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ABSTRACT

Nicholas Stepenosky
DATA FUSION OF COMPLEMENTARY INFORMATION FROM PARIETAL AND

OCCIPITAL EVENT RELATED POTENTIALS FOR EARLY DIAGNOSIS OF
ALZHEIMER'S DISEASE

2005/06
Dr. Robi Polikar

Master of Science in Electrical Engineering

The number of the elderly population affected by Alzheimer's disease is rapidly

rising. The need to find an accurate, inexpensive, and non-intrusive procedure that can be

made available to community healthcare providers for the early diagnosis of Alzheimer's

disease is becoming an increasingly urgent public health concern. Several recent studies

have looked at analyzing electroencephalogram signals through the use of many signal

processing techniques. While their methods show great promise, the final outcome of

these studies has been largely inconclusive. The inherent difficulty of the problem may be

the cause of this outcome, but most likely it is due to the inefficient use of the available

information, as many of these studies have used only a single EEG source for the

analysis. In this contribution, data from the event related potentials of 19 available

electrodes of the EEG are analyzed. These signals are decomposed into different

frequency bands using multiresolution wavelet analysis. Two data fusion approaches are

then investigated: i.) concatenating features before presenting them to a classification



algorithm with the expectation of creating a more informative feature space, and ii.)

generating multiple classifiers each trained with a different combination of features

obtained from various stimuli, electrode, and frequency bands. The classifiers are then

combined through the weighted majority vote, product and sum rule combination

schemes. The results indicate that a correct diagnosis performance of over 80% can be

obtained by combining data primarily from parietal and occipital lobe electrodes. The

performance significantly exceeds that reported from community clinic physicians,

despite their access to the outcomes of longitudinal monitoring of the patients.
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CHAPTER 1

INTRODUCTION

The number of the elderly population affected by Alzheimer's disease (AD) is rising and

has become a major public health concern. Therefore, the need for an accurate,

inexpensive and non-intrusive procedure for the early diagnosis of the disease that can be

made available to local healthcare providers becomes increasingly urgent. Although once

considered rare and part of normal aging, Alzheimer's disease is now the most common

type of dementia, as it accounts for more than half of all dementia cases [1,2]. In general,

evidence of dementia cases from well-planned, representative epidemiological surveys is

scarce in many regions. According to [3], there are an estimated 24.3 million people

suffering from dementia, with 4.6 million new cases of dementia every year. This means

that there is approximately one new case of dementia every 7 seconds. According to data

based on the number of cases detected in the 2000 United States census, the Alzheimer's

Association and the National Institute on Aging in the United States estimate that

approximately 4.5 million people have AD. This number is expected to increase

substantially and reach approximately 16 million cases in the United States alone by the

year 2050 [1].

The only definitive means for diagnosis is via autopsy, but clinical evaluations are

the most common procedure for diagnosing AD. A study showed that local physicians

have a significantly lower overall correct diagnostic accuracy than that of a skilled

physician with access to longitudinal monitoring of patients [1,4]. Unfortunately, this



type of expertise, particularly that of neuropsychologists, is only available at major

research and university hospitals and can be prohibitively expensive. There is currently

no standard procedure or effective diagnostic tool available to community healthcare

providers who serve as the first line of intervention for the disease. To have a meaningful

impact on healthcare, an effective, accurate, inexpensive, and non-invasive procedure for

the diagnosis of AD must be made available to community-based physicians. The goal of

this study is to develop an automated diagnostic tool for the early diagnosis of AD that

can be made available to local health clinics that is comparable to the diagnostic abilities

of an expert.

The approach proposed in this study for creating such a diagnostic tool involves an

analysis of EEG signals using signal processing techniques and automated classification.

Several studies have been performed on EEG signals for the early diagnosis of AD using

signal processing methods in order to establish a biomarker for AD, but these attempts

have shown only varying degrees of success. The reason for using EEGs is practical and

quite simple. EEGs are a well established technique, inexpensive and non-intrusive to

acquire, and many local healthcare facilities already own or have access to the necessary

equipment.

1.1 ALZHEIMER'S DISEASE

Alzheimer's disease is a progressive neurological disorder associated with aging, nerve

degeneration, and neuron death. It gradually destroys a person's memory and their ability

to learn, reason, make judgments, communicate, and carry out daily activities. In the pre-

clinical stages of AD, there are no reliable and valid symptoms that can be detected to

2



allow a very early diagnosis before irreversible cognitive deficits manifest. In the mild

stage, an impairment of learning and memory is usually noticeable. The declarative

recent memory, or fact memory, which stores information from the "what," "who,"

"where," and "when" kinds of questions, is predominantly affected with early loss of

memory for everyday events. Semantic difficulties with word generation and a

deterioration of object naming are also prominent. In the moderate dementia stage,

language difficulties increase and become more obvious [5]. Deficits in other cognitive

abilities (abstract and logical reasoning, planning, organizing,etc.) appear during the

progression of the disease [6]. As the disease progresses, individuals may also experience

changes in personality and behavior, such as anxiety, suspiciousness or agitation, and

some may experience delusions or hallucinations [1].

The likelihood of developing AD almost doubles every five years after the age of

65. This is often referred to as late-onset Alzheimer's disease. At this age range,

approximately one out of ten individuals will develop the disease. By the age of 85, the

odds of developing AD increases to one out of every two [1].

An AD patient may live eight to twenty years beyond diagnosis, if the disease is

diagnosed and treated in its earliest stages. An early diagnosis allows an early start of a

treatment plan, which can not only improve the life expectancy of the patient

significantly, but also improve their quality of life. Therefore, the early diagnosis of

Alzheimer's disease is of utmost importance.

3



1.1.1 BIOLOGICAL ASPECTS OF ALZHEIMER'S DISEASE

As previously mentioned, Alzheimer's disease is associated with nerve degeneration and

neuron death. Scientists and researchers believe that factors that trigger the disease begins

its damage to the brain years before any detectable symptoms appear. When symptoms

do finally appear, nerve cells that process, store, and retrieve information, have already

begun to degenerate and die. Typically, the damage of the nerve cells begins with those

involved with learning and memory functions. The disease then gradually spreads to cells

that control the abilities and aspects of thought, judgment, and behavior. The

neuropathology of AD is characterized by widespread neuronal cell loss due to two types

of unusual proteins: neurofibrillary tangles, and senile amyloid plaques in the

hippocampus, neocortex, and other brain regions [7].

Amyloid plaques are clumps of protein fragments that accumulate outside of the

brain's nerve cells. Beta amyloid, which is typically a harmless protein, is believed to

cause these deposits of plaque which form between neurons early in the disease process,

before neurons begin to die and any symptoms develop [8]. The role of amyloid deposits

is uncertain as a part of the pathology of the disease because a variant form of the disease

has no amyloid deposits present [2].

Neurofibrillary tangles, on the other hand, are clumps of altered proteins inside

cells, mainly tau protein. During the progression of AD, threads of tau protein undergo

alterations that cause them to become twisted forming "tangles". Some researchers

believe that this seriously damages the neurons by breaking down their internal cellular

structure and causes them to die [8]. Just like that of amyloid deposits, the role of tau in

AD has also been questioned since mutations in the tau gene have been linked to a variety



of neurodegenerative diseases other than AD [2].

Some research efforts have focused on identifying genetic causes of the disease,

while other scientists and researchers have focused on developing medications that slow

and prevent the accumulation of suspected proteins. Many others yet believe that the

cause of the disease is not necessarily as important as the fact that the course of the

disease remains the same regardless of its cause [9].

1.1.2 CLINICAL DIAGNOSIS

Just as AD has no known single cause, there in no standard procedure for diagnosis. The

only definitive means of diagnosis is via an autopsy. The disease is characterized by the

above mentioned unusual proteins, which can only be seen by studying brain tissue under

a microscope. Researchers have been working to discover early symptoms, a method for

diagnosis, and medications to prevent possible causes and progression before the disease

reaches its debilitating stages.

The current 'gold standard' for AD diagnosis is clinical evaluation, which has been

used with considerable success for AD diagnosis. The evaluation process involves a

series of clinical interviews between a neuropsychologist and the subject. Results from a

thorough medical history, physical examination, and memory assessment and nervous

system function tests are combined to determine if there are changes in the person's

cognitive status. All of these tests are necessary to assess if a person has symptoms of

AD. Overall, it is difficult to determine whether a person is actually suffering from AD,

or from other possible forms of dementia such as vascular dementia, or if the symptoms

are simply associated with normal aging [10].



Having access to the expertise of a skilled physician is usually not an option for

the majority of dementia patients. Since most patients are evaluated at local community

clinics and healthcare facilities. The expertise and accuracy of diagnosis at such facilities

remains uncertain. Our only metric for these health care providers is a 1999 study, where

a group of Health Maintenance Organization-based physicians reported a sensitivity of

83%, a specificity of 55%, and an overall accuracy of 75% [4]. This performance is the

metric against which the results of this effort are compared.

1.1.3 OTHER DIAGNOSTIC TOOLS

Other methods besides conventional clinical evaluations are being considered for

diagnostic tools. Spinal taps are used to extract cerebrospinal fluid (CSF), which contains

known biomarkers for AD, but this is a highly invasive technique. One study has shown

that concentrations of beta amyloid, total tau, and phosphorylated tau in CSF are strongly

associated with the future development of Alzheimer's disease in patients with mild

cognitive impairment [11]. Magnetic resonance imaging (MRI) scans can capture images

of the lesions in the brain, but they are very expensive and are not always available at

local health care facility.

Abnormalities in the brain are known to disrupt the brain's electrical signals and

can theoretically be detected through electroencephalogram (EEG) signals. EEGs can be

obtained in a non-invasive manner, and are a fairly inexpensive to acquire. Traditionally,

EEG analysis was not used for AD diagnosis due to it poor spatial resolution. There were

difficulties in EEG analysis in distinguishing changes attributed by AD and those by

normal aging, other medical illnesses, and other factors associated with physiology [12].

6



Recently, there has been a revival of EEG analysis used for the diagnosis of AD

and many techniques seem more promising then had originally been anticipated [13].

One reason behind this revival is that AD is a cortical dementia in which EEG

abnormalities are more frequently shown. Subcortical dementias exhibit relatively normal

EEG patterns compared with other cortical dementias [14]. The EEG abnormalities in

AD directly reflect anatomical and functional deficits of the cerebral cortex after being

damaged by the disease. Thus, it is anticipated that the analysis of EEG dynamics will

provide useful and informative clues concerning the neuropathology of AD.

Again, an accurate, cost-effective, and non-intrusive diagnostic tool, that can be

made available to local clinics is of critical importance. As we move the diagnostic

process earlier within the natural history of the disease, it is very important to maintain

current levels of sensitivity and specificity of the AD diagnosis. [15]. An approach based

on EEG analysis can potentially satisfy all of the mentioned requirements, if its accuracy

can be established. The EEG itself is an established and dependable technology, easy and

cost-effective to operate, and hence ideally suited for a health clinic setting. Overall, a

reliable method for diagnosing the illness in its early stages is essential so that

medications may be administered in a timely fashion to reduce the progression of the

disease to its later devastating stages.

1.2 OBJECTIVES OF THIS STUDY AND ORGANIZATION OF THE THESIS

The goal of this study has been the design and development of an automated algorithm

for the early diagnosis of Alzheimer's disease. The specific research objectives were:

1. Develop an automated classification procedure for the early diagnosis of



Alzheimer's disease through the analysis of EEG signals that is comparable in

accuracy to a clinical diagnosis by an expert.

2. Compare the diagnostic performance of different frequency subbands from the

wavelet analysis of data from all available electrode recordings acquired during

both the target and novel stimuli.

3. Combine features from electrodes using data fusion techniques in an effort to

provide the most informed decision for classification and enhance the overall

generalization performance.

The organization of this thesis is as follows. Alzheimer's disease and difficulties

associated with its diagnosis were introduced in this chapter. Chapter 2 provides specific

background on EEG signals, event related potentials, and their acquisition. Chapter 3

describes previous approaches on using EEGs and ERPs for AD diagnosis. Chapter 4

includes the implementation of our approach as well as the data acquisition process, and

subject statistics. The theory behind the multiresolution wavelet analysis which is used as

the feature extraction technique is also covered in Chapter 4. Chapter 5 describes the

theory behind the classifier and ensemble based algorithms and techniques used

throughout the experiments of this research. Chapter 6 presents the results from all

experiments which include using single MLP neural networks, and different ensembles

and combination rules. Finally, Chapter 7 summarizes the accomplishments of this study,

discusses possible sources of error, and presents recommendations for future work as a

conclusion for this thesis.



CHAPTER 2

THE ELECTROENCEPHALOGRAM
AND

THE EVENT RELATED POETENTIAL

2.1 ELECTROENCEPHALOGRAM

Electroencephalogram (EEG) signals represent the electrical activity of the brain as

voltage (typically microvolts) over time. EEGs are recorded using a series of electrodes

placed on the scalp. These signals have traditionally been used to determine illnesses

associated with brain activity, such as schizophrenia [16], and epilepsy [17]. Changes in

the brain's electrical activity can reflect changes in cognitive status. Hence, the main goal

of this study is to determine whether our method of automated analysis can detect

changes in EEG signals that reflect the earliest changes caused by Alzheimer's disease.

Hans Berger, a neuropsychiatrist, is credited for the discovery of human EEG

signals [18]. Berger started studying humans in 1924 using various galvanometers. In the

following years, he identified different features within the brain's signals such as sleep

spindles, fluctuations of consciousness, the first evidence of alpha rhythms, as well as a

several disorders [19]. He was also the first to observe pathological EEG sequences in a

historically verified AD patient [18,20].

Thereafter, the EEG developed as a method for investigating mental processes and

was quickly adopted for use in clinical applications. The EEG became more popular with

the introduction of event-related potentials (ERPs), which are components of the EEG

that result from specific sensory and cognitive processes.



Many advances in EEG studies led to breakthroughs in neurophysiology. The idea

that different neurological disorders could be explored further through the use of EEGs

caused research to shift in that direction [19,21].

2.1.1 EEG RECORDINGS

EEG recordings are acquired using electrodes placed in different locations on the scalp.

EEGs can be recorded as bipolar recordings where electric potentials are recorded

between pairs of active electrodes, or as a monopolar recording where potentials are

recorded with respect to a single passive reference electrode. These measures are

primarily performed on the surface of the scalp (scalp EEG), but special electrodes can

also be placed on the surface of the brain during a surgical operation (intracranial EEG).

Better resolution can be achieved with the intracranial implanted electrodes, but a

surgical procedure is required for placement of the electrodes. Hence, intracranial

recordings are impractical for most human studies [21].

The standard system in use for the placement of scalp electrodes is the

International 10-20 system, which was developed to keep a consistent placement scheme

for comparison studies. The system is termed 10-20 because EEG electrodes are placed

on the scalp at 10 and 20 percent of a measured distance (the circumference of one's

head). The system involves a number of electrodes connected at key scalp locations. The

electrodes are usually referenced to two electrodes on the earlobes to obtain signals from

particular regions of the brain.

One problem with scalp electrode recordings is that artifacts alter the EEG signal.

Artifacts are easily created due to head and eye movements, muscle activity, etc. Since

10



the EEG signals have such low amplitudes, artifacts from these added stimuli

contaminate recordings. These artifacts are typically removed as a preprocessing

procedure by the EEG technician. Synchronized and repeated signals are then averaged to

make the components within the signal more pronounced [21].

Figure 2.1 shows an expanded version of the International 10-20 system. It

displays the possible electrode names and their positions on the scalp. Note that these

extra electrodes are added in between the usual electrodes for a more thorough analysis

and higher resolution. The notation in Figure 2.1 is as follows: F = frontal, C = central

(cortex), P = parietal, T = temporal, O = occipital, and A = auditory reference

corresponding to the regions of the brain where the electrodes are placed. Convention

calls for odd numbers on the left and even numbers on the right [19].

Figure 2.1: Example of the expanded International 10-20 system
for scalp electrode placement.

11



2.1.2 SPECTRAL CONTENT OF THE EEG

An EEG signal can be broken into different frequency bands. Each band has been shown

to be associated with different brain functions. As reported in [22], the five main

frequency bands are as follows:

* The delta band (0.5 - 3.5Hz) is characteristic of deep sleep stages. An increase in the

amplitude of the delta response has been found during experiments using an oddball

paradigm (refer to Section 2.2). This suggests that the response may be linked to

signal detection and the corresponding decision [23,24].

* The theta band (3.5 - 7.5Hz) has been correlated with higher cognitive and

associative brain processes [24,25]. The event related potential (refer to Section 2.3)

components in the theta band are prolonged after target stimuli in oddball paradigm

experiments. This latency indicates a relationship with selective attention [23,24].

* The alpha band (7.5 - 12.5Hz) is sometimes divided into two subbands, alphal

(7.5 - 10Hz) and alpha2 (10 - 12.5Hz). In some cases, results have indicated that the

working memory is associated with alpha oscillations [23,26].

* The beta band (12.5 - 30Hz), like the alpha band, can also be divided into subbands,

betal (12.5 - 20Hz) and beta2 (20 - 30Hz). The beta rhythms have been found to

elicit a stronger response in recordings from the central and frontal electrodes. Beta

rhythms have also shown enhancement during states of expectancy and tension [21].

12



* The gamma band (30 - 60Hz) became popular after cellular level experiments

showed a relationship with the linking of stimulus features into perceived

information. Basar-Eroglu et al., 1996, suggested that the gamma band activity is part

of the common language elements of the brain. This activity may also be associated

with mutual information transfer between subcomponents of the brain just as it is with

other oscillations such as theta, alpha, or beta [27,28].

2.2 DATA ACQUISITION PROTOCOLS

In certain protocols for EEG acquisition, the patient is exposed to a sensory stimulus in

order to elicit a particular response. These responses are known as event related or

evoked potentials. There are three common modalities, or types of stimuli, used: auditory,

visual, and somatosensory. The auditory modality uses single tones of a preset

frequencies or clicks with a broadband frequency distribution as stimuli. For the visual

type, stimuli are produced by a single light or sometimes by the reversal of a pattern such

as a checkerboard. For the somatosensory modality, stimuli are a combination of the

visual and auditory types [29].

Sequences of stimuli are arranged in paradigms to study the responses to tasks in

order to test such factors as memory, reaction time, awareness, etc. The tasks involved

could vary from simple tasks such as pressing a button to harder tasks such as the

memorization of an extensive list. The oddball paradigm, one of the most common

paradigms, has been used in experiments conducted for this study.

The traditional oddball paradigm involves two different stimuli presented in a

pseudo-random order. The oddball, or target, tone is presented randomly in a series of
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frequently occurring, or standard, tones. The standard tone is presented in 75-80% of the

trials, and the oddball stimuli in the remaining 20-25% of the trials. The oddball stimulus

is usually a different frequency than the standard, set far enough apart to be

distinguishable from the frequent stimuli [12,21]. The subjects are instructed to perform a

simple task such as pressing a button, keeping a mental count of the number of oddball

tones, etc., after hearing each oddball tone [12,21,30].

Yamaguchi et al., 2000, developed a variation of this paradigm with the use of

novel tones consisting of 60 unique environmental sounds, recorded from Disney movies

edited to be 200ms in duration. In this variation, standard stimuli occur 65%, target

stimuli occur 20%, and novel tones occur 15% of the time. Again, subjects are asked to

respond only to the oddball stimulus by performing a simple task defined at the beginning

of the experiment. This type of experiment is performed in efforts to differentiate

between different types of dementia [31,32].

2.3 EVENT RELATED POTENTIALS

The potential evoked in the EEG as a response to a stimulation is called an event related

potential (ERP) or an evoked potential [29]. ERPs are a series of positive and negative

peaks that occur in response to a specific event to which the subject is usually asked to

respond. Each element of the ERP has a name that denotes its sign, such as P for positive

or N for negative, and its latency after the stimulus is perceived by the subject. Some of

these elements are explained below and Figure 2.2 shows the labeled components of an

ERP.
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Figure 2.2: ERP signal and components

P50 is a positive peak that occurs around 50ms after the stimulus. N1 is a negative

peak occurring around 100ms after the stimulus. Golob and Starr, 2000, showed in a

study that changes in the amplitude and latency of the N1 peak may be observed during

memorization tasks [33].

P2 is a positive peak at approximately 200ms after the stimulus. P2 response is

stronger due to standard stimulus in an oddball paradigm as opposed to target stimulus,

implying that it contains a component due to sensitivity of the sensory processes other

than cognitive processes [32].

N2 is a negative peak at approximately 200ms. This response is found to be

stronger in response to target tones in the oddball paradigm, however given its close

proximity to the P3 component, it is hypothesized that the amplitude and latency of the

N2 may be affected by the P3 generation [32].
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P3 or P300 is a positive peak occurring around 300ms. The P300 has been shown

to occur in response to oddball tones, and has also been associated with mental activity.

The P300 is measured by quantifying its amplitude and latency, where amplitude is

defined as the voltage difference between the pre-stimulus baseline and the largest peak

with latency between 250-400ms. The latency is the time measured from stimulus onset

to the point of maximum positive amplitude within the particular latency window [32,34].

The latency and amplitude of the P300 component have been shown to be related to age

and the cognitive ability of the individual [19,32]. The P300 can be attributed to a

manifestation of central nervous system activity involved with the processing of new

information when attention is engaged in updating memory. The latency of the P300 in

the discrimination task provides an indication of individual ability in mental processing

capability and speed [12].

In 1999, Katayama and Polich conducted an experiment involving 12 young

adults. EEG recordings were acquired using the oddball paradigm with both visual and

auditory modalities. The P300 was largest for the parietal and mid-line electrodes and

occurred in response to both target and non-target stimuli during both modalities [35].

A second P300 is created in experiments involving the novel tones. The target P3,

or P3b, is the traditional P300 with the strongest area of detection from the parietal

region. The novelty P3 or P3a is in response to an alarming or novel stimulus and

originates in the frontal region. The use of the novel tones is said to increase the P3b and

elicit a P3a. However, the P3a is only readily observed in about 20% of normal subjects

which, although this peak may be the most sensitive to changes in cognitive function,

tends to be limited in use [22,31,32].
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Due to the low amplitude of the ERPs compared with the ongoing EEG, averaging

several responses is a common practice to visualize the ERP. The ERPs have a similar

pattern of response which is predictable under similar conditions [21,22]. Sufficient

numbers of artifact-free trials have been shown to stabilize ERP measures in both

amplitude and latency [31].

2.4 EEG OF ALZHEIMER'S PATIENTS

Different studies have shown abnormalities in the EEG of AD patients. The hallmark of

EEG abnormalities in AD patients is slowing of the rhythms. An increase in theta and

delta activities and a decrease in beta activities are repeatedly observed [36,37,38]. The

severity of the disease is also correlated with these abnormalities [39, 40].

The P300, as mentioned in the previous sections, has been related to cognitive

processes that require attentional allocation and immediate memory processes. It has

been observed that the P300 latency is prolonged and that the amplitude is decreased in

AD patients. Sometimes this can occur so that the peak is not at all obvious as shown in

Figure 2.3 [31, 41]. The P300 directly reflects currents triggered by cortical post-synaptic

potentials and seems to be primarily generated in the temporal-parietal cortex. This

makes sense because this area shows pronounced synaptic loss in AD [42].

The P300 has been found to be affected by dementia, but there are many other

factors that affect this particular peak. Contrary to what has been stated thus far, Figure

2.4 shows a nearly nonexistent P300 for a normal subject and a prominent P300

component for an AD subject.

The factors known to affect the P300 are kept to a minimum such as no food
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intake prior to EEG, no medication of certain types taken within 48 hours of EEG, etc.

Some guidelines are put in place to keep variations in the P300 to a minimum [12, 43]. In

this study, criteria to control the factors known to affect the P300 response, such as those

listed above, were added to limit the effects on the P300. The P300 in Figure 2.4 is most

likely affected by other factors beyond those controlled in this study. Experiments

conducted in this study do not specifically analyze the P300; however the frequency

range in which the P300 and other ERP components occur are explored.
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Figure 2.3: Normal subject EEG with obvious P3 (left), AD subject

EEG with missing P3 (right).
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Figure 2.4: Normal subject EEG with P3 not obvious (left), AD subject
EEG with prominent P3 (right).

19

700 800



CHAPTER 3

EEG & ERPs IN ALZHEIMER'S DISEASE DIAGNOSIS

The methods described in this chapter present previous efforts investigating EEG analysis

as a potential biomarker for Alzheimer's disease. Some of the techniques that have been

explored by fellow researchers within this project's previous studies including power

spectral density analysis, ERP analysis, P300 analysis, statistical measures, and frequency

analysis are also included. These techniques are discussed to represent a basis for this

work and to present a comparison among different factors of this study and the work

being done by fellow researchers.

3.1 P300 ANALYSIS

Demiralp et al., 1999, applied a time-frequency decomposition to the event-related

potentials elicited in an auditory oddball test. The goal was to assess differences in

cognitive information processing. An analysis in the time domain revealed that cognitive

processes are reflected by various ERP components. These reflections were most

noticeable in the N1, P2, N2, and P300 ERP components. The wavelet transform allowed

the time-dependent and frequency-related information in the ERPs to be captured and

more precisely measured. A four-octave quadratic B-spline wavelet was selected as the

wavelet function and the transform was applied to the acquired auditory oddball

paradigm ERPs. The analysis showed that the frequency components in the delta, theta,

and alpha ranges reflected specific aspects of cognitive information processing [44].
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Demiralp et al., 2001, assessed how target and standard discrimination difficulty

and the degree of stimulus "novelty" affected target and non-target P300 scalp

distributions for a visual modality in a three-stimulus oddball task. A wavelet analysis

was performed on the non-target (P3a) and target (P3b) ERPs to assess how the

underlying EEG activity was affected by both the difficulty and novelty factors. When

the discrimination between target and standard stimuli was easy, amplitudes were higher

for the target P3b than the non-target P3a across all electrode sites. Both responses also

demonstrated parietal maximums. In contrast, when the target and standard stimuli

discrimination was difficult, non-target P300 (P3a) amplitudes were higher and earlier

over the frontal and central electrode sites for both levels of novelty, whereas target P300

(P3b) amplitudes were greater in parietal recordings and occurred later than the non-

target components. The wavelet analysis indicated that theta activity was related to the

more novel non-target stimuli. Delta coefficients during target stimuli were affected by

the discrimination difficulty. These results suggest that target and standard discrimination

difficulty, rather than stimulus novelty, determines P3a generation for visual stimuli.

However, the theta oscillations are affected by stimulus novelty [45].

Basar et al.,2001, analyzed the effects of the wavelet transform and digital

filtering on the underlying ERP data of the EEG. The compound ERPs are portrayed as

the superimposition of evoked rhythms in EEG frequencies ranging from the delta to

gamma bands. These frequency ranges are often referred to as the 'natural frequencies of

the brain'. A wavelet analysis was implemented on the ERPs and confirmed the results of

the combined analysis procedure obtained by using the amplitude frequency

characteristics and digital filtering. The results obtained by wavelet analysis underline
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and extend the view that alpha-, theta-, delta-, and gamma-responses are related to

psycho-physiological functions. The properties of the wavelet analysis imply that it may

be used to evaluate experiments where physiological tasks will be altered without

informing the subjects [46].

Demirapl et al., 2001, applied a comparative wavelet analysis to oddball P300

results. The results obtained confirm those obtained by using adaptive digital filtering.

The delta response dominates the P300 potential while the theta response is prolonged in

a second late window [47].

Aviyente et al., 2004, performed an analysis of event-related potentials collected

during a psychological experiment where two groups of subjects, spider phobics and

snake phobics. Both groups are shown the same set of stimuli which consist of a blank

stimulus, a neutral stimulus and a spider stimulus. The study introduces a new approach

for ERP analysis based on distance measures in time-frequency distributions. The

difference in brain activity before and after a presented stimulus is quantified using

distance measures. Three different distance measures are applied on the time-frequency

plane to discriminate between the responses of the two groups of subjects. The results

illustrate the effectiveness of using distance measures combined with time-frequency

distributions in differentiating between the two classes of subjects and the different

regions of the brain [48].

3.2 EEG AND ALZHEIMER'S

Since Hans Berger first observed pathological EEG sequences in a historically verified

AD patient [18,20], a large number of studies about the EEG of AD have been
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performed. Goodin et al., 1978, first demonstrated the slowing of P3 event-related

potentials (ERPs) with aging [49]. Since then, a number of studies have suggested that

ERPs are a useful indices for assessing age-related changes in cognitive brain functions.

Although ERP latency and its variability may be useful in describing group

differences (i.e. Alzheimer's disease patients from age-matched controls), they are not

sufficiently sensitive to classify individuals into subgroups of dementia [50]. Polich et al.,

1986, tested the ability of ERPs in distinguishing AD from other dementias and failed to

find significant differences in either P3 latency or amplitude [51]. Neshige et al., 1988,

was unable to differentiate AD patients from VD patients using P3 latency obtained from

a conventional auditory oddball paradigm [52]. However Polich et al., later found in

1990, that increased latency and decreased amplitude of P300 was associated with AD

when compared to normal ERPs [53]. For the next several years, researchers used a

variety of stimuli to increase the diagnostic sensitivity of ERPs [54,55]. It was

demonstrated that the latency, amplitude, and scalp topography of the P3 are affected by

aging processes [55,56,57]. Yamaguchi et al., 2000, proposed a modified auditory

oddball paradigm to generate a maximum parietal P3, and found that the response to

novel stimuli is affected by dementia [32].

Jeong, 2004, summarizes important findings about EEG abnormalities in AD

patients obtained from linear and nonlinear methods, and considers the clinical

neurophysiology of AD underlying the EEG abnormalities [13]. The following is an

excerpt from the article.

