
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

5-18-2016

Decoding of non-binary multiple insertion/deletion error Decoding of non-binary multiple insertion/deletion error

correcting codes correcting codes

Tuan Anh Le
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Le, Tuan Anh, "Decoding of non-binary multiple insertion/deletion error correcting codes" (2016). Theses
and Dissertations. 1544.
https://rdw.rowan.edu/etd/1544

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F1544&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Fetd%2F1544&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=rdw.rowan.edu%2Fetd%2F1544&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/1544?utm_source=rdw.rowan.edu%2Fetd%2F1544&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

	
	

DECODING OF NON-BINARY MULTIPLE INSERTION/DELETION
ERROR CORRECTING CODES

by

Tuan Anh Le

	

	 	

	

	

A Thesis
	

Submitted to the
Department of Mathematics

College of Science and Mathematics
In partial fulfillment of the requirement

For the degree of
Master of Arts in Mathematics

at
Rowan University

April 26, 2016

Thesis Chair: Hieu D. Nguyen

	
	

©		2016			Tuan Anh Le	

	
	

Dedication

 This thesis is dedicated to my loving wife, Ty Nguyen, who without a doubt is the

most intelligent and beautiful lady I ever met.

Acknowledgments

I wish to express my profound gratitude to Prof. Hieu D. Nguyen for his fatherly counsel

both in and out of schoolwork, and for his patience, motivation, and immense knowledge.

I especially thank him for inspiring me towards completing this thesis. I could not have

imagined having a better mentor.

I wish to thank Prof. Umashanger Thayasivam in the Rowan Math Department im-

mensely for also advising me in research. I also want to thank Prof. Abdulhakir Hassen

for caring about my study and giving me helpful advice. I also wish to give a big "thank

you" to Profs. Marcus Wright, Ming-Sun Li, Thomas Osler, and Olcay Fatma Ilicasu. My

professors in the Math Department are unique people. They are the best teachers that anyone

can dream of, and I want to thank them immensely for their instruction during my stay at

Rowan.

Thang Nguyen and Hieu Truong have been great friends since I came to the U.S. I would

like to use this opportunity to thank you both for everything that we have been through

together.

I wish to also recognize my beloved family at home in Vietnam who have always been

there for me. Lastly, I would like to thanks my new family here in the U.S., namely my

mother-in-law and my younger brother-in-law.

I wish you all the best.

Thank you!

iv

Abstract

Tuan Anh Le
DECODING OF NON-BINARY MULTIPLE INSERTION/DELETION

ERROR CORRECTING CODES
2015-2016

Hieu D. Nguyen, Ph.D.
Master of Arts in Mathematics

Data that is either transmitted over a communication channel or stored in memory is not

always completely error free. Many communication channels are subject to noise, and thus

errors may occur during transmission from transmitter to receiver. For example, DRAM

memory cell contents can change spuriously due to electromagnetic interference while

magnetic flux can cause one or more bits to flip in magnetic storage devices. To combat

these errors, codes capable of correcting insertion/deletion errors have been investigated.

Levenshtein codes are the foundation of this thesis. His codes, first constructed by

Varshamov-Tenengol’ts, are capable of correcting one insertion/deletion error. Helberg

codes are based on Levenshtein codes and are able to correct multiple insertion/deletion

errors. Even though there are codes with better rates, Helberg codes are still important

because they can be constructed number-theoretically. In addition, Helberg codes also allow

us to correct errors with certainty. However, prior to this thesis, there was no known efficient

algorithm to decode Helberg codes.

In this thesis, we first present an algorithm to decode deletion errors in Helberg codes as

well as a way to generalize Helberg code to non-binary alphabets. Our algorithm recursively

corrects one error at a time. As a result, this algorithm is much more efficient compared

to exhaustive search. Secondly, we introduce a new class of non-binary codes capable of

correcting multiple insertion/deletion errors by generalizing the construction for Helberg

codes. Our decoding algorithm is also applicable to correcting deletion errors in these new

non-binary codes as well. All the results in this thesis have been published in [9].

v

vi
	

Table of Contents

Abstract .. v

List of Figures .. ix

List of Tables ... x

Chapter 1: Introduction .. 1

Research Background .. 1

Problem Statement ... 2

Main Results .. 2

Structure of Thesis ... 3

Chapter 2: Error Correcting Codes .. 4

Preliminaries .. 4

Repetition Codes ... 7

Parity Check Codes ... 9

Hamming Distance .. 10

Hamming Codes .. 13

Levenshtein Codes ... 17

The Varshamov- Tenengolts Codes .. 17

Levenshtein Distance ... 19

Insertion/Deletion Correcting Codes ... 20

Levenshtein Codes ... 21

Helberg Codes ... 25

Code Construction ... 25

Proof of Multiple Error Correction .. 26

vii
	

Table of Contents (Continued)

Cardinality of Helberg Codes .. 28

Non-Binary Error Correcting Codes ... 33

Tenengol’ts Code ... 33

Generalization of Tenengol’ts Code .. 36

Chapter 3: Decoding Algorithm for Helberg Codes .. 40

Deletion Decoding Algorithm ... 40

One Deletion Method .. 43

Two Deletions Method .. 46

Multiple Deletions Method .. 52

Chapter 4: Generalization of Helberg Codes ... 60

Non-Binary Helberg Codes ... 60

Proof of Multiple Errors Correction .. 61

Properties of Non-Binary Helberg Codes .. 69

Useful Lemmas .. 69

Code Cardinality .. 74

Chapter 5: Decoding Algorithm of Generalized Helberg Codes 79

Decoding One Deletion ... 79

Decoding Two Deletions ... 82

Decoding Multiples Deletions ... 89

Chapter 6: Conclusion ... 97

References ... 99

Appendix A: Decoding Algorithm for Binary Helberg Codes .. 101

viii
	

Table of Contents (Continued)

Appendix B: Decoding Algorithm for Non-Binary Helberg Codes 105

ix
	

List of Figures

Figure Page

Figure 1.Transmision of Data over Noisy Channel ... 4

Figure 2. Deletion Error .. 4

Figure 3. Insertion Error .. 5

Figure 4. Reversal or Substitution Error .. 5

x
		

List of Tables

Table Page

Table 1. Hamming Code Rate ... 17

Table 2. Varshamov- Tenengol’ts Codebooks with n = 4 ... 19

Table 3. Weight vi for d = 2 ... 26

Table 4. Binary 2-deletion Helberg Codes: Values of Nn(2) and Rn(2) 30

Table 5. Binary 3-deletion Helberg Codes: Values of Nn(3) and Rn(3) 31

Table 6. Cardinality Binary 2-deletion Helberg Codes ... 32

Table 7. Cardinality Binary 3-deletin Helberg Codes ... 33

Table 8. Weight vi for d = 4 ... 56

Table 9. Weight wi for d = 3, q = 3 .. 60

Table 10. Weight wi for d = 3, q = 4 .. 72

Table 11. Ternary 2-deletion Helberg Codes: Values of Nn(3,2) and Rn(3,2) 74

Table 12. Quaternary 2-deletion Helberg Codes: Values of Nn(4,2) and Rn(4,2) 75

Table 13. Information Rate .. 76

Table 14. Weight wi for d = 2, q = 3 .. 79

Table 15. Weight wi for d = 2, q = 4 .. 86

Table 16. Weight wi for d = 3, q = 4 .. 93

Chapter 1

Introduction

Research Background

"Is there anything of which one can say ‘Look, this is new’?

No, it has already existed, long before our time."

Ecclesiastes 1:9-11

For over many decades, man-made satellites have been transmitting information from

deep space back to earth, yet the power of their radio transmitters is only a few watts. How

is it that this information can be reliably transmitted across planets, through millions of

miles without being completely drowned out by noise? This was made possible through the

use of error correcting codes, a branch of coding theory that concerns itself with reliably and

efficiently transmitting data across noisy channels. Coding theory was born in 1945 when

C. Shannon wrote his landmark paper [3] on the mathematical theory of communication.

The theory of error correcting codes not only allow us to discover the universe, but also to

develop technologies for data storage and media devices, such as DVD players.

The simplest method for detecting errors in data is parity-checking where extra bits

are added to the source message in order to allow us to detect and correct errors. In

1947, Richard W. Hamming [18] described his original ideas on error correcting codes and

constructed the Hamming code.

Reed-Solomon codes are the most widely used type of error correcting codes. They

were first described in 1960 by Reed and Solomon [17]. Since then they have been applied

to CD-ROMs, wireless communications, space communications, and digital television.

Unlike Hamming codes which allows us to correct one bit of a time, Reed-Solomon codes

can correct groups of bits. However, encoding of data is relatively straightforward in

Reed-Solomon codes, but decoding is time consuming.

1

In 1965, Levenshtein [15] introduced an elegant decoding algorithm to decode a single

insertion/deletion error in Varshamow-Tenengol’ts (VT) codes. In 1995, A. S. J. Helberg [1]

generalized VT codes to construct codes capable of correcting multiple insertion/deletion

errors.

Even though there are codes with better rates, Helberg codes are still important because

they can be constructed number-theoretically. Other codes such as watermark codes [13]

consist of a nonlinear inner code that allow for probabilistic resynchronization and allow

for the correction of errors with high probability. On the other hand, Helberg codes are

deterministic and allow for correction of errors with certainty.

Problem Statement

For many years since its conception in 1993, Helberg codes were known to have been

the only codes constructed explicitly capable of multiple insertion/deletion error correction.

Even though there are now other explicit code constructions with better code rates, Helberg

codes are still important since they are a natural generalization of the celebrated Levenshtein

codes. However, prior to this thesis, there was no known efficient algorithm for decoding

Helberg codes.

Our recursively reduces the number of errors, it recovers errors one by one instead of

figure out all of error at the same time. This unique characteristic of our algorithm allows us

to work with any number of errors while the need of work linearly increases.

Main Results

Our contributions are two-fold. First, we develop a decoding algorithm for Helberg

codes to correct codewords that suffer only deletions. This algorithm, which we call the

Deletion Decoding Algorithm, recursively corrects one error at a time and has linear run-time.

Secondly, we generalize Helberg’s construction to generate a new non-binary error correcting

codes. Our proof that these codes are capable of correcting multiple insertion/deletion errors

2

follows the one given by Abdel-Ghaffar et al. [10]. We also generalize our Deletion

Decoding Algorithm to decode these generalized Helberg codes for deletion errors as well.

Structure of Thesis

Chapter 2 gives a literature review on codes that can correct substitution errors by

appending parity-check bits and Levenshtein codes. It also reviews two generalization of

Levenshtein codes: Helberg codes and Tenengol’ts codes. Chapter 3 describes our Deletion

Decoding Algorithm, which is the heart of this thesis, for binary Helberg codes. Chapter 4

presents the construction to generalize Helberg codes to non-binary alphabets. Chapter 5

gives a more general version of the Deletion Decoding Algorithm for non-binary Helberg

codes. Chapter 6 discusses and compares this algorithm to exhaustive search. This chapter

also describes open problems for future research.

3

Chapter 2

Error Correcting Codes

Preliminaries

Communication and storage channels may cause synchronization errors due to corrup-

tion of data. Suppose a person sends a message and the intended recipient receives the

message, but with errors, which we call the corrupted message. These errors may be due

to noise over transmission channel. A figure describing the encoding, transmission, and

decoding of such a message is given below: For example, let our original message be

Original
Message �! Encoder �! Coded

Message �! Noisy Channel

�!
Received
Message
(corrupted)

�! Decoder �! Original
Message

Figure 1. Transmission of Data over Noisy Channel

the sequence (0,0,1) and suppose it is sent over a noisy channel where a single-bit error

occurred. There are three possibilities that this could happen.

The first possibility is due to the loss of a bit which we call a deletion error. This is

illustrated in Figure 2. The second possibility is due to the receipt of an extra symbol which

(0, 0, 1)�! transmit over
noisy� channel �! (0, 0) .

Figure 2. Deletion Error

4

we call an insertion error. This is illustrated in Figure 3. The third possibility is due to the

(0, 0, 1)�! transmit over
noisy� channel �! (0, 1, 0, 1)

Figure 3. Insertion Error

reversal of a bit, i.e., 0 ! 1 or 1 ! 0, which we call a substitution error. This is illustrated

in Figure 4 In this thesis, we focus on how to correct deletion errors in a corrupted message

(0, 0, 1)�! transmit over
noisy� channel �! (0, 1, 1)

Figure 4. Reversal or Substitution Error

to obtain the original message.

We define a codebook C to be a set of sequences called codewords whose elements are

chosen from a given alphabets of symbols. Error detection in a codebook is the ability to

detect errors in its codewords while error correction in a codebook is the ability to not only

detect but also correct error. Error detection always precedes error correction. A code is

d-deletion correcting if no sequence can be obtained from more than one codeword in the

codebook by deleting at most d symbols. The code is d-deletion/insertion correcting if no

sequence can be obtained from more than one codeword in the codebook by inserting a

symbols and deleting b symbols where a +b  d.

For example, suppose we have a codebook C1 that contains 4 codewords:

C1 = {a1, a2,a3, a4},

5

where
a1 = (1, 0, 1, 0, 0, 0, 1)

a2 = (1, 0, 0, 1, 0, 0, 1)

a3 = (1, 1, 0, 0, 1, 0, 0)

a4 = (1, 0, 0, 1, 1, 0, 0)

Let us assume that a codeword x 2 C1 is transmitted and that the codeword x0 is received

where one bit has been deleted from x:

x0 = (1, 0, 1, 0, 0, 1)

We observe that x0 can be obtained from x = a1 by deleting one of its bits at position 4,

5, or 6. Moreover, x0 can also obtained from x = a2 by deleting one of its bits at position 2

or 3. Therefore we do not know whether a1 or a2 was transmitted since x0 can be obtained

from more than one codeword. Thus this codebook can not correct a single deletion error.

Let us consider a second codebook C2:

C2 = {a5, a6, a7, a8}

where
a5 = (1, 0, 1, 1, 0, 0, 0)

a6 = (0, 0, 0, 0, 1, 0, 0)

a7 = (0, 1, 1, 1, 0, 1, 1)

a8 = (1, 0, 0, 0, 1, 1, 1)

Again, let us assume that a codeword y 2 C2 was transmitted and that y0 was received

where one bit has been deleted from y:

y0 = (0, 0, 0, 1, 0, 0)

6

However, in this case we see that y0 could have only been obtained from a single

codeword, namely a6 by deleting one of its bits at position 1,2,3, or 4. Thus, this codebook

is able to correct a single deletion error since y0 can only be obtained from a unique y.

In error-correcting codes, only certain sequences are used. This is similar to having

a dictionary of allowable words. If an error occurs in a codeword, we then find the most

similar codeword in our codebook that matches the codeword that we received. This raises

the question: "How do we construct such a codebook?". Moreover, this raises the follow

question: "How do we decode to correct such errors?". Much research has been done on

substitution-correcting codes. In addition, various codes have been proposed to correct

insertion/deletion errors but not all of them have efficient decoding algorithms. One such

family of codes, called Helberg codes and capable of correcting only insertion/deletion error,

is the focus of this thesis.

Throughout this thesis, we refer to C as a codebook, q is the alphabet size, n is the length

of each codeword, and d is the maximum number of errors that can occur. We define the

information rate of the codebook C by

In(q,d) =
logq |C|

n

where |C| is the cardinality of the codebook C.

The following sections will introduce some of the oldest and simplest error-correcting

codes.

Repetition codes. Repetition of each bit is a very simple approach to tackling substi-

tution errors. By repeating each bit twice we can make our codebook detect errors. For

example, instead of transmitting the codeword (0,1,0), we transmit (0,0,1,1,0,0). If the

received codeword is (0,1,1,1,0,0), then we know that an error occurred since the first zero

bit was not repeated. This yields an error-detecting code, it allows one error to be detected

but it is not error-correcting code because the original codeword may be been (0,0,1,1,0,0)

7

or (1,1,1,1,0,0).

On the other hand, if we repeat each bit three times then the receiver can correct a single

substitution error. This is illustrated in the following example.

Example 2.1. Suppose we construct a codebook that contains 4 words which gives

directional commands: North (N), East (E), West (W), and South (S). These directions can

be represented by the following codewords:

C1 = {(0,0),(0,1),(1,0),(1,1)},

respectively. This code however is unable to detect (and therefore unable to correct)

substitution errors since we can not determine whether a received codeword has any errors

or not. This is because any substitution error in a codeword yields another codeword from

the same codebook.

Therefore in order to be able to correct a single substitution error, we shall repeat each

bit three times by converting C1 into a new codebook C2:

C2 = {(0,0,0,0,0,0),(0,0,0,1,1,1),(1,1,1,0,0,0),(1,1,1,1,1,1)},

where each codeword corresponds to (0,0),(0,1),(1,0),(1,1), respectively.

Now assume that a codeword

x0 = (0,0,1,1,1,1)

is received. We then know that it must come from x = (0,0,0,1,1,1) since x0 differs from x

(and only x) in exactly one position.

The information rate of C1 and C2 are

I3(2,0) =
log2 |C1|

2
=

log2 4
2

= 1

8

I6(2,1) =
log2 |C2|

6
=

log2 4
6

=
1
3
.

Thus, error correction came at a cost of adding redundancy bits.

