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ABSTRACT

Agnieszka Pierkiel, A Novel Membrane Process for Autotrophic
Denitrification, 2002, Kauser Jahan. Ph.D.,P.E., Environmental Engineering.

This research focused on the novel use of hollow fiber membranes for gas delivery in

biological dentrification using hydrogen-oxidizing bacteria. Autotrophic denitrification

is a biological process that reduces nitrate to nitrogen gas using an inorganic carbon

source. Hydrogen gas is an electron donor and nitrate is the electron acceptor in the

reaction. The specific research objectives were to:

* develop a mixed acclimated culture of hydrogen-oxidizing bacteria;

* evaluate biodegradation kinetics of the acclimated culture;

* evaluate hydrogen transfer characteristics of hollow fiber membrane modules;

and

* demonstrate technical feasibility of a continuous bioreactor-membrane system for

denitrification.

The following kinetic coefficients were obtained: Jm of 0.65 d' 1, Y of 0.78 mg cells/mg

NO3 -N, and kd of 0.04 d'. The nitrate utilization rate was determined to be 1.0 mg NO3-

N/mg biomass. The following mass transfer correlation can be used to design membrane

modules for hydrogen dissolution into water:

Sh = 2.68 Rede/L '0 2Sc 0 33



Continuous flow studies indicate that a stable biofilm can be developed in a packed bed

reactor to remove nitrate using hydrogen as the electron donor. Hydrogen gas was

successfully delivered to the reactor via the hollow fiber membrane gas transfer module

without fouling. Dissolved hydrogen concentrations indicate that the system did not

experience hydrogen limitations. Membrane gas delivery appears to be a viable

technology for transferring hydrogen to water for autotrophic denitrificiation.



MINI-ABSTRACT

Agnieszka Pierkiel, A Novel Membrane Process for Autotrophic
Denitrification, 2002, Kauser Jahan. Ph.D.,P.E., Environmental Engineering.

The purpose of this study was to determine the technical feasibility of a novel membrane

technology for hydrogenotrophic denitrification of water. Biological kinetics were

evaluated. A mass transfer correlation was developed for hollow fiber contactors for

hydrogen delivery. Biological denitrification was successfully accomplished in a fixed

bed bioreactor membrane system.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Nitrate in the Environment

Nitrate is one of the most common groundwater contaminants in the United

States and elsewhere (Korom, 1992; Freeze and Cherry, 1979; Gayle et al., 1989;

Kapoor and Viraraghavan, 1997). It is a thermodynamically stable and highly soluble

nitrogen species, which is easily transported and accumulated in groundwater systems.

These properties coupled with increased anthropogenic releases of nitrogen containing

compounds have resulted in elevated nitrate concentrations in United States and

European ground and surface waters.

Nitrate contamination originates from point and non-point sources. The majority

of point source contributions are attributed to domestic and industrial wastewater

discharges. Contamination of drinking water sources with nitrate may result from both

human and animal waste disposal and discharge of the waste water from food

processing, explosives manufacturing, NOx absorption in air stripping and recovery of

nuclear fuels (Pekdemir et al., 1998). Non-point sources have a larger impact and are

associated with agricultural practices, fisheries, poultry operations, livestock feeding and

residential septic tank effluents (Hallberg, 1989). A large number of drinking water
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aquifers have nitrate concentrations approaching or already above the maximum

contaminant level (MCL) of 10 mg/L NO3--N established by the US Environmental

Protection Agency (EPA, 1993). An investigation conducted by the US Geological

Survey (AWWA, 1995) analyzed nutrient concentrations of 12,000 groundwater and

22,000 surface water samples between 1970 and 1992. The results of the survey

indicated that nitrate levels in 20 percent of shallow private wells in US farming areas

violate the federal drinking water standard and that 1 percent of public water supply

wells exceed the limit. Surface waters down gradient of agricultural areas had elevated

nitrate concentrations, but rarely exceeded the limit. Of the 3,351 private wells surveyed

9 percent had nitrate concentrations exceeding the 10 mg/L standard.

1. 1.2 Health and Environmental Consequences

There is a number of health and environmental consequences associated with

nitrate contamination. Incidence of methemoglobinemia is related to ingestion of nitrate-

contaminated water (Shuvai and Gruener, 1977). Methemoglobinemia or "blue baby

syndrome" occurs in infants under six months and is life threatening without immediate

medical attention. N-nitroso compounds are also formed from nitrates and are known to

be carcinogenic. Nitrites are intermediates in nitrate biodegradation and are toxic to

aquatic organisms (Metcalf and Eddy, 1991). Nitrate disposal in aquatic systems also

accelerates the onset of eutrophication, a process in which the water becomes organically

enriched leading to domination by aquatic weeds, transformation to marshland and

eventulally to dry land (Metcalf and Eddy, 1991).
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Health problems related to consumption of nitrate-contaminated drinking water

have led to regulation by US Environmental Protection Agency (USEPA). The nitrate

concentration standards (MCL's) in drinking water allow a limit content of less than

lOppm N03-N/1 and lppm N02-N/1 in drinking water (2001). The European standards

are stricter, allowing a concentration of no more than 0.03 ppm N0 2-N /1 (Urbain et al.,

1996). A recommended level for nitrate is 5.6 ppm N03-N/1 for the European

Community (Kapoor and Viraraghvan, 1997). To comply with these standards,

municipal water suppliers are faced with the need for efficient and cost effective nitrate

removal processes.

1.1.3 Nitrate Removal

Nitrate removal or "denitrification" is usually accomplished through

physicochemical or biological processes. There are a number of methods available for

removing nitrate from water and wastewater (Weber and DeGiano, 1996; Eckenfelder,

1989). Separation methods used in denitrification include ion exchange (IX), reverse

osmosis (RO), activated-carbon adsorption, and electrodialysis (ED). Advantages of

these processes include immediate nitrate removal at process startup, simple process

control, reliability and ease of monitoring.

In water treatment, ion exchange is currently the predominant method for

removing nitrate in the United States. Even with the recent development of nitrate

selective resins, the maintenance and operating costs are still high, and the production of

concentrated waste brines create additional disposal problems. The biological
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denitrification of spent ion exchange regenerant is an effective alternative to continuous

disposal (Viraraghavan and Rao, 1990; van der Hoek et al., 1988; Clifford and Liu,

1993). The long-term operational problem with an IX/denitrification process is that

anion exchange resins are susceptible to significant organic fouling.

In European countries, biological denitrification of drinking water using

heterotrophic microorganisms held in fixed bed reactors (Delanghe et al., 1994a and b;

Lazarova et al., 1992) is more common. These systems typically use methanol, ethanol

or acetic acid as the organic carbon source. The residual organics, if not removed

effectively, can increase the chlorine demand of the water or react with chlorine and

form carcinogenic disinfection byproducts (DBPs). The unconsumed organic matter

will contribute to the biological instability of the drinking water (Rittmann and Huck,

1989). The adverse effects associated with biological instability in the distribution

system are: (a) increased microbial growth, (b) production of taste and odor generating

compounds and (c) increased corrosion of pipes (Rittmann and Snoeyink, 1984). These

effects have limited heterotrophic denitrification to wastewater applications in the

United States, because chlorine is the predominant means for disinfection of potable

water. In Europe, disinfection of drinking water is being accomplished by ozone or

ultraviolet (UV) radiation.

1.1.4 Heterotrophic Denitrification

Biological denitrification is a process that uses microorganisms to convert nitrate

to nitrogen gas. Bacteria use nitrate as the terminal electron acceptor in their respiratory
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processes when oxygen concentrations are low. Denitrification consists of a sequence of

enzymatic reactions leading to the evolution of nitrogen gas. The process may involve

the formation of the following intermediates (Szekers et al. , 2001):

NO3-- NO2 O -N > N2 O -N 2 (1.1)

Biological dentrification can be heterotrophic or autotrophic. Heterotrophic

denitrification is the most common method of removing nitrogen from municipal and

industrial wastewaters (Metcalf and Eddy, 1991). The denitrification reactors follow

nitrification processes that convert organic nitrogen and ammonia to nitrate. The

denitrification reactors can be either suspended growth or attached growth with the latter

being favored because it minimizes the space required. The disadvantages of

heterotrophic denitrification are the costs incurred for adding an external organic carbon

source for cell synthesis and the post-treatment needed to remove the residual organic

contaminants (precursors of DBPs) and biomass before disinfection and final discharge.

1. 1.5 Autotrophic Denitrification

For autotrophic organisms no organic carbon source is required, rather carbon

dioxide or bicarbonate is used for cell synthesis (Brezonik, 1977). For the energy

source, autotrophic organisms require hydrogen or reduced-sulfur compounds. There are

four groups of autotrophic denitrifiers (Mateju et al., 1992): hydrogen- oxidizing

bacteria, reduced sulfur oxidizing bacteria, ferrous oxidation bacteria, and chloric

compound oxidizing bacteria. Hydrogen-oxidizing bacteria metabolize nitrates and
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nitrites using hydrogen as an energy source and carbon dioxide or carbonate as the

carbon source. In this reaction, nitrate or nitrite is the electron acceptor and hydrogen is

the electron donor. Autotrophic denitrification with hydrogen-oxidizing bacteria is

preferred for drinking water treatment because: (1) the residual hydrogen that remains in

water is harmless and does not interfere with subsequent water treatment (Rittmann and

Huck, 1989); (2) only inorganic carbon is used and therefore there are no organic

residues for further treatment; and (3) reaction byproducts are harmless.

Autotrophic organisms, e.g., Micrococcus denitrificans, reduce nitrate to nitrite

and subsequently to nitrogen gas while oxidizing hydrogen gas to water. The reaction

proceeds as follows (Kurt et al., 1987):

2NO3- + 2H2 -> 2N2- + 2H20 (1.2)

2NO2-+ 3H2 -> N2+ 2H20+ 20H- (1.3)

Combining reactions 1.1 and 1.2 the overall reaction can be written as:

2NO3- + 5H2 -> N 2 + 4H20 + 20H- (1.4)

From the overall reaction given above, 2 moles of OH- are produced for every 2 moles of

N03- reduced, so alkaline conditions (high pH) and N02 accumulation can be expected.

To prevent pH shifts and nitrite accumulation, CO2 or HCO3 can be added to buffer the

system as well as serve as the inorganic carbon source for cell synthesis. From the

above equation, theoretically 0.35 mg H2/mg NO3--N is required for complete reduction

of nitrate to nitrogen gas. The experimental values are: 0.38 mg H2/mg NO3--N in a
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bench-scale fixed biofilm reactor (Kurt et al., 1987) and 0.40 mg H2/mg N03--N at a full-

scale plant in Germany (Gross et. al., 1986).

1.2 Denitrification Costs

The treatment costs of 100 lb of N03--N for hydrogen, methanol, ethanol and

acetic acid are shown in Figure 1.1. The electron donor costs were calculated from a

stoichiometric requirement. Current costs of chemicals were used for calculations. The

cost analysis assumed no transportation costs for hydrogen, methanol, ethanol and acetic

acid. The cost of hydrogen was found to lay within the range of organic electron donors

($11-$188). Methanol costs are 85% lower than hydrogen based on bulk chemical cost.

However, if hydrogen were generated on site, the operating cost would decrease

considerably. Ganzer (1995) reported cost of methanol to be about 73% greater than the

cost associated with hydrogen use when generated on site. The transportation cost may

be as high as the cost of the chemical itself depending on the actual location of the site.

Therefore, if the transportation costs are included in the analysis, the use of hydrogen

will be more economical.

The capital and operating cost for denitrification using an autotrophic process

was also found to be higher than the cost of using heterotrophic denitrification (Mateju

et al., 1992). However, the investigators assumed conventional bubble aeration system

for dissolving hydrogen in water. The oxygen transfer efficiency (OTE) of such systems

for oxygen is about 8-20% (WPCF, 1988). If the substrate is delivered in a

stoichiometric quantity, the cost estimates of hydrogen and methanol change.
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1.3 Research Goals and Objectives

The main goal of this study is to examine the technical feasibility of autotrophic

denitrification of water and wastewater using membrane gas delivery to a fixed bed

bioreactor. The specific objectives were to:

* evaluate batch biodegradation kinetics of the autotrophic denitrification process;

* evaluate the hydrogen gas transfer characteristics of hollow fiber membrane

modules; and

* develop design procedures for continuous flow autotrophic attached growth fixed

bed (plastic media) reactors coupled with membrane modules.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Autotrophic denitrification is a relatively new research area. Interest in the

process originated in Europe in the 1980's. Traditionally, European countries have been

on the forefront of biological processes for drinking water treatment while the United

States has focused on chemical and physical contaminant removal. Autotrophic

denitrification has also increased in popularity in the Pacific Rim, including Japan and

Taiwan. However, because of operational concerns including the hydrogen safety issue,

there have been few actual hydrogen utilizing installations. Most recently, the

technology has met with renewed interest due in part to novel developments in membrane

research and technology which attempt to address these operating concerns.