"Conventional visual analyzes of the EEG in AD patients have

demonstrated a slowing of the dominant posterior rhythm, an increase in
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diffuse slow activity [58,59,60,61], a reduction in alpha [62,63] and beta

activities [63,64]. There is a good correlation between the degree of the

EEG abnormality and cognitive impairment [58,59,60,61,64,65,66,67,68,

69,70]."

The above is just a sample of the topics covered in [13]. The extent of topics on EEG

analysis related to Alzheimer's disease exceeds the scope of this thesis but those topics

provided above are the foundation upon which this research is built.

3.3 EEGS, WAVELETS, AND NEURAL NETWORKS

Polikar et al., 1997, applied the Daubechies 4 wavelet to EEG data collected from

14 normal subjects and 14 subjects diagnosed with probable AD. The ERP response in

the oddball paradigm was analyzed to determine if the use of the wavelet transform was

feasible for the detection of AD with a multilayer perceptron (MLP) neural network. Half

the signals, 7 AD and 7 normal, were used for training while the rest were used for

testing the network. The generalization performance of the network was 93%. The results

confirmed that the approach is feasible for classifying ERPs, but the authors indicated

that a more diverse database with a larger variety of signals would be necessary to allow

statistically valid generalizations [30].

Petrosian et al., 1999, used a method involving recurrent neural networks (RNN)

and wavelet processing to distinguish between EEG recordings of six age-matched

subjects, 3 probable AD and 3 controls. The eye-closed continuous 9-channel EEGs were

recorded from each patient, and approximately 2 minute segments of artifact free

recordings from occipital channels were selected to train and test neural networks. The
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Extended Kalman Filter-based algorithm was used for training RNNs. This algorithm

adapts the weights of the network in an instance-by-instance fashion. It accumulates

important information in approximate error covariance matrices, and provides

individually adjusted updates for each of the network's weights. The EEGs were encoded

with target values of -0.85 and +0.85 for control and AD EEGs, respectively. The

network training and testing procedures were implemented on both original EEGs as well

as wavelet filtered subband signals with the Daubechies 4 wavelet. The network

performed reliably when trained on a pair of AD and control recordings and tested on

four recordings [71].

Petrosian et al., 2001, also explored wavelet transform by using specifically

designed and trained recurrent neural networks (RNNs) to discriminate between EEGs of

ten mild AD patients and ten age-matched control subjects. The EEG recordings were

taken during resting state without the use of a paradigm. The Daubechies 4 wavelet was

chosen due to its good localization properties in the time and frequency domains. The

RNNs used in the study belong to a type of discrete-time recurrent MLPs. This type of

network has better temporal capabilities than that of a regular feedforward MLP, and is

capable of representing and encoding strongly hidden states. Training on three AD

subjects and three controls and testing on the remaining controls yielded performance that

was better than chance with 80% sensitivity and 100% specificity. Five out of seven of

the AD subjects were correctly classified. The authors suggest that their approach may be

extended to include more classes such as other types of dementia [72].

Yagneswaran et al., 2002, investigated signal power frequency and wavelet

characteristics for differentiating between EEGs of 9 subjects diagnosed with probable
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AD and 10 age-matched controls. The EEGs were recorded from 9 scalp electrodes

placed according to the international 10-20 system. A bandpass FIR filter using the

Hamming window was applied to each recording to segment each EEG into four

significant subbands - delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz) and beta (13-22Hz).

The theta, alpha, and beta subbands were used for training and testing of a learning vector

quantization (LVQ) classifier. These subbands displayed significant group differences in

average power, relative power (RP), and slower wave ratio (SWR). The wavelet

coefficients were obtained by a decomposition of the EEG recordings with the

Daubechies 5 wavelet. The averages of the coefficients at each level were then used in

the training and testing of an LVQ classifier. Out of 37 recordings (17 from AD and 20

from controls), 18 were used for training and 19 for testing. The power frequency input

vector contained 9 spectral features (the average power, RP, and SWR of the theta, alpha

and beta subbands), while the wavelet based feature vectors had 7 features (averages of

the six detail level and the one approximation level coefficients). The network was able

to correctly classify 18 of the 19 test recordings when using the spectral features, and 17

of the 19 test recordings when using the wavelet features [15].

In 2002, de Trad performed a study using the resonant recognition model (RRM)

to predict characteristic frequencies for both beta-amyloid protein, its precursor, and

functionally important amino acids for beta-amyloid as mentioned in Chapter 1.

Amyloid plaques in the brain are a prominent and diagnostic feature of AD. One possible

approach to preventing AD is to block the production of amyloid in the brain. The RRM

is a physico-mathematical model that analyzes the interactions of protein and its target

using digital signal processing methods. Once the RRM characteristic frequency for a
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particular biological function or interaction has been determined, it is possible to identify

the individual amino acids that contribute mostly to the characteristic frequency.

Different wavelet functions (Morlet, Coiflets, Daubechies, Symlets, and Meyer) were

used and compared in de Trad's study to detect active sites of beta-amyloid and beta-

amyloid precursor proteins. Results linked frequencies with the proteins and predicted

high energy domains but depended on the wavelet function used. In conclusion, better

results may be obtained if a specific wavelet were designed for this application [73].

Cho et al., 2003, proposed an automatic recognition method for Alzheimer's

disease with a single channel EEG recording combined with the genetic algorithm (GA)

and artificial neural networks (ANN). Sixteen probable AD patients and sixteen age-

matched control patients were recruited. The EEGs were recorded from an Ag-AgCl

electrode placed at P4. The ERPs were acquired during an auditory oddball task with

standard sine-wave tones (75%) of 1 kHz and target tones (25%) of 1.5 kHz, each lasting

300ms. The subjects were instructed to count internally the number of target tones. The

EEGs and ERPs were analyzed to generate a feature pool of 118 features which included

88 power spectral measurements, 28 statistical measurements, 2 chaotic features (central

tendency and the boc-counting dimension), and 10 ERP features. The GA method

consisted of making chromosomes of 35 features from the feature pool and assigning a

fitness value to each. Genetic operations were used to create new generations of the

chromosomes to find dominant features. The combined GA/ANN was applied to find the

minimal set of dominant features from the feature pool that were the most effective in

classifying the two groups. Hence, these dominant features were then used as the training

and testing data for an ANN. 137 EEG segments from 11 AD patients and 10 normal
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subjects were used as training data. The GA/ANN approach found the 35 dominant

features including 24 spectral, 8 statistical, 1 nonlinear and 2 ERP features. 72 EEG

segments for tests were from 5 AD patients and 6 normal subjects. The recognition rate

was 81.9%. In conclusion, the selection of dominant features by the genetic algorithm

was used to optimize input for a neural network, and appears to have an impact on the

effectiveness of the network [74].

In the earlier stages of our own study, Jacques et al., 2004, used a multiresolution

wavelet analysis on ERPs followed by automated classification. The cohort consisted of

32 subjects, 14 probable AD patients and 18 cognitively normal patients. The ERPs were

collected using an oddball paradigm based on [30]. The cohort produced a total of 75

ERP recordings in which 30 were from AD subjects and 45 were from normal subjects.

Two types of wavelet functions were used, Daubechies 4 and Quadratic b-splines. The

average overall performance of the Daubechies 4 wavelet was 84.1 + 0.6%, and 82.4 +

1.0% for the b-splines. The results suggest that this method could provide a stable and

effective method for a diagnostic tool but needs further investigation [75].

Table 3.1 shows a summary of the automated methods for the diagnosis of

Alzheimer's disease from Section 3.3 and includes the author's name, the year of their

study, the size of the cohort the acquired and analyzed, the method by which they

performed their analysis, the training and testing set sized, and the resulting performance.
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Table 3.1: Summary of automated methods for AD diagnosis

Author and Year

Polikar et al.,
1997

Petrosian et al.,
1999

Petrosian et al.,
2001

Yagneswaran et al.,
2002

Cho et al.,
2003

Jacques et al.,
2004

Cohort
Size

7 AD
normal

3 AD
3 normal

10 AD
10 normal

9 AD
10 normal

16 AD
16 normal

14 AD
18 normal

Method--4

3.4 OTHER EEG AND ERP METHODS

Park and Cho et al., 2001, performed an ERP analysis of the amplitude and

latency of the P3 component in 4 cohorts. These cohorts consisted of 25 mild AD, 12

severe AD, 17 age-matched normal-aged controls and 7 young controls. The ERPs were

obtained using an auditory oddball paradigm. Stimuli consisted of a series of computer-

generated tones with 85dB, 300ms in duration. Tones of 1kHz (75%) and 1.5kHz (25%)

were presented randomly for the 100 trials. Subjects were asked to count the number of
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Training

7 AD
normal

Multiresolution wavelet analysis
(Daubechies 4), MLPs

Wavelet analysis (Daubechies 4)
Recurrent Neural Networks and
Extended Kalman Filtering

Wavelet analysis (Daubechies 4)
Recurrent Neural Networks

LVQ classifiers, power analysis,
wavelet analysis (Daubechies 5),
37 ERP recordings (17 AD, 20
normal), 2 feature vectors (one of
9 average power, relative power,
and slower wave ratio features; the
other, the average of 6 detail and
1 approx. level coefficients for 7
features)

Genetic algorithm, neural
networks, 118 feature pool
(88 power spectral, 28 statistical
measures, 2 chaotic measures),
chromosome of 35 dominant
features

Multiresolution wavelet analysis
(Daubechies 4 and quadratic
b-splines), MLPs, 75 ERP
recordings (26 AD, 49 normal)

Recognition
Rate

93.00%

Reliable

Testing

7 AD
7 normal

1 AD
1 normal

7 AD
7 normal

19
random

recordings

5 AD
6 normal

13 AD
24 normal

2AD
2 normal

3 AD
3 normal

18
random

recordings

H1AD
10 normal

17 AD
25 normal

AD: 5/7
normal: 4/7

9 features:
18/19

7 features:
17/19

81.90%

db4:
84.1+0.6%
b-splines:
82.4+1.0%



target tones and report it after the session. The EEG was recorded from Ag-AgCl

electrodes placed at the F3, F4, CZ, P3, and P4 scalp locations. The N2, P3a, and P3b

components of the ERP were measured for both the standard and target stimuli. The P3a

and P3b were defined as the largest positive peak in the interval of 200-280, and 284-

500ms post stimulus. The N2 component was the largest negative peak in the 109-196ms

post stimulus. Correct response rates to target tones showed a significant difference

between groups. While the normal aged group (88%) and young group (100%) showed

high accuracy, the mild AD group (20%) and severe AD group (0%) had problems

counting the stimuli. Major findings in this study showed the latency in the P3

component was prolonged in AD patients, whereas the amplitude of P3 was not different

than that of the normal controls. This study suggests that the P3 components of the ERPs

could be useful in the detection of AD [76].

Abasolo et al., 2003, applied Approximate Entropy (ApEn) in the analysis of EEG

background activity of 7 patients with a clinical diagnosis of Alzheimer's disease and 7

control subjects to determine whether there are differences between the groups. The

EEGs were recorded while subjects were awake, relaxed in a quiet state with their eyes

closed. EEGs were organized in frames of 5 seconds (1280 points). The P3 electrode was

chosen for analysis at the advice of an electroencephalographer, because there are less

artifacts and the rhythmical activity is more apparent. ApEn quantifies regularity in

sequences and time series data. It assigns a non-negative number to a sequence or time

series, where larger values correspond to more instances of recognizable features or

patterns in the data. When applied to EEG data, larger values indicate higher complexity.

Results showed with a statistical difference from ANOVA tests that the ApEn was higher
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in control subject's EEGs when compared to the ApEn values of the EEGs of patients

with probable AD. This experiment suggests that the non-linear analysis of EEG data

might be useful to physicians since it shows the potential application of ApEn in

reflecting differences in the complexity of EEG data time series of patients with a

diagnosis of Alzheimer's disease and control subjects [77].

Melissant, et al., 2005, studied an automatic EEG classification technique. They

first implement a preprocessing technique for artifact-removal using independent

component analysis (ICA). An ICA-processed multichannel EEG measurement does

become more interpretable when compared to the raw data. They further proceed to show

that detection of anomalies is also better after ICA-processing. The method is evaluated

on measurements of a length of 8 seconds from two groups of patients. The first group of

28 patients show signs of the initial stages of the disease, whereas the 15 patients in the

second group show signs of the later, more progressed stages of the disease. Both

groups include a normal control group of 10 and 21, respectively. Three different

classification methods were used: Bayes classifiers, k-NN classifiers, and feed-forward

back-propagation neural networks. The results for the group with severe Alzheimer's

disease are comparable to the best results from literature (upwards of 90%). The study

shows that ICA-based reduction of artifacts improves classification results for patients in

an initial stage [78].
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CHAPTER 4

APPROACH

In our prior efforts [79-83], our approach consisted of performing a multiresolution

wavelet analysis using the Daubechies 4 wavelet on the signals of our patient cohort. The

coefficients obtained from the wavelet analysis were used as the features for the

classification algorithm. The classification algorithm then resulted in a decision or

diagnosis based on the features from the patient signal being analyzed.

This research used the same basic approach on our final cohort of 71 patients and

on a subset of the final cohort consisting of 66 patients. All 19 available electrodes have

been analyzed in this study, whereas only the PZ, CZ, or FZ electrodes had been explored

in our previous works [79-83]. Single classifiers for each electrode/stimulus/frequency

subband were trained and analyzed. The resulting performances from these classifiers

give insight to the most informative electrode/stimulus/frequency subband combinations.

Different classifier fusion techniques (specifically weighted majority vote, product rule

and sum rule) were then used in an ensemble approach to combine the classifiers trained

on the most informative electrode/stimulus/frequency subband features to increase the

generalization performance. Feature-level fusion was also analyzed by concatenating the

informative features for input into the classifiers.

The details of our approach are split between Chapters 4 and 5. Chapter 4 consists

of details about the patients, the data acquisition protocol, and the process of the

multiresolution wavelet analysis. Chapter 5 consists of the details of the classification

algorithm including the multilayer perceptron, data fusion techniques, and combination

rules. Figure 4.1 is a diagram overview of the approach of this project.
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Figure 4.1: Overview of the project
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4.1 RESEACH SUBJECTS

The data used for this research consisted of EEG data gathered at Drexel University from

patients recruited by the University of Pennsylvania. Two cohorts have been analyzed in

this research. The first set is the final cohort of this combined effort of seventy-one

patients, 34 diagnosed with probable AD and 37 cognitively normal controls. The second

cohort has excluded 5 patients from the 71 patient cohort because of suspected noisy data

with artifacts from remnants of eye movement rendering unclassifiable results. This

second cohort consists of sixty-six patients, 30 diagnosed with probable AD and 36

cognitively normal controls. Subjects were verified to be free of any evidence of other

neurological disorders by history or by exam.

Mini-mental State Exam (MMSE), a test for memory, language and praxis skills

is often used as one of the diagnostic tests during clinical evaluation. It is scored on a

scale of 0-30, with decreasing scores (particularly below 19) indicating increased

impairment. Other tests include Severe Impairment Battery (SIB), and the Clinical

Dementia Rating (CDR) Scale, all of which are part of the NINCDS-ADRDA (National

Institute of Neurological and Communicative Disorders and Stroke - Alzheimer's

Disease and Related Disorders Association) criteria for probable AD [84]. Since our

interest is in early diagnosis, the AD cohort was selected from those who has the highest

MMSE scores. Table 4.1 shows details about both cohorts.

While recruiting the probable AD and cognitively normal cohorts, the following

inclusion and exclusion criteria was used:

Inclusion criteria for cognitively normal cohort: (i) age > 60; (ii) Clinical

Dementia Rating score = 0; (iii) Mini Mental State Exam Score > 26; (iv) no indication
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of functional or cognitive decline during the two years prior to enrollment based on a

detailed interview with the subject's knowledgeable informant.

Exclusion criteria for cognitively normal cohort: (i) evidence of any central

nervous system neurological disease (e.g. stroke, multiple sclerosis, Parkinson's disease,

etc.) by history or exam; (ii) use of sedative, anxiolytic or anti-depressant medications

with 48 hours of ERP acquisition.

Inclusion criteria for AD cohort: (i) age > 60; (ii) Clinical Dementia Rating score

= 0.5; (iii) Mini Mental State Exam Score < 26; (iv) presence of functional and cognitive

decline over the previous 12 months based on a detailed interview with a knowledgeable

informant; (v) satisfaction of NINCDS-ADRDA (National Institute of Neurological and

Communicative Disorders and Stroke - Alzheimer's Disease and Related Disorders

Association) criteria for probable AD.

Exclusion criteria for AD cohort: Same as that for the cognitively normal controls.

Table 4.1: Cohort details including the number of patients, average ages and standard
deviations, and average MMSE scores and standard deviations.

Cohort 1 (71 Patients)

Number of Average Standard Average Standard
Patients Age Deviation MMSE Score Deviation

AD 34 74.9706 7.0860 24.6765 2.9513

Normal 37 76.1351 7.2845 29.2432 1.1880

Cohort 2 (66 Patients)

Number of Average Standard Average Standard
Patients Age Deviation MMSE Score Deviation

AD 30 74.8333 7.2734 24.6667 2.9981

Normal 36 75.9722 7.3192 29.3056 1.1419
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4.2 DATA ACQUISITION

The ERP recordings were obtained from each subject using the oddball paradigm.

Subjects were comfortably seated facing a computer screen in a specially designated

room. The protocol originally described by [32] was followed with slight modifications.

Binaural audiometric thresholds were determined for each subject using a 1 kHz tone.

The evoked response stimulus was presented to both of the subject's ears using stereo

speakers with an amplitude level comfortable for their hearing. The stimulus consisted of

tone bursts 100 ms in duration. Standard tones of 1000 Hz and target (oddball) tones of

2000 Hz were presented in a random sequence with the tones occurring in 65% and 20%

of the trials, respectively. The remaining 15% of the trials consisted of novel sounds

presented randomly. These included 60 unique environmental sounds that were recorded

digitally and edited to duration of 200 ms.

A total of 1000 stimuli, including the standard (frequent) tones of 1000 Hz (n=650),

target (infrequent) tones of 2000 Hz (n=200) and novel sounds (n=150), were delivered

to each subject with an inter-stimulus interval of 1.0-1.3 seconds. The subjects were

instructed to press a button each time they heard the target tone of 2000 Hz. With

frequent breaks (approximately three minutes of rest every five minutes), the data

collection process lasted about 30 minutes per subject with each session preceded by a 1

minute practice session without the novel sounds. Each recording is 1 second in duration

with a 200ms pre-stimulus interval.

The ERPs were recorded from 19 tin electrodes embedded in an elastic cap. The

electrode impedances were kept below 20 kQ to yield a good signal. Artifacts were

identified and rejected by the EEG technician. The remaining scalp potentials were
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amplified, digitized at 256 Hz/channel (19 channels) and stored. The averaging protocol

involved averaging 30-85 recordings per patient yielding 1-3 recordings per patient. All

averages have been notched filtered at 59-61 Hz and baselined with the pre-stimulus

interval. The 1-3 recording per patients were then averaged to create an overall average

per patient (71 or 66 total) and normalized. Below in Figure 4.1 is example of the overall

average ERP for the normal and AD cohorts during the target and novel stimuli. Figure

(4.1a) is from the target recordings of the PZ electrode while Figure (4.1b) is from the

novel recordings. Appendix B contains similar figures for all electrodes during both

stimuli.

Target PZ

-0

0

0
-200 0 200 400 600 800

----- AD - Normal

Novel PZ

-0.1

0

0.1

n 3-200-200 0 900 400 600 800
-AD - Normal

Figure 4.2: Overall average ERP from the PZ electrode during (top) target and
(bottom) novel stimuli.
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4.3 MULTIRESOLUTION WAVELET ANALYSIS FOR FEATURE EXTRACTION

Frequency analysis is an alternative and informative method for describing time domain

signals. One advantage of the frequency domain representation over the time domain

representation is the ability to visualize the frequency content of the signal. The Fourier

Transform involves a correlation between a time signal and complex exponentials of

different frequencies. However, the FT requires that a signal be stationary as it provides a

global representation of frequencies in the signal and therefore results in the loss of time

information.

The short time Fourier transform (STFT) tries to overcome this limitation and

provides localized frequency information by windowing the complex exponential kernel

of the FT. This gives a time evolution of the frequencies of the signal by shifting the

window throughout the signal. The STFT consists of correlating the original signal with

the time-windowed and modulated complex exponentials. If the window is too narrow,

the STFT provides good time resolution and poor frequency resolution; conversely, if the

window is too wide, good frequency resolution and poor time resolution is obtained.

Ideally, low frequencies need a wide window while higher frequencies require a narrow

window in order to appropriately capture the signals behaviors. The STFT is suited for

analyzing non-stationary signals but its abilities are limited by a fixed window length

throughout its analysis. This inability to adapt with the changing frequency content of a

non-stationary signal is insufficient for our analysis [85,86].

An alternative approach to the FT and STFT, is the wavelet transform, particularly

the discrete wavelet transform. The discrete wavelet transform is obtained through a

process call multiresolution wavelet analysis. Multiresolution wavelet analysis
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determines time localizations of spectral components, providing a time-frequency

representation of the signal being analyzed. Such an analysis is particularly well-suited

for non-stationary signals, such as ERPs, whereas the Fourier and short-time Fourier

transforms lack time localization capabilities and adaptable resolutions for the

appropriate frequency content, respectively. Therefore, a multiresolution wavelet

analysis, by means of the DWT, will used in this study to extract features from the ERPs.

4.4 THE WAVELET TRANSFORM

The wavelet transform was developed as an alternative approach to overcome the fixed

resolution problem of the short time Fourier transform. The main advantage of the

wavelet transform is the varying window size which allows wide windows for low

frequencies and narrow windows for high frequencies, leading to optimal time-frequency

resolution for all frequency ranges [85,86,87].

4.4.1 THE CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform (CWT) is calculated in a similar way to that of the FT

and STFT. The signal is multiplied with a wavelet kernel function, similar to the complex

exponential kernel function in the FT. Just as the FT is calculated for different

frequencies, the wavelet transform is computed for different segments of the signal with

respect to its two parameters, scale and translation.

There are two main differences between the STFT and the CWT. First, the FTs of

the windowed signals are not taken whereas the FT is computed for every windowed

portion of the signal in the STFT. Secondly, the width of the window is changed as the
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transform is computed for every single spectral component whereas the window is a fixed

width throughout the entire calculation of the STFT [87].

A wavelet family yb,a is a set of functions created by dilations and translations of a

unique mother wavelet qy(t):

tPb,a- lal-1/2 qj (--a) (4.1)

where a = 0, and a, b e9T are the translation and scale parameters, respectively. Thus,

the wavelet transform is a function of two variables. The constant number al-1/2 is for

energy normalization purposes so that the transformed signal will have the same energy

at every scale. Translation is a time shift and scale is a parameter inversely proportional

to frequency, where larger scales analyze global behavior and small scales analyze local

behavior, a controls the support of the wavelet function; for example, by increasing a, the

wavelet becomes narrower. b controls the position of the wavelet; for example, by

varying b, the mother wavelet is displaced in time. Figure 4.2 illustrates the effect that

changing the scale coefficient, a, has on the wavelet function. The wavelet shown is the

Morlet wavelet, which is constructed by modulating a sinusoidal function by a Gaussian

function, at scales of 0.5, 1, and 3.
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Figure 4.3: Morlet wavelet at different scales (dilations) and translations.
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The wavelet functions must satisfy two properties:

+00

J W(t)dt=0 (4.2)
-00

and
+00

SIJ p(t) dt < o (4.3)
-00

Equation (4.2) requires that the wavelet is an oscillatory function, meaning a "wave"

Equation (4.3) implies that the energy of in Vi(t) if of finite duration. The two properties

are easily satisfied by a large number of functions making these two requirements rather

unrestrictive.

The continuous wavelet transform of a signal is defined as the correlation between

between the signal x(t) and the wavelet qfb,a. The CWT is defined as the following:

CWT(b, a))=T (b,a)= f) x (t) ' ( ) dt (4.4)

where ' denotes the complex conjugate. The result of Equation (4.4) indicates how

closely the wavelet function correlates with the signal at scale a. If the signal contains a

component of the frequency at the particular scale, then the wavelet basis function at that

scale will be similar to the signal at the location where that frequency occurs. These

correlations are made with different scales, a, in the wavelet function for all times

(translations), b, of a single function. The wavelet transform then gives a translation-scale

representation [85,86,87].

Once a mother wavelet is chosen, the computation begins with an initial value of

a, typically a=l. The CWT is computed for all values of a that are greater and less than
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the initial value. Note that depending on the signal, a complete transform is usually not

necessary. For all practical purposes, signals are bandlimited, and therefore, computation

for a limited interval of scales is usually adequate.

The wavelet function at scale a and translation b=0 (which is typically the

beginning of the signal x(t)) is multiplied by the signal and then integrated over all times.

The wavelet at scale a is then shifted right by an amount of b to the location t=b. This

procedure is repeated until the wavelet reaches the end of the signal. Then, a is increased

by a small value, which is controlled by the scale resolution. This procedure is repeated

for every value of a. Every computation for a given value of a fills the corresponding

single row of the translation-scale plane. When the process is completed for all desired

values of a, the CWT of the signal has been calculated [85,86].

4.4.2 THE WAVELET SERIES

Since they are continuous transforms, none of the FT, the STFT, or the CWT can be

practically computed by using computers. It is therefore necessary to discretize the

transforms. The most intuitive way of doing this for the CWT is by simply sampling the

translation-scale plane. However, in the case of the WT, the scale change can be used to

reduce the sampling rate. At higher scales (lower frequencies), the sampling rate can be

decreased, according to Nyquist's rule. This means that if the translation-scale plane

needs to be sampled with a sampling rate of Ni at scale al , the same plane can be

sampled with a sampling rate of N2< NI, at scale a2 , where, ai < a2 which correspond to

frequenciesfi >f2. The actual relationship between N1 and N2 is given as:
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N,=_N, N1 1 (4.5)

This means that the sampling rate at lower frequencies can be decreased, saving

computation time and resources [85,86].

The conventional scheme for discretizing the translation-scale parameters is called

the dyadic grid sampling. The scale parameter a is discretized first on a logarithmic grid.

The translation parameter is then discretized with respect to the scale parameter,

meaning a different sampling rate is used for every scale. For this process, time remains

continuous but the translation-scale parameters are sampled by choosing aj =2j , bj,k= k2,

with j, k e Z [88]. By inserting these scale and translation parameters, the continuous

wavelets are obtained from the mother wavelet as:

,k(t)=2-j / 2  (2-j t-k) (4.6)

For wavelet series, yj,k(t) are required to be orthonormal, biorthogonal or frame. For the

orthonormal case, shown below, the analysis and synthesis wavelets are the same.

~u-,k x x(t)W 'j, k.(t)dt (4.7)

or

x(t)=c,;Z Z ¶j x Pj,k(t) (4.8)
j k

where c, is a constant that depends on the wavelet used and again ' denotes the conjugate.

If yij,k are orthogonal or biorthogonal, the transform is non-redundant [85,86].

4.4.3 THE DISCRETE WAVELET TRANSFORM

Although the wavelet series enables the computation of the CWT by computers, it is still

not a true discrete transform, but rather a sampled version of the CWT. The information it
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provides is highly redundant for the reconstruction of a signal, and therefore requires a

significant amount of computational time and resources.

The discrete wavelet transform (DWT) provides non-redundant information both

for analysis (decomposition) and synthesis (reconstruction) of the original signal, with a

significant reduction in computational time and resources. The discretization occurs in

the scaling and translation variables.

The foundations of the DWT go back to 1976 when Croiser, Esteban, and Galand

devised a technique to decompose discrete time signals [89]. Crochiere, Weber, and

Flanagan did a similar work on coding of speech signals in the same year [90]. They

named their analysis scheme as subband coding. In 1983, Burt defined a technique very

similar to subband coding and named it pyramidal coding which is also known as

multiresolution analysis [91]. Later in 1989, Vetterli and Le Gall made some

improvements to the subband coding scheme, removing the existing redundancy in the

pyramidal coding scheme [92]. These techniques, though developed by different people,

are essentially identical. The discrete wavelet transform computation involves both

multiresolution analysis and subband coding.

4.4.4 MULTIRESOLUTION ANALYSIS

Multiresolution analysis (MRA) is a hierarchical scheme. An MRA involves

approximations of functions in a sequence of nested linear vector spaces. The formal

definition of an MRA states that it consists of the nested linear vector spaces

(...c VcV cV_ c ...) such that

1. The union of subspaces is dense on the space of square integrable functions L2(R)
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2. The intersection of these subspaces is one set containing the all-zero function or

zero vector.

3. If f(t)E Vk then f(2t)Vk- 1 and vice versa, if f(t)Vk-1 then

t
f (-)eVk,2

4. There exists a function (scaling function) 0(t) such that { (t - k) : k integer}

constitute a basis for Vo

The following is an explanation of these properties. First to explain the term

dense in Property 1, the following example is used: Suppose X and Y are sets of real

numbers where X c Y. Xis said to be dense in Y if for every element ye Y there is

an element x EX that is as close toy as the user determines (The concept of denseness

can be found in greater detail in texts on mathematical analysis or topology).

Property 2 states that the only signal common to all vector spaces is the all-zero

signal or zero vector. Property 3 introduces dilation by stating that a factor of two dilation

of a vector belonging to a subspace at a certain level yields a vector in the next coarser

subspace. Note that this can be conversely applied; by dilating by a factor of one half, a

function in the next finer subspace can be obtained. Property 4 requires a scaling function

such that the set is linearly independent. Also any function f (t) e Vo can be expressed

as

fo(t)= 1 a(O,n)ch(t-n) (4.09)
n=-oo

for a sequence of scalars a(O,n) where n = {..., -2, -1, 0, 1,...}.