Parity check codes. The simplest and oldest error detection method is parity check. In

communication, parity checking refers to the use of parity bits to check that data has been

transmitted accurately. The parity bit is appended to every word that are transmitted. The

parity bit for each word is set so that the extended word has either an even number or an

odd number of one bits, which is equivalent to the sum of all the bits being even or odd,

respectively. If the received codeword has parity different from the transmitted codeword

then we know a transmission error occurred.

The following example illustrates how to detect a one-bit substitution error.

Example 2.2. Let us consider the scheme of even parity where we append either a 0 or

a 1 bit to make the total of number of 1 bit be even:

(0, 0, 0, 0, 0, 0, 1)

Data
!

(0, 0, 0, 0, 0, 0, 1, 1)

Data + parity

(1, 0, 1, 0, 0, 1, 1)

Data
!

(1, 0, 1, 0, 0, 1, 1, 0)

Data+parity

Notice that a one-bit error can occur in data bit or parity check bit.

Example 2.3. Suppose we consider the codebook C1 from Example 2.1. Let C3 be the

codebook that is obtained from C1 by adding a parity check bit:

C3 = {(0,0,0),(0,1,1),(1,0,1),(1,1,0)}

where the third bit is added so that the sum of all bits is always even. This code can detect a

bit reversal since if such an error occurred, the sum of all bits will be odd. However, this

code can not correct the error since the position of the bit reversal is not uniquely determine.

9

For example, if we received a codeword x0 = (0,1,0) and we know that there was exactly

one substitution error, then there are two possibilities for the original codeword: x = (0,0,0)

and x = (1,1,0).

The following example illustrates how we can correct one-bit substitution error:

Example 2.4. We want to continue working on the problem from previous examples:

Example 2.1 and 2.3. A better approach which allows error correction is to construct a

codebook C4 from C3 as follows:

C4 = {(0,0,0,0,0),(0,1,1,0,1),(1,0,1,1,0),(1,1,0,1,1)}

where the last two bits in each word of C4 is a repeat of the first two bits.

Clearly this code can detect a substitution error if such an error occurred, then either the

sum of the first three bits is odd or the sum of the last three bits is odd. This code, however,

can correct the error. For example, suppose we received a codeword y0 = (0,1,1,0,0). We

know y0 has to come from the second codeword in C4. This is because there is at most one

codeword differing in at most one bit from any possible receivable codeword.

We calculate the information rate of C4 as follows:

I5(2,1) =
log2 |C4|

5
=

log2 4
5

= 0.464.

We observe that parity check bit code C4 has a higher information rate than the repetition

code C2.

Hamming distance. It is the number used to denote the different between two strings

with equal lengths.

Definition: The Hamming distance [18] between two codewords x and y is defined to be

10

the number of position in which they differ in value, i.e.,

dH(x,y) =
n

Â
i=1

|xi � yi|.

Example 2.5. Let

x = (0, 0, 1, 1, 1)

y = (1, 1, 0, 0, 1)

then

dH(x,y) = 4.

If the distance between x and y is d, then d bit-substitutions are required to convert x

into y. Also notice that Hamming distance dH(x,y) is a metric.

Theorem 2.6.

1. dH(x,y)� 0 and dH(x,y) = 0 if and only if x = y. (Non-negativity)

2. dH(x,y) = dH(y,x). (Symmetry)

3. dH(x,z) dH(x,y)+dH(y,z). (Triangle inequality)

Definition: The minimum Hamming distance of a code C, denoted dH(C), is defined by

dH(C) = min
x,y2C
x6=y

(dH(x,y))

Example 2.7. Let us consider C = {(0, 0), (0, 1), (1, 0), (1, 1)}. Then: dH(C) = 1.

Minimum Hamming distance is a crucial property of a code, since it allows us to obtain

the following simple but very important result.

11

Theorem 2.8. Let C be a codebook.

1. If dH(C)� k+1, then C can detect up to k substitution errors.

2. If dH(C)� 2k+1, then C can correct up to k substitution errors.

Proof. Assume x 2C was sent and x0 2C was received such that x is subject to at most

k substitution errors, thus dH(x,x0) k.

1. Since dH(C) � k + 1, it follows that dH((x,x0) < dH(C) which contradict to the

definition of dH(C). Hence, x0 is not a codeword of C and thus we have detected that an

error occurred.

2. Let y be any codeword different from x. We have:

dH(x0,y)+ k � dH(x0,y)+dH(x,x0) (Since dH(x,x0)< k)

� dH(x,y) (Since dH(x,x0) is a metric)

� dH(C)

� 2k+1. (Since dH(C)� 2k+1)

Hence, dH(x0,y)� k+1. Since dH(x,x0) k, this means x is the unique nearest neighbor

of x0, so x must have been the original codeword. This completes the proof.

Example 2.9. Let

C = {(0, 0, 0, 0, 0), (1, 1, 1, 1,1)}

be the repetition code of length 5. Then

dH(C) = 5.

By Theorem 2.8, C can detect up to 4 substitution errors and correct up to 2 substitution

errors.

12

Hamming codes. Hamming codes are a type of error-correcting codes that use more

than one parity check bit. In general, a Hamming code contains codewords of length

n = m+ r where each codeword consists of m data bits and r parity check bits.

As the name suggests, Hamming codes have the following error correcting abilities due

to Theorem 2.8: they can detect up to dH(C)�1 substitution-bit errors and can correct up to
dH(C)�1

2 substitution-bit errors.

We need to determine the number of parity bits r to append to m data bits such that

the corresponding codebook has the ability to correct a single-bit substitution error. An

error could occur in any of the n = m+ r bits of each codeword, so each codeword can

be associated with n erroneous words at a Hamming distance of 1. For example: (1,1,1)

can become (1,1,0) or (1,0,1) or (0,1,1) due to single bit error. Therefore we have n+1

possible corrections for each codeword: The valid codeword itself and the n erroneous

words. Since there are 2m data words (same as the number of codewords), the total number

of possible corrections is (n+1) ·2m, which must be less (in terms of information theory)

than the total number of words of length n. Thus we have the inequality

(n+1) ·2m  2n.

But n = m+ r, therefore

(m+ r+1) ·2m  2m+r

(m+ r+1) 2r.

The last inequality is known as the Hamming rule. It gives a lower bound on the number

of parity bits that we need in our codeword.

The information rate of a Hamming code H is defined as the proportion of useful data

bits which respect to the codeword length:

In(H) =
m
n
.

13

Example 2.10. Suppose we want to calculate the information rate for a Hamming code

H which encodes data generated from 8 bits.

Since there are 8 data bits, we have m = 8. Applying the Hamming rule, we have

(8+ r+1) 2r. Therefore r = 4. The information rate of H, refer to Hamming(12,8), is

I12(H) =
8

12
=

2
3
.

We see that to build a code with 8 data bits that will correct single substitution error, we

need to add 4 parity check bits.

The following example will demonstrate how to generate Hamming(12,8).

Example 2.11. We illustrate how to append 4 parity check bits to the data word

(1,0,1,1,1,1,0,0) to obtain a Hamming codeword x of length n = m+ r = 12.

We number each bit position of x from right to left where position 1 correspond to the

right most bit. Each bit position corresponding to a power of 2 will be occupied by a parity

bit and all other bit positions are occupied by the data bits:

x = (1,0,1,1, p4,1,1,0, p3,0, p2, p1)

Each parity bit calculates the parity for a certain subset of bits in the codeword. We first

express each bit position in binary as a sum of powers of 2:

1 = 20

2 = 21

3 = 21 +20

4 = 22

5 = 22 +20

6 = 22 +21

7 = 22 +21 +20

8 = 23

9 = 23 +20

10 = 23 +21

11 = 23 +21 +20

12 = 23 +22

We see that bits at positions 1,2,4,and 8 correspond to the power of 2; therefore these

14

positions will be occupied by a parity bit. Our picture looks like this:

p4 p3 p2 p1

12 11 10 9 8 7 6 5 4 3 2 1

To determine the value of p1 at position 1 = 20, we consider the positions of those

data bits whose binary expansion contains 20, namely 3,5,7,9,and 11. Similarly, for p2

at position 2 = 21, we consider the positions whose binary expansion contains 21, namely

3,6,7,10,and 11. This is repeated for p3 and p4.

To assign values to these parity bits we calculate the parity sum of its corresponding

data bits as follows:

• Bit p1 checks the position 3,5,7,9,and 11: p1 = 0�0�1�1�0 = 0

• Bit p2 checks the position 3,6,7,10, and 11: p2 = 0�1�1�1�0 = 1

• Bit p3 checks the position 5,6,7, and 12: p3 = 0�1�1�1 = 1

• Bit p4 checks the position 9,10,11, and 12: p4 = 1�1�0�1 = 1

Our complete generated 12-bit codeword is

1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0

12 11 10 9 8 7 6 5 4 3 2 1

Suppose an error occurred at bit position 5:

1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0

12 11 10 9 8 7 6 5 4 3 2 1

We compare each parity bit with its parity sum:

• For bit p1, we find its parity sum at positions3,5,7,9,and 11 to be 0�1�1�1�0= 1.

15

But this differs from p1, which equal 0. Therefore we know an error has occurred at

either p1 or one of these positions.

• For bit p2, we find its parity sum at positions 3,6,7,10, and 11 to be 0�1�1�1�

0 = 1, which equal p2. Therefore the bits at these positions are correct.

• For bit p3, we find its parity sum at positions 5,6,7, and 12 to be 1�1�1�1 = 0.

But this differs from p3, which equal 0. Therefore we know an error has occurred at

either p3 or one of these positions.

• For bit p4, we find its parity sum at positions9,10,11, and 12 to be 1�1�0�1 = 1,

which equal p4. Therefore the bits at these positions are correct.

We now determine the position of the bit error by a process of elimination. Since the

parity bit p1 and p3 indicate that there is an error and they both correspond to positions

5 and 7, we know that the error must be at one of these two positions. But parity bit p2

indicates that position 7 is correct, therefore the error must have occurred at position 5.

If we now change the bit at position 5 to 0, then all parity bits agree with their parity

sum and our codeword is restored.

The following table gives the number of parity bits corresponding to the number of data

bits and gives the information rate of the corresponding Hamming code.

16

Table 1

Hamming Code Rate

Data Bits Parity Bits Total Bits Hamming Code Rate

m r n In(H)

1 2 3 Hamming(3,1) 1/3 ⇡ 0.333

2 3 5 Hamming(5,2) 2/5 = 0.4

3 3 6 Hamming(6,3) 3/6 = 0.5

4 3 7 Hamming(7,4) 4/7 ⇡ 0.571

5 4 9 Hamming(9,5) 5/9 ⇡ 0.556

6 4 10 Hamming(10,6) 6/10 = 0.6

7 4 11 Hamming(11,4) 7/11 = 0.636

8 4 12 Hamming(12,8) 8/12 ⇡ 0.667

9 4 13 Hamming(13,9) 9/13 ⇡ 0.692

10 4 14 Hamming(14,10) 10/14 ⇡ 0.714

Observe that the code rate increases with the number of data bits.

Even though Hamming codes for single-bit error correction are the most commonly

used type of codes, there are limitations. First, Hamming codes can only correct a single

substitution error. Other codes such as Reed-Solomon codes are capable of correcting

multiple substitution errors. Secondly, Hamming codes cannot correct deletion or insertion

errors. Codes that can correct such errors will be discussed next.

Levenshtein Codes

Varshamov-Tenengol’ts codes. In 1965, Varshamov and Tenengol’ts [20] proposed a

code construction to correct a single asymmetrical error where the probability of the bit 1

turns into 0 is considerably less than the probability that the bit 0 turns into 1, or vice versa.

17

Let x = (x1,x2, . . . ,xn), xi 2 {0,1}, denote a binary codeword. We define a family of

codebooks, each denoted by C(n,m,a), where n is the length of each codeword, m is the

modulus, and a is the residue.

Varshamov and Tenenvol’ts required that

x 2C(n,m,a)()
n

Â
i=1

ixi ⌘ a (mod m) (2.1)

where m � n+1.

Notice that the set of all possible codewords, denoted by C, is partitioned into m different

codebooks C(n,m,a). We shall prove later that each codebook is capable of correcting a

single insertion/deletion error.

Example 2.12. Let length n = 4 and m = 5. All 16 possible codewords of length n = 4

is given by

C = {(0,0,0,0),(0,1,1,0),(1,0,0,1),(1,1,1,1),(1,0,0,0),(1,1,1,0),

(0,1,0,1),(0,1,0,0),(1,1,0,1),(0,0,1,1),(1,1,0,0),(0,0,1,0),

(1,0,1,1),(1,0,1,0),(0,0,0,1),(0,1,1,1)}.

We assign these codewords to different codebooks using condition 2.1 above.

Let x = (0,0,0,0). Since
4

Â
i=1

ixi ⌘ 0 (mod 5)

then x 2 C(4,5,0).

Similarly, let y = (1,1,0,1). Since

4

Â
i=1

iyi = (1 ·1+2 ·1+3 ·0+4 ·1) = 7 ⌘ 2 (mod 5)

then y 2 C(4,5,2).

By repeating this for all other codewords, we obtain the following codebooks in Table 2

18

Table 2

Varshmov- Tenengolts Codebooks with n = 4

a C(4,5,a)

0 {(0,0,0,0), (0,1,1,0), (1,0,0,1), (1,1,1,1)}

1 {(1,0,0,0), (1,1,1,0), (0,1,0,1)}

2 {(0,1,0,0), (1,1,0,1), (0,0,1,1)}

3 {(1,1,0,0), (0,0,1,0), (1,0,1,1)}

4 {(1,0,1,0), (0,0,0,1), (0,1,1,1)}

Observe that residue a = 0 gives the largest codebook.

Levenshtein distance. It is the number used to denote the different between two strings

that may have different lengths.

Definition: The Levenshtein distance between two strings x and y, denoted by dL(x,y),

is defined as the minimum number of operations needed to transform one string (source)

into the other (target), with the allowable operations being insertion, deletion, or substitution

of a single character.

It is known that the Levenshtein distance is also a metric. However, while Hamming

distance is the measurement between two strings of equal length , Levenshtein distance also

be used for strings with different lengths. Another advantage of Levenshtein distance is that

it allows us to assign costs to different operations. For example, we can define the cost of

inserting a character to be twice as much as the cost of deleting a character. For simplicity,

in this thesis we will assume that all costs are the same.

19

Example 2.13. Let

x1 = (0, 1, 1, 0, 1)

x2 = (0, 1, 1, 0, 1)

x3 = (1, 0, 1, 1, 0).

Then dL(x1,x2) = 0, since x1 and x2 are identical. Moreover, dL(x1,x3) = 4, since 4

bit-substitutions are required to change x1 into x3.

Levenshtein distance has many applications in spell checking, speech recognition,

communications, genetics, and in plagiarism detection.

Example 2.14. Let the source string and the target string be denoted by s and t, respec-

tively.

1. If s = ”math” and t = ”math”, then dL(s, t) = 0, since the two strings are identical.

2. If s = ”kitten” and t = ”sitting”, then dL(s, t) = 3, since the following three operations

will change s into t:

(a) ”kitten” ! ”sitten” (substitute "k" with ”s”).

(b) ”sitten” ! ”sittin” (substitute ”e” with ”i”).

(c) ”sittin” ! ”sitting” (insert ”g” at last position).

Insertion/deletion correcting codes. We say that a codebook C can correct d deletions,

insertions, and/or substitutions if any errorneous codeword can be obtained from no more

than one codeword in C by d or fewer deletions, insertions, or substitutions. Levenshtein [15]

proved the following important result, which allows us to treat any deletion error-correcting

code as an insertion/deletion error-correcting codes.

20

Theorem 2.15. (V. I. Levenshtein [15])

Any code that can correct d deletions (or any code that can correct d insertions) can correct

d deletions and insertions.

Proof. Assume that the same codeword z is obtained from a codeword x of length n

by i1 deletions and j1 insertions (i1 + j1  d), and from a codeword y of the same length

n by i2 deletions and j2 insertions (i2 + j2  d). If the bits that were inserted (deleted)

from at least one of the codewords x or y to obtain z are now deleted from (inserted into)

the codeword z, then we get a codeword that can be obtained from both x and y by no

more than max(i2 + j1, j2 + i1) deletions (insertions). Since x and y have the same length,

j1 � i1 = j2 � i2 and i2 + j1 = j2 + i1 = 1
2(i1 + i2 + j1 + j2) d, it follows that x = y. This

show there is a unique decoding for z, which proves the theorem.

Levenshtein codes. In 1966, Levenshtein [14] observed that Vashamov-Tenengol’ts

codes could be used for correcting a single deletion or insertion error. He was able to prove

this by giving the following elegant decoding algorithm.

Levenshtein one deletion decoding algorithm. Suppose a codeword x=(x1,x2, . . . ,xn)2

C(n,m,a) is transmitted (called the original codeword), the symbol xk = s in position k is

deleted, and x0 = (x01,x
0
2, . . . ,x

0
n�1) is received (called the deleted codeword). Let there be

L0 00s and L1 10s to the left of s, and R0 00s and R1 10s to the right of s. Let |x0| denote the

number of ones in x0and let a0 = a�
n�1
Â

i=1
ix0i (mod m), where m � n+1.

1. If a0  |x0|, then a 0 was deleted and a0 = R1. We insert s = 0 to the left of the

rightmost R1 10s to restore x.