A thorough literature review focusing on nitrate removal with hydrogen oxidizing

bacteria is provided below. In this review, the following topics are discussed:

* autotrophic denitrification in fixed biofilm reactors,

* single-stage denitrification in fixed biofilm reactors,

* membrane applications in autotrophic denitrification, and

* modeling of biological kinetics.

Current research needs are summarized in the conclusion of the chapter.
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2.2 Autotrophic Denitrification in Fixed Biofilm Reactors

Kurt et al. (1987) conducted extensive studies using autotrophic hydrogen-

oxidizing denitrifying bacteria in a bench-scale fluidized bed reactor. Nitrite tended to

accumulate in batch tests, but complete denitrification occurred in continuous flow

experiments with sufficiently long residence times. A residence time of 4.5 hours was

required for complete denitrification of water containing 25 mg/L NO3-- N. The optimum

pH was found to be approximately 7.5, and the pH increased under unbuffered

conditions. If the pH was allowed to rise near 9.0, nitrite tended to accumulate.

Gross et al. (1986) and Gross and Treutler (1986) reported on the start-up and

performance of a commercial-scale biological-denitrification plant utilizing hydrogen.

The technology was developed by Sulzer Water and Wastewater Treatment with the trade

name DENITROPUR. The plant reached full capacity of 50 m 3/h in approximately three

months. The plant design incorporated indirect hydrogen saturation, phosphate addition,

four packed-bed reactors in series, post-aeration, flocculant addition, filtration, and UV

disinfection. Carbon dioxide was added as an inorganic carbon source and to buffer

against an alkaline pH shift. At the operating temperature of 10.5°C, the organism

growth rate varied from 0.1 to 0.3 d-'. The sludge production was reported to be

approximately 0.2 kg per kg nitrogen removed, on a dry-weight basis. Residence times

of 1 to 2 hours were required to remove 50 mg/L nitrate.

Benedict et al. (1998) investigated the effect of reactor packing media on

autotrophic denitrification with hydrogen oxidizing bacteria. Hydrogen and carbon

dioxide were sparged into the feed water. The bench top biofilm reactors were packed

with granular activated carbon, sand, pumice, volcanic rock, and polymer rings. A mixed

11



culture was obtained from a heterotrophic denitrification process in a water treatment

facility. Nitrate and nitrite reduction was monitored daily at different hydraulic retention

times. The highest removal efficiency with respect to surface area (770.4 mg NO3-N/day)

was achieved in the polymer ring bioreactor with an 8 hour hydraulic retention time. The

performance of the polymeric rings medium was found to be superior to other

investigated media in the range of 2 to 8 hours retention times. Nitrate reduction

decreased with decreasing hydraulic retention time.

Long-term performance of an autotrophic denitrification process was evaluated by

Szekers et al. (2001). The process was comprised of two steps: (1) the water to be

treated was enriched with hydrogen in the cathodic chamber of an electrochemical cell

and (2) denitrified in a fixed bed biofilm reactor. In the electrochemical cell, Nafion 417

cation-exchange membrane separated the two electrodes. Water was split by electrolysis

into diatomic hydrogen and OH- ions at the cathode. The feed solution consisted of tap

water with nitrate, carbonate, and phosphorus. It was hydrogenated in the cathodic

chamber. As a result of the net reaction of denitrification, cathodic and anodic reaction,

one mole of protons passed through the cation exchange membrane for each mole of

nitrate.

The reactor was a packed bed of granulated activated carbon in an upflow

configuration. The bioreactor was inoculated with a mixture of four denitrifying strains

isolated from a previous reactor. The original inoculum was an enrichment culture from

sediment from an oxidation pond treating domestic wastewater. The system was

operated in a continuous mode for a period of one year. The feed concentration was kept

constant at 21 mgN/L and water velocities ranged from 0.04 m/h to 0.2 m/h with current

12



densities from 40mA to 100mA. The rates of denitrification increased with water

velocity at constant current of 80 mA until it reached 0.15 m/h when approximately 0.23

kg N/m3 day were removed with an effluent nitrite concentration below 1 mg N/L. The

peak nitrate removal rate of 0.19 kgN/m3 day occurred at 70 mA in the runs at constant

water velocity of 0.11 rn/h. Denitrification rates up to 0.25 kg-N/m3 day were obtained at

the hydraulic residence time of 1 h.

2.3 Single-stage Denitrification in Fixed Bed Reactors

Electrochemical applications have found their use in single-step denitrification.

Electrodes were embedded in laboratory-scale sandy aquifers and hydrogen gas was

produced through the electrolysis of water for enhancing autotrophic denitrification

(Sakakibara and Kusaka, 1999). Groundwater containing 20 mg N/L of NaNO3 and no

electron donor was fed continuously to the synthetic aquifer. Denitrification rate varied

depending on applied current. Electrical power requirement was 0.03-0.09 kWh/g N.

Results showed that, when carbon electrodes were embedded in a direction perpendicular

to groundwater flow, complete and stable denitrification was achieved over 1 year.

Immobilized systems can also be used for autotrophic denitrification in column

configurations. Ralstonia eutropha (Alcaligenes eutrophus), a hydrogen oxidizing

bacteria, was immobilized in polyacrylamide and alginate copolymer beads which were

then used as media in a fluidized bed reactor (Chang, 1999). The total reactor volume

was 1L and 20% of the reactor volume was occupied by the immobilized beads. The

reactor operated in continuous and batch mode. Feed contained nitrate and bicarbonate in

deionized water and the hydraulic retention time was 400 min. The total nitrogen removal
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rate in a continuous test increased with operation time and reached a maximum rate of

0.6-0.7 kg-N/m3 /day after 6 days. Nitrite reductase was inhibited when the dissolved

hydrogen concentration fell below 0.2 mg/L, while nitrate reductase was inhibited at a

concentration below 0.1 mg/L. A feed containing nitrate, bicarbonate, and phosphate in

tap water was also investigated. Phosphate concentration affected denitrification

especially in the accumulation of nitrite: as the concentration of phosphate increased, the

accumulation of nitrite decreased. The bacteria were found to adapt to a shock nitrate

loading.

Dries et al. (1988) tested a two-column system with removal of nitrate in the first

column using polyurethane as support medium, and removal of excess hydrogen and

oxidation of residual nitrite to nitrate in the second column. Water flowed downward in

the denitrification column while hydrogen entered from the bottom. The water then

passed through the second column in an upflow mode. Denitrification rates of 0.5 kg

N/m3 day were obtained at 20°C. Although one full-scale system is being used in Europe,

the process did not receive much attention because of the following reasons:

* lack of an effective hydrogen gas dissolution device and

* safety issues associated with the use of hydrogen.

Both of these concerns can be resolved using a membrane gas transfer device

(Semmens, 1991). The membrane system can be used to transfer hydrogen with 100%

gas transfer efficiency and bubbleless operation will prevent the release and waste of

hydrogen that can lead to explosive conditions in confined spaces.

14



2.4 Membrane Applications in Autorophic Denitrification

Membrane technology was used for simultaneous hydrogen enrichment and

denitrification in a single membrane bioreactor (Ho et al., 2001). Hydrogen and carbon

dioxide flowed together through the lumen side of a gas-permeable silicone tubular

membrane. The gases diffused through the membrane wall directly to a bacterial biofilm

attached to the surface of the tube. Hydrogen provided the energy source and carbon

dioxide was employed as a carbon source and to neutralize alkalinity resulting from the

denitrification.

The silicone tubular membrane of 1.5 mm inside diameter and 2.5 mm outside

diameter was wound in coils inside a 1.5-1 batch bioreactor. The length of the single tube

was 7.5 m. A pure culture of Ralstonia eutropha was used for autotrophic denitrification.

Feed of synthetic wastewater containing 1 g/L KNO3 was pumped into the bioreactor at 3

ml/min. The hydrogen flow rate was maintained at 20 mL/min. Nitrogen removal rate

was between 1.6 and 5.4 g N/d per m 2 of membrane area and varied with the carbon

dioxide concentration. The maximum rate of nitrogen removal occurred when the carbon

dioxide concentration ranged from 20% to 50%. No nitrite accumulation was observed.

A single membrane bioreactor where bacteria were entrapped in the membrane

material was employed for nitrification-denitrification (Uemoto and Saiki, 2000).

Hydrogen flowed through the lumen side of a single membrane tube immersed in a 0.2 L

batch bioreactor containing ammonia solution of 0.472 g of ammonium sulfate agitated

vigorously. Nitrification with immobilized Nitrosomonas europaea occurred on the

outside surface of the membrane tube where aerobic conditions prevailed. Oxygen

concentration in the membrane decreased along the wall thickness resulting in anoxic
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conditions near the tube lumen. Paracoccus denitrificans was employed to carry out

denitrification in this region of the membrane. An average nitrogen removal rate of 4.458

g NH3 -N/d per m 2 of the external membrane surface was achieved.

Autotrophic denitrification with hydrogen-oxidizing bacteria was carried out in a

hollow-fiber membrane biofilm reactor (HFMBR) (Ergas and Reuss, 2001). Hydrogen

gas was transferred through hollow fiber membranes directly to a bacterial culture to

accomplish biological denitrification of drinking water. A hollow fiber membrane

module was used in a flow-through configuration. A hydrogen-oxidizing denitrifying

biofilm was attached to the outside of the hollow fiber membranes. Water contaminated

with nitrate was recycled through the shell side. Nitrate diffused from the bulk fluid to

the bacterial culture which converted it to nitrogen gas, effectively denitrifying the water.

Hydrogen gas was pumped through the lumen of the fibers and diffused through the

membrane to the bacterial culture.

A bench scale HFMBR utilized 2,400 polypropylene hollow fibers with an inner

diameter of 200 gim, an outer diameter of 250 gim and a 0.05 gim pore size. A hydrogen

oxidizing denitrifying culture was enriched from a wastewater seed. The nitrate loading

rate was gradually increased over a three-month period following a 70-day start-up

period. The nitrate utilization rate reached 770 g NO3-N/m3 day at an influent nitrate

concentration of 145 mg NO3-N/L. The hydraulic residence time was 4.1 h. Trial runs

with contaminated water from the Cape Cod aquifer resulted in an increase in effluent

water dissolved organic carbon (DOC) concentration and turbidity.

HFMBR technology was first applied to hydrogenotrophic denitrification by Lee

and Rittmann (2000). The shell and tube configuration was used. Hollow fiber
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membranes used were composite membranes manufactured by Mitsubishi Rayon (Model

MHF 200TL). The outer and inner layer of the fiber membrane wall were microporous

polyethylene. A 1-micron thick layer of non-porous polyurethane was sandwiched

between the inner and the outer layers. The non-porous layer allows for high pressure

use without premature bubble formation. The modules were comprised of 83 hollow

fibers with total gas transfer area of 750 cm2. The total reactor volume was 420 ml. The

hollow fiber membrane bundle was housed in a 1.5 cm ID PVC tube in an upflow

configuration. The hollow fibers were sealed on one end and were pressurized with

hydrogen gas on the other end. Hydrogen gas supplied from a pressurized gas tank at

0.31 atm and 0.42 atm diffused through the membranes into the water stream flowing

concurrently on the outside of the membranes.

The outer wall of each fiber membrane was coated with a biofilm. The organism

was Ralstonia eutropha, a hydrogen oxidizing bacteria. The feed solution of tap water

with a nitrate, bicarbonate and 10 mM phosphate was pumped in the shell side of the

module with a hydraulic retention time of 42 minutes. Nitrate diffused into the biofilm

from the bulk liquid side of the biofilm, while hydrogen was delivered from the fiber

side. 76% nitrate removal was achieved at the hydrogen pressure of 0.31 atm and 92%

removal was achieved of 0.42 atm. High steady state nitrate fluxes of 0.08 and 0.1 mg

N/cm2 -d were achieved at the dissolved hydrogen concentration of 0.009 and 0.07 mg

H2/1 in the effluent. The biofilm thickness was 179 rim.

