OM
descriptor variances.
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The final synthesis reconstruction for the Daytona Beach particle mix is seen in

Figure 4-19.

i y

Figure 4-19: DB 7/13/2005- From left to right: X-ray CT, OT and synthesized OM reconstructions.

As with the previous reconstructions. Figures 4-20 and 4-21 show different views

of the ellipsoid model corresponding to DB 7/13/2005.

Ellipsoid Plot

Daytona Beach OM]

a

-
u Vt

v 
yi

0 ;

First Descriptor



Figure 4-20: The DB 7/13/2005 ellipsoid model illustrating the X-ray CT, OT, and OM descriptor
variances.
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Figure 4-21: Alternate view of DB 7/13/2005 ellipsoid model illustrating the X-ray CT, OT, and OM
descriptor variances.

4.5.2 Dry #1

The next mix that was tested with the new synthesis procedure was the Dry #1 mixture.

Figure 4-22 shows the DYI 5/3/2005 sand particle.

ie:s

f
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Figure 4-22: DYI1 5/3/2005- From left to right: X-ray CT, 01 and synthesized OMI reconstructions.
Figure 4-22 showxs the first failed reconstruction of the synthesized particle. T he

following Figures 4-23 and 4-24 show the ellipsoid model of Figure 4-22.
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Figure 4-23: The DYl 5/3/2005 ellipsoid model illustrating the X-ray CT, OT, and OMI descriptor
variances.
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Ellipsoid Plot
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Figure 4-24: Alternate view of the DYI 5/3/2005 ellipsoid model illustrating the X-ray CT, 01, and
GM descriptor variances.

Notice how in the above Figures 4-23,24 the ellipsoid model shows that the

descriptor variances for the OM particle are not that far off from the X-ray and the OT

system descriptors, yet the OM reconstruction has apparently failed. This will be

discussed in detail in the next section. The next particle is DY1 6/27/2005.
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Figure 4-25: DVI 6/27/2005- From left to right: X-ray CT, OT and synthesized OM reconstructions.

a

f 
.:t

it.



Figures 4-26, 27 are the ellipsoid models of the DYl 6/27/2005 particle.
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Figure 4-26: The DYI 5/3/2005 ellipsoid model illustrating the X-ray CT, OT,
variances.

and GM descriptor
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Figure 4-27: The alternate view of the DYI 5/3/2005 ellipsoid model illustrating the X-ray CT, OT,
and GM descriptor variances.



The final particle in this mix that will be evaluated is the DYl 7/13/2005 particle.

which can he seen in Figure 4-28.
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Figure 4-28: DY1 7/13/2005- From left to right: X-ray CT, OT and synthesized OM reconstructions.

The following Figures 4-29, 30 are views of the DYI 7/13/2005 sand particle.
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Figure 4-29: The DYI 7/13/2005 ellipsoid model illustrating the X-ray CT, OT, and OM descriptor
variances.
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Figure 4-30: The alternate view of the DYI 7/13/2005 ellipsoid model illustrating the X-ray CT, OT,
and OM descriptor variances.

4.5.3 Michigan Dune

The Michigan Dune aggregate mixture synthesis test consists of six individual particles.

The forth particle exhibits a behavior unlike any of the other particles in this test scenario,

and thusly prompts the work in section 4.6. The first particle MD 4/26/2005 can be seen

in Figure 4-31.
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Figure 4-31: MD 4/26/2005- From left to right: X-ray CT, OT and synthesized OM' reconstructions.

The resulting ellipsoid model can be seen in Figures 4-32, 33
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Figure 4-32: The MD 4/26/2005 ellipsoid model illustrating the X-ray CT, OT, and OM' descriptor
variances.
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Figure 4-33: The alternative view of the MD 4/26/2005 ellipsoid model illustrating the X-ray CT, OT,
and OM descriptor variances.

MD 5/3/2005 can be seen in Figure 4-44.
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Figure 4-34: MD 5/3/2005- From left to right: X-ray CT, OT and synthesized OM reconstructions.