2. If a0 > |x0|, then a 1 was deleted and a0 = |x0|+1+L0. We insert s = 1 the right of

the leftmost L0 00s to restore x.

21

Proof. We calculate

a0 = a�
n�1

Â
i=1

ix0i (mod m)

=
n

Â
i=1

ixi �
n�1

Â
i=1

ix0i (mod m)

=
k�1

Â
i=1

ixi + xk.k+
n

Â
i=k+1

ixi �

k�1

Â
i=1

ix0i +
n�1

Â
i=k

ix0i

!

= xk · k+
n�1

Â
i=k

(i+1)xi+1 �
n�1

Â
i=k

ix0i

= xk · k+
n�1

Â
i=k

⇥
i(xi+1 � x0i)+ xi+1

⇤

= xk · k+
n�1

Â
i=k

xi+1

= xk · k+
n

Â
i=k+1

xi

= xk · k+ (# of 1’s to the right xk).

Case I: Assume xk = 1. Then

a0 = xk · k+(#1’s to the right)

= k+(#1’s to the right)

= (k�1)+1+(#1’s to the right)

= (#0’s to the left)+(#1’s to the left)+1+(#1’s to the right)

=
��x0
��+1+L0.

22

Case II: Assume xk = 0. Then

a0 = xk · k+(#1’s to the right)

= (#1’s to the right)

= R1.

Example 2.16. Consider the codebook

C(6,7,0) = {(0,0,0,0,0,0),(1,1,0,1,0,0),(0,0,1,1,0,0),(0,1,0,0,1,0),(0,1,1,1,1,0),

(1,0,0,0,0,1),(1,0,1,1,0,1),(1,1,0,0,1,1),(0,0,1,0,1,1),(1,1,1,1,1,1)}

a) Assume that we received the deleted codeword x0 = (0, 0, 1, 0, 1).

Since the original codeword x 2C(6,7,0), we know that a = 0 and |x0|= 2. We have

a0 = a�
5

Â
i=1

ix0i (mod 7)

= 0�8 (mod 7)

= 6.

Since a0 > |x0|, this implies a 1 was deleted. Also,

a0 =
��x0
��+1+L0.

Therefore
L0 = a0 �

��x0
���1

= 6�2�1

= 3.

According to the algorithm, we insert a 1 the the right of the leftmost L0 number of 0.

23

Therefore we obtain

x = (0, 0, 1, 0, 1, 1).

We have successfully recovered the 9th codeword in C(6,7,0).

b) Assume we received the deleted codeword x0 = (0, 1, 0, 1, 0). We have a = 0, and

|x0|= 2. And

a0 = a�
5

Â
i=1

ix0i (mod 7)

= 0�6 (mod 7)

= 1.

Since a0 < |x0|, this implies a 0 was deleted. Also

a0 = R1 = 1.

According to the algorithm, we insert a 0 to the left of the rightmost R1 number of 1.

Hence, we get

x = (0, 1, 0, 0, 1, 0).

We have successfully recovered the 4th codeword in C(6,7,0).

From (2.1), we see that for a given length n, the Levenshtein code construction generates

2n codewords and divides them into m = n+1 codebooks. The Pigeonhole Principle assures

that there is at least one codebook whose cardinality is greater than the proportion between

the total number of codewords over the total number of codebooks. In other word, there

exists a residue a such that

|C(n,m,a)|� 2n

n+1
.

This inequality gives a lower bound on the cardinality of the largest Levenshtein codebook

which we denote by Ln.

24

The information rate of the largest Levenshtein codebook is given by

In(q,d) =
log2 Ln

n

�
log2(

2n

n+1)

n

� n� log2(n+1)
n

It follows that In(q,d) ! 1 as n ! •. We say that Levenshtein code is asymptotically

optimal.

Helberg Codes

Code construction. Levenshtein codes are easy to decode and have good code rates.

Its limitation is that it can only correct a single insertion/deletion error. In order to correct

multiple deletions and insertions, Helberg [1] generalized the aforementioned construction

by replacing the moment Ân
i=1 ixi of the codeword x with the generalized moment Mx =

Ân
n=1 vixi where vi, called the i-th weight, is a modified version of the Fibonacci number.

Fix d to be a positive integer (corresponding to the maximum number of deletions that our

codebook is able to correct), and n to be the length of each codeword. We define

CH(n,d,a) =

(
(x1,x2, . . . ,xn) 2 {0,1}n :

n

Â
i=1

vixi ⌘ a (mod m)

)
, (2.2)

where m � vn+1, and

vi =

8
>>><

>>>:

0, for i  0;

1+
d

Â
j=1

vi� j, for i � 1,
(2.3)

We shall prove later that CH(n,m,a) is capable of correcting up to d insertion/deletion

errors.

25

For d = 2, the first few weights are given by

v�1 = 0

v0 = 0

v1 = 1+ v0 + v�1 = 1

v2 = 1+ v1 + v0 = 2

v3 = 1+ v2 + v1 = 4

The Table 3 gives a listing of the first 10 weights.

Table 3

Weight vi for d = 2

i 1 2 3 4 5 6 7 8 9 10
vi 1 2 4 7 12 20 33 54 88 143

Example 2.17. Fix d = 2, we compute the moment of the codeword x=(0, 0, 1, 0, 1, 1)

using Table 3:

n

Â
i=1

vixi = 1 ·0+2 ·0+4 ·1+7 ·0+12 ·1+20 ·1 = 36 ⌘ 3 (mod 33).

Therefore x 2CH(6,2,3).

Proof of multiple error correction. In this section, we prove that Helberg codes are

capable of correcting multiple insertion/deletion errors. For many years since its conception

in 1993, Helberg codes have been the only known explicit construction intended for multiple

insertion/deletion corrections. By exhaustive testing, Helberg and Ferreira verified that such

a construction gave codes capable of corrections d insertion/deletion errors for up to length

26

of 14 and for d up to 5. In 2011, Abdel-Ghaffar et al. [10] proved that the code as defined in

(2.2) is indeed an d insertion/deletion correcting codes. We shall describe their proof next.

Let x=(x1,x2, . . . ,xn) be a codeword with length n and D be a subset of {1,2, . . . ,n}. We

denote |D|= d and {1,2, . . . ,n}\D = {i1, i2, . . . , in�d}, where 1  i1 < i2 < · · ·< in�d < n.

We define x(D) = (xi1 ,xi2 , . . . ,xin�d) to be the codeword obtained by deleting all bits with

indices in D. If y = (y1,y2, . . . ,yn) is also a codeword with length n with E ✓ {1,2, . . . ,n},

and x(D) = y(E), then |D|= |E|= d and

xil = yil (2.4)

for l = 1,2, . . . ,n�d, where

{1,2, . . . ,n}\E = { j1, j2, . . . , jn�d}

and

1  j1 < j2 < · · ·< jn�d < n.

We write x ⌘ y if and only if
n
Â

i=1
vixi ⌘

n
Â

i=1
viyi (mod m).

The following lemma will allow us to replace the right most 1 by 0 in any two equivalent

codewords and have the same deleted codeword.

Lemma 2.18. (Abdel-Ghaffar, Paulunčić, Ferreira, Clarke [10])

Let x and y be two codeword of length n such that x ⌘ y and x(D) = y(E) with

|D| = |E| = d. Suppose there exists a positive number imax such that ximax = yimax = 1

and xi = yi = 0 for all i > imax. Define x̃ = (x̃1, x̃2, . . . , x̃n) and ỹ = (ỹ1, ỹ2, . . . , ỹn), where

x̃imax = ỹimax = 0, x̃i = xi, and ỹi = yi for i 6= imax. Then x̃ ⌘ ỹ and x̃(D0) = ỹ(E0) for some

subset of D0 and E0 of the same size of D and E.

This lemma allows us to prove the following two lemmas:

27

Lemma 2.19. (Abdel-Ghaffar, Paulunčić, Ferreira, Clarke [10])

Let x and y be any two codeword of length n such that x(D) = y(E) for subset D and E of

{1,2, . . . ,n} of size at most equal to d. We have

�����

n

Â
i=1

vi(xi � yi)

�����< m.

Lemma 2.20. (Abdel-Ghaffar, Paulunčić, Ferreira, Clarke [10])

Let x and y be any two codeword of length n such that x(D) = y(E) for subset D and E of

{1,2, . . . ,n} of size at most equal to d. We have

n

Â
i=1

vi(xi � yi) 6= 0.

The previous three lemmas imply the following result.

Theorem 2.21. (Abdel-Ghaffar, Paulunčić, Ferreira, Clarke [10])

The Helberg code CH(n,d,a) is an d insertions-deletions correcting code.

Proof. Assume CH(n,d,a) is not an d insertion/deletion correcting code. Therefore it

has two distinct codeword x and y such that x ⌘ y and x(D) = y(E) for some subset D and E

of size at most d. However, Lemma 2.19 and 2.20 state that no such sequences exist. Hence,

CH(n,d,a) is an d-deletion correcting code. By the result of Levenshtein [15], Helberg code

is also an d insertion/deletion correcting code.

Cardinality of Helberg codes. Beside lacking an algorithm to decode insertions (we

give an algorithm to decode deletion in Chapter 3), Helberg codes also suffer from a low

cardinality [5]. As defined in (2.2), for a given n, Helberg codes generate 2n codewords and

divide them into m = vn+1 codebooks. Hence, the lower bound of the largest Helberg code

28

is given by

|CH(n,d,r)|�
2n

vn+1

for some residue r. Thus the information rate of the largest Helberg code is bounded below

by

IH � log2 |CH(n,d,r)|
n

=
n� log2 vn+1

n
.

On the other hand, the information rate of Helberg codes is upper bounded asymptotically

by 1/d [5]:

IH  1
d

We denotes the size of the largest Helberg code in term of code length by:

Nn(d) = max{|CH(n,d,a)| : a = 0,1, . . . ,vn+1 �1}

We also denote Rn(d) be the set of values of a such that |CH(n,d,a)|= Nn(d). By exhaustive

computer search, we computed the values Nn(d) and Rn(d) for certain values of n and d.

Table 4 gives values for Nn(2) and Rn(2) for 2-deletions Helberg Codes. Table 5 gives

similar values for 3-deletions Helberg codes.

29

Table 4

Binary 2-deletion Helberg Codes: Values of Nn(2) and Rn(2)

n Nn(2,2) Rn(2,2)

1 1 0,1

2 1 0,1,2,3

3 2 0

4 2 0,1,2,7

5 2 0,1,2,3,4,5,6,7,12,13,14,19

6 3 0,1,6,7, 12,13

7 4 12,13

8 5 12,33

9 6 12,33,39,45,66

10 8 66

11 9 65,66,99,100,120,121,154,155

12 11 65,66,99,154,155,175,176,181,182,187,188,

208,209,264,297,298

13 15 297,298

14 18 297,441,475,496,530,674

15 22 297,441,674,763,784,790,796,817,906,1139,1283

16 30 1283

30

Table 5

Binary 3-deletion Helberg Codes:Values of Nn(3) and Rn(3)

n Nn(2,3) Rn(2,3)

1 1 0,1

2 1 0,1,2,3

3 1 0,1,2,3,4,5,6,7

4 2 0

5 2 0,1,2,15

6 2 0,1,2,3,4,5,6,115,28,29,30,43

7 2 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,28,29,

30,43,52,53,54,55,56,57,58,67,80,81,82,95

8 3 0,1,14,15,28,29

9 4 28,29

10 4 28,29,52,53,54,55,56,57,80,81,354,355

11 5 28,177

12 6 28,177,191,205,354

Let the asymptotic lower and upper bounds for the cardinality of the largest code possible

that is capable of correcting up to d deletions be defined by [16]

Ln(d) =
(d!)22n+d

n2d ,

Un(d) =
d!2n

nd ,

Table 6 and 7 compare the cardinalities Nn(d) with Ln(d) and Un(d) for 2-deletions and

3-deletions, respectively.

31

Table 6

Cardinality Binary 2-deletion Helberg Codes

n Ln(2) Nn(2) Un(2)

4 1 2 2

5 0.8192 2 2.56

6 0.790123 3 3.55556

7 0.852978 4 5.22449

8 1 5 8

9 1.24859 6 12.642

10 1.6384 8 20.48

11 2.2381 9 33.8512

12 3.16049 11 56.8889

13 4.5892 15 96.9467

14 6.82382 18 167.184

15 10.3563 22 291.271

16 16 30 512

32

Table 7

Cardinality Binary 3-deletion Helberg Codes

n Ln(3) Nn(3) Un(3)

4 1.125 2 6

5 0.589824 2 7.68

6 0.395062 2 10.6667

7 0.313339 2 15.6735

8 0.28125 3 24

9 0.277464 4 37.9259

10 0.294912 4 61.44

11 0.33294 5 101.554

12 0.395062 6 170.667

Non-binary Error Correcting Codes

Tenengol’ts code. Let x=(x1,x2, . . . ,xn) be a codeword be defined over q-ary alphabets

where 0  xi  q� 1. Tenegol’ts associates to x a binary codeword a = (a1,a2, . . . ,an)

define by

ai =

8
>><

>>:

1, if xi � xi�1

0, if xi < xi�1

(2.5)

for 2  i  n.

33

In this construction, we let a1 = 1 and define the following system of congruences:

n

Â
i=1

xi ⌘ b (mod q) (2.6)

n

Â
i=1

(i�1)ai ⌘ g (mod n). (2.7)

The purpose of (2.6) is to determine the value of inserted or deleted bit while (2.7)

essentially definesa = (a1,a2, . . . ,an) to be a Levenshtein codeword of length n.

We next demonstrate how the non-binary Tenengol’ts code construction gives a single

insertion/deletion correcting code. In the case of deletion error, let x0 = (x01,x
0
2, . . . ,x

0
n�1)

denote the deleted codeword and a 0 = (a 0
1,a 0

2, . . . ,a 0
n�1) denote the associated deleted

codeword. Let |a 0| denote the number of 1’s in a 0.

We define S1 and S2 as the least nonnegative residues of the congruences

S1 ⌘ b �
n�1

Â
i=1

x0i (mod q)

S2 ⌘ g �
n�1

Â
i=1

(i�1)a 0 (mod n).

It follows that S1 is equal to the value of deleted element in x. The corresponding deleted

element in a 0 is determined by the Levenshtein decoding algorithm:

1. If S2 � |a 0|, then insert 1 into a 0 so that the number of zeros to the left of the inserted

element will be equal to S2 � |a 0|.

2. If S2 < |x0|, then insert 0 into a 0 so that the number of ones to the right of the inserted

element will be equal to S2.

In the case of insertion error, let x00 = (x001,x
00
2, . . . ,x

00
n,x00n+1) denote the inserted codeword

and a 00 = (a 00
1 ,a 00

2 , . . . ,a 00
n ,a 00

n+1) denote the associated inserted codeword. We define S1

34

and S2 as the least nonnegative residues of the congruences

S1 ⌘
n+1

Â
i=1

x00i �b (mod q)

S2 ⌘
n+1

Â
i=1

(i�1)a 00 � g (mod n).

It follows that S1 is equal to the value of the inserted symbol in x. The correspondent

inserted element in a 00 is determined by:

1. If S2 = 0, then delete the last element in a 00.

2. If 0 < S2 < |a 0|�1, then delete any zero so that the number of 1 on the right of this

element in a 00 is equal to S2.

3. If S2 = |a 0|�1, then delete the second element in a 00.

4. If S2 > |a 0|� 1, then delete any 1 so that the number of zeros on the right of this

element is equal to n�S2.

We define the Tenengol’ts code CT (n,q,b ,g) to be all such codeword x satisfy the

congruences (2.6) and (2.7).

Theorem 2.22. (Grigory Tenengol’ts [7])

CT (n,q,b ,g) is a single insertion/deletion correcting code.

We present an example of a non-binary Tenengol’ts codes.

Example 2.23. Let q = 4, n = 8 and let b = g = 0 in (2.6) and (2.7). We show that the

codeword x = (0,1,2,2,3,2,2,0) 2CT (8,4,0,0). Since

n

Â
i=1

xi = 0+1+2+2+3+2+2+0 = 12 ⌘ 0 (mod 4)

and the associated binary sequence a = (1,1,1,1,1,0,1,0) satisfies

n

Â
i=1

(i�1)ai = 1+2+3+4+6 = 16 ⌘ 0 (mod 4),

35

It follows that x 2CT (8,4,0,0).

Suppose we received the deleted codeword x0 = (0,1,2,2,2,2,0). The associated binary

codeword is a 0 = (1,1,1,1,1,1,0).

We have:

|a 0|= 6,

S1 =�(0+1+2+2+2+2+0) =�9 ⌘ 3 (mod 4),

S2 =�(1+2+3+4+5) =�15 ⌘ 1 (mod 8).

We now apply Levenshtein decoding on the associated binary codeword a 0. Since

S2 < |a 0|, we know that a 0 was deleted which we insert to the left of the first 1 from the

right since S2 = 1. As a result we have a = (1,1,1,1,1,0,1,0).

Since S1 = 3, it follows that the symbol 3 in x has been deleted. Since a 0 was inserted

in the first run of 1’s, we conclude that the symbol 3 should be inserted in either the

corresponding run in x0 or in the preceding run. In this case, it’s located in the first run. We

simply move the symbol 3 along this run in x0 until it associated binary codeword matches

with a . As a result, the correct decoding for x is

x = (0,1,2,2,3,2,2,0).