Hollow fiber membranes have also been used for other gas transfer to biofilms in

nitrification-denitrification. HFMBR was effectively used in ammonia removal by

nitrification where air was blown through the membranes to supply oxygen to the
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nitrifying biofilm (Keskiner and Ergas, 2000). A hollow fiber membrane biofilm reactor

was used to treat 2,4,6-trinitrophenol as the sole carbon source. Pure oxygen was fed

from the membranes to the biofilm attached to the outer surface of the membrane

(Jimenez et al., 1998). Brindle et al. (1998) developed a nitrification process using a

hollow fiber membrane reactor where a nitrifying biofilm was attached to the surface of

oxygen-permeable hollow fiber membranes. Nitrogen removal of 98% from the nitrogen

loading of 1.2 kg NH4 -N/m2d at the rate of 6.6 g NH4-N/m3 d was accomplished.

Membrane bioreactors effectively eliminate the need for post-treatment associated

with biological denitrification. Since nitrate removal requires addition of bacteria, carbon

source and buffering salts such as bicarbonate and phosphorus to the water to be treated,

residual amounts of these chemicals raise the cost of post-treatment of denitrified water.

If carbon dioxide is used as a carbon source, the treated water's pH rises, again adding to

the post treatment costs. Membranes show potential to eliminate the problem of drinking

water contamination by utilizing their separation capabilities along with gas transfer

characteristics. Fuchs et al. (1997) separated the biological reaction zone and carbon

supply from the raw water stream by a nitrate permeable membrane. Nitrate diffused

from the water through the membrane into the biofilm while carbon and phosphate were

transferred to the bacteria on the biofilm side of the membrane. In effect, the effluent was

not contaminated with residual bacteria and chemicals because the membranes separated

the two solutions. Cellulose dialysis membrane tubing (7.5 mm I.D.) was used with a

mixed heterotrophic culture. A denitrification rate of 1230 mg NO3 -N/m2 d was achieved

in this configuration. Without post-treatment, the effluent met nearly all criteria for

drinking water.

18



Hoemer and Irmer (1989) applied the membrane fluidized-bed technology to

autortophic denitrification. The method combines the advantages of a fluidized bed (i.e.,

optimal mass transfer conditions combined with very high biomass concentration on fine

grained carrier particles with a very high volumetric surface) in excluding any clogging,

and the optimal bubble-free gas intake through permeation membranes. Hydrogen and

carbon dioxide concentrations and pH are constant because of even distribution in the

whole fluidized bed volume. Therefore, optimal conditions are available to

microorganisms in the whole reactor resulting in very high specific denitrification rates.

The achievable reaction rate essentially depends on the kind and the quantity of the

carrier particles and on the rate of the hydrogen intake. At limiting hydrogen rates or

carrier limitation a maximum reaction rate is obstructed which is independent of nitrate

load. A pilot plant was operated at retention times of about 15 min. Denitrification rates

of 2.5 kg N0 3-N/m3 d were obtained over longer periods for hydrogen limited operation,

which can be further increased by increasing the membrane surface or membrane

permeability. The membrane fluidized-bed technology is applied to autotrophic

denitrification in Wurzen waterworks (Germany).

Biologically treated wastewater was effectively denitrified in a fluidized bed

using hydrogen as electron donor when the hydrogen was introduced through silicone

rubber tubular membranes with specific area of 120 m2 /m3 (Brautigam and Sekoulov,

1987). The denitrification rate was 60 g N0 3 -N/m3-h at hydrogen partial pressure of 2

bar. Over time, biological growth on the membrane decreased the denitrification rate to

30 g/m 3-h.
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Membrane dissolution of hydrogen for autotrophic denitrification was

investigated by Gantzer (1995). The study used a hollow fiber membrane system to

supply high dissolved hydrogen concentration in a fixed-bed denitrification bioreactor.

The hydrogen gas was maintained at a pressure of 2 atm inside the fibers. As shown in

Table 1, the nitrate removal rate of the autotrophic process was found to be much higher

than that of a heterotrophic process. The steady state nitrate flux into the fixed-bed

biofilms averaged about 85 mg NO3'-N/m 2/hr, which is much higher than the

denitrification rates reported in the literature. Although the author stated that the process

(i.e., the biofilm) was nitrate limited, no experiment was conducted to verify this claim.

Based on data reported by various researchers, it appears that the process is "liquid phase

hydrogen concentration limited", which is in contrast with the results of Kurt et al.

(1987).

2.5 Modeling of Denitrification Kinetics

Literature concerning the subject of kinetics modeling of nitrate removal is

limited. Some attempts were documented where overall nitrogen removal and cell growth

were modeled in heterotrophic systems. However, the reported models do not provide a

thorough analysis of the denitrification process since they do not account for nitrite

generation. This section focuses on models which include intermediate formation in

autotrophic and heterotrophic nitrate removal processes.
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2.5.1 Modeling of Autotrophic Denitrification

Kurt et al. (1987) studied the biodegradation kinetics of autotrophic hydrogen

oxidizing bacteria modeling the process using a double Michaelis-Menten function.

Nitrate, nitrite and hydrogen were assumed to be limiting substrates in a bench scale

fluidized bed reactor. Nitrate and hydrogen were assumed to be limiting substrates in the

first denitrification step, and nitrite and hydrogen were assumed limiting in the second

step. The following equations were used:

rI = Vm CN 0
3 * C H2 (2.1)

KNO3 + CNO3 KI,m + CH2

rll = Vmll CN02 * (2.2)
KNO2 + CNO2 KII, m + CH2

where ri and rni are reaction rates of reaction 1.1 and 1.2 respectively (mg/L-h); Vmi and

Vmii are maximum rate constants (mg/L-h); C is the liquid phase substrate concentration

(mg/L); and K is the saturation constant (mg/L). The denitrification rate was shown to be

more strongly dependent on the nitrate concentration than on hydrogen. Although

hydrogen is only slightly soluble in water (1.6 mg/L at 20°C), the saturation constants for

hydrogen were reported to be less than 1% of saturation. Therefore, it is evident that the

liquid phase hydrogen concentration has very little effect except at low nitrate

concentrations. The Michaelis-Menten model does not include biomass growth and thus

does not provide the complete representation of the biological process.
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2.5.2 Modeling of Heterotrophic Denitrification

Peyton et al. (2001) investigated biological kinetics of a heterotrophic

denitrification process under high pH and high salinity conditions. The model employed

first-order kinetics with respect to nitrate and nitrite as follows:

dCN N0
3=- k X (2.3)

dCNo
NO = k (0 .

74 19) CN Xk 2CN (2.4)
dt 1 3 2CNo2

where k\ and k2 are reaction rate constants (L/h-mg) and C and X are substrate and cell

concentrations (mg/L), respectively. Cell growth rate was modeled as a sum of nitrate

removal rate and nitrite change multiplied by respective cell yields. This model

adequately describes the kinetics of the heterotrophic system by accounting for both

intermediate and cell generation rates. Subsequently, nitrate utilization rate and cell yield

were determined based on kinetic coefficients to compare the behavior of the system to

other denitrification processes.

Nitrate and nitrite were modeled using first-order kinetics in heterotrophic

denitrification with methanol as a carbon source (Smith et al., 1993). The equations used

are given below:

dCNo
d 3N= --kC (2.5)

dt 1 NO

dCNO

dCN0 2 NO (2.6)

22



where P is a dimensionless constant which accounts for the empirical observation that

less than one mole of nitrite appears in solution for each mole of nitrate reduced. It takes

place of the stoichiometric ratio of 0.7419 in equation 2.4. However, cell growth was not

accounted for as in the case of Kurt et al. (1987) discussed earlier. The researchers make

a claim that (1-p) fraction of bacteria is capable of reducing nitrate and nitrite in one

operation and the remainder reduces nitrite to nitrogen. This conclusion is in

disagreement with the majority of denitrification literature which affirms that nitrate to

nitrogen gas reduction is carried out by one bacterial species under heterotrophic

conditions (Metcalf and Eddy, 1993; Rittmann, 2002).

2.6 Research Needs

Autotrophic hydrogen oxidizing bacteria can be used for denitrification. These

bacteria use carbon dioxide or bicarbonate for cell synthesis. Hydrogen is used as the

energy source and electron donor while nitrate acts as the electron acceptor.

The growth rate of autotrophic bacteria is typically slower than heterotrophic

bacteria. Therefore, lower concentrations of biomass and soluble microbial products can

be expected in the reactor effluent. A comprehensive model for cell growth and nitrate

and nitrite utilization is needed to better describe the process. The advantages of this

process over conventional heterotrophic denitrification can be summarized as follows:

* No addition of organic carbon for cell synthesis,

* No interferences with the disinfection process (no disinfection byproduct formation),

* The process can be operated as a fixed or fluidized bed reactor,
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* The process is cost effective compared to methanol, ethanol or acetate as carbon

sources.

The fact that hydrogen gas is inherently clean makes it the ideal reactant to

denitrify drinking water. Hydrogen generates less excess biomass than the use of organic

compounds, and if generated on-site is less expensive than the use of methanol, ethanol,

and acetate based on bulk chemical cost. The concerns for safety and lack of gas

dissolution devices for hydrogen can be resolved using a membrane gas transfer device.

A membrane system can be used to dissolve hydrogen in water with 100% gas transfer

efficiency and the systems' bubbleless operation can prevent the release and waste of

hydrogen that can lead to explosive conditions in confined spaces.

This research therefore addresses the feasibility of a novel membrane process for

hydrogen gas transfer for autotrophic denitrification.
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Table 2.1: Comparison of Nitrate Removal Rates

Electron Nitrate removal rate Reference and Experimental Conditions

Donor (mg NO3-N/m2-hr)

Methanol 10 Liessens et al., 1993. Biofilm reactor, Methanol.

Hydrogen 13 Kurt et al., 1987. Biofilm reactor (sand), Hydrogen

at 1 atm.

Hydrogen 33 Islam et al., 1994. Biofilm reactor, Hydrogen at 1

atm.

Hydrogen 58 Benedict, 1996. Biofilm reactor, Hydrogen at 1

atm.

Hydrogen 85 Gantzer, 1995. Biofilm reactor, Hydrogen at 2 atm.
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CHAPTER 3

BATCH REACTOR STUDIES FOR BIOLOGICAL KINETICS

EVALUATION

3.1 Introduction

Batch autotrophic denitrification experiments were carried out using an

acclimated mixed bacterial culture obtained from a local wastewater treatment plant.

Inorganic carbon was delivered via sodium carbonate of carbon dioxide, while hydrogen

gas was supplied as the electron donor. Anoxic conditions were maintained so that

nitrate acted as the electron acceptor. A number of common genera of soil bacteria are

able to use hydrogen as an electron donor and inorganic carbon for cell synthesis.

Bacteria such as Pseudomonas pseudoflava, Ralstonia eutropha and Paracoccus

denitrificans have the ability of autotrophic denitrification using hydrogen gas as the

electron donor (Schmidt et al., 1989; Selenka and Dressier, 1990). The chemical

reactions of nitrate reduction by hydrogen oxidizing bacteria has been shown by Kurt et

al., (1987) as follows:

2N03-+ 2H2 -~ 2N02'+ 2H20 (3.1)

2N02' + 3H2 - N2 + 2H20+ 2 20H- (3.2)

Combining reactions (3.1) and (3.2), the overall reaction can be written as:

2N03- + 5H2 - N2 + 4H20 + 20H- (3.3)
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Thus stoichiometrically, 0.35 mg/L of hydrogen is required for complete denitrification

of 1.0 mg NO3- N/ L. However the dentrification kinetics of autotrophic denitrification is

not well established. Knowledge of microbial growth and substrate utilization

characteristics is important in design of biological unit processes and in the predication of

the fate of compounds in natural and engineered environments. Therefore it is important

that realistic values for biodegradation kinetic coefficients be used in fate and transport

models.

Batch experiments help in characterizing the kinetic parameters related to cell

growth. Therefore batch studies were conducted in the laboratory with the following

objectives:

* develop an acclimated mixed culture capable of autotrophic denitrification

using hydrogen as an electron donor,

* monitor nitrate, nitrite and cell mass concentration with time, and

* model the biodegradation kinetics of the batch autotrophic denitrification

process.