Figures 4-35, 36 are the alternative views of the ellipsoid model describing Figure 4-34.
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Figure 4-35: The MD 5/3/2005 ellipsoid nodel illustrating the X-ray CT, OT, and OM descriptor
variances.
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Figure 4-36: The alternative view of the MD 5/3/2005 ellipsoid model illustrating the X-ray CT, OT,
and GM descriptor variances.

Figure 4-37 shows the MD 5/31/2005 sand particle.

'1

Figure 4-37: MD 5/31/2005- From left to right: X-ray CT, OT and synthesized GM reconstructions.

Figures 4-38, 39 are the alterative angles of the ellipsoid model.
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Figure 4-38: The MD 5/31/2005 ellipsoid model illustrating the X-ray CT, OT, and OM descriptor
variances.
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Figure 4-39: The alternative view of the MD 5/31/2005 ellipsoid model illustrating the X-ray CT, OT,
and OM descriptor variances.

The forth particle to be analyzed is the MD 7/6/2005 which to this point stands

out because it is the only MD particle to have a valid reconstruction, as mentioned
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previously this resulted prompted the future wxork in section 4.6 of this thesis and is seen

in Figure 4-40

I)

Figure 4-40: MD 7/6/2005- From left to right: X-ray CT, OT and synthesized OM reconstructions.

First Descriptor

Figure 4-41: The MD 7/6/2005 ellipsoid model illustrating the X-ray CT, OT, and OM descriptor
variances.
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Figure 4-42: The alternatise ~'ie~ of the MD 7/6/2005 ellipsoid model illustrating the X-ra~ CT, OT,

and OM descriptor variances.

MD 7/11/2005 is seen in Figure 4-43.
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Figure 4-43: MD 7/11/2005- From left to right: X-ray CT, OT and synthesized OM reconstructions.
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Figure 4-44: The MD 7/11/2005 ellipsoid model illustrating the X-ray CT, OT, and OM descriptor
variances.
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Figure 4-45: The alternative view of the MD 7/11/2005 ellipsoid model illustrating the X-ray CT, OT,
and GM descriptor variances.



The final particle to be addressed in the Michigan dune sub chapter is MD

718/2005 seen in Figure 4-46.

~i 7. l3

Figure 4-46: MD 7/18/2005- From left to right: X-ray CT, OT and synthesized O/ reconstructions.
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Figure 4-47: The MD 7/18/2005 ellipsoid model illustrating the X-ray CT, OT, and OM descriptor
variances.
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Figure 4-48: The alternative view of the MD 7/18/2005 ellipsoid model illustrating the X-ray CT, 01,
and OM descriptor variances.

4.5.4 Standard Melt

I he final sand mixture that was tested wxith the synthesis procedure is the Standard Melt

aggregate mixture. Figure 4-49 is of the SM 5/12/2005.

Vil
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Figure 4-49: SM 5/12/2005- From left to right: X-ray CT, 01 and synthesized OM reconstructions.
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Figure 4-50: The SM 5/12/2005 ellipsoid model illustrating the X-ray.
variances.
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Figure 4-51: The alternative view of the SM 5/12/2005 ellipsoid model illustrating the X-ray CT, OT,
and OM descriptor variances.

T he next particle is SM 7/6/2005 and is seen in Figure 4-52.



. S : L

A' 
4 

3 kg -~

C;~ i;
tr ~b

Figure 4-52: SM 7/6/2005- From left to right: X-ray CT, OT and synthesized OM reconstructions.

Ellipsoid Plot

Standard Melt OM
Standard Melt OT
Standard Met CT

First Descriptor

Figure 4-53: The SM 7/6/2005 ellipsoid model illustrating the X-ray CT, OT, and OM descriptor
variances.
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Figure 4-54: The alternative views of the SM 7/6/2005 ellipsoid model illustrating the X-ray CT, OT,
and OM descriptor variances.

Figure 4-55 illustrates the SM 8/1 8/2005 sand particle.

A .4.

