
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

12-31-2004

VLSI implementation of an efficient method for the computation VLSI implementation of an efficient method for the computation

of line spectral frequencies of line spectral frequencies

David L. Reynolds
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Reynolds, David L., "VLSI implementation of an efficient method for the computation of line spectral
frequencies" (2004). Theses and Dissertations. 1222.
https://rdw.rowan.edu/etd/1222

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F1222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fetd%2F1222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/1222?utm_source=rdw.rowan.edu%2Fetd%2F1222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

VLSI IMPLEMENTATION OF AN EFFICIENT
METHOD FOR THE COMPUTATION OF

LINE SPECTRAL FREQUENCIES

By
David L. Reynolds

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department:
Major:

Electrical and Computer Engineering
Engineering (Electrical Engineering)

Approved: Members of the Committee:

In Charge of Major Work

For the Major Department

For the College

Rowan University
Glassboro, NJ

2004

ABSTRACT

David L. Reynolds

VLSI IMPLEMENTATION OF AN EFFICIENT

METHOD FOR THE COMPUTATION OF

LINE SPECTRAL FREQUENCIES

2004/04

Dr. Ravi P. Ramachandran

Dr. Linda M. Head

Master of Science in Electrical Engineering

In speech coding applications using linear predictive techniques, the computation

of line spectral frequencies (LSFs) from the predictor coefficients is an extremely

computationally intensive task. The unique properties of the symmetric and

antisymmetric polynomial roots limit the region which must be searched, however it is

still necessary to perform a root-finding algorithm on a high-order polynomial.

ii

Certain algorithms have been developed to reduce the complexity of the root

finding exercise. One such algorithm, developed by Ramachandran and Kabal l, takes

advantage of certain properties of the symmetric and antisymmetric polynomials to map

the upper portion of the unit circle onto the real interval [-1,1] by converting the

polynomials into a Chebyshev polynomial series representation. Because Chebyshev

polynomials may be evaluated efficiently using the Clenshaw recurrence formula, far

fewer computations are necessary to search the linear region for zero crossings.

This work investigates the implementation of the Ramachandran-Kabal algorithm

in a VLSI design suitable for integration into larger speech processing systems. An

implementation exclusively in VHDL is developed. Simulation of the VHDL design is

performed and the post-synthesis results evaluated.

iii

TABLE OF CONTENTS

1. INTRODUCTION AND BACKGROUND ..

1.1. M O TIV A T IO N ...

1.2. O B JEC T IV E S .. 2

1.3. SCO PE O F TH ESIS...3

1.3.1. DIGITAL SPEECH CODING..3

1.3.2. COMPUTATION OF LINE SPECTRAL FREQUENCIES .. 9

1.3.3. NOVEL ALGORITHMS FOR THE EFFICIENT COMPUTATION OF LSFS 9

1.3.4. THE METHOD OF RAMACHANDRAN AND KABAL... 10

1.4. VLSI ARCHITECTURE FOR DIGITAL SIGNAL PROCESSING... 15

1.4.1. D EV ICE TY PES .. 15

1.4.2. VLSI DESIGN TECHNIQUES FOR DIGITAL SIGNAL PROCESSING 18

1.4.3. SPECIAL CONSIDERATIONS IN EMBEDDED SYSTEMS 19

2. ARCHITECTURAL DESCRIPTION ... 20

2.1. DESIGN APPROACH...20

2.2. GENERAL ARCHITECTURE FEATURES ... 21

2.3. V LSI EN TITIE S .. 22

2.3.1. SYMMETRIC AND ANTISYMMETRIC POLYNOMIAL COMPUTATION..............22

2.3.2. POLYNOMIAL DEFLATION...25

2.3.3. COMPUTATION OF CHEBYSHEV POLYNOMIAL SERIES COEFFICIENTS 27

2.3.4. CLENSHAW RECURRENCE COMPUTATION...29

2.3.5. DETERMINATION OF ROOT LOCATIONS..32

2.3.6. COMPUTATION OF THE LSFs ... 35

2.3.7. FLOATING POINT ENTITIES ... 37

3. DETAILED DESIGN AND SYNTHESIS 38

3.1. VHDL REPRESENTATION ... 38

3.1.1. VHDL IMPLEMENTATION OF ATOPQ ... 38

3.1.2. VHDL IMPLEMENTATION OF POLYDIV...42

iv

3.1.3. VHDL IMPLEMENTATION OF CHEBFORM .. 43

3.1.4. VHDL IMPLEMENTATION OF CLENSHA W...44

3.1.5. VHDL IMPLEMENTATION OF ROOTFINDER ... 45

3.1.6. VHDL IMPLEMENTATION OF ACOS...46

4. VHDL SIMULATION RESULTS .. 47

4.1. SIMULATION APPROACH...47

4.2. PRE-SYNTHESIS SIMULATION RESULTS................................. 47

4.2.1. SIMULATION RESULTS: ATOPQ .. 48

4.2.2. SIMULATION RESULTS: POLYDIV..49

4.2.3. SIMULATION RESULTS: CHEBFORM...51

4.2.4. SIMULATION RESULTS: CLENSHA W..53

4.2.5. SIMULATION RESULTS: ROOTFINDER...54

4.3. SIMULATION RESULTS OF 10TH ORDER CASE...56

4.3.1. SIMULATION RESULTS: ATOPQ 10t ORDER CASE..56

4.3.2. SIMULATION RESULTS: POLYDIV 10"' ORDER CASE .. 57

4.3.3. SIMULATION RESULTS: CHEBFORM 10th ORDER CASE 57

4.3.4. SIMULATION RESULTS: CLENSHA W 10" ORDER CASE .. 58

4.3.5. SIMULATION RESULTS: ROOTFINDER 10th ORDER CASE59

5. SY N T H E SIS..61

5.1. SYNTHESIS PROCESS .. 61

5.1.1. SYNTHESIS RESULTS .. 61

5.1.2. POST SYNTHESIS SIMULATION .. 62

5.2. OVERALL SIMULATION RESULTS ... 63

6. LA Y O U T ... 65

6.1. LAYOUT OF EACH ENTITY...................... ... 65

6.1.1. LAYOUT OF ACOS ENTITY ... 65

6.1.2. LAYOUT OF ATOPQ ENTITY...66

6.1.3. LAYOUT OF CHEBFORM ENTITY ... 67

v

6.1.4. LAY O UT O F POL YDIV EN TITY ... 68

6.1.5. LAYOUT OF CLENSHA WENTITY.;..69

6.1.6. LA Y O UT O F FPM ULT EN TITY .. 70

6.1.7. LAY O U T OF FPAD D EN TITY .. 71

6.1.8. LAY O U T O F FPD IV ENTITY .. 72

6.1.9. LA Y O U T OF ROOTFINDER EN TITY ... 73

6.2. O V ERA LL A SIC FLO ORPLAN ... 74

7. SU M M A RY AN D D ISCU SSIO N ... 76

7.1. SU M M ARY .. 76

7.2. CO N CLU SIO N S .. 77

7.3. FU RTH ER W O RK .. 78

8. V H D L LISTIN G S .. 80

8.1. A TPQ V HD L LISTING ... 80

8.2. POLYDIV VH D L LISTIN G .. 82

8.3. CHEBFORM V H D L LISTING .. 85

8.4. CLENSHA W VH D L LISTIN G ... 86

8.5. RO OTFINDER V HD L LISTING ... 89

8.6. ACOS V H D L LISTIN G ... 92

9. References...96

vi

LIST OF FIGURES

Figure 1: Root Locations of Polynomials P(z) and Q(z) 8

Figure 2: Plots of Chebyshev Polynomial Series Gl(x) and G2(x) (12ht Order)...14

Figure 3: State M achine Architecture of the atopq Entity...24

Figure 4: M isalignment in 10t Order Case ... 25

Figure 5: State M achine Architecture of the polydiv Entity 27

Figure 6: State M achine Architecture of the chebform Entity... 29

Figure 7: State M achine Architecture of the clenshaw Entity ... 31

Figure 8: State M achine Architecture of the rootfinder Entity..34

Figure 9: State M achine Architecture of the arcos Entity...36

Figure 10: VHDL Declaration of the atopq Entity .. 39

Figure 11: VHDL State M achine Implementation of the atopq Entitiy .. 40

Figure 12: VHDL Interface to External Floating Point Entities..41

Figure 13: VHDL Declaration of the polydiv Entity ... 43

Figure 14: VHDL Declaration of the chebform Entity..44

Figure 15: VHDL Declaration of the clenshaw Entity ..44

Figure 16: VHDL Declaration of the rootfinder Entity...45

Figure 17: VHDL Declaration of the acos Entity..46

Figure 18: atopq Simulation Timing Diagram .. 49

Figure 19: polydiv Simulation Timing Diagram ... 51

Figure 20: chebform Simulation Timing Diagram .. 52

Figure 21: clenshaw Simulation Tim ing Diagram .. 54

Figure 22: rootfinder Simulation Timing Diagram ... 55

Figure 23: acos Entity Layout...66

Figure 24: atopq Entity Layout .. 67

Figure 25: chebform Entity Layout ... 68

Figure 26: polydiv Entity Layout..69

vii

Figure 27: clenshaw Entity Layout ... 70

Figure 28:fpmult Entity Layout ... 71

Figure 29: fpadd Entity Layout ... 72

Figure 30:fpdiv Entity Layout .. 73

Figure 31: rootfinder Entity Layout ..74

Figure 32: Overall ASIC Layout...75

viii.o.o

VIII

LIST OF TABLES

Table 1: atopq Sim ulation Results .. 48

Table 2: polydiv Sim ulation Results..50

Table 3: chebform Sim ulation Results .. 52

Table 4: clenshaw Sim ulation Results..53

Table 5: rootfinder Sim ulation Results ... 55

Table 6: atopq Sim ulation Results (10 Order Case)..56

Table 7: polydiv Sim ulation Results (10th Order Case) ... 57

Table 8: chebform Sim ulation Results (10th Order Case) .. 58

Table 9: clenshaw Simulation Results (10t Order Case) ... 59

Table 10: rootfinder Simulation Results (10'h Order Case) ... 60

Table 11: Gate Count by Entity...61

Table 12: Perform ance by Entity..62

Table 13: A SIC Results Versus Expected Output ... 64

Table 14: Size and Area by Entity...65

ix

1. INTRODUCTION AND BACKGROUND

Vocoders are algorithmic constructs that encode speech for digital transmission

over band limited communications channels. Vocoders based on linear predictive

analysis are a popular implementation for modem communications systems, many of

which are embedded systems such as cellular telephones, digital radios and cryptographic

devices.

Linear predictive vocoders encode short segments of a sampled voice signal into a

significantly smaller set of parameters based on a model of the human vocal tract. The

receiving device can perform a reconstruction of the original speech signal that is a good

representation of the original speech signal assuming an adequate bit-rate through the

transmission channel.

1.1. MOTIVATION

Linear predictive vocoders are often implemented in embedded systems. Many

such systems are very limited in terms of memory and power with cellular telephones

being a typical example. Given limitations such as these, implementation of complex

algorithms, such as linear prediction, is challenging on such platforms. In addition, the

use of general-purpose processors or DSPs sometimes exceeds cost or power constraints.

In these cases, ASICs or other customized logic devices may be employed in the

implementation of algorithms.

In linear predictive speech coding, it is often desired to compute line spectral

frequencies (LSFs) from the linear predictive coefficients for use in transmission2. This

computation requires the isolation of the roots of high order polynomials. Novel

1

algorithms have been developed for computing LSFs efficiently'' 3 . In this thesis, the

implementation of the algorithm of Ramachandran and Kabal 1 in a VLSI design suitable

for use in larger voice coding systems is evaluated.

1.2. OBJECTIVES

The primary objective of this work is to investigate the implementation of a novel

algorithm for the computation of LSFs in a VLSI design. This objective is further

decomposed as follows:

1. Perform functional decomposition of the chosen algorithm.

2. Develop a VLSI architecture for the implementation of the algorithm.

3. Perform detailed design of the defined architecture in VHDL.

4. Simulate the design at the VHDL level.

5. Perform synthesis of the design using a 0.5um technology.

6. Resimulate the system using VHDL representations of the gate-level

implementation generated by the synthesis tool.

7. Layout of the design.

An understanding of the effect of physical constraints of a given fabrication technology

on algorithmic performance will be developed. The results will be evaluated for

suitability for the target embedded environment.

2

1.3. SCOPE OF THESIS

The thesis will implement a VLSI design of a DSP algorithm. The design will be

implemented entirely in VHDL and will proceed from a VHDL level simulation, through

synthesis and post-synthesis simulation accounting for the physical properties of the

VLSI technology selected.

1.3.1. DIGITAL SPEECH CODING

1.3.1.1.LINEAR PREDICTIVE SPEECH CODING

Linear predictive methods of voice coding form an important foundation element of

many modem voice coding systems. For example, many digital communication systems

use methods such as MELP (Mixed Exitation Linear Prediction) or CELP (Code Excited

Linear Prediction)4 to encode voice communication for efficient transmission over band

limited channels. Common applications include cellular and digital telephony.

Linear prediction applied to a speech-coding task attempts to find a model of the

spectral envelope of a brief segment, or frame, of speech. The form of the model is the

all-pole digital filter given by

H(z)= S(z) - 1
U(z) 1 L ak Z

Eq. 1

where the z-transform of the speech signal, S(z), is the output function and U(z) is the

input excitation function which is chosen to be either an impulse train or random noise

depending upon whether the segment is voiced or unvoiced speech. The ak coefficients

3

are computed to give the model an estimate of the spectral envelope of the speech frame

being analyzed. This computation is the basis of linear predictive analysis5.