3.2 Materials and Methods

3.2.1 Source of the Culture

A mixed culture was obtained from the anoxic denitrification basin of the

Winslow Wastewater Treatment Plant (Winslow, NJ). An acclimated culture for

autotrophic denitrification using hydrogen oxidizing bacteria was developed in batch

reactors at room temperature in five passages.
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3.2.2 Kinetic Experiments

Sodium carbonate (Na2CO3 ) and sodium nitrate (NaNO3 ) were obtained from

Sigma Chemicals Co., St. Louis, MO. HACH BOD nutrient buffer pillows (HACH

Chemical Company, Loveland, CO.) amended with excess phosphate buffer (Ergas and

Reuss, 2001) were used for the growth media. High purity hydrogen and carbon dioxide

gas were obtained from MG Gas Industries (Malvem, PA). Deionized distilled water

from a Barnstead Water Purification Water System (Dubuque, Iowa) was used for

preparation of all solutions.

The experimental setup for the batch studies is presented in Figure 3.1. Glass

amber jars (4 L) with magnetic stir bars for adequate mixing were used as the reactors.

Two sets of batch studies were conducted with two different inorganic carbon sources:

carbonate and carbon dioxide gas.

Carbonate Studies

Four batch reactors were used in this study. Each batch reactor received 100

mg/L of Na2CO3 and 100 mg/L of NO3-. Therefore the reactors had a concentration of

25 mg/L NO3 -N. The reactors were seeded with 4 mL of mixed liquor from an

acclimation reactor containing bacteria acclimated to carbonate as their sole carbon

source. The control reactor did not receive any mixed liquor. The reactors were purged

with hydrogen gas every 4 hours with the aid of solenoid valves (Model 6013A, Burkert,

Orange, CA), which were controlled by programmable timers (Model XT, ChronTrol

Corp., San Diego, CA). The gas lines were fitted with check valves to prevent back flow

of gas. A stir bar continuously mixed the reactor contents. Samples were analyzed for
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nitrate, nitrite, cell mass, pH and alkalinity with time. Experiments were conducted

under a fume hood and in duplicate.

Carbon Dioxide Studies

Four batch reactors were also used in this study. A carbon dioxide based

acclimation reactor was started using seed from the Na2CO3 acclimation reactor. The

reactors were purged every 4 hours with H2 gas and every 10 hours with CO2 gas through

a bubble-stone. The gas cycling was controlled with the aid of solenoid valves (Model

6013A, Burkert, Orange CA) and a programmable timer (Model XT, ChronTrol Corp.,

San Diego, CA).

3.2.3 Analytical Methods

The following parameters were monitored during the course of the batch

experiments: pH, alkalinity, nitrate, nitrite and cell mass. Nitrate and nitrite were

measured using the Standard Method 4500-B (AWWA et al., 1995) and HACH Method

8153, on a HACH DR 4000U (Loveland, CO) spectrophotometer. pH was measured

with an Orion 720 pH Meter (Beverly, MA). Alkalinity was determined using a HACH

digital titrator according to Standard Method 2130 B (Standard Methods 1995; 2130 B).

Dissolved oxygen concentrations were measured with a YSI 520 DO Meter (YSI, Yellow

Springs, CO). Cell mass was measured as protein and MLSS (Mixed Liquor Suspended

Solids). Protein measurements were made according to the method of Lowry et al.

(1951). Bovine serum albumin (Sigma Chemicals, St. Louis, MO) was used as the

protein standard. Cell mass as MLSS was measured according to Standard Method
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(AWWA et al., 1995). TOC and DOC measurements were also made using HACH

Method 8153 on a HACH DR 4000U (Loveland, CO) spectrophotometer.

3.2.4 Modeling

Since autotrophic denitrification is a relatively new process, few modeling

attempts are reported in literature. The existing models simplify the system by ignoring

response variables such as intermediate nitrite accumulation or cell mass. Thus, current

literature lacks a more representative model, which is needed to better understand the

biological kinetics.

In this study, the conventional Monod model (Monod, 1943; Rittmann, 2002) was

used to model experimental data. The model was used to describe the rate of nitrate

removal, nitrite accumulation and cell growth. Nitrate is removed from the system by

microorganisms according to the following relationship:

dCNo3 _ 1 CNO X
(3.4)

dt YN K +CNO3 NO3 NO3

dCNO
where - 3 = nitrate conversion rate, mg NO3-N/L-hr

dt

C = nitrate concentration, mg NO3-N/L

X= cell concentration, mg/L

/u = maximum specific growth rate for reaction 3.1, hr' 1
ml

KNO = nitrate half velocity constant, mg NO3-N /L
NO3
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YNO = yield coefficient, mg cells formed/mg NO3-N converted
3

Nitrate is converted to nitrite which itself is further biodegraded. Hence, the nitrite

concentration change with time is given by:

dCNo 1 M 'mlCNO X P m2 CNoX

_23 - 2N3 (3.5)
d t ¥NO 3 NO2 N 2 NO2 No 2

dC
NO

where 2 = nitrite conversion rate, mg NO2-N/L-hr
dt

C = nitrite concentration, mg N0 2-N/L

/u = maximum specific growth rate for reaction 2.2, hr' l

K = nitrite half velocity constant, mg NO3-N /L
NO2

YNO = yield coefficient, mg VSS formed/mg N02-N converted

Finally, cells are produced both during nitrate removal and nitrite production and uptake.

Therefore, the rate of cell growth may be described as:

dX NO NX- = ^ -NO 3 + Y d C 2 -kdX (3.6)
dt NO3 dt N02 dt

where d = net rate of bacterial growth, mg VSS/L-hr
dt

kd = decay coefficient, hr'1
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The following assumptions were made in model development:

* preacclimated microorganisms;

* growth is only nitrate limited;

* nutrients are available in excess;

* cell growth conditions are optimum;

* no inhibition occurs.

Hydrogen was assumed to be not limiting as evidenced by previous investigations (Kurt

et al., 1987).

The above kinetic equations were solved simultaneously numerically for CNO3,

CNO2 and X using a sixth-order Runge-Kutta method in POLYMATH ODE solver. A

search for the values of the kinetic parameters will be carried out using an algorithm for

least squares estimation. This algorithm finds a local minimum of the sum of the square

weighted errors (SSWE).

3.3 Results and Discussion

Results from batch studies conducted with carbonate as the sole carbon source are

presented in Figure 3.2. Nitrate removal was almost complete in two days. Nitrite

concentration indicates some accumulation but complete removal during the duration of

the experiment. Other researchers (Kurt and Dunn, 1987; Oh et al, 1999; Miyake et al.,

1996; Smith et al., 1993) have reported nitrite accumulations during batch autotrophic

denitrification studies. All authors suggested that a continuous flow process having a

relatively long retention time would result in complete nitrogen removal. Cell mass, pH
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and alkalinity concentrations for these experiments are presented in Figures 3.3, 3.4 and

3.5. The buffering capacity in the reactors seems adequate from these results.

Results from the batch experiments with CO2 as the source of carbon delivery

were very similar to those obtained from the carbonate tests. Results for Nitrate, Nitrite,

Cell Mass, pH and alkalinity are presented in Figures 3.6 through 3.9. In both systems

the total carbonate distribution between H2CO3 and HCO3- would have to be similar

because the system pH were analogous. This would explain the comparable nitrate and

nitrite removal in both sets of experiments. The only difference noted was in cell mass

measurement techniques. Protein measurements worked well with the CO2 system while

suspended solids measurements worked for the sodium carbonate system. Cell mass as

protein was analyzed according to the method of Lowry et al. (1951). Protein

concentrations were analyzed as problems were encountered for representative cell mass

concentration as MLSS. Hydrogen concentrations were measured intermittently during

the course of these experiments. Hydrogen concentration was found to be 62.5% of

saturation (1.6 mg/L) in both systems. This indicates that the process was not hydrogen

limited. All batch studies indicated that rapid nitrate removal is possible with autotrophic

denitrifiers. Nitrite accumulations occurred but were removed during the course of these

experiments.

Modeling results are presented in Figure 3.10. The kinetic coefficients obtained

from this study are summarized in Table 3.1 The substrate utilization rate for autotrophic

denitrification was determined to be 1.0 mg NO3-N/mg VSS-day. It was calculated by

combining the kinetic coefficients with equation 3.4 at a nitrate concentration of 10 mg

NO3-N/L. The autotrophic denitrification rate is higher than those reported for
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heterotrophic denitrification, 0.01-0.6 mg N0 3-N/mg VSS-day (USEPA, 1993; Peyton,

1994). The obtained value is also higher than heterotrophic denitrification rate of 0.4 -

0.7 mg N0 3-N/mg VSS-day reported under high salinity/ high pH conditions with first-

order kinetics describing the system behavior (Peyton et al., 2001). Thus, less biomass is

needed to remove the same amount of nitrate. This result indicates that autotrophic

denitrification has a significant potential to compete with heterotrophic processes for

nitrate removal.

Biomass yields were obtained to estimate the amount of biomass produced during

nitrate and nitrite removal in autotrophic denitrification. Since yield values are usually

reported for complete removal of nitrate to nitrogen gas, overall yield coefficients were

calculated for design and scale up purposes. The overall cell yield was 0.78 mg VSS/mg

N0 3-N. Table 3.2 provides a comparison to literature values for heterotrophic and sulfur

reducing conditions. Benedict et al. (1996) reported a similar biomass yield of 1.2 mg

VSS/mg N0 3 -N. The obtained cell yield is in the range of heterotrophic values (Metcalf

and Eddy, 1991). Therefore, excessive biomass generation is not expected in system

operation.

3.4 Conclusions

These studies indicate the presence of hydrogen oxidizing denitrifiers in

wastewater treatment plants. A mixed culture capable of utilizing both carbonate and

CO2 as the sole carbon source could be developed having the ability of using hydrogen as

an electron donor. Adequate pH control was possible and the pH averaged around 6.6.

High nitrate utilization rate affects denitrification design resulting in shorter retention
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times and smaller reactor volumes. Less biomass generation is expected in operation of

the process than in sulfur reduction systems.
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Table 3.1: Summary of Kinetic Parameters for Autotrophic Denitrification

Kinetic Parameter

Jtml

6m2

KNO3

KNO2

YNO3

YNO2

kd

Units

day-'

day -1

mg/L

mg/L

mg cell/mg NO3-N

mg cell/mg N02-N

day-
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Value

0.65

0.03

0.1

0.1

0.63

0.15

0.04
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Table 3.2: Comparison of Kinetic Parameters for Denitrification

]Am Y Ks kd
Denitrification 1/day mg cell/ mg/L 1/day Reference

Type mg N03-N

Heterotrophic 0.3-0.9 0.4 -0.9 0.06-0.20 0.04-0.08 Metcalf and
Eddy, 1991

Autotrophic** 2.88-4.8 0.4-0.5 3-10 0 Oh et al., 2000

Autotrophic** 2.64 0.57 0.2 0 Claus and
Kutzner, 1985

Autotrophic* 0.77 1.2 0.1 0 Benedict, 1996

Autotrophic* 0.65 0.78 0.1 0.04 This Study

* Hydrogen Oxidizing Bacteria ** Sulfur bacteria
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CHAPTER 4

HYDROGEN TRANSFER VIA HOLLOW FIBER MEMBRANES

4.1 Introduction

Hydrogen transfer into water is needed in certain water and wastewater treatment

processes, where hydrogen is required as an electron donor, such as autotrophic

denitrification. In recent years hydrogen transfer has also become important in natural

attenuation (USEPA, 1998) and in-situ biodegradation of organic pollutants (Novak et al.,

2001). The advantages of using hydrogen over conventional organic energy sources are

that it is less expensive and does not leave an organic residue in the treated water.

However, the use of hydrogen has been limited because of a safety issue associated with

conventional sparging of hydrogen into water (formation of bubbles presents an

explosion hazard). Hollow fiber membranes may be used for bubbleless hydrogen-to-

water transfer.

4.1.1 Membrane Selection

Hydrogen gas transfer into water may be accomplished through porous or non-

porous membranes. Asymmetric membranes which consist of a porous and non-porous

layer may also be used. In order to obtain high hydrogen transfer rates, the membrane

material must be (1) able to withstand high pressures, (2) highly hydrogen permeable,

and (3) thin enough to be made into small diameter hollow fibers.

48



Microporous hydrophobic membranes have the advantage of very high gas

permeabilities. Since the pores are gas-filled, diffusion takes place rapidly in the gas

phase. These membranes are available as small-diameter (200-400 pim) hollow fibers that

provide a very high specific surface area (i.e., surface area to volume ratio). The use of

porous membranes is limited to low pressure applications because high pressures result in

bubble formation. Nevertheless, they have found applications in absorption and water

treatment. Hydrogen mass transfer was achieved through Teflon hollow fiber membranes

as a valid alternative to absorption tower operation (Iversen et al., 1995). Microporous

hollow fiber membranes were applied in hydrogen gas scrubbing and absorption (Li et

al., 2000). More recently, hydrogen was transferred through hollow fiber membranes

directly to a bacterial culture for biological denitrification of drinking water (Ergas and

Reuss, 2001).

