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Abstract 

Andrea Jackson 

EXAMINING THE EVOLUTIONARY CONSTRAINTS OF GENE EXPRESSION LEVELS IN S. 

CEREVISIAE 

2015- 2016 

Mark Hickman, Ph.D. 

Master of Science in Bioinformatics 

 

It has been widely reported that some genes are expressed at a higher level than 

others. However, it has not been shown whether each gene is expressed consistently 

between studies and at the same level compared to all other genes. Here, we examined six 

RNA-seq datasets and found that the mRNA level of each gene is indeed consistent 

relative to all other genes. This result implies that there are evolutionary pressures that 

drive genes to maintain either low or high expression. In order to identify these pressures, 

we compared gene expression level to the features of each gene (or associated protein), 

such as biological function, molecular process, or localization. We found many possible 

pressures; for example, genes involved in translation and the ribosomal processes were 

expressed at high levels while genes involved in transcription and DNA-related processes 

were expressed at low levels. Furthermore, through the optimization of an artificial neural 

network, we were able to use several of these features to predict gene expression with 65-

75% accuracy. In conclusion, these results show that gene expression level is controlled 

by several evolutionary constraints, including biological function, molecular process, and 

cellular localization. 
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Chapter 1 

Introduction 

The Evolution of Gene Expression 

 It has been found that genes are expressed at varying levels (Rifkin, Kim, & 

White, 2003). Some are expressed at high levels, while others are expressed at low levels. 

For example, when measured at the same time and under the same conditions in yeast, 

the ribosomal protein encoding gene, YDL133C-A, has been shown to be expressed at 

high levels, while the membrane protein encoding gene, YBR04W, has been shown to be 

expressed at low levels (Fox et al., 2015; Jenner et al., 2012; Erdman et al., 1998). In the 

yeast genome, approximately 20 percent of protein coding genes are expressed at high 

levels, while 33 percent are expressed at low levels (Nagalakshmi et al., 2008).  

 Researchers who have studied the evolution of expression levels have shown that 

the expression levels of different types of organisms cluster based on tissue type and are 

somewhat conserved across related species (Brawand, et al., 2011; Nuzhdin et al., 2004). 

However, research is lacking on the topic of the evolution of steady-expression levels in 

cells. In other words, what evolutionary pressures would cause some genes, in consistent 

conditions, to be always expressed at high levels, while others are always expressed at 

low levels? Here, we attempt to understand the evolutionary pressures that influence the 

level of gene expression.   

Expression in Eukaryotes 

“Gene expression” is the process in which the information in a gene, a segment of 

deoxyribonucleic acid (DNA), is used to create a protein, the molecular machinery of the 

cell (Booth & Lees, 2007). Gene expression consists of two sub-processes, transcription 

and translation. During transcription, gene information encoded in DNA, a double-
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stranded macromolecule, is essentially copied into a single-stranded messenger 

ribonucleic acid (mRNA) (Krishnamurthy, S., Hampsey, M., 2009).  The information in 

an mRNA molecule is used to generate a unique protein in translation, the second part of 

gene expression (Cooper, G. 2000; Hannan et al., 2003; Pestova et al., 2001). In 

Saccharomyces cerevisiae, the organism chosen for this study, approximately 6000 genes 

are used to create proteins (SGD Project, 2016b). 

It is important to recognize that, while transcription and translation promote 

protein production and increase protein levels, mRNA degradation and protein 

degradation are two cellular processes that lead to lower protein levels (Schwanhäusser et 

al., 2011).  mRNA degradation is a process that results in the decay of an mRNA 

molecule. While all mRNA molecules will eventually decay, the half-lives of mRNAs are 

variable. Generally, the mRNAs with the shortest half-lives are those that code for 

regulatory proteins. In S. cerevisiae, mRNA degradation assists the cell by maintaining 

the steady-state levels of mRNA expression, removing abnormal mRNAs, and removing 

unneeded RNA fragments (Cooper, 2000; Jackowiak, et al., 2011; Parker, 2012).  