Generalization of Tenengol’ts code. Palunc̆ić et al. [6] have showed how the Tenen-

gol’ts approach can be extended to construct multiple insertion/deletion error correcting

codes. Let x = (x1,x2, . . . ,xn) be a q-ary codeword and define its associated binary codeword

a as in (2.5). But unlike the Tenengol’ts construction, we assume that a comes from a

codebook that can correct d insertion/deletion errors. In this thesis, we assume that a comes

from a Helberg codebook.

Fix d to be a positive integer corresponding to the maximum number of insertion/deletion

errors in a codebook. Given a set of residues b = {b1, . . . ,bd} and g . We define CT (n,q,b ,g)

36

to be the set of codeword x that satisfies the following system of congruences:

n

Â
i=1

xi ⌘ b1 (mod p),

n

Â
i=1

xi
2 ⌘ b2 (mod p),

... (2.8)
n

Â
i=1

xi
d ⌘ bd (mod p),

where p is any prime satisfying p > max(q�1, d) and

n

Â
i=1

(i�1)ai ⌘ g (mod vn). (2.9)

In this thesis, we always choose p to be the smallest such prime. Observe that a 2

CH(n,d,g).

Next, we construct a codebook ĈT (n,q,b ,g) by purging certain codewords from CT (n,q,b ,g)

in order to turn it into a d insertion/deletion correcting codes. The prove relies on the fol-

lowing lemmas.

Lemma 2.24. [6]

The set of congruences in (2.8) for fixed values of (b1,b2, . . . ,bd) can uniquely determine

the values of d or fewer symbols deleted from x 2CT (n,q,b ,g).

Lemma 2.25. [6]

If d symbols are deleted from a codeword x = (x1,x2, . . . ,xn) 2CT (n,q,b ,g), then any

deleted codeword x0 = (x01,x
0
2, . . . ,x

0
n�d) can be obtained by at most d! codewords from

CT (n,q,bg).

This lemma shows that in general CT (n,q,b ,g) is not capable of correcting d inser-

tion/deletion errors as illustrated in following example.

37

Example 2.26. Assume x 2C2(6,6,(3,2)) is transmitted and its associated binary code-

word is a 2CH(6,2,3). Suppose two deletions occurred so that x0 = (5,5,3,4) is received.

We want to show that there are two possibilities for x.

First, we determine the value of the deleted bits. Since x 2 C2(6,6(3,2)), we have

d = 2, q = 6, n = 6, b1 = 3, and b2 = 2. We denote the deleted bits by x j and xk where

0  x j,xk  q�1.

We apply the system of congruences (2.8) to determine b 0
1 and b 0

2 where p = 7 >

max(q�1,d) = max(5,2):

b 0
1 ⌘

4

Â
i=1

(x0i)
1 = 5+5+3+4 = 17 ⌘ 3 (mod 7)

b 0
2 ⌘

4

Â
i=1

(x0i)
2 = 52 +52 +32 +42 = 75 ⌘ 5 (mod 7)

Hence, b 0
1 = 3 and b 0

2 = 5. We set up a system of congruences to determine the values x j

and xk:

x1
j + x1

k ⌘ b1 �b 0
1 ⌘ 0 (mod 7)

x2
j + x2

k ⌘ b2 �b 0
2 ⌘�3 (mod 7)

Since 0  x j,xk  5. it follows that there are two possibilities: either x j = 3 and xk = 4 or

x j = 4 and xk = 3.

Next, we want to show that we can determine the positions of the two deleted bits. From

x0 = (5,5,3,4), the associated binary codeword is a 0 = (0,1,0,1). Since a 2CH(6,2,3),

we can decode a 0 to recover a = (0,0,1,0,1,1) (explained in Chapter 3). Thus the bits 0

and 1 were deleted from say positions 2 and 5 in a .

However, the problem is that we do not know which symbols (whether x j or xk) is

associated with which bits (0 or 1) in the associated binary codeword. The original codeword

could be

x1 = (5,3,5,3,4,4)

38

Or

x2 = (5,4,5,3,3,4)

since both x1,x2 2C2(6,6,(3,2). However, the number of codewords we can recover from

x0 is at most d!, which equals 2 in this case.

Therefore, to construct ĈT (q,n,(b1,b2, . . . ,bd)) from CT (q,n,(b1,b2, . . . ,bd)) so that

ĈT (q,n,(b1,b2, . . . ,bd)) is a d insertion/deletion error correcting codes, we apply the fol-

lowing purging process:

1. Choose any x = (x1,x2, . . . ,xn) 2 CT (q,n,(b1,b2, . . . ,bd)). For all possible combi-

nations of deleting d symbols from x, determine the set D = {x(1)n ,x(2)n , . . . ,x(s)
n },

where s  d!. D is called the decoding set. Purge all codewords in D from

CT (q,n,(b1,b2, . . . ,bd)) except x. Insert x into ĈT (n,q,b ,g).

2. Choose y = (y1,y2, . . . ,yn) 2CT (q,n,(b1,b2, . . . ,bd)) such that y is not equal to any

selected or purged codewords. Repeat the purging process for y as in Step 1.

3. Repeat Step 2 until there are no codewords left in CT (q,n,(b1,b2, . . . ,bd)) that can

be selected.

Theorem 2.27. [6]

The set ĈT (q,n,(b1,b2, . . . ,bd)) is an d insertion/deletion correcting code.

Example 2.28. From the previous example, suppose we select x1 = (5,3,5,3,4,4) 2

C2(6,6,(3,2)). Then observe that given that x2 = (5,4,5,3,3,4) 2 D, the decoding set for

x1. Thus, we purge x2 from C2(6,6,(3,2)) since we saw earlier that both x1 and x2 yield the

same deleted codeword x0. Repeating this purging process yield the codebook Ĉ2(6,6,(3,2))

capable of correcting 2 insertion/deletion errors.

39

Chapter 3

Decoding Algorithm for Helberg Codes

Deletion Decoding Algorithm

In this chapter, we present a linear Deletion Decoding Algorithm to decode deleted

Helberg codewords. The algorithm works very well for deletion errors but unfortunately,

it does not work for insertion errors. Therefore this algorithm is unable to correct both

insertion/deletion errors. Hence, as we will see in some lemmas and theorems, we intend to

ignore the insertion feature. We will focus on proving lemmas and theorems for deletion

codes only. Why does the algorithm work for deletion errors but not for insertion errors in

the same class of codes? We will discuss this in detail in Chapter 6.

Another thing we assume is that Helberg codes are synchronized. This means that we

know the beginning and ending of each codeword in the whole message we received.

Before we go into the details of the algorithm, let’s describe our problem first: We have

received a message containing codewords where some bits in the codewords were deleted.

We wish to recover the original message. The only available information for us is the deleted

codeword we received and the codebook it comes from, which in turn gives us the length of

codeword, the residue, and the modulus.

The idea of this algorithm is very simple: We add some bits to the deleted codeword to

try to get back the original codeword.

Define:

• The binary codeword x with fixed length n: x = (x1,x2,x3, . . . ,xn).

• The deleted codeword x0 with d deleted bits: x0 = (x01,x
0
2,x

0
3, . . . ,x

0
n�d).

• Let x̃ be our initial decoding for x0 where we insert d variable symbols d1, . . . ,dd at

the right most position: x̃ = (x01,x
0
2,x

0
3, . . . ,x

0
n�d,d1,d2, . . . ,dd).

40

• vi is the weight of xi at position i.

• The original moment: Mx =
n

Â
i=1

vixi.

• The deleted moment: Mx0 =
n

Â
i=1

vix0i.

• The modolus: m = vn+1.

• The residue: r =
n

Â
i=1

vixi mod vn+1.

• The index: I = Mx �Mx0 .

The Deletion Decoding Algorithm is a technique of tracking the difference between the

moment of the original codeword and the deleted codeword. Therefore it requires knowing

the moment of the original codeword without knowing the value of each bit in it. The

following lemmas will allow us to determine Mx from Mx0 .

Lemma 3.1 ([5]). For d � 2,

n

Â
i=1

vi =

d�1

Â
i=0

(d � i)vn�i �n

d �1
.

Lemma 3.2 ([5]). For d � 2,

n

Â
i=1

vi <
d

d �1
vn+1 �1.

Lemma 3.3. If Mx0 > r, then Mx = r+m. Otherwise, if Mx0 < r, then Mx = r.

Proof. By definition,

Mx =
n

Â
i=1

vi <
d

d �1
vn+1 �1,

where the inequality follows from Lemma 3.2.

41

Since d � 2, this implies

d � 2

2d �d � 2

2(d �1)� d

2 � d
d �1

.

Therefore,

Mx <
d

d �1
vn+1 �1

< 2vn+1 �1

< 2m.

Recall that Mx ⌘ r (mod m), therefore Mx = r+ tm where t = 0,1,2,

Since Mx < 2m, this implies Mx = r or Mx = r+m. We consider two cases:

• Case I: Mx0 > r. Since Mx > Mx0 > r, therefore Mx = r+m.

• Case II: Mx0 < r, then Mx = r or Mx = r+m.

Suppose Mx = r+m. By definition, we have:

vn = 1+
d

Â
j=1

vn� j.

Let Dx is the maximum change in the moment from Mx to Mx0 . We have

Dx =
d

Â
j=1

vn� j < vn < vn+1 = m

We calculate the deleted moment as follow:

Mx0 = Mx �Dx

= r+m�Dx > r

42

since m > Dx. But this is a contradiction since Mx0 is supposed to be less than r.

Hence, Mx = r.

Therefore, if Mx0 > r, then Mx = r+m; otherwise, if Mx0 < r, then Mx = m.

The Deletion Decoding Algorithm works as follow: We assume the deleted elements are

at the right end and try to insert values for those positions. If these positions are not correct,

then shift the symbols to the left. Hence, with one deletion error, this algorithm basically

performs an exhaustive search. But with two or more errors, this algorithm will require less

work (compare to exhaustive search) as the following sections will illustrate.

One Deletion Method

Suppose we have a deleted codeword with length n�1. A bit xi at position i has the

corresponding weight vi. Initialize p = n. Assume the deleted element is at the right end,

i.e., position p, denoted as d . We have:

x0 = (x01,x
0
2,x

0
3, . . . ,x

0
p�1).

ex = (x01,x
0
2,x

0
3, . . . ,x

0
p�1,d).

We adjust the deleted codeword moment by inserting a value or shifting this deleted

element to the left using following conditions:

Algorithm D1 (Decode One Deletion).

1. If I = 0, then insert 0 for d , stop.

2. If I = vp, then insert 1 for d , stop.

3. Otherwise, we shift x0p�1 to the right of d , and update the index so that

I = I � x0p�1 · (vp � vp�1). Repeat through steps 1 to 3.

Since this algorithm is essentially an exhaustive search, it will correctly decode x0.

43

Example 3.4. Assume our codebook C ⇢CH(8,2,25) is as follows:

C = {(0,1,1,1,1,0,0,0), (1,0,1,0,0,1,0,0),

(0,1,1,0,0,1,1,1), (1,1,1,1,1,0,1,1)}.

Suppose we receive a word x0 where one bit has been deleted from x

x0 = (1,1,1,1,0,1,1).

We wish to decode x0 to recover x.

Even though this involves only one deletion error, our code is capable of correcting up

to two errors. Hence, we shall apply the weight from Table 3.

The modulus is

m = vn+1 = 88.

The residue is given as:

r = 25.

The deleted moment is

Mx0 =
n�1

Â
i=1

vix0i

= 1 ·1+2 ·1+4 ·1+7 ·1+12 ·0+20 ·1+33 ·1

= 67.

Since Mx0 > r, we follow Lemma 3.3 and calculate the original moment as follows:

Mx = m+ r

= 88+25

= 113.

44

Therefore the index is

I = 113�67 = 46.

Assume the deleted element is at the right end so that our initial decoding is

x̃ = (1,1,1,1,0,1,1,d).

Since I 6= 0 and I 6= 54 we shift d to the left one position as follows:

x̃ = (1,1,1,1,0,1,d ,1).

We update the index as follows:

I = 46� (54�33) = 25.

Since I 6= 0 and I 6= 33 we shift d again so that

x̃ = (1,1,1,1,0,d ,1,1).

We update the index so that

I = 25� (33�20) = 12.

Since I 6= 0 and I 6= 20 we shift d yet again to get

x̃ = (1,1,1,1,d ,0,1,1).

Notice that by shifting d to the left one position is the same as shifting 0 (bit at the firth

45

position) to the right. But by shifting 0, the index does not change, namely

I = 12.

Since I 6= 0 but I = 12 = v5, we insert d = 1 at position 5. Thus the original codeword is

x̃ = (1,1,1,1,1,0,1,1) = x.

The Deletion Decoding Algorithm with one deletion error is simply an exhaustive search.

It is not efficient but this algorithm improve when more than one error occurs as the next

section will demonstrate.

Two Deletions Method

Suppose we have a deleted codeword with length n�2. Assume our 2 deleted bits are

at the right end, represented by d1 and d2. Initialize p = n, so that we have:

x0 = (x01,x
0
2,x

0
3, . . . ,x

0
p�2).

ex = (x01,x
0
2,x

0
3, . . . ,x

0
p�2,d1,d2).

If the deleted elements are not in their correct positions, then we want to shift them to

the left as far as possible. Recall that we denote the deleted moment by Mx0 , the current

working codeword moment which contains d1 and d2 by Mx̃, and the original moment by

Mx. We are looking for values of d1 and d2 such that Mx̃ = Mx. We keep track of the index I

by subtracting from it the change in the weight after shifting or inserting a bit.

We determine the values of d1, d2, and their positions using the following algorithm:

Algorithm D2 (Decode Two Deletions). If

I = s1 · vp�1 +s2 · vp

46

for a set of values s1, s2 2 {0,1}, then d1,d2 are in their correct positions. To decode, let

d1 = s1,d2 = s2. Otherwise:

1. For x0p�2 = 0:

(a) If vp > I, then shift the last known bit x0p�2 to the right two positions and

decrement p.

(b) If vp < I, then insert d2 = 1. Update the index I = I � vp. Apply Algorithm D1.

2. For x0p�2 = 1:

(a) If vp > I:

i. If (vp � vp�2) I, then shift x0p�2 to the right two positions and decrement

p. Update the index I = I � (vp � vp�2).

ii. If (vp � vp�2)> I, then insert d2 = 0. Apply Algorithm D1.

(b) If vp < I, then shift x0p�2 to the right two positions and decrement p. Update the

index I = I � (vp � vp�2).

Proof. We have:

ex = (x01, x02, x03, . . . , x0p�2, d1, d2).

1. Suppose x0p�2 = 0. We consider two cases:

(a) vp > I. Either d2 is in the correct position or not. If d2 is in the correct position

then it has to be a 0; otherwise, if d2 = 1, then the moment of x̃ will exceed x,

regardless of the position and value of d1:

min(Mx̃) = Mx0 +d2 · vp

> Mx0 + I = Mx

47

But observe that inserting d2 = 0 is equivalent to shifting x0p�2 to the right of d2.

The other situation is that d2 is NOT in the correct position. This forces us to

shift x0p�2 to the right of d2.

(b) vp < I. We consider two situations regarding the position of d2 again. If d2 is

NOT in the correct position then we are forced to shift x0p�2 to the right of d2 so

that

x̃ = (x01,x
0
2,x

0
3, . . . ,x

0
p�3,d1,d2,0).

But then we are not able to shrink the index since

max(Mx̃) = Mx0 + vp�1 + vp�2

< Mx0 + vp

< Mx0 + I = Mx.

Hence, d2 is in the correct position. If d2 = 0, we cannot recover x since

max(Mx̃) = Mx0 +Md1

= Mx0 + vp�1

< Mx0 + I = Mx.

Therefore, d2 has to be a 1.

2. Suppose x0p�2 = 1. We consider two cases:

(a) vp > I. We consider two sub-cases:

i. I � (vp�vp�2). Suppose d2 is in the correct position. If d2 = 1, the increase

in the moment for x̃ will exceed the index since vp > I. If d2 = 0, the we

48

will not able to shrink the index since

max(Mx̃) = Mx0 + vp�1

< Mx0 +(vp � vp�2)

< Mx0 + I = Mx.

Therefore, d2 is NOT in the correct position and we are forced to shift x0p�2

to the right of d2.

ii. I < (vp � vp�2). Assume d2 is NOT in the correct position, therefore we

are forced to shift x0p�2 to the right of d2 so that

Mx̃ = Mx0 +(vp � vp�2)

> Mx0 + I = Mx.

The increase in the moment for x̃ exceeds the index. Therefore, d2 is in the

correct position. d2 cannot be 1 since vp > I. Hence, d2 has to be 0.

(b) vp < I. There are two situations regard the position of d2. If d2 is in the correct

position, then it has to be 1. Otherwise; if d2 = 0, then we will not able to correct

the index since
max(Mx̃) = Mx0 + vp�1

< Mx0 + vp

< Mx0 + I = Mx.

But observe that inserting d2 = 1 is equivalent to shifting x0p�2 to the right of d2.

The other situation is that d2 is NOT in the correct position then we are forced to

shift x0p�2 to the right of d2.

49

Example 3.5. Assume our code C ⇢ CH(10,2,62) is as follows:

C = {(0,1,0,1,0,1,1,0,0,0),(1,0,0,1,0,0,0,1,0,0),

(1,1,0,1,0,1,1,0,1,1),(0,1,0,1,0,0,0,1,1,1)}.