Non-porous membranes such as silicone rubber may be operated at elevated gas

pressures without bubble formation. Gas transfer is accomplished via solution-diffusion

mechanism. Hydrogen first dissolves in the membrane material and subsequently

diffuses through the membrane to the liquid. Brautigam and Sekoulov (1987) introduced

hydrogen to water through silicone rubber tubular membranes for the purpose of

biologically treating wastewater through denitrification in a fluidized bed with hydrogen

as the electron donor. There are several disadvantages of non-porous film application in

hydrogen transfer. Since non-porous membranes are thicker than porous membranes,

they present an increased resistance to mass transfer, and, therefore, reduce hydrogen

transfer rate. In addition, non-porous membranes are not available in small diameter

(100-400 ptm) fiber form.

49



Anisotropic or asymmetric membranes consist of a thin skin membrane layer cast

on top of a thicker porous backing. The thin skin performs the separation, while the thick

layer provides mechanical support for high-pressure applications. Sell et al. (1993)

applied a non-porous polymer composite membrane in hollow fiber configuration for

hydrogen transfer. The outer surface of the fibers was composed of a polyetheramide

non-porous layer and a microporous skin on the lumen side. The internal skin was coated

with PDMS resulting in 1.2 mm outer diameter and 1 mm inner diameter of the hollow

tube.

In biological applications, hydrogen gas was transferred to an autotophic

denitrifying bacterial biofilm through an asymmetric composite membrane (Lee and

Rittmann, 2000). The outer and inner layer was composed of microporous polyethylene

with a non-porous polyurethane layer sandwiched between them. As in the case of non-

porous membranes, an anisotropic film is comparatively thick which limits its hydrogen

transfer characteristics and forces an increase in the diameter of hollow fibers. And

lastly, asymmetric hollow fiber membranes are much more expensive than microporous

membranes because of an involved spinning and coating manufacturing process.

4.2 Membrane Module Design

Gas transfer via hollow fiber membrane modules may be accomplished in the

flow-through mode or in the sealed-end configuration (Figure 4.1). In the flow-through

mode, gas is pumped continuously through the lumen of the fiber. A portion of the gas

diffuses through the membrane and the remaining gas is vented off (Yang and Cussler,
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1986). In the sealed-end operational configuration, one end of each hollow fiber

membrane in the bundle is sealed. Membranes are then pressurized with gas, which

diffuses through the membrane into the water.

Ahmed and Semmens (1992) demonstrated that sealed-end operation results in

superior performance as compared to the flow-through configuration. Since gas is vented

off in the flow-through mode, it is impossible to achieve a 100% gas transfer efficiency.

Also, flow-through operation may result in effective stripping of dissolved volatile

compounds from the liquid with the venting gas.

Both of those considerations are important to hydrogen gas transfer. Venting

hydrogen, which results from flow-through operation, constitutes a safety hazard.

Additional costs must be incurred to contain the off gas and to avoid explosion risks

when mixed with air. Stripping of compounds such as volatile organic compounds

(VOCs) presents a problem in applications of hydrogen transfer to wastewater treatment.

VOCs present in wastewater may diffuse through the membrane into the hydrogen stream

increasing the cost of subsequent treatment of the off gas. These constraints may be

effectively eliminated through sealed-end operation where all hydrogen diffuses into the

water through the membrane resulting in 100% transfer efficiency. Elimination of the

vent stream reduces the explosion risk hazard and prevents stripping of VOCs.

Thus the use of microporous hollow fiber membranes for hydrogen gas transfer

into water was evaluated. A mass transfer correlation for hydrogen was developed in

two configurations: sealed-end and flow-through. Experiments were conducted with the

following objectives:
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* Construct hollow fiber membrane modules for hydrogen gas delivery;

* Evaluate the effect of various physical and process variables on the mass

transfer rate across the membrane system;

* Determine the mass transfer coefficient correlation for various operating

parameters such as flow and pressure.

4.3 Experimental Methods

Schematics of sealed-end and flow-through modules are shown in Figure 4.2.

Hollow fiber membranes are potted into a tube to form a shell-and-tube configuration.

The potted end is connected to an air-pump. Gas transfer occurs as water is pumped co-

currently on the outside of the fibers on the shell side. The turbulence of water flow

causes the fibers to fluidize, or flutter independently. This fiber movement within the

pipe enhances mass transfer and has a potential to minimize biological and chemical

fouling on the outside of the fibers.

CelgardTM X40-200 Microporous Hollow Fiber Membranes (Celgard Inc.,

Charlotte, NC) were selected for this study. These are thin-walled, opaque,

polypropylene membranes with a nominal internal diameter of 200 jtm. Nominal

porosity of the membrane material is 25% with effective pore size of 0.04 ptm and pore

dimensions of 0.04 ,tm x 0.01 ptm. The membranes are durable and pressure resistant

with burst strength of 400 psi and tensile break strength exceeding 300 g/fiber.
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The hollow fiber modules were constructed by potting several fibers into an

external shell. The shell consisted of a glass tube fitted with a Y-connector. After one

end of each hollow fiber was heat-sealed, the open ends were potted into the Y-connector

with an epoxy adhesive (DP-125, 3M, St. Paul, MN) as shown in Figure 4.2. In the flow

through configuration, both ends were potted into Y-connectors.

The experimental set-up for sealed-end studies is shown in Figure 4.3. The

hollow fiber module was constructed by potting six fibers into an external shell, 125 cm

in length and 0.406 cm in diameter. The water was pumped from a 2.5-L closed reservoir

to the hollow fiber membrane module by a peristaltic pump (Model 7553-70, Cole-

Parmer, Vernon Hills, IL). The water flow rate was monitored with a turbine flow meter

(Model 32919-25, Cole-Parmer, Vernon Hills, IL). High purity hydrogen, obtained from

MG Gas Industries (Malvern, PA), was supplied from a gas cylinder and the pressure was

measured with a pressure transducer (Model PX 105, Omega Engineering, Stamford,

CT). Mixing in the reservoir was induced with a magnetic stirrer. The reservoir was

sealed to avoid gas exchange with the atmosphere and a check valve was mounted on the

reservoir vent. The membrane module was oriented horizontally.

The static or gassing out method was employed to measure the hydrogen transfer

coefficient in the sealed-end membrane module. Hydrogen transfer occurred as water

was pumped through the shell side of the module resulting in an increase in dissolved

hydrogen concentration in the reservoir with time. Dissolved hydrogen concentration

was measured with an Orbisphere Micro Logger (Model 3654, Orbisphere Laboratories,

Neuchatel, Switzerland) in 15-second intervals for the duration of 0.5 hours. Water

temperature and atmospheric pressure were recorded for each test. The effect of water
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flow rate on the hydrogen mass transfer coefficient was investigated. Experiments were

completed with various pumping speeds in the range of 0.2 L/min to 0.6 L/min while

hydrogen gas pressure on the inside of hollow fibers was held constant. The effect of gas

pressure on the hydrogen mass transfer coefficient was investigated by holding the water

flow rate constant and varying hydrogen pressure in the range from 1 psig to 4 psig.

The experimental configuration shown in Figure 4.4 was employed to obtain a

correlation of the hydrogen mass transfer coefficient with flow characteristics. In this

method, hydrogen gas was first sparged into the 2.5-L closed mixed reservoir to raise the

dissolved hydrogen concentration. Hydrogenated water was recirculated through a flow-

through membrane module by a peristaltic pump (Model 7553-70, Cole-Parmer, Vernon

Hills, IL). An air purge flowed through the lumen of the horizontally oriented hollow

fibers at approximately IL/min with an aid of a peristaltic pump of the above model.

Hydrogen was stripped from the liquid phase into the gas phase resulting in decrease of

hydrogen concentration with time in the closed vessel. The dissolved hydrogen

concentration was measured with the Orbisphere Micro Logger over time.

Physical membrane module parameters manipulated in the flow-through study

were (1) shell diameter and (2) length of fiber. The characteristics of the membrane

modules tested are summarized in Table 4.1.

4.4 Data Analysis

In a microporous hollow fiber, the driving force for hydrogen transfer is provided

by the hydrogen concentration gradient between the gas and the liquid phase across the
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membrane. Hydrogen transfer through hollow fiber membranes occurs by the

mechanism of Knudsen diffusion with the concentration gradient as a driving force. The

hydrogen transfer involves three sequential steps, as shown in Figure 4.5. First, the

hydrogen molecules diffuse out of the bulk air phase to the membrane surface, second,

they diffuse through the gas filled pores in the walls of the hydrophobic hollow fibers.

Finally, when the hydrogen molecules reach the other side of the membrane, they diffuse

into the water phase. The mass transfer coefficient (K), or resistance to mass transfer

(1/K), is given by

1 1 1 1
l =- + + (4.1)

K kL kmH kGH

where kL, km, and kG are the individual mass transfer coefficients in the liquid, across the

gas filled membrane pores and in the gas phase, respectively (cm/s); H is the

dimensionless Henry's law constant.

Gas diffusion coefficients are approximately four orders of magnitude greater

than diffusion coefficients in water. Since both kG and km are characterized by gas

phase diffusivities, they are expected to be much larger in value than kL. In addition

hydrogen is only slightly soluble in water (i..e., the value of H is large). It follows that the

resistances HkG and Hkm are expected to be negligible compared to L-. Therefore,

hydrogen transfer is limited by liquid film diffusion in the membrane system.
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4.4.1 Sealed-end Configuration

For steady state operation when gas is transferred from the gas phase to the liquid

phase, the hydrogen gas flux, N, across the membrane can be written as

N = Ka (C*-CL) (4.2)

where N is hydrogen flux (mg/cm2 -s); K is the overall hydrogen mass transfer coefficient

(cm/s); a is the. specific surface area (cm 2/cm3); C* is the water phase hydrogen

concentration in equilibrium with the gas phase (mg/L); and CL is the hydrogen

concentration in the liquid phase at any position along the module (mg/L). In a

membrane system, the value of 'a', the specific surface area, can be calculated from the

surface area of the fibers.

Hydrogen transfer across a single fiber can be described by:

VL = Ka (C*-CL) (4.3)
dz

where VL is the water velocity through the hollow fiber module(cm/s) and z is the

position along the length of the membrane module (cm).

If the hydrogen pressure equals the regulated feed pressure everywhere within the

fiber, then C* is constant. If the influent dissolved hydrogen concentration, C 1, is a

constant, then the boundary conditions CL=CI at z=O and CL=C2 at z=L apply, where C2

is the liquid phase hydrogen concentration in the module outlet stream and L is the length

of the module. Integration of equation 4.3 then yields:
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C2 = C * -(C * -C,)exp -KL (4.4)

The water from the module was recirculated back to the reservoir where the

hydrogen concentration change was measured with time. The hydrogen component

mass balance around the well-mixed reservoir in Figure 4.6 is:

V d C QC2 -QC (4.5)
dt

where Q is the water flow rate (L/sec) and V is the volume of the reservoir (L).

Substituting C2 from equation 4.4 and rearranging gives:

, (C*-Ct I KaL
In C- J 1-= exp -- t (4.6)

Consequently, the mass transfer coefficient may be obtained form the slope of the graph

of In C* -CL vs. time.
C*

4.4.2 Flow-through Configuration

In flow-through studies, hydrogen was transferred from the liquid phase to the gas

phase. This particular case is governed by the following flux equation:

N = -Ka (CL-C*) (4.7)

Since the membrane lumen is constantly replenished by fresh air, the gas phase hydrogen

concentration C* is equal to zero. In this case, equation 4.7 becomes

N =-Ka CL (4.8)
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Dissolved hydrogen concentration gradient along the length of the membrane module

results from hydrogen flux:

N = -Ka CL = v dCL (4.9)
dz

If the influent dissolved hydrogen concentration, C1, is a constant, then the boundary

conditions CL=CJ at z=0 and CL=C2 at z=L apply. Integration of equation 4.9 then

yields:

C2 = C, exp- KL (4.10)

Substituting C2 from equation 4.10 into the mass balance around the well-mixed reservoir

in equation 4.5 and rearranging gives:

dCX Q KaLe
dC= [expr K -l dt (4.11)
C V vI

This equation is subject to the following boundary conditions:

t=0, C =C o

t=t, C =C

Integrating, we obtain the following exponential equation:

lnQ = exp§ -}l]t (4.12)

Therefore, the overall mass transfer coefficient can be determined from the slope of

ln(C/Co) time plot.
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There are two important assumptions in the above development:

(a) the experiment was always conducted in such a way that the residence

time in the reservoir was large compared to the response time of the hydrogen

sensor;

(b) the concentration of hydrogen in the reservoir changes slowly

compared to the concentration changes occurring in the module for the

assumption of steady state in the module to be realistic.