To relate MRA to DWT, a condition is imposed upon the subspaces that states
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V 0c V_ 1. This condition requires that all vectors in Vo also belong to V 1. Property 4

states that 0(t) is in Vo, so it too must now be in V.1. b(t) can be expressed as linear

combination of the basis for V1 by { I(2t - n): n integer}. 0(t) becomes a scaling

function. With the addition of the above condition, the resulting property is called the

dilation equation, which follows a similar form of that in Equation (4.10):

00

(t)-= c(n)0(2t-n) (4.10)
n= -oo

where c(n) is a sequence of scalars for n = {..., -2, -1, 0, 1,...}.

Equation (4.10) is possible with use of the fact that the basis for V.1 is given by

translates of b(2t) by integer multiples of half-unit intervals. Thus ((t) is expressed in

terms of its own dyadic dilation and translation, hence it is referred to as a dilation

equation or a two-scale difference equation.

The DWT utilizes two sets of functions, a scaling function, ((t), and a wavelet

function, yf(t). An interesting property of these functions relates back to the two-scale

difference equation in Equation (4.10). Both functions can be obtained as a weighted

sum of the scaled (dilated) and shifted versions of the scaling function itself:

0(t)=Z h[n]q(2t-n) (4.11)
n

and

tq(t)= g[n]h(2t-n) (4.12)
n

Conversely, a scaling function or a wavelet function that is discretized at scalej

and translation k can be obtained by the original (prototype) function, 0(t) = 0o,o(t), or

y/(t) = Vzo,o(t) by:

j, (t)=2-j/2 (2- t-k) (4.13)
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qPj,k(t)=2-(j /2 (2- j t-k) (4.14)

The wavelet function creates a vector subspace of the detail functions at level

zero. Since {((2t-n) : n integer} is the basis for V-i, the function of the subspace at this

level can then be expressed as a linear combination of ((t) and yf(t). This relation can

generally be expressed as

f,-(t)= a(0,n)b(t-n)+ 1 b(0,n)it(t-n) (4.15)
n=-oo n=-ao

where a(O,n) and b(O,n) are a pair of sequences, which will ultimately be the

approximation and details coefficients.

Equation (4.15) displays the true power of the DWT. Using an MRA approach to

decompose a signal, the original signal can be obtained by adding the current levels

approximation and all the previous levels details. The DWT uses the framework of an

MRA but uses the implementation of subband coding, which uses successive high-pass

and low-pass filtering to decompose a signal into different time and frequency

localizations [85,88].

4.4.5 SUBBAND CODING

The subband coding algorithm is the filter bank implementation used by the

discrete wavelet transform (DWT). Subband coding can be thought of as the digital filter

implementation of MRA. The procedure starts by passing the signal through a half-band

digital low-pass filter with impulse response h[n]. Filtering a signal corresponds to the

convolution of the signal with the impulse response of the filter. The convolution

operation in discrete time is defined by the following:
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oO

x[n]*h[n]= E x[k].h[n-k] (4.16)
k=- oo

After passing the signal through a half band low-pass filter, half of the samples

can be eliminated according to the Nyquist's rule, since the signal now has a highest

frequency of n/2 radians instead of n radians. Discarding every other sample will

subsample the signal by 2, and render a signal with half the number of points. Referring

to Property 3 of an MRA, the scale of the signal is now doubled. Note that low-pass

filtering only removes the high frequency information, but leaves the scale unchanged; it

is the subsampling process that changes the scale. On the other hand, resolution is related

to the amount of information in the signal, and therefore is affected by the filtering

operations. Subsampling after filtering does not affect the resolution, since removing half

of the spectral components from the signal makes half the number of samples redundant.

Therefore, half the samples can be discarded without any loss of information.

The DWT analyzes the signal at different frequency bands with different

resolutions by decomposing the signal into a coarse approximation (vector subspaces in

MRA) of the original signal and detail information. The DWT uses two sets of functions,

scaling functions and wavelet functions, which are associated with the low-pass and high-

pass filters of subband coding, respectively.

The decomposition of the signal into different frequency bands is obtained by

successive high-pass and low-pass filtering of the time domain signal. The original signal

x[n] is first passed through a half-band high-pass filter g[n] and a half-band low-pass

filter h[n]. As mentioned above, half of the samples can be eliminated after filtering,

hence the signal can be subsampled by 2. The results of the filtering operations constitute
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one level of decomposition. This process can be expressed mathematically as follows:

Yhigh-1x[n]-g[2k-n ] (4.17)
n

yow,= x[n].h[2k-n] (4.18)
n

where yhigh[k] and ylow[k] are the outputs of the half-band high-pass and half-band low-

pass filters, respectively, after subsampling by 2. Equations (4.17) and (4.18) are the

same form of the two-scale equation in Equation (4.10). This relation is what unites

MRA, subband coding, and the DWT.

Each level of decomposition reduces the time resolution by half since only half

the number of samples now characterizes the entire signal. However, the frequency

resolution is now doubled, since the frequency band of the signal now spans only half the

previous frequency band. The entire process mentioned above is the subband coding

algorithm. It can be repeated successively for as many times as desired until subsampling

is no longer possible.

At every level of decomposition, the filtering and subsampling will result in half

the number of samples (and half the time resolution) and half the frequency band spanned

(and double the frequency resolution), allowing the signal to be analyzed at different

frequency ranges with different resolutions. The outputs of the high-pass filters are the

detail coefficients and are denoted as di, i =1, 2,..., log2N, where N is the total number of

samples in the signal. The outputs of low-pass filters are the approximation coefficients,

ai, and represent the current resolution levels coarse approximation of the original signal.

The subband coding algorithm is illustrated in Figure 4.3.

50



Here is an example from our analysis. The Daubechies 4 wavelet that is used in

analysis has scaling and wavelet function coefficients (each of length 8) which

correspond to the low-pass filter h[n] and high-pass filter g[n], respectively. A patient's

signal is 257 points long. The output of each level 1 filter is 264 (256+8-1) points long.

This reduces to 132 points after subsampling by 2. An approximation signal Aj(t) and a

detail signal Dj(t) can be reconstructed from the levelj approximation and detail

... . - v _ - r.1 .r ,. . _IM ' v-- ? .... r1 -. f r-M -T l.- l xll]

Decomposition Reconstruction
(Analysis) (Synthesis)

Figure 4.4: Diagram of the subband coding (filter bank) algorithm [85]

coefficients by using substitution in Equations (4.17) and (4.18):

A,(t)=- aj[k ]-.Oj, k(t) (4.19)
k

D,(t)=- d[k]'qj,k (t) (4.20)
k

The original signal x(t) can be reconstructed from the approximation signal Aj(t) at any

levelj and the sum of all detail signals from levels up to and including levelj. This can be

expressed as:

51



x(t)=A (t)+ E Dj(t)
= (4.21)

=- a,k]-j,,k() Z+ Zdj[k]-q[i,k(0
k i=-oo k

By using the properties introduced by an MRA and the subband coding algorithm, the

DWT is implemented by using the relationship of the scale and wavelet equations

through the two-scale equation.

4.4.6 WAVELET CHOICE

The type of wavelet used for any application is usually chosen according to the similarity

of the wavelet to the signal to be analyzed. This similarity better localizes the structures

of interest within the signal and reduces the amount of noise in the analysis of the

subband structure. The wavelet chosen for this study has been used in different studies

for analyzing ERPs, the Daubechies 4 wavelet.

4.4.6a DAUBECHIES 4 WAVELET

Ingrid Daubechies invented the so-called compactly supported orthonormal wavelets,

which made discrete wavelet analysis practical. Compact support is given by the size of

the window varying throughout the signal so that the window is narrow for high

frequencies and wide for low frequencies . The result is good time resolution at high

frequencies and good frequency resolution at lower frequencies [22,85,86]. The

Daubechies family wavelets are denoted as dbN, where N is the order, and db the

"surname" of the wavelet. The first wavelet, dbl, is the Haar wavelet. Figure 4.4 shows

the wavelet functions of the next nine members of the family, namely, db2 through dblO.
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The Daubechies 4 wavelet has been used in several studies for analyzing ERPs in

general, as well as for the detection of AD [22,30]. The Daubechies mother wavelet has a

'fractal structure' and has good localizing properties in both time and frequency domains

[72].

db2

/'1

dblO

Figure 4.5: Daubechies family function [22].

The high-pass, h[n], and low-pass filter, g[n], coefficients for the Daubechies 4 wavelet

are given in Table 4.2, respectively and the wavelet and scale functions are shown in

Figures 4.5 and 4.6, respectively.

Table 4.2: Daubechies filter coefficients

h[n] g[n]
-0.2304 -0.0106

0.7148 0.0329

-0.6309 0.0308

-0.0280 -0.1870

0.1870 -0.0280

0.0308 0.6309

-0.0329 0.7148

-0.0106 0.2304
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Figure 4.6: Daubechies 4 wavelet function

Figure 4.7: Daubechies 4 scaling function
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4.5 FEATURES AND CLASSIFICATION

The signals analyzed in this study consist of the preprocessed data from all 19 electrodes.

Figure 4.7 illustrates the name and location of the electrodes included. Using the DWT

and the db4 wavelet, decomposition of the signals was carried out for 7 levels resulting in

the following frequency bands: di: 64-128Hz, d2: 32-64Hz, d3: 16-32Hz, d4: 8-16Hz, ds:

4-8Hz, d6: 2-4Hz, d7: 1-2Hz and a7: 0~1Hz. Signal power was generally higher at the

higher levels (lower frequencies), hence the 1-2Hz, 2-4Hz, and 4-8Hz subband

coefficients were analyzed from all the electrodes during both the novel and target

stimuli. The middle coefficients of each subband, corresponding to the spectral features

in the 0 - 600ms interval, were analyzed. Subbands were limited to this range to capture

any P300 components that may be elicited. Previous analyzes using these selected

features yielded diagnostic performances in the mid 60% to low 70% range [79,80,83].

Figure 4.8: The position and names of the 19 electrodes used in our experiments
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CHAPTER 5

CLASSIFICATION

The theory involved with the classification aspects of this research is discussed in this

chapter. The main topics of each subsection of this chapter are described as follows. First

a description of the main classifier used in this study, the multilayer perceptron, and its

training algorithm, the back-propagation algorithm. The rest of the chapter discusses data

fusion and the two types of data fusion used in this study, feature-level and decision-level

fusion. In particular, ensemble of classifiers combination techniques are described along

with the decision-level fusion techniques.

5.1 PATTERN RECOGNITION TECHNIQUES

In automated classification applications, distinctive features of the signals to be analyzed

are identified and obtained. There are numerous methods available to extract features

from the gathered signals. Some examples for feature extraction include filtering, the

Fourier transform, multiresolution analysis, the wavelet transform, and statistical

measures. Next, a subset of the identified, informative features is placed in a training

data set while the remaining data is placed in the testing data set where it is not yet shown

to the classifier algorithm. The training data is presented to the classifier's training

algorithm for the purpose of setting classifier parameters such as the weights in the

multilayer perceptron. The trained classifier system is evaluated on the test data set

[93,94].
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In an advanced classification system, several classifiers can be combined together.

Classifiers trained on features from the same or different data sets for a similar problem is

known as an ensemble of classifiers or a multiple classifier system. Through data fusion

techniques, the decisions from each classifier in the ensemble can be combined to make a

final decision rather than have one classifier make a decision. The main attraction of this

method is that combining classifiers has been shown to increase generalization

performance (refer to Section 5.3 for further details).

5.2 MULTILAYER PERCEPTRONS

Multilayer feedforward networks consist of a set of sensory units (source nodes) that

constitute the input layer, one or more hidden layers of computation nodes, and an output

layer of computation nodes. The input signal propagates through the network in a forward

direction, on a layer-to-layer basis. The most commonly used example of such neural

networks are the multilayer perceptron (MLPs) type networks [93]. MLPs have been

applied successfully to solve a variety of difficult and diverse problems by training them

in a supervised manner with the highly popular error back-propagation algorithm (see

Section 5.2.1) . Error back-propagation learning consists of two passes of data through

the different layers of the network: a forward pass and a backward pass. In the forward

pass, an activity pattern (input vector) is applied to the sensory nodes of the network, and

its effect propagates through the network layer by layer. Finally a set of outputs is

produced as the actual response of the network. During the forward pass the synaptic

weights of the network are all fixed. During the backward pass, the synaptic weights are

all adjusted in accordance with an error-correction rule. Specifically, the actual response
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of the network is subtracted from a desired (target) response to produce an error signal.

This error signal is then propagated backward through the network. The synaptic weights

are adjusted to make the actual response of the network move closer to the desired

response in a statistical sense [93].

In pattern recognition involving nonlinearly separable patterns, the neurons in the

network are usually nonlinear. This nonlinearity is achieved by using a sigmoid function.

The two most commonly used forms are the anti-symmetric logistic function (which is

the sigmoid used in our experiments) and the anti-symmetric hyperbolic tangent function.

Each neuron is responsible for producing a hyperplane of its own decision space.

Through the supervised learning process, the combination of hyperplanes formed by all

neurons in the network is iteratively adjusted in order to separate patterns drawn from

different classes with the fewest classification errors on average [93].

Figure 5.1 illustrates the structure of an MLP. All nodes are fully interconnected

to the nodes of the adjacent layers by a set of weights. The weights connecting the input

nodes to the hidden layer nodes are denoted by wiy, where ij is the connection of ith input

node to thejth hidden layer node. The weights connecting the hidden layer to the output

nodes are denoted by wjk,wherejk is the connection ofjth hidden layer node to the kth

output node. The weights are determined through the back-propagation training algorithm

described in the next section [93,94]. xl through xi are the features of an input vector. yl

through y are the activation responses of the respective hidden layer nodes. or through Ok

are the responses of the respective output nodes. Lastly, di through dk are the target

outputs to which or through ok are compared to determine the classifier's accuracy.
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Figure 5.1: MLP network

5.2.1 BACK-PROPAGATION ALGORITHM

Back-propagation learning has emerged as the standard algorithm for training multilayer

perceptrons, and against which other learning algorithms are often benchmarked. The

back-propagation algorithm derives its name from the fact that the partial derivatives of

the cost function (performance measure) with respect to the free parameters (synaptic

weights and biases) of the network are determined by back-propagating the error signals

(computed by the output neurons) through the network, layer by layer. A full coverage of

the back-propagation algorithm is beyond the scope of this thesis. For more details and

explanation refer to [93,94].
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5.2.la NOTATION OF THE BACK-PROPAGATION ALGORITHM

The following is an explanation of the notation used in the summary of the back-

propagation algorithm in the following section, Section 5.2.1b.

* The indices i,j, and k refer to different layers in the network. These indices refer

to the same layers as those illustrated in Figure 5.1.

* Iteration n refers to the nth training data instance being presented to the network.

* The ith element of the input vector for iteration n is xi(n).

* The kth element of the output vector for iteration n is ok(n).

* In layer 1 of an MLP, 1 = 0, 1, ..., L, where L is the depth of the network.

* The synaptic weight connecting the output of neuron i (the input nodes) to the

input of neuronj (the hidden layer nodes) for iteration n is given by wi(n).

Conversely, the synaptic weight connecting the output of neuronj (the hidden

layer nodes) to the input of neuron k (the output nodes) for iteration n is given by

wjk(n).

* The induced local field is the weighted sum of all synaptic input plus the bias of

neuronj at iteration n. This actually constitutes the signal being applied to the

activation function for neuronj and is denoted by vj(n).

* The activation function describes the nonlinearity associated with neuron j from

the input-output relationship. The activation function is denoted by Qj(.).

* The output of neuronj for the nth iteration is referred to as yj(n).

* The error signal at the output of neuronj for iteration n is shown as ej(n).

* The desired response of neuron j is shown dj(n). This desired response is used to

compute ej(n).
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5.2.lb SUMMARY OF THE BACK-PROPAGATION ALGORITHM

The following is a summary of the back-propagation algorithm adapted from [93]:

* Initialization - Assume that no prior information is available. The synaptic

weights are randomly picked from a distribution whose mean is zero, and

variance is chosen to make the standard deviation of the induced local fields of

the neurons lie at the transition between the linear and saturated parts of the

sigmoid activation function. The logarithmic sigmoid was used in this research

and is shown in Figure 5.2. The logarithmic sigmoid is defined by:

1p (n)=- 1-n
(i+e-)

(5.1)

Figure 5.2: The logarithmic sigmoid function.
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* Presentation of Training Data - An epoch of training data is presented to the

network. The sequence of forward and backward computations is then performed

for each example in the training data set.

* Forward Computation - Let the training data instance in the epoch be denoted by

(x(n),d(n)), with the input vector x for iteration n applied to the input layer of

sensory nodes and the desired response vector d for iteration n presented to the

output layer of computation nodes. The induced local fields of the network are

computed by proceeding forward through the network, layer by layer. The

induced local field vj(')(n) for neuronj in layer 1 is

Vj )(n)= Z w(n)yi-1)(n) (5.2)
i=0

where mi is the size of layer 1 and ij means from output of neuron i to the input of

neuron i. For i = 0, we have yo("1) = 1 and woj(n)=bj()(n) is the bias applied to the

neuronj in layer 1. Assuming a sigmoid function is used for the neuron's

activation function, the output signal of neuronj in layer 1 is

yJ(n)= p (v, (n)) (5.3)

If neuronj is the output layer, set

y(L(n)-=oj(n) (5.4)

Then, compute the error signal

e,(n)=dj(n)-oj(n) (5.5)

* Backward Computation - The local gradients of the network, 8, are computed,

and defined by:

S(n)= e(L)(n) '(V(L)(n)) (5.6)
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for neuronj in output layer L , and

j"((n)= (pj ' (vj()(n)) 1+1(n)k ( ik 1) (5.7)
k

for neuronj in hidden layer 1. The prime in 'j(-) denotes differentiation with

respect to the argument. The synaptic weights in layer I are adjusted according to

the generalized delta rule:

wT)(n+1)=w )(nn)+cw (n-1)]+n 6l(n)y 1)(n) (5.8)

where rq is the learning-rate parameter and a is the momentum constant.

* Iteration - The forward and backward computations in steps 3 and 4 are iterated

by presenting new epochs of training data instances to the network until the

stopping criterion is met.

Figure 5.3 illustrates a graphical summary of the signal-flow of back-propagation

learning. The flow can be interpreted as follows: The interconnecting weights, wi, are

initialized and an input vector x of length three is shown to the input nodes in this

example. The induced local field v is calculated for each neuron using Equation (5.2),

then shown to the activation function, ((-) and set as the output for each neuron, y, as in

Equation (5.3). The output from the hidden layer neurons are used to compute the next

set of induced fields and again shown to the activation function whose results are set as

the output, o. The output is compared to the desired response using Equation (5.5) and an

error signal is created. The error signal propagates back through the network to create

local gradients from Equation (5.6) and (5.7) for the respective layers I. Lastly, the

weights are adjusted according to generalized delta rule in Equation (5.8).
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Figure 5.3: Signal-flow of the back-propagation learning algorithm [93]

5.3 DATA FUSION TECHNIQUES

Fusion is the merging of similar or different elements into a union. Within the realm of

pattern recognition, fusion can be accomplished in several ways. The two approaches

described here are feature-level fusion, which involves the features before applied to any

classifier algorithms, and, decision-level or classifier fusion, which combines the

decisions of classifiers in an ensemble. The justification behind these techniques is to

obtain the most informative features (through feature-level fusion) or the most

informative decision (through classifier fusion) for a given problem.
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5.3.1 FEATURE-LEVEL FUSION

Feature-level fusion (FLF) involves the combination of different sets of features into one

feature vector. Combining features creates a new feature space that will ideally yield a

better decision boundary from the classifier. The new feature vectors are then used as the

training and testing data sets for a classifier. FLF can be achieved simply by such

methods as concatenation, averaging, or summing. The chosen method of combination is

defined by the user and varies from premise to premise. In the experiments of this thesis,

feature-level fusion was achieved by simply concatenating features and training

classifiers of the newly formed input vectors. Figure 5.4 illustrates a conceptual example

of feature-level fusion.

1 ^._ I ITF71. I MLP Classifier
I eature vectLr 1 I pu

Feature Vector 2

*I

0)1

0)2

Figure 5.4: Feature-level fusion by concatenation.
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5.3.2 CLASSIFIER (DECISION-LEVEL) FUSION

Decision-level fusion is more commonly known as classifier fusion, an ensemble of

classifiers combination technique. Unlike feature-level fusion, classifier fusion is a fusion

of classifier label outputs. An ensemble based system, also known as a multiple classifier

system (MCS), combines several, preferably diverse, classifiers. The diversity in the

classifiers is typically achieved by using a different training data set for each classifier

but can also be achieved when classifiers learn different regions of the same feature

space. Each ensemble member is supposed know well a part of a feature space. Using

different feature spaces allows each classifier to generate different decision boundaries.

The reasoning and expectation is that each classifier will make different errors.

Therefore, the strategic combination of these classifiers can reduce the total error. Figure

5.5 provides a visual example of decision-level fusion.

Feature Vector 1
Classifiers

(Oj

Figure 5.5: A visualization of classifier (decision-level) fusion
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5.3.2a COMBINATION RULES

Three combination rules derived in this thesis are weighted majority vote, product rule,

and sum rule.

In weighted majority vote, the labels, and the error-based weights are needed from

each classifier in the ensemble . The decision of the ith classifier is defined as the binary

valued dgje (0,1) , i=l,...,N and j=l,...,c where Nis the number of classifiers in an

ensemble and c is the number of classes. For a given instance x, if the ith classifier Ti

chooses classj, dij = 1, and zero otherwise. The voting weight for each classifier is

defined as

W(rTi)=-log (5.9)

where /fr is the normalized training error of classifier Ti.

For product rule and sum rule, the continuous outputs of the classifiers,

d, jE [0,1] , which represents the degree of support given by classifier Ti to classj.

For any given classifier, these supports are normalized to add up to 1 over different

classes by the softmax transformation.

exp(di. (x))
di , (x)-= c(5.10)

Z exp(d (x))
j= i, j

For each rule, the final support, pj, given to classj is calculated as

N

p,(x)= Z W(Ti)dij(x), dij(x)e(0,1} (5.11)
j=l

j=l
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N

pj(x)=-n d, (x), d,,(x)e[0,1] (5.13)
Nj=l '1 j

for weight majority vote, sum rule, and product rule, respectively [85,86]. Denoting the

class labels as 2={( j,W2,...,,c}, and the ensemble decision for instance x as E(x),

then the ensemble decision is wm, for which the support yj(x),j=l,...,c is maximum:

E(x)=w-m\m=argmax (p (x)) (5.14)
J

5.4 OTHER COMBINATION METHODS

The following methods describe other possible combination techniques. These techniques

have been used for the early diagnosis of Alzheimer's disease in our previous studies [79-

83].

5.4.1 DECISION TEMPLATES

The decision template DTj for any classj is defined using the decision profiles DP(x) for

the given instance x. The decision profile is a matrix that summarizes the outputs from all

N classifiers in an ensemble for the given x. Each classifier Ti in the ensemble T= {T,...,

TN} outputs c degrees of support for each x. The outputs of the N classifiers for a

particular x are then organized into a decision profile as shown in Figure 5.5. Thejth

column with dij to dNj are the supports from classifiers Ti to TN to class w(, and the ith

row with di,1 to di,c is the support from classifier Ti(x) to classes w1 through wc.
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Figure 5.6: Decision Profile[79, 80, 95]

The decision template combiner is based upon the most typical decision profile for each

class wj. It is calculated as the average of decision profiles of all training instances of

class wj

DT 1 x DP(x) (5.15)j XEX
where Xj indicates the set of class wj instances, and Nj is the cardinality of this set. For

classification of an instance x, the decision profile for x is compared to the decision

templates of all classes using a similarity measure S. The class whose decision template

provides the closest measure (the class that has the highest support) becomes the label of

x. The similarity measure that is often used is the squared Euclidean distance. Using this

measure, the ensemble support for wj is then
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P (x)= 1- Z [DTj(i, j)-dj,j(x)]2  (5.16)
Nc i=1 j=1

where DTj(i,j) is the (ij)th entry in the decision template. [79,80,96]

5.4.2 COMPETENCE WEIGHTING

Competence was originally intended as a classifier selection technique, where a large

number of classifiers are generated and those with the largest competencies are retained

for the final ensemble. The competence of a classifier is essentially a metric of how well

a classifier knows a particular feature space [96]. In a previous study, the feasibility of

using the competence as a weight in a combination scheme was pursued [79].

For the competence weight, a distance-based k-nn estimate was used such as the

one originally proposed by Giacinto and Roli in [97] for image classification

applications. A distance-based k-nn estimate calculates the competence of a classifier as

the weighted average of the classifier's predictions for the correct labels of the k-nearest

neighbors of a given instance x. Let Pi(l(xk)\xk) be the estimated probability of the ith

classifier Ti in correctly labeling xk, where l(Xk) denotes the true class of xk. These

probabilities are weighted by the distances between x and its k-nearest neighbors. The

competence of Ti, given x, is

SPi,(l(xk,)x,)( l/d (x,xk))
C(T, x)= I(Xk)Wj:k EW (5.17)z (1/d(x,xk))

l(xk)=Wj:XkE j

where d(x,xk) is the Euclidean distance between x and its k-nearest neighbors. Using this

definition of competence, the rules for weighted majority vote, and sum rule in Equations

(5.11), and (5.12), and were modified to use the competence as a weight in Equation
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(5.18) while product rule from Equation (5.13) was modified to Equation (5.19), as

follows:

N

p,(x)=- C(Ttex)dt,j(x) (5.18)
t=1

N

pj(x)=fl C(T tx) d,j(x) (5.19)
t=1

Once again, the ensemble chooses class Wm for which the support pj(x), j =1,...,c is

maximum as in Equation (5.14).

The decision template rule was also modified by the competence weighting. Each

DP(x) entry became the support from the classifier times the competence weight of that

classifier, CWDP(x).

C(TIx)dl,l (x) ... C(Tlx)dl,,(x) ... C(Tllx)d,c(x)

C(T,lx)d, l(x) ""- C(Tx)dt, (x) " C(T,xx)dt,c(x)

C (TNIx)dN,1(x)"'C(TNIx)dN,,j(X)'C(TNIx)dN, (x)

The rest of the decision template algorithm remained the same as in Section 5.4.1 [79,96].
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CHAPTER 6

RESULTS

6.1 K-FOLD CROSS-VALIDATION

A cross-validation procedure was implemented to estimate the true generalization

performance of each of the classifiers and the ensemble of classifiers. Cross-validation

can be used to estimate any statistical parameter with a measure of certainty in the

original estimate [94,95]. In a K-fold cross-validation, the dataset is divided into K-blocks

as shown in Figure 6.1. The kth block is set aside for testing purposes while the network

is trained with K-1 remaining blocks. This procedure is repeated K times so that each

block is used in both the training and testing sets but never at the same time. The average

of the performance values on each of the test sets is the K-fold cross-validation

performance for the data set.

In our experiments, a leave-one-out cross-validation is implemented. In this scheme,

k is equal to the number of instances in the data set. For example, for the 71 patient

cohort, 70 patients would be used in training and 1 patient would be used for testing. This

would then be repeated 70 more times so that each instance is included in both the testing

and training sets. In this scheme, the performance for each test will either be 0 or 1 (0%

or 100%), meaning that the test instance is either incorrectly or correctly classified by the

classifier trained on the 70 other instances. The final performance for the leave-one-out

trial is then the average of these Is and Os.
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Figure 6.1: K-fold cross-validation [95]

6.2 OVERVIEW OF RESULTS

Wavelet analysis was performed on the two designated cohort data sets (one with 71

patients, the other with 66 patients) using the Daubechies 4 wavelet. The detail

coefficients from the wavelet analysis were used to train and test MLP neural networks

and combined using the fusion rules discussed in Chapter 5. Feature-level fusion was also

briefly analyzed for a subset of the detail coefficients and compared to decision-level

fusion results of MLPs trained on the same features. Performance figures are provided in

tables throughout this chapter.
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6.3 WAVELET ANALYSIS RESULTS

The number of coefficients per decomposition level and the corresponding frequency

subbands were determined. Table 6.1 outlines the number of coefficients from the

decomposition and the corresponding subbands. The coefficients for the levels d7, d6,

and d5 were used in the analysis in this work. These coefficients correspond to the 1-2Hz,

2-4Hz, and 4-8Hz subbands for a total of 32 coefficients.

Table 6.1: Number of coefficients and the corresponding frequency subbands.

a7 d7 d6 d5 d4 d3 d2 dl

no. ofn o . o f  8 8 10 14 22 38 69 132
coefficients

frequency 0-1Hz 1-2Hz 2-4Hz 4-8Hz 8-16Hz 16-32Hz 32-64Hz 64-128Hz
subbands

Figure 6.2 and Figure 6.3 show the decomposition of a signal from a normal subject

and a probable AD subject, respectively. Variations in the original signals are obvious

when compared visually. However, this is not always the case when using only visual

inspection as seen in Figure 2.3 where the AD signal shows characteristics typically

found in a normal subject's signal. Wavelet decomposition allows for a better analysis of

the frequency components of the signal. It makes the components of each frequency

subband more prominent than it otherwise would be in a purely visual analysis.
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Decomposition at level 7: s = a7 + d7 + d6 + d5 + d4 + d3 + d2 + dl .
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Figure 6.2: Normal subject ERP (a) and its wavelet decomposition (b)
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(a)

(b)
Decomposition at level 7: s = a7 + d7 + d6 + d5 + d4 + d3 + d2 + dl .
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Figure 6.3: AD subject ERP (a) and its wavelet decomposition (b)
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6.4 MLP RESULTS FROM ALL ELECTRODES

The following results are single classifier performances from the analysis of target and

novel stimuli from all 19 electrodes. Performances were evaluated on both the 71 patient

and 66 patient cohorts. Six feature sets were evaluated: 1-2Hz (all features), 1-2Hz

(middle-features), 2-4Hz (all features), 2-4Hz (middle features), 4-8Hz (all features) and

4-8Hz (middle features). As mentioned early, these feature sets are based on previously

established success [79-83]. The results are organized by classifier and feature set. The

average performance of five leave-one-out trials are presented along with the 95%

confidence intervals (CI) for each. Average performances of 60% and higher are

highlighted.