Suppose we have received the codeword x0 where 2 bits have been deleted from x:

x0 = (1,1,0,1,0,1,0,1).

We wish to decode x0 to recover x.

Since the length of x0 is 8 and x 2 CH(10,2,62), we know two deletion errors have

occurred. We shall apply the weights in Table 3.

The modulus is

m = vn+1 = 232.

The residue is given as:

r = 62.

The deleted moment is

Mx0 =
n�2

Â
i=1

vix0i

= 1 ·1+2 ·1+4 ·0+7 ·1+12 ·0+20 ·1+33 ·0+54 ·1

= 84.

Since Mx0 > r, we follow Lemma 3.3 and calculate the original moment as follows:

Mx = m+ r

= 232+62

= 294.

50

The index is

I = 294�84 = 210.

Assume the deleted elements are at the right end and are represented by d1 and d2. We

have

x̃ = (1,1,0,1,0,1,0,1,d1,d2).

Since x0p�2 = x08 = 1, vn = 143 < I = 210. We follow case 2(b) and shift x0p�2 two

positions to the right, p = p�1 = 9. We update the index: I = 210� (143�54) = 121, so

x̃ = (1,1,0,1,0,1,0,d1,d2,1).

Now we have x0p�2 = x07 = 0, v9 = 88 < I = 121. We follow case 1(b) and insert d2 = 1

at position 9. We update the index: I = I � v9 = 121�88 = 33, so

x̃ = (1,1,0,1,0,1,0,d1,1,1).

Now we apply Algorithm D1 to determine d1.

Since I 6= 0 and I 6= 54, we shift d1 and update I = 33, so x̃ becomes

x̃ = (1,1,0,1,0,1,d1,0,1,1).

Since I 6= 0 but I = 33 = v7, we insert d1 = 1 at position 7.

Thus the original codeword is

x = (1,1,0,1,0,1,1,0,1,1).

As we have just shown, our algorithm decodes errors one by one. As a comparison, for

51

a codeword of length n, the complexity of exhaustive search for 2 deletions is

✓
n
2

◆
=

n(n�1)
2

⇠ O(n2).

More generally, the complexity of exhaustive search for d deletions is equal to the number

of ways of choosing two positions out of n:

✓
n
d

◆
=

n!
d!(n�d)!

⇠ O(nd),

whereas for the Deletion Decoding Algorithm, the complexity is still of order n:

n ⇠ O(n).

Multiple Deletions Method

Let d be the number of deletions. Suppose we have a deleted codeword with length

n�d. We assume the deleted bits are at the right end, represented by di’s. Initialize p = n.

We have
x0 = (x01,x

0
2,x

0
3, . . . ,x

0
p�d),

x̃ = (x01,x
0
2,x

0
3, . . . ,x

0
p�d,d1,d2, . . . ,dd�1,dd).

If the deleted elements are not in the correct positions, then we want to shift them to

the left. We determine the values of d1,d2, . . . ,dd , and their positions using the following

algorithm:

Algorithm DM (Decode Multiple Deletions). If

I = s1 · vp�d+1 +s2 · vp�d+2 + . . .+sd · vp

for a set of values s1, . . . ,sd 2 {0,1}, then d1, . . . ,dd are in the correct positions. To

decode, set d1 = s1, . . . ,dd = sd . Otherwise:

52

1. For x0p�d = 0 :

(a) If vp > I, then shift x0p�d to the right by d positions and decrement p.

(b) If vp < I, then insert dd = 1. Apply DM to decode d �1 errors.

2. For x0p�d = 1 :

(a) If vp > I:

i. If (vp�vp�d) I, then shift x0p�d to the right by d positions and decrement

p.

ii. If (vp � vp�d)> I, then insert dd = 0. Apply DM to decode d �1 errors.

(b) If vp < I, then shift x0p�d to the right by d positions and decrement p.

Proof. We will argue by contradiction, similar to the proof of the Two Deletions Method.

We have

x̃ = (x01,x
0
2,x

0
3, . . . ,x

0
p�d,d1,d2, . . . ,dd�1,dd).

1. If xp�d = 0. We consider two cases:

(a) vp > I. Either dd is in the correct position or not. If dd is in the correct position

then it has to be a 0; otherwise, the increase in the moment for x̃ will exceed the

index, regardless of the positions and values of d1, . . . ,dd�1:

min(Mx̃) = Mx0 + vp

> Mx0 + I = Mx.

But observe that inserting dd = 0 is equivalent to shifting x0p�d to the right of

dd . The other situation is dd is not in the correct position. This forces us to shift

x0p�d to the right of dd .

(b) vp < I. Assume dd is NOT in the correct position. This forces us to shift x0p�d to

the right of dd so that

53

x̃ = (x01,x
0
2, . . . ,x

0
p�d�1,d1,d2, . . . ,dd�1,dd,0).

Notice that Mx̃ is maximum when the other di’s are 1, and that

max(Mx̃) = Mx0 +(Md1 + . . .+Mdd)

= Mx0 +(vp�d + . . .+ vp�1)

< Mx0 + vp

< Mx0 + I = Mx.

so we are not able to shrink the index.

Thus dd must be in the correct position. If dd = 0, we will not able to shrink the

index since
max(Mx̃) = Mx0 +(Md1 + . . .+Mdd�1)

< Mx0 + vp

< Mx0 + I = Mx.

Therefore, dd is in the correct position and it has to be 1.

2. If xp�d = 1. We consider two cases:

(a) vp > I. We consider two sub-cases:

i. (vp � vp�d) I. Assume dd is in the correct position. dd cannot be 1 since

vp > I implies the increase in the moment of x̃ will exceed the index. So dd

has to be 0. But then we will not able to shrink the index since

max(Mx̃) = Mx0 +(Md1 + . . .+Mdd�1)

= Mx0 +(vp�d+1 + . . .+ vp�1)

< Mx0 +(vp � vp�d)

< Mx0 + I = Mx.

Therefore, dd is NOT in the correct position. We are forced to shift x0p�d to

54

the right of dd .

ii. (vp � vp�d) > I. Assume dd is NOT in the correct position. Then we are

forced to shift x0p�d to the right of dd so that

x̃ = (x01,x
0
2,x

0
3, . . . ,d1,d2, . . . ,dd�1,dd,1).

Then the change in moment of x̃ exceeds the index since

Mx̃ = Mx0 +(vp � vp�d)

> Mx0 + I = Mx.

Hence, dd is in the correct position. Now, dd cannot be 1 since vp > I.

Therefore, dd is in the correct position and it has to be 0.

(b) vp < I. We consider two situations regard the position of dd . If dd is in the

correct position then it has to be 1; for otherwise, we will not able to shrink the

index, regardless of the positions and values of d1, . . . ,dd�1:

max(Mx̃) = Mx0 +(Md1 + . . .+Mdd�1)

= Mx0 +(vp�d+1 + . . .+ vp�1)

< Mx0 + vp

< Mx0 + I = Mx

But observe that inserting dd = 1 is equivalent to shifting x0p�d to the right of dd .

The other situation is dd is NOT in the correct position, which forces us to shift

x0p�d to the right of dd .

Example 3.6. Assume our code C ⇢ CH(10,4,30) is as follows:

C = {(1,1,1,1,1,0,1,1,1,1), (0,0,0,0,0,1,1,1,1,1), (0,1,1,1,1,0,0,0,0,0)}.

55

Suppose we have received a codeword x0 where 4 bits have been deleted from x:

x0 = (1,1,1,0,0,0).

We wish to decode x0 to recover x.

Since the length of x0 is 6 and x 2 CH(10,4,30), four deletion errors (d = 4) have

occurred. The weight vi associated with d = 4 is given in following table:

Table 8

Weight vi for d = 4

i 1 2 3 4 5 6 7 8 9 10

vi 1 2 4 8 16 31 60 116 224 432

The modulus is

m = vn+1 = 833.

The residue is given as

r = 30.

The deleted moment is

Mx0 = 1 ·1+1 ·2+1 ·4+0 ·8+0 ·16+0 ·31

= 7.

Since Mx0 < r, Lemma 3.3 states that

Mx = r = 30.

56

The index is

I = 30�7 = 23.

Assume the deleted elements are at the right end and are represented by d ’s. We have:

x̃ = (1,1,1,0,0,0,d1,d2,d3,d4).

Since x0p�d = x06 = 0, vp = v10 = 432 > I = 23, we follow case 1(a) and shift x0p�d four

positions to the right, p = p�1 = 9. By shifting a zero, the index does not change.

x̃ = (1,1,1,0,0,d1,d2,d3,d4,0).

Similarly, x0p�d = x05 = 0, vp = v9 = 224 > I = 23, case 1(a) suggests we shift x0p�d four

positions to the right, p = p�1 = 8. By shifting a zero, the index does not change.

x̃ = (1,1,1,0,d1,d2,d3,d4,0,0).

Again, x0p�d = x04 = 0, vp = v8 = 116 > I = 23, we follow case 1(a) and shift x0p�d four

positions to the right, p = p�1 = 7. By shifting a zero, the index does not change.

x̃ = (1,1,1,d1,d2,d3,d4,0,0,0).

We have x0p�d = x03 = 1, vp = v7 = 60 > I = 23. Also (vp � vp�d) = 60�8 = 52 > I,

case 2(a)(ii) suggests us to insert dd = d4 = 0, p = p�1 = 6. By inserting a zero, the index

does not change. We update the number of deletions: d = d �1 = 3.

x̃ = (1,1,1,d1,d2,d3,0,0,0,0).

Since x0p�d = x03 = 1, vp = v6 = 31 > I = 23. Also (v6 � v3) = (31�4) = 27 > I = 23,

57

we follow 2(a)(ii) and insert dd = d3 = 0, p = p�1 = 5. By inserting a zero, the index does

not change. We update the number of deletions: d = d �1 = 2.

x̃ = (1,1,1,d1,d2,0,0,0,0,0).

And x0p�d = x03 = 1, vp = v5 = 16 < I = 23, we follow case 2(b) and shift x0p�d two

positiosa to the right, p = p�1 = 4. We update the index: I = I � (v5 � v3) = I �12 = 11.

x̃ = (1,1,d1,d2,1,0,0,0,0,0).

Similarly, x0p�d = x02 = 1, vp = 8 < I = 11, case 2(b) tells us to shift x0p�d two positions

to the right, p = p�1 = 3. We update the index: I = I � (v4 � v2) = I �6 = 5.

x̃ = (1,d1,d2,1,1,0,0,0,0,0).

We have x0p�d = x01 = 1, vp = 4 < I = 5, we follow 2(b) and shift x0p�d two positions to the

right, p = p�1 = 2. We update the index: I = I � (v3 � v1) = I �3 = 2.

x̃ = (d1,d2,1,1,1,0,0,0,0,0).

Now, we see that vp = v2 = 2 = I, therefore d2 = 1, d1 = 0. We have obtained the

original codeword.

x̃ = (0,1,1,1,1,0,0,0,0,0) = x.

58

Chapter 4

Generalization of Helberg Codes

Non-Binary Helberg Codes

Let A = (0,1, . . . ,q�1) be a q-ary alphabet and x = (x1,x2, . . . ,xn) 2 An a codeword of

length n. Following [1], we define the sequence of weights W (q,d) = w1,w2, . . . as:

wi =

8
>>><

>>>:

0, for i  0

1+ p
d

Â
j=1

wi� j, otherwise
(4.1)

where d is the number of errors, r is the residue, p = q�1. Then the non-binary generaliza-

tion of Helberg codes is given by:

Cn(q,d,m,r) =

(
x 2 An :

n

Â
i=1

wixi ⌘ r (mod m)

)
, m � (wn+1). (4.2)

For d = 3 and q = 3:

w�2 = 0.

w�1 = 0.

w0 = 0.

w1 = 1+2 · (w0 +w�1 +w�2) = 1+2 · (0+0+0) = 1.

w2 = 1+2 · (w1 +w0 +w�1) = 1+2 · (1+0+0) = 3.

w3 = 1+2 · (w2 +w1 +w0) = 1+2 · (3+1+0) = 9.
...

59

Table 9

Weight wi for d = 3, q = 3

i 1 2 3 4 5 6 7 8 9 10

wi 1 3 9 27 79 231 675 1971 5755 16803

Example 4.1. Suppose we have a quaternary codeword that can correct 3 deletions:

y = (0,1,3,0,2,1,0).

Since it is quaternary and can correct up to 3 deletions, we compute its moment using

weight wi from Table 9. So

n

Â
i=1

wixi = 1 ·0+3 ·1+9 ·3+27 ·0+79 ·2+231 ·1+675 ·0

= 419 ⌘ 419 (mod 1971).

therefore

y 2C7(3,3,w8,419).

Proof of Multiple Errors Correction

By adapting the argument in [10], we prove that Cn(q,d,m,r) is a d-deletions/insertions

error correcting code. Recall that the moment of the codeword x = (x1,x2, . . . ,xn) of length

n is defined as Mx = Ân
i=1 wixi. Let D be a nonempty subset of S(n) = {1,2, . . . ,n}. We

define x(D) = (xi1 ,xi2 , . . . ,xin0) to be a deleted codeword obtained by deleting the element

of x indexed by D where S0 = S(n)�D = {i1, i2, . . . , in0}. Given two codeword x and y, we

write x ⌘ y if and only if Mx ⌘ My. If we define D(x,y) = Mx�My, then x ⌘ y is equivalent

to D(x,y)⌘ 0 (mod m). The index with respect to x is I = Mx �Mx(D) . Set n0 = n� |D|.

60

We start with the following lemma, which allows us to replace the rightmost nonzero

bit with the value of 0 in any two codewords that are equivalent and have the same deleted

codeword.

Lemma 4.2. Let x and y be two codewords of length n such that x ⌘ y and x(D) = y(E)

for some subset D and E of {1,2, . . . ,n} with |D|= |E| d. Suppose there exists a positive

index L such that xL = yL > 0 and xi = yi = 0 for all i > L. Then there exist codewords x̃

and ỹ where x̃i = xi, ỹi = yi for all i 6= L and x̃L = ỹL = 0 such that x̃ ⌘ ỹ and x̃(D̃) = ỹ(Ẽ)

for some sets D̃ and Ẽ having the same size as D and E.

Proof. Since xi � yi = x̃i � ỹi for all i = 1,2, . . . ,n so that Mx �My = Mx̃ �Mỹ. But

x ⌘ y, hence x̃ ⌘ ỹ. To complete the proof, we consider 4 cases:

Case I: Assume L 2 D\E. The non-zero bit at the position L is deleted from x and y

to obtain x(D) and y(E). Define D = D̃ and E = Ẽ. The zero bits x̃L and ỹL are also deleted

from x̃ and ỹ, respectively. Since x(D) = y(E), it implies x̃(D̃) = ỹ(Ẽ).

Case II: Assume L /2 D[E. In this case, the bit at position L appear in x(D) and y(E) as

the right most non-zero bit, respectively since x(D) = y(E) . But then xL and yL are replaced

by x̃L and ỹL, respectively. Therefore x̃(D̃) = ỹ(Ẽ) given that D = D̃ and E = Ẽ.

Case III: Assume L 2 D\E. In this case, the bit at position L is deleted from x to obtain

x(D), but it is not deleted from y therefore it appears in y(E). Let z denotes the number of bits

to the right of yL in y(E) which all be 0 since yi = 0 for i > L. Number of bits to the right of

yL that are deleted from y to obtain y(E) equal z0 = n�L� z. Let xK denotes the rightmost

nonzero bit of x(D). Since x(D) = y(E), implies xK = xL = yL and the number of zeros to the

right of xK in x(D) is also equal z. Hence, the number of bits to the right of xK that are deleted

from x to obtain x(D) equals n�K � z. Let D0 = {K,K + 1, ...,L� 1,L+ 1, ...,L+ z0}. It

follows that x(D0) = x(D) with |D0|= |D|. Since L /2 D0 [E, the result follows from case II

where D is replaced by D0.

Case IV: Assume L 2 E \D. This case is similar to case III.

61

Theorem 4.3. Let x and y be two codewords of length n such that x ⌘ y and x(D) = y(E)

for some subset D and E of {1,2, . . . ,n} with |D|= |E| d. Then

0 < |D(x,y)|< m.

Proof. As proved in [9], we first prove that |D(x,y)|< m as follow:

D(x,y) = Mx �My

= Â
i2D

wixi � Â
j2E

w jy j +
n0

Â
k=1

(wik �w jk)xik

 Â
i2D

wixi + Â
k2S(n0)
ik jk

(wik �w jk)xik + Â
k2S(n0)
ik> jk

(wik �w jk)xik

 Â
i2D

wixi + Â
k2S(n0)
ik> jk

(wik �w jk)xik

 Â
i2D

pwi + Â
k2S(n0)
ik> jk

p(wik �w jk)

= Â
i2D

pwi + Â
k2S(n0)
ik> jk

pwik � Â
k2S(n0)
ik> jk

pw jk

62

Hence:

D(x,y) Â
i2D

pwi + Â
k2S(n0)
ik> jk

pwik + Â
k2S(n0)
ik jk

pwik � Â
k2S(n0)
ik jk

pwik � Â
k2S(n0)
ik> jk

pw jk

=
n

Â
i=1

pwi �
n0

Â
k=1

pwmin(wik ,w jk)


n

Â
i=1

pwi �
n0

Â
k=1

pwk


n

Â
i=n0+1

pwi

=
n�n0

Â
j=1

pwn+1� j

 p
d

Â
j=1

wn+1� j

= wn+1 �1

 m�1

< m.