Similarly, protein degradation is a process that results in the decay of a protein 

macromolecule. Much like the rates of decay of mRNAs, the rates of decay of each type 

of protein is variable. Generally, regulatory proteins have the fastest decay rates. In cells, 

protein degradation provides a way for the cell to recycle proteins involved in cell 

regulation and to destroy abnormally folded or damaged proteins by breaking them down 

to amino acids. These amino acids can be used to form new proteins in the translation 

process (Cooper, 2000; Goldberg, 2003).  
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The processes of transcription, translation, mRNA degradation, and protein 

degradation all contribute to the levels of gene expression in a cell. However, all 

contributions are not equal. In their study on mammalian cells, Li, Bickel, and Biggin 

(2014) estimated that the greatest contribution to protein levels in a cell is determined by 

transcription (~38 - 73%) and followed by translation (~8 - 30%), RNA degradation (~11 

- 18%), and protein degradation (~8 - 14%).  While protein abundance levels are ideal 

measures of gene expression in a cell, obtaining accurate quantifications of these levels 

presents a challenge for researchers.   

Gene Expression Levels 

Some studies have used protein abundane4ce measurements to determine the 

levels of gene expression in cells (Albert et al., 2014; Yu et al., 2006). However, various 

limitations to the quantification of protein levels have been reported. When quantifying 

protein levels with mass spectrometry (MS) and two-dimensional gel electrophoresis, 

proteins that are more abundant in the cell tend to be more easily detected, resulting in 

inaccurate quantifications of proteins that are expressed at low levels. The quantification 

of protein levels though western blot analysis of epitope-tagged proteins has been shown 

to be more accurate for the detection of proteins expressed at low levels. However, the 

tag may interfere with proper regulation of the protein and thus may result in inaccurate 

abundance measurements (Ghaemmaghami et al., 2003). Hence, protein abundances 

cannot be accurately and consistently measured at the current time (Guimaraes, Rocha & 

Arkin, 2014). 

As a result, many studies have used mRNA abundance as a proxy for protein 

abundance. While microarrays have been primarily used to study the differential 
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expression of mRNAs, RNA sequencing (RNA-seq), a more recently developed 

sequencing method has been often used for the analysis of genome-wide expression 

(Nookaew, et al., 2012). In this method, RNA is converted to cDNA, which is then 

fragmented, sequenced, and mapped to a genome. Due to its high sensitivity, RNA-seq is 

thought to be more effective for quantifying the expression of genes expressed at low 

levels, genes expressed at high levels, and closely related genes than the previously-used 

DNA microarrays (Mortazavi, et al., 2008a, Nagalakshmi et al., 2008, Wang et al., 2009). 

Additionally, because the RNA-seq method does not require hybridization to a probe, as 

required by the DNA microarray method, absolute gene expression levels can potentially 

be compared within a sample (Fu, et al., 2009; Hackett, et al., 2012; Marioni et al., 2008; 

Fu et al., 2009).  However, measuring mRNA levels as a proxy for protein levels has 

limitations as well. Posttranscriptional events, like translation rate and protein 

degradation, are known to influence protein levels (Guimaraes, Rocha & Arkin, 2014). 

 While studying expression, many researchers have correlated mRNA levels with 

protein levels. Some studies have shown poor correlations between mRNA abundance 

and protein abundance, possibly indicating the importance of posttranscriptional events in 

controlling protein levels. However, these studies generally use a small number of 

representative genes, correlate mRNA and protein data obtained from different 

laboratories or studies, or leave out important factors such as protein or RNA decay 

(Schwanhausser et al., 2011). Recent studies have shown higher correlations between 

mRNA and protein than what had been shown previously.  In a parallel study of the 

developing maize leaf, mRNA counts, obtained through RNA-seq, were shown to explain 

40-70% of protein abundance measurements, obtained through label-free high resolution 
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mass spectrometry. Abundances corrected by length using the normalized spectral 

abundance factor (NSAF) for protein and reads per kilobase of exon model per million 

mapped reads (RPKM) for mRNA yielded higher correlations than abundances that were 

not length-corrected (Ponnala, et al., 2014). Similarly, in a parallel study of mRNA and 

protein abundance in mammalian cells (HeLa & NIH3T3), mRNA abundance was shown 

to explain 56-84% of protein abundance. This high percentage was found after all protein 

abundances were corrected with a regression model formed using a sample of protein 

abundance measures from reliable housekeeping genes (Li, et al., 2014). These studies 

show that relative mRNA levels can be used as an approximate representation of relative 

protein levels in the cell.  