Table 6.2: Results for the target stimuli recordings from each electrode of the 71 patients
cohort at each feature level.

1-2Hz(all) 1-2Hz(mid) 2-4Hz(all) 2-4Hz(mid) 4-8Hz(all) 4-8Hz(mid)
50.14 + 4.56% 56.62 + 6.47% 50.14 1.99% 49.58 + 4.52% 49.58 + 6.59% 49.58 + 4.69%
55.77 +3.83% 60.28 + 5.72% 60.28 + 1.46% 60.00 + 4.72% 46.76 6.47% 43.66 +4.63%
43.94 + 4.35% 44.51 +3.63% 48.45 + 4.56% 56.34 + 4.79% 43.38 7.56% 43.94 + 5.01%
54.36 + 7.78% 53.52 + 3.91% 53.52 + 4.46% 57.75 + 4.79% 44.51 10.9% 37.75 + 7.25%
61.97 ±4.46% 59.72 + 4.02% 63.66 +4.18% 61.97 + 3.27% 41.13 +5.30% 37.75 + 3.79%
61.13 6.13% 51.83+ 5.30% 60.56 + 4.10% 53.52 + 2.77% 62.25 + 4.85% 58.59 3.41%
60.84 + 4.18% 60.84 + 2.88% 47.60 6.81% 44.22 ±4.88% 51.55 + 6.37% 51.55 3.83%
56.62 + 3.13% 60.00 + 5.33% 50.14 + 6.38% 52.39 ± 6.47% 49.58 ± 4.53% 50.42 + 4.17%
62.53 5.88% 52.96 + 2.00% 60.00 + 1.57% 59.43 + 3.58% 47.33 + 2.93% 49.86 + 4.39%
57.46 4.35% 56.62 + 5.30% 60.84 + 3.36% 63.38 + 5.67% 59.44 + 5.58% 50.14 7.27%
51.27 + 2.92% 51.83 + 7.25% 49.29 + 3.27% 47.60 + 4.52% 46.48 + 6.67% 51.27 + 2.65%
57.75 + 3.91% 58.87 + 3.99% 48.45 + 2.92% 59.44 2.28% 41.13 + 6.11% 47.04 6.84%
46.48 + 6.89% 49.30 + 3.27% 51.27 + 2.65% 55.77 + 3.41% 47.32 + 4.39% 44.51 + 2.65%
42.25 + 6.89% 47.61 +4.85% 49.58 + 5.30% 52.11 +1.27% 50.70 + 6.18% 51.27 +4.02%
60.00 +3.18% 55.49 + 3.18% 46.76 + 5.30% 49.02 + 5.01% 50.99 + 3.99% 50.14 + 3.62%
61.97 + 5.93% 63.66 + 4.17% 50.42 + 6.93% 49.86 ±5.04% 52.68 8.88% 42.25 + 7.32%

56.34 + 3.91% 63.94 + 6.73% 48.45 + 3.62% 54.65 + 8.87% 53.80 + 5.31% 53.80 + 4.18%
49.30 + 6.43% 44.23 4.03% 52.39 10.3% 59.15+ 7.00% 49.02 + 7.86% 43.10 4.56%
49.58 ± 4.53% 53.80 ± 5.30% 52.68 ±3.83% 56.06 ± 5.16% 58.31 ±3.62% 63.66 ± 4.35%
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Table 6.3: Results for the novel stimuli recordings from each electrode of the
71 patients cohort at each feature level.

Feature Level
Classifier 1-2Hz(all) 1-2Hz(mid) 2-4Hz(all) 2-4Hz(mid) 4-8Hz(all) 4-8Hz(mid)
C4 51.83+ 4.85% 56.05+ 4.52% 60.28 +5.72% 57.75+ 5.93% 42.82+ 5.19% 53.24+ 6.23%
FP1 64.79 +6.54% 62.53 +2.35% 60.84 +8.69% 62.25 +4.36% 46.48 +3.91% 52.40+ 5.45%
01 53.24 + 6.47% 55.49 + 1.57% 50.71 + 4.94% 55.49 + 5.18% 41.97 + 8.86% 46.20 + 3.13%
P8 61.41 +4.39% 61.41 +5.04% 62.54 +4.03% 64.51 +7.56% 61.41 +2.65% 55.21 6.11%
P4 62.82+3.41% 62.53 +4.03% 65.92+6.35% 62.53+2.00% 51.27+5.33% 59.15 +3.71%

P7 58.59 + 7.78% 54.65 + 6.35% 64.51+ 3.99% 61.41 + 5.74% 53.80+ 7.14% 58.03 + 7.15%
F4 59.72 + 4.56% 56.90+ 5.33% 50.14+ 3.62% 54.65 + 5.30% 50.70+ 5.10% 46.84 + 5.53%
FZ 45.92 + 2.65% 52.11 + 3.50% 52.96 + 4.56% 55.21 + 5.30% 53.24 + 7.04% 42.82 + 2.65%
PZ 61.41 ± 8.62% 65.92 + 1.46% 69.01 + 1.74% 71.55 5.58% 58.59+ 4.72% 68.45 + 4.39%
P3 65.63 4.73% 57.46 +3.13% 66.76 + 7.59% 65.63+ 7.88% 59.72 + 3.41% 63.10 +4.18%
F7 54.65+ 7.46% 53.52 + 2.77% 51.83+ 5.71% 51.83+ 6.35% 41.97+ 5.85% 45.35 +6.93%

T8 60.28 +3.79% 61.69+6.35% 54.65+3.13% 54.93 +5.10% 38.03+ 9.00% 53.24+4.18%
CZ 52.39 + 4.53% 53.24 + 3.13% 56.90 + 3.18% 63.38 + 2.14% 50.42 + 3.79% 54.37 + 7.68%

F3 48.45 + 8.35% 55.49 + 0.96% 54.08 + 3.18% 50.14 3.62% 49.30 + 5.93% 41.97 3.99%

02 63.94+3.41% 64.79±+3.27% 56.90+3.17% 59.43+2.59% 45.64 +5.61% 46.20+5.00%
FP2 59.72+2.34% 58.03 +2.59% 54.93 +4.11% 60.28 +6.10% 45.92+3.18% 45.20 8.17%

F8 62.25 +1.92% 62.83 +3.18% 49.86 +1.99% 57.18+ 4.39% 42.53 +6.35% 44.79 +3.79%- -

C3 52.39 + 4.18% 56.90 + 2.65% 61.41 + 3.41% 65.07 + 5.98% 51.55 5.75% 57.18 5.87%

T7 51.83 4.85% 43.38 + 4.52% 48.73 + 5.19% 44.23 4.03% 51.55 5.33% 43.10 4.72%

Table 6.4: Results for the target stimuli recordings from each electrode of the
66 patients cohort at each feature level.

Feature Level
Classifier 1-2Hz(all) 1-2Hz(mid) 2-4Hz(all) 2-4Hz(mid) -4-8Hz(all) 4-8Hz(mid)
C4 51.82 + 6.44% 54.24 + 3.36% 53.64 + 5.89% 53.64 + 5.89 % 48.48 + 5.49% 50.30 + 5.71%
FP1 58.18 + 4.72% 63.03 ±5.08% 59.40 + 6.96% 57.27 + 3.62 % 49.39 + 3.90% 39.39 + 3.76%
01 43.63 + 4.49% 47.58 + 4.33% 54.85 + 3.09% 56.67 + 7.24 % 38.18 + 7.09% 47.88 + 8.58%
P8 59.40 + 3.62% 53.03 + 3.26% 53.94 + 4.33% 59.70 + 9.83 % 43.64 + 6.97% 40.30 + 2.14%

P4 63.64 +5.48% 63.34 +0.84% 69.39 +9.35% 70.00+5.22% 36.06+6.70% 38.79 ±7.71%

P7 60.61 2.97% 57.27+ 3.62% 53.64 + 3.90% 56.67 + 8.05 % 59.09+ 6.10% 60.30 +3.62%

F4 67.58 +5.08% 66.97+4.87% 48.18 ±11.5% 50.61 5.89% 60.00 +2.14% 48.48 ±5.95%
FZ 56.06 + 3.26% 56.97 + 3.90% 56.36 + 4.29% 63.33 9.72 % 54.55 +4.41% 48.18+ 4.87%

PZ 68.18 4.79% 58.79+ 4.08% 67.88+0.84% 70.61 4.90 % 44.54 +3.41% 47.88 +3.42%

P3 65.46+4.87% 66.67+3.26% 62.73 +4.33% 63.33+3.09% 53.03 +7.16% 47.57+ 4.53%
F7 50.91 + 7.83% 50.91 + 6.18% 46.67 + 6.16% 52.12 + 9.08 % 48.49 7.17% 47.88 + 5.08%
T8 59.40 + 3.62% 56.06 + 3.52% 49.09 + 5.89% 54.25 + 3.36 % 45.75 + 4.68% 43.94 + 4.41%

CZ 52.42 + 6.86% 57.28 3.36% 61.21 + 3.90% 61.52 +2.85 % 44.24 + 1.57% 46.67 +9.90%
F3 49.09 + 4.12% 53.64 + 2.85% 56.06 + 7.87% 53.64 + 4.53 % 53.94 + 6.86% 50.61 + 6.33%
02 62.12+ 7.17% 60.91+2.06% 48.48 +7.41% 51.21 +7.45% 46.66 +4.08% 48.18 +4.29%

FP2 66.36 + 2.06% 63.64 + 2.30% 44.54 + 1.68%i 50.91 ± 9.65 % 53.64 + 8.68% 47.27 ± 4.29%

F8 58.49 + 3.15% 62.42 + 8.86% 45.15 + 3.36% 48.79 + 8.46 % 53.03 + 3.52% 52.12 + 2.15%

C3 56.06 + 5.95% 52.12 + 2.53% 56.67 + 4.91% 62.73 ± 7.11 % 46.36 + 4.91% 50.61 + 6.18%
T7 51.21 + 6.84% 51.52 + 1.88% 55.15 + 2.15% 51.82 + 8.35 % 55.76 + 4.08% 55.45 +4.12%
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Table 6.5: Results for the novel stimuli recordings from each electrode of the
66 patients cohort at each feature level.

Feature Level

Classifier 1-2Hz(all) 1-2Hz(mid) 2-4Hz(all) 2-4Hz(mid) 4-8Hz(all) 4-8Hz(mid)

C4 60.61+3.76% 60.00 3.67% 65.46+3.09% 55.46 3.66% 60.61 ±7.60% 56.36 8.24%

FP1 66.36+4.29% 62.12+3.99% 60.91+5.22% 56.67 + 5.42% 66.36 + 6.33% 57.27 +7.69%

01 56.67 + 2.14% 54.84 + 3.36% 50.61 +4.90% 53.03 + 4.41% 56.67 + 5.05% 46.67 +6.97%

P8 68.18+2.30% 68.49 2.06% 67.88 ±4.07% 71.82 +2.85% 68.18 4.08% 53.94 +5.74%

P4 66.67 +4.98% 67.27 ±1.68% 69.39 4.87% 66.67 + 3.76% 66.67 + 4.33% 62.12 ± 4.41%

P7 58.79 +4.87% 53.64 + 5.25% 62.12 +6.52% 60.91 +6.29% 58.79 +8.96% 58.18 +7.60%

F4 56.67 + 3.42% 54.55 4.80% 52.73 ±4.29% 51.21 ±3.62% 56.67 + 6.04% 44.54 +6.86%

FZ 46.06 + 2.14% 49.70 + 4.08% 52.42 3.90% 56.37 + 5.55% 46.06 +4.29% 45.76 +6.44%

PZ 66.67 + 5.80% 73.64 2.855 67.58 + 4.33% 74.85 + 5.25% 66.67 + 5.15% 71.52 + 5.55%

P3 65.15+1.88% 60.31+4.29% 61.52+5.08% 64.85+3.09% 65.15+7.16% 57.88+8.46%

F7 50.31 + 2.46% 50.61 + 2.15% 58.79 + 2.79% 55.15 + 3.90% 50.31 + 5.08% 35.15 ± 5.86%

T8 56.06 ± 5.95% 57.27 ±5.22% 61.52 +2.15% 58.70 ±4.90% 56.06 ± 6.01% 49.09 ±5.42%

CZ 55.76 +6.16% 60.00 2.52% 63.03 +3.42% 66.06 +3.15% 55.76 +3.15% 52.73 6.01%

F3 53.64 3.15% 54.55 + 2.97% 47.58 ± 6.86% 50.00 ± 5.95% 53.64 + 2.06% 37.57 ±4.08%

02 70.61 +6.32% 65.15 +2.30% 57.58 2.97% 56.67 + 7.48% 70.61 + 3.99% 47.57 2.15%

FP2 62.73 +5.42% 59.70 + 6.03% 58.79 +5.86% 61.22 +3.15% 62.73 +2.45% 46.97 +5.65%

F8 60.61 5.32% 60.30 +5.55% 47.88±+5.74% 55.15 7.12% 60.61 +2.15% 41.51±6.32%

C3 54.85 ± 7.69% 56.97 ±6.60% 62.43 + 7.45% 63.34 ±4.68% 54.85 ± 4.53% 54.85 ±6.30%

T7 50.00 +3.99% 45.15 5.70% 44.55 ±9.37% 45.76 + 5.39% 50.00 + 3.90% 53.33 + 3.36%

Table 6.2 through Table 6.5 show varying degrees of success with different

stimuli/electrode/feature set combinations. The most promising results yield

performances between the mid-60% to low 70% range and several of these results come

from the parietal (P3, P4, P7, P8, and PZ) and occipital electrodes (01 and 02). In our

previous work [79-83], only the PZ, FZ, and CZ electrodes were analyzed but the above

results show that complimentary information may rest within the recordings obtained

from other electrodes. Therefore, the next logical step is to try to improve upon these

performance figures by using advanced pattern recognition techniques. Ensembles of

classifiers trained on features from the best performing stimuli/parietal/feature set and

stimuli/parietal-occipital/feature set combinations are explored in Section 6.6. Feature-

level fusion is first used on features previously found to perform well from [79,80].
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6.5 RESULTS FROM FEATURE-LEVEL FUSION

Results from a feature-level fusion experiment for both cohorts are presented in this

section. The fusion method chosen was simple concatenation. The features evaluated

were Novel PZ (middle 1-2Hz), Target PZ (middle 2-4Hz), and Target CZ (middle

2-4Hz). As mentioned in the previous section, these stimuli/electrode/features were

previously shown to yield good performances during the analysis of the PZ, CZ, and FZ

electrodes [79-83]. For comparison purposes, individual classifiers were also trained on

each of the feature sets and combined at the decision-level.

In Table 6.6, "Fusion" means feature-level fusion. NPZ means Novel PZ, TPZ

means Target PZ, and TCZ means Target CZ. For example, "1 2 3 MV" means the

classifiers 1, 2, and 3 (i.e. classifier 1 is trained on the Novel PZ features, etc.) combined

by weighted majority vote. Table 6.7 shows the best 5 performances of this experiment.

Table 6.6: Results from feature-level fusion compared with classifier fusion
using the 71 patient cohort (a) and the 66 patient cohort (b).

(a) (b)
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Fusion NPZ,TPZ,TCZ 66.90 1.19 %
Fusion NPZ,TPZ 62.25 ± 2.55 %
Fusion NPZ,TCZ 67.75 ± 2.25 %
Fusion TPZ, TCZ 70.28 ± 2.20 %
1) NPZ 66.48 ±2.36 %
2.) TPZ 62.25 ± 3.03 %
3) TCZ 56.76 ±2.56 %
123MV 65.07 ±1.49 %
1 2 MV 67.89 ±2.55 %
13 MV 60.84 ±2.76 %
23MV 58.73 ±2.28 %
1 2 3 PROD 68.59 ±2.93 %
12 PROD 71.13 ±2.19%
13 PROD 64.23 ±2.70 %
2 3 PROD 61.13 ±3.37 %
1 2 3 SUM 67.89 ±2.17 %
12 SUM 71.27 ±2.34 %
13 SUM 64.37 ±2.47 %
2 3 SUM 60.99 ±3.36 %

Fusion NPZ,TPZ,TCZ 78.48 ±1.68 %
Fusion NPZ,TPZ 72.42 ± 1.52 %
Fusion NPZ,TCZ 73.49 ± 2.62 %
Fusion TPZ, TCZ 75.76 1.45 %
1) NPZ 75.30 ±1.98 %
2.) TPZ 69.40 ± 3.38 %
3) TCZ 62.12 ± 4.57 %
12 3 MV 73.79 ±3.61%
12 MV 71.52 ±2.22 %
13 MV 68.79 ±2.46 %
23MV 68.94 ±4.16 %
1 2 3 PROD 77.73 ± 1.45 %
12 PROD 80.76 ± 2.23 %
13 PROD 73.49 ± 2.24 %
2 3 PROD 71.52 ±3.18%
1 2 3 SUM 74.70 ±3.07 %
12 SUM 80.61 ±2.21%
13 SUM 73.49 ± 2.24 %
2 3 SUM 71.37 ±3.04%



Table 6.7: Best five results from feature-level fusion compared with decision-level
fusion using the 71 patient cohort (a) and the 66 patient cohort (b).

(a)
Combination Performance Sensitivity Specificity Positive Predictive Value
Fusion TPZ, TCZ 76.06 ± 8.50% 73.53% 78.38% 75.76%
NPZ, TCZPROD 74.65 ± 8.67% 79.41% 70.27% 71.05%
NPZ, TPZPROD 74.65 ± 8.67% 73.53% 73.53% 73.53%
NPZ, TPZ, TCZPROD 73.24 ±8.82% 73.53% 72.97% 71.43%
NPZ, TPZPROD 73.24 ± 8.82% 73.53% 72.97% 71.43%

(b)
Comlination Performance Sensitivity Specificity Positive Predictive Value

Fusion NPZ, TPZ, TCZ 83.33 ± 7.71% 80.00% 86.11% 82.76%
NPZ, TPZPROD 83.33 ± 7.71% 83.33% 83.33% 80.65%
NPZ, TPZPROD 83.33 ± 7.71% 76.67% 88.89% 85.19%
NPZ, TPZSUM 83.33 7.71% 80.00% 86.11% 82.76%
NPZ, PZPROD 84.85 7.42% 86.67% 83.33% 81.25%

The feature-level fusion technique was more successful when used with the 66

patient cohort. The best feature-level fusion performance for the 71 patient cohort was

76.06% while the best performance for the 66 patient cohort was 83.33%. Although this

is a significant difference, the product rule combination of Novel PZ and Target PZ in the

66 patient cohort yielded a performance of almost 85%. It seems that the feature-level

fusion method is highly sensitive. This sensitivity may be from redundant or

uninformative features. With the effectiveness of this method being inconclusive, the

focus of the experiments is turned towards classifier (decision-level) fusion which is a

well-established combination method.

6.6 RESULTS FROM CLASSIFIER FUSION

Two comprehensive experiments are performed using classifier fusion. First, classifier

fusion was used to combine the ensembles of classifiers trained on features from parietal

electrodes, PZ, P3, P4, and P7. These parietal electrodes were chosen because of their

performance figures shown in Section 6.2, and their consistency for both target and novel
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stimuli. AD has been found to first show symptoms in the parietal region, thus making

the features obtained from EEG recordings in this region possible key features for the

early detection of AD.

Classifiers were trained on the following 6 feature sets for both target and novel

stimuli from the respective electrodes: P4 (middle 2-4Hz features), PZ (all 2-4Hz

features), P3 (all 2-4Hz features), P4 (all 1-2Hz features), PZ (all 1-2Hz features), and P7

(all 1-2Hz features). Tables 6.8 through 6.15 show the best 5 performance results from

five leave-one-out cross-validation trials along with the 95% confidence interval of that

trial. In each trial, fusion was achieved by the weighted majority vote, product rule, and

sum rule of various combinations of the six classifiers. All combination possibilities from

combining all 6 to combining 3 classifiers were exhausted for a total of 42 different

combinations (refer to Appendix C for full results of these combinations). The following

tables show the best electrode combinations for both stimuli, the combination rule, and

the resulting performance and CI, sensitivity, specificity, and positive predictive value.

To clarify the layout of these tables, here is an example. In Table 6.8, the first row

should be interpreted as follows: The sum rule was used to combine 4 classifiers. Each

classifier was trained on the feature sets, P4 (middle 2-4Hz), P3 (all 2-4Hz), P4 (all 1-

2Hz), and P7 (all 1-2Hz), respectively. This ensemble achieved a performance of

74.65%, a sensitivity of 70.59%, a specificity of 72.97% and positive predictive value of

70.59%.
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Table 68: Results of 

s

Electrodes and
Feature Level

P4 (2-4Hz),
P3 (2-4Hz),
P4 (1-2Hz),
P7 (1-2Hz)

PZ (2-4Hz),
P3(2-4Hz),
P4 (1-2Hz),
P7(1-2Hz)

P4 (2-4Hz),
PZ (2-4Hz),
P7(1-2Hz)

PZ (2-4Hz),
P4 (1-2Hz),
P7 (1-2Hz)

P3 (2-4Hz),
PZ (1-2Hz),
P7 (1-2Hz)

Combination
Rule

SUM

SUM

PRODUCT

PRODUCT

PRODUCT

Performance

74.65 + 10.37%

73.24 10.55%

73.24 + 10.55%

71.83 + 10.72%

71.83 + 10.72%

Table 6.9: Results of 3 classifiers each from targe

Electrodes and
Feature Level

P4 (2-4Hz),
P4 (1-2Hz),
P7(1-2Hz)

P4 (2-4Hz),
P3 (2-4Hz),
P4 (1-2Hz),
P7 (1-2Hz)

P4 (2-4Hz),
PZ (1-2Hz),
P7(1-2Hz)

PZ (2-4Hz),
P4 (1-2Hz),
P7 (1-2Hz)

P4(2-4Hz),
PZ (2-4Hz),
P4 (1-2Hz),
P7 (1-2Hz)

Combination
Rule

WEIGHTED
MAJORITY

VOTE

WEIGHTED
MAJORITY

VOTE

WEIGHTED
MAJORITY

VOTE

SUM

PRODUCT

Performance

76.06 ± 10.17%

74.65 ± 10.37%

74.65 ± 10.37%

74.65 ± 10.37%

73.24 ± 10.55%

83

Sensitivity

70.59%

67.57%

72.73%

71.88%

69.44%

- - -- -- 0~-

Specificity

72.97%

67.57%

75.68%

75.68%

70.27%

Positive
Predictive

Value

70.59%

67.57%

72.73%

71.88%

69.44%

vparletai re

Sensitivity

70.59%

67.65%

70.59%

70.59%

64.71%

:ormngs 10O

Specificity

81.08%

81.08%

78.38%

78.38%

81.08%

r 71 patients
Positive

Predictive
Value

77.42%

76.67%

75.00%

75.00%

75.86%

--

------

I . ---- L-- - -- - I

JL %.&-F A %.e %.f * W. JL.%WL7% &L16L %,JL J %OA16rrVLYrL. LL%.rr %--%.rrfXA rrA%-F-·. A. , .F o

- . . -1 e ý 6 tt. 2 1 0 . -91 Aý --d,,



Table 6.10:Results of 1 classifier each from target/parietal recordings for 66 patients.
PositiveElectrodes and Combination

Feature Level Ru Performance Sensitivity Specificity Predictive
Value

PZ (2-4Hz), WEIGHTED
P3 (2-4Hz), MAJORITY 81.82 + 9.55% 80.00% 81.08% 80.00%
P7 (1-2Hz) VOTE

P4 (2-4Hz), WEIGHTED
PZ (2-4Hz), MAJORITY 78.79 ± 10.13% 80.65% 83.78% 80.65%P3 (2-4Hz), VOTE
PZ (1-2Hz)

P4 (2-4Hz),
PZ (2-4Hz), SUM 78.79 10.13% 80.65% 83.78% 80.65%
P3 (2-4Hz),
PZ (1-2Hz)

P4 (2-4Hz), WEIGHTED
PZ(2-4Hz), MAJORITY 78.79 ±10.13% 78.79% 81.08% 78.79%
PZ (1-2Hz), VOTE
P7(1-2Hz)

PZ (2-4Hz),
P3 (2-4Hz), PRODUCT 77.27 ± 10.38% 76.47% 78.38% 76.47%
P7 (1-2Hz)

Table 6.11: Results of 3 classifiers each from target/parietal recordings for 66 patients.

Electrodes and Combination Positive
Feature Level Rule Performance Sensitivity Specificity Predictive

Value

P4 (2-4Hz), PZ (2-4Hz),
P3 (2-4Hz), P4 (1-2Hz), PRODUCT 80.30 ± 9.85% 76.67% 83.33% 79.31%
PZ (1-2Hz)

P4 (2-4Hz), PZ (2-4Hz),
P3 (2-4Hz), P4 (1-2Hz), SUM 80.30 ± 9.85% 80.00% 80.56% 77.42%
PZ (1-2Hz)

PZ (2-4Hz), P4 (24Hz), WEIGHTED
PZ (1-2Hz), MAJORITY 80.30 ± 9.85% 80.00% 80.56% 77.42%
P7(1-2Hz) VOTE

P4 (2-4Hz), P4 (1-2Hz), SUM 78.79 ± 10.13% 76.67% 80.56% 76.67%
PZ (1-2Hz)

P4 (2-4Hz), PZ (2-4Hz), WEIGHTED
P3 (2-4Hz), PZ (1-2Hz), MAJORITY 78.79 ± 10.13% 76.67% 80.56% 76.67%
P7 (1-2Hz) VOTE
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Table 6.12: Results of 1 classifier each from novel/parietal recordings for 71 patients.

Electrodes and Combination Positive
Feature Level Rule Performance Sensitivity Specificity Predictive

Value

PZ (2-4Hz), WEIGHTED
P3 (2-4Hz), MAJORITY 81.69 ± 9.22% 80.00% 81.08% 80.00%
P7 (1-2Hz) VOTE

P4 (2-4Hz), WEIGHTD
PZ (2-4Hz), MAJORITY 78.87 9.73% 75.68% 75.68% 75.68%
P3 (2-4Hz), VOTE
PZ (1-2Hz)

P4 (2-4Hz),
PZ (2-4Hz), SUM 78.87 ± 9.73% 80.65% 83.79% 80.65%
P3 (2-4Hz),
PZ (1-2Hz)

P4 (2-4Hz), WEIGHTED
PZ (2-4Hz), MAJORITY 78.87 ± 9.73% 78.79% 81.08% 78.79%
PZ (1-2Hz), VOTE
P7 (1-2Hz)

P4 (2-4Hz),
PZ (2-4Hz), PRODUCT 77.46 + 9.96% 76.47% 78.38% 76.47%
P3 (2-4Hz)

Table 

6.13: 

Resuls

Electrodes and
Feature Level

PZ (2-4Hz),
P3 (2-4Hz),
P7 (1-2Hz)

PZ (2-4Hz),
P3 (2-4Hz),
P7 (1-2Hz)

P4 (2-4Hz),
PZ (2-4Hz),
P3 (2-4Hz),
P7 (1-2Hz)

P3 (2-4Hz),
PZ (1-2Hz),
P7 (1-2Hz)

P3 (2-4Hz),
P4 (1-2Hz),
P7 (1-2Hz)

)I 3 classmilers

Combination
Rule

PRODUCT

WEIGHTED
MAJORITY

VOTE

WEIGHTED
MAJORITY

VOTE

WEIGHTED
MAJORITY

VOTE

WEIGHTED
MAJORITY

VOTE

eacn irom novel/parietal

Performance

80.28 ± 9.48%

80.28 ± 9.48%

78.87 + 9.73%

77.46 ± 9.96%

77.46 ± 9.96%

Sensitivity

76.47%

76.47%

76.47%

79.41%

73.53%

recordings for 71 patients.

Specificity

83.78%

83.78%

81.08%

75.68%

81.08%

Positive
Predictive

Value

81.25%

81.25%

78.79%

75.00%

78.13%
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Table 6.14: Results of 1 classifier each from novel/parietal recordings for 66 patients.

Electrodes and Combination Positive
Feature Level Rule Performance Sensitivity Specificity Predictive

Value

P4 (2-4Hz),
PZ (2-4Hz), PRODUCT 84.85 ± 8.88% 85.71% 88.89% 85.71%
P4 (1-2Hz),
P7 (1-2Hz)

P4 (2-4Hz),
P4 (1-2Hz), PRODUCT 83.33 + 9.23% 88.00% 91.67% 88.00%
P7 (1-2Hz)

P4 (2-4Hz),
P3 (2-4Hz), PRODUCT 81.82 + 9.55% 82.14% 86.11% 82.14%
PZ (1-2Hz)

P4 (2-4Hz),
PZ (2-4Hz),
P4 (1-2Hz), PRODUCT 81.82 ± 9.55% 82.14% 86.11% 82.14%
PZ (1-2Hz),
P7 (1-2Hz)

P3 (2-4Hz),
P4 (1-2Hz), SUM 81.82 ± 9.55% 78.57% 83.33% 78.57%
P7 (1-2Hz)

Table 6.15: Results of 3 classifiers each from novel/parietal recordings for 66 patients.