Figure 4-55: SM 8/18/2005- From left to right: X-ra% CT, 01 and synthesized OM reconstructions.
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Ellipsoid Plot
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Figure 4-56: The SM 8/18/2005 ellipsoid model illustrating the X-ray CT, OT, and OM descriptor
variances.
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Figure 4-57: The alternative view of the SM 8/18/2005 ellipsoid model illustrating the X-ray CT, OT,
and OM descriptor variances.

The final image tested in the Standard melt aggregate mixture is SM 8/22/2005

and is seen in Figure 4-58.
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Figure 4-58: SM 8/22/2005- From left to right: X-ray CT, OT and synthesized OM reconstructions.
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Figure 4-59: The SM 8/22/2005 ellipsoid model illustrating the X-ray CT, OT, and OM descriptor
variances.
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Figure 4-60: The alternative view of the SM 8/22/2005 ellipsoid model illustrating the X-ray CT, OT,
and GM descriptor variances.

4.6 Validation tests

This set of testing looks at the feasibility of using the Fourier descriptors to match OM

particle projections to that of OT projections specific to a single particle. The

methodology is that previous work to synthesize models based on randomly selecting

OM images proved to have significant failures across all the different sand mixtures. I he

thought was that the random selection was picking outliers that were not indicative of the

overall shape characteristics of the mixture. By using the Fourier descriptors we are able

to isolate the boundary of the OT projection and match it to the best fit GM projection.

Since the OT method rasing ART is successful for generating particles, it was assumed

that the images of the OT particles could be used to find the best correlated match to the

GM images which then would yield a set of GM images that would reconstruct with the
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success of the OT dataset. Michigan Dune was the anomaly such that every group either

reconstructed every particle or none and in the Michigan Dune set there was only one

complete reconstruction. The synthesis verification came from a need to investigate

whether the properties of the Fourier transform would not be advantageous in this

experiment, namely scale and rotation invariance. The Fourier transform is proved to be

scale and rotation independent, meaning that the orientation of the boundary, the starting

point, or the overall size has no effect on the generated descriptors which would leave

images in essence that have a similar boundary as the OT image. but may be large in size

compared to the other images in the dataset. Figure 4-61 shows a set of OT images from a

single particle and the selected OM images to be used in synthesizing a 3-D model.

p9h 4fl M 10 af

OM selected dataset

OT dataset

Figure 4-61: Illustrates the difference in sizes of the selected OM projections.

The large difference in size between the projections causes the back projection of

the cross-section to fail where projection angles will no longer contain information.

Figure 4-62 visually illustrates the problem.
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Figure 4-62: Red- illustrates the lost information when calculating the cross section; Blue- shows the
retained information

As can be seen in Figure 4-62. the synthesis process is done by stacking the cross

sectional layers. In this case the first projection has information at locations that are non-

existent at the next projection angle, which ultimately is the case for many of the images.

To test whether the ART can handle situations where the scale and rotation of the

boundaries are significantly different between projection angles, Michigan Dune MD

7/6/2005 has been chosen since its OM reconstruction was the only one for that mix to

reconstruct and SM 7/6/2005 will be chosen since its OM reconstruction failed. The test

will be conducted using the OT projections since that the OT reconstructions for both

cases were successful. By altering the images to simulate large scale and rotation

variances, we will be able to see if the ART algorithm can still successfully reconstruct

the models, and whether the models are significantly different from the unaltered OT

models. Three different tests will be performed on the two sand particles; 1) the

boundaries of the OT particles will be individually randomly re-scaled larger and smaller

than the originals, 2) the boundaries will be individually randomly rotated to simulate

conditions found in the OM dataset, 3) and finally the boundaries will be individually

randomly rescaled and rotated.



4.6.1 Boundary re-scaling

Figure 4-63 shows the original and the modified OT images for the two particles.

Michigan Dune 7_06_05

Standard w - r----- --

Figure 4-63: Original versus the modified images for the rescale test.

Figure 4-64 shows the results of the rescaling on the MD 7/6/2005.

/1

Figure 4-64: MD 7/6/2005 Red- unaltered original model, light blue- resealed dataset.
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Figure 4-65: Difference mapping of the two models, notice how onIy red is seen showing that the
original model and the modified model have near zero difference.