The sampled speech signals are related to the digital filter by the following

difference equation:

s(n) = l aks(n - k) + u(n)

Eq. 2

The term

s = -=sa,s(n - k)

Eq. 3

is the estimate ofs(n) based on a weighted combination ofp previous samples. The goal

is to reduce the variance between the actual and estimated speech signal. The prediction

error is given by:

e(n) = s(n) - s = s(n)-s= P aks(n - k)

Eq. 4

where e(n) is the error signal and s is the estimated speech signal. This indicates that the

prediction error sequence is the output of a system described by the following function

(when s(n) is the input):

A(z) =1- Ek akz

Eq. 5

4

Thus, ifEq. 2 is an exact representation of the system, then e(n) = u(n) and the prediction

error filter A(z) is the inverse filter for the system H(z).

1
H(z) ='-

A(z)

Eq. 6

Passing a speech signal through the filter defined by A(z) results in the removal of

near-sample correlations and produces a residual signal2. It is the magnitude spectrum of

which is the estimate of the spectral envelope of the speech once the ak coefficients
A(z)

were determined 2.

Given a speech signal, it is necessary to determine a set of predictor coefficients

ak such that a good estimate of the spectral envelope of the speech is obtained6. In linear

prediction, this is often done through the mean-squared minimization of the prediction

error. As speech is time varying, the estimates are based on short segments, or frames, of

the sampled speech signal.

A popular method for the determination of the set of predictor coefficients

through prediction error minimization is the autocorrelation method. Using this

technique, the samples outside of the segment being analyzed are assumed to be zero.

The predictor coefficients are computed as part of a system of linear equations, with the

system matrix being Toeplitz, which can be efficiently solved using the Levinson-Durbin

algorithm. When used in speech transmission applications, the autocorrelation method

1
has the advantage of guaranteeing the stability of - . Once the predictor coefficients

A(z)

ofA (z) have been determined, they must be quantized for transmission through a given

5

communication channel. Both the ak coefficients and the linear predictive residual value

must be quantized and transmitted such that a receiver can reconstruct the encoded

speech frame. One popular quantization scheme is the conversion of the ak coefficients

into line spectral frequencies (LSFs). LSFs have certain properties which make them

attractive for transmission. First, they are approximately related to the formant

frequencies and bandwidths present in the speech2 . A distortion measure can be obtained

in terms of LSFs which is closely related to the spectral distortion, which should be

minimized to ensure adequate fidelity in transmission 2 .

The LSFs are determined by the roots of the symmetric and antisymmetric

polynomials P(z) and Q(z) which are related to A(z) as follows:

P(z) = A(z)+ z-P''A(z- ')

Eq. 7

Q(z) = A(z) - z-(P+*)A(z-)

Eq. 8

P(z) and Q(z) possess certain properties.

1. The roots of P(z) and Q(z) lie on the unit circle.

2. The roots of P(z) and Q(z) are simple (no repeated roots exist).

3. The roots of P(z) and Q(z) interlace on the unit circle.

6

The LSFs are defined as the angles of the roots of P(z) and Q(z) with respect to the

positive real axis7. Because the roots are symmetrical across the real axis, A(z) can be

completely described by only those LSFs in the upper unit semicircle. Conversion of the

ak coefficients into LSFs preserves the interlacing property which guarantees the stability

1
of- . Figure 1 shows the root locations of P(z) and Q(z) for a 12th order system. The

A(z)

roots lie on the unit circle. This implies that a stable - can be guaranteed after
A(z)

quantizing the LSFs by ordering them to preserve the interlacing property. This

underscores the advantage of using LSFs in practical systems.

7

1_5

1

0-5

0

-0.5

-1

-15 -1 -0.5 0 0_5 1 1.5

Figure 1: Root Locations of Polynomials P(z) and Q(z)

These properties are useful in speech transmission applications because in the

event of errors, the receiver can easily take corrective action minimizing the impact of the

errors on the reconstruction of a given frame of speech.

8

x = RootofP(z)
o = Root of Q(z)

· · ·

d

_1 R , ,I I I

1.3.2. COMPUTATION OF LINE SPECTRAL FREQUENCIES

Practical linear predictive speech processing systems are generally of 10th or 12th

order, depending upon the specific application. For example, speaker recognition may

require a 12th order system, however speech coding for communications would use a 10th

order system to reduce the amount of data that must be transmitted. Obtaining the LSFs

for a given frame of speech entails the computation of the roots of the high order

polynomials P(z) and Q(z). Isolation of the roots of such high order polynomials

consumes significant computational resources. Use of a generalized root finding

algorithm in practical applications is not an optimal solutions, although the special

properties of the roots of P(z) and Q(z) limit the space which must be searched.

1.3.3. NOVEL ALGORITHMS FOR THE EFFICIENT COMPUTATION OF LSFS

Efficient methods have been proposed by Kabal and Ramachandran I as well as Wu

and Chen3 for the computation of LSFs. The method of Ramachandran and Kabal has

been chosen for implementation in a VLSI design because of its inherent efficiency and

the ease with which it can be functionally decomposed. This method constrains the

maximum number of computations necessary to isolate the roots of P(z) and Q(z) making

system behavior predictable. The algorithm by Wu and Chen3 proposes a decimation-in-

degree algorithm to obtain two polynomials in x followed by execution of a modified

Newton-Raphson method to estimate the roots of the polynomials. The polynomials are

deflated as each root location is isolated, and Newton-Raphson applied again as

necessary to compensate for inaccuracies as deflation shifts the location of remaining

roots. Wu and Chen have demonstrated this method to converge faster than the

9

Ramachandran and Kabal method in a software implementation, however the increased

complexity of the algorithm in terms of both computational steps and conditional logic

make it more difficult to implement in a VLSI design.

1.3.4. THE METHOD OF RAMACHANDRAN AND KABAL

This method may be broken down into four basic steps:

1. Compute the symmetric and anti-symmetric polynomial coefficients given the

coefficients of A(z).

2. Deflate the resulting polynomials by their trivial roots at z = +1 and z = -1.

3. Convert the deflated polynomials to their Chebyshev representations.

4. Evaluate the Chebyshev polynomials over the interval [-1,1] and note where the

zero crossings occur. These locations determine the LSFs of the system.

This method starts with the p coefficient linear predictive filter given by

A(z) = 1- j Sk_ a(k)z-k

Eq. 9

where a(k) are the Linear Predictive (LP) coefficients. The first algorithmic step is to

compute the symmetric polynomial P(z) and the antisymmetric polynomial Q(z) from

A(z). The corresponding equations are

10

P(z) = A(z)+ z- (P+''A(z- l)

Eq. 10

Q(z) = A(z)- z- (P ')A(z-')

Eq. 11

The roots of P(z) and Q(z) are on the unit circle, are simple and interlace. The LSFs are

the angles of the roots whose imaginary part is positive. For practical applications, the

orderp is typically 10 or 12, making the isolation of the polynomial roots and arduous

task given the high resource cost in most VLSI systems.

Two trivial roots at z = +1 are first removed using a simple difference equation'

that essentially accomplishes polynomial deflation. The remaining roots must be found

explicitly. When p is even, we define the deflated polynomials as G, (z) = P(z) /1 + z-')

and G2 (z) = Q(z)/1 - z-'). When p is odd, we define the deflated polynomials as

G, (z) = P(z) and G2 (z) = Q(z) /1 - z 2). Suppose the orders of Gl(z) and G2 (z) are 2M1

and 2M2 respectively. Whenp is even, M, = M2 =p/2. Whenp is odd, M, = (p+1)/2

and M2 = (p-1)/2. Note that Gl(z) and G2(z) have an inherent coefficient symmetryl:

G, (z)= 1+ gz- +... + g, (M,)z - M
+ +... + g ()z 2-(2M-1) + z-2 M

Eq. 12

G2(z) = 1+ gz-' +... + g 2 (M 2)Z - M2 + ... + g 2 ()z-(2 M2 -) + -2M2

Eq. 13

11

The second algorithmic step is to deflate the polynomials P(z) and Q(z) to get Gl(z) and

G2(z) respectively.

Since only the roots with positive imaginary parts are of interest, the total number

of LSFs is Ml + M2 = p whether p is odd or even. The LSF vector consists of an ordered

set of angles between 0 and n. Using coefficient symmetry, substituting z = e'W in the

expressions for Gl(z) and G2(z) and removing the linear phase term results in the

following cosine series expansions':

G I (o) = 2 cos(Mpo) + 2g, (1) cos(MI - l)o + ... + 2g' (M, -1) cos co + g, (M,)

Eq. 14

G2 (o) = 2 cos(M 2a,) + 2g2 (1) cos(M2 - 1)c +... + 2g2 (M 2 - 1) cos + g2 (M 2)

Eq. 15

These series may be expressed in the form of Chebyshev polynomials in x by applying

the frequency mapping cos(ma) = T,(x) where Tm (x) is the mth order Chebyshev

polynomial in x. The mapping when applied to Gl(o) and G2(a) leads to

G, (x) = 2TM, (x) + 2g, (1)T,_, (x) +... + 2g, (M, - 1)T, (x) + g, (M,)

Eq. 16

G2 (x) = 2TM2 (x) + 2g 2 (1)TM_, (x) +... + 2g 2 (M 2 - 1)T2 (x) + g 2 (M 2)

Eq. 17

12

Any Chebyshev polynomial series in this form can be evaluated efficiently through the

application of the Clenshaw Recurrence Formula 9. Thus each evaluation of N terms may

be achieved with N multiplications and 2N additions'. The third step is to transform

Gl(z) and G2(z) into their Chebyshev polynomial series form Gi(x) and G2(x)

respectively.

Transforming the polynomials into the Chebyshev domain effectively maps the

upper part of the unit circle onto a linear region from x = -1 to x = +1. The roots are

isolated through the evaluation of the Chebyshev polynomial series over this region and

observing the zero crossings. Figure 2 shows plots of the Gi and G2 polynomials and

their zero crossings. A zero crossing is detected by observing a sign change in the

Chebyshev polynomial series. The root location is then evaluated at a higher resolution

in the neighborhood of the sign change. It has been experimentally determined that a

coarse resolution of 0.02 and a fine resolution of 0.0015 is adequate to isolate the root to

an acceptable precision for 10th and 12th order systems'. These are the values used in this

design. It should also be noted that the interlacing root peroperty on the unit circle

carries over to the Chebyshev domain. Thus, the first root found by starting the search at

x = 1 will be a root of Gj(x). The second root will be a root of G2(x). This further

increases the efficiency of the algorithm as one can alternate between evaluation of Gj(x)

and G2(x) as roots are found.

13

-1 -U.S -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 2: Plots of Chebyshev Polynomial Series Gl(x) and G2(x) (122t Order)

Finally, the fourth step is to isolate the roots of Gl(x) and G2(x) as described

above. When all the roots are found, the LSFs are computed as the inverse cosine of the

roots of Gl(x) and G2(x).

Note that for the purposes of applying this algorithm to LSF computation, a 10th

order system may be seen as a special case of a 12th order system. The coarse and fine

resolutions determined by Ramachandran and Kabal may be used for any system of 12th

order or lower, however care must be taken not to apply them to higher order systems in

which the roots may be closer together and smaller increment values must be used.

System orders higher than 12th are rarely seen in practical speech processing applications.

14

1.4. VLSI ARCHITECTURE FOR DIGITAL SIGNAL PROCESSING

1.4.1. DEVICE TYPES

A variety of semiconductor devices are available for implementing signal

processing algorithms in embedded systems. These range from general-purpose devices

to application specific integrated circuits (ASICs). The choice of device type depends

upon the requirements of the system in question.

1.4.1.1.GENERAL PURPOSE DSP CHIPS

General purpose DSP chips are specialized microprocessors or microcontrollers

which are optimized for the types of computations encountered in digital signal

processing applications. Generally, they are characterized by multiple functional units,

multipliers, data RAM, a fast ALU and on-chip memory sufficient to hold significant

portions of the data being operated on l° . Digital signal processing algorithms benefit

from the presence of fast multiplier-accumulators. These elements are important features

of general purpose DSP chips and frequently complete a multiply-accumulate operation

in one clock-cycle'.

In contrast to conventional microprocessors, DSP processors make frequent use of

multiple busses and memories. This technique allows delivery of multiple operands for

single-cycle execution, which improves overall data throughput'l . Throughput is further

enhanced through the use of large on-chip memories which can be accessed with lower

overhead than external memories.

15

1.4.1.2.FLOATING POINT DSP PROCESSORS

To address applications requiring high resolution and precision as well as wide

dynamic range, floating point processor architectures offer advantages over integer

architectures' ° . Many of the same architectural techniques are employed in floating point

processors, such as multiple busses, multiple memory spaces, and fast arithmetic units ° .

Floating point math capabilities in such devices employ 16, 18, 22 or 24 bit mantissas

and 4, 6 or 8 bit exponents, with 32 bit schemes with 24 bit mantissas and 8 bit exponents

being the most popular implementation 11. DMA controllers are sometimes used to ensure

a constant supply of data to operate on ° .

1.4.1.3.PARALLEL DSP CHIPS

Parallelism and pipelining may be used to considerably enhance performance".

Pipelining is a technique where registers are inserted in a data path between stages of

combinatorial logic12 . While very useful in achieving increased data throughput,

pipelined systems require more chip space due to the additional registers required 12.

Parallelism can often be used when an operation may be separated and will significantly

speed execution time. An example is the separation of real and imaginary parts of a

complex number operation in a system with two ALUs present ° .

1.4.1.4.RISC DSP

Reduced instruction set computer (RISC) processors are designed with fewer

instructions and a simpler design. With the chip space gained through the elimination of

infrequently used instructions, the remaining elements of the processor are highly

16

optimized for performance. Instructions which are not inherently present must be

emulated in software. DSP processors are considered a specialized subset of RISC

processors and there is less differentiation between conventional RISC chips and DSPs as

this technology matures' 0 . RISC DSPs generally use highly parallel and pipelined

structures to maximize computational throughput1° .

1.4.1.5.DSP CORES

A DSP core provides a building block for a larger DSP processor system. DSP

cores are configurable DSP processors designed for inclusion in a larger VLSI system".

Such cores provide the designer with the ability to produce systems which are more

efficient than general purpose processors, but do not require the complete design of a

DSP processor.