Electrodes and
Feature Level

P4 (2-4Hz), PZ (2-4Hz),
P3 (2-4Hz), P4 (1-2Hz),
PZ (1-2Hz)

P4 (2-4Hz), P3 (2-4Hz),
P4 (1-2Hz)

PZ (2-4Hz), P4 (2-4Hz),
PZ (1-2Hz),
P7(1-2Hz)

P4 (2-4Hz), PZ (2-4Hz),
P4 (1-2Hz), PZ (1-2Hz)

P4 (2-4Hz), P3 (2-4Hz),
P4 (1-2Hz),
P7 (1-2Hz)

Performance

81.82 ± 9.55%

81.82 ± 9.55%

83.33 ± 9.23%

81.82 ± 9.55%

81.82 ± 9.55%

Sensitivity

80.00%

80.00%

80.00%

76.67%

80.00%

Specificity

83.33%

83.33%

86.11%

86.11%

83.33%

Positive
Predictive

Value

80.00%

80.00%

82.76%

82.14%

80.00%

Combination
Rule

PRODUCT

SUM

WEIGHTED
MAJORITY

VOTE

SUM

WEIGHTED
MAJORITY

VOTE
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For the first time in these results, combinations of classifiers for the 71 patient

cohort exceed 80% performance, specifically seen in Tables 6.12 and 6.13. To try to

compliment these features, a combination of both the target and novel classifiers is tried

for the 71 patient cohort. Table 6.16 represents the best 5 performances from five leave-

one-out trials with these combinations and the individual trial confidence intervals (refer

to Appendix C for full results). Electrode combinations are of one classifier from each

stimuli. For example, in Table 6.16, the first entry in the "Electrodes and Feature Level"

column says P4 (2-4Hz), PZ (2-4Hz), P3 (2-4Hz), P4 (1-2Hz), and PZ (1-2Hz). This

should be interpreted as the combination Target and Novel P4 (2-4Hz), Target and Novel

PZ (2-4Hz), etc. at the specified feature levels. Note the subband features do not change

for the different stimuli.

Table 6.16: Results from each of the target and novel/parietal classifiers for 71 patients.
Positive

Electrodes and Combination Sensitivity Specificity Predictive
Feature Level Rule Performance Sensiivity Specity PreicveValue

P4 (2-4Hz), WEIGHTED
P3 (2-4Hz), MAJORITY 83.10 ± 8.93% 82.35% 83.78% 82.35%
P7 (1-2Hz) VOTE

P4 (24Hz), WEIGHTED
P3 (24Hz), MAJORITY 83.10 8.93% 79.41% 86.49% 84.38%
PZ (1-2Hz), VOTE
P7 (1-2Hz)

P4 (2-4Hz),
P3 (2-4Hz), SUM 81.69 + 9.22% 76.47% 86.49% 83.87%
P7 (1-2Hz)

P4 (2-4Hz),PZ (2-4Hz), PRODUCT 81.69 ± 9.22% 85.29% 78.38% 78.38%
P3 (2-4Hz), P7 (1-2Hz)

P4 (2-4Hz), PZ (2-4Hz),
P3 (2-4Hz), PZ (1-2Hz), SUM 81.69 + 9.22% 82.35% 81.08% 80.00%
P7 (1-2Hz)
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From the combinations of Target and Novel classifiers for the 71 patient cohort, a

performance of 83.10% is obtained through a total of 6 classifiers (Target and Novel P4

(2-4Hz), Target and Novel P3 (2-4Hz), and Target and Novel P7 (1-2Hz)). This result is

slightly higher than the 81.69% performance obtained in Table 6.12 when just 3

classifiers (Novel PZ (2-4Hz), Novel P3 (2-4Hz), and Novel P7 (1-2Hz)) were combined

through weighted majority vote. Comparatively, the target and novel combination does

show improvement in the specificity and positive predictive value.

The last experiments of this thesis involve the parietal and occipital electrode

recordings for the 71 patient cohort. The best performing feature set from each electrode

was selected. A total of 11 electrode/stimuli combinations were chosen to create the

feature sets. Those choices were: Target P4 (all 2-4Hz), Target PZ (middle 2-4Hz),

Target P3 (middle 2-4Hz), Novel P8 (middle 2-4Hz), Target 02 (all 1-2Hz), Target P7

(all 1-2Hz), Novel 02 (all 1-2Hz), Novel PZ (middle 2-4Hz), Novel P3 (middle 2-4Hz),

Novel P4 (all 1-2Hz), and Novel PZ (1-2Hz). A single classifier was trained on one of

these feature sets. All combinations of 3 classifiers (a total of 164) were exhausted and a

combination of all 11 classifiers was tried (refer to Appendix C for the full results). As in

the previous results, the best 5 resulting combinations from five leave-one-out trials are

displayed in Table 6.17 along with the combination rule, sensitivity, specificity, and

positive predictive value.. "T" stands for target and "N" stands for novel. For example in

the first row and column, TP4 (all 2-4Hz), TP7 (all 1-2Hz), and NPZ (mid 2-4Hz) means

that 3 classifiers, each trained on one of the feature sets was combined by weighted

majority vote to obtain the reported performance figures.
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Table 6.17: Results of 
s.

Electrodes and
Feature Level

TP4 (all 2-4Hz),
TP7 (all 1-2Hz),
NPZ (mid 2-4Hz)

TP4 (all 2-4Hz),
NP8 (mid 2-4Hz),
NPZ (mid 2-4Hz)

NP8 (mid 2-4Hz),
T02 (all 1-2Hz),
NPZ (mid 2-4Hz)

TP4 (all 2-4Hz),
TP7 (all 1-2Hz),
NPZ (mid 2-4Hz)

NP8 (mid 2-4Hz),
TP7 (all 1-2Hz),
NPZ (mid 2-4Hz)

Combination
Rule

WEIGHTED
MAJORITY

VOTE

PRODUCT

PRODUCT

SUM

PRODUCT

Performance

83.10 + 8.93%

81.69 ± 9.22%

81.69 + 9.22%

80.28 ± 9.48%

80.28 ± 9.48%

The best performance in the above table is 83.10% and comes from the weighted

majority vote combination of 3 feature sets. In the previously mentioned results, 6

classifiers (Target and Novel P4 (2-4Hz), Target and Novel P3 (2-4Hz), and Target and

Novel P7 (1-2Hz)) were necessary to obtain 83.10% in Table 6.16. In this scenario with

combining Parietal and Occipital features, it takes half the number of classifiers

previously stated to obtain the same success.

To further, exhaust combination possibilities, 7 classifiers that yielded the best

results from the previous 11, are combined for all possible combinations of 3, 5, and 7

classifiers for a total of 56 combinations. The stimuli and features used to train this

ensemble of classifiers were: Target P4 (all 2-4Hz), Target P7 (all 1-2Hz), Novel PZ

(middle 2-4Hz), Novel P8 (middle 2-4Hz), Target 02 (alll-2Hz), Novel 02 (all 1-2Hz),

and Novel P3 (middle 2-4Hz). Once again, the best 5 combinations from five leave-one-

out trials are displayed in Table 6.18.
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Sensitivity

85.29%

79.41%

79.41%

76.47%

79.41%

............... l-- .............

Specificity

81.08%

83.78%

83.78%

83.78%

81.08%

Positive
Predictive

Value

80.56%

81.82%

81.82%

81.25%

79.41%
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Table 6.18: Results of 7 classifiers from the parietal and occipital electrodes.

Electrodes and
Feature Level

NP8 (mid 2-4Hz),
TP7 (all 1-2Hz),
NPZ (mid 2-4Hz)

NP8 (mid 2-4Hz),
TP7 (all 1-2Hz),
NPZ (mid 2-4Hz)

T02 (all 1-2Hz),
TP7 (all 1-2Hz),
N02 (all 1-2Hz),
NPZ (mid 2-4Hz),
NP3 (mid 2-4Hz)

TP4 (all 1-2Hz),
TP7 (all 1-2Hz),
N02 (all 1-2Hz),
NPZ (mid 2-4Hz),
NP3 (mid 2-4Hz)

N02 (all 1-2Hz),
NPZ (mid 2-4Hz),
NP3 (mid 2-4Hz)

Combination
Rule

WEIGHTED
MAJORITY

VOTE

SUM

SUM

WEIGHTED
MAJORITY

VOTE

PRODUCT

The best performance of the above 7 classifiers is 81.69% and comes from the

weighted majority vote combination of 3 feature sets, NP8 (mid 2-4Hz), TP7 (all 1-2Hz),

NPZ (mid 2-4Hz). This result is less than the 83% achieved earlier.

For the final test, feature-level fusion is revisited and combined with classifier

fusion. In the above tests, only one feature set was used from each electrode except Novel

PZ (the 1-2Hz and 2-4Hz features were used). The Target P4 electrode has consistent

performance figures for the 2-4Hz feature set (which was used in the above tests) as well

as the 1-2Hz feature set. This last experiment incorporates this other feature set of the

Target P4 electrode by using feature-level fusion and concatenating it with the 2-4Hz

feature set. A classifier was trained on the fused Target P4 features while the other

feature sets remained the same (Target P7 (all 1-2Hz), Novel PZ (middle 2-4Hz), Novel
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Sensitivity

88.24%

Performance

81.69 ± 7.71%

80.28 ± 7.93%

78.87 ± 8.13%

78.87 ± 8.13%

78.87 ± 8.13%

73.53%

79.41%

73.53%

Specificity

75.68%

75.68%

83.78%

78.38%

83.78%

Positive
Predictive

Value

76.92%

76.32%

80.65%

77.14%

80.65%

85.29%
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P8 (middle 2-4Hz), Target 02 (alll-2Hz), Novel 02 (all 1-2Hz), and Novel P3 (middle 2-

4Hz)). Table 6.19 displays the best 5 performances of this experiment.

Table 6.19: Results of 7 classifiers including the feature-level fused Target P4
from the parietal and occipital electrodes.

Positive
Electrodes and Combination Positive
Feature Level Rule Performance Sensitivity Specificity Predictive

Value

TP4 (all 1-2 + 2-4Hz),
TP7 (all 1-2Hz), WEIGHTED
N02 (all 1-2Hz), MAJORITY 84.51 ± 8.62% 79.41% 89.19% 87.10%
NPZ (mid 2-4Hz), VOTE
NP3 (mid 2-4Hz)

TP4 (all 1-2 + 2-4Hz),
TP7 (all 1-2Hz),
N02 (all 1-2Hz), SUM 83.10 + 8.93% 79.41% 86.49% 84.38%
NPZ (mid 2-4Hz),
NP3 (mid 2-4Hz)

T02 (all 1-2Hz),
NPZ (mid 2-4Hz), PRODUCT 81.69 + 9.22% 79.41% 83.78% 81.82%
NP3 (mid 2-4Hz)

TP4 (all 1-2 + 2-4Hz), WEIGHTED
NPZ (mid 2-4Hz), MAJORITY 81.69 + 9.22% 73.53% 89.19% 86.21%
NP3 (mid 2-4Hz) VOTE

T02 (all 1-2Hz),
TP7 (all 1-2Hz), WEIGHTED
N02 (all 1-2Hz), MAJORITY 80.28 ± 9.48% 76.47% 83.78% 81.25%
NPZ (mid 2-4Hz), VOTE
NP3 (mid 2-4Hz)

The best performance of the above 7 classifiers with the feature-level fused Target

P4 was 84.51% and comes from the weighted majority vote combination of 5 electrodes,

TP4 (all 1-2 concatenated with 2-4Hz), TP7 (all 1-2Hz), N02 (all 1-2Hz), NPZ (mid 2-

4Hz), and NP3 (mid 2-4Hz). This is the highest performance achieved by the 71 patient

cohort and matches the best performance of the 66 patient cohort. This result also reveals

that a feature-level and classifier fusion scheme may be able to achieve higher

performances than just a single feature-level or classifier fusion scheme.
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CHAPTER 7

CONCLUSIONS

7.1 SUMMARY OF ACCOMPLISHMENTS

The approach used in this study involved a multiresolution wavelet analysis of the

original time-domain ERP signals for feature extraction. Features from the resulting

1-2Hz, 2-4Hz, and 4-8Hz frequency subbands of the wavelet decomposition were used to

train MLP classifiers. Features were combined in feature-level fusion experiments and

classifiers trained on these features were combined in classifier fusion experiments. Their

performance capabilities were then tested in a leave-one-out cross validation scheme.

This study expands upon our previous studies by performing an analysis on the

recordings from all 19 available electrodes. Furthermore, recordings from both the target

and novel stimuli were analyzed. This analysis lead to the discovery of other informative

features. Of these features, the main focus was on those in the parietal and occipital

regions. AD is known to first show symptoms around the hippocampus, hence making

these surrounding regions prime candidates for informative features.

It has also been shown in this study that the novel recordings are informative, if

not more informative than the target recordings. Classifiers trained on features from the

novel recordings generally performed better than those trained on features from target

recordings. It was only when the target and novel features were combined that the best

performance of almost 85% was achieved.

In experiments prior to those performed in this study, that consisted of examining
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only the PZ, CZ, and FZ electrodes, it was thought that certain patients in our cohort were

troublesome to our algorithm. These "troublesome" patients had very poor classification

rates. The exclusion of these patients from the analysis resulted in higher performances.

However within this study, it was shown that it is not necessary to exclude those patients

and that our previous conclusions about them were incorrect. A performance equal in

success to that of using only 66 patients was achieved with all 71 patients. For this

reason, only the 71 patient cohort need be examined in continued efforts.

The metric with which we compared our performance to, was the reported overall

diagnostic accuracy of local physicians which was only 75%. Overall, our method has

achieved and surpassed this metric in performance. Comparatively, our algorithm's best

performance was almost 85%. Although this result was pleasing, the sensitivity (in Table

6.19) was only 79%, whereas it should be higher. On the other hand, the specificity and

positive predictive values were high. The positive predictive value (PPV) is the

probability that a person who has the disease yields a positive test result, so a high PPV is

very satisfactory (refer to Appendix A for formal definitions of positive predictive value,

sensitivity, and specificity).

The results achieved in this study are significant. It was shown that a

multiresolution wavelet analysis can extract meaningful features from ERP recordings.

This is true not only for the target stimuli recordings, but also for the novel stimuli

recordings. These features can then be used to train multilayer perceptron classifiers. A

combination of classifiers trained on different feature sets improved the generalization

performance and yielded the highest performance of this study. The approach used in this

study is a novel method that could be made readily available to local healthcare
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providers. It is method whose accuracy is comparable to the expertise of a

neurophysiologist and would be a valuable tool to have in addition to clinical evaluations.

7.2 SOURCES OF ERROR

The patients recruited for this study were diagnosed using clinical evaluation. As

mentioned previously, an evaluation at the local healthcare level has an estimated

accuracy of only 75%. The evaluation of the patients used in this study was performed by

an expert neurophysiologist. Their clinical evaluation is the current 'gold standard' with

an estimated positive predictive value of 90%, but currently there is no way for it to be

100% accurate. Despite this, the classification algorithms of this study were trained as if

the patient diagnoses were 100% correct. The original misdiagnoses of a test subject is a

potential source of error but less likely to occur because of the expertise of the diagnosis.

The only way to obtain a 100% accurate diagnosis is through an autopsy. Inclusion of a

postmortem analysis of the test subjects to obtain the true 'gold standard' would prevent

this error.

Other errors may lie within the classification algorithms. The free parameters for

the MLPs were based on those of our previous work. The error goal for all classifiers was

set to 0.01 and the number of hidden layer nodes was either 10 or 20 depending on the

number of features. These numbers have not been proved to be the optimal settings

despite their success in the past. The assumption of these parameters may also be a

potential source of error.
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7.3 RECOMMENDATIONS FOR FUTURE WORK

The use of all electrodes should be analyzed further. The extent of the experiments

performed in this study open the door to many possibilities. There were electrodes and

features combinations other than those of the parietal and occipital regions that performed

well. It would be logical and possibly beneficial to further pursue the value of this data.

The Daubechies 4 was the only wavelet used for analysis. Perhaps another wavelet

of a different family or even within the same family may be better suited for this type of

analysis. For example, Jacques et al. in [22] used the Daubechies 4 wavelet, but also used

a quadratic b-spline wavelet. The performance obtained in [22] when using the quadratic

b-spline wavelet was comparable to that of the Daubechies 4; hence, performing a

comparative analysis with a quadratic b-spline or another type of wavelet might be

informative.

The combination rules used in the experiments of this study were very basic.

Another combination rule such as decision templates, or competence-based classifier

selection or weighting as mentioned in Chapter 5, may render better results as more

informative features and classifiers are obtained. They have been used with some success

in the past and may be worth revisiting.

A multiresolution wavelet analysis has been the main feature extraction technique to

this point. Another more strategic feature extraction technique or feature selection

method may also be worth pursuing. The features in the 1-8Hz range have shown to be

informative. This feature range was analyzed in such a way to focus on the activity of the

P300 component. Perhaps analyzing the well-known delta and theta bands which fall in

this frequency range along with the alpha, beta, and gamma bands may be complimentary
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to our analysis. Maybe a different technique to extract these features such as bandpass

filtering may work and save computational resources. Feature selection techniques may

allow the most dominant features to be chosen. The performances obtained thus far may

be limited by the inclusion of redundant and non-informative features. A genetic

algorithm like that mentioned in [74] or an independent component analysis [78] may

extract the best features for this problem. These methods may also be a more strategic

approach than the trial and error method that has been used in this study and our previous

efforts.
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APPENDIX A

SENSITIVITY, SPECIFICITY, AND POSITIVE PREDICTIVE VALUE

Positive

Disease

Present Absent

Negative

Sensitivity - the probability that a symptom is present given that the person has the
disease.

A
Sensitivity -

A+C

Specificity - the probability that a symptom is not present given that the person does not
have the disease.

D
Specificity = DB+D

Positive Predictive Value - the probability that a person has the disease given a positive
test result.

A
PPV=A

A+B
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APPENDIX B

ERP GRAPHS

The graphs included in this appendix are the overall average ERP for the probable AD

and cognitively normal cohorts from each electrode and from both target and novel

stimuli. In each figure, the top graph is from the target recordings and the bottom graph is

from the novel recordings. ERPs are often inverted when displayed. This usually makes it

easier to visualize the differences between the AD and normal signals.

Target C4
-A=

-0.1

0

0.1

n 0
V. e

-200 0 200 400 600 800
-----AD - Normal

Novel C4

----- AD - Normal

Figure B.1: Overall average ERPs from target (top) and novel (bottom) stimuli
from the C4 electrode.
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-200 0 200 400 600
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Novel FP1
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800
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Figure B.2: Overall average ERPs from target (top) and novel (bottom) stimuli
from the FP1 electrode.
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Novel 01
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Figure B.3: Overall average ERPs from target (top) and novel (bottom) stimuli
from the 01 electrode.
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Target P8

)0
----- AD Normal

Novel P8

-200 0 200 400 600 800
---- AD - Normal

Figure B.4: Overall average ERPs from target (top) and novel (bottom) stimuli
from the P8 electrode.
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Figure B.5: Overall average ERPs from target (top) and novel
from the P4 electrode.
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Target P7

-- AD -- Normal

Novel P7

I---AD - Normal

Figure B.6: Overall average ERPs from target (top) and novel (bottom) stimuli
from the P7 electrode.

Target F4

10
---- AD - Normal

Novel F4

-200 0 200 400 600 800
----- AD - Normal

Figure B.7: Overall average ERPs from target (top) and novel (bottom) stimuli
from the F4 electrode.
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Target FZ

'0
----- AD - Normal

Novel FZ

2.L

-200 0 200 400 600 800
---. AD - Normal

Figure B.8: Overall average ERPs from target (top) and novel (bottom) stimuli
from the FZ electrode.

Target PZ

----- AD - Normal

Novel PZ

-u

0

n
-200 0 200 400 600 800

----- AD Normal

Figure B.9: Overall average ERPs from target (top) and novel (bottom) stimuli
from the PZ electrode.
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Target P3
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----- AD -- Normal|

Novel P3
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Figure B. 10:

0 200 400 600 800
----- AD - Normal

Overall average ERPs from target (top) and novel (bottom) stimuli
from the P3 electrode.
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Novel F7
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Figure B.11: Overall average ERPs from target (top) and novel (bottom) stimuli
from the F7 electrode.
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Target T8
A 4

10
--- AD -- Normal

Novel T8

I0
---- AD - Normal

Figure B.12: Overall average ERPs from target (top) and novel (bottom) stimuli
from the T8 electrode.

Target CZ

----- AD -- Normal

Novel CZ

V.C.,

-200 0 200 400 600 800
----- AD - Normal

Figure B.13: Overall average ERPs from target (top) and novel (bottom) stimuli
from the CZ electrode.
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Figure B.14: Overall average ERPs from target (top) and novel (bottom) stimuli
from the F3 electrode.
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4
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Figure B.15: Overall average ERPs from target (top) and novel
from the 02 electrode.
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Target FP2

)0
----- AD - Normal

Novel FP2

-200 0 200 400 600
.--.. AD - Normal

Figure B.16: Overall average ERPs from target (top) and novel
from the FP2 electrode.
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800

(bottom) stimuli

10
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Figure B.17: Overall average ERPs from target (top) and novel (bottom) stimuli
from the F8 electrode.
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Target C3

0
--- AD - Normal

Novel C3
r\ r

10
----- AD - Normal

Figure B.18: Overall average ERPs from target (top) and novel (bottom) stimuli
from the C3 electrode.

Target T7

)0
-----AD - Normal

Novel T7

-U.1

0

0.1

no
-200 0 200 400 600 800

----- AD - Normal

Figure B.19: Overall average ERPs from target (top) and novel (bottom) stimuli
from the T7 electrode.
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APPENDIX C

EXTENDED RESULTS

The tables of results included in this appendix are the average of five leave-one-out trials

and the 95% confidence intervals from the classifier fusion experiments. The include all

combinations of the classifiers in the various experiments. Averages over 70% are bold.
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Table C.1: Averages of 1 classifier each from the target/parietal recordings for 71 patients
(refer to Table 6.8).

Single Classifiers
1) P4 2-4Hz 61.41 ± 3.83%
2) PZ2-4Hz 62.25 ± 2.88%
3) P3 2-4Hz 61.41 ± 4.56%
4.) P4 1-2Hz 60.28 ± 4.53%
5) PZ 1-2Hz 60.28 ± 3.36%
6.) P7 1-2Hz 62.25 ± 4.53%
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Combinations
13.) 12 5 6 MV 64.51 ±2.28%
PROD 66.76 3.62%
SUM 65.92 ±3.79%
14.) 1 3 4 5 MV 63.10 ±5.45%
PROD 62.82 ± 2.00%
SUM 64.22 ± 4.72%
15.) 1 3 4 6 MV 65.63 ± 4.39%
PROD 64.23 ± 6.38%
SUM 67.89 6.35%
16.) 13 5 6 MV 66.76 2.65%
PROD 65.92 ± 4.17%
SUM 66.48 ±3.13%
17.) 1 4 5 6 MV 63.38 ±2.48%
PROD 66.48 ± 1.46%
SUM 65.35 ±1.57%
18.)2 3 4 5 MV 61.41 ± 6.61%
PROD 61.13 ±5.75%
SUM 63.10 ± 5.45%
19.) 2 3 4 6 MV 64.51 ±5.45%
PROD 63.10 ±4.85%
SUM 65.92 ± 6.47%
20.) 2 4 5 6 MV 64.79 ±3.91%
PROD 65.64±2.00%
SUM 66.20 ±1.75%
21.) 3 4 5 6 MV 63.66 ±1.46%
PROD 62.81 ±5.61%
SUM 64.51 ±2.28%
22.) 2 3 5 6 MV 65.35 ±4.88%
PROD 63.94 ±3.63%
SUM 63.94 ± 2.93%
23.) 12 3 MV 61.41 ± 3.18%
PROD 64.79 5.39%
SUM 61.97 ±2.77%
24.) 1 2 4 MV 64.51± 1.46%
PROD 65.35 ± 2.92%
SUM 66.48 ±2.59%
25.) 1 2 5 MV 63.38 ± 3.50%
PROD 65.64 ±2.00%
SUM 64.51± 3.36%
26.) 1 2 6 MV 65.63 ± 4.72%
PROD 65.63 6.13%
SUM 65.35 ±4.39%
27.) 1 3 4 MV 63.10 ± 1.46%
PROD 60.84 ± 6.82%
SUM 62.82 2.65%

Combinations
1.)1 2 3 4 5 6 MV 65.35 ±3.18%
PROD 64.22 ±5.33%
SUM 65.35 ±4.21%
2.) 1 2 3 4 5 MV 63.38 ±6.06%
PROD 65.07 ± 2.28%
SUM 65.63 ± 4.56%
3.) 1 2 3 4 6 MV 64.51 ±3.79%
PROD 64.79 ±4.79%
SUM 65.35 ±2.00%
4.) 1 3 4 5 6 MV 64.22 ±4.73%
PROD 64.51 ± 3.99%
SUM 66.76 ±5.04%
5.) 2 3 4 5 6 MV 63.66 ±4.69%
PROD 61.97 ±2.77%
SUM 66.48 ±3.13%
6.) 1 2 4 5 6 MV 65.92 ±3.36%
PROD 66.48 ±2.59%
SUM 68.17 ±3.62%
7.) 1 2 3 5 6 MV 63.94 ±3.41%
PROD 64.79 ±5.93%
SUM 65.92 ±3.13%
8.) 1 2 3 4 MV 61.41 ±5.04%
PROD 65.07 ±4.53%
SUM 63.66 ±3.37%
9.) 1 2 3 5 MV 62.82 ±4.22%
PROD 64.51 ± 5.30%
SUM 63.66 ±4.86%
10.) 12 3 6 MV 63.94 ±2.93%
PROD 64.79 ±3.27%
SUM 64.23 ±5.04%
11.) 1 2 4 5 MV 64.79 ±4.46%
PROD 67.04 ±1.99%
SUM 68.17 ± 2.92%
12.) 1 2 4 6 MV 66.48 ±3.79%
PROD 66.20 ±4.46%
SUM 69.01 ± 2.47%

Combinations
28.) 1 3 5 MV 62.25 ±3.36%
PROD 64.51± 5.85%
SUM 62.82 ± 3.84%
9.) 1 3 6 MV 66.20 ±2.47%

PROD 65.07 ± 3.99%
SUM 66.48 ±1.46%
30.) 14 5 MV 65.07 ±1.92%
PROD 66.20 ±2.76%
SUM 67.05 ± 0.96%
31.) 1 4 6 MV 63.10 ± 3.79%
PROD 64.79 ± 2.48%
SUM 64.51 2.88%
32.) 1 5 6 MV 63.94 ± 5.75%
PROD 64.22 ± 3.62%
SUM 63.38 ± 5.39%
33.) 2 3 4 MV 61.13 ± 5.33%
PROD 62.82 5.33%
SUM 64.22 ± 5.47%
34.) 2 3 5 MV 60.56 7.00%
PROD 62.82 ± 6.84%
SUM 61.69 ±5.45%
35.) 2 3 6 MV 62.82 ± 5.74%
PROD 63.66 ± 3.99%
SUM 64.51 ±3.79%
36.) 2 4 5 MV 65.63 ±5.04%
PROD 65.92 ± 3.36%
SUM 66.76 ±2.65%
37.) 2 4 6 MV 64.51 ±4.85%
PROD 65.35 ±6.14%
SUM 65.07 ±3.37%
38.) 2 5 6 MV 64.79 ±3.71%
PROD 65.63 ±3.18%
SUM 64.51 ±3.59%
39.) 3 4 5 MV 60.56 ±4.28%
PROD 60.00 ± 6.95%
SUM 61.41 ± 7.48%
40.) 34 6 MV 60.28 ±5.30%
PROD 60.56 ± 5.93%
SUM 63.94 ± 2.00%
41.) 3 5 6 MV 60.28 ±4.53%
PROD 65.35 ± 6.26%
SUM 67.33 ±2.59%
42.)4 5 6 MV 64.79 ±2.14%
PROD 62.81 ± 5.47%
SUM 64.51 ± 3.13%



Table C.2: Averages of 3 classifier each from the target/parietal recordings for 71 patients
(refer to Table 6.9).