In recent years, the prevalence of genome-wide expression data has increased 

dramatically. A variety of public repositories have been created to store the ever growing 

collection of expression data. Because many journals now encourage researchers to 

submit their expression data to public repositories before their research articles are 

published, a large amount of high quality data is available in these data warehouses 

(Rung & Brazma, 2012). In this study, we took advantage of the high quality RNA-seq 

and protein expression data available in data repositories to study expression levels in S. 

cerevisiae.  

The Need/Cost Balance 

Trade-offs, a fundamental concept in evolutionary biology, occur when organisms 

are subject to limited resources (Stoebel et al., 2008). These resources vary widely from 

external sources such as food, water, or space to internal sources such as energy. In an 

organism, a limited store of energy must be distributed among all processes, which 
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results in a continual trade-off between energy costs and processes required by the 

organism (Niven & Laughlin, 2008).  Transcription and translation are known to be 

energetically costly processes. In S. cerevisiae, increases in gene expression levels have 

been shown to be accompanied by increases in energy cost (Wagner, 2005). Therefore, an 

increase in the expression level of one gene affects the store of energy budgeted for the 

expression of other genes (Wagner, 2007).  

It is likely that the wide variation in expression levels within a cell results from 

the balance between protein production cost and cellular need for a specific protein 

(Guimaraes, Rocha, & Arkin, 2014). In standard growth conditions (rich medium, 30°C) 

some S. cerevisiae genes have been shown to be expressed at high levels, while others 

have been shown to be expressed at mid or low levels (Ghaemmaghami et al., 2003; 

Newman et al., 2006).  In the current study, we did not seek to identify how genes are 

expressed at high or low levels (e.g., regulation of transcription or translation). Rather, 

we sought to identify why genes are expressed at varied levels (e.g., proteins of a certain 

function are required at higher levels). To explore this phenomenon, we explored whether 

gene features may act as evolutionary pressures to influence the expression level of 

genes. Gene features were gathered from the GO (gene ontology) Slim Mapping dataset 

(SGD Project, 2016a), which attempts to characterize each gene product in terms of its 

biological processes, molecular functions, and cellular components.  Additionally, we 

used  the Yeast GFP Fusion Localization database (University of California Regents, 

2006), which contains the names of 22 possible subcellular localization compartments 

and identifies the yeast proteins found in each of those compartments. Using a 

combination of mRNA and protein expression data, we investigated the processes, 
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components, functions, and localizations of proteins in the cell that could act as 

evolutionary pressures for the high or low expression of genes in S. cerevisiae.  
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Chapter 2 

Methods 

Data Collection 

 RNA and protein expression datasets. In order to study the variation in gene 

expression, RNA-seq datasets were collected from six studies, using the similar yeast 

strains and growth conditions (Adhakari & Cullen, 2014; Baker et al., 2013; Fox et al., 

2015; Hickman, 2016; Martin et al., 2014; Risso et al., 2011). All yeast cells were grown 

in yeast extract peptone dextrose (YPD), either pure or with the addition of dextrose, at 

temperatures ranging from 25 to 30 degrees Celsius, when specified. The wild type S. 

cerevisiae strains used in these studies were S288C, BY4741, a closely-related derivative 

of S288C (Brachmann et al., 1998), or Sigma 1278B. Additionally, the data from a study 

that quantified RNA levels through Affymetrix microarray methods was gathered for 

comparison with RNA-seq values (Lengronne et al., 2004). Likewise, studies that 

quantified protein abundance data through various methods were also gathered for 

comparison. A summary of the conditions and methods used in each individual study is 

in Table 1 (Chong et al., 2015; Ghaemmaghami et al., 2003; Newman et al., 2006).   
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Table 1  