By symmetry, it also follows that R(x,y) = My �Mx < m. Hence:

|D(x,y)|< m.

Next, we will prove that |D(x,y)|> 0 by considering 4 different cases. By Lemma 4.2.1

we can assume without loss of generality that there exists L 2 {1,2, . . . ,n} such that xL > yL

and xi = yi = 0 for all i > L.

Case I: Assume L 2 D\E. Then ik 6= L for all k = 1,2, . . . ,n0. It follows that:

63

D(x,y) = Mx �My = Â
i2D

wixi � Â
j2E

w jy j +
n0

Â
k=1

(wik �w jk)xik

= wLxL + Â
i2D

iL�1

wixi �wLyL � Â
j2E

jL�1

w jy j +
n0

Â
k=1

(wik �w jk)xik

� wL(xL � yL)� Â
j2E

jL�1

w jy j + Â
k2S(n0)
ik< jk

(wik �w jk)xik + Â
k2S(n0)
ik� jk

(wik �w jk)xik

� wL � Â
j2E

jL�1

w jy j + Â
k2S(n0)

ik< jk,ikL�1

(wik �w jk)xik

where ik 6= L and xik = 0 if ik > L. Since xik  p, we have:

D(x,y)� wL � Â
j2E

jL�1

pw j + Â
k2S(n0)

ik< jk,ikL�1

p(wik �w jk)

= wL � Â
j2E

jL�1

pw j + Â
k2S(n0)

ik< jk,ikL�1

pwik � Â
k2S(n0)

ik< jk,ikL�1

pw jk .

We now add and subtract as follow:

D(x,y)� wL � Â
j2E

jL�1

pw j + Â
k2S(n0)

ik< jk,ikL�1

pwik � Â
k2S(n0)

ik< jk,ikL�1

pw jk

+ Â
k2S(n0)

ik� jk,ikL�1

pwik � Â
k2S(n0)

ik� jk,ikL�1

pw jk

� wL �
L�1

Â
j=1

pw j + Â
k2S(n0)

ik< jk,ikL�1

pwik + Â
k2S(n0)

ik� jk,ikL�1

pw jk

= wL �
L�1

Â
j=1

pw j + Â
k2S(n0)

ik< jk,ikL�1

pwmin(ik, jk)

� wL �
L�1

Â
j=1

pw j +
min(n0,L�1)

Â
k=1

pwk.

64

Since k  min(ik, jk), we have:

D(x,y) = wL �
L�1

Â
i=min(n0,L�1)

pwi

 wL �
L�1

Â
i=L�d

pwi

= 1

since L�d  min(n0,L�1) where L  n = n0+d and d � 1.

Case II: Assume L 2 D\E. Recall that xL > yL and xi = yi = 0 for i > L. We have:

D(x,y) = Mx �My

= Â
i2D

wixi � Â
j2E

w jy j +
n0

Â
k=1

(wik �w jk)xik

= wLxL + Â
i2D

iL�1

wixi � Â
j2E

jL�1

w jy j +
n0

Â
k=1

(wik �w jk)xik .

We again partition S(n0) into those elements k such that ik < jk and ik � jk to obtain

D(x,y)� wLxL � Â
j2E

jL�1

w jy j + Â
k2S(n0)
ik< jk

(wik �w jk)xik + Â
k2S(n0)
ik� jk

(wik �w jk)xik

� wlxL � Â
j2E

jL�1

w jy j + Â
k2S(n0)
ik< jk

(wik �w jk)xik

� wL � Â
j2E

jL�1

w jy j + Â
k2S(n0)

ik< jk,ikL�1

(wik �w jk)xik .

Now, using the same reasoning as in Case I, D(x,y)� 1.

Case III: Assume L 2 E \D. The argument in this case is the same as in Case II, through

switching the roles of D and E.

Case IV: Assume L /2 D[E. Then iK = L for some iK 2 S0. We claim that jK  iK �1.

65

Since x(D) = y(E), it follows that xiK = yiK . On the other hand, we have yiK < xiK and yi = 0

for all i � L = iK . Therefore jK  iK �1.

We now proceed as previously:

D(x,y) = Mx �My

= Â
i2D

wixi � Â
j2E

w jy j +
n0

Â
k=1

(wik �w jk)xik

= Â
i2D

wixi � Â
j2E

w jy j +
n0

Â
k=1

(wik �w jk)xik

= Â
i2D

iL�1

wixi � Â
j2E

jL�1

w jy j +
n0

Â
k=1

(wik �w jk)xik

�� Â
j2E

jL�1

w jy j + Â
k2S(n0)
ik< jk

(wik �w jk)xik + Â
k2S(n0)
ik� jk

(wik �w jk)xik

�� Â
j2E

jL�1

w jy j + Â
k2S(n0)

ik< jk,ikL�1

(wik �w jk)xik +(wiK �wiK)xiK .

Since xi  p, we have:

D(x,y)� wL � pw jK � Â
j2E

jL�1

pw j + Â
k2S(n0)

ik< jk,ikL�1

p(wik �w jk)

= wL � pw jK � Â
i2E

jL�1

pw j + Â
k2S(n0)

ik< jk,ikL�1

pwik � Â
k2S(n0)

ik< jk,ikL�1

pw jk

= wL � pw jK � Â
i2E

jL�1

pw j + Â
k2S(n0)

ik< jk,ikL�1

pwik � Â
k2S(n0)

ik< jk,ikL�1

pw jk

+ Â
k2S(n0)

ik� jk,ikL�1

pw jk � Â
k2S(n0)

ik� jk,ikL�1

pw jk

= wL �
L�1

Â
j=1

pw j + Â
k2S(n0)

ik< jk,ikL�1

pwik + Â
k2S(n0)

ik� jk,ikL�1

pw jk .

66

The rest of the proof is the same as that in Case I. Therefore, D(x,y)� 1. Hence:

0 < |D(x,y)|< m

as desired.

Theorem 4.4. The code Cn(q,d,m,r) is a d-deletion/insertion correcting code.

Proof. Assume that Cn(q,d,m,r) is not capable of correcting up to d deletions. Then

there exist at least two codewords x,y2Cn(q,d,m,r) and subsets D and E with |D|= |E| d

such that x(D) = y(E). By Theorem 4.2.2, we have 0 < |D(x,y)|< m, which means x 6⌘ y,

a contradiction since x and y are from the same codebook. Thus, Cn(q,d,m,r) is capable

of correcting up to d deletions. So, due to result of Leveinstein [15], it can correct up to d

insertion/deletion errors as well.

Example 4.5. By brute force, we generated all possible codewords of length 8 of

generalized Helberg codes with 4 symbols, following formula (4.1) with d = 3. We then

assigned each codeword to different codebooks using formula (4.2) above. As result, the

codebook with residue r = 506 contains:

C8(4,3,61705,506) = {(1,3,3,3,1,0,0,0),(0,0,0,0,2,0,0,0),

(2,3,3,3,1,3,3,3),(1,0,0,0,2,3,3,3)}

where m = w9 = 61705 is the modulus. These codewords are able to correct up to 3

insertion/deletion errors. We will use one of these codewords in the next example to

demonstrate some properties of non-binary Helberg codes.

Properties of Non-binary Helberg Codes

Useful lemmas. The following lemmas will allows us to determine the moment of the

original codeword based on the residues and the moment of the deleted codeword. Recall

67

that wi is the weight of non-binary Helberg codes at position i.

Lemma 4.6. For d � 2,

n

Â
i=1

wi =

p
✓

d�1
Â

i=0
(d � i)wn�i

◆
�n

pd �1
.

Proof. We use induction to prove this lemma as follows:

For n = 1. Since w1 = 1 for all s � 2, we have:

w1 =
p(d(w1)+(d �1)w0 +(d �2)w�1 + · · ·)�1

pd �1

=
pdw1 �1

pd �1

=
pd �1
pd �1

= 1,

where the second equality follows Equation (4.1), and the last equality follows from the fact

that

w1 = 1.

The statement holds for n = 1. Assume that it holds for n, i.e.,

n

Â
i=1

wi =

p
✓

d�1
Â

i=0
(d � i)wn�i

◆
�n

pd �1
.

68

Then for n+1, we have:

n+1

Â
i=1

wi =
n

Â
i=1

wi +wn+1

=

p
✓

d�1
Â

i=0
(d � i)wn�i

◆
�n

pd �1
+wn+1

=

p
✓

d�1
Â

i=0
(d � i)wn�i

◆
�n

pd �1
+

pd(wn+1)�wn+1

pd �1

=

p
✓

d�1
Â

i=0
(d � i)wn�i

◆
�n

pd �1
+

pd(wn+1)�
✓

1+ p
d
Â

i=1
wn+1�i

◆

pd �1

=

pd(wn+1)� (n+1)+ p
✓

d�1
Â

i=0
(d � i)wn�i

◆
� p

✓
d
Â

i=1
wn+1�i

◆

pd �1

=

pd(wn+1)� (n+1)+ p
✓

d�1
Â

i=0
(d � i�1)wn�i

◆

pd �1

=

p
✓

d�1
Â

i=0
(d � i�1)wn�i +dwn+1

◆
� (n+1)

pd �1

=

p
✓

d�1
Â

i=0
(d � i)wn+1�i

◆
� (n+1)

pd �1
.

Lemma 4.7. For d � 2,

n

Â
i=0

wi <
d

pd �1
wn+1.

Proof. Following the previous lemma:

69

n

Â
i=1

wi =

p
✓

d�1
Â

i=0
(d � i)wn�i

◆
�n

pd �1


p
✓

d�1
Â

i=0
dwn�i

◆
�n

pd �1

=

pd
✓

d�1
Â

i=0
wn�i

◆
�n

pd �1

=
d (wn+1 �1)�n

pd �1

<
d

pd �1
wn+1.

Lemma 4.8. If Mx0 > r, then Mx = r+m . Otherwise, if Mx0 < r, then Mx = r (Given

that r is the residue and m is the modulus.)

Proof. By definition,

Mx = p
n

Â
i=1

wi <
pd

pd �1
wn+1

where the inequality follows from the previous lemma.

Since d � 2, p � 2 implies

pd � 2

2pd � pd � 2

2pd �2 � pd

2 � pd
pd �1

.

It follows that

Mx <
pd

pd �1
wn+1  2wn+1

70

which is the same as saying

Mx < 2m.

Recall that Mx ⌘ r (mod m), therefore Mx = r+ tm where t = 0,1,2,

Since Mx < 2m, implies Mx = r or Mx = r+m. We consider two cases:

• Case I: Mx0 > r. Since Mx > Mx0 > r, therefore Mx = r+m.

• Case II: Mx0 < r, then Mx = r or Mx = r+m.

Suppose Mx = r+m. But by definition, we have:

wn = 1+ p
d

Â
j=1

wn� j

Let Dx be the maximum change in the moment from Mx to Mx0 so that

Dx = p
d

Â
j=1

wn� j

< wn

< wn+1 = m.

The deleted moment is given as follows:

Mx0 = Mx �Dx

= r+m�Dx > r

since m > Dx. But this is a contradiction since Mx0 is supposed to be less than r.

Therefore Mx = r.

This completes the proof.

Example 4.9. Let x = (2,3,3,3,1,3,3,3), x 2C8(4,3,61705,506) as stated in the pre-

vious example. Let x0 be what remains after deleting the first and last bits of x. Let’s assume

71

we received a codeword x0 = (3,3,3,1,3,3), and pretend we do not know x but we know x0

comes from C8(4,3,61705,506) . What is the original moment Mx?

Since the length of x0 is 6 and it comes from a codebook with length 8, we know there

were deletion errors. This codebook is able to correct up to 3 deletions. The weights

associated with this code is given in Table 10.

Table 10

Weight wi for d = 3, q = 4

i 1 2 3 4 5 6 7 8 9 10

wi 1 4 16 64 253 1000 3952 15616 61705 243820

We have r = 506. Since n = 8, therefore m = wn+1 = w9 = 61705. The deleted moment

is

Mx0 =
n

Â
i=1

wix0i

= 1 ·3+4 ·3+16 ·3+64 ·1+253 ·3+1000 ·3

= 3886 ⌘ 3886 (mod 61705)

Since Mx0 > r, Lemma 4.8 suggests that

Mx = m+ r

= 61705+506

= 62211.

72

We can check the result by computing the moment of x as follows:

Mx =
n

Â
i=1

wixi

= 1 ·2+4 ·3+16 ·3+64 ·3+253 ·1+1000 ·3+3952 ·3+15616 ·3

= 62211.

Code cardinality. Recall that the size of the largest codebook in terms of code length is

defined by

Nn(q,d) = max{|Cn(q,d,wn+1,r)| : r = 0,1, . . . ,wn+1 �1}

We also denote Rn(q,d) to be the set contains values of r such that

|Cn(q,d,wn+1,r)|= Nn(q,d).

Table 11 and 12 give values for ternary 2-deletion Helberg codes and quaternary 2-deletion

Helberg codes, respectively.

73

Table 11

Ternary 2-deletion Helberg Codes: Values of Nn(3,2) and Rn(3,2)

n Nn(3,2) Rn(3,2)

1 1 0,1,2

2 1 0,1,2,3,4,5,6,7,8

3 2 0,1,2,3,4,5,6,7,25,26,50,51

4 2 0,1,2,3,4,5,6,7,25,26,50,51

5 3 0,25

6 4 25,50

7 4 24,25,50,69,70,71,72,73,74,75,94,119,138,139

140,141,142,143,144,163,188,189,542,567,1059,1084

8 5 24,25,49,50,69,70,71,73,73,74,188,189,213,214,377,

378, 402,403,517,518,519,520,521,522,541,542,566,567

9 7 541,542,566,567,1058,1059,1083,1084

10 8 517,518,519,520,521,541,542,566,567,1437,1482,

1483,1484,1485,1486,1487,1551,1552,1553,1554,1555,

1556,1601,2850,2895,2896,2897,2898,2899,2900,

2964,2965,2966,2967,2968,2969,3014,3884,3885,

3909,3910,3930,3931,3932,3933,3934

74

Table 12

Quaternary 2-deletion Helberg Codes: Values of Nn(4,2) and Rn(4,2)

n Nn(4,2) Rn(4,2)

1 1 0,1,2,3

2 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

3 2 0,1,2

4 2 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,61

62,63,122,123,124,183,184,185

5 3 0,1,61,62

6 4 61,62,122,123,183,184

7 5 61,880

8 6 61,122,183,880,941,1760,1821,2640,2701,3398,3459,3520

Since Nn(q,d) is the size of the largest codebook, the information rate of the largest

generalized Helberg non-binary code is defined by

In(q,d) =
logq Nn(q,d)

n
.

Table 13 gives the information rate for binary 2-deletion, binary 3-deletion, ternary

2-deletion, and quaternary 2-deletion Helberg codes. We have seen that binary Helberg

codes suffer from low cardinality. In this table, it is clear that generalized Helberg codes

have lower information rate than binary Helberg codes.

75

Table 13

Information Rate

n In(2,2) In(2,3) In(3,2) In(4,2)

4 0.25 0.25 0.158 0.125

5 0.2 0.2 0.2 0.158

6 0.264 0.167 0.210 0.167

7 0.286 0.143 0.180 0.166

8 0.290 0.198 0.183 0.162

9 0.287 0.222 0.197 -

10 0.3 0.2 0.189 -

11 0.288 0.211 - -

12 0.288 0.215 - -

13 0.300 - - -

14 0.298 - - -

15 0.297 - - -

16 0.307 - - -

Also notice that there is no known lower bound or upper bound for Helberg codes. There

are only known lower bounds and upper bounds for the largest possible codebook. Let

the asymptotic lower and upper bounds for the cardinality of the largest codebook that can

correct up to d deletions be denoted by Ln(q,d) and Un(q,d), respectively. We define

Ln(q,d) =
(d!)2qn+d

(q�1)2dn2d ,

Un(q,d) =
d!qn

(q�1)dnd ,

and let Mn(q,d) denote the size of the largest possible q-ary code of length n that can correct

76

up to d deletions. As in [16], Levenshtein proved that

Ln(q,d). Mn(q,d).Un(q,d)

as n ! •, where fn . gn is defined to be limn!• fn/gn = 1.

77

Chapter 5

Decoding Algorithm of Generalized Helberg Codes

We have seen how non-binary Helberg codes are able to correct multiple errors. The

natural question to ask is how to correct, or how to decode them. Our situation here is

that we have received an deleted codeword, which we assume to come from the codebook

Cn(q,d,m,r). The available information includes the moment of the deleted codeword Mx0 ,

the number of deletions d, and the residue r. We adapt the procedure we have applied to

binary Helberg codes. That is, we determine the moment of the original codeword Mx to

figure out the index I. Then, we assume the deleted symbols are at the right end and decide

whether to insert a value for the right most unknown symbol or to shift it to the left.

The first section will describe an algorithm to correct one deletion after which we will

provide a recursive algorithm to correct two or more deletions.