1.4.1.6.APPLICATION SPECIFIC INTEGRATED CIRCUITS (ASICs)

The maximum flexibility and performance in meeting design goals is provided by

ASICs. An ASIC provides designers complete freedom to optimize a design for a given

application. ASICs are constructed of standardized cells or gate arraysI" and as their

name implies, are designed around specific applications. While ASICs provide designs

optimized for a given application, the penalty is increased effort necessary to implement

and validate the design 2. This restricts their use to high volume, low cost applications or

in situations where overall performance is of paramount importance.

17

1.4.2. VLSI DESIGN TECHNIQUES FOR DIGITAL SIGNAL PROCESSING

Certain design practices have been established and are commonly used in VLSI

architectures intended for digital signal processing. As previously mentioned, parallelism

and pipelining are well established methods to maximize the efficiency of VLSI DSP

systems". Simply put, pipelining inserts registers in the data path between combinatorial

elements' 2. Latency is introduced in a pipelined system as the pipeline is filled, however

subsequent operations may be performed at every clock cycle. The addition of pipeline

registers comes at the cost of increased area requirements. Recently, wave pipelining has

been used to increase performance beyond what is possible using conventional pipelining

techniques. Wave pipelining relies on the interconnection capacitance between elements

as intermediate storage13 . Significant performance increases have been demonstrated

using wave pipelining 13, however extreme care must be taken during the design process

to ensure proper operation. Signal propagation and interconnection capacitance are

critical considerations in the design of wave-pipelined systems' 3. Because registers are

not used, significant area is not required as in conventional pipelining.

Parallelism is another example whereby increased performance may be achieved

at the cost of increased area requirements. In parallel architectures, operations that would

ordinarily be performed sequentially are executed simultaneously by distributing data to

multiple operational units that operate in tandem' . It should be noted however, that not

all computations lend themselves to parallel decomposition I .

Processors and coprocessors intended for DSP often are equipped with Direct

Memory Access (DMA) controllers. DMA controllers allow the DSP core to directly

access system memory which is frequently shared with a general purpose host processor.

18

Data processing can be significantly enhanced because the DSP subsystem is capable of

fetching data independent of the host processor.

1.4.3. SPECIAL CONSIDERATIONS IN EMBEDDED SYSTEMS

Embedded systems impose unique considerations in systems design. Common

examples of embedded systems in which DSP applications are prevalent are cellular

telephony, industrial control and sensor applications, medical device design and

cryptographic applications. In each case, it can be assumed that resources, primarily

power, memory and processor speed, are limited. Design efforts must observe these

inherent limitations. Many of these platforms are portable, battery powered devices and

much work has been done in low power design techniques.

19

2. ARCHITECTURAL DESCRIPTION

2.1. DESIGN APPROACH

The objective of this effort is the design and implementation of the Ramachandran-

Kabal algorithm in a VLSI design. The design goals have been established as follows:

1. The design is to be implemented entirely in VHDL.

2. The design is to be optimized for speed and minimal size.

3. A structure is to be chosen suitable for integration into larger systems requiring

computation of LSFs.

The initial step in the design approach is the functional decomposition of the

Ramachandran-Kabal algorithm. The algorithm lends itself well to decomposition

into the following sequential steps:

1. Given the coefficients of A(z), compute the symmetric and anti-symmetric

polynomials P(z) and Q(z).

2. Deflate the polynomials by the trivial roots at z = +1 and z = -1.

3. Rearrange the deflated polynomial coefficients into their corresponding

Chebyshev polynomial series form Gl(x) and G2(x).

4. Evaluate the Chebyshev polynomial series over the interval [-1,+1] and

identify the location of each zero crossing. Evaluation begins at x = +1 and

20

proceeds to x = -1 using an increment ofx small enough to detect the zero

crossings. The root nearest x = +1 will be a root of G](x)1.

5. When a zero crossing is found, the local region is re-evaluated to isolate the

root location with more precision. Ramachandran and Kabal have determined

that a coarse increment of 0.02 is sufficiently small to avoid missing a zero

crossing, and a fine resolution of 0.0015 is sufficient to adequately determine

the root location .

6. Because the interlacing property of the roots is preserved in the Chebyshev

domain, when a root of Gl(x) is located, the next root along the x axis will be

a root of G2(x) and vice versa.

7. When all root locations have been found, the LSFs may be computed by

evaluating the arcos(x).

Each of these algorithmic steps is isolated and a VLSI entity designed to perform the

operation in question. This approach was chosen because it decomposes the design into

manageable units and it makes debugging the design significantly easier because each

portion of the algorithm may be tested in isolation before moving to the next algorithmic

block.

2.2. GENERAL ARCHITECTURE FEATURES

To support the design goal of having a VLSI entity suitable for use in larger systems,

it was decided to accommodate input and output data in 32-bit IEEE 754 floating point

format, with a 23-bit mantissa, 8-bit exponent and a sign bit. Practical linear predictive

21

systems are generally of 10th or 12th order 14. The architecture is designed for a 12th order

system. The input to the system will be twelve 32-bit vectors representing the A(z)

coefficients in the 32-bit IEEE 754 floating point format. Because 10 th order systems

may be represented as a special case of 12th order data, the design presented here may be

used for 10th order data by simply setting two of the input vectors to zero and shifting the

coefficient vectors. In order to simplify hardware implementation for the 10th order case,

the coefficients are shifted during computation of the symmetric and antisymmetric

polynomials. This procedure is explained in more detail below.

The sequential nature of the algorithm is carried over into the architecture. Each

major VHDL entity corresponds to an algorithmic step.

2.3. VLSI ENTITIES

Each of the major algorithmic steps is decomposed into a VLSI entity. Data is

presented to each entity in 32-bit IEEE 754 floating-point format. In general, each

algorithmic step can be implemented as a series of register transfers, multiplications and

additions. For this reason, a similar finite state machine architecture is chosen for each

stage. The following sections provide a brief description of the general architecture of

each entity.

2.3.1. SYMMETRIC AND ANTISYMMETRIC POLYNOMIAL COMPUTATION

The inputs to the design are the twelve 32-bit floating point coefficients of A(z).

The first step in the algorithm is the computation of the symmetric and antisymmetric

22

polynomials P(z) and Q(z). The entity performing this function, atopq, accepts as its

input the twelve 32-bit vectors representing the input coefficients. The entity performs

the following computation to obtain the P(z) and Q(z) polynomials:

P(z) = A(z) + z-(P''A(z- ')

Eq. 18

Q(z) = A(z)- z-(P+'A(z- ')

Eq. 19

Numerically, this is simply a combination of additions and multiplications of coefficients

and the constants +1 and -1. The atopq entity implements a state machine which

transitions on each clock edge (rising and falling). The state machine shifts the data as

required, presents operators to the external floating-point entities, and offloads the results

of floating point computations. Figure 3 illustrates the state machine architecture of the

atopq entity.

23

Start

(NO]

Store result as pk
and reset coefficient index

State = 3

[NO]

Last Coefficient?

End

Figure 3: State Machine Architecture of the atopq Entity

24

For handling the case of 10th order systems, the unused high-order coefficient is

set to zero. When this condition exists, the resulting P(z) and Q(z) coefficients are

misaligned as shown in Figure 4.

Figure 4: Misalignment in 10th Order Case

The misalignment is simply corrected prior to further processing. In this way, both 10th

and 12th order systems may be handled without significantly increasing the complexity of

the system. The 10th order data may be further processed by the 12th order architecture

following these manipulations.

2.3.2. POLYNOMIAL DEFLATION

The output of the atopq entity are the coefficients of the P(z) and Q(z) polynomials.

Each polynomial is 12th order and contains a trivial root which may be removed to

simplify root isolation in later stages of the algorithm. The P(z) polynomial is deflated by

25

[1,, 0,a2, a3, ... , ap-1, 0,-1]

/
[0, 1, a2, a 3, ... , apl, -1, 0]

1) Shift outermost coefficient inward one position.
2) Set outermost coefficient to zero.

the trivial root at z = +1 while the Q(z) polynomial is deflated by the trivial root at z = -1

for the 12th order case. The polynomial deflation may be achieved through synthetic

division or coefficient manipulation in the form of a difference equation. Either

technique results in a combination of addition and subtraction of coefficients since

synthetic division involves multiplication by unity, thus there is little difference in

efficiency. The design presented here uses the synthetic division approach.

Because the algorithm is identical regardless of the trivial root to be removed, the

entitypolydiv, which performs the polynomial deflation, accepts the fourteen 32-bit

coefficient vectors of one polynomial as it's input. A single bit indicates whether the

polynomial is a symmetric or antisymmetric polynomial which determines the trivial root

to be removed. The output is the remaining thirteen coefficients following the

polynomial deflation. Two polydiv entities are used in the design to process the P(z) and

Q(z) coefficients in parallel.

Again, a state machine architecture is employed in the polydiv entity. The input

coefficient vector is iterated through as necessary to perform the synthetic division.

Again, the floating point operators are presented to the external floating point adder and

multiplier as required and the results offloaded. Figure 5 illustrates the state machine

architecture of the polydiv entity.

26

[NO]

Increment index, store
result as yk and present
root and Yk-1 to FPMULT

State = 3

Present results to output
and assert DONE

State = 4 [YES]

End

Figure 5: State Machine Architecture of the polydiv Entity

2.3.3. COMPUTATION OF CHEBYSHEV POLYNOMIAL SERIES COEFFICIENTS

Given the deflated P(z) and Q(z) polynomials, it is necessary to next rearrange the

coefficients into Chebyshev polynomial series representations. This is a simple matter of

arranging the P(z) and Q(z) polynomial coefficients and multiplying them by two. The

Chebyshev polynomial series form of the symmetric and antisymmetric polynomials

possess only seven coefficients versus thirteen required by the z-domain representation.

The input to the entity which performs the computation of Chebyshev coefficients,

chebform, accepts as its inputs the first six coefficients of the P(z) and Q(z) polynomials.

27

Because these two polynomials are symmetric and antisymmetric, half of the coefficients

are redundant information in the conversion to their Chebyshev form. The output is the

resulting Chebyshev polynomial series coefficients for both resulting polynomials, a total

of two sets of seven coefficients.

The state machine used in the chebform entity is very similar in structure to those

used in other algorithmic entities. This state machine is illustrated in Figure 6.

28

[YES]

Figure 6: State Machine Architecture of the chebfornn Entity

2.3.4. CLENSHAW RECURRENCE COMPUTATION

With the polynomials in their Chebyshev form, it is now necessary to evaluate the

polynomials over the interval [-1,+1]. Evaluation of polynomials in the form of

Chebyshev polynomial series may be efficiently performed using the Clenshaw

29

Recurrence Formula 9. This recurrence formula may be expressed as follows for a

Chebyshev polynomial series expressed in the form C(x) = .k 2CkTk (x).

b(x) = 2xbk+, (x) - bk+2 (x) + Ck

Eq. 20

With initial conditions bN (x) = bNI (x) = 0, the recursion is used to calculate

bo(x) and b2(x). The Chebyshev polynomials may then be evaluated by:

C(x)= 4Nl[b. (x) - 2xk, (x) + b b (x) + b2 (x) + cC(X) = k=O k = - 2

Eq. 21

The clenshaw entity performs this evaluation. Its inputs are the Ck coefficients of

the Chebyshev polynomial series and a location on the x-axis where the polynomial series

is to be evaluated. The recurrence is applied and an outputy = C(x) is computed. Figure

7 shows the state machine structure for the clenshaw entity.

30

Start

Present FPMULT with 2 and x
and initialize B0 and B1 to zero

State = 1

Store 2x result from
FPMULT for future use

State = 2

Let B2=B1, B1=BO and present
2x and B1 to FPMULT

State= 3

[NO]

Store res
sign of B
FPADD

State = 4

Figure 7: State Machine Architecture of the clenshaw Entity

31

2.3.5. DETERMINATION OF ROOT LOCATIONS

The core of the algorithm is the evaluation of the Chebyshev polynomial series over

the interval [-1,+1]. The points at which the polynomial evaluation curves cross are the

roots which determine the LSFs of the system. The Ramachandran and Kabal algorithm

evaluates the polynomials over this interval with a coarse increment. When a zero

crossing is detected, the local region is re-evaluated using a fine increment to isolate the

root with more precision. Following the precise determination of the root location, a

simple linear interpolation is employed to further isolate the root.

The rootfinder entity performs this evaluation using the clenshaw entity to

efficiently perform each individual evaluation. Zero crossings are identified by observing

the sign bit of the 32-bit floating point representation of the result, y = C(x), computed at

each point along the x-axis. Given a coarse increment of 8 = 0.02, this evaluation must

be performed 100 times for the coarse scan and an additional 160 times worst case

assuming four bisections per root in a 12th order system. In practice, this will be slightly

less depending upon the precise root location in relation to the points at which the

polynomial series is evaluated. Given a potential of 260 evaluations, observing the sign

changes directly in the floating-point representations is preferable to a full 32-bit floating-

point magnitude comparison.

Again a state machine architecture is employed. The rootfinder entity accepts the

coefficients of the Chebyshev representations of the symmetric and antisymmetric

polynomials as its inputs. The state machine evaluates the polynomials starting at x = +1;

The evaluation continues along the x-axis with the appropriate coefficients and x location

32

being presented to the clenshaw entity. The result returned from clenshaw is evaluated

for sign changes. In the event a sign change is detected, the x location and increment is

changed, but the state machine continues to transition sequentially. Taking advantage of

the interlacing property of the roots, the coefficient set is swapped as each root is found.

Following evaluation over the entire [-1,+1] interval, the results are presented at

the outputs in their 32-bit floating point format. Figure 8 illustrates the state machine

architecture for the rootfinder entity. This is the most complex state machine

implementation in the design.

33

Root found with
fine resolution?

Figure 8: State Machine Architecture of the rooofinder Entity

34

2.3.6. COMPUTATION OF THE LSFs

After the locations of each root has been found on the x-axis, the arccosine must be

computed to obtain the line spectral frequencies. To perform this computation, a four

term Taylor series expansion is used.