Single Classifiers
1) P4 2-4Hz 61.13 ± 2.92 %
2) PZ2-4Hz 57.46 + 3.79 %
3.) P3 2-4Hz 58.59 ± 5.04 %
4) P4 1-2Hz 62.82 ± 4.22 %
5.) PZ-2Hz 62.25 ± 2.88 %
6) P7 1-2Hz 63.10 ± 4.36 %
11.) P4 2-4Hz 63.94 ± 6.73 %
12.) PZ2-4Hz 60.28 ± 2.87 %
13.) P3 2-4Hz 63.38 ± 2.77 %
14.) P4 1-2Hz 60.84 ± 4.18 %
15.) PZ l-2Hz 63.10 ± 7.25 %
16.) P7 1-2Hz 60.84 ± 3.79 %
21.) P4 2-4Hz 61.97 ± 5.39 %
22) PZ2-4Hz 59.44 ± 4.53 %
23.) P3 2-4Hz 58.59 ± 5.88 %
24) P4 1-2Hz 60.85 ± 4.85 %
25.) PZ 1-2Hz 68.17 ± 3.62 %
26) P7 1-2Hz 63.66 ± 2.88 % I
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Combinations
11.) 1 2 4 5 MV 66.20 + 2.47 %
PROD 68.45 ± 1.56 %
SUM 68.17 ± 2.92 %
12.) 1 2 4 6 MV 67.89 ± 1.46 %
PROD 69.30 ± 4.17 %
SUM 69.29 ± 1.46 %
13.) 1 2 5 6 MV 65.64 2.65 %
PROD 69.01 ± 1.23 %
SUM 68.73 ± 1.91 %
14.) 13 4 5 MV 66.76 ± 4.56 %
PROD 65.07 ± 1.92 %
SUM 65.64 ± 3.41 %
15.)13 4 6 MV 69.02 ± 5.67 %
PROD 65.63 ± 3.18 %
SUM 68.45 ± 5.04 %
16.) 13 5 6 MV 69.30 ± 4.52 %
PROD 69.01 ± 2.76 %
SUM 69.01 ± 4.10 %
17.) 14 5 6 MV 67.61 ± 3.03 %
PROD 69.01 ± 2.14 %
SUM 69.29 ± 1.46 %
18.) 2 3 4 5 MV 66.20 ± 2.14 %
PROD 64.23 ± 3.63 %
SUM 65.35 ± 2.00 %
19.) 2 3 4 6 MV 67.61 ± 4.79 %
PROD 65.92 ± 2.59 %
SUM 67.33 ± 3.36 %
20.)2 4 5 6 MV 68.17 ± 2.92 %
PROD 68.17 ± 0.95 %
SUM 69.58 ± 3.62 %
21.) 3 4 5 6 MV 68.45 ± 3.83 %
PROD 65.64 ± 2.65 %
SUM 67.61 ± 2.14 %
22.)2 3 5 6 MV 66.48 ± 4.53 %
PROD 67.33 ± 4.35 %
SUM 66.20 ± 3.27 %
23.) 12 3 MV 65.35 ± 3.18 %
PROD 66.48 ± 3.13 %
SUM 66.20 ± 2.14 %
24.) 1 2 4 MV 63.10 - 3.37 %
PROD 65.92 ± 2.87 %
SUM 64.22 ± 4.21 %
25.) 1 2 5 MV 65.07 ± 3.99 %
PROD 68.45 ± 3.62 %
SUM 66.48 ± 3.79 %
26.) 12 6 MV 65.92 ± 5.16 %
PROD 66.76 ± 3.41 %
SUM 68.45 ± 2.92 %

Combinations
1.) 123456MV 66.76 ± 4.21 %
PROD 67.33 ± 1.91 %
SUM 68.45 ± 3.17 %
2.) 1 2 3 4 5 MV 66.48 ± 3.99 %
PROD 66.76 ± 3.17 %
SUM 67.61 ± 1.74 %
3.)12346MV 69.58 ± 3.62 %
PROD 67.89 ± 1.46 %
SUM 69.01 ± 1.74 %
4.) 13 4 5 6 MV 67.32 ± 2.87 %
PROD 65.64 ± 2.65 %
SUM 68.45 ± 1.99 %
5.) 2 3 4 5 6 MV 66.20 ± 1.75 %
PROD 66.48 ± 2.59 %
SUM 66.76 ± 2.65 %
6.)12 4 5 6 MV 68.17 ± 3.17 %
PROD 69.01 ± 2.14 %
SUM 69.01 ± 2.76 %
7.) 1 2 3 5 6 MV 65.63 ± 3.63 %
PROD 69.30 ± 2.87 %
SUM 68.45 + 3.83 %
8.) 12 3 4 MV 67.32 ± 2.28 %
PROD 64.79 ± 2.77 %
SUM 64.79 ± 3.50 %
9.) 1 2 3 5 MV 66.48 ± 2.28 %
PROD 65.64 ± 1.57 %
SUM 64.79 ± 2.77 %
10.) 1 2 3 6 MV 68.45 ± 3.62 %
PROD 66.76 ± 1.99 %
SUM 69.01 ± 2.47 %

Combinations
27.) 134MV 66.20 ± 2.76 %
PROD 64.51 ± 4.36 %
SUM 66.20 ± 2.14 %
28.) 13 5 MV 67.04 ± 4.72 %
PROD 66.48 ± 2.28 %
SUM 67.89 ± 2.87 %
29.) 136MV 68.17 ± 1.56 %
PROD 66.20 ± 1.75 %
SUM 69.58 ± 2.34 %
30.)145MV 68.17 ± 3.41 %
PROD 68.45 ± 1.56 %
SUM 68.17 ± 4.02 %
31.) 146MV 69.02 ± 5.10 %
PROD 69.86 ± 3.41 %
SUM 68.73 ± 2.28 %
32.) 15 6 MV 68.45 ± 5.88 %
PROD 71.27 ± 0.96 %
SUM 69.30 ± 2.28 %
33.) 2 3 4 MV 64.79 ± 3.91 %
PROD 64.22 ± 3.41 %
SUM 66.20 ± 4.79 %
34.) 2 3 5 MV 66.48 ± 4.35 %
PROD 64.51 ± 2.88 %
SUM 65.63 ± 2.92 %
35.) 2 3 6 MV 65.92 ± 4.53 %
PROD 66.76 ± 3.83 %
SUM 65.63 ± 3.41 %
36.) 2 4 5 MV 65.63 ± 3.18 %
PROD 64.51 ± 3.13 %
SUM 64.51 ± 3.99 %
37.) 246 MV 65.35 ± 6.25 %
PROD 69.01 ± 2.14 %
SUM 69.86 ± 3.63 %
38.) 2 5 6 MV 67.89 ± 3.13 %
PROD 70.42 ± 1.75 %
SUM 68.45 ± 3.62 %
39.) 3 4 5 MV 63.38 ± 4.79 %
PROD 63.38 ± 3.27 %
SUM 63.38 ± 3.27 %
40.) 3 4 6 MV 65.63 ± 4.21 %
PROD 65.92 ± 4.18 %
SUM 66.48 ± 3.79 %
41.) 3 5 6 MV 67.61 ± 5.67 %
PROD 66.48 ± 2.59 %
SUM 68.17 ± 3.83 %
42.) 4 5 6 MV 68.73 ± 3.99 %
PROD 66.20 ± 3.27 %
SUM 67.61 ± 1.74 %



Table C.3: Averages of 1 classifier each from the target/parietal recordings for 66 patients
(refer to Table 6.10).

Single Classifiers
1) P4 2-4Hz 65.63 ± 4.37 %
2) PZ2-4Hz 72.68 ± 1.99 %
3) P3 2-4Hz 65.63 ± 8.14 %
4) P4 1-2Hz 61.69 ± 4.84 %
5.) PZ 1-2Hz 62.82 ± 4.87 %
6) P7 1-2Hz 60.00 ± 0.96 %

Combinations
1.) 12 3 4 5 6 MV 72.68 ± 3.17 %
PROD 70.99 ± 2.91 %
SUM 73.52 ± 335 %
2.) 12 3 4 5 MV 72.39 ± 1.99 %
PROD 71.83 ± 1.74 %
SUM 72.68 ± 2.65 %
3.) 12 3 4 6 MV 73.52 ± 2.27 %
PROD 72.11 ± 3.78 %
SUM 72.68 - 2.92 %
4.)13 4 5 6 MV 72.11 ± 3.12 %
PROD 69.58 ± 1.98 %
SUM 72.68 =. 1.56 %
5.) 2 3456MV 71.27 ± 1.99 %
PROD 69.58 ± 4.37 %
SUM 70.14 ± 2.27 %
6.) 12 4 5 6 MV 72.96 2 2.59 %
PROD 72.11 ± 1.46 %
SUM 73.24 ± 2.76 %
7.)12 3 5 6 MV 74.08 ± 3.81 %
PROD 72.68 ± 3.17 %
SUM 72.40 ± 4.54 %
8.) 12 3 4 MV 72.68 - 3.17 %
PROD 72.96 f 2.87 %
SUM 73.52 ± 2.27 %
9.) 12 3 5 MV 74.93 ± 5.14 %
PROD 72.96 ± 4.16 %
SUM 72.96 = 5.56 %
10.) 12 3 6 MV 74.08 ± 4.01 %
PROD 72.67 ± 4.01 %
SUM 73.24 ± 4.09 %
11.) 12 4 5 MV 72.68 ± 2.92 %
PROD 72.39 - 3.82 %
SUM 73.52 = 434 %
12.) 12 4 6 MV 70.99 ± 4.01 %
PROD 70.99 ± 2.64 %
SUM 72.11 ± 1.46 %

Combinations
13.)1256MV 69.58 ± 6.59 %
PROD 72.67 ± 4.54 %
SUM 70.70 ± 3.97 %
14.) 1 3 4 5 MV 70.70 ± 2.86 %
PROD 69.86 ± 3.40 %
SUM 72.68 - 4.02 %
15.)1346MV 70.70 - 4.16 %
PROD 67.89 ± 3.97 %
SUM 70.70 ± 4.51 %
16.)1356MV 69.86 ± 6.59 %
PROD 69.30 + 4.67 %
SUM 71.55 ± 434 %
17.)1456MV 67.89 ± 3.97 %
PROD 70.14 ± 2.86 %
SUM 69.86 ± 1.56 %
18.)2 345 MV 71.27 f 3.17 %
PROD 69.86 ± 3.40 %
SUM 70.42 = 3.26 %
19.)2 3 4 6 MV 70.99 ± 5.17 %
PROD 70.14 ± 4.83 %
SUM 70.70 ± 3.57 %
20.)2 4 5 6 MV 67.89 ± 3.77 %
PROD 70.14 ± 4.67 %
SUM 69.58 ± 2.64 %
21.)3 4 5 6 MV 67.04 ± 5.17 %
PROD 68.45 ± 4.01 %
SUM 67.32 ± 2.86 %
22.) 2 3 5 6 MV 69.86 ± 6.81 %
PROD 71.55 ± 6.91 %
SUM 69.86 ± 4.54 %
23.) 12 3 MV 73.52 ± 4.51 %
PROD 73.24 ± 3.26 %
SUM 72.96 - 2.87 %
24.) 12 4 MV 7239 ± 234 %
PROD 71.27 ± 3.61 %
SUM 7239 ± 2.92 %
25.)12 5 MV 69.02 ± 5.91 %
PROD 72.68 ± 4.02 %
SUM 69.02 ± 4.93 %
26.)12 6 MV 68.73 ± 4.51 %
PROD 71.55 4.83 %
SUM 69.86 ± 3.16 %
27.) 1 3 4 MV 68.17 ± 6.36 %
PROD 67.89 ± 3.11 %
SUM 69.58 ± 3.82 %

Combinations
28.)135MV 68.73 ± 4.83 %
PROD 71.27 ± 5.98 %
SUM 70.42 ± 3.48 %
29.) 136MV 68.45 ± 5.73 %
PROD 70.14 ± 4.83 %
SUM 70.71 ± 5.56 %
30.)145MV 68.45 ± 3.61 %
PROD 67.89 ± 0.77 %
SUM 68.45 ± 1.98 %
31.)146MV 67.89 ± 2.27 %
PROD 67.89 ± 6.09 %
SUM 67.89 ± 6.68 %
32.)15 6 MV 69.58 ± 2.64 %
PROD 69.30 ± 4.67 %
SUM 68.73 ± 2.27 %
33.) 2 3 4 MV 72.11 + 3.35 %
PROD 69.86 ± 3.61 %
SUM 71.27 ± 1.99 %
34.)2 3 5 MV 71.27 ± 4.19 %
PROD 71.55 - 4.99 %
SUM 69.86 ± 5.02 %
35.) 2 3 6 MV 69.86 ± 8.23 %
PROD 72.11 ± 4.99 %
SUM 71.55 4.51 %
36.)2 4 5 MV 65.64 ± 1.56 %
PROD 69.02 ± 3.48 %
SUM 67.33 ± 1.91 %
37.) 2 4 6 MV 70.14 ± 3.12 %
PROD 69.01 ± 1.23 %
SUM 70.70 - 3.78 %
38.) 2 5 6 MV 72.68 - 2.65 %
PROD 71.83 ± 3.70 %
SUM 72.96 -: 3.97 %
39.)3 4 5 MV 65.92 ± 3.35 %
PROD 66.20 ± 4.09 %
SUM 66.20 ± 3.69 %
40.)3 4 6 MV 66.20 ± 7.49 %
PROD 62.82 ± 4.37 %
SUM 66.48 ± 4.16 %
41.) 3 5 6 MV 65.35 ± 6.71 %
PROD 67.89 ± 7.23 %
SUM 67.32 ± 5.96 %
42.)456MV 65.64 ± 1.99 %
PROD 63.66 ± 2.27 %
SUM 64.51 ± 1.46 %
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Table C.4: Averages of 3 classifier each from the target/parietal recordings for 66 patients
(refer to Table 6.11).

Combinations
1.) 1 2 3 4 5 6MV 73.64 ± 3.90 %
PROD 75.46 ± 3.37 %
SUM 74.85 ± 2.85 %
2.) 1 2 3 4 5 MV 73.33 ± 5.08 %
PROD 75.45 ± 5.86 %
SUM 75.15 ± 5.58 %
3.) 12 3 4 6 MV 72.73 ± 3.99 %
PROD 75.15 ± 2.14 %
SUM 75.76 ± 3.26 %
4.) 13 4 5 6 MV 73.33 ± 4.53 %
PROD 72.42 ± 1.57 %
SUM 73.64 ± 2.85 %
5.)2 3 4 5 6 MV 72.73 ± 4.61 %
PROD 72.12 ± 2.52 %
SUM 74.85 ± 2.85 %
6.)12 4 5 6 MV 74.55 ± 2.45 %
PROD 75.45 ± 1.57 %
SUM 75.46 ± 2.79 %
7.) 12 3 5 6 MV 73.64 ± 5.89 %
PROD 73.03 ± 1.57 %
SUM 75.76 ± 2.97 %
8.)12 3 4 MV 71.21 ± 2.66 %
PROD 71.21 ± 2.97 %
SUM 72.42 ± 4.08 %
9.) 12 3 5 MV 69.39 ± 3.62 %
PROD 71.21 ± 4.61 %
SUM 69.70 ± 2.97 %
10.) 12 3 6 MV 70.00 ± 3.37 %
PROD 70.61 ± 1.68 %
SUM 71.51 ± 3.37 %

Single Classifiers
1.) P4 2-4Hz 66.67 ± 5.79 %
2.) PZ2-4Hz 70.00 ± 3.62 %
3.) P3 2-4Hz 61.21 ± 1.68 %
4) P4 1-2Hz 68.79 ± 5.89 %
5.) PZ 1-2Hz 66.06 ± 4.33 %
6.) P7 1-2Hz 60.30 ± 8.76 %
11) P4 2-4Hz 64.55 ± 6.99 %
12) PZ2-4Hz 67.58 ± 2.85 %
13.) P3 2-4Hz 63.03 ± 8.78 %
14.) P4 1-2Hz 66.97 ± 6.15 %
15.) PZ 1-2Hz 67.27 ± 3.90 %
16.) P7 1-2Hz 62.43 ± 4.29 %
21.) P4 2-4Hz 68.49 ± 8.96 %
22) PZ2-4Hz 66.36 ± 4.87 %
23.) P3 2-4Hz 63.64 ± 5.64 %
24) P4 1-2Hz 67.27 ± 1.68 %
25.) PZ 1-2Hz 67.58 ± 3.42 %
26) P7 1-2Hz 64.24 ± 3.66 %
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Combinations
11.) 12 4 5 MV 74.55 ± 1.57 %
PROD 73.64 ± 1.03 %
SUM 74.85 ± 1.03 %
12.)1246MV 72.73 ± 1.88 %
PROD 73.03 ± 1.57 %
SUM 75.15 ± 1.03 %
13.)12 5 6 MV 74.55 ± 3.09 %
PROD 75.45 ± 1.57 %
SUM 74.55 ± 2.45 %
14.)13 4 5 MV 70.91 ± 3.62 %
PROD 71.52 ± 3.62 %
SUM 73.94 ± 1.57 %
15.) 13 4 6 MV 71.21 ± 5.15 %
PROD 71.82 ± 1.68 %
SUM 73.03 ± 2.45 %
16.)1356MV 70.30 ± 2.86 %
PROD 73.33 ± 3.42 %
SUM 74.24 ± 1.33 %
17.) 14 5 6 MV 73.94 + 2.45 %
PROD 73.64 + 2.15 %
SUM 73.64 ± 2.15 %
18.)2 3 4 5 MV 69.09 ± 3.15 %
PROD 72.42 ± 3.09 %
SUM 72.12 ± 3.42 %
19.) 2 3 4 6MV 70.30 ± 2.15 %
PROD 71.21 ± 1.33 %
SUM 72.42 ± 3.09 %
20.) 2 4 5 6 MV 76.36 ± 3.15 %
PROD 72.42 ± 3.62 %
SUM 76.06 ± 2.45 %
21.)3 4 5 6 MV 71.51 ± 3.36 %
PROD 71.82 ± 2.14 %
SUM 73.64 ± 1.03 %
22.) 2 3 5 6 MV 71.21 ± 3.76 %
PROD 73.64 ± 2.85 %
SUM 73.94 ± 1.57 %
23.)12 3 MV 68.18 ± 2.30 %
PROD 69.70 ± 4.80 %
SUM 68.79 ± 2.85 %
24.) 12 4 MV 73.33 ± 2.52 %
PROD 71.21 ± 2.30 %
SUM 73.94 ± 2.06 %
25.) 12 5 MV 73.03 ± 4.49 %
PROD 74.55 ± 2.45 %
SUM 74.24 ± 2.31 %
26.) 12 6 MV 74.24 ± 3.52 %
PROD 73.33 ± 1.68 %
SUM 73.94 ± 2.45 %

Combinations
27.)134MV 70.61 ± 3.66 %
PROD 68.79 ± 1.68 %
SUM 71.52 ± 4.87 %
28.) 13 5 MV 70.91 ± 5.22 %
PROD 70.91 ± 5.22 %
SUM 70.30 ± 4.72 %
29.) 13 6 MV 70.00 ± 3.09 %
PROD 71.21 ± 2.97 %
SUM 70.91 ± 3.09 %
30.)145MV 74.24 ± 3.76 %
PROD 72.73 ± 3.99 %
SUM 73.03 ± 3.86 %
31.)146MV 71.82 ± 3.90 %
PROD 72.42 ± 3.09 %
SUM 72.42 ± 2.45 %
32.) 156MV 73.03 ± 3.09 %
PROD 73.94 ± 2.45 %
SUM 71.52 ± 4.87 %
33.) 2 3 4 MV 69.40 ± 2.79 %
PROD 71.52 ± 3.62 %
SUM 70.30 ± 3.41 %
34.)2 3 5 MV 71.21 ± 4.61 %
PROD 72.73 ± 4.80 %
SUM 70.91 ± 5.22 %
35.)236MV 68.79 ± 1.68 %
PROD 70.30 ± 2.15 %
SUM 69.09 ± 3.90 %
36.) 2 4 5 MV 72.73 ± 3.76 %
PROD 72.12 ± 2.85 %
SUM 72.73 ± 2.66 %
37.)2 4 6 MV 73.64 ± 3.41 %
PROD 72.73 ± 3.26 %
SUM 73.94 ± 1.57 %
38.)2 5 6 MV 73.33 ± 3.41 %
PROD 75.15 ± 2.52 %
SUM 74.85 ± 2.85 %
39.)3 4 5 MV 70.00 ± 2.79 %
PROD 70.30 ± 4.33 %
SUM 70.30 ± 3.66 %
40.)346MV 66.97 ± 3.09 %
PROD 69.70 ± 1.88 %
SUM 69.40 ± 3.37 %
41.)356MV 68.79 ± 4.33 %
PROD 72.73 ± 2.66 %
SUM 71.82 ± 2.85 %
42.)4 5 6 MV 72.73 ± 2.66 %
PROD 72.73 ± 2.30 %
SUM 73.94 ± 2.06 %



Table C.5: Averages of 1 classifier each from the novel/parietal recordings for 71 patients
(refer to Table 6.12).

Combinations
1.) 123456MV 72.68 ± 3.18 %
PROD 70.99 ± 2.92 %
SUM 73.52 ± 336 %
2.)12 3 4 5 MV 7239 ± 2.00 %
PROD 71.83 ± 1.75 %
SUM 72.68 - 2.65 %
3.)12 3 4 6 MV 73.52 - 2.28 %
PROD 72.11 - 3.79 %
SUM 72.68 - 2.93 %
4.)13 4 5 6 MV 72.11 ± 3.13 %
PROD 69.58 ± 1.99 %
SUM 72.68 - 1.57 %
5.) 2 3456MV 71.27 ± 2.00 %
PROD 69.58 ± 4.39 %
SUM 70.14 ± 2.28 %
6.)12456MV 72.96 ± 2.60 %
PROD 72.11 ± 1.46 %
SUM 73.24 ± 2.77 %
7.)12 3 5 6 MV 74.08 ± 3.83 %
PROD 72.68 ± 3.18 %
SUM 72.40 4.56 %
8.)12 3 4 MV 72.68 ± 3.18 %
PROD 72.96 ± 2.88 %
SUM 73.52 2.28 %
9.)12 3 5 MV 74.93 ± 5.16 %
PROD 72.96 ± 4.18 %
SUM 72.96 5.58 %
10.) 12 3 6 MV 74.08 ± 4.03 %
PROD 72.67 ± 4.03 %
SUM 73.24 ± 4.10 %
11.) 12 4 5 MV 72.68 ± 2.93 %
PROD 7239 ± 3.84 %
SUM 73.52 436 %
12.) 12 4 6 MV 70.99 ± 4.03 %
PROD 70.99 ± 2.65 %
SUM 72.11 ± 1.46 %

Single Classifiers
1.) P4 2-4Hz 65.63 ± 4.39 %
2.) PZ2-4Hz 72.68 ± 2.00 %
3) P3 2-4Hz 65.63 ± 8.17 %
4.) P4 1-2Hz 61.69 ± 4.85 %
5) PZ 1-2Hz 62.82 ± 4.89 %
6.) P7 1-2Hz 60.00 ± 0.96 %

121

Combinations
13.)1256MV 69.58 ± 6.61 %
PROD 72.67 ± 4.56 %
SUM 70.70 ± 3.99 %
14.)1345MV 70.70 ± 2.87 %
PROD 69.86 ± 3.41 %
SUM 72.68 4 4.03 %
15.) 1 3 4 6MV 70.70 ± 4.18 %
PROD 67.89 ± 3.99 %
SUM 70.70 ± 4.53 %
16.)1356MV 69.86 ± 6.61 %
PROD 69.30 ± 4.69 %
SUM 71.55 ± 4.35 %
17.)1456MV 67.89 ± 3.99 %
PROD 70.14 ± 2.87 %
SUM 69.86 ± 1.57 %
18.)2 3 4 5 MV 71.27 ± 3.18 %
PROD 69.86 ± 3.41 %
SUM 70.42 ± 3.27 %
19.) 2 346 MV 70.99 5.19 %
PROD 70.14 ± 4.85 %
SUM 70.70 ± 3.58 %
20.) 2456MV 67.89 ± 3.79 %
PROD 70.14 ± 4.69 %
SUM 69.58 ± 2.65 %
21.) 3456MV 67.04 ± 5.19 %
PROD 68.45 ± 4.02 %
SUM 67.32 ± 2.87 %
22.) 2356MV 69.86 ± 6.84 %
PROD 71.55 ± 6.93 %
SUM 69.86 ± 4.56 %
23.) 123MV 73.52 ± 4.53 %
PROD 73.24 ± 3.27 %
SUM 72.96 ± 2.88 %
24.)124MV 7239 ± 2.35 %
PROD 71.27 ± 3.63 %
SUM 7239 ± 2.93 %
25.)12 5 MV 69.02 ± 5.93 %
PROD 72.68 ± 4.03 %
SUM 69.02 ± 4.94 %
26.)12 6 MV 68.73 ± 4.53 %
PROD 71.55 ± 4.85 %
SUM 69.86 ± 3.17 %
27.) 13 4 MV 68.17 ± 6.38 %
PROD 67.89 ± 3.13 %
SUM 69.58 ± 3.83 %

Combinations
28.) 13 5 MV 68.73 ± 4.85 %
PROD 71.27 ± 6.01 %
SUM 70.42 ± 3.50 %
29.)13 6 MV 68.45 ± 5.75 %
PROD 70.14 ± 4.85 %
SUM 70.71 ± 5.58 %
30.) 145MV 68.45 ± 3.62 %
PROD 67.89 ± 0.78 %
SUM 68.45 ± 1.99 %
31.) 1 4 6 MV 67.89 ± 2.28 %
PROD 67.89 ± 6.11 %
SUM 67.89 ± 6.71 %
32.) 1 5 6 MV 69.58 ± 2.65 %
PROD 69.30 ± 4.69 %
SUM 68.73 2.28 %
33.) 2 3 4 MV 72.11 3.36 %
PROD 69.86 ± 3.63 %
SUM 71.27 ± 2.00 %
34.)2 3 5 MV 71.27 ± 4.21 %
PROD 71.55 ± 5.01 %
SUM 69.86 ± 5.04 %
35.) 2 3 6 MV 69.86 ± 8.26 %
PROD 72.11 ± 5.00 %
SUM 71.55 ± 4.52 %
36.)2 4 5 MV 65.64 ± 1.57 %
PROD 69.02 ± 3.49 %
SUM 67.33 ± 1.91 %
37.)2 4 6 MV 70.14 ± 3.13 %
PROD 69.01 ± 1.23 %
SUM 70.70 ± 3.79 %
38.)2 5 6 MV 72.68 ± 2.65 %
PROD 71.83 ± 3.71 %
SUM 72.96 ± 3.99 %
39.)3 4 5 MV 65.92 ± 3.36 %
PROD 66.20 ± 4.10 %
SUM 66.20 ± 3.71 %
40.)3 4 6 MV 66.20 ± 7.52 %
PROD 62.82 ± 4.39 %
SUM 66.48 ± 4.17 %
41.) 3 5 6 MV 65.35 ± 6.73 %
PROD 67.89 ± 7.25 %
SUM 67.32 ± 5.98 %
42.)4 5 6 MV 65.64 ± 2.00 %
PROD 63.66 2.28 %
SUM 64.51 ± 1.46 %



Table C.6: Averages of 3 classifiers each from the novel/parietal recordings for 71
patients (refer to Table 6.13).