The Michigan Dune sand particle contained no apparent difference after rescaling

the particles. Figure 4-66 shows the results on rescaling the SM 7/6/2005.

Figure 4-66: SM 7/6/2005 Red- unaltered original model, light blue- rescaled dataset.
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Figure 4-67: D~ifferenice mapping of the two miodels

The Standard Melt particles" reconstruction fails when rescaling is done to the

original 0OT data set, unlike what happened on the Michigan Dune sand particle. The

interesting effect of the SM particle is that the original object appears as if it can be

contained inside the failed reconstruction w~hich wxill be explained in detail in section 4.7

discussion of results.

4.6.2 Boundary rotation

The next test that was preformed was rotating the objects boundary randomly and

re-performing the reconstruction. A preview of the image dataset used can be seen in

Figure 4-68.
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Michigan Dune 7_06_05

Standard Melt 7_06_05

Figure 4-68: Original versus the modified images for the rotation test.

Figure 4-69 shows the results of random rotation on the MD 7/6/2005.

Figure 4-69: MD 7/6/2005 Red- unaltered original nodel, light blue- rotated boundary dataset.
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Figure 4-70: )ifference mapping of the two models.

This time the Michigan )une particle shows a higher level of difference than in

the previous test, showing that rotation has a larger effect on the reconstruction than does

the scale of the boundary. The test results for SM 7/6/2005 are seen in Figure 4-71.

m"

Figure 4-71: SM 7/6/2005 Red- unaltered original model, light blue- rotated boundary dataset.
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Figure 4-72: Difference mapping of the two models.

For SM 7/6/2005 the effects of the boundary rotation show an important clue into

the inherent problem of the reconstructions.

4.6.3 Boundary rotation and re-scaling

T he final test case is the random rotation and resealing of the boundaries. T[he

dataset used can be seen in Figure 4-73.



Michigan Dune 7_06_05

Standard Melt 7_06_05

Figure 4-73: Original versus the modified images for the rotation and rescaling test.

Figure 4-74 shows the results of random rotation random rescaling on the MD

7/6/2005.

/
/

Figure 4-74: MD 7/6/2005 Red- unaltered original model, light blue- rotated-resealed dataset.
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Figure 4-75: Difference mapping of the two models.

As with previous testing the significant altering of the MD 7/6/2005 dataset failed

in causing the reconstruction errors seen in the synthesis problem. The results on the

Standard Melt, SM 7/6/2005 can be see below in Figure 4-76.

Iv

Figure 4-76: SM 7/6/2005 Red- unaltered original model, light blue- rotated-rescaled dataset.
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Figure 4-77: D~ifference mapping of the tw~o models.

As with previous tests the Standard Melt particle again failed in providing a successful

reconstruction.

4.7 Discussion of results

The enhanced synthesis procedure show~ed improvement in the total number of successful

reconstructions, specifically in the Daytona Beach mixture where previous work showed

for 1 out of 4 reconstructions. the newx procedure has increased that number to 3 out of 4.

The other mixes had no significant difference in the number of successful

reconstructions. Michigan Dune 7/6/2005. wxas the only particle in the mix to have a

successful GM reconstruction. When looking at the images that made up the OT image

set, it became clear that the sand particle was much more spherical than the other models



in the mix, which was what prompted the validation tests that would look at the OT

dataset. By taking the OT data set, which is known to produce accurate reconstructions,

the dataset was altered to induce the scenario seen in the OM dataset, whose particles

range in overall size as well as having no specific orientation. The goal was to see

whether the selection procedure, being both scale and rotation invariant was the root

cause to the failed reconstructions, or whether the aggregate mixtures overall shape

characteristics was at fault. The results of the validation test section showed that no

matter the size difference in the projections or the rotation of the boundary that the

reconstruction would still complete a successful model. This work was validated by

aligning the models together to view any difference in the two reconstructions. It was

observed that scale provided very little difference in the reconstruction. Conversely,

rotation showed a much more significant difference; however, this difference was not

large enough to cause a significant disparity when compared to the original. The Standard

Melt particle gave the best insight into the reconstruction problem, with all the tests

providing complete failures. It was noted in the Michigan Dune scale test that the scale

had very little to do with the end result of the model. The primary difference between the

Michigan Dune particle and the Standard Melt particle is the angularity of the basic

shapes. Figure 4-78, 79 shows a selection of projections from the two mixes.