4.5 Results and Discussion

Laboratory scale experiments were conducted to evaluate the influence of

operating conditions on the performance of the sealed-end hollow fiber module. A

typical result is shown in Figure 4.7. The data were plotted in the form of equation 4.6.

The mass transfer coefficient was obtained from the slope of each plot. Hydrogen mass

transfer coefficient was found to increase with water flow rate. Figure 4.8 provides a

comparison between experimental values of the mass transfer coefficient at various water

flow rates. This trend was also observed in oxygen transfer results in similar

configurations (Ahmed and Semmens, 1992). Sell et al. (1993) also report a linear

relationship between hydrogen flux and water flow rate in the laminar flow regime.

Hydrogen mass transfer coefficient values for each variable pressure run are also shown

in Figure 4.8. The apparent pressure dependence may be related to nitrogen and oxygen

counter diffusion through the membrane pores. A correction for counter diffusion of

dissolved gases is needed to account for the phenomenon. Both water flow rate and
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hydrogen gas pressure increased the hydrogen mass transfer coefficient which ranged

form 0.000115 cm-s ' 1 to 0.00282 cm-s -1. The values of mass transfer coefficient (K)

obtained with hollow fiber modules are several orders of magnitude greater than the

corresponding values for bubble aeration.

In each of the flow-through tests, the reservoir concentration data also generated a

linear relationship when plotted in the form of Equation 4.12. A typical plot of In (C/Co)

versus time is provided in Figure 4.9. The overall mass transfer coefficient can be

extracted from the slope of the line using experimental operating conditions and module

parameters.

In order to normalize the data, it is convenient to express the parameters in terms

of the dimensionless Sherwood Number (Sh), Reynolds Number (Re), and Schmidt

Number (Sc) as follows:

Sh = aRe Sc (4.13)

where a, P, and y are constants. The definitions of dimensionless numbers are presented

in Table 4.2. The Schmidt number is defined as the ratio of the kinematic viscosity of a

fluid to the diffusivity of the solute in that fluid. Since hydrogen was the only constituent

considered in this study and test temperature only varied within a few degrees, the

Schmidt number may considered to be constant, and a 1/3 power dependence was

assumed from literature (Bennett and Myers, 1982).

When fluid flow in conduits (in conduits (in this case hollow fibers) is considered, it is also

necessary to determine a "characteristic length" term for Reynolds number calculations.
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The characteristic length is defined as the effective diameter, de (cm) (Yang and Cussler,

1986):

4(cross-sectional area of flow) (4.14)
wetted perimeter

The experimental data were plotted as Sherwood number versus Reynolds number

in Figure 4.10. A least squares regression analysis of the data gave the following

correlation:

Sh = 0.0027 Re144

or, Sh = 0.00043 Re'1 44 Sc°0 33 (4.9)

The plot shown in Figure 4.10 shows a significant amount of scatter (R2 = 0.69);

however, the relationship is significant at the 95% confidence level. Yang and Cussler

(1986) found that the use of the ratio de/L to modify Reynolds number improved the

correlation with the Sherwood number. The experimental data thus were plotted as

Sherwood number versus Rede/L in Figure 4.11 to obtain the following correlation:

Sh = 16.77 (Rede/L) 1' 0 2

or, Sh = 2.68 (Rede/L)1' 02 Sc0 -33 (4.10)

The modified correlation was successful in reducing the scatter (R2 = 0.83) in the

hydrogen transfer data collected in this study. The exponent of the term (Rede/L) was

also comparable to that reported for oxygen transfer (Yang and Cussler, 1986).

The mass transfer correlation developed in this work is compared in Table 4.3

with those found in the literature. The mass transfer correlation indicates the results of

this study are very similar to those expected for flow in small tubes. However, the
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coefficient in front of the present mass transfer correlation is large; about an order of

magnitude greater than the values reported by other researchers (Yang and Cussler 1986;

Ahmed and Semmens, 1992) for similar hollow fiber membrane systems.

4.6 Conclusions

A membrane process for transferring hydrogen gas to water was studied using

microporous membranes. The membrane is hollow fiber microporous polypropylene,

and hydrophobic to prevent wetting of membrane pores by water. The hydrogen transfer

is primarily controlled by liquid film diffusion. The values mass transfer coefficient (K)

obtained with hollow fiber modules are several orders of magnitude greater than the

corresponding values for bubble aeration. The following mass transfer correlation can be

used to design membrane modules for hydrogen transport:

Sh = 2.68 (Rede/L)1 2 Sc0 33

The membrane hydrogen transfer appears to be a viable technology for

transferring hydrogen gas to water. Further investigation is required to evaluate large-

scale applications and other operating concerns.
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Figure 4.1: Flow-through and sealed-end modules
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Figure 4.2: Schematic diagram of membrane modules
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Table 4.1: Dimensions of hollow fiber membrane modules

Fiber Diameter

(cm)

0.03

0.03

0.03

0.03

0.03

Length

(cm)

125

69

80

71

63.5

Equivalent Diameter

(cm)

0.195

0.454

0.57

0.37

0.266

Shell Diameter

(cm)

0.6

0.6

0.6

0.4

0.4
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No. of
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36

6

1

1

6
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Pressure
transducer

Figure 4.3: Sealed-end hydrogen transfer experimental set-up
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Figure 4.4: Flow-through hydrogen transfer experimental set-up
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Figure 4.5: Resistance contribution to gas transfer across a membrane wall.
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Figure 4.6: Hydrogen transfer modeling diagram
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Figure 4.7: Sample ln(C*/(C*-C) versus time plot for sealed-end configuration
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Figure 4.9: Sample ln(C/Co) versus time plot for flow-through configuration
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Table 4.2: Definition of the dimensionless numbers in mass transfer

Name Symbol Definition

Reynold's Re deVL

number

Schmidt Sc v
number D

Sherwood Sh d kL
number D

Where d is equivalent diameter (cm); is water velocity (cm/s); vis kinematic viscosity
(cm2/s); D is hydrogen diffusivity in water (cm2/s); kL is the mass transfer coefficient
(cm/s)
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Figure 4.10: Mass transfer correlation for designing hollow fiber membrane
modules (Sh vs. Re)
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Figure 4.11: Mass transfer correlation for designing hollow fiber membrane
modules (Sh vs. Rede/L)
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Table 4.3: Comparison of correlations from transfer literature

Correlation Re Range

Knudsen and Katz (1958)

Yang and Cussler (1986)

Cote et al. (1989)

Sh = 0.022 Re0 .6 Sc 0 .3 3

Sh= 1.25 (Rede/L)0.93 Sc 0 33

Sh = 0.61 ReO-3 6 3 Sc 0O 33

Ahmed and Semmens (1992) Sh = 0.108 Re0 .8 1 Sc 0- 3 3

Sh = 0.886 (Rede/L)0.91 Sc 0 -33

This Study Sh = 0.00043 Re1 .4 4 Sc 0 -33

300 - 46000

350 - 4200

Sh = 2.68 (Rede/L)1 .02 Sc0. 33
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CHAPTER 5

CONTINUOUS FLOW FIXED FILM REACTOR STUDIES

5.1 Introduction

One of the main objectives of this study was to evaluate the performance of

denitrifying autotrophic hydrogen oxidizing bacteria in a bench-scale reactor with a gas

delivery membrane system. An upflow fixed-film reactor was constructed and operated

in the laboratory to. evaluate the feasibility of supplying hydrogen via a membrane

module. The reactor was inoculated with hydrogen oxidizing bacteria and operated in

batch mode until a stable biofilm was developed on the media. In continuous flow mode

an anoxic inorganic nutrient buffer solution containing 22.6 mg/L N0 3 --N was fed to the

reactors at varying hydraulic retention times.

5.2 Materials and Methods

5.2.1 Fixed-bed Bioreactor

The fixed bed reactor consisted of a cylindrical clear acrylic column, 2.54 cm in

diameter and 14 cm in height. The top and the bottom of the reactor were fitted with

rubber stoppers. Tygon tubing was connected to a hole in each stopper. The schematic of

the reactor is shown in Figure 5.1. Polymeric rings were used as reactor media (Figure

5.2). Previous studies demonstrated that the performance of the polymeric rings medium
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was found to be superior in hydrogenotrophic denitrification to other investigated media

in the range of 2 to 8 hours retention times (Benedict et al. , 1998). The effective area

available for biofilm growth was 0.0697 m 2.

The reactor packing was coated with an acclimated biofilm at column start-up. A

mixed culture was obtained from the anoxic denitrification basin of the Winslow

Wastewater Treatment Plant (Winslow, NJ). An acclimated culture for autotrophic

denitrification was developed in batch reactors at room temperature. The column was

connected to a stirred vessel which contained 2L of a degassed inorganic nutrient buffer

solution containing 100 mg/L nitrate and 100 mg/L sodium carbonate to which 83.3 mL

of acclimated culture seed was added. Hydrogen gas was sparged into the stirred vessel

in 5 second pulses at 2 hour intervals. The liquor was withdrawn from the tank and

recycled through the column using a peristaltic pump (Model 755-70, Cole-Parmer,

Vernon Hills, IL) at a flow rate of 220 mL/min. Periodically, the vessel was purged with

hydrogen to maintain the dissolved oxygen concentration below 1 mg/L. pH was

maintained at 7.0 with carbon dioxide gas addition. The schematic of the apparatus used

for start-up is provided in Figure 5.3.

5.2.2 Hollow Fiber Membrane Module

Hollow fiber membrane module construction and materials has been described in

Section 4.4. A schematic of a sealed-end module has been presented earlier in Figure

4.2.
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5.2.3 Continuous Operation

Continuous flow studies were conducted using carbonate as sole inorganic carbon

source and sodium nitrate as the electron acceptor for the autotrophic denitrification

culture. Sodium carbonate (Na2CO3 ), sodium nitrate (NaNO3 ), phosphate buffer

(KH 2PO4 and K 2HPO4) and micronutrients (MgSO4 *7H20, CaCl2 , and FeSO 4 *7H20)

were obtained from Sigma Chemicals Co. (St. Louis, MO). High purity hydrogen and

carbon dioxide gas were obtained from MG Gas Industries (Malvern, PA). Deionized

distilled water from a Barnstead Water Purification Water System (Dubuque, IA) was

used for preparation of all solutions.

The experimental set-up for the flow through studies is shown in Figure 5.5.

Influent entered the system from a feed tank kept under hydrogen and was continuously

recycled between the two stages by a peristaltic pump (Model 7553-70, Cole-Parmer,

Vernon Hills, IL). Effluent was withdrawn from the top the fixed-bed bioreactor by a

cassette pump (Sarah Standard Cassette Pump, Manostat Corporation, Barrington, IL).

The system operating parameters are listed in Table 5.1.

The reactor was operated in continuous mode by supplying a degassed inorganic

feed buffer solution using the Sarah cassette pump. Hydrogen gas was delivered through

a 6 fiber sealed end hollow fiber module. The system was closed to the atmosphere, with

the excess gas being expelled using check valves at the feed water reservoir.
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5.2.4 Analytical Methods

The following parameters were monitored during the course of the continuous

experiments:

* pH,

* Alkalinity,

* Nitrate and Nitrite, and

* TOC (Total Organic Carbon) and DOC (Dissolved Organic Carbon).

Nitrate and nitrite were measured using the Standard Method 4500-B (AWWA et al.,

1995) and HACH Method 8153, on a spectrophotometer (Model HACH DR 4000U,

Loveland, CO.), respectively. An Orion 720 pH Meter was used to measure the effluent

pH. Alkalinity was determined using a HACH digital titrator according to Standard

Method 2130 B (Standard Methods 1995; 2130 B). Dissolved oxygen concentrations

were measured with a DO Meter (Model YSI 520, YSI, Inc., Yellow Springs, CO). TOC

and DOC concentrations were determined using the HACH Method 10324 on a

spectrophotometer (Model HACH DR 4000U, Loveland, CO)

5.3 Results and Discussion

During operation, the membrane surface appeared to be clean; there was no

visible biofilm growth on the membrane surface. The influent was buffered adequately,

therefore, no pH shift was observed in the effluent as shown in Figure 5.6. The alkalinity

of the reactor effluent was consistently higher (by about 130 mg/L) than the influent

under steady state operation (Figure 5.7). This is expected since alkalinity is generated
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during the biological nitrate reduction process. Ergas and Reuss (2001) and Lee and

Rittmann (2000) reported similar increases in alkalinity. Effluent TOC was measured to

be 8.2 mg/L and dissolved organic carbon was 5.7 mg/L for 0.2 L/min recycle flow rate.