Single Cassifiers
1) P4 2-4H 65.07 ± 6.93 %
2.) PZ2-4Hz 70.42 ± 5.93 %
3) P3 2-4Hz 67.89 ± 228 %
4.) P4 1-2Hz 64.79 ± 6.05 %
5.) PZl-2Hz 61.13 ± 5.88 %
6.) P71-2Hz 55.49 ± 265 %
11.) P42-4Hz 67.32 ± 287 %
12.) PZ2-4Hz 73.52 ± 1.92 %
13) P3 2-4Hz 69.58 ± 5.47 %
14.) P4 1-2kH 61.41 ± 421 %
15.) PZ -2Hz 59.44 ± 228 %
16.)P71-2Hz 56.34 ± 6.06 %
21) P4 2-41 63.38 ± 5.39 %
22) PZ2-4 E 72.40 ± 4.56 %
23.) P3 2-4H 69.29 + 3.36 %
24.) P4 1-2Hz 64.79 ± 3.27 %
25.) PZ1-2Hz 6282 ± 403 %
26.) P7 1-2Hz 58.59 ± 421 %

Conbinations
11.) 12 4 5 MV 73.24 ± 1.75 %
PROD 7324 ± 2.14 %
SUM 73.52 2.28 %
12)1246MV 70.42 ± 2.47 %
PROD 72.11 ± 1.92 %
SUM 71.27 ± 2.93 %
13.)12 5 6 MV 71.83 ± 2.77 %
PROD 71.83 ± 2.48 %
SUM 71.83 ± 3.27 %
14.) 13 4 5 MV 73.52 ± 3.13 %
PROD 71.83 ± 2.48 %
SUM 72.96 ± 435 %
15.)134 6 MV 71.27 ± 3.63 %
PROD 71.55 3.59 %
SUM 71.83 ± 3.50 %
16.) 13 5 6 MV 71.27 5.04 %
PROD 70.70 ± 2.28 %
SUM 72.11 ± 2.28 %
17.)1456MV 70.70 ± 1.46 %
PROD 71.83 ± 1.24 %
SUM 71.55 0.78 %
18.) 2 345MV 70.70 ± 336 %
PROD 70.14 ± 2.28 %
SUM 71.55 ± 2.28 %
19.) 2346MV 73.24 2.14 %
PROD 74.08 ± 2.65 %
SUM 73.52 3.99 %
20.)2456MV 70.14 ± 0.78 %
PROD 72.11 ± 2.88 %
SUM 70.14 ± 2.28 %
21.) 3 456MV 70.70 ± 336 %
PROD 7239 ± 3.18 %
SUM 71.83 ± 1.75 %
22)2356MV 73.52 ± 3.13 %
PROD 7437 ± 2.59 %
SUM 71.83 ± 4.11 %
23.)12 3 MV 73.52 ± 3.13 %
PROD 72.68 ± 235 %
SUM 7239 ± 2.65 %
24.)124MV 71.83 ± 2.48 %
PROD 73.24 ± 2.14 %
SUM 73.52 ± 2.88 %
25.) 12 5 MV 70.14 2.59 %
PROD 71.83 ± 2.77 %
SUM 70.99 ± 3.41 %
26.)126MV 69.86 0.96 %
PROD 70.70 ± 1.46 %
SUM 70.70 ± 1.46 %
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Combinations
27.) 134MV 71.83 ± 1.75 %
PROD 70.42 ± 3.27 %
SUM 7239 ± 3.63 %
8.)13 5 MV 71.27 2.92 %

PROD 71.55 ± 0.78 %
SUM 7127 ± 3.83 %
29.)136MV 72.11 ± 2.88 %
PROD 71.83 ± 3.91 %
SUM 70.42 ± 2.76 %
30.)145MV 69.58 ± 3.41 %
PROD 70.42 ± 3.03 %
SUM 69.01 ± 5.39 %
31.)146MV 70.70 ± 1.92 %
PROD 7239 ± 3.63 %
SUM 72.11 ± 2.88 %
32)156 MV 67.32 2.87 %
PROD 70.42 ± 2.47 %
SUM 67.89 ± 2.28 %
33.)234MV 7437 ± 4.18 %
PROD 73.52 336 %
SUM 73.80 ± 4.03 %
34.)23 5MV 74.65 ± 1.24 %
PROD 7437 ± 2.28 %
SUM 72.96 3.59 %
35.)23 6MV 75.49 ± 4.56 %
PROD 76.90 ± 3.41 %
SUM 74.65 ± 2.47 %
36.)245MV 69.01 + 1.74 %
PROD 70.70 ± 1.46 %
SUM 68.45 ± 2.92 %
37.)246MV 73.52 ± 2.28 %
PROD 73.80 ± 2.92 %
SUM 73.80 ± 2.00 %
38.) 2 5 6 MV 71.83 ± 1.24 %
PROD 70.70 ± 1.92 %
SUM 71.27 ± 3.18 %
39.)345MV 69.58 + 2.34 %
PROD 70.99 ± 3.63 %
SUM 70.14 ± 336 %
40.)346MV 72.67 ± 4.89 %
PROD 71.55 ± 3.79 %
SUM 7127 ± 3.83 %
41.)356MV 71.55 ± 6.23 %
PROD 70.42 ± 1.24 %
SUM 68.17 ± 1.99 %
42) 4 5 6 MV 67.04 ± 3.18 %
PROD 70.14 ± 3.99 %
SUM 67.61 ± 4.28 %

Coniinations
1.)123456MV 72.68 ± 2.93 %
PROD 72.96 ± 336 %
SUM 73.52 ± 0.78 %
2.)12345MV 73.24 ± 1.75 %
PROD 73.24 3.50 %
SUM 74.93 ± 228 %
3.)12 3 4 6 MV 7239 ± 5.04 %
PROD 72.67 ± 4.03 %
SUM 73.80 ± 3.63 %
4.)13456MV 71.83 ± 3.03 %
PROD 70.99 ± 4.73 %
SUM 72.68 ± 2.93 %
5.)23456MV 71.83 ± 2.14 %
PROD 70.99 ± 3.41 %
SUM 71.55 ± 228 %
6.)12456MV 71.27 ± 2.00 %
PROD 72.11 ± 337 %
SUM 71.55 ± 228 %
7.)12356MV 70.99 ± 3.63 %
PROD 72.96 ± 3.79 %
SUM 72.11 3.59 %
8.)1234MV 72.68 ± 3.18 %
PROD 72.11 ± 3.79 %
SUM 72.96 ± 1.92 %
9.)123 5MV 72.96 ± 3.13 %
PROD 72.68 ± 0.96 %
SUM 7239 ± 3.41 %
10.) 12 3 6 MV 72.96 ± 4.85 %
PROD 73.80 ± 439 %
SUM 72.96 ± 4.18 %



Table C.7: Averages of 1 classifiers each from the novel/parietal recordings for 66
patients (refer to Table 6.14).

Single Classifiers
1.) P4 2-4Hz 68.18 ± 4.41 %
2.) PZ2-4Hz 69.70 ± 3.26 %
3.) P3 2-4Hz 65.15 ± 4.97 %
4) P4 1-2Hz 66.06 ± 5.74 %
5.) PZ -2Hz 69.39 ± 1.57 %
6.) P71-2Hz 62.12 ± 6.65 %

Combinations
1.)123456MV 74.85 ± 5.08 %
PROD 7636 ± 3.42 %
SUM 76.67 ± 4.33 %
2.)12 3 4 5 MV 75.15 ± 4.72 %
PROD 76.06 ± 3.62 %
SUM 75.76 ± 4.80 %
3.)12346MV 73.03 ± 4.69 %
PROD 75.76 ± 230 %
SUM 75.15 ± 3.90 %
4.)13 4 5 6 MV 73.94 ± 6.70 %
PROD 76.97 ± 3.85 %
SUM 74.55 ± 6.96 %
5.) 2 3456MV 75.76 ± 4.61 %
PROD 76.97 ± 336 %
SUM 75.76 ± 3.76 %
6.)12456MV 75.15 ± 2.85 %
PROD 75.76 ± 4.80 %
SUM 77.57 ± 2.79 %
7.)123 56MV 73.03 ± 2.79 %
PROD 74.54 ± 336 %
SUM 73.94 ± 2.45 %
8.)12 3 4 MV 72.12 ± 3.67 %
PROD 76.06 ± 4.29 %
SUM 74.24 ± 1.88 %
9.)1235MV 7333 ± 3.15 %
PROD 76.67 ± 5.73 %
SUM 74.54 ± 2.79 %
10.) 12 3 6 MV 72.42 ± 3.62 %
PROD 72.73 ± 133 %
SUM 73.94 ± 3.62 %
11.) 12 4 5 MV 7636 ± 3.15 %
PROD 74.85 ± 4.12 %
SUM 76.06 ± 3.09 %
12.) 12 4 6 MV 73.94 ± 3.62 %
PROD 74.85 ± 7.48 %
SUM 73.94 ± 3.86 %

Combinations
13.)12 5 6 MV 7333 ± 2.15 %
PROD 72.73 ± 2.66 %
SUM 7333 ± 2.85 %
14.)13 4 5 MV 72.12 ± 4.72 %
PROD 74.85 ± 5.58 %
SUM 7636 ± 4.90 %
15.)134 6 MV 72.12 ± 3.15 %
PROD 73.64 ± 2.15 %
SUM 75.76 ± 4.41 %
16.)1356MV 7333 ± 2.85 %
PROD 75.15 ± 3.15 %
SUM 75.15 ± 3.15 %
17.)1456MV 76.67 ± 2.85 %
PROD 75.45 ± 2.45 %
SUM 75.45 ± 3.09 %
18.)2 345 MV 76.06 ± 3.36 %
PROD 75.76 ± 2.97 %
SUM 76.06 ± 2.06 %
19.) 2 3 4 6 MV 7333 ± 3.66 %
PROD 75.76 ± 1.88 %
SUM 74.55 ± 4.87 %
20.) 2 4 5 6 MV 72.43 ± 2.06 %
PROD 74.24 ± 1.33 %
SUM 74.54 ± 0.84 %
21.) 3 4 5 6 MV 7636 ± 5.08 %
PROD 7636 ± 4.33 %
SUM 76.06 ± 4.87 %
22.) 2 3 5 6 MV 71.82 ± 2.14 %
PROD 7333 ± 4.72 %
SUM 72.12 ± 3.90 %
23.)12 3 MV 72.42 ± 3.09 %
PROD 73.64 ± 2.15 %
SUM 72.73 ± 2.31 %
24.)124MV 7333 ± 2.85 %
PROD 74.55 ± 4.87 %
SUM 74.24 ± 5.15 %
25.) 125 MV 73.94 ± 2.79 %
PROD 71.82 ± 4.90 %
SUM 73.64 ± 2.15 %
26.) 12 6 MV 70.60 ± 3.15 %
PROD 70.91 ± 4.87 %
SUM 71.21 ± 6.24 %
27.)134MV 70.00 ± 5.70 %
PROD 74.24 ± 2.31 %
SUM 71.51 ± 5.05 %
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Combinations
8.) 135MV 71.21 ± 3.52 %
?ROD 75.15 ± 6.04 %
;UM 71.82 ± 2.14 %
9.)13 6 MV 72.12 ± 5.89 %
PROD 72.73 ± 230 %
sUM 72.73 ± 4.61 %
30.)14 5 MV 74.24 ± 3.52 %
PROD 73.94 ± 1.57 %
sUM 74.85 ± 2.85 %
31.)146MV 69.70 ± 2.97 %
PROD 74.24 ± 6.91 %
SUM 72.73 ± 532 %
32.) 15 6 MV 70.91 ± 2.79 %
PROD 72.73 ± 3.52 %
SUM 72.12 ± 1.68 %
33.) 2 3 4MV 7333 ± 4.53 %
PROD 7636 ± 2.85 %
SUM 7333 ± 4.72 %
34.) 2 3 5 MV 74.24 ± 3.99 %
PROD 75.15 ± 5.08 %
SUM 74.24 ± 5.15 %
35.) 2 3 6 MV 70.91 ± 4.08 %
PROD 7333 ± 3.66 %
SUM 72.12 ± 2.85 %
36.)24 5 MV 69.70 ± 3.52 %
PROD 70.91 ± 3.62 %
SUM 70.00 ± 3.85 %
37.) 2 4 6 MV 72.73 ± 3.26 %
PROD 74.24 ± 4.21 %
SUM 76.06 ± 2.06 %
38.) 2 5 6 MV 74.55 ± 6.15 %
PROD 74.24 ± 4.41 %
SUM 75.15 ± 5.08 %
39.)3 4 5 MV 71.21 ± 5.64 %
PROD 74.55 ± 3.09 %
SUM 72.12 ± 5.74 %
40.) 3 4 6 MV 72.12 ± 5.58 %
PROD 74.24 ± 5.64 %
SUM 75.45 ± 5.55 %
41.) 3 5 6 MV 70.61 ± 7.48 %
PROD 7333 ± 2.15 %
SUM 71.52 ± 5.22 %
42.)4 5 6 MV 69.70 ± 4.80 %
PROD 72.73 ± 5.15 %
SUM 71.21 ± 4.61 %



Table C.8: Averages of 3 classifiers each from the novel/parietal recordings for 66
patients (refer to Table 6.15).

Single Classifiers
1.) P4 2-4Hz 67.58 ± 3.90 %
2.) PZ2-4Hz 72.42 ± 3.62 %
3.) P3 2-4Hz 64.85 ± 6.83 %
4.)P41-2Hz 70.00 ± 3.37 %
5.)PZl-2Hz 64.85 ± 8.76 %
6.) P71-2Hz 63.34 ± 2.06 %
11) P4 2-4Hz 71.21 ± 6.65 %
12.) PZ2-4Hz 71.82 ± 5.08 %
13) P3 2-4Hz 66.36 ± 3.09 %
14) P4 1-2Hz 69.39 ± 2.46 %
15) PZ l-2Hz 65.76 ± 7.35 %
16.) P7 1-2Hz 63.03 ± 7.48 %
21) P4 2-4Hz 70.61 ± 3.42 %
22.) PZ2-4Hz 70.91 ± 3.85 %
23.) P3 2-4Hz 65.76 ± 3.42 %
24) P4 1-2Hz 70.30 ± 2.85 %
25) PZ -2Hz 65.15 ± 4.80 %
26.) P7 1-2Hz 59.40 ± 7.69 % I

Combinations
11.)12 4 5 MV 74.55 ± 3.62 %
PROD 79.09 ± 2.45 %
SUM 78.79 ± 2.97 %
12.)1246MV 76.97 ± 2.45 %
PROD 76.06 ± 0.84 %
SUM 77.58 ± 1.57 %
13.)1256MV 74.24 ± 3.76 %
PROD 75.46 ± 4.29 %
SUM 75.76 ± 5.64 %
14.)1345MV 77.27 ± 1.33 %
PROD 7636 ± 3.90 %
SUM 78.48 ± 3.36 %
15.)1346MV 78.49 ± 3.37 %
PROD 75.15 ± 2.85 %
SUM 79.09 ± 1.57 %
16.)1356MV 74.24 ± 4.21 %
PROD 73.03 ± 4.29 %
SUM 75.45 ± 4.49 %
17.)1456MV 75.15 ± 5.25 %
PROD 76.97 ± 2.45 %
SUM 75.45 ± 3.09 %
18.)2 3 4 5 MV 7636 ± 2.15 %
PROD 75.45 ± 1.57 %
SUM 7636 ± 1.68 %
19.)2 3 4 6 MV 78.49 ± 0.84 %
PROD 76.67 ± 3.41 %
SUM 78.79 2.31 %
20.) 2 4 5 6 MV 7636 ± 6.32 %
PROD 76.97 ± 2.45 %
SUM 77.27 ± 2.30 %
21.) 3 4 5 6 MV 73.94 ± 4.87 %
PROD 76.06 ± 3.62 %
SUM 75.76 ± 5.15 %
22.) 2 3 5 6 MV 7333 ± 5.58 %
PROD 72.42 ± 5.22 %
SUM 73.94 ± 5.39 %
23.) 12 3 MV 75.76 ± 3.52 %
PROD 7333 ± 2.53 %
SUM 74.54 ± 2.79 %
24.) 124MV 76.67 ± 2.15 %
PROD 77.58 ± 1.57 %
SUM 77.27 1.33 %
25.) 12 5 MV 72.43 2 2.79 %
PROD 7333 ± 3.90 %
SUM 72.42 ± 2.06 %
26.) 12 6 MV 7333 ± 4.72 %
PROD 71.82 ± 2.14 %
SUM 73.94 ± 3.62 %
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Combinations
1.) 123456MV 77.88 ± 2.52 %
PROD 77.27 ± 2.66 %
SUM 79.09 ± 2.45 %
2.) 12 3 4 5 MV 76.97 ± 3.09 %
PROD 76.67 ± 4.12 %
SUM 78.48 ± 1.57 %
3.) 12 3 4 6 MV 76.67 ± 2.86 %
PROD 75.45 ± 2.45 %
SUM 76.67 ± 2.15 %
4.)134 5 6 MV 77.88 ± 3.90 %
PROD 77.27 ± 3.52 %
SUM 78.49 ± 4.29 %
5.) 2 3 4 5 6 MV 75.46 ± 5.05 %
PROD 75.76 ± 3.52 %
SUM 77.88 - 5.08 %
6.)12 4 5 6 MV 78.79 ± 1.88 %
PROD 78.48 - 1.57 %
SUM 79.39 2.53 %
7.)12 3 5 6MV 74.85 ± 2.85 %
PROD 73.33 ± 3.42 %
SUM 75.15 ± 2.85 %
8.)12 3 4 MV 7636 ± 1.68 %
PROD 74.85 4.33 %
SUM 75.76 ± 1.88 %
9.)12 3 5 MV 73.94 ± 3.36 %
PROD 72.42 ± 3.62 %
SUM 73.33 ± 1.68 %
10.) 12 3 6 MV 75.45 ± 3.62 %
PROD 73.03 ± 2.45 %
SUM 74.85 ± 3.67 %

Combinations
27.)134MV 76.97 ± 1.57 %
PROD 76.06 ± 2.79 %
SUM 78.79 ± 2.97 %
28.)135MV 73.03 ± 2.79 %
PROD 72.73 ± 3.76 %
SUM 73.94 ± 3.09 %
29.)136MV 73.33 ± 4.12 %
PROD 73.03 ± 2.45 %
SUM 74.85 -1.68 %
30.)14 5 MV 75.15 ± 2.14 %
PROD 74.24 ± 2.66 %
SUM 74.55 ± 2.45 %
31.)146MV 76.36 ± 3.90 %
PROD 76.67 ± 2.86 %
SUM 76.36 ± 3.15 %
32.)156MV 72.42 ± 4.08 %
PROD 72.73 ± 3.76 %
SUM 72.73 ± 4.21 %
33.) 2 3 4 MV 77.88 ± 2.85 %
PROD 76.06 ± 2.45 %
SUM 79.09 ± 1.57 %
34.) 2 3 5 MV 74.24 ± 4.61 %
PROD 73.33 ± 5.42 %
SUM 75.15 ± 3.42 %
35.) 2 3 6 MV 73.64 ± 1.03 %
PROD 73.03 ± 4.29 %
SUM 73.33 ± 2.15 %
36.) 2 4 5 MV 73.94 ± 3.62 %
PROD 73.63 ± 1.68 %
SUM 72.42 ± 3.09 %
37.) 2 4 6 MV 76.36 ± 3.90 %
PROD 78.18 ± 1.03 %
SUM 80.00 ± 0.84 %
38.) 2 5 6 MV 73.03 ± 2.45 %
PROD 74.24 ± 2.66 %
SUM 74.85 ± 2.14 %
39.) 3 4 5 MV 74.55 ± 3.62 %
PROD 74.85 ± 3.15 %
SUM 73.94 ± 1.57 %
40.) 3 4 6 MV 73.94 ± 4.87 %
PROD 75.76 ± 3.99 %
SUM 76.67 ± 3.66 %
41.) 3 56 MV 70.00 ± 4.87 %
PROD 69.39 ± 4.08 %
SUM 70.61 ± 4.53 %
42.)456MV 73.64 ± 5.25 %
PROD 73.63 ± 4.12 %
SUM 74.55 ± 5.86 %



Table C.9: Averages of 1 classifier each from the target and novel/parietal recordings for
71 patients (refer to Table 6.16).

Single Classifiers
1.) TP4 2-4Hz 63.66 ± 3.59 %
2) TPZ2-4Hz 58.03 ± 3.36 %
3.) TP32-4Hz 61.41 ± 4.21 %
4) TP4 1-2Hz 59.16 ± 2.47 %
5) TPZ 1-2Hz 61.13 ± 6.13 %
6.) TP7 1-2Hz 61.69 ± 4.85 %
11.) NP4 2-4Hz 63.38 ± 6.42 %
12.)NPZ2-4Hz 73.80 ± 5.87 %
13) NP3 2-4Hz 68.17 ± 5.75 %
14) NP4 1-2Hz 61.13 ± 6.13 %
15) NPZ 1-2Hz 60.56 ± 2.76 %
16.) NP7 1-2Hz 58.87 ± 5.01 %
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Combinations
12.) 12 4 6 MV 71.27 ± 1.57 %
'ROD 71.83 ± 1.75 %
)UM 72.11 ± 2.28 %
13.)1256MV 72.40 ± 4.03 %
'ROD 73.24 ± 3.50 %
sUM 72.96 ± 2.88 %
14.)1345MV 69.86 ± 3.62 %
PROD 70.14 ± 2.28 %
sUM 71.27 ± 3.63 %
.5.)1346MV 72.68 ± 5.04 %
PROD 71.27 ± 4.03 %
SUM 7239 ± 2.00 %
16.) 13 5 6 MV 7239 ± 7.06 %
PROD 75.49 ± 4.56 %
SUM 76.06 ± 6.06 %
17.)1456MV 69.58 ± 4.02 %
PROD 71.27 ± 2.65 %
SUM 7239 ± 2.65 %
18.)2 345 MV 70.42 ± 3.50 %
PROD 72.40 ± 4.03 %
SUM 7239 4 4.56 %
19.)2 3 4 6 MV 7239 ± 6.95 %
PROD 7239 ± 4.03 %
SUM 72.96 ± 5.98 %
20.) 2 4 5 6 MV 69.58 ± 4.56 %
PROD 71.27 ± 2.93 %
SUM 73.24 ± 3.27 %
21.) 3 4 5 6 MV 68.45 ± 6.95 %
PROD 69.30 ± 3.36 %
SUM 71.55 ± 5.85 %
22.)2 3 5 6 MV 72.11 ± 5.00 %
PROD 72.68 ± 2.00 %
SUM 7436 ± 5.01 %
23.)12 3 MV 7437 ± 5.85 %
PROD 7437 ± 5.16 %
SUM 75.78 ± 435 %
24.)124MV 69.29 ± 2.59 %
PROD 71.55 ± 1.46 %
SUM 71.27 ± 2.00 %
25.)12 5 MV 69.30 ± 3.99 %
PROD 70.70 ± 2.28 %
SUM 71.83 ± 4.95 %
26.) 126MV 69.01 ± 4.79 %
PROD 70.99 ± 3.18 %
SUM 72.11 ± 3.79 %
27.)13 4 MV 70.42 ± 5.10 %/
PROD 69.58 ± 2.92 0

SUM 70.70 ± 4.18 %

Combinations
1.) 123456MV 71.83 ± 4.46 %
PROD 71.55 ± 3.99 %
SUM 74.08 ± 4.02 %
2.)12 3 4 5 MV 70.99 ± 2.92 %
PROD 72.11 3.36 %
SUM 71.83 ± 4.79 %
3.)12346MV 73.52 3.37 %
PROD 72.39 ± 5.19 %
SUM 72.11 ± 4.69 %
4.)13 4 5 6 MV 71.83 ± 4.79 %
PROD 71.27 ± 3.41 %
SUM 7239 ± 4.56 %
5.) 2 3456MV 71.27 ± 6.13 %
PROD 71.55 4.35 %
SUM 73.24 ± 5.09 %
6.)12 4 5 6 MV 71.83 ± 2.48 %
PROD 71.55 ± 3.79 %
SUM 72.96 ± 3.13 %
7.)12356MV 73.24 5.39 %
PROD 73.52 ± 4.85 %
SUM 75.77 ± 5.72 %
8.)12 3 4 MV 72.68 1.57 %
PROD 72.67 ± 3.62 %
SUM 71.83 ± 4.1 %
9.)12 3 5 MV 72.96 ± 2.6 %
PROD 73.80 ± 5.47 %
SUM 72.40 ± 4.03 %
10.) 1236MV 73.80 ± 3.63 %
PROD 75.21 ± 5.47 %
SUM 76.05 ± 6.06 %
11.) 12 45 MV 70.98 ± 2.93 %
PROD 71.55 ± 3.13 %
SUM 72.39 3.18 %

Combinations
28.)135MV 70.14 5.30 %
?ROD 72.96 ± 5.44 %
sUM 71.55 ± 4.69 %
29.)136MV 75.49 ± 6.95 %
PROD 74.08 ± 6.84 %
SUM 75.49 ± 7.68 %
30.) 145MV 69.29 ± 2.28 %
PROD 69.30 ± 2.28 %
SUM 69.86 ± 3.62 %
31.)146MV 69.01 ± 4.46 %
PROD 70.70 ± 0.78 %
SUM 72.11 ± 3.13 %
32.)156MV 68.73 ± 6.93 %
PROD 72.96 ± 2.28 %
SUM 72.39 2.35 %
33.)2 3 4 MV 71.83 ± 5.10 %
PROD 71.83 ± 539 %
SUM 72.68 ± 3.41 %
34.)2 3 5 MV 71.55 ± 5.45 %
PROD 72.11 ± 3.79 %
SUM 72.11 ± 4.69 %
35.)2 36 MV 73.80 ± 5.88 %
PROD 72.11 ± 5.15 %
SUM 73.52 ± 4.85 %
36.)2 4 5 MV 70.42 ± 3.27 %
PROD 69.02 ± 3.03 %
SUM 71.26 ± 4.39 %
37.) 2 4 6 MV 71.55 ± 5.30 %
PROD 70.98 ± 2.00 %
SUM 72.68 ± 3.41 %
38.) 2 5 6 MV 67.89 ± 6.47 %
PROD 68.17 ± 2.65 %
SUM 69.86 ± 3.63 %
39.)34 5 MV 67.89 ± 4.53 %
PROD 66.48 ± 2.87 %
SUM 67.33 ± 3.79 %
40.) 3 4 6 MV 70.70 ± 4.69 %
PROD 69.30 ± 5.16 %
SUM 72.11 ± 5.00 %
41.) 3 5 6 MV 71.55 ± 4.52 %
PROD 70.98 2.35 %
SUM 72.39 ± 6.95 %
42.) 4 5 6 MV 67.04 ± 1.99 %
PROD 69.01 ± 5.10 %
SUM 69.86 ± 0.96 %



Table C.10: Averages of 11 classifiers for the parietal and occipital features for 71
patients (refer to Table 6.17).

Single Classifiers Combinations Combinations
1) TP4 2-4Hz 61.13 ± 6.26% 1,2,3 MV 59.43 ±4.17% 1,3,11 MV 64.51 5.45%
2) TPZ2-4Hz 56.90 ± 3.17% PROD 62.25 ±2.28% PROD 62.82 ± 5.33%
2) TP3 2-4Hz 59.15 ± 5.93% SUM 61.13 5.61% SUM 63.94 ± 4.22%
4) NP8 2-4Hz 68.17 + 3.41% 1,2,4 MV 66.48 ± 3.79% 1,4,5 MV 66.76 ± 5.88%
5.) T02 1-2Hz 58.31 + 5.88% PROD 70.98 2.00% PROD 7127 ± 5.18%
6.) TP7 1-2Hz 65.64 ± 2.00% SUM 66.76 ± 5.88% SUM 67.33 ± 2.59%
7.) N02 1-2Hz 59.44 ± 3.36% 1,2,5 MV 63.10 ± 6.23% 1,4,6 MV 70.70 ± 1.920/
8.) NPZ2-4Hz 71.55 ± 2.88% PROD 66.48±3.79% PROD 72.11 ± 4.69/
9.) NP3 2-4Hz 66.48 ± 2.59% SUM 64.22 ± 5.04% SUM 70.99 ± 4.39/
10.) NP4 1-2Hz 62.82 ± 3.18% 1,2,6 MV 62.82 ±4.22% 1,4,7 MV 65.63 ± 3.620%
11) NPZ 1-2Hz 62.82 ±5.61% PROD 66.76 ±5.33% PROD 70.70 ±4.53%

SUM 65.07 ± 4.69% SUM 67.32 ± 3.360°
1,2,7 MV 62.82 ± 4.89% 1,4,8 MV 71.83 ± 4.62/
PROD 65.07 ± 5.72% PROD 73.80 : 5.610
SUM 63.38 ±6.99% SUM 72.67 3.410,
1,2,8 MV 64.51 6.47% 1,4,9 MV 70.42 ± 4.79°
PROD 68.73 2.87% PROD 73.52 ± 4.690
SUM 65.63 ±5.74% SUM 71.83 ± 4.11°
1,2,9 MV 63.66 ±4.85% 1,4,10 MV 67.89 4.529%
PROD 67.04 4.56% PROD 69.29 ± 3.589%
SUM 66.20 ±6.42% SUM 67.89 ±3.139,
1,2,10 MV 62.54 4.73% 1,4,11 MV 69.30 ± 5.16%
PROD 63.66 ± 2.28% PROD 70.42 ± 4.28 ,

SUM 63.66 ± 5.16% SUM 69.58 ± 4.03%
1,2,11 MV 64.22 ±7.68% 1,5,6 MV 65.07 ±6.71%
PROD 65.91 ± 4.53% PROD 66.48 ± 9.45%
SUM 66.48 ± 8.33% SUM 67.61 ±4.46%/
1,3,4 MV 68.17 2.65% 1,5,7 MV 62.82 ± 2.93%/
PROD 66.76 ± 2.34% PROD 65.63 ± 4.73%
SUM 68.73 2.28% SUM 63.66 ± 2.60%
1,3,5 MV 62.25 4.18% 1,5,8 MV 69.58 ± 4.56%/
PROD 62.82±2.93% PROD 73.24 + 3.71°
SUM 63.10 ±3.13% SUM 71.27 4.03°
1,3,6 MV 67.04 4.21% 1,5,9 MV 67.89 ± 4.17%
PROD 64.79 2.14% PROD 70.99 ± 5.04%
SUM 68.17 2.92% SUM 68.45 ± 4.02%
1,3,7 MV 60.84 4.53% 1,5,10 MV 66.76 ± 4.02%
PROD 62.25 ± 2.28% PROD 66.76 ±3.62%
SUM 60.56 ±4.46% SUM 68.17 ± 1.99%
1,3,8 MV 67.04 ±4.03% 1,5,11 MV 65.07 ± 5.85%
PROD 68.17 5.04% PROD 65.07 ± 3.13%
SUM 67.89 ± 4.85% SUM 67.61 ± 2.47%
1,3,9 MV 65.07 ±1.46% 1,6,7 MV 65.92 ± 1.92%
PROD 67.04 ± 1.99% PROD 67.04 ± 5.47%
SUM 64.51 ±2.88% SUM 66.48 ± 3.13%
1,3,10 MV 64.23+ 2.00% 1,6,8 MV 73.80 7.28 ,

PROD 62.25 ± 2.28% PROD 73.24 -4.46,
SUM 64.51 ± 3.13% SUM 74.09 -5.889
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Table C.10: Averages of 11 classifiers for the parietal and occipital features for 71
patients (refer to Table 6.17). (continued)