Figure 4--S: Standard Melt 'M 7/6/2005 projections.

Figure 4-79: Michigan Dune MD 7/6/2005 projections.

The jagged edges that are observed are not only contained to the Standard Melt

Mixture, and are also the root cause for reconstruction failure. The ART works by

creating projections of the cross sections of the particle and was designed to be tolerant to

noisy as well as missing data. T he problem in the synthesis approach is that there is too

much missing data at multiple projection angles. Take for example one of the areas where

missing data can occur. Figure 4-80 describes this problem.
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Figure 4-80: Illustration of the lack of information aailable to ART for the cross section creation.
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It can be observed in some failed reconstructions, that ART does succeed in

creating proper cross sections in the middle section of the models. This anomaly happens

because all models are centered in the preprocessing procedure, so it is more likely that

there would be less missing data towards the middle region of the projections, and more

missing data the farther you get away from the center. The second problem that the

synthesis procedure faces is the information that is located within the angular information

of the OT projections. Using Fourier descriptors to find the best boundaries compared to

OT projection angles, only gets back a small subset of that data. When looking at an OT

projection dataset as seen in its entirety in Figure 4-81, the projections though differing

still have continuity between the many angles and any drastic changes occur over time,

this however is not the case when a selected set of OM images is observed as in Figure 4-

82.

Figure 4-81: OT dataset with images represented at every 6°.
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Figure 4-82: OM selected dataset representing the 60 increments of the OT dataset seen in the
previous figure.

Notice the large dissimilarities of the overall continuity between the projection

angles. Even when there is information at each angle the length of that information can

vary much more drastically than what is observed with the OT dataset. The comparison

in Figure 4-83 illustrates this important difference.
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Figure 4-83: Illustration of the lack of information aN ailahle to ART for the cross section creation
(situation #2).

I his section was used to illustrate the twxo situations that cause problems in the

reconstruction of 3-D models using ART. wshen trying to synthesize 3-D composite

models wxhich are statistically different from other aggregate composite models.
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CHAPTER 5 : CONCLUSIONS

The characterization and synthesis of 3-D shapes are challenging tasks, compared to their

2-D counterparts. When the situation calls for characterizing and synthesizing three-

dimensional shapes of a mixture of particles, as is the case in geomaterial aggregates, the

problem becomes particularly complex. The only reasonable approaches open to an

investigator are to use statistical techniques to characterize the shapes of particle

aggregates and a constrained optimization scheme for model synthesis. In this thesis,

previously used methods for geomaterial particle aggregate description have been re-

validated, and an optimization technique based upon the Euclidean distance metric has

been developed and tested for synthesizing 3-D particle models from an assemblage of

2-D optical microscopy and tomography images.

5.1 Summary of accomplishments

The principal accomplishments of this research work include:

1. The design and development of an optical tomography system for capturing 2-D

facets of single 3-D particles selected from an aggregate mixture. The design

constraints included the size of the particle, its positioning, the magnification of

the imaging system, and synchronization of the rotational control and image

capture mechanisms.

2. The development of an exhaustive database of optical and X-ray, microscopy and

tomography images of particles from the following sand mixtures: Michigan

Dune, Standard Melt, Rhode Island, Dry #1, Ala Wai Beach, Kahala Beach and



glass beads (as control). This structured, on-line database is intended to be shared

by the research community and can be used as a basis for developing and

comparing shape characterization and synthesis algorithms.

3. The re-validation of previously the developed Fourier-descriptor-based 3-D shape

characterization technique by exercising it on the enhanced database of

geomaterial aggregate mixtures. The "ellipsoid model" continues to provide an

indication of the efficacy of the 3-D shape characterization based on a statistical

assemblage of 2-D shape descriptors.