Decoding One Deletion

As we have seen in one deletion method for binary Helberg codes, the Deletion

Decoding Algorithm is essentially an exhaustive search. Let the original codeword is

denoted by x 2Cn(q,d,m,r) and the deleted codeword is denoted by x0 which obtained from

x by deleting one symbol. Assume the deleted element is at the right end, representative by

d . Initialize P = n, so that we have:

x0 = (x01,x
0
2,x

0
3, . . . ,x

0
P�1),

x̃ = (x01,x
0
2,x

0
3, . . . ,x

0
P�1,d).

We then try to recover the original codeword x so that Mx̃ = Mx by either inserting

a value for d or shifting it to the left of x0P�1. The decision is made by using following

conditions:

78

Algorithm DN1 (Decode Non-binary One Deletion). Define: s 2 {0, 1, . . . , p}

1. If I = 0, insert 0 for d , stop.

2. If I = s ·wP, insert s for d , stop.

3. Otherwise, we shift x0P�1 to the right of d , and update the index

I = I � x0P�1 · (wP �wP�1).

Repeat through steps 1 to 3.

Since this algorithm is an exhaustive search, it will correctly decode x0. In the following

example, we will assume that our codes come from codebook that capable of correcting

two errors, i.e., d = 2. Otherwise, if d = 1, then non-binary Tenengol’ts decoding should be

used.

Example 5.1. Suppose the ternary codeword x = (2,2,2,0,2,2,1,2) 2 C8(3,2,w9,24)

was used to transmit and x0 = (2,2,2,0,2,1,2) was received so that one deletion had

occurred. We want to decode x0 to recover x.

The weight corresponding to this codebook is defined as wi = 1+2 · (wi�1 +wi�2). The

first 10 weights are given in Table 14.

Table 14

Weight wi for d = 2, q = 3

i 1 2 3 4 5 6 7 8 9 10

wi 1 3 9 25 69 189 517 1413 3861 10549

The modulus is

w9 = 3861.

79

The residue is

r = 24.

The deleted moment is

Mx0 = Âwix0i

= 2 ·1+2 ·3+2 ·9+0 ·25+2 ·69+1 ·189+2 ·517

= 1387.

Since Mx0 > r, we follow Lemma 4.8 and calculate the original moment as follows:

Mx = m+ r

= 3861+24

= 3885.

Therefore the index is
I = 3885�1387

= 2498.

Assume the deleted element is at the right end. We have

x̃ = (2,2,2,0,2,1,2,d)

According to the Algorithm DN1, since I 6= s ·w8 for all s 2 {0,1,2}, we shift x07 = 2

to the right of d . We should update the position P ! P� 1 = 7, and update the index

I ! I � x07(w8 �w7) = 706.

x̃ = (2, 2, 2, 0, 2, 1, d , 2)

Similarly, since I 6= s ·w7 for all s 2 {0,1,2}, we shift x06 to the right of d . We update

80

P ! P�1 = 6, and we update I ! I � x06 · (w7 �w6) = 378. Then we have

x̃ = (2, 2, 2, 0, 2, d , 1, 2)

We now find that I = s ·w6 for s = 2. We set d = 2. The original codeword is

x̃ = (2, 2, 2, 0, 2, 2, 1, 2) = x

Decoding Two Deletions

Supposes x0 is obtained from x 2Cn(q,2,m,r) after deleting two symbols. Assume the

deleted symbols are at the right end, represented by d1 and d2. Initialize P = n, so that we

have
x0 = (x01,x

0
2,x

0
3, . . . ,x

0
P�2)

x̃ = (x01,x
0
2,x

0
3, . . . ,x

0
P�2,d1,d2)

We then try to insert a value for d2 and reduce it to one deletion algorithm DN1, or shift

x0P�2 to the right of d2. The following conditions describe when each action is executed:

Algorithm DN2 (Decoding Non-binary Two Deletions). If

I = s1 ·wP�1 +s2 ·wP

for a set of value s1, s2 2 {0,1, . . . , p}, then d1 and d2 are in their correct positions. To

decode, set d1 = s1, d2 = s2. Otherwise, we assume at least one of the d s is NOT in its

correct position. Define:

smax = max{s : s · (wP �wP�2)< I, s = 0,1, . . . , p}

Then:

1. For wP > I:

81

(a) If x0P�2 = 0, then shift x0P�2 to the right d2, update P ! P� 1. Repeat the

algorithm.

(b) If x0P�2 6= 1 and

i. I < (wP �wP�2), then insert d2 = 0 and apply Algorithm DN1.

ii. I � (wP �wP�2), then shift x0P�2 to the right of d2, update

I ! I � x0P�2 · (wP �wP�2),

and P ! P�1. Repeat the algorithm.

2. For wP < I:

(a) If x0P�2 > smax, then insert d2 = smax, update I ! I � smax ·wP, and apply

Algorithm DN1.

(b) If x0P�2 < smax and

i. smax ·wP  I, then insert d2 = smax, update I ! I �smax ·wP, and apply

Algorithm DN1.

ii. smax ·wP > I, then shift x0P�2 to the right of d2, update P ! P�1. Repeat

the algorithm.

(c) If x0P�2 = smax, then shift x0P�2 to the right of d2, update I ! I �smax ·wP and

P ! P�1. Repeat the algorithm.

Proof. We want to prove that the conditions 1. and 2. in DN2 give a correct decoding of

x0.

1. Suppose wP > I. We consider two cases:

(a) x0P�2 = 0. There are two situations whether d2 is in the correct position as the

right most deleted symbol or not. If d2 is in the correct position then it has to be

82

a 0; otherwise, if d2 � 1, then the moment of x̃ will exceed x, regardless of the

position and value of d1:

min(Mx̃) = Mx0 +d2 ·wP

> Mx0 + I = Mx

But observe that inserting d2 = 0 is equivalent to shifting x0P�2 to the right of d2.

The other situation is d2 is NOT in the correct position. This forces us to shift

x0p�2 to the right of d2.

(b) x0P�2 6= 0. We consider two sub-cases:

i. I < (wP �wP�2). Suppose d2 is NOT in the correct position, therefore we

are forced to shift x0P�2 to the right of d2. But then the increase in moment

of x̃ will exceed x:

min(Mx̃) = Mx0 + x0P�2 · (wP �wP�2)

> Mx0 + I = Mx

Hence, d2 is in the correct position, and d2 = 0 since wP > I.

ii. I � (wP �wP�2). Suppose d2 is in the correct position. Since wP > I, d2

has to be a 0 and so

x̃ = (x01, x02, . . . , x0P�2, d1, 0)

83

But then we will not albe to shrink the index:

max(Mx̃) = Mx0 + p ·wP�1

= Mx0 +wP � p ·wP�2 �1

< Mx0 +wP �wP�2

< Mx0 + I = Mx

Hence, d2 is NOT in the correct position. Therefore we are forced to shift

x0P�2 to the right of d2.

2. Suppose wP < I. First, we will prove that if d2 is in the correct position then d2 = smax.

Otherwise, we will not able to shrink the index:

If d2 = s < smax, then:

max(Mx̃) = Mx0 + p ·wP�1 +s ·wP

= Mx0 +(wP � p ·wP�2 �1)+s ·wP

= Mx0 +(s +1) ·wP � p ·wP�2 �1

< Mx0 +smax · (wP �wP�2)

< Mx0 + I = Mx

If d2 = s > smax, then:

min(Mx̃) = Mx0 +s ·wP

> Mx0 +s · (wP �wP�2)

� Mx0 + I = Mx

Next, we consider three cases:

(a) x0P�2 > smax. Suppose d2 is NOT in the correct position therefore we shift x0P�2

84

to the right of d2 and we will exceed the index:

min(Mx̃) = Mx0 + x0P�2 · (wP �wP�2)

> Mx0 + I = Mx.

Hence, d2 is in the correct position and as we proved previously, d2 = smax.

(b) x0P�2 < smax. Considering two sub-cases:

i. smax ·wP  I. Suppose d2 is NOT in the correct position therefore we shift

x0P�2 to the right of d2 and we will not able to shrink the index:

max(Mx̃) = Mx0 + p ·wP�1 + x0P�2 · (wP �wP�2)

= Mx0 +(wP � p ·wP�2 �1)+ x0P�2 · (wP �wP�2)

< Mx0 +(1+ x0P�2) ·wP

 Mx0 +smax ·wP

 Mx0 + I = Mx

Hence, d2 is in the correct position. Therefore, d2 = smax.

ii. smax ·wP > I. Suppose d2 is in the correct position, then as we have seen

above, d2 = smax, so that we will exceed the index:

min(Mx̃) = Mx0 +smax ·wP

> Mx0 + I = Mx

Hence, d2 is NOT in the correct position. We are forced to shift x0P�2 to the

right of d2.

(c) x0P�2 = smax. In this case, if d2 is in the correct position then d2 = smax. but

observe that this same result can be obtained by shifting x0P�2 to the right of d2.

Thus, we choose to shift instead. This completes the proof.

85

Example 5.2. Suppose the quaternary codedword x=(3,0,0,1,3,3,2,3)2 C8(4,2,w9,62)

was used to transmit and x0 = (3,0,0,3,3,3) was received so that two deletions had occurred.

We want to decode x0 to recover x.

The weight corresponding to this codebook is defined as wi = 1+3(wi�1 +wi�2). The

first 10 weights are given in Table 15.

Table 15

Weight wi for d = 2, q = 4

i 1 2 3 4 5 6 7 8 9 10

wi 1 4 16 61 232 880 3337 12652 47968 181861

The modulus is

m = wn+1 = w9 = 47968.

The residue is

r = 62.

The deleted moment is

Mx0 = Âwix0i

= 3 ·1+0 ·4+0 ·16+3 ·61+3 ·232+3 ·880

= 3522.

86

Since Mx0 > r, the Lemma 4.8 suggests the original moment is

Mx = m+ r

= 47968+62

= 48030

Therefore the index is
I = 48030�3522

= 44508

Assume the deleted symbols are at the right end. We have

x̃ = (3,0,0,3,3,3,d1,d2)

As w8 = 12652 < I, we compute smax = 3. Since x06 = 3 = smax, we follow case 2(c)

and shift x06 to the right of d2. We update the index I ! I � x06 · (w8 �w6) = 9192 so that

x̃ = (3, 0, 0, 3, 3, d1, d2, 3)

Next, as w7 = 3337 < I, we compute smax = 2. Since x05 = 3 > smax, case 2(a) suggests

us to insert d2 = smax = 2 and update the index I ! I �smax ·w7 = 2518. It yields

x̃ = (3, 0, 0, 3, 3, d1, 2, 3)

It remains to apply Algorithm DN1 on the truncated codeword x̃ = (3, 0, 0, 3, 3, d1)

with I = 2518 to determine d1. Following example 5.1.1, we find that d1 = 1 should be

insert at position 4. Hence, our final decoding codeword is

x̃ = (3, 0, 0, 1, 3, 3, 2, 3) = x

87

Decoding Multiple Deletions

Suppose we have a deleted generalized Helberg codeword with length n� d, where

d is integer. Assume our deleted symbols are at the right end, represented by d1, . . . ,dd .

Initialize P = n, so that we have:

x0 = (x01,x
0
2,x

0
3, . . . ,x

0
P�d).

x̃ = (x01,x
0
2,x

0
3, . . . ,x

0
P�d,dP�d+1,dP�d+2, . . . ,dP�1,dP).

Recall Mx, Mx0 , Mx̃ are the moment of original codeword, the deleted codeword, and

the current working codeword contains di’s, respectively. We determine the values of di’s

and their positions by using following conditions:

Algorithm DNM (Decoding Non-binary Multiple Deletions). If

I = s1 ·wP�d+1 +s2 ·wP�d+2 + . . .+sd�1 ·wP�1 +sd ·wP

for a set of value s1, . . . , sd 2 {0,1, . . . , p}, then dP�d+1, . . . ,dP are in their correct

positions. To decode, set dP�d+1 = s1, . . . ,dP = sd . Otherwise, we assume at least one of

the d s is NOT in its correct position. Define:

smax = max{s : s · (wP �wP�d)< I, s = 0, 1, 2, . . . , p}

Then:

1. For wP > I:

(a) If x0P�d = 0, then shift x0P�d to the right dP, update P ! P� 1. Repeat the

algorithm.

(b) If x0P�d 6= 0 and

i. I < (wP �wP�d), then insert dP = 0 and repeat the algorithm for d � 1

88

errors.

ii. I � (wP �wP�d), then shift x0P�d to the right of dP, update

I ! I � x0P�d · (wP �wP�d),

and P ! P�1. Repeat the algorithm.

2. For wP < I:

(a) If x0P�d > smax, then insert dP = smax, update I ! I �smax ·wP, and repeat the

algorithm for d �1 errors.

(b) If x0P�d < smax and

i. smax ·wP  I, then insert dP = smax, update I ! I �smax ·wP, and repeat

the algorithm for d �1 errors.

ii. smax ·wP > I, then shift x0P�d to the right of dP, update P ! P�1. Repeat

the algorithm.

(c) If x0P�d = smax, then shift x0P�d to the right of dP, update

I ! I �smax · (wP �wP�2),

and P ! P�1. Repeat the algorithm.

Proof. We will argue by contradiction, similar to the proof of the DM2 Algorithm.

1. Suppose wP > I. Let consider two cases:

(a) x0P�d = 0. There are two situations: First, we suppose that dP is in the correct

position, therefore dP = 0 since wP > I; otherwise, the moment increase in Mx̃

will exceed the index. But observe that inserting dP = 0 is equivalent to shifting

x0P�d to the right of dP. The other situation is dP is NOT in the correct position.

In this case, we are forced to shift x0P�d to the right of dP.

89

(b) x0P�d 6= 0. Let consider two sub-cases:

i. I < (wP�wP�d). Suppose dP is NOT in the correct position. We shift x0P�d

to the right of dP and we will exceed the index:

min(Mx̃) = Mx0 + x0P�d · (wP �wP�d)

> Mx0 + I = Mx.

Hence, dP is in the correct position, and dP = 0 since wP > I.

ii. I � (wP �wP�d). Suppose dP is in the correct position, therefore dP = 0

since wP > I.

x̃ = (x01, x02, . . . , x0P�d, dP�d+1, dP�d+2, . . . , dP�1, dP = 0).

Then we are not able to shrink the index:

max(Mx̃) = Mx0 + p · (wP�d+1 + . . .+wP�1)

= Mx0 +wP � p ·wP�d �1

< Mx0 +wP �wP�d

 Mx0 + I = Mx.

Hence, dP is NOT in the correct position. We are forced to shift x0P�d to the

right of dP.

2. Suppose wP < I. First, we prove that if dP is in its correct position, then dP = smax.

Otherwise, we will not able to shrink the index:

90

If dP = s < smax, then:

max(Mx̃) = Mx0 + p · (wP�1 + . . .+wP�d+1)+s ·wP

= Mx0 +(wP �wP�d �1)+s ·wP

= Mx0 +(s +1) ·wP � p ·wP�d �1

< Mx0 +smax · (wP �wP�d)

< Mx0 + I = Mx.

If dP = s > smax, then:

min(Mx̃) = Mx0 +s ·wP

> Mx0 +s · (wP �wP�d)

> Mx0 + I = Mx.

Next, we consider three cases:

(a) x0P�d > smax. Suppose dP is NOT in the correct position, therefore we shift x0P�d

to the right of dP. Observe that the change in moment of Mx̃ exceeds the index:

min(Mx̃) = Mx0 + x0P�d · (wP �wP�d)

> Mx0 + I = Mx.

Hence, dP is in the correct position and as we showed previously, dP = smax.

(b) x0P�d < smax. Considering two sub-cases:

i. smax ·wP  I. Assume that dP is NOT in the correct position. Therefore we

91

shift x0P�d to the right of dP. We will not able to shrink the index since:

max(Mx̃) = Mx0 + p · (wP�d+1 + . . .+wP�1)+ x0P�d · (wP �wP�d)

= Mx0 +(wP �wP�d �1)+ x0P�d · (wP �wP�d)

< Mx0 +(1+ x0P�d) ·wP

 Mx0 +smax ·wP

 Mx0 + I = Mx.

Hence, dP is in the correct position and dP = smax.

ii. smax ·wP > I. Assume dP is in the correct position. Hence, dP = smax. Then

we will exceed the index since:

min(Mx̃) = Mx0 +smax ·wP

> Mx0 + I = Mx.

Therefore dP is NOT in the correct position. We are foreced to shift x0P�d to

the right of dP.

(c) x0P�d = smax. In this case, inserting smax for dP is the same as shifting x0P�d to

the right of dP. Hence, we choose to shift instead. This complete the proof.

Example 5.3. Suppose the quaternary codeword x=(2,3,3,3,0,0,0,0)2 C8(4,3,w9,254)

was used to transmit and x0 = (3,3,0,0,0) was received so that three deletions had occurred.

We want to decode x0 to recover x.

The weigt corresponding to this codebook is defined as wi = 1+3(wi�1 +wi�2 +wi�3).

The first 10 weights are given in Table 16.

92

Table 16

Weight wi for d = 3, q = 4

i 1 2 3 4 5 6 7 8 9 10

wi 1 4 16 64 253 1000 3952 15616 61705 243820

The modulus is

m = wn+1 = w9 = 61705.

The residue is

r = 254.

The deleted moment is

Mx0 = Âwix0i = 3 ·1+3 ·4+0 ·16+0 ·64+0 ·253

= 15.

Since Mx0 < r, we follow Lemma 4.8 and calculate the original moment as follows:

Mx = r = 254.