The entity arccos performs this computation and is very similar in structure to the

clenshaw entity in that it iterates through several states presenting intermediate results to

the external floating point adder and multiplier and the sums and products offloaded at

the next state transition. Figure 9 illustrates the structure of the arccos entity.

35

INO]

[YES)

Figure 9: State Machine Architecture of the arcos Entity

36

[NO]

2.3.7. FLOATING POINT ENTITIES

Because this design is intended for implementation into larger systems, it was

assumed that floating-point units would be available as a common resource. The

floating-point entities used are simple combinatorial implementations of a 32-bit adder,

multiplier and divider. Two operands are presented to the entity and the result is

presented to the output. These entities are not clocked, so when used in a design of this

nature, care must be taken that timing constraints associated with performing these

operations are not exceeded.

37

3. DETAILED DESIGN AND SYNTHESIS

3.1. VHDL REPRESENTATION

A fundamental goal of this design effort is the expression of the complete design in

VHDL. This allows implementation in various ASIC technologies as well as FPGAs if

size requirements can be met. Given the architecture previously described, the

implementation in VHDL is a straightforward process. The state machine structure of

each entity results in similarity in the VHDL implementations.

3.1.1. VHDL IMPLEMENTATION OF ATOPQ

The atopq entity is typical of the state machine architecture used repeatedly

throughout the design and will be discussed thoroughly here. Other entities sharing

similar structures will refer back to the atopq implementation when design details are

discussed.

As described in the architectural sections, the input to the system is a set of twelve

32-bit vectors which contain the IEEE 754 floating point representations of the linear

predictor coefficients of a system. The atopq entity is the first to process these inputs and

produce the coefficients of the symmetric and antisymmetric polynomials P(z) and Q(z).

Thus, the input to the atopq entity is twelve 32-bit vectors. In addition, clock and control

signals are also inputs to the entity. Figure 10 shows the VHDL declaration of the atopq

entity.

38

entity atopq is
port(

-- The A,P and Q ports are for the A(z) coefficient inputs and the P(z) adn
-- Q(z) coefficient outputs
AO,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11 :in std_logic_vector(31 downto 0);
PO,Pl,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13:out std_logic_vector(31 downto 0);
Q0,Ql,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,QlO,Q11,Q12,Q13:out std_logic_vector(31 downto 0);
-- The X and Y outputs are for floating point variables destined for the adder
-- or multiplier.
XADD,YADD :out std_logic_vector(31 downto 0);
ZADD :in std_logic_vector(31 downto 0);
XMULT,YMULT :out std_logic_vector(31 downto 0);
ZMULT :in std_logic_vector(31 downto 0);
-- The START bit is asserted when the A(z) coefficients have been presented and
-- will start execution of the state machine. The CLK input is the system clock.
-- The DONE output will be asserted when the final data is placed on the P and Q
-- output ports.
START :in std_logic;
CLK :in std_logic;
DONE :out std_logic);

end atopq;

Figure 10: VHDL Declaration of the atopq Entity

The outputs of this entity are two sets of 32-bit floating point representations of

the P(z) and Q(z) polynomials as well as a discrete DONE signal used to indicate to the

next entity that data presented on atopq's output is stable and ready for use in further

processing.

The state machine implementation is quite straightforward. Once data is

presented on the input of atopq, the START bit is asserted. This triggers the internal state

machine to proceed through it's processing. Figure 11 shows a partial state machine

implementation of atopq in VHDL. The state machine remains in state 0 until the START

bit becomes logical 1. At that time, all internal variables are initialized to their initial

conditions and the state variable transitions from 0 to 1. At each consecutive state, a

subset of the operations necessary for the entity to accomplish its function is performed.

39

case STATE is

when 0 =>
-- The first thing we do is copy the inputs into the local variable for
-- processing
A(0) = A0;
A(l) = Al;
A(2) = A2;
A(3) = A3;
A(4) := A4;
A(5) = AS;
A(6) = A6;
A(7) = A7;
A(8) = A8;
A(9) = A9;
A(10) := A10;
A(11) := All;

STATE := 1;
INDEX := 0;

when 1 =>

STATE := 2;

when 2 =>

STATE := 3;

when 3 =>
P(index + 1) := ZMULT; -- added + 1
if INDEX = 11 then -- changed from 10

INDEX := 0;
STATE := 4;

else
INDEX := INDEX + 1;
STATE := 1;

end if;

when 7 =>
PO <= P(O);
P1 <= P(1);
P2 <= P(2);

Q12 <= Q(12);
Q13 <= Q(13);
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
XADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
STATE := 8;

when others =>
-- DONE <= '1';

end case;

Figure 11: VHDL State Machine Implementation of the atopq Entitiy

40

If floating point operations must be performed, the external entitiesfpmult,fpadd,

andfpdiv are used. For an algorithmic entity such as atopq to make use of these floating

point entities, a set of ports are provided. Referring to Figure 10, it can be seen that

XADD, YADD, ZADD, XMULT, YMULT, and ZMULT ports are provided. The X and Y

ports are outputs through which atopq presents operands to the external floating point

entities. The results are presented on the Z ports by the entities when the operation is

complete. In this design, the floating-point entities are strictly combinatorial and are not

clocked. Figure 12 shows several states in the state machine of atopq where operands are

presented to external floating point entities.

Figure 12: VHDL Interface to External Floating Point Entities

41

when 1 =>
XADD <= A(index);
TEMPF := A(11 - index);
TEMPF(31) := not TEMPF(31);
YADD <= TEMPF;
STATE := 2;

when 2 =>
XMULT <= ZADD;
YMULT <= negone_float;
STATE := 3;

when 3 =>
P(index + 1) :=.ZMULT; -- added + 1

when 4 =>
XADD <= A(INDEX);
YADD <= A(11 - INDEX);
STATE := 5;

when 5 =>
XMULT <= ZADD;
YMULT <= neg_one_float;
STATE := 6;

when 6 =>
Q(index + 1) := ZMULT;

In this instance, atopq presents two floating point operands to the externalfpadd

entity in state 1. The state transitions to state 2 on the next clock cycle and the result of

the floating point addition is read from the ZADD port and immediately loaded as an

operand to the XMULTport together with another operand. The output of the external

fpmult entity is then presented on the ZMULTport which is read and stored in state 4. All

interfaces to external floating-point entities follow this type of process.

Note that because several entities share the floating-point resources, the output

ports are placed in a high impedance state when the floating point entities are not in use.

This design technique precludes the use of floating point entities by more than one

algorithmic block of the design at any given time.

3.1.2. VHDL IMPLEMENTATION OF POLYDIV

The assertion of the DONE output of the atopq entity causes the polydiv entity to

begin processing. The outputs of atopq are presented to the inputs of the two polydiv

entities that remove the trivial roots from the polynomials. The VHDL declaration of

polydiv is shown in Figure 13.

42

entity polydiv is
port(

-- XO to X13 is the input to the polynomial divider
XO,Xl,X2,X3,X4,X5,X6,X7,X8,X9,X10,Xll,X12,X13:in std_logicvector(31 downto 0);
-- YO to Y12 is the output of the polynomial division
Y0,Yl,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Yll,Y12 :out std_logic_vector(31 downto 0);
-- XADD,YADD and ZADD are interfaces to an external floating point adder
XADD,YADD :out std_logic_vector(31 downto 0);
ZADD :in std_logic_vector(31 downto 0);
-- XMULT,YMULT and ZMULT are interfaces to an external floating point multiplier
XMULT,YMULT :out std_logic_vector(31 downto 0);
ZMULT :in std_logic_vector(31 downto 0);
-- PQSEL selects if we're working with a P or Q polynomial and removes the

appropriate root
PQSEL :in std_logic;

CLK :in std_logic;
START :in std_logic;
DONE :out std_logic);

end polydiv;

Figure 13: VHDL Declaration of the polydiv Entity

The PQSEL input is used bypolydiv to determine which root is to be removed.

The structure ofpolydiv is similar to atopq. Each state defined in the architecture

is implemented using VHDL case statements exactly as implemented in other state

machine based entities as shown in Figure 12. Again, when floating point operations are

required, operands are presented to output ports connected to thefpmult,fpadd, andfpdiv

entities as required.

3.1.3. VHDL IMPLEMENTATION OF CHEBFORM

When the polydiv entity completes processing, the coefficients of the P(z) and Q(z)

polynomials are presented to the output and the DONE bit is asserted. The DONE signal

from atopq is connected to the START signal and the coefficient outputs are connected to

the inputs of the chebform entity. Figure 14 shows the declaration of the chebform entity.

43

Figure 14: VHDL Declaration of the chebform Entity

The state machine implementation of chebform is identical in structure to Figure 11.

3.1.4. VHDL IMPLEMENTATION OF CLENSHA W

The clenshaw entity isused by rootfinder as it scans the region [-1,+1] in search of

zero crossings. The clenshaw entity performs the efficient computation of the Chebyshev

polynomial at a given point. The input to clenshaw are the coefficients of the Chebyshev

polynomial in question, and the x point at which it is to be evaluated. Like the other

entities, a START and DONE signal are provided to start the internal state machine of

clenshaw and to signal to external systems when the computation is complete. Figure 15

shows the declaration of the clenshaw entity.

entity clenshaw is
port (

-- CO-C6 are the Chebyshev polynomial coefficients.
CO,C1,C2,C3,C4,C5,C6 :in std_logic_vector(31 downto 0);
-- X is the input to the polynomial evaluation.
X :in std_logic_vector(31 downto 0);
-- Y is the output of the polynomial evaluation.
Y :out stdlogic_vector(31 downto 0);
-- XMULT,YMULT and ZMULT are interfaces to an external floating point multiplier
XMULT,YMULT :out std_logic_vector(31 downto 0);
ZMULT :in std_logic_vector(31 downto 0);
XADD,YADD :out std_logic_vector(31 downto 0);
ZADD :in std_logic_vector(31 downto 0);
CLK :in std_logic;
START :in std_logic;
DONE :out std_logic);

end clenshaw;'

Figure 15: VHDL Declaration of the clenshaw Entity

44

entity chebform is
port (
-- P0-P10 and QO-Q10 are the P(z) and Q(z) polynomial coefficients
PO,P1,P2,P3,P4,P5,P6 :in std_logic_vector(31 downto 0);
Q0,Q1,Q2,Q3,Q4,Q5,Q6 :in std_logicvector(31 downto 0);
-- C1_0-C1_6 and C2_0-C2-6 are the resulting Chebyshev coefficients
Cl_0,Cl_l,Cl_2,Cl_3,Cl_4,Cl_5,Cl_6 :out std_logic_vector(31 downto 0);
C2_0,C2_1,C2_2,C2_3,C2_4,C2_5,C2_6 :out stdlogic_vector(31 downto 0);
-- XMULT,YMULT and ZMULT are interfaces to an external floating point multiplier
XMULT,YMULT :out std_logic_vector(31 downto 0);
ZMULT :in std_logic_vector(31 downto 0);
CLK :in std_logic;
START :in std_logic;
DONE :out std_logic);

end chebform;

-

3.1.5. VHDL IMPLEMENTATION OF ROOTFINDER

The main entity in the algorithm is rootfinder. This entity uses clenshaw to evaluate

the Chebyshev polynomials over the interval [-1,+1]. Following each evaluation, the sign

bit of the result from the polynomial evaluation is checked for a sign change. When a

sign change is detected, the increment is adjusted to the fine resolution scan and the state

machine is executed again over the region where the root was located.

Following subsequent detection of the zero crossing using the fine resolution

scan, the two evaluations on either side of the actual root location are used in a linear

interpolation computation to further refine the precise root location. The linear

interpolation is performed in another portion of the state machine for rootfinder. Figure

16 shows the VHDL declaration for rootfinder.

entity rootfinder is
port (
-- C1 and C2 are the Chebyshev coefficients
C1_0,C1_1,C1_2,C1_3,C1_4,C1_5,C1_6 :in std_logic_vector(31 downto 0);
C2_0,C2_1,C2_2,C2_3,C2_4,C2_5,C2_6 :in std logic_vector(31 downto 0);
-- XO-X10 are the zero crossing locations in the Chebyshev domain
XO,X1,X2,X3,X4,X5,X6,X7,X8,X9 :out std_logic_vector(31 downto 0);
-- CLO-CL5 and CX are interfaces to the Clenshaw evaluator.
CLO,CL1,CL2,CL3,CL4,CL5,CL6,CX :out std_logic_vector(31 downto 0);
CY :in std_logic_vector(31 downto 0);
-- the following are interfaces to an external floating point units
XMULT,YMULT :out std_logic_vector(31 downto 0);
ZMULT :in std_logic_vector(31 downto 0);
XADD,YADD :out std_logic_vector(31 downto 0);
ZADD :in std_logic_vector(31 downto 0);
XDIV,YDIV :out std_logic_vector(31 downto 0);
ZDIV I :in std_logic_vector(31 downto 0);
CLK :in std_logic;
START :in std_logic;
CHEBDONE :in std_logic;
CHEBSTART :out std_logic;
DONE :out stdlogic;

end rootfinder;

Figure 16: VHDL Declaration of the rooofinder Entity

45

3.1.6. VHDL IMPLEMENTATION OF ACOS

The output of rootfinder is a set of zero crossing locations in the Chebyshev domain.

To obtain LSFs, the arccosine must be computed on each of these. The acos performs a

simple Taylor series expansion approximation of the arccosine on each of the locations

on the x-axis where a zero crossing was detected.

The acos entity accepts the root location as its input and produces the

corresponding LSFs on its outputs.

Figure 17: VHDL Declaration of the acos Entity

46

entity acos is

port (
-- XO-X9 are the zero crossing locations in the Chebyshev domain
XO,Xl,X2,X3,X4,X5,X6,X7,X8,X9 :in std_logic_vector(31

downto 0);
-- LSFO-9 are the line spectral frequencies.
LSFO,LSF1,LSF2,LSF3,LSF4,LSF5,LSF6,LSF7,LSF8,LSF9 :out stdlogic_vector(31

downto 0);
-- XMULT,YMULT and ZMULT are interfaces to an external floating point multiplier
XMULT,YMULT :out std_logic vector(31 downto 0);
ZMULT :in std_logic_vector(31 downto 0);
XADD,YADD :out std_logic_vector(31 downto 0);
ZADD :in std_logic_vector(31 downto 0);
XDIV,YDIV :out std_logic_vector(31 downto 0);
ZDIV :in std_logic_vector(31 downto 0);
CLK :in std_logic;
START :in std_logic;
DONE :out std_logic);

end acos;

-

4. -VHDL SIMULATION RESULTS

4.1. SIMULATION APPROACH

The initial step in simulation is to confirm that the VHDL implementation of each

entity produces expected results. These implementations will be used as the input to the

synthesis tool. Test benches have been developed to exercise each entity with known

inputs and verify that outputs are as expected.

Following synthesis, the VHDL representations provided by the synthesis tool are

used to provide a more accurate model in terms of the actual implementation arrived at

by the synthesis tool. The gate-level models used in the VHDL entities generated by the

synthesis tools are those associated with the synthesis library used. In this case, the AMI

C5 gate models from the Mentor Graphics ASIC Design Kit are used. Ideally, the output

of the original VHDL models will be identical to those generated by the synthesis tool

when exercised by the same test bench. It is important to note that these models do not

account for parasitic effects that are present in the completely placed and routed design.

All simulations were conducted using Modelsim from Mentor Graphics.

4.2. PRE-SYNTHESIS SIMULATION RESULTS

Each entity was exercised using the test benches to verify correct performance. The

results are presented in the following sections for each entity with A(z) coefficients

obtained from a reference software implementation of the algorithm for a single frame of

speech.

47

4.2.1. SIMULATION RESULTS: ATOPQ

The atopq entity is presented with the test A(z) coefficients. Following assertion of

the STARTinput, the outputs are presented after 38 clock cycles. Table 1 shows the

outputs of atopq versus expected results. Results are shown in floating point format to

highlight numerical differences due to precision issues.

Table 1: atopq Simulation Results

Expected P(z) Computed P(z) Expected Q(z) Computed Q(z)
Input Coefficients Coefficients Coefficients Coefficients

0.929777 1 1 1 1
-0.403188 -0.9664054 -0.966405 -0.8931486 -0.893149
-0.266029 0.4418179 0.441818 0.3645581 0.364558
0.0103105 0.2182245 0.218224 0.3138335 0.313834
-0.264474 0.2265575 0.226557 -0.2471785 -0.247179
0.117257 -0.248127 -0.248127 0.777075 0.777075

0.0645595 -0.0526975 -0.052697 -0.1818165 -0.181817
-0.512601 0.0526975 0.052697 -0.1818165 -0.181817
0.236868 0.248127 0.248127 0.777075 0.777075

-0.0478045 -0.2265575 -0.226557 -0.2471785 -0.247179
0.0386299 -0.2182245 -0.218224 0.3138335 0.313834
-0.0366284 -0.4418179 -0.441818 0.3645581 0.364558

0.9664054 0.966405 -0.8931486 -0.893149
-1 -1 1 1

The outputs of atopq as exercised by the test bench matched expected results. The

outputs were resolved in 38 clock cycles as can be seen in Figure 18.

48

Figure 18: atopq Simulation Timing Diagram

4.2.2. SIMULATION RESULTS: POLYDIV

Thepolydiv entity is presented with the polynomial coefficients. Generally these

are the outputs of atopq, however below the entity is presented with theoretical results

from a reference software implementation to eliminate precision problems resulting from

the previous stage from affecting the results from thepolydiv test bench. The result is

obtained after 13 clock cycles. Test results are presented in Table 2.

49

Table 2: polydiv Simulation Results

Expected Pde(Z) Computed Pdef(z)
Input Coefficients Coefficients

1 1 1
-0.9664054 0.0335946 0.0335901
0.4418179 0.4754125 0.475408
0.2182245 0.693637 0.693633
0.2265575 0.9201945 0.920191
-0.248127 0.6720675 0.672061

-0.0526975 0.61937 0.619361
0.0526975 0.6720675 0.672059
0.248127 0.9201945 0.920186

-0.2265575 0.693637 0.693626
-0.2182245 0.4754125 0.475406
-0.4418179 0.0335946 0.0335861
0.9664054 1 0.999991

-1

The outputs ofpolydiv as exercised by the test bench match expected results. The output

is presented after 13 clock cycles. Figure 19 is the simulation timing diagram for the

entity.

50

Figure 19: polydiv Simulation Timing Diagram

4.2.3. SIMULATION RESULTS: CHEBFORM

The chebform entity converts the P(z) and Q(z) polynomials to their corresponding

Chebyshev form. The entity is presented with the deflated polynomial coefficients. The

outputs of chebform are the coefficients of the corresponding Chebyshev polynomials.

The output is resolved in 13 clock cycles. Table 3 presents the results obtained from the

chebform entity.

51

Table 3: chebform Simulation Results

Expected Computed
Input Coefficients Coefficients

1 0.61937 0.61937
0.0335946 1.344135 1.34414
0.4754125 1.840389 1.84039
0.693637 1.387274 1.38727

0.9201945 0.950825 0.950826
0.6720675 0.0671892 0.06719

0.61937 2 2
0.6720675
0.9201945
0.693637

0.4754125
0.0335946

1

The outputs of chebform as exercised by the test bench matched expected results. The

timing diagram for the chebform simulation is shown in Figure 20.

Figure 20: chebform Simulation Timing Diagram

52

4.2.4. SIMULATION RESULTS: CLENSHAW

The clenshaw entity is used to evaluate the Chebyshev polynomials at specific

points on the x-axis using the Clenshaw Recurrence Formula. The entity is provided with

the Chebyshev coefficients and a value for x. Upon completion of the computation, the

result is presented on the y output. Table 4 shows the clenshaw simulation results for an

x value of 0.98.

Table 4: clenshaw Simulation Results

Input
Chebyshev Expected Computed
Coefficients Output Output
0.7378032 0.675631 0.675626
-1.8392394
3.3933894

-3.8877464
4.5154134
-3.7862972

2

The outputs of clenshaw as exercised by the test bench matched expected results. Figure

21 shows the simulation results for clenshaw.

53

Figure 21: clenshaw Simulation Timing Diagram

4.2.5. SIMULATION RESULTS: ROOTFINDER

The primary entity in the execution of the algorithm is the rootfinder entity. This

entity is provided with the coefficients of the Chebyshev polynomials and performs the

scan of the region [-1,+1] in search of the zero crossings. The rootfinder entity is

presented a known set of Chebyshev coefficients and the resulting zero crossing locations

are computed and presented at the outputs. Table 5 shows the simulation results for

rootfinder.

54

"-

Table 5: rootfinder Simulation Results

Input A(z) Computed
Coefficients Expected Outputs Outputs

0.929777 0.92621144666714 0.926211
-0.403188 0.85810873075617 0.858109
-0.266029 0.81315778984863 0.813158
0.0103105 0.64938386851508 0.649384
-0.264474 0.52544554098200 0.525446
0.117257 0.37905174475715 0.379052

0.0645595 -0.015244580367536 -0.01524
-0.512601 -0.25330834458677 -0.25331
0.236868 -0.40368236893924 -0.40368

-0.0478045 -0.69202503202314 -0.69203
0.0386299 -0.89931369114020 -0.89931
-0.0366284 -0.95800704025428 -0.95801

The outputs of rootfinder as exercised by the test bench match expected results.

IA dedone__
4! debstart I

3 : .^^__^5-_-1_'I.^^^^^^^^^^^^H i
i^^^^^^^^^^

Figure 22: rootfinder Simulation Timing Diagram

55

4.3. SIMULATION RESULTS OF 10TH ORDER CASE

All results presented previously were based on a 12th order system. To verify that

the design adequately processes data for the 10th order case, the identical test benches

were used with 10th order data as the input vector. The following sections present the

results of the 10th order case for each entity.

4.3.1. SIMULATION RESULTS: ATOPQ 10th ORDER CASE

Table 6 shows the outputs ofatopq versus expected results. Results are shown in

floating point format to highlight numerical differences due to precision issues.

Table 6: atopq Simulation Results (10th Order Case)

Expected P(z) Computed P(z)
Input Coefficients Coefficients

0 0 0
0.850473 1 1
-0.330070 -0.809264 -0.809264
0.524596 0.545613 0.545613
-0.447751 -0.723928 -0.723928
0.389482 0.79225 0.79225
-0.434903 -0.824385 -0.824385
0.344499 0.824385 0.824385
-0.199332 -0.79225 -0.79225
0.215543 0.723928 0.723928
0.041209 -0.545613 -0.545613

0.0 0.809264 0.809264
-1 -1
0 0

The outputs of atopq as exercised by the test bench matched expected results.

56

4.3.2. SIMULATION RESULTS: POLYDIV 10th ORDER CASE

Test results are presented in Table 7.

Table 7: polydiv Simulation Results (10th Order Case)

Expected Computed
Input Coefficients Coefficients

0 0 0
1 1 1

0.190736 0.190736 0.190736
0.736349 0.736349 0.736349
0.012421 0.012421 0.0124211
0.804671 0.804671 0.804671
-0.019714 -0.019714 -0.0197139
0.804671 0.804671 0.804671
0.012421 0.012421 0.0124211
0.736349 0.736349 0.736349
0.19073 0.190736 0.190736

1 1 1
0 0 0

The outputs ofpolydiv as exercised by the test bench match expected results.

4.3.3. SIMULATION RESULTS: CHEBFORM 10th ORDER CASE

Table 8 presents the results obtained from the chebform entity.

57

Table 8: chebform Simulation Results (10t Order Case)

Expected Computed
Input Coefficients Coefficients

0 -0.019714 -0.19714
1 1.609342 1.60934

0.190736 0.024842 0.024842
0.736349 1.472698 1.4727
0.012421 0.381472 0.381472
0.804671 2 2
-0.019714 0 0
0.804671
0.012421
0.736349
0.190736

1
00 _______________________

The outputs of chebform as exercised by the test bench matched expected results.

4.3.4. SIMULATION RESULTS: CLENSHA WO th ORDER CASE

Table 9 shows the clenshaw simulation results.

58

Table 9: clenshaw Simulation Results (10 th Order Case)

Input
Chebyshev Expected Output Computed Output
Coefficients (@0.98) (@ 0.98)

-0.019714 -0.15604185569792 -0.156042
1.609342
0.024842
1.472698
0.381472

2_
0__

The outputs of clenshaw as exercised by the test bench matched expected results.

4.3.5. SIMULATION RESULTS: ROOTFINDER 10th ORDER CASE

Table 10 shows the simulation results for rootfinder.

59

Table 10: roofinder Simulation Results (10h Order Case)

Input A(z) Computed
Coefficients Expected Outputs Outputs

0.850473 0.95611004596066 0.956110
-0.330070 0.64783128270799 0.647831
0.524596 0.63035961400801 0.630360
-0.447751 0.030747646531559 0.0307476
0.389482 -0.48245715781960 -0.482457
-0.434903 -0.59600213515672 -0.596002
0.344499 -0.84344620450057 -0.843446
-0.199332
0.215543
0.041209

The outputs ofrootfinder as exercised by the test bench match expected results.

60

5. SYNTHESIS

5.1. SYNTHESIS PROCESS

Once a VHDL model of the entities had been successfully simulated and the results

verified, the next step is synthesis. Leonardo-Spectrum was used to process the VHDL

descriptions of each entity into actual gate-level implementations using the AMI C5

technology library. The output of the synthesis process is an EDF netlist and a VHDL

description of the entity, which is based on the gate level implementation, generated by

the synthesis tool.

5.1.1. SYNTHESIS RESULTS

The gate count for each entity has been determined during synthesis. Table 11

shows the results.

Table 11: Gate Count by Entity

Entity Gate Count
acos 7410
atopq 7699
chebform 5204
polydiv 5517
clenshaw 3139
fpmult 6548
fpadd 2285
fpdiv 7419
rootfinder 6570
Total: 51791

61

In an actual system implementation, thefpadd,fpmult, andfpdiv entities would most

likely be replaced with the floating-point arithmetic units available in the larger speech

processing system.

5.1.2. POST SYNTHESIS SIMULATION

The VHDL models generated by the synthesis tool reflects the gate-level

implementation determined during synthesis. This allows simulation of actual gate

delays associated with the implementation technology. Simulation using these models

was performed using the exact test bench used for the original VHDL model of each

entity.

It was determined that each entity performed identically in terms of actual output

resolved for the given test input vectors using the test benches designed for original

simulation efforts. In addition, all entities performed correctly with clock periods as

short as 10ns, which implies 100MHz operation is possible. It is important to note,

however, that parasitic effects are not considered in the synthesized VHDL models.

Table 12 shows a summary of performance for each entity.

Table 12: Performance by Entity

Entity 10ns Clock Total Cycles
acos Yes 102
atopq Yes 38
chebform Yes 13
polydiv - Yes 13
clenshaw Yes 18
fpmult Yes 1
fpadd Yes 1
fpdiv Yes 1
rootfnder Yes 4658 (Worst Case)
Total: 4842 (Worst Case)

62

As mentioned, each entity met the O1ns clock period performance goal. The total clock

cycles shown do not include the single clock performance of the floating-point entities

because they are accounted for in the testing of each major entity. The rootfinder entity

exhibits somewhat nondeterministic performance because the total number of clock

cycles necessary for rootfinder to resolve an output will depend upon the exact root

locations in relation to the point at which a zero crossing is detected. The worst case

assumes that all bisections of the region near the root location must be evaluated. The

rootfinder evaluates a Chebyshev polynomial 100 times for the coarse scan and a

maximum of 156 times for the fine resolution scan.

Given this performance, the design can resolve an output in a worst case of 4842

clock cycles at a clock rate of 100MHz. This allows evaluation of a 12th order system in

approximately 50us, which is significantly shorter than a typical frame of digitized

speech.

5.2. OVERALL SIMULATION RESULTS

Because each of the previous simulation steps exercises each entity with known good

input data, the effects of precision issues introduced by the design are isolated to each

individual entity. In actual use, the output of many of the design entities provide the

inputs to the next, introducing the possibility of compounding numerical errors due to

precision problems.

The entire design was exercised using an input vector and the resulting outputs

produced. Table 13 shows the output of the entire design to a given input, compared with

the output produced by a known-good software implementation of the algorithm.

63

Table 13: ASIC Results Versus Expected Output

Input A(z) Computed
Coefficients Expected Outputs Outputs

0.929777 0.0615229 0.061523
-0.403188 0.0858198 0.085820
-0.266029 0.0988733 0.098873
0.0103105 0.137513 0.137513
-0.264474 0.161949 0.161949
0.117257 0.188125 0.188125

0.0645595 0.252426 0.252426
-0.512601 0.290759 0.290759
0.236868 0.316135 0.316135

-0.0478045 0.371641 0.371641
0.0386299 0.427967 0.427967

-0.0366284 0.453713 0.453713

These results are not yet correlated to real-world performance. Variations in

computed LSFs could introduce distortion at the receiving side. Methods to compute this

distortion given these results have not been determined.

Barring errors in the implementation of the algorithmic entities, the factors that

affect the numerical performance of the design are:

1. The performance of the floating-point entities.

2. The number of terms in the acos entity for converting the zero crossing locations

into LSFs.

In a real system, the floating point entities would be replaced with a globally available

floating point resource. The number of terms in the acos entity can easily be adjusted as

needed, however the more terms used the longer resolution of the result will take. Also, a

size penalty must be paid.

64

6. LAYOUT

6.1. LAYOUT OF EACH ENTITY

Layout was performed using Mentor Graphic's IC Station. The EDF file generated

during synthesis was used as an input to IC Station and defines the interconnects between

the individual devices from the AMI-05 device library. Each entity was placed and

routed by the automated place and route tools provided by IC Station.

Following layout, the area requirements for each entity were determined. These are

summarized in Table 14.

Table 14: Size and Area by Entity

Entity Size (X) Area (mm2)
Acos 11408 x 7999 11.178
Atopq 12303 x 8954 13.495
Chebform 7268 x 6706 5.971
Polydiv 8322 x 6815 6.948 (x2= 13.896)
Clenshaw 5461 x 5252 3.513
Fpmult 7106 x 7046 6.133
Fpadd 5086 x 4303 2.681
Fpdiv 8464 x 7985 8.279
Rootfinder __ 8246 x 7985 7.716
Total: 79.81

Again, because the floating-point entities would most likely not be used when integrating

with a larger system, the total area requirement for the design is approximately 61mm 2.

6.1.1. LAYOUT OF ACOS ENTITY

'The following figure is the acos entity following layout and routing.

65

Figure 23: acos Entity Layout

6.1.2. LAYOUT OF ATOPQ ENTITY

The following figure is the atopq entity following layout and routing.

66

nta;;l*_i;-r;r-liu-jir ·a�r·;·rir�r�;' �r�r�l�CCFFI,

1;

�t�)f

US

Figure 24: atopq Entity Layout

6.1.3. LAYOUT OF CHEBFORMENTITY

The following figure is the atopq entity following layout and routing.

67

Figure 25: chebform Entity Layout

6.1.4. LAYOUT OF POLYDIVENTITY

The following figure is the atopq entity following layout and routing.

68

Figure 26: polydiv Entity Layout

6.1.5. LAYOUT OF CLENSHAWENTITY

The following figure is the atopq entity following layout and routing.

69

Figure 27: clenshaw Entity Layout

6.1.6. LAYOUT OF FPMULTENTITY

The following figure is thefpmult entity following layout and routing.

70

Figure 28:fpmult Entity Layout

6.1.7. LAYOUT OF FPADD ENTITY

The following figure is the fpadd entity following layout and routing.

71

Figure 29:fpadd Entity Layout

6.1.8. LAYOUT OF FPDIVENTITY

The following figure is thefpdiv entity following layout and routing.

72


~~~~"Wl

Figure 30: fpdiv Entity Layout

6.1.9. LAYOUT OF ROOTFINDER ENTITY

The following figure is the rootfinder entity following layout and routing.

73



Figure 31: rootfinder Entity Layout

6.2. OVERALL ASIC FLOORPLAN

With all entities routed, floorplanning of the complete subsystem has been done.

Placement of each entity has been chosen to reduce interconnections to the extent

possible. Floating point elements have not been placed, however should this design be

74



fabricated for testing purposes, both a bus interface and the floating point entities would

be required. Figure 32 shows the ASIC floorplan.

Figure 32: Overall ASIC Layout

75



7. SUMMARY AND DISCUSSION

7.1. SUMMARY

A VLSI design implementing an efficient method for the computation of LSFs

has been developed and presented. The design implements the method proposed by

Ramachandran and Kaball for the efficient computation of Line Spectral Frequencies

(LSFs) using Chebyshev polynomials. This method was first decomposed into the

following steps:

1. Compute the coefficients of the symmetric and antisymmetric polynomials

from the A(z)-coefficients.

2. Deflate the resulting polynomials by their trivial roots.

3. Put the deflated polynomials into their corresponding Chebyshev form.

4. Evaluate the Chebyshev polynomials over the interval [-1,+1] and identify

the zero crossing locations.

5. Compute the arccosine function of the zero crossing locations to obtain the

LSFs.

For each major algorithmic step, a VHDL entity was designed to perform the required

computations. 32-bit floating-point numerics are used throughout the design.

Following the design; simulation of the VHDL was performed and performance

verified. The output of the entities under test corresponded with the outputs generated by

a known-good software implementation of the algorithm. For the case of 10th order

76



systems, the coefficients of the symmetric and antisymmetric polynomials are shifted in

response to setting the outermost A(z) coefficients to zero when loading 10th order data

into the system. Using this method, the 10th order polynomials may be processed as a

12th order system with the unused coefficients set to zero. This makes the architecture

uniformly 12th order, but allows processing of 10th order data.

Synthesis was performed for each entity using the AMI C5 process library and

Mentor Graphics Leonardo-Spectrum. The resulting gate counts are listed in Table 11 for

each entity. The synthesis tool produced a VHDL model of each entity using the actual

gate-level models from the technology model used. These models were exercised with

the test benches used to test the original entities. Actual gate delays are introduced in

these models, however testing revealed that the design goal of 100MHz clocking could be

achieved using the synthesis library. At that rate, the design is capable of resolving an

output in 50us or less.

Layout has been performed using Mentor Graphic's IC Station. Each entity was

placed and routed and size estimates determined in Table 14. The overall area consumed

is approximately 66mm 2. Note that this includes the floating point entities, however

should this design be integrated into a larger speech coding system global floating point

resources would be available and need not be duplicated.

7.2. CONCLUSIONS

The design presented here is capable of resolving the roots of the symmetric and

antisymmetric polynomials resulting from linear predictive analysis and computing the

corresponding LSFs in less than 50us with precision comparable to known-good software

77



implementations. Numerical differences observed are believed to be the result of the

floating point implementation used as well as the number of terms used in the Taylor

series expansion for computation of the arccosine.

Because of the importance of 10th and 12th order systems in speech coding and

speaker recognition systems, the design has been made such that 10 th and 12th order data

can be processed with the same architecture. Systems of other orders cannot be

processed, however modification for any even ordered system is a straightforward design

change.

7.3. FURTHER WORK

The performance of the design should be further investigated. Numerical differences

between the software implementations and VHDL models should be correlated to real-

world performance metrics such as distortion on the receiving side. To achieve this,

modified test benches must be created capable of processing large amounts of floating

point data encoded as ASCII strings in text files. The specific performance metrics must

also be selected.

Following a more thorough confirmation of adequate performance, the design should

be simulated using post-layout parasitic effects. Parasitic capacitance is likely to further

reduce the maximum rate at which the design can operate. The exact limits of

performance should be determined.

To actually test real-world performance, the design may be fabricated. To do so, a

bus interface design must be implemented to allow loading of the twelve 32-bit input

vectors as a series of memory loads 8- or 16-bits in width. In this way an external system

78



can exercise the design. The same data used in VHDL test bench simulation could be

used for comparison and real throughput measured.

79



8. VHDL LISTINGS

8.1. ATPQ VHDL LISTING

library IEEE;
use IEEE.std_logic_1164.all;

entity atopq is
port(

end atopq;

-- The A,P and Q ports are for the A(z) coefficient inputs and the P(z) adn
-- Q(z) coefficient outputs
A0,A1,A2,A3,A4,A5,A6,A7,AB,A9,A10,All :in std_logic_vector(31 downto 0);
P0,Pl,P2,P3,P4,PS,P6,P7,P8,P9, P10,Pll,P12,P13 :out std_logic_vector(31

downto 0);
QO,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10,Q11,Q12,Q13 :out std_logic_vector(31

downto 0);
-- The X and Y outputs are for floating point variables destined for the adder
-- or multiplier.
XADD,YADD :out std_logicvector(31 downto 0);
ZADD :in std_logic_vector(31 downto 0);
XMULT,YMULT :out std_logic_vector(31 downto 0);
ZMULT :in stdlogic_vector(31 downto 0);
-- The START bit is asserted when the A(z) coefficients have been presented and
-- will start execution of the state machine. The CLK input is the system clock.
-- The DONE output will be asserted when the final data is placed on the P and Q
-- output ports.
START :in std_logic;
CLK :in std_logic;
DONE :out std 1cTvim).

architecture beh of atopq is
subtype float32 is std_logic_vector(31 downto 0); -- subtype to create arrays of floats
type floatvectl2 is array (11 downto 0) of kloat32; -- an array of floats
type floatvectl4 is array (13 downto 0) of float32; -- an array of floats
constant one_float :std logic vector(31 downto 0) :=
"00111111100000000000000000000000";

constant neg_one_float :std_logic_vector(31 downto 0) :=
"10111111100000000000000000000000";

begin
mainproc:process(CLK)
variable A :floatvectl2;
variable P :floatvectl4;
variable Q :floatvectl4;,
variable INDEX :integer range 0 to 11;
variable STATE :integer range 0 to 99;
actual requirement
variable TEMPF :std_logic_vector(31 downto
variable TENTHFLAG :std_logic;
begin
if START = '0' then

DONE <= '0';
STATE := 0;
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
YMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"
XADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ'";

-- when finished, limit range to

0);

else
-- Here is the state machine that executes if the START bit is asserted.

80

---- ---



case STATE is

when 0 =>
-- The first thing we do is copy the inputs into the local variable for
-- processing
A(0) = AO;
A(1) = Al;

A(2) = A2;
A(3) := A3;
A(4) = A4;
A(5) = A5;
A(6) = A6;
A(7) = A7;
A(8) := A8;
A(9) := A9;
A(10) := A10;
A(ll) := All;
-- We know that P(0) and Q(0) are always 1, so we assign them here rather
than going
-- through the evaluation. The same goes for P(ll) and Q(ll) which are -1
and 1
-- respectively.
P(0) := one_float;
Q(0) := one_float;
P(13):= neg_one_float;
Q(13):= one_float;
-- Here we check if this is a tenth order system. If so, the input vector
has zeros
-- at eather end.
if ((A(0) = "00000000000000000000000000000000")) then

TENTHFLAG := '1';
DONE <= '1';

else
TENTHFLAG := '0';

end if;
STATE := 1;
INDEX := 0;

when 1 =>
XADD <= A(index);
TEMPF := A(11 - index);
TEMPF(31) := not TEMPF(31);
YADD <= TEMPF;
STATE := 2;

when 2 =>
XMULT <= ZADD;
YMULT <= negone_float;
STATE := 3;

when 3 =>
P(index + 1) := ZMULT; -- added + 1
if INDEX = 11 then -- changed from 10

INDEX := 0;
STATE := 4;

else
INDEX := INDEX + 1;
STATE := 1;

end if;

when 4 =>
XADD <= A(INDEX);
YADD <= A(11 - INDEX);
STATE := 5;,

when 5 =>
XMULT <= ZADD;
YMULT <= neg_one_float;
STATE := 6;

when 6 =>

81



Q(index + 1) := ZMULT;
if INDEX = 11 then

STATE := 7;
-- If this is a 10th order system, we shift the coefficients.
if TENTHFLAG = '1' then

P(1) := P(0);
P(O) := "00000000000000000000000000000000";

P(12) := P(13);
P(13) := "00000000000000000000000000000o00";
Q(1) := Q(0);
Q(0) := "0000000000000000000000o0000o0000";
Q(12) := Q(13);
Q(13) := "00000000000000000000000000000000";

end if;
else

INDEX := index + 1;
STATE := 4;

end if;

when 7 =>
PO <= P(O);
P1 <= P(1);
P2 <= P(2);
P3 <= P(3);
P4 <= P(4);
P5 <= P(5);
P6 <= P(6);
P7 <= P(7);
P8 <= P(8);
P9 <= P(9);
P10 <= P(10);
Pll <= P(11);
P12 <= P(12);
P13 <= P(13);
QO <= Q();
Q1 <= Q(1);
Q2 <= Q(2);
Q3 <= Q(3);
Q4 <= Q(4);
Q5 <= Q(5);
Q6 <= Q(6);
Q7 <= Q(7);
Q8 <= Q(8);
Q9 <= Q(9);
Q10 <= Q(10);
Qll <= Q(ll);
Q12 <= Q(12);
Q13 <= Q(13);
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
XADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
STATE := 8;

when others =>
--DONE <= '1';

end case;
end if;

end process;

end beh;

8.2. POLYDIV VHDL LISTING

library IEEE;
use IEEE.std_logic_1164. all;

82



entity polydiv is
port(

-- XO to X13 is the input to the polynomial divider
XO,Xl,X2,X3,X4,X5,X6,X7,X8,X9,X10,Xll,X12,X13

d
-- YO to Y12 is the output of the polynomial division
YO,Yl,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Yll,Y12 :out std
-- XADD,YADD and ZADD are interfaces to an external f]
XADD,YADD :out std
ZADD :in std_
-- XMULT,YMULT and ZMULT are interfaces to an external
XMULT,YMULT :out std
ZMULT :in std_
-- PQSEL selects if we're working with a P or Q polyn(
appropriate root
PQSEL :in std_:

CLK :in std_
START :in std_
DONE :out std

end polydiv;

architecture beh of polydiv is
subtype float32 is std_logic_vector(31 downto 0);
type floatvect is array(13 downto 0) of float32;
constant one_float :std_logic_vector(31 downto 0) :=
"00111111100000000000000000000000";
constant neg_one_float :std_logic_vector(31 downto 0) :=
"10111111100000000000000000000000";

begin
mainproc:process(CLK)
variable X :floatvect;
variable Y :floatvect;
variable ROOT :std_logic_vector(31 downto 0);
variable TEMPF :std_logic_vector(31 downto 0);
variable INDEX :integer range 0 to 13;
variable STATE :integer range 0 to 99;
begin
if START = '0' then

DONE <= '0';
STATE := 0;
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
XADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";

else

in std_logic_vector(31
downto 0);

_logic_vector(31 downto 0);
Loating point adder
_logic_vector(31 downto 0);
Logic_vector(31 downto 0);
L floating point multiplier
_logicvector(31 downto 0);
Logicvector(31 downto 0);
omial and removes the

Logic;

Logic;
Logic;
_logic);

-- Here's the case statement that implements the state machine
-- of the polynomial divider.
case STATE is

when 0 =>
X(0) = XO;
X(1) = X1;
X(2) := X2;
X(3) := X3;
X(4) := X4;
X(5) := X5;
X(6) := X6;
X(7) := X7;

X(8) := X8;
X(9) := X9;
X(10) := X10;
X(11) := X11;
X(12):= X12;
X(13) := X13;
if PQSEL = '1' then

83



ROOT := one_float;
else

ROOT := neg_one_float;
end if;
STATE := 1;

when 1 =>

Y(O) := X(O);
XMULT c= ROOT;
YMULT <= Y(0);
INDEX := 1;
STATE := STATE + 1;

-- Now we start iterating through the remaining coefficients
when 2 =>

-- Offload the multiplier and load the adder with the result and
the next
-- X coefficient.
XADD <= ZMULT;
YADD <= X(INDEX);
STATE := STATE + 1;

when 3 =>
-- First we offload the adder output, which is our next coefficient
in the
-- result.
Y(INDEX) := ZADD;
INDEX := INDEX + 1;
-- Next, the multiplier is loaded with the next coefficient and the
root.
XMULT <= ROOT;
YMULT <= Y(INDEX-1);
if INDEX = 13 then

STATE := STATE + 1;
else

STATE := 2;
end if;

when 4 =>
-- Here we load the output signals and set the done flag.
YO <= Y(O);
Y1 <= Y(1);
Y2 <= Y(2);

Y3 <= Y(3);
Y4 <= Y(4);
Y5 <= Y(5);
Y6 <= Y(6);
Y7 <= Y(7);

Y8 <= Y(8);
Y9 <= Y(9);
Y10 <= Y(10);
Yll <= Y(11);
Y12 <= Y(12);
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZ ZZZZZZ";
XADD <= "ZZZZZZZZZZZZZZZZZZZZZ ZZZZZZZZZZ";
YADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";

STATE := STATE + 1;

when others =>
DONE <= '1';

end case;

end if;

end process;

end beh;

84



8.3. CHEBFORM VHDL LISTING

library IEEE;
use IEEE.stdlogic_1164.all;

entity chebform is
port (
-- P0-P10 and Q0-Q10 are the P(z) and Q(z) polynomial coefficients
PO,Pl,P2,P3,P4,P5,P6 :in std_logic_vector(31 downto 0);
QO,Q1,Q2,Q3,Q4,Q5,Q6 :in std_logic_vector(31 downto 0);
-- C1_0-C1_6 and C2_0-C2_6 are the resulting Chebyshev coefficients
Cl_0,Cl_l,Cl_2, Cl_3,Cl_4,Cl_5,Cl_6 :out stdlogicvector(31 downto 0);
C2_0,C2_l,C2_2,C2_3,C2_4,C2_5,C2_6 :out std_logicvector(31 downto 0);
-- XMULT,YMULT and ZMULT are interfaces to an external floating point multiplier
XMULT,YMULT :out std_logic_vector(31 downto 0);
ZMULT :in std_logicvector(31 downto 0);
CLK :in std_logic;
START :in std_logic;
DONE :out std_logic);

end chebform;

architecture beh of chebform is
subtype float32 is std_logic_vector(31 downto 0);
type floatvect7 is array (6 downto 0) of float32;
constant two_float :std_logic_vector(31 downto 0) := "01000000000000000000000000000000";

begin
mainproc:process(CLK)
variable P :floatvect7;
variable Q :floatvect7;
variable C1 :floatvect7;
variable C2 :floatvect7;
variable INDEX :integer range 0 to 10;
variable STATE :integer range 0 to 99; -- note - fix this range when you know more
begin

if START = '0' then
DONE <= '0';
STATE := 0;
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";

else

-- Here is the state machine that executes when START is asserted
case STATE is

when 0 =>
-- First thing, we copy all inputs into internal variables
P(0) = PO;
P(1) = P1;
P(2) = P2;
P(3) = P3;
P(4) = P4;

P(5) = PS;
P(6) = P6;
Q(0) = Q0;
Q(1) = Q1;
Q(2) := Q2;

Q(3) := Q3;
Q(4) = Q4;
Q(5) := Q5;
Q(6) := Q6;
STATE := STATE + 1;

when 1 =>
-- The first two are easy.
C1(6) := P(6);
C2(6) := Q(6);
INDEX := 0;
STATE := STATE + 1;

85



-- Now we iterate through them, but we have to multiply by two for
the remainder.
when 2 =>
XMULT <= two_float;
YMULT <= P(INDEX);
STATE := STATE + 1;

when 3 =>
C1(INDEX) := ZMULT;
if(INDEX = 5) then

STATE := STATE + 1;
INDEX := 0;

else

INDEX := INDEX + 1;
STATE := 2;

end if;

-- And we do the same for the C2 polynomial.
when 4 =>

XMULT <= two_float;
YMULT <= Q(INDEX);
STATE := STATE + 1;

when 5 =>
C2(INDEX) := ZMULT;
if(INDEX = 5) then

STATE := STATE + 1;
INDEX := 0;

else
INDEX := INDEX + 1;
STATE := 4;

end if;

when others =>

-- Offload the results to the outputs. The index order is
-- reversed because that made the indexing simpler above.
C1_0 <= C1(6);
Cl 1 <= C1(5);
C1 2 <= C1(4);
C1_3 <= C1(3);
C1_4 <= C1(2);
C1_5 <= C1(1);
C1 6 <= C1(0);
C2_0 <= C2(6);
C2_1 <= C2(5);
C2_2 <= C2(4);
C2_3 <= C2(3);
C2_4 <= C2(2);
C2_5 <= C2(1);
C2_6 <= C2(0);
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
DONE <= '1';

end case;
end if;

end process;
end beh;

8.4. CLENSHA WVHDL LISTING

library IEEE;
use IEEE. std_logic_1164.all;

entity clenshaw is
port (

-- CO-C6 are the Chebyshev polynomial coefficients.
CO,C1,C2,C3,C4,C5,C6 :in std_logic_vector(31 downto 0);

86



-- X is the input to the polynomial evaluation.
X :in std_logic_vector(31 downto 0);
-- Y is the output of the polynomial evaluation.
Y :out std_logic_vector(31 downto 0);
-- XMULT,YMULT and ZMULT are interfaces to an external floating point multiplier
XMULT,YMULT :out std_logic_vector(31 downto 0);
ZMULT :in std_logic_vector(31 downto 0);
XADD,YADD :out std_logic_vector(31 downto 0);
ZADD :in stdlogicvector(31 downto 0);
CLK :in std_logic;
START :in std_logic;
DONE :out std_logic);

end clenshaw;

architecture beh of clenshaw is
subtype float32 is std_logic_vector(31 downto 0);
type floatvect7 is array (6 downto 0) of float32;
constant zero_float :std_logic_vector(31 downto 0) := "00000000000000000000000000000000";
constant one_half_float :std_logic_vector(31 downto 0) :=
"00111111000000000000000000000000";
constant two_float:std_logic_vector(31 downto 0) := "0100000000000000000000000000000";

begin
mainproc:process(CLK)
variable C :.floatvect7;
variable INDEX :integer range 0 to 10;
variable COUNT :integer range 0 to 6;
variable STATE :integer range 0 to 99; -- note - fix this range when
you know more
variable BO,B1,B2 :std_logicvector(31 downto 0);
variable TEMP1,TEMP2,TEMP3 :std_logic_vector(31 downto 0);
variable TWO_X :std_logic_vector(31 downto 0);
variable X_VAR :std_logic_vector(31 downto 0);
begin

if START = 'O' then
DONE <= '0';
STATE := 0;
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";

YMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
XADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";

else

-- Here is the state machine that executes when START is asserted
case STATE is

when 0 =>
-- First thing, we copy all inputs into internal variables
C(0) = CO;
C(1) = C1;
C(2) = C2;
C(3) = C3;
C(4) := C4;
C(5) = C5;
C(6) = C6;
XVAR := X;
COUNT := 6;
INDEX := 0;
STATE := STATE + 1;

when 1 =>
-- We will need 2X repeatedly, so we calculate it once here.
XMULT <= two_float;
YMULT <= X_VAR;
-- We also initialize our intermediate variables.
BO := zero_float;
B1 := zero_float;
STATE := STATE + 1;

when 2 =>
TWO X := ZMULT; -- and store it for future use

87



STATE := STATE + 1;

-- Here we begin to loop through to evaluate the recurrence.
when 3 =>
B2 := B1;

B1 :=BO;
-- BO = (2*X*B1)-B2+C(COUNT) so we load the multipler first to get
2X*B1

XMULT <= TWO_X;
YMULT <= B1;
STATE := STATE + 1;

when 4 =>
TEMP1 := ZMULT; -- off load the result of 2X*B1
-- next we subtract B2
TEMP2 := B2;
-- we change it's sign to subtract
TEMP2(31) := not B2(31);
XADD <= TEMP1;
YADD <= TEMP2;
STATE := STATE + 1;

when 5 =>
TEMP3 := ZADD; -- offload the previous result
-- Now we must add C(COUNT)
XADD <= TEMP3;
YADD <= C(COUNT);
STATE := STATE + 1;

when 6 =>
BO := ZADD; -- offload the previous result
-- Now check if our loop is done.
if COUNT = 0 then

STATE := STATE + 1;
else

STATE := 3;
COUNT := COUNT - 1;

end if;

when 7 =>
XADD <= BO;
TEMP1 := B2;
TEMP1(31) := not B2(31);
YADD <= TEMP1;
STATE := STATE + 1;

when 8 =>
TEMP3 := ZADD;
XADD <= TEMP3;
YADD <= C(O);
STATE := STATE + 1;

when 9 =>
TEMP1 := ZADD;
XMULT <= TEMP1;
YMULT <= one_half_float;
STATE := STATE + 1;

when 10 =>
TEMP3 := ZMULT;
Y <= TEMP3;
DONE <= '1';
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
XADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
STATE := 0;

when others =>
STATE := 0;

88



end case;
end if;

end process;
end beh;

8.5. ROOTFINDER VHDL LISTING

library IEEE;
use IEEE.std_logic_1164.all;

entity rootfinder is
port (
-- C1 and C2 are the Chebyshev coefficients
Cl_0,C1_1,C1_2,C1_3,C1_4,C1_5,C1_6 :in std_logicvector(31 downto 0);
C2_0,C2_1,C2_2,C2_3,C2_4,C2_5,C2_6 :in std_logic_vector(31 downto 0);
-- XO-X10 are the zero crossing locations in the Chebyshev domain
XO,X1,X2,X3,X4,X5,X6,X7,XB,X9 :out std_logic_vector(31 downto 0);
-- CL0-CL5 and CX are interfaces to the Clenshaw evaluator.
CLO,CL1,CL2,CL3,CL4,CL5,CL6,CX :out std_logic_vector(31 downto 0);
CY :in stdlogic_vector(31 downto 0);
-- the following are interfaces to an external floating point units
XMULTYMULT :out std_logic_vector(31 downto 0);
ZMULT :in std_logic_vector(31 downto 0);
XADD,YADD :out std_logic_vector(31 downto 0);
ZADD :in std_logic_vector(31 downto 0);
XDIV,YDIV :out std_logic_vector(31 downto 0);
ZDIV :in std_logic_vector(31 downto 0);
CLK :in std_logic;
START :in std_logic;
CHEBDONE :in std_logic;
CHEBSTART :out std_logic;
DONE :out std_logic;
DEBUG_FLOAT :out std_logic_vector(31 downto 0);
DEBUG_BIT :out std_logic);

end rootfinder;

architecture beh of rootfinder is
subtype float32 is std_logic_vector(31 downto 0);
type floatvectll is array (10 downto 0) of float32;
type floatvect7 is array (6 downto 0) of float32;
constant neg_one_float :std_logic_vector(31 downto 0) :=
"10111111100000000000000000000000";
constant one_float :std_logic_vector(31 downto 0) :=
"00111111100000000000000000000000";
-- DEBUG - these increments should be negative if we're adding them
constant coarse_inc :std_logic_vector(31 downto 0) :=
"10111100101000111101011100001010";
constant fine_inc :stdlogic_vector(31 downto 0) :=
"10111010100000110001001001101111";

begin
mainproc:process(CLK)
variable C1 :floatvect7;
variable C2 :floatvect7;
variable XEST :floatvectll;
variable XLOC :std_logic_vector(31 downto 0);
variable OLD_XLOC :std_logic_vector(31 downto 0);
variable YTEMP :std_logic_vector(31 downto 0);
variable OLD_FRES :std_logic_vector(31 downto 0);
variable INDEX :integer range 0 to 11;
variable STATE :integer range 0 to 99; -- note - fix this range when you
know more
variable C1NOT2 :std_logic;
variable SIGN :stdlogic;
variable COARSE_SCAN :stdlogic;
variable FIRST_TIME :std_logic;
variable SKIP_FLAG :std_logic;
begin

89



if START = 'O' then
DONE c= '0';
STATE := 0;
XMULT <= "ZZZZZZZ:
YMULT <= "ZZZZZZZ:
XADD <= "ZZZZZZZZ:
YADD <= "ZZZZZZZZ:
XDIV <= "ZZZZZZZZ:
YDIV <= "ZZZZZZZZ:
CHEBSTART <= '0';
DEBUGBIT <= '0';

else

&ZZZZZZZZZZZZZZZZZZZZzZZZ"
Nzzzzzzzzzzzzzzzzzzzzzzzz 'I
SZZZZZZZZZZZZZZZZZZZZZZZ";

3ZZZZZZZZZZZZZZZZZZZZZZZ";
3ZZZZZZZZZZZZZZZZZZZZZZZ";
ZZZZZZZZZZZZZZZZZZZZZZZZ";

-- Here is the state machine that executes when START is asserted
case STATE is

when 0 =>
-- First thing, we copy all inputs into internal variables
C1(0) := Cl_0;
Cl(1) = C1 1;
C1(2) := C1 2;
C1(3) := C1_3;
C1(4) := C1_4;
C1(5) := C1_5;
C1(6) = C1_6;
C2(0) := C2_0;
C2(1) := C2_;
C2(2) := C2_2;
C2(3) = C2_3;
C2(4) := C2_4;
C2(5) := C2_5;
C2(6) := C2_6;
FIRSTTIME := '1';
COARSE_SCAN := '1';
XLOC := one_float;
OLD_XLOC := one_float;
C1NOT2 := '0'; -- start with C2
INDEX := 0;

STATE := STATE + 1;

when 1 =>
-- We evaluate the Chebyshev
CLO <= C2(0);
CL1 <= C2(1);
CL2 <= C2(2);
CL3 <= C2(3);
CL4 <= C2(4);
CL5 <= C2(5);
CL6 <= C2(6);
CX <= XLOC;
CHEBSTART <= '1';
STATE := STATE + 1;

polynomial at this point

when 2 =>
if CHEBDONE = '1' then

CHEBSTART <= '0';
STATE := STATE + 1;
SIGN := CY(31);

end if;

when 3 =>

if C1NOT2 = '1' then
CLO <= C1(0);
CL1 <= C1(1);
CL2 <= C1(2);
CL3 <= C1(3);
CL4 <= C1(4);
CL5 <= C1(5);
CL6 <= C1(6);
else
CLO <= C2(0);

90



CL1 <= C2(1);
CL2 <= C2(2);
CL3 <= C2(3);
CL4 <= C2(4);
CL5 <= C2(5);
CL6 <= C2(6);
end if;
CX <= XLOC;
CHEBSTART <= '1';
STATE := STATE + 1;

when 4 =>
if CHEBDONE = '1' then

CHEBSTART <= '0';
SKIP_FLAG := '0';
STATE := STATE + 1;
-- DEBUG - double check this logic
if ((CY(31) /= SIGN)) then

DEBUG BIT <= '1';
if COARSESCAN = '1' then

-- a zero crossing has been detected. Go to
fine resolution scan.
COARSESCAN := '0';
XLOC := OLD_XLOC;
STATE := 3;

else

STATE := 10;
SKIPFLAG := '1';

end if;
end if;
if SKIPFLAG = '0' then

-- otherwise update XLOC.
DEBUG_FLOAT <= XLOC;
OLD_XLOC := XLOC;
XADD <= XLOC;
if COARSESCAN = '1' then

YADD <= coarse_inc;
OLDFRES :=
"0000000000000000000000000000000";

else
OLD FRES := CY;
YADD <= fineinc;

end if;
end if;

end if;

when 5 =>
XLOC := ZADD;
-- Here we check if XLOC is greater than 1
XADD <= XLOC;
XADD(31) <= not XLOC(31);
YADD <= one_float;
STATE := STATE + 1;

when 6 =>

if ZADD(31) = '0' then
-- we're done since XLOC must be greater than +1
DONE <= '1';

STATE := 0;
else

-- otherwise we keep evaluating.
STATE := 3;

end if;

when 10 =>
-- Here we do the linear interpolation
-- First we subtract the current result from the last fine result.
XADD <= OLD_FRES;
YADD <= CY;
YADD(31) <= not CY(31); -- invert for subtraction.

91



STATE := STATE + 1;

when 11 =>
-- next we divide this result into the fine increment
XDIV <= fine_inc;
YDIV <= ZADD;
STATE := STATE + 1;

when 12 =>
-- then we multiply by the last fine increment result
XMULT <= ZDIV;
YMULT <= CY;
STATE := STATE + 1;

when 13 =>
-- lastly we add this to our current xguess
XADD <= OLDXLOC;
YADD <= ZMULT;
STATE := STATE + 1;

when 14 =>
-- we have found the approximate root location
XEST(INDEX) := ZADD;
INDEX := INDEX + 1;
-- switch to the other polynomial and begin scanning
C1NOT2 := not C1NOT2;
STATE := 3;

when others =>
-- Offload the results to the outputs
XO <= XEST(O);
Xl <= XEST(1);
X2 <= XEST(2);
X3 <= XEST(3);
X4 <= XEST(4);
X5 <= XEST(S);
X6 <= XEST(6);
X7 <= XEST(7);
X8 <= XEST(8);
X9 <= XEST(9);
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ ";
YMULT <= "ZZZZZZZZZZZZZ ZZZZZZZZ ZZZZZ ZZ";
XADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ ";
YADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
XDIV <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YDIV <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
DONE <= '1';

end case;
end if;

end process;
end beh;

8.6. ACOS VHDL LISTING

library IEEE;
use IEEE.std_logic_1164.all;

entity acos is
port (
-- XO-X9 are the zero crossing locations in the Chebyshev domain
XO,Xl,X2,X3,X4,X5,X6,X,XX8,X9 :in std_logic_vector(31 downto 0);
-- LSFO-9 are the line spectral frequencies.
LSFO,LSF1,LSF2,LSF3,LSF4,LSF5,LSF6,LSF7,LSF8,LSF9 :out std_logic_vector(31

downto 0);
-- XMULT,YMULT and ZMULT are interfaces to an external floating point multiplier
XMULT,YMULT :out std_logic_vector(31 downto 0);
ZMULT :in std_logic_vector(31 downto 0);
XADD,YADD :out std_logic_vector(31 downto 0);

92



ZADD
XDIV,YDIV
ZDIV

CLK

START
DONE

end acos;

:in std_logic_vector(31 downto 0);
:out std_logic_vector(31 downto 0);
:in std_logic_vector(31 downto 0);
:in std_logic;
:in std_logic;
:out std_logic);

architecture beh of acos is
subtype float32 is stdlogicvector(31 downto 0);
type floatvectll is array (10 downto 0) of float32;
type floatvect3 is array (2 downto 0) of float32;
constant three_float:std_logic_vector(31 downto 0) := "01000000010000000000000000000000";
constant six_float:std_logic_vector(31 downto 0) := "01000000110000000000000000000000";
constant fifteen_float:stdlogic_vector(31 downto 0)
"01000001011100000000000000000000";
constant forty_float:std_logic_vector(31 downto 0) := "01000010001000000000000000000000";
constant three_three_six_float:stdlogic_vector(31 downto 0) :=
"0100001110101000000000000000000000"
constant pi_overtwofloat:std_logicvector(31 downto 0) :=
"00111111110010010000111111010000";

begin
mainproc:process(CLK)
variable X :floatvectll;
variable LSF :floatvectll;
variable POWX :floatvect3;
variable INDEX :integer range 0 to 10;
variable POWIDX :integer range 0 to 2;
variable STATE :integer range 0 to 99;
variable POWER :integer range 0 to 7;
variable TEMP :std_logic_vector(31 downto 0)
begin
if START = '0' then

DONE <= '0';
STATE := 0;
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZ:
YMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZ:
XADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ:
YADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ:
XDIV <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ:
YDIV <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ:

else

-- note - fix this range when you know more

-- Here is the state machine that executes when START is asserted
case STATE is

when 0 =>
-- First thing, we copy all inputs into internal variables
INDEX := 0;
X(0) := XO;
X(1) := X1;
X(2) := X2;
X(3) := X3;
X(4) := X4;
X(5) = X5;
X(6) := X6;
X(7) := X7;
X(8) := X8;
X(9) = X9;
POWIDX := 0;
STATE := STATE + 1;

when 1 =>

-- now we start the Taylor series expansion for each value by taking
-- the powers of x we need (3, 5, 7, etc.)
case POWIDX is

when 0 =>
POWER := 3;
when 1 =>
POWER := 5;

93



when 2 =>

POWER := 7;
end case;
STATE := STATE + 1;

when 2 =>
XMULT <= X(INDEX);
YMULT <= X(INDEX);
STATE := STATE + 1;

when 3 =>
POWER := POWER - 1;
if POWER = 0 then

-- We're done with this one!
POWX(POWIDX) := ZMULT;
if POWIDX = 2 then

STATE := STATE + 1;
else

STATE := 1;
POWIDX := POWIDX + 1;

end if;
else

TEMP := ZMULT;
XMULT <= TEMP;
YMULT <= X(INDEX);

end if;

when 4 =>

-- X + X^3/6
XDIV <= POWX(0);
YDIV <= sixfloat;
STATE := STATE + 1;

when 5 =>
XADD <= X(INDEX);
TEMP := ZDIV;
YADD <= TEMP;
STATE := STATE + 1;

when 6 =>
XMULT <= three_float;
YMULT <= POWX(1);
STATE := STATE + 1;

when 7 =>
TEMP := ZMULT;
XDIV <= TEMP;
YDIV <= forty_float;
STATE := STATE + 1;

when 8 =>
TEMP := ZADD;
XADD <= TEMP;
TEMP := ZDIV;
YADD <= TEMP;
STATE := STATE + 1;

when 9 =>
XMULT <= fifteen_float;
YMULT <= POWX(2);
STATE := STATE + 1;

when 10 =>
TEMP := ZMULT;
XDIV <= TEMP;
YDIV <= three_three_six_float;
STATE := STATE + 1;

when 11 =>
TEMP := ZADD;
XADD <= TEMP;

94



TEMP := ZDIV;
YADD <= TEMP;
STATE := STATE + 1;

when 12 =>
XADD <= pi_overtwofloat;
TEMP := ZADD;
YADD <= TEMP;
YADD(31) <= not ZADD(31);
STATE := STATE + 1;

when 13 =>
LSF(INDEX) := ZADD;
INDEX := INDEX + 1;
if INDEX = 9 then

-- we're finished
STATE := STATE + 1;

else

STATE := 4;
end if;

when others =>
-- Offload the results to the outputs
LSFO <= LSF(O);
LSF1 <= LSF(1);
LSF2 <= LSF(2);
LSF3 <= LSF(3);
LSF4 <= LSF(4);
LSF5 <= LSF(5);
LSF6 <= LSF(6);
LSF7 <= LSF(7);
LSF8 <= LSF(8);
LSF9 <= LSF(9);
XMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YMULT <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
XADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
YADD <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
XDIV <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZt;
YDIV <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
DONE <= '1';

end case;
end if;
end process;
end beh;

95



9. References

' P. Kabal and R.P. Ramachandran. "The Computation of Line Spectral Frequencies Using Chebyshev

Polynomials", IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-34, No. 6, pp.

1419-1425, December 1986.

2 R.P. Ramachandran, M.M. Sondhi, N. Seshadri, B.S. Atal, "A Two Codebook Format for Robust

Quantization of Line Spectral Frequencies", IEEE Transactions of Speech and Audio Processing, Vol. 3,

No. 3, pp. 157-168, May 1995.

3 C.H. Wu and J.H. Chen, "A Novel Two-Level Method for the Computation of the LSP Frequencies Using

a Decimation in Degree Algorithm", IEEE Transactions on Speech andAudio Processing, Vol. 5, No. 2,

pp. 106-115, March 1997.

4Faruque Saleh, Cellular Mobile Systems Engineering, Artech House, 1996.

5 L.H. Rabiner and R.W. Schafer, Digital Processing of Speech Signals, Prentice Hall, 1978.

6 Insert old reference 9.??????

7 F. Itakura, "Line Spectrum Representation of Linear Predictive Coefficients", Journal of the Acoustical

Society ofAmerica, Vol. 57 Suppl. No. 1, p. S35, 1975.

8 J. Rothweiler, "A Rootfinding Algorithm for Line Spectral Frequencies", Proceedings of the 1999

International Conference on Acoustics, Speech and Signal Processing, pp. II-661 - II-664, 1999.

9 W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C, Cambridge

University Press, 1992.

'O M.A. Bayoumi, "VLSI Architectures for DSP Applications: Current Trends", IEEE Midwest Symposium

on Circuits and Systems, pp. 150-153, August 1992.

l' G.A. Jullien and M.A. Bayoumi, "A Review of VLSI Technologies in Digital Signal Processing", IEEE

International Symposium on Circuits and Systems, pp. 2347-2350, June 1991.

12 M.J.S. Smith, Application Specific Integrated Circuits, Addison-Wesley, 1997.

96



13 W.P. Burleson, M. Ciesielski, F. Klass and W. Liu, "Wave Pipelining: A Tutorial and Research Survey",

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 6, Iss. 3, pp. 464-474, 1998.

14 D.L. Reynolds, R.P. Ramachandran, L.M. Head, "VLSI Architecture for the Efficient Computation of

Line Spectral Frequencies", IEEE International Conference on Circuits and Systems, Vol. 3, pp. 718-721,

May 2003.

97


	VLSI implementation of an efficient method for the computation of line spectral frequencies
	Recommended Citation

	VLSI Implementation Of An Efficient Method For The Computation Of Line Spectral Frequencies