4. The design, development and testing of an optimization technique based upon the

Euclidean distance metric for synthesizing composite 3-D particle models from 2-

D images of multiple particles of a single aggregate mixture. This technique is

exercised on the database of sand particles, and the synthesis results are compared

with optical tomography and X-ray tomography (the "gold" standard)

reconstructions. Both statistical (ellipsoid model) and visual comparisons are

made - and information is obtained when the technique succeeds, and perhaps

more importantly, when the technique fails to provide a valid reconstruction.

5.2 Conclusions on the use of the optimization technique for

particle synthesis

The X-ray and optical tomography methods that are used to synthesize particle models

are "true" tomography methods in that actual projective images of single particle are used

to reconstruct the original 3-D shape. The optical microscopy images, on the other hand,

consist of 2-D images of multiple particles from an aggregate mix scattered on an image
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plane. The premise, that these 2-D images have statistically significant shapes and can be

used to provide 3-D shape descriptors for the aggregate mixture, has been repeatedly

validated. However, the particle synthesis is another matter entirely - since the 2-D

images are not the projections from a single 3-D shape. This is not "reconstruction" in the

true sense, but a composite 3-D representation of the shapes of all the particles in the

aggregate mixture. The situation is further complicated by the fact that the ART

algorithm has been chosen as the method for synthesizing this composite shape. As

described in a previous chapter, ART requires accurate and explicit measurements of

project angles to work correctly. This information does not exist when 2-D images of

multiple particles in a statistically homogeneous mixture are presumed to represent the 2-

D projections of a single particle. The desire to accomplish this task stems from the fact

that optical microscopy is a relatively inexpensive technique compared to optical

tomography; X-ray tomography remains prohibitively expensive - hence its designation

as a gold standard.

The optimization method based on the Euclidean distance metric for synthesizing

a composite 3-D shape intended to be representative of all the 3-D shapes in an aggregate

mixture, operates by selecting a subset of the 2-D images of multiple particles in the

image plane. The 2-D image subset is constrained to be most representative of 2-D

projections from a presumed 3-D particle. The synthesis process for the composite 3-D

particles involves ascribing pseudo-angles to selected image subset - the so called

"projections."

Results demonstrating the success of this technique are shown to depend on the

statistics of the particle mixtures. For those aggregate mixtures that have fairly
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homogeneous shapes, the algorithm is successful in synthesizing particles that are similar

in shape to the optical and X-ray tomography methods. For particularly angular particles,

with a predominant axis of elongation, the method fails to generate any reasonable

approximation to the particle shape. The ellipsoid models for such reconstructions are

particularly revealing - the lengths of the ellipsoid axis are representative of the statistical

similarity of the particle shapes. Longer axes indicate that the particles are more

dissimilar. It is to be expected, in such cases, that multiple 2-D images of multiple

particles in a mixture, cannot be reasonably expected to provide an estimate of a

composite 3-D shape that resembles the individual particles.

5.3 Recommendations for future work

The optimization algorithm could doubtlessly use some improvement in its application.

Currently, the minimum Euclidean distance is the chosen constraint - there are numerous

other constraints that could be chosen. The optimization method could be varied.

Furthermore, optical microscopy images obtained by scattered multiple particles across

an image plane do not take into account the preferred directions in which 3-D particles

fall. Suspending the particles in a colloid could minimize these effects. However, all of

these techniques add cost - either in computational complexity, or hardware for a

technique intended to be a simple, inexpensive and effective way of capturing 3-D shape

information from an aggregate mixture using optical microscopy. An analysis of the cost-

accuracy trade-off would suggest that instead of refining the synthesis technique for

optical microscopy, it may be most appropriate to restrict its use for those particle shapes



where the method is shown to be statistically valid. If more accuracy is desired, then

optical tomography should be the recommended approach.

All of the techniques explored in this thesis - optical microscopy, optical

tomography and X-ray tomography provide a multi-pronged approach towards solving

the fundamental problem of characterizing 3-D particle shapes in aggregate mixtures. A

judicious application of the relevant method is essential for addressing the application

area - the synthesis of 3-D discrete element models of particle mixtures to predict contact

forces and ultimately, the shear strength.
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