Description of Expression Datasets 

 
Strain Conditions 

Number of 

samples 

obtained 

from  

study 

Number of 

genes 

obtained 

from  

study 

Expression 

method Platform 

GEO# 

or SRA# Reference 

RNA 

Sigma 

1278B 

YEPD, 

30°C 
3 5552 RNA-seq 

Illumina 

HiSeq 2500 
GSE61783 

Adhikari & 

Cullen, 2014 

BY4741 YPD 3 6691 RNA-seq 
Illumina 

HiSeq 2000 
GSE43002 

Baker, et al., 

2013 

BY4741 YPD 4 
 

5750 
RNA-seq 

AB 5500xl 

Genetic 

Analyzer 

GSE57155 
Fox et al, 

2015 

BY4741 YPD, 30°C 1 6691 RNA-seq 
Illumina 

HiSeq 2000 
GSE52086 

Martin et al., 

2014 

S288C YPD, 30°C 1 7130 RNA-seq 
Illumina 

HiSeq  
Hickman, 

unpublished 

S288C YPD, 25°C 6 6691 RNA-seq 

Imina 

Genome 

Analyzer II 

SRA04871

0 

Risso et al., 

2011 

BY4741 
YP with 

2% glucose 
1 6457 

Affymetrix 

Microarray 

[YG_S98] 

Affymetrix 

Yeast 

Genome S98 

Array 

GSM24746 
Lengronne, 

et al., 2004 

Protein 

BY4872 

low 

fluorescenc

e synthetic 

medium 

with 

methionine

, NAT, and 

2% glucose 

3 3540 

Synthetic 

Genetic 

Array 
  

Chong et al., 

2015 

BY4741 SD 1 3868 Microscopy 
Nikon 

TE200/300  

Ghaemmagh

ami et al., 

2003 

BY4741, 

BY4742 

YEPD, 

30°C 
1 2385 

High 

Throughput 

Flow 

Cytometry 

  
Newman et 

al., 2006 

 

 

 

 

 Gene ontology (GO) and localization datasets. In order to explore potential 

evolutionary pressures, datasets containing information about yeast gene ontology (GO) 

and localization were collected. The gene ontology data was collected from the GO Slim 
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Mapping dataset (SGD Project, 2016). The GO dataset identifies whether gene products 

are aspects of the yeast cell’s biological processes, molecular functions, or cellular 

components (The Gene Ontology Consortium, 2005). Non-coding genes, including those 

identified as tRNA, rRNA, ncRNA, snRNA, or snoRNA, were removed from the GO 

dataset. Additionally, GO categories that could bias the results in the further analysis 

were removed from the GO dataset. These categories were “cellular component”, 

“molecular function”, “biological process”, “other”, and “not yet annotated”. The 

localization data was collected from the Yeast GFP Fusion Localization database 

(University of California Regents, 2006). This set contains the names of 22 possible 

subcellular localization compartments and identifies the yeast proteins found in each of 

those compartments (Huh et al., 2003). One localization category entitled “ambiguous” 

was removed from the dataset.  

Data Preprocessing and Normalization 

 RNA-seq preprocessing. RNA-seq datasets were preprocessed to prepare for 

further analyses. Sets that were published in SRA format (Baker et al., 2013; Risso et al., 

2011; Martin et al., 2014) were converted to FASTQ with the SRA toolkit (Leinonen, 

Sugawara, and Shumway, 2011), trimmed with the FASTQ quality trimmer using a 

quality score of ten (Blankenberg et al., 2010), and mapped to the most complete and 

recent S. cerevisiae genome build, R64.1.1 2011-02-03 (Engel et al., 2014), with TopHat 

(Kim et al., 2013). The number of sequencing reads per gene was calculated using the 

HTSeq program (Anders, Pyl, and Huber, 2015), generating a raw count file. Datasets 

that were published in raw count format were used in their published format (Adhikari, et 

al., 2014; Hu et al., 2014; Li et al., 2014; Fox et al., 2015). Some datasets used a 
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combination of common and systematic gene names and were converted to contain only 

systematic gene names through the use of the Saccharomyces Genome Database (SGD) 

(Cherry et al., 2012). Similarly, the reference IDs in the Affymetrix microarray RNA 

dataset by Legronne et al. (2004) were converted to systematic gene names. 

             Protein abundance preprocessing. The protein abundance data for each gene, 

collected from Chong et al. (2015), Ghaemmaghami et al. (2003), and Newman et al. 

(2006), was averaged to form the protein abundance dataset. This dataset was comprised 

of the systematic gene identification name for each protein associated gene, along with its 

corresponding average protein abundance.  