The dissolved organic carbon concentration exceeded the level of 2.3 mg/L reported in

literature for a hollow fiber membrane bioreactor (Lee and Rittmann, 2000). This

behavior may be due to a higher biomass concentration in the reactor and high water

velocity, contributing to shearing of the biofilm. Therefore, effluent organic carbon

concentration may be decreased with further optimization of biofilm thickness and

recycle flow rate.

The effluent nitrate and nitrite concentrations are presented in Figure 5.8 as a

function of time. At an HRT (hydraulic retention time) of 10 hours, complete nitrate

removal was observed during steady state condition. Nitrite effluent concentration was

lmg/L of N0 2 -N complying with drinking water standard. The overall nitrate and

nitrogen removal efficiencies were 100% and 95%, respectively. The recycle rate was set

at 0.2 L/min to control biofilm growth on the membrane surface.

The hydrogen pressure in the membrane module was held at 6 psi. Using the

membrane module parameters and mass transfer correlation developed earlier in Chapter

4, the hydrogen transfer rate of the membrane module at 6 psi operating pressure, was

estimated to be 1.31 X 10-3 mg/sec. From reaction stoichiometry, the hydrogen

requirement corresponding the reactor nitrate loadings was estimated to be 1.31 X 10' 5

mg/sec. Therefore, it is evident that the hydrogen transfer rates were about two order of

magnitude (100 times) greater than the stoichiometric hydrogen requirement and the

process is not expected to be hydrogen limited at this loading condition.
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The reactor was also operated at 6.75, 3.25 and 1.75 hour HRTs by increasing the

influent flow rate. The hydrogen pressure in the membrane module was reduced to 1 psi

due to frequent hydrogen bubbling problems. The steady state pH, alkalinity, nitrogen

species and percentage removals for 6.75, 3.25 and 1.75 hour HRT are presented in

Figures 5.5 through Figure 5.9. After about 130 hours of operation, at 6.75 hr HRT, the

influent tank was found to have visible growth of slime layers on the inside of the

reservoir surface. The influent nitrate concentration also dropped as a result of this

contamination as shown in Table 5.3. The influent tank and the tubing were replaced

with cleaned and autoclaved tank and tubing, however, no change in reactor performance

was observed. No other significant operating problems were encountered during the

experiments. The reactor operation was discontinued with the appearance of 1.27 mg/L

of N0 3-N at 1.75-hour HRT time and subsequent decrease of removal efficiencies as

shown in Figure 5.19 and Figure 5.20, respectively. The ratio of hydrogen delivered to

stoichiometric hydrogen requirement rate was about 5. Therefore, one of the factors that

may be limiting at 1.75-hr HRT was dissolved hydrogen concentration. It should be

noted, however, that increasing the following physical and operating parameters would

increase the hydrogen transfer rate from the membrane module:

* length of the fiber and the module,

* number of fibers,

* diameter of the fibers,

* recycle flowrate through the module, and

* operating pressure.
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Table 5.2 also shows no nitrate and low constant nitrite concentrations in the

reactor effluent for 10, 6.75 and 3.25 detention times; this may be an indication that the

concentrations of dissolved hydrogen in the reactor were not limiting for the HRTs.

Efforts were made to measure the dissolved hydrogen concentration in the reactor

effluent by connecting the effluent line to the Orbisphere hydrogen sensor. The dissolved

hydrogen concentration varied from 30 to 40 ppb at 1 psi operating pressure. Effluent

dissolved hydrogen concentration was not measured at 6 psi operating pressure.

The steady state volumetric N0 3-N loading rate and removal efficiencies per unit

surface area for each detention time was calculated and presented in Table 5.3Hydraulic

retention time reported is an empty bed value obtained by dividing the volume of reactor

column by the influent flow rate. The corrected hydraulic retention time (HRTa) was

calculated as follows:

HRTa = (VHFM + Vr - Vm)/Qin (5.1)

where HRTa = hydraulic detention time, hours

VHFM = Volume of water in the module, liters

Vr = Volume of reactor column, liters

Vm = Volume of media, liters

Qin = Influent flow rate, liters/hr

The membrane module volume was used in calculating hydraulic detention time because

the recycle ratios were sufficiently high, so the entire system could be considered a

complete mix flow reactor (CMFR).

The results show that the optimum performance with low (about 0.68 mg/L)

nitrite concentration would be achieved between 1.75 and 3.25-hr detention time. The
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reported loading rates and the corresponding effluent concentrations may be used for

scale up purposes for similar systems. The reactor performance was compared with other

similar studies in the literature and is presented in Table 5.4. The surface area removal

efficency of 13.2 mg/m2-h is lower than reported for other attached growth processes

which ranged from 33 mg/m2-h to 104 mg/m 2-h. However, the volumetric removal rate of

0.312 kg NO3 -N/m3 -day is in the range of other studies (0.059 kg N0 3 -N/m3-3.95 kg

N0 3 -N/m3). Both results may be increased by raising the hydraulic retention time at

higher hydrogen transfer rates.

The recycle ratios where determined by dividing the flow into the reactor by the

recycle flow rate through the membrane reactor and are presented in Table 5.5. Recycle

ratio may be an operational concern since it is much higher than those recommended for

trickling filters (Metcalf and Eddy, 1991). Recycle rates provide control of oxygen

transfer rates and biofilm thickness on the media in typical trickling filter operations.

Higher recycle rate would result in higher pumping requirements, thereby increasing the

operating cost. However, the recycle ratios were found to be within the range of similar

studies employing autotrophic denitrification reactors.

5.4 Conclusions

A stable biofilm was developed in the packed bed reactor that removed nitrate

using hydrogen as the electron donor. Hydrogen gas was successfully delivered to the

reactor via the hollow fiber membrane gas transfer module. The calculated hydrogen
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transfer rate of the given module indicated that the system did not experience hydrogen

limitations up to a HRT of about 3.25 hours.
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Table 5.1: Continuous-flow fixed film reactor parameters

Influent flowrate (mL/min) 0.1-0.7

Influent pH 6.57

Influent alkalinity (mg/L as CaCO3) 400

Hydrogen gas pressure (psig) 6

Recycle flow rate (L/min) 0.1-0.2

Influent composition Concentration

(mg/L)

NaNO3 100

NaCO3 100

K2HPO 4 1,190

K2HPO4 980

MgSO 4*7H20 100

CaCl 2 30

FeSO4 *7H20 3.75
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Table 5.2: Overall steady state performance of fixed-film continuous flow
membrane bioreactor

HRT Influent Effluent % Removal
(hr)

NO3-N pH Alkalinity NO3-N NO2-N Total-N NO 3- Total-
(mg/L) (mg /L ) (mg/L) (mg/L) N N

CaCO3)

10 22.6* 6.5 556 0 1.54 1.54 100 93.1

6.75 20.46 7.2 565 0 0.68 0.68 100 96.67

3.25 16.64 7.2 552 0 0.68 0.68 100 95.8

1.75 13.58 7.3 528 1.27 0.68 1.95 90.6 85.5

*Calculated
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Table 5.3: Continuous-flow fixed film reactor steady state results

Volumetric Surface area removal Effluent nitrate Effluent nitrite

HRTa HRT loading efficiency concentration concentration

(hr) (hr) mg NO3-N /m 3 -h mg NO3-N /m 2-h mg NO3-N/L mg N02-N/L

0.5 1.75 12,978 13.21 1.5 0.67

1 3.25 6,906 7.03 0 0.67

2 6.75 3,335 3.40 0 0.67

3 10 2,263 2.30 0 1
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Table 5.4: Continuous-flow fixed film reactor performance

Removal

Benedict et al.
(1996)

Lee and Rittmann
(2000)

Ergas and Reuss
(2001)

This study

76, 92

90

93

HRT

(hr)

6

0.7

30

1.75

Surface area removal

efficiency (mg NO3 -

N/m 2-h)

42.7

33,42

104

13.2

Volumetric removal rate

(kg NO3-N/ m3-day)

2.63

2.6, 3.95

0.059

0.312
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Table 5.5: Recycle Ratio Comparison

Metcaff and Eddy (1991)

Lee and Rittmann (2000)

Ergas and Reuss (2001)

Benedict et al. (1996)

This study

System Configuration

Trickling Filters

Hollow Fiber Membrane

Bioreactor

Hollow Fiber Membrane

Bioreactor

Fixed film Bioreactor

Fixed Film Bioreactor

Recycle Ratio

0.5-2

175

125-755

114-343

143-500

97



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

The main goal of this research was to evaluate the feasibility of a continuous flow

fixed film bioreactor coupled with a hollow fiber membrane module for autotrophic

denitrification. Kinetic coefficients for autotrophic denitrifying bacteria were obtained

from batch studies. Design relationships for hydrogen gas transfer using hollow fiber

membranes were developed. Finally, the effect of detention time and hydrogen transfer

on nitrate removal in the system was evaluated.

Results of this study enabled a number of conclusions to be drawn and revealed

areas for further investigation.

6.1 Conclusions

The following conclusions can be made from this study:

1. Autorophic denitrifying hydrogen oxidizing bacteria are easily isolated from seed

bacteria obtained from a biological denitrification facility.

2. The following kinetic coefficients were obtained: tm of 0.65 d' 1, Y of 0.78 mg

cells/mg N03-N, and kd of 0.04 d-1.

3. Hydrogen gas delivery via hollow fiber membranes is feasible for attached growth

processes.
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4. Hydrogen-to-water transfer through sealed-end hollow fiber membranes is

dependent on hydrogen gas pressure and water flow rate.

5. The following mass transfer correlation can be used to design membrane modules

for hydrogen dissolution into water:

Sh = 2.68 Rede/Ll' 02Sc O°33

6. Increasing the concentration of dissolved hydrogen through application of hollow

fiber membranes ensured nitrate limited biofilm and eliminated explosive

conditions from accumulation of hydrogen gas in headspaces.

7. A 3.25 hour hydraulic retention time was needed to successfully reduce 22.4

mg/L NO3-N to nitrate and nitrite concentrations below drinking water standards.

8. No significant nitrite accumulation was observed during system operation.

Effluent nitrite concentrations met the maximum contamination level of 1mg

NO2 -N/L.

9. Increased levels of TOC and DOC indicate that additional treatment is needed

following the denitrification process since elevated organic concentrations may

result in bacterial growth in the distribution system.

6.2 Recommendations for Future Studies

Two areas of possible future study were identified: (1) long-term sealed-end

membrane module operation for hydrogen delivery, (2) optimization of biofilm thickness.
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Counter-diffusion of other gas species dissolved in water impacts membrane

module operation. Back diffusion. Back diffusion of nitrogen and oxygen from the water into the fiber

has a significant effect on the hydrogen partial pressure along the fiber causing an

apparent pressure dependence of the measured mass transfer coefficients. A gas-phase

composition model is required to analyze the impact of nitrogen and oxygen on operation

of hollow fiber membranes for hydrogen transfer. Long term operation may also result in

flooding of membrane fibers with water time. Effective flushing procedures are

required for system maintenance.

The biofilm thickness should be optimized as a functimized as a function of recycle rate. Biofilm

thickness varies with flow rate of fluid through the fixed bed bioreactor. In the two-stage

system this parameter corresponds to the recycle rate. As the recycle rate is increased,

more cells will shear off the surface of the biofilm. A thin biofilm may not provide an

adequate cell mass to carry out denitrification with a desired rate. However, an overly

thick biofilm may cause substrate depletion at the surface of the plastic media resulting in

sloughing. Since hydrogen transfer rate also depends on the system recycle rate,

optimization must take into account the constraints necessary for gas transfer. Of major

concern is biological fouling caused by biofilm growth on the membranes in prolonged

operation. Increased recycle flow rate is expected to shear accumulated biofilm off the

membrane surface. Cleaning methods are needed for long term operation of the gas

transfer modules.