Therefore the index is
I = 254�15

= 239.

Assume the deleted symbols are at the right end. We have

x̃ = (3,3,0,0,0,d1,d2,d3)

As w8 = 15616 > I, and x05 = 0, case 1(a) suggests us to shift x05 to the right of d3.

93

Notice that by shifting 0, the index does not change so that:

x̃ = (3, 3, 0, 0,d1, d2, d3, 0).

Next, w7 = 3952 > I, and x04 = 0, we follow case 1(a) again and shift x04 to the right of

d3:

x̃ = (3, 3, 0, d1, d2, d3, 0, 0).

Similarly, as w6 = 1000 > I, and x03 = 0, we shift x03 to the right of d3:

x̃ = (3, 3, d1, d2, d3, 0, 0, 0).

Next, as w5 = 253 > I, and x03 = 3 6= 0. We calculate w5 �w2 = 249. Since

I = 239 < (w5 �w2),

we follow case 1(b)(i) and insert d3 = 0 so that

x̃ = (3, 3, d1, d2, 0, 0, 0, 0).

From here, applying DNM for 2 deletions which is the same as DN2. As w4 = 64 < I,

we calculate smax = 3. Since x02 = 3 = smax, case 2(c) suggests us to shift x02 to the right of

d2 and update I ! I �smax(w4 �w2) = 59.

x̃ = (3, d1, d2, 3, 0, 0, 0, 0).

Next, as w3 = 16 < I, we compute smax = 3. Since x01 = 3 = smax, case 2(c) tells us to

shift x01 to the right of d2 and update I ! I �smax(w3 �w1) = 14. We have

x̃ = (d1, d2, 3, 3, 0, 0, 0, 0).

94

Then we have

I = 2 ·w1 +3 ·w2.

Hence, d1 = 2 and d2 = 3. Our final decoding codeoword is

x̃ = (2, 3, 3, 3, 0, 0, 0, 0) = x.

95

Chapter 6

Conclusion

The Levenshtein code, which is based on Varshamov-Tenengol’ts’ construction, is

remarkable for a number of reasons. Levenshtein’s results are the foundation for Tenengol’ts’

work on the non-binary single insertion/deletion error correcting code. Moreover, Helberg

generalized the aforementioned construction in the Levenshtein code to obtain a new class of

codes which are capable of correcting multiple insertion/deletion errors. Prior to this thesis,

there was no known efficient algorithm to correct Helberg codes. Swart [21] informally

gave an algorithm for correcting deletions; however his algorithm is more complicated and

less efficient than the algorithm presented in this thesis, which we have called the Deletion

Decoding Algorithm.

To decode Helberg codes, our recursive algorithm decodes one symbol error each time.

As a result, our algorithm is much more efficient in term of the length of codeword and

the number of deletion errors. However, for the correction of one deletion error (d = 1),

the Deletion Decoding Algorithm essentially performs an exhaustive search. But for two

or more deletion errors, the algorithm attempts to correct the rightmost deletion symbol

by shifting the deleting symbol from right to left, or inserting a value for the rightmost

deletion symbol, after with the decoding reduces to the algorithm for correcting (d � 1)

deletion errors. Therefore when the length of the codeword increases, the complexity of

our algorithm is linear, namely O(n). This is a drastic improvement over exhaustive search,

which has exponential complexity.

As previously mentioned, the Deletion Decoding Algorithm is only able to correct

deletion errors. We have not been able to adapt this algorithm to correct insertion errors

due to the fact that such errors are intrinsically different from deletion errors. In the case

of deletion errors, we insert d deletion symbols, denoted by di’s, and for each symbol, we

try to determine whether to shift it or insert a value. These two possibilities give us more

96

freedom in correcting a codeword than in the case of insertion error, where we can only

delete symbols. In particular, we can only determine the position of the inserted symbols;

we have no control over the value of the symbols, which make it more difficult to decode.

In this thesis, we also constructed a new class of non-binary codes capable of correcting

multiple insertion/deletion errors, generalizing Helberg codes. Since these new codes apply

to ternary and quaternary alphabets, they will find applications in biology, e.g., DNA bar

coding.

Since our decoding algorithm is not capable of correcting insertion errors and our

generalized Helberg codes have poor rates, there remains work to find a better algorithm as

well as codes with better rates.

97

References

[1] A. S. J. Helberg. (1993). Coding for the Correction of Synchronization Errors (Ph.D.
dissertation). Rand Afrikaans University, Johannesburg, South Africa.

[2] A. S. J. Helberg, H. C. Ferreira. (2002). On Multiple Insertion/Deletion Correcting
Codes. IEEE Trans. Inf. Theory, vol(48), 305-308.

[3] C. E. Shannon. (1949). A Mathematical Theory of Communication. University of Illinois
Press.

[4] D. Kracht, S. Schober (2015). Insertion And Deletion Correcting DNA Barcodes Based
On Watermarks. BMC Bioinformatic, vol(10), 16-50.

[5] Filip Palunc̆ić, Khaled A. S. Abdel-Ghaffar, Hendrik C. Ferreira, A. Clarke(2012). A
Multiple Insertion/Deletion Correcting Code for Run-Length Limited Sequences. IEEE
Trans. Information Theory vol(58), 1809-1824.

[6] F. Palunc̆ić, T. G. Swart, J. H. Weber, H. C. Ferreira, W. A. Clarke (2011). A Note on
Non-binary Multiple Insertion/Deletion Correcting Codes. Information Theory Work-
shop, IEEE, 683-687.

[7] Grigory Tenengol’ts (1994). Nonbinary Code, Correcting Single Deletion or Insertion.
IEEE Trans. Information Theory, vol(IT-30), 766-769.

[8] I. Landjev and K. Haralambiev (2007). On Multiple Deletion Codes. Serdica J. Comput,
vol(1), 13-26.

[9] T. A. Le, H. D. Nguyen (2016).New Multiple insertion/deletion Correcting Codes For
Non-Binary Alphabets. IEEE Trans. Information Theory, vol(62), 2682-2693 .

[10] K. A. S. Abdel-Ghaffar, F. Palunc̆ić, H. C. Ferreira, W. A. Clarke (2012). On Helberg’s
Generalization of the Levenshtein Code for Multiple Deletion/Insertion Error Correction.
IEEE Trans. Inf. Theory, vol(58), 1804-1808.

[11] L. Dolecek, V. Anatharam (2010). Repetition Error Correcting Sets: Explicit Construc-
tions And Prefixing Methods. SIAM J. Discrete Math, vol(23), 687-698.

[12] L. J. Schulman, D. Zuckerman (1999). A Symptotically Good Codes Correcting
Insertions, Deletiions, and Transpositions. IEEE Trans. Inf. Theory, vol(45), 2552-2557.

[13] M. C. Davey, D. J. C. Mackay 92001). Reliable Communication Over Channels With
Insertion, Deletions, And Substitution. IEEE Trans. Inf. Theory, vol(47), 687-698.

[14] N. J. A. Sloane (2000). One Single-Deletion-Correcting Codes. Information Sciences
Research, AT&T Shannon Labs.

98

[15] V. I. Levenshtein (1996). Binary Codes Capable of Correcting Deletions, Insertions,
and Reversals. Sov. Phys.-Dokl., vol(10), 707-710.

[16] V. I. Levenshtein (2002). Bonds For Deletion/Insertion Correcting Codes, Proceeding
of the 2002 IEEE International Symposium on Information Theory (pp. 370). Lausanne,
Switzerland.

[17] I. S. Reed, G. Solomon (1957). Polynomial Codes Over Certain Finite Fields. Journal
of Society for Industrial and Applied Mathematics, vol(2), 300-304.

[18] R. W. Hamming (1950). Error Dectecting and Error Correcting Codes. The Bell
System Technical Journal.

[19] R. R. Varshamov, G. M. Tenengol’ts (1965). Codes Which Correct Single Asymmetric
Errors. Autom. Remote Control, vol(26), 286-290.

[20] R. R. Varshamov, G. M. Tenengolt’s (1965). Correction Code For Single Asymmetrical
Errors. Avtom. Telemekh, vol(26), 288-292.

[21] T. G. Swart (2001). Coding And Bounds For Correcting Insertion/Deletion Errors
(M.S. Thesis). Rand Afrikaans University. Johannesburg, South Africa.

99

Appendix A

Decoding Algorithm for Binary Helberg Codes

Algorithm D1

1: procedure ONE DELETION METHOD FOR BINARY

2: x̃ = x01x02x03...x
0
n�1d

3: . Initialize x̃ with unknown bit d at position n, where d is to be determined.

4: for Position P = n to P = 1 do

5: if I = 0 then

6: d = 0

7: else if I = vP then

8: d = 1

9: else

10: x = x01x02x03...x
0
P�2dx0P�1x0P+1...x

0
n�1. . Shift x0P�1 to the right of d .

11: I = I � x0P�1(vP � vP�1). . Update the index.

12: end if

13: end for

14: end procedure

Algorithm D2

1: procedure TWO DELETIONS METHOD FOR BINARY

2: x = x01x02x03...x
0
n�2d1d2 . Initialize x with unknown bits d1 and d2 are at position

n�1 and n respectively, where d ’s are to be determined

3: for Position P = n to P = 1 do

4: if d = 1 then

5: One Deletion Procedure . Apply D1

6: end if

100

7: for s1,s2 = 1 to 0 do

8: if I = s1wP�1 +s2wP then

9: d1 = s1,d2 = s2

10: STOP

11: end if

12: end for

13: if x0P�2 = 0 then

14: if vP > I then

15: x0 = x01x02...x
0
P�3d1d20x0P+1...x

0
n�2 . Shift x0P�2 to the right of d2

16: else if vP < I then

17: x0 = x01x02...x
0
P�30d11x0P+1...x

0
n�2 . Insert 1 for d2

18: I = I � vP . Update the index

19: d = 1 . Update number of deletions

20: end if

21: else if x0P�2 = 1 then

22: if vP < I then

23: x0 = x01x02...x
0
P�3d1d21x0P+1...x

0
n�2 . Shift x0P�2 to the right of d2

24: I = I � (vP � vP�2) . Update the index

25: else if vP > I then

26: if (vP � vP�2) I then

27: x̃ = x01x02...x
0
P�3d1d21x0P+1...x

0
n�2 . Shift x0P�2 to the right of d2

28: I = I � (vP � vP�2) . Update the index

29: else if (vP � vp�2)> I then

30: x0 = x01x02...x
0
P�3d110x0P+1...x

0
n�2 . shift x0P�2 to the right of d1 and

insert d2 = 0

31: d = 1 . Update number of deletions

32: end if

101

33: end if

34: end if

35: end for

36: end procedure

Algorithm DM

1: procedure MULTIPLE DELETIONS METHOD FOR BINARY

2: x̃x = x01x02x03...x
0
n�dd1d2...dd�1dd . Initialize x̃ with unknown bits d1,d2...dd are at

position n�d +1, n�d +2,...,n respectively, where d ’s are to be determined

3: for Position P = n to P = 1 do

4: if d = 1 then

5: One Deletion Procedure . Apply D1

6: end if

7: for s1, . . . ,sd = 1 to 0 do

8: if I = s1wP�1 + · · ·+sdwP then

9: d1 = s1, · · · ,dd = sd

10: STOP

11: end if

12: end for

13: if vP > I then

14: if x0P�d = 0 then

15: x̃ = x01x02...x
0
P�d�1d1d2...dd0...x0n�d�1x0n�d . Shift last known bit to the

right of dd

16: P = P�1. . Update new position for d ’s

17: else

18: x̃ = x01x02...x
0
P�dd1d2...dd�10...x0n�d�1x0n�d . Inserting 0 for dd

102

19: d = d �1. . Update number of deletions

20: end if

21: else . vP  I

22: if x0P�d = 1 then

23: x = x01x02...x
0
P�d�1d1d2...dd1...x0n�d�1x0n�d . Shift last known bit to the

right of dd

24: I = I � (vP � vP�d) . Update the index

25: P = P�1. . Update new position for d ’s

26: else

27: x = x01x02...x
0
P�dd1d2...dd�11...x0n�d�1x0n�d . Inserting 1 for dd

28: I = I � vP . Update the index

29: d = d �1. . Update number of deletions

30: end if

31: end if

32: end for

33: end procedure

103

Appendix B

Decoding Algorithm for Non-Binary Helberg Codes

Algorithm DN1

1: procedure ONE DELETION METHOD FOR NON-BINARY

2: x̃ = x01x02x03...x
0
n�1d

3: . Initialize x̃ with unknown bit d at position n, where d is to be determined.

4: for Position P = n to P = 1 do

5: for s = q�1 to 0 do

6: if I = s ·wP then

7: d = s

8: STOP

9: end if

10: end for

11: x̃ = x01x02x03...x
0
P�2dx0P�1x0p...x0n�1. . Shift x0P�1 to the right of d one unit.

12: I = I � x0P�1(wP �wP�1). . Update the index.

13: end for

14: end procedure

Algorithm DN2

1: procedure TWO DELETIONS METHOD FOR NON-BINARY

2: x̃ = x01x02x03...x
0
n�dd1d2. Initialize x̃ with unknown bits d1,d2 are at position n�1, n

respectively, where d ’s are to be determined

3: for Position P = n to P = 1 do

4: if d = 1 then

5: One Deletion Procedure . Apply DN1

6: end if

104

7: for s1,s2 = q�1 to 0 do . d-nested for loop

8: if I = s1wP�1 +s2wP then

9: d1 = s1,d2 = s2

10: STOP

11: end if

12: end for

13: if wP > I then

14: if (x0P�d = 0) or (x0P�d � 1 and I � wP �wP�d) then

15: x̃ = x01x02...x
0
P�3d1d2x0p�2...x

0
n�3x0n�2 . Shift last known bit to the right

of d2

16: I = I � x0P�2(wP �wP�2) . Update the index

17: else

18: x̃ = x01x02...x
0
P�2d10...x0n�3x0n�2 . Inserting 0 for d2

19: d = 1. . Update number of deletions

20: end if

21: else . wP  I

22: for s = p to s = 0 do . Compute smax

23: if s(wP �wP�2) I then

24: smax = s

25: end if

26: end for

27: if x0P�2 > smax then

28: x̃ = x01x02...x
0
P�2d1smax...x0n�3x0n�2 . Insert smax for d2

29: I = I �smaxwP . Update the index

30: d = 1. . Update number of deletions

31: else

32: if smaxwP > I or x0P�2 = smax then

105

33: x̃ = x01x02...x
0
P�3d1d2...ddx0P�2...x

0
n�3x0n�2 . Shift x0P�2 to the right of

d2

34: I = I � x0P�2(wP �wP�2) . Updatethe index

35: else

36: x̃ = x01x02...x
0
P�2d1smax...x0n�3x0n�2 . Insert smax for d2

37: I = I �smaxwP . Update the index

38: d = 1 . Update number of deletions

39: end if

40: end if

41: end if

42: end for

43: end procedure

Algorithm DNM

1: procedure MULTIPLE DELETIONS METHOD FOR NON-BINARY

2: x̃ = x01x02x03...x
0
n�dd1d2...dd�1dd . Initialize x with unknown bits d1,d2...dd are at

position n�d +1, n�d +2,...,n respectively, where d ’s are to be determined

3: for Position P = n to P = 1 do

4: if d = 1 then

5: One Deletion Procedure . Apply DN1

6: end if

7: for s1, . . . ,sd = q�1 to 0 do . d-nested for loop

8: if I = s1wP�d+1 + · · ·+sdwP then

9: d1 = s1, . . . ,dd = sd

10: STOP

11: end if

106

12: end for

13: if wP > I then

14: if (x0P�d = 0) or (x0P�d � 1 and I � wP �wP�d) then

15: x̃ = x01x02...x
0
P�d�1d1d2...ddx0p�d...x

0
n�d�1x0n�d . Shift last known bit to

the right of dd

16: I = I � x0P�d(wP �wP�d) . Update the index

17: else

18: x̃ = x01x02...x
0
P�dd1d2...dd�10...x0n�d�1x0n�d . Inserting 0 for dd

19: d = d �1. . Update number of deletions

20: end if

21: else . wP  I

22: for s = p to s = 0 do . Compute smax

23: if s(wP �wP�d) I then

24: smax = s

25: end if

26: end for

27: if x0P�d > smax then

28: x̃ = x01x02...x
0
P�dd1d2...dd�1smax...x0n�d�1x0n�d . Insert smax for dd

29: I = I �smaxwP . Update the index

30: d = d �1. . Update number of deletions

31: else

32: if smaxwP > I or x0P�d = smax then

33: x̃ = x01x02...x
0
P�d�1d1d2...ddx0P�d...x

0
n�d�1x0n�d . Shift x0P�d to the

right of dd

34: I = I � x0P�d(wP �wP�d) . Updatethe index

35: else

36: x̃ = x01x02...x
0
P�dd1d2...dd�1smax...x0n�d�1x0n�d . Insert smax for dd

107

37: I = I �smaxwP . Update the index

38: d = d �1 . Update number of deletions

39: end if

40: end if

41: end if

42: end for

43: end procedure

108

	Decoding of non-binary multiple insertion/deletion error correcting codes
	Recommended Citation

	Introduction
	Error Correcting Codes
	Decoding Algorithm for Helberg Codes
	Generalization of Helberg Codes
	Decoding Algorithm of Generalized Helberg Codes
	Conclusion
	References