 Later, in the bootstrapping and artificial neural network analyses, the protein 

abundance dataset was simplified to include only data from the Newman et al. (2006) 

dataset.  

 RPKM normalization. After pre-processing was complete, two datasets were 

created by different normalization methods. The first normalization method used was a 

modified reads per kilobase of transcript per million mapped reads (RPKM) 

normalization. With this method, the RNA-seq counts for each gene were normalized 

with a variation of the RPKM formula the paper by Mortazavi et al. (2008b). The formula 

used by Mortazavi et al. (2008b) is as follows: 

𝑅 =  
109𝐶

𝑁𝐿
 

𝐶 =  the number of reads that were mapped to a gene 

𝑁 = total number of reads that were mapped in the experiment   
𝐿 = total number of base pairs in the gene’s exon 

 

Gene exon length (L) was determined through the use of the SGD features file 

(SGD Project, 2015). The variation in our normalization methods occurred in the variable 
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N. Because our data included the raw counts from multiple experiments, we took the total 

number of mappable reads in genes which were common to all experiments and used that 

number as the representation of total mappable reads. The resulting RPKM values for 

each gene in all samples were averaged. The final RPKM dataset was comprised of the 

systematic name of each gene, along with the corresponding average RPKM value. 

It is possible that some genes showed higher variability in counts due to 

differences in the strains used, slight differences in conditions, or errors in sequencing. 

The genes which showed the most consistency across experiments were kept in the Low 

Variability RPKM dataset for further analysis. These genes were selected by removing 

the upper quartile of genes which contained the highest standard deviation and keeping 

75% of the genes with the lowest standard deviation. The final Low Variability RPKM 

dataset was comprised of the systematic gene identification name for each gene, along 

with its corresponding average RPKM value.  

Rank normalization. The second normalization method used was a rank 

normalization approach. In this method, the genes of each study were ranked by 

expression level. If the RPKM or fragments per kilobase of transcript per million mapped 

reads (FPKM) were calculated by the researchers of the study, these values were used. If 

only the raw counts were available, we calculated RPKM for each sample within each 

study using the RPKM formula above without the “N” modification.  In each study, the 

genes in each sample were assigned a number from 1 to n (where n represents the number 

of genes in a sample). Genes with lower RPKM/FPKM values were given lower ranks 

than those with high values. If two genes in a sample had the same value, they were 

assigned the same rank. Genes with an RNA-seq count of “0” were excluded from the 
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rankings. The ranks from each sample and corresponding experiment were merged by 

gene name to create a dataset with all of the samples. Genes with less than three 

observations throughout all samples were excluded from further analysis.  Because the 

value of n varied from sample to sample, the ranks in each sample were normalized with 

the formula:  

𝑟 − (1 −
𝑛𝑆

𝑛𝐿
) 

𝑟 =  rank of the gene 

𝑛𝑆 =  number of genes in the sample  

𝑛𝐿 = number of genes in the largest sample 

 

After normalization, the average rank was calculated for each gene, by averaging the 

ranks from all samples in all studies. The final rank dataset was comprised of the 

systematic gene identification name for each gene, along with its corresponding average 

rank value.  

A set with low variability was comprised with the same methods that were used to 

comprise the low variability RPKM dataset. This dataset was named the low variability 

rank dataset.   

Correlations  

 The correlations of samples within each RNA-seq dataset were calculated using 

the Spearman’s rank correlation (𝑟𝑠) method. This method was chosen because it can be 

used to correlate two sets of data that are not normally distributed (Ruscio, 2008). The 

Spearman’s rank correlation method was also used to correlate affymetrix microarray 

values with average RPKM and average rank values, to correlate protein samples against 

other protein samples, to correlate protein samples with average RPKM and average rank 

values, and to correlate degradation datasets with protein abundance and normalized 



  

14 

RNA-seq datasets.  The Spearman’s rank correlation coefficients and their corresponding 

plots are shown in the results section. 

Data Merging  

 Average RPKM and average rank datasets were merged separately with GO and 

localization datasets for further analysis. These sets were merged by systematic gene 

name. Each merged set contained a column of systematic gene names, a corresponding 

column of normalized RPKM or rank values, and a corresponding column of GO or 

localization categorizations.  

 The protein abundance set from Newman et al. (2006) were also merged with GO 

and localization sets using the same methods. 

Bootstrapping 

 Normalized RNA-seq datasets. To determine which categories in the GO and 

localization datasets had statistically significant distributions, a bootstrapping program 

was written. The input for this program consisted of the RNA-seq averages from the 

normalized RPKM or rank datasets which were merged with the corresponding genes in 

the GO or localization categories.  The mean of normalized RNA-seq averages in each 

individual GO or localization category was compared to the mean of randomly selected 

RNA-seq values from other categories ten thousand times. The number of random RNA-

seq values selected for each category comparison equaled the number of genes in the 

category. If the mean of the actual distribution was higher than the mean of the 

distribution of randomly selected genes, the comparison was assigned the number one. If 

the mean of the actual distribution was lower than the mean of the distribution of 

randomly selected genes, the comparison was assigned the number zero. The ones and 
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zeros resulting from the ten thousand comparisons were added to a vector containing a 

number one (the number 1 prevents a p value of 0). This vector sum was used to 

determine the p value of the corresponding category. The p value was calculated through 

a two sided test, using the following formula, where n represents the number of 

comparisons: 

𝑝 =  
||(

𝑛
2 + 1) − 𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑢𝑚| − (

𝑛
2 + 1)|

𝑛
 

For this study, n was equal to ten thousand comparisons. To address multiple hypothesis 

testing, the calculated p values were adjusted with the p.adjust function in R (R core 

team, 2015) using the Benjamini & Hochberg (also called “false discovery rate”) method. 

To validate the method, bootstrapping was also conducted by collecting the sums of the 

distributions, rather than the means.  

 Protein dataset. In order to further validate the use of RNA-seq bootstrapping 

results, bootstrapping was conducted on the Newman et al. (2006) protein dataset. Out of 

the three protein datasets discussed in this report, this protein dataset was chosen for the 

bootstrapping analysis because it contained protein abundance data obtained from strains 

and conditions most similar to the RNA-seq datasets. The bootstrapping analysis for this 

protein dataset was conducted in the same manner as the RNA-seq datasets, with one 

exception. If the actual mean was equal to the random mean in the bootstrapping 

statistical program, 0.5 was added to the sum vector. This step was not necessary for the 

bootstrapping analysis done on the RNA-seq datasets because equivalent values would be 

extremely rare. However, replicate abundance values in the protein dataset along with the 

smaller size of the protein dataset increase the appearance of equivalent values in the 

bootstrapping analysis.  
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Neural Network  

A neural network was used to detect the presence of hidden patterns in the GO 

and localizations datasets. If distinct gene expression patterns exist, the GO and 

localization categories should be able to predict genes expressed at high or low levels in 

the RPKM, rank, and protein abundance (Newman et al., 2006) datasets. The neural 

network was constructed using neuralnet, an R package developed by Günther and 

Fritsch (2010). This neural network was initially composed of one hidden layer, three 

nodes, and a threshold of 0.005 and used resilient backpropagation with weight 

backtracking. It was later optimized to contain one hidden layer and two nodes. A sample 

of the neural network structure is shown in figure 1. Because new weights were generated 

each time a neural network repetition was run, the weights shown in the figure are not 

representative of the weights in all repetitions.  
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Figure 1. Sample of artificial neural network structure with localization categories as the 

input and RNA level as the output 

 

 

GO and localization categories were converted into a binary matrix for use in the 

neural network. A “1” in a GO or localization category indicated that a gene belonged to 

that category; a “0” indicated that it did not.  

RPKM, rank, and protein abundance values were normalized for the neural 

network using min/max normalization, where the minimum was 0 and the maximum was 

1 (Patro & Kumar sahu, n.d.). In order to reduce noise, the neural network was only used 

for the quartiles of genes with the highest and lowest expression (see example in figure 

2). Genes in the upper quartile were assigned a value of “1” and genes in the lower 

quartile were assigned a value of “0”.   
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Figure 2. Expression values of genes in the upper (high) 

and lower (low) quartiles. 

 For each dataset combination, the neural network was trained and tested on data 

through 50 repetitions. Each repetition analyzed a random split of data, with eighty 

percent of the data used as training data and twenty percent used as testing data.  

Random binary vectors were used to test the significance of the neural network 

results. These vectors were created to have the same length of the RPKM, rank, and 

protein abundance binary vectors, but were composed of randomly generated binary 

values, rather than upper/lower quartile binary generated values. The neural network 

tested the ability of the GO and localization categories to predict the random binary 

vectors with the same methods that were used to predict the RPKM, rank, and protein 

abundance binary vectors.  
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The prediction accuracy of each repetition of the neural network was determined 

by the following formula:  

∑ 𝑇𝑃𝑛
𝑖=1 +  ∑ 𝑇𝑁𝑛

𝑖=1

∑ 𝑇𝑃𝑛
𝑖=1 + ∑ 𝑇𝑁𝑛

𝑖=1 + ∑ 𝐹𝑃𝑛
𝑖=1 + ∑ 𝐹𝑁𝑛

𝑖=1

 

𝑇𝑃 =  True Positive: Gene was correctly printed as high (1) 

𝑇𝑁 = True Negative: Gene was correctly predicted as low (0) 

𝐹𝑃 = False Positive: Gene was incorrectly predicted as high (1) 

𝐹𝑁 = False Negative: Gene was incorrectly predicted as low (0) 

 

The prediction accuracy for each repetition of the neural network was recorded and 

plotted.   
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Chapter 3 

Results 

Correlations and Plots of Normalized RNA-seq Datasets  

In order to determine whether the expression level of each S. cerevisiae gene was 

consistent across several experiments, in which cells were grown under standard rich-

media conditions, normalized RNA-counts from each study were correlated. The results 

of the correlations and plots for each normalized RNA-seq dataset show not only that the 

RNA-seq method is highly reproducible but that the expression level of each gene does 

not vary across experiments. In the average RPKM dataset, the averages of the samples 

from each study were compared to the averages of the samples from every other study. 

The Spearman correlation coefficients ranged from 0.684 to 0.964 (see Figure 3). The 

Spearman correlation coefficients resulting from the pairwise correlations of average 

RPKM values for studies in the low variability set ranged from 0.766 to 0.966 (see Figure 

4). The p values of these all of these Spearman’s rank correlations were  < 2.2 𝑒−16.            
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Figure 3. Spearman correlation coefficients and plots for studies in the RPKM dataset 
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Figure 4. Spearman correlation coefficients and plots for studies in the low variability 

RPKM dataset 

 

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

We wanted to test whether the expression rank of each gene (1=lowest expressing gene, 

2=next lowest, etc) also does not vary, as opposed to the absolute expression level. Thus, 

we created rank RNA-seq datasets as described in the Methods section.  The correlations 

for the RNA-seq data normalized by the rank tended to be slightly lower than those 

normalized by RPKM.  In the rank dataset, the Spearman correlations coefficients ranged 

from 0.688 to 0.924 (see Figure 5). Because the Spearman correlations coefficients did 

not increase overall from the rank dataset to the low variability rank dataset, the low 
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Figure 5. Spearman correlation coefficients and plots for studies in the Rank dataset 

variability dataset was not used for further analysis (see Figure 6). The p values of these 

both of Spearman’s rank correlations were < 2.2 𝑒−16.  
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Figure 6. Spearman correlation coefficients and plots for studies in the low variability 

rank dataset 
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Figure 7. Spearman correlation coefficients and plots for protein abundance datasets. 

Correlations and Plots of Protein Datasets  

 The Spearman correlation coefficients for protein datasets were somewhat lower 

than those for the normalized RNA-seq datasets. These correlation coefficients ranged 

from 0.605 to 0.875 (see Figure 7). 

 

 
 

 

 

 

Correlations and Plots of Normalized RNA-seq Datasets with Other Data  

Because RNA-seq values were used as a proxy for protein expression in some 

portions of this study, it was important to correlate the RNA-seq datasets with protein 

abundance datasets to confirm an acceptably linear relationship. We plotted the RNA-seq 

values against the protein abundance values obtained by Chong et al. (2015), Newman et 
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al. (2006) and Ghaemmaghami et al. (2003