Combinations Combinations Combinations
1,6,9 MV 71.55 ± 2.60% 2,3,7 MV 60.56 2.76% 2,5,10 MV 66.20 + 1.75%
PROD 71.55 ± 6.23% PROD 61.13 ± 3.83% PROD 65.07 2.28%
SUM 72.96 5.44% SUM 61.41 2.35% SUM 66.48 2.59%
1,6,10 MV 66.76 + 6.26% 2,3,8 MV 65.91 + 5.45% 2,5,11 MV 65.07 + 5.72%
PROD 67.04±6.01% PROD 67.89± 1.91% PROD 64.51 ±3.37%
SUM 68.73±6.93% SUM 66.20 ±3.91% SUM 67.04 ±2.34%
1,6,11 MV 67.32 ±6.82% 2,3,9 MV 61.97 ±5.10% 2,6,7 MV 64.51 ±1.92%
PROD 68.45 ± 4.56% PROD 64.51 ±2.28% PROD 69.01 ± 6.88%
SUM 69.86± 2.92% SUM 62.54 ±5.19% SUM 67.60 ±3.49%
1,7,8 MV 70.14 + 2.87% 2,3,10 MV 61.41 ±5.33% 2,6,8 MV 73.24 ± 2.14%
PROD 70.71 ± 4.53% PROD 63.10 ±3.37% PROD 73.80 ±2.35%
SUM 70.14 ±-3.79% SUM 64.51 +3.13% SUM 72.96 ±3.79%
1,7,9 MV 68.73±4.17% 2,3,11 MV 59.15±8.11% 2,6,9 MV 67.89± 2.28%
PROD 70.14 336% PROD 62.82 ± 3.83% PROD 67.61 ± 4.94%
SUM 69.86 ±4.03% SUM 61.97 ±5.10% SUM 70.42 ± 2.76%
1,7,10 MV 63.38 2.77% 2,4,5 MV 69.58 ±4.02% 2,6,10 MV 67.04 2.92%
PROD 66.19 ± 7.52% PROD 71.83 : 5.09% PROD 69.01 5.25%
SUM 64.51 3.99% SUM 69.58 ±2.92% SUM 68.17 ±3.62%
1,7,11 MV 63.38 4.46% 2,4,6 MV 72.11 ±5.85% 2,6,11 MV 68.45 1.99%
PROD 65.07 ± 3.37% PROD 73.24 ± 2.77% PROD 70.42 ±2.14%
SUM 64.51 ± 3.59% SUM 73.52 ± 4.69% SUM 69.86 2.35%
1,8,9 MV 73.80 ±2.92% 2,4,7 MV 69.01 ±4.79% 2,7,8 MV 69.58 ±4.21%
PROD 72.96 ±3.58% PROD 71.27 ±533% PROD 68.73 ±3.13%
SUM 72.96 ±3.13% SUM 68.73 ±4.85% SUM 68.73 ±3.13%
1,8,10 MV 69.58 ± 5.88% 2,4,8 MV 71.83 ± 3.50% 2,7,9 MV 66.48 ± 5.72%
PROD 68.73 ± 5.72% PROD 74.09 ± 2.65% PROD 67.04 ± 6.38%
SUM 69.58 ± 4.72% SUM 71.83 ± 4.79% SUM 66.48 2.59%
1,8,11 MV 69.58 ±4.88% 2,4,9 MV 67.32 2.87% 2,7,10 MV 63.10 ±2.28%
PROD 68.73 ±3.36% PROD 7239 ± 2.93% PROD 63.94 ± 3.62%
SUM 69.01 4.95% SUM 70.42 ± 2.76% SUM 65.07 ± 1.92%
1,9,10 MV 67.89 ±6.59% 2,4,10 MV 68.17 ±1.56% 2,7,11 MV 64.51 ±4.17%
PROD 67.61 ±2.47% PROD 70.99 + 4.73% PROD 66.76 2.65%
SUM 69.01 ±4.94% SUM 70.14 ± 3.99% SUM 67.32 ±3.13%
1,9,11 MV 65.92 ±6.47% 2,4,11 MV 70.14 ±2.59% 2,8,9 MV 70.70 ±4.18%
PROD 69.58 ± 3.41% PROD 72.11 ± 2.60% PROD 72.68 ± 5.04%
SUM 68.17 ±3.62% SUM 71.55 ± 337% SUM 71.55 ± 6.23%
1,10,11 MV 63.66 ± 3.99% 2,5,6 MV 66.76 2.65% 2,8,10 MV 68.45 ± 5.04%
PROD 65.35 ±3.41% PROD 69.30 ± 3.58% PROD 65.63 2.65%
SUM 65.92 ±4.18% SUM 68.73 ±4.52% SUM 66.76 3.62%
2,3,4 MV 63.10 ±2.28% 2,5,7 MV 61.41 ±2.92% 2,8,11 MV 68.45 ±5.04%
PROD 65.92 ±3.13% PROD 63.66 ±4.17% PROD 67.04 3.41%
SUM 63.38 ± 3.03% SUM 62.82 ± 2.65% SUM 67.61 ± 3.91%
2,3,5 MV 59.72 ±7.06% 2,5,8 MV 67.61 ±2.14% 2,9,10 MV 64.51±2.88%
PROD 63.66 ± 6.23% PROD 69.01 ± 2.76% PROD 66.76 ± 7.88%
SUM 63.10 ± 4.17% SUM 67.89 ± 3.13% SUM 66.48 ± 4.85%
2,3,6 MV 61.13 ± 4.39% 2,5,9 MV 66.48 ± 3.58% 2,9,11 MV 65.35 ± 3.63%
PROD 65.63 ± 5.04% PROD 69.86 ± 6.01% PROD 67.89 ± 4.52%
SUM 66.48 ± 4.53% SUM 68.45 ± 4.02% SUM 67.89 ± 3.58%
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Table C.10: Averages of 11 classifiers for the parietal and occipital features for 71

patients (refer to Table 6.17). (continued)
Combinations Combinations Conminations

2,10,11 MV 61.97 + 3.91% 3,6,10 MV 64.79 + 8.65% 4,5,10 MV 68.45 + 2.65%
PROD 64.51 3.37% PROD 62.54 ±4.72% PROD 70.70 ± 2.59%
SUM 63.10 3.13% SUM 66.20 5.10% SUM 69.58 1.99%
3,4,5 MV 67.61 7.62% 3,6,11 MV 60.00 6.38% 4,5,11 MV 69.30 2.28%
PROD 69.58 4.56% PROD 61.13 5.19% PROD 71.55 ± 2.60%
SUM 69.30 ± 4.85% SUM 65.35 4.72% SUM 68.45 ± 2.92%
3,4,6 MV 70.99 ± 5.04% 3,7,8 MV 70.70 ± 4.69% 4,6,7 MV 70.14 ± 5.15%
PROD 70.70 ± 2.88% PROD 68.73 5.58% PROD 7239 ± 4.03%
SUM 70.99 4.56% SUM 70.42 ±4.46% SUM 69.58 + 6.61%
3,4,7 MV 67.61 4.10% 3,7,9 MV 67.89 5.85% 4,6,8 MV 75.49 ± 2.65%
PROD 68.73 + 3.13% PROD 65.07 + 5.31% PROD 77.75 ± 2.87%
SUM 68.45 + 4.56% SUM 67.89 ± 5.85% SUM 78.03 1.56%
3,4,8 MV 7127 ± 4.56% 3,7,10 MV 62.25 5.15% 4,6,9 MV 70.98 ±1.57%
PROD 72.96 ± 4.85% PROD 61.69 6.35% PROD 71.83 ± 2.77%
SUM 70.99 ±3.63% SUM 63.94 4.22% SUM 71.55 ±3.36%
3,4,9 MV 69.58 +3.41% 3,7,11 MV 63.10 ±5.01% 4,6,10 MV 72.11 ±4.35%
PROD 71.83 ± 1.75% PROD 62.53 4.88% PROD 71.27 ± 3.18%
SUM 69.30± 2.87% SUM 64.79 3.27% SUM 7239 4.39%
3,4,10 MV 69.01 ± 3.03% 3,8,9 MV 66.48+ 2.28% 4,6,11 MV 70.42 ±1.75%
PROD 68.45 4.39% PROD 68.17 3.62% PROD 72.96 ± 2.60%
SUM 69.01 2.76% SUM 67.04 ±1.99% SUM 72.96 3.37%
3,4,11 MV 66.76 ±4.72% 3,8,10 MV 69.86 3.17% 4,7,8MV 71.27 ±2.65%
PROD 67.89 3.36% PROD 66.76 7.88% PROD 75.21 ± 2.35%
SUM 66.76 ± 3.17% SUM 68.17 2.92% SUM 70.42 ± 2.47%
3,5,7 MV 61.69+ 3.37% 3,8,11 MV 68.45 +3.41% 4,7,9 MV 70.14 ± 4.17%
PROD 61.12 ±3.41% PROD 68.17 ±7.68% PROD 71.55 ± 4.69%
SUM 61.97 + 3.50% SUM 67.32 + 4.52% SUM 70.14 3.36%
3,5,8 MV 66.20 7.42% 3,9,10 MV 67.61 5.10% 4,7,10 MV 65.64 ±1.57%
PROD 68.73 ±6.71% PROD 63.66 3.37% PROD 69.30 ± 4.53%
SUM 67.89 + 7.86% SUM 67.32 6.47% SUM 67.33 ± 0.78%
3,5,9 MV 64.79 6.66% 3,9,11 MV 66.76 ±4.02% 4,7,11 MV 66.48 2.87%
PROD 66.48 3.13% PROD 63.66 2.88% PROD 70.98 ± 2.00%
SUM 65.35 3.18% SUM 67.61 ±4.79% SUM 67.32 3.13%
3,5,10 MV 63.38+ 5.39% 3,10,11 MV 59.44 4.85% 4,8,9 MV 74.93 ± 2.28%
PROD 60.28 3.99% PROD 61.41 ±4.03% PROD 75.21 4.21%
SUM 64.22 4.21% SUM 61.97 4.10% SUM 7437 ±1.46%
3,5,11 MV 62.82 ±6.84% 4,5,6 MV 71.83 ±1.75% 4,8,10MV 71.83 ±3.50%
PROD 61.69 7.96% PROD 71.55 ± 2.28% PROD 69.86 1.99%
SUM 63.66 6.93% SUM 69.86 ±1.57% SUM 69.86 2.92%
3,6,7 MV 65.35 + 5.75% 4,5,7 MV 69.01 2.76% 4,8,11 MV 70.14 ± 3.79%
PROD 64.79 ± 5.53% PROD 70.98 ± 235% PROD 74.08 ± 4.73%
SUM 65.35 + 4.03% SUM 68.17 + 0.95% SUM 70.99 ± 4.03%
3,6,8MV 70.14 ± 1.91% 4,5,8 MV 69.58 -4.02% 4,9,10 MV 69.30 4.17%
PROD 68.17 + 6.73% PROD 74.65 ± 6.99% PROD 70.14 ± 0.78%
SUM 70.42 ± 2.47% SUM 68.73 + 2.28% SUM 68.73 + 3.79%
3,6,9 MV 69.30 + 5.01% 4,5,9 MV 67.61+ 1.23% 4,9,11 MV 69.58 + 3.62%
PROD 64.51+ 1.46% PROD 72.68 ± 2.00% PROD 70.70 ± 3.36%
SUM 68.45 + 4.02% SUM 68.17 + 0.95% SUM 69.30 ± 2.87%
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Table C.10: Averages of 11 classifiers for the parietal and occipital features for 71
patients (refer to Table 6.17). (continued)

Combinations Combinations Combinations
4,10,11 MV 65.64 3.41% 6,7,8 MV 73.24 h 2.77% 8,9,10 MV 70.70 ±2.28%

PROD 69.29 4.35% PROD 69.01 + 3.91% PROD 69.86 ± 3.62%
SUM 67.32±2.87% SUM 69.30 ±4.85% SUM 70.42 ±3.71%
5,6,7 MV 63.94 ±6.73% 6,7,9 MV 71.27 ± 3.63% 8,9,11 MV 70.42 ± 2.47%
PROD 65.35 + 3.83% PROD 71.55 ± 228% PROD 70.98 ± 235%
SUM 65.07 ± 5.16% SUM 71.55 ±5.15% SUM 70.42 2.48%
5,6,8 MV 71.83 ± 3.91% 6,7,10 MV 67.89 + 5.45% 8,10,11 MV 68.17 + 4.02%
PROD 71.55 ±4.18% PROD 67.60 ±6.77% PROD 67.04 ±3.83%
SUM 70.99 ±4.56% SUM 69.86 5.61% SUM 67.04 4.02%
5,6,9 MV 70.14 ± 3.79% 6,7,11 MV 67.32 ± 4.85% 9,10,11 MV 63.66 2.88%
PROD 70.42 ± 4.10% PROD 70.42 ± 4.46% PROD 64.51 3.58%
SUM 70.14 ± 3.13% SUM 68.45 5.19% SUM 65.92 2.87%
5,6,10 MV 67.04 4.56% 6,8,9 MV 72.68 ±2.00% ALLMV 73.80 1.57%
PROD 65.63 + 3.41% PROD 73.24 ± 327% PROD 73.24 ± 2.77%
SUM 67.61 + 3.27% SUM 74.09 ± 2.93% SUM 74.37 ± 1.46%
5,6,11 MV 66.48 + 6.23% 6,8,10 MV 70.42 ± 539%
PROD 67.89 ±4.69% PROD 69.86 ± 3.17%
SUM 67.32 + 6.71% SUM 69.86 2.92%
5,7,8 MV 71.55 ± 2.28% 6,8,11 MV 71.27 ±2.00%
PROD 70.14 ± 3.36% PROD 73.52 ± 4.85%
SUM 68.73 + 3.36% SUM 72.40 ±3.83%
5,7,9 MV 68.45 + 3.41% 6,9,10 MV 65.92 + 3.79%
PROD 71.55 ± 3.59% PROD 65.35 4.03%
SUM 68.45 4.72% SUM 66.76 5.88%
5,7,10 MV 64.79 3.50% 6,9,11 MV 67.61 3.91%
PROD 66.76 3.83% PROD 68.73 7.25%
SUM 67.32 + 3.13% SUM 70.14 ± 7.66%
5,7,11 MV 65.35 + 6.49% 6,10,11 MV 67.33 + 3.13%
PROD 65.63 5.88% PROD 66.48 3.13%
SUM 65.35 + 3.83% SUM 67.32 2.87%
5,8,9 MV 69.02 + 4.46% 7,8,9 MV 73.24 ±3.50%
PROD 72.96 ± 337% PROD 73.24 ± 2.14%
SUM 69.30 2.87% SUM 71.27 ± 2.00%
5,8,10 MV 70.14 ± 4.52% 7,8,10MV 71.83 ± 2.48%
PROD 70.70 ±4.18% PROD 68.45 3.62%
SUM 70.42 ± 3.50% SUM 69.02 4.46%
5,8,11 MV 71.83 ±4.46% 7,8,11 MV 69.02 ±4.10%
PROD 70.99 ± 3.18% PROD 69.30 + 5.30%
SUM 69.29 2.59% SUM 69.58 + 2.65%
5,9,10 MV 65.35 6.61% 7,9,10 MV 69.29 ±1.46%
PROD 68.73 + 5.45% PROD 68.17 1.56%
SUM 68.17 ± 5.04% SUM 69.86 +2.65%
5,9,11 MV 64.51 ±1.92% 7,9,11 MV 67.32 2.87%
PROD 68.73 + 6.47% PROD 68.17 + 7.68%
SUM 67.61 + 6.66% SUM 67.61 ± 4.10%
5,10,11 MV 65.92 +4.18% 7,10,11 MV 65.92 + 3.36%
PROD 67.89 + 3.99% PROD 65.92 ± 1.92%
SUM 66.48 + 3.79% SUM 66.20 + 2.76%
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Table C.11: Averages of 7 classifiers for the parietal and occipital features for 71 patients
(refer to Table 6.18).

Single Classifiers
1) TP4 1-2Hz 60.00+ 1.99%
2) NP8 2-4Hz 67.32 ± 4.85%
3) T02 1-2Hz 60.56 ± 4.46%
4) TP7 1-2Hz 62.25 + 3.13%
5.) N02 1-2Hz 61.97 ± 5.80%
6.) NPZ2-4Hz 71.83 ±4.46%
7.) NP3 24Hz 67.89 + 7.36%

Coniinations
65.92 + 3.58%
69.30 ± 3.13%
66.20 3.71%
68.17 ± 5.19%
67.89 ±1.46%
68.45 ± 3.17%
65.92 ± 1.46%
69.58±1.56%
66.76 ±1.99%
69.86 + 3.62%

72.96 ± 3.99%
72.11 1.46%
67.04 4.39%
68.73 ± 3.13%
68.17 4.02%
65.35+ 3.63%
64.23± 4.03%
65.35 ± 4.03%
62.82 4.88%
63.10 2.28%
62.54 3.41%
67.89±2.59%
69.30 2.28%
67.60 ± 3.49%
65.07 ±2.88%
67.32 3.99%
64.51 3.79%
65.35 3.63%
63.94 2.65%
66.20 2.14%

70.42 ±3.27%
69.58 2.92%

71.27 ± 3.83%
69.01 5.93%
65.35 + 4.73%
69.86 5.88%

Combinations
1,5,6 MV 69.86 ± 4.56%
PROD 69.58 ± 4.02%
SUM 70.14 ± 3.79%
1,5,7 MV 68.17 4.39%
PROD 69.01 ±5.10%
SUM 69.01 4.10%
1,6,7 MV 72.40 3.62%
PROD 72.39 533%
SUM 72.11 ±2.88%
2,3,4 MV 70.14 ± 3.13%
PROD 70.70 ±2.28%
SUM 68.45 ±4.88%
2,3,5 MV 67.61 5.10%
PROD 67.89 4.17%
SUM 66.48 ± 5.85%
2,3,6 MV 71.27 ±4.21%
PROD 73.24 3.50%
SUM 71.83 ±4.46%
2,3,7 MV 69.86+ 5.04%
PROD 69.58 ± 3.63%
SUM 69.30 ±4.85%
2,4,5 MV 68.45 5.75%
PROD 69.29 ±1.46%
SUM 68.45 ±6.61%
2,4,6MV 73.52 ±7.15%
PROD 74.09 + 2.93%
SUM 75.77 4.17%
2,4,7 MV 71.27 +4.56%
PROD 69.86 ± 3.62%
SUM 72.11 ±3.99%
2,5,6 MV 70.71 ±4.85%
PROD 7239 ±1.57%
SUM 70.14 44.53%
2,5,7 MV 67.89 5.30%
PROD 70.98 4.88%
SUM 68.73 ±3.99%
2,6,7 MV 72.11 7.15%
PROD 70.70 4.53%
SUM 71.55 ±6.47%
3,4,5 MV 61.97 +4.11%
PROD 64.79 ± 4.46%
SUM 63.94 ±4.03%
3,4,6 MV 70.99 7.68%
PROD 71.83 ±2.77%
SUM 71.83 +3.27%
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1,2,3 MV
PROD
SUM
1,2,4 MV
PROD
SUM
1,2,5 MV
PROD
SUM
1,2,6 MV
PROD
SUM
1,2,7 MV
PROD
SUM
1,3,4 MV
PROD
SUM
1,3,5 MV
PROD
SUM
1,3,6 MV
PROD
SUM
1,3,7 MV
PROD
SUM
1,4,5 MV
PROD
SUM
1,4,6 MV
PROD
SUM

_- I - - -

1,4,7 MV
PROD
SUM



Table C.11: Averages of 7 classifiers for the parietal and occipital features for 71 patients
(refer to Table 6.18). (continued)

Combinations
3,4,7 MV
PROD
SUM
3,5,7 MV
PROD
SUM
3,6,7 MV
PROD
SUM
4,5,6 MV
PROD
SUM
4,5,7 MV
PROD
SUM
4,6,7 MV
PROD
SUM
5,6,7 MV
PROD
SUM
1,2,3,4,5 MV
PROD
SUM
1,2,3,4,6 MV
PROD
SUM
1,2,3,4,7 MV
PROD
SUM
1,2,3,5,6 MV
PROD

Conibnations
71.27 ± 6.84%
72.40 ±6.26%
72.96 ±6.47%
69.01+ 5.67%

70.42 ± 6.54%
68.73 + 3.36%

73.80 ± 5.04%
7239 ± 5.04%
73.24 428%
7239 ±5.88%
68.45 3.17%

70.14 ±7.25%
68.73 ±4.35%
68.73 8.33%
69.01 4.10%

73.24 ±4.28%
72.68 ±4.56%
73.80 ±3.63%
73.24 ± 4.46%
71.27 ±7.16%
72.96 ±4.18%
67.33 + 3.79%
69.86 2.92%
67.04 4.39%

71.27 ±2.65%
72.96 ± 1.46%
72.11 ± 2.88%

68.73 5.30%
70.70 2.28%

69.86 + 4.72%
69.01 + 1.23%

72.11 1.46%
69.58 4.56%
69.01 ± 4.94%

71.55 ± 1.46%
71.83 ± 2.77%
70.14 ±7.25%
73.52 ± 4.85%
71.55 4.52%
69.30 3.36%

71.83 ±3.50%
70.14 ±2.28%
68.17 ±3.17%

71.55 ± 435%
69.58 + 3.62%

SUM
2,4,5,6,7 MV
PROD
SUM
3,4,5,6,7 MV
PROD
SUM
AILMV
PROD
SUM

1,2,4,6,7 MV
PROD
SUM
1,2,5,6,7 MV
PROD
SUM
1,3,4,5,6 MV
PROD
SUM
1,3,4,5,7 MV
PROD
SUM
1,3,4,6,7 MV
PROD
SUM
1,3,5,6,7 MV
PROD
SUM
1,4,5,6,7 MV
PROD
SUM
2,3,4,5,6 MV
PROD
SUM
2,3,4,5,7 MV
PROD
SUM
2,3,4,6,7 MV
PROD
SUM
2,3,5,6,7 MV
PROD
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72.40± 738%
72.96 ±4.85%
74.09 ±2.00%
67.89 ±3.99%

73.52 ±5.44%
70.99 ±3.62%
70.14 ±4.85%
70.99 3.18%
72.40 ±4.73%
69.01 ±4.63%
69.29 3.36%
68.17 ±5.61%

73.80 ±2.00%
73.80 ± 4.03%
7437 ± 5.72%
69.58 ± 5.61%

73.52 ±2.88%
70.99 ±3.63%
71.83 ±4.95%
71.27 ±533%
72.11 ±3.13%
68.73 ± 3.99%

75.21 ±1.57%
70.99 ±4.72%
68.73 ±336%
72.68 ±3.41%
71.83 ± 2.48%
74.08 ±4.56%
73.80 ± 2.93%
76.34 ± 1.46%
70.14 ± 4.85%
74.65 ± 2.76%
72.40 4.56%
71.55 ±6.93%
72.68 ± 5.18%
72.40 ± 5.75%
73.24 3.50%
72.96 :4.18%
74.65 ±3.91%
71.55 ±336%
73.80 1.57%
7239 ±2.00%

SUM
1,2,3,5,7 MV
PROD
SUM
1,2,3,6,7 MV
PROD
SUM
1,2,4,5,6 MV
PROD
SUM
1,2,4,5,7 MV
PROD
SUM
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Table C.12: Averages of 7 classifiers including feature-level fused Target P4 and the
parietal and occipital features for 71 patients (refer to Table 6.19).

Single Classifiers
1.) TP4 cat 62.25 ±3.13%
2) NP8 2-4Hz 66.76 ± 3.41%
3) T02 1-2Hz 58.87 ±3.13%
4.) TP7 1-2Hz 62.25 ± 5.15%
5.) N02 1-2Hz 58.87 ± 2.28%
6.) NPZ2-4Hz 73.52 ± 4.18%
7.) NP3 2-4Hz 69.58 ± 5.61%

Conirinations
1,2,3 MV 67.32 ±2.87%
PROD 69.58 ±3.62%
SUM 68.17 ±3.17%
1,2,4MV 69.58 4.03%
PROD 70.14 5.45%
SUM 69.01 ±6.18%
1,2,5 MV 68.17 ± 3.62%
PROD 69.30 ±2.87%
SUM 66.76 ±5.33%
1,2,6 MV 73.80 ± 2.00%
PROD 75.21 6.26%
SUM 73.24 4.10%
1,2,7 MV 74.08 - 3.18%
PROD 70.70 4.85%
SUM 73.52 3.13%
1,3,4 MV 61.97 ± 5.25%
PROD 65.63 ±5.88%
SUM 65.92 3.36%
1,3,5 MV 59.15 ± 5.93%
PROD 67.32 ±3.13%
SUM 61.41 ± 2.35%
1,3,6 MV 65.07 ±2.28%
PROD 67.04 ±4.21%
SUM 67.32 ±3.36%
1,3,7 MV 64.79 4.46%
PROD 71.27 2.65%
SUM 67.89 ±3.13%
1,4,5 MV 65.35 ± 4.21%
PROD 67.04 ±3.41%
SUM 65.63 ±4.89%
1,4,6 MV 71.27 2.35%
PROD 70.14 6.81%
SUM 7239 1.57%
1,4,7 MV 73.24 ± 6.99%
PROD 74.09 ± 3.84%
SUM 7437 6.59%
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Conbinations
1,5,6 MV 73.52 ±3.79%
PROD 69.58 ±4.39%
SUM 7239 ±3.63%
1,5,7 MV 70.70 ± 4.85%
PROD 73.24 ±1.24%
SUM 71.55 2.28%
1,6,7 MV 75.78 + 4.69%
PROD 71.27 3.18%
SUM 75.21 ±4.72%
2,3,4 MV 65.35 ± 4.03%
PROD 70.42 4.46%
SUM 67.61 ±3.03%
2,3,5 MV 67.04± 7.16%
PROD 70.14 4.85%
SUM 67.32 ±4.17%
2,3,6 MV 70.42 2.14%
PROD 74.93 ±2.28%
SUM 71.55 2.28%
2,3,7 MV 69.86±4.21%
PROD 69.86 4.02%
SUM 69.86 ±3.17%
2,4,5 MV 68.17 ± 4.72%
PROD 69.58 2.65%
SUM 68.17 ±3.17%
2,4,6 MV 72.11 ±3.13%
PROD 7437 +2.88%
SUM 74.08 3.63%
2,4,7MV 72.11 ±3.79%
PROD 72.11 2.88%
SUM 7239 ±3.63%
2,5,6 MV 70.98 ± 2.00%
PROD 73.80 - 5.04%
SUM 70.70 ±3.13%
2,5,7 MV 67.61 ± 5.93%
PROD 70.99 ±5.87%
SUM 69.01 ± 5.10%
2,6,7 MV 70.98 ± 2.00%
PROD 72.96 5.45%
SUM 70.99 3.63%
3,4,5 MV 62.82 5.88%
PROD 64.22 ±4.21%
SUM 63.10 ±7.36%
3,4,6 MV 68.45 ± 3.83%
PROD 71.27 3.63%
SUM 69.01 ±3.27%



Table C.12: Averages of 7 classifiers including feature-level fused Target P4 and the
parietal and occipital features for 71 patients (refer to Table 6.19). (continued)

Combinations
3,4,7 MV 69.58 ± 7.06%
PROD 73.80 5.18%
SUM 69.86 ±4.56%
3,5,7 MV 66.48 4.53%
PROD 72.11 2.28%
SUM 68.45± 1.99%
3,6,7 MV 72.96 +336%
PROD 76.90 4.21%
SUM 74.93 ±530%
4,5,6 MV 69.86 3.41%
PROD 69.58 ± 2.34%
SUM 70.14 ±2.28%
4,5,7 MV 69.86 ±6.13%
PROD 70.14 -5.45%
SUM 70.42 +5.25%
4,6,7 MV 73.52 5.00%
PROD 73.80 4.03%
SUM 7437 ±5.01%
5,6,7 MV 74.09 ± 6.25%
PROD 71.55 ±337%
SUM 74.08 5.61%
1,2,3,4,5 MV 69.58 ± 5.75%
PROD 72.68 4.88%
SUM 69.86 ±4.56%
1,2,3,4,6 MV 71.27 5.19%
PROD 75.21 5.47%
SUM 73.52 -2.87%
1,2,3,4,7 MV 72.68 ± 439%
PROD 72.67 + 3.62%
SUM 72.68 ± 235%
1,2,3,5,6 MV 72.11 ± 1.46%
PROD 75.21 ±3.41%
SUM 72.11 ±3.13%
1,2,3,5,7 MV 71.83 + 2.77%
PROD 72.11 5.72%
SUM 72.11 ± 3.13%
1,2,3,6,7 MV 73.52 ±3.79%
PROD 74.65 ± 4.79%
SUM 74.09 ± 4.72%
1,2,4,5,6 MV 72.96 ± 1.92%
PROD 74.93 2.87%
SUM 73.24 ±4.10%
1,2,4,5,7 MV 73.80 ± 5.04%
PROD 7239 ±2.65%
SUM 72.96 4.53%

Coniinations
1,2,4,6,7 MV 74.93 ± 4.18%
PROD 74.37 1.92%
SUM 75.21 ±2.65%
1,2,5,6,7 MV 75.21 ± 3.83%
PROD 74.93 3.99%
SUM 7437 3.99%
1,3,4,5,6 MV 68.17 ± 3.41%
PROD 70.42 ±3.27%
SUM 70.70 2.59%
1,3,4,5,7 MV 70.70 +3.99%
PROD 74.37 ± 1.46%
SUM 70.70 5.15%
1,3,4,6,7 MV 72.96 ± 5.44%
PROD 74.65 4.46%
SUM 7437 ± 4.18%
1,3,5,6,7 MV 72.96 ±337%
PROD 74.93 ± 3.58%
SUM 7437 ±5.72%
1,4,5,6,7 MV 77.18 ±5.85%
PROD 74.65 ±2.76%
SUM 76.90 5.04%
2,3,4,5,6 MV 69.01 ± 1.23%
PROD 75.49 ±3.83%
SUM 72.11 ± 3.79%
2,3,4,5,7 MV 70.70 ±5.85%
PROD 71.55 ±337%
SUM 71.83 ±4.63%
2,3,4,6,7 MV 72.96 ± 1.46%
PROD 74.08 2.65%
SUM 73.24 ± 2.14%
2,3,5,6,7 MV 71.55 3.99%
PROD 74.65 ± 4.79%
SUM 72.96 ±3.59%
2,4,5,6,7 MV 72.67 ±3.83%
PROD 74.65 2.47%
SUM 73.52 336%
3,4,5,6,7 MV 73.52 5.16%
PROD 74.65 ± 3.27%
SUM 73.24 ±3.91%
AILMV 73.81 ±4.56%
PROD 7437 ± 2.28%
SUM 74.09 ±2.00%
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