In the future, biological processes may show potential for hydrogen delivery in

autotrophic denitrification. Kubota Corporation, Japan is developing a process for

hydrogen production that makes use of genetically engineered photosynthetic bacteria
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(Kubota, 2002). The microorganisms also use industrial or organic wastewater as a

substrate. Potentially, a photosynthetic reactor may be placed upstream of the autotrophic

denitrification reactor to hydrogenate water. Simultaneously, the photosynthetic bacteria

can remove organic contamination present in the water stream. In this manner, the

hydrogen requirement may be satisfied with no outstanding operating costs. Thus, nitrate

removal with hydrogen oxidizing bacteria may be expected to make a favorable impact

on water treatment.
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Batch Reactor Data for Carbon Dioxide as Carbon Source

Nitrate-Nitrogen Concentration

Time Reactor #1 Reactor #2 Reactor #3 Reactor #4 Control

(hours) (mg /L) (mg /L) (mg /L) (mg /L) (mg /L)
. ^^ A ^A I 4 X~ A ^ f I re n A f- I e e n A f- I A %^ ^ I

U

22

42.5

66

90.25

113.25

142

161

185.5

23.1U1

24.392

7.168

4.552

2.736

1.266

0.101

0.272

0.076

23.1U1

23.169

0.849

2.065

0.222

0.060

0.361

0.264

0.133

23.346

23.067

3.295

0.883

0.782

0.568

0.247

0.133

0.133

23.346

24.800

4.230

1.290

0.560

0.450

0.321

0.068

0.117

24.98U

24.902

24.500

24.500

23.980

24.500

24.780

23.900

24.130

Nitrite-Nitrogen Concentration

Reactor #1 Reactor #2

(mg /L) (mg /L)

0.0 0.0

2.3 . 4.3

6.9 10.3

10.3 7.9

3.4 3.4

2.1 3.4

2.7 3.4

1.4 1.4

0.7 1.0

Reactor #3 Reactor #4 Control

(mg /L) (mg/L) (mg /L)

0.0

3.4

6.9

10.3

10.3

4.8

2.7

1.4

0.7

U.U

3.4

7.6

5.2

4.4

3.4

2.1

2.1

1.4

U

0

0

0

0

0

0

0

0

Time

(hours)

0

22

42.5

66

90.25

113.25

142

161

185.5



Protein Concentration

Time Reactor #1

(hours)

0

22

42.5

66

90.25

113.25

142

161

185.5

(mg /L)

5.48

5.51

7.89

9.04

14.89

15.21

18.84

15.12

14.8

Reactor #2 Reactor #3

(mg /L)

4.56

5.13

8.60

11.23

12.76

14.02

17.89

14.56

14.20

(mg /L)

5.1

5.78

8.2

12.54

15.2

16.12

18.12

14.67

13.89

Reactor #4

(mg/L)

4.80

6.23

7.50

8.40

14.65

14.02

18.85

16.56

16.10

Time Average pH

(hours)
I ,

0

22

42.5

66

90.25

113.25

142

161

185.5

7.42

7.33

7.20

6.95

7.05

6.91

7.62

7.61

7.54

Average AlKalinity

(mg/L as CaCO 3)

400

410

413

445

449

440

459

452

460

Controi

(mg /L)

0

0

0

0

0

0

0

0

0

Average pH and Alkalinity

l
l -1 v -lr-- -r
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Batch Reactor Data for Carbonate as Carbon Source

Nitrate-Nitrogen Concentration

Time R r #1 Reactor #1 Reactor 2 Reactor #3 Reactor #4 Control

(hours) (mg /L) (mg /L) (mg /L) (mg/L) (mg /L)
I I I

0.00

0.59

0.92

1.69

2.62

3.49

4.55

6.48

7.53

9.54

25.195

22.512

18.673

13.099

5.123

4.914

4.733

4.641

3.218

1.253

23.597

23.088

23.306

21.271

13.714

4.059

3.914

1.189

1.001

0.401

24.032

22.434

19.963

13.787

4.122

4.495

4.023

1.044

0.740

0.068

24.178

23.451

23.306

19.818

12.240

5.222

4.495

2.098

1.775

0.522

24.032

23.675

24.123

24.032

24.127

23.127

23.326

24.008

23.761

24.513

Nitrite-Nitrogen Concentration

Time Reactor #1 Reactor #2 Reactor #3 Reactor #4 Control

(hours) (mg /L) (mg /L) (mg /L) (mg/L) (mg /L)

u.uu

0.59

0.92

1.69

2.62

3.49

4.55

6.48

7.53

9.54

0.0

0.0

0.3

0.0

0.3

0.3

3.8

21.0

18.5

19.2

0.0

0.0

0.1

0.0

0.1

0.1

1.3

7.2

6.4

6.6

0.0

1.0

2.1

9.3

19.6

16.1

16.8

8.2

4.1

1.0

0.0

0.7

1.4

3.4

3.8

20.3

16.8

11.0

7.2

3.4

U

0

0

0

0

0

0

0

0

0
-

I



Protein Concentration

Time Reactor #1 Reactor #2 Reactor #3 Reactor #4 Control

(hours) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

0 1.6 2 1.5 1.7 0

59.24 12 12 12 10 0

230 15 16 19 20 0

Average pH and Alkalinity

Time Average pH

(hours)

0

14.25

22

40.49

62.99

83.74

109.24

155.49

180.74

228.99

6.2

6.4

6.3

6.5

6.5

6.6

6.8

6.9

6.8

7

Average Alkalinity

(mg/L as CaCO3)

400

424

438

450

450

448

447

445

450

448

. .. .. .. I

I
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Table BI: Parameters for the Sealed-end Hollow Fiber Experiments

Pressure (psig)
1

1

1

1

2
2
2
2
3
3
3
3
4
4
4
4

Water velocity (cm/s)
14.08
22.98
30.79
38.16
14.08
22.98
30.79
38.16
14.08
22.98
30.79
38.16
14.08
22.98
30.79
38.16

I kL (cm/s)
0.000116
0.000231
0.000981
0.001059
0.000288
0.001065
0.001451
0.001322
0.000707
0.001562
0.002357
0.002100
0.001303
0.002662
0.002667
0.002820

I1 In(v)
2.645
3.135
3.427
3.642
2.645
3.135
3.427
3.642
2.645
3.135
3.427
3.642
2.645
3.135
3.427
3.642

In(kL)
-9.07
-8.37
-6.93
-6.85
-8.15
-6.84
-6.54
-6.63
-7.25
-6.46
-6.05
-6.17
-6.64
-5.93
-5.93
-5.87
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Table B2: Parameters for the Flow-through Hollow Fiber Modules
Diameter of Length of fiber Diameter of

Run # No. of Fibers fiber (cm) (cm) shell (cm) Velocity (cm/s)

1 36 0.03 129 0.6 62.84
2 36 0.03 129 0.6 58.24
3 36 0.03 129 0.6 51.03
4 36 0.03 129 0.6 43.82
5 36 0.03 129 0.6 36.61
6 36 0.03 129 0.6 29.40
7 36 0.03 129 0.6 22.19
8 36 0.03 129 0.6 14.98
9 36 0.03 129 0.6 7.773
10 6 0.03 69 0.6 114.3
11 6 0.03 69 0.6 90.36
12 6 0.03 69 0.6 65.45
13 6 0.03 69 0.6 60.47
14 6 0.03 69 0.6 53.81
15 6 0.03 69 0.6 47.15
16 6 0.03 69 0.6 40.48
17 6 0.03 69 0.6 40.48
18 6 0.03 69 0.6 36.50
19 6 0.03 69 0.6 33.82
20 6 0.03 69 0.6 33.82
21 6 0.03 69 0.6 27.16
22 6 0.03 69 0.6 27.16
23 6 0.03 69 0.6 20.50
24 6 0.03 69 0.6 13.84
25 1 0.03 80 0.6 59.71
26 1 0.03 80 0.6 53.13
27 1 0.03 80 0.6 46.55
28 1 0.03 80 0.6 39.98
29 1 0.03 80 0.6 33.40
30 1 0.03 80 0.6 26.82
31 1 0.03 80 0.6 20.25
32 1 0.03 80 0.6 13.67
33 1 0.03 80 0.6 3.803
34 1 0.03 71 0.4 134.8
35 1 0.03 71 0.4 119.9
36 1 0.03 71 0.4 105.1
37 1 0.03 71 0.4 90.23
38 1 0.03 71 0.4 75.39
39 1 0.03 71 0.4 45.70
40 6 0.03 63.5 0.4 288.2
41 6 0.03 63.5 0.4 245.7
42 6 0.03 63.5 0.4 207.3
43 6 0.03 63.5 0.4 151.0
44 6 0.03 63.5 0.4 91.97



Table B3: The Mass Transfer Coefficients and Dimensionless Numbers
- I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Run #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

kL(cm/S)
0.00872
0.00711
0.00518
0.00534
0.00280
0.00182
0.00176
0.00127
0.00118
0.02694
0.02289
0.02243
0.01721
0.01596
0.01682
0.00933
0.01441
0.01910
0.01404
0.01294
0.01132
0.01445
0.01424
0.01383
0.08554
0.08043
0.07638
0.05558
0.04521
0.04214
0.03986
0.03697
0.02938
0.11651
0.11367
0.09000
0.06218
0.05713
0.05391
0.04614
0.03958
0.03425
0.02628
0.02348

Sh
85.01
69.34
50.50
52.04
27.33
17.77
17.13
12.36
11.47

612.39
520.42
509.95
391.13
362.72
382.34
212.19
327.45
434.12
319.06
294.15
257.32
328.37
323.62
314.45

2437.88
2292.36
2176.97
1583.96
1288.53
1201.08
1135.91
1053.58
837.31

2155.53
2102.89
1664.91
1150.25
1056.85
997.38
614.99
527.55
456.47
350.23
312.97

Re
712.96
634.43
555.89
477.35
398.82
320.28
241.75
163.21
84.67

2902.82
2294.90
1595.79
1535.61
1366.46
1197.30
1028.15
1028.15
927.08
858.99
858.99
689.84
689.84
520.68
351.53
1901.23
1691.80
1482.37
1272.94
1063.51
854.09
644.66
435.23
121.08

2785.52
2478.69
2171.85
1865.01
1558.17
944.50

4292.13
3658.53
3086.25
2248.26
1369.40

Rede/I
1.08
0.96
0.84
0.72
0.60
0.48
0.37
0.25
0.13
19.13
15.12
10.51
10.12
9.00
7.89
6.77
6.77
6.11
5.66
5.66
4.55
4.55
3.43
2.32
13.55
12.05
10.56
9.07
7.58
6.09
4.59
3.10
0.86
14.52
12.92
11.32
9.72
8.12
4.92
18.02
15.36
12.96
9.44
5.75
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Table Cl: Continuous Flow Reactor System Operation Data

Nitrate Nitrite
Concentration Concentration

(mg N03-N /L) (mg N02-N /L)
6.45 2.75
0.50 2.75
0.10
0.14 0.69
-0.64 6.18
-0.15 5.50
-0.23 2.06
-0.23
-0.23
-0.35
-0.35 2.06
-0.39 1.37
-0.43 1.72
15.34 1.37
0.91 1.3j7
-0.07 0.69
-0.48 0.69
-0.92 0.69
-0.72 0.69
-0.84 0.69
-0.80 0.69
-0.96 0.69
-0.27 0.69
-0.31 0.34
-0.27 1.03
-0.43 0.69
-0.27 0.69
-0.39 0.69
-0.27 0.69
-0.92 0.69
2.46 0.69
1.48 0.69

-0.07 0.69
1.36 0.69
1.20 0.69
1.28

Alkalinity
(mg/L as pH
CaCO3)

380
590

6.68
6.57
5.85
6.52656

628
619
624
574
548
546
530
556
540
488
534
580
580
578
574
568
572
560
528
532
528
540

552
512
548
556
528

6.64

6.54
6.65
6.47
7.26
7.26
7.31
7.29
7.31
7.3
7.3

7.27
7.28
7.24
7.26
7.19

7.24
7.3

7.37
7.3

HRT
(hours)

10
10
10
10
10
10
10
10
10
10
10
10
10

6.75
6.75
6.75
6.75
6.75
6.75
6.75
6.75
6.75
6.75
6.75
6.75
3.25
3.25
3.25
3.25
1.75
1.75
1.75
1.75
1.75
1.75
1.75

Time
(hours)

24
45

71.5
94

118
143
166
176
189
213
238
285
310
24
53
103
125
148

177.5
196.5
219
244
295
302
313
325
338
366
386
396
415
439
465

485.5
508.5
514.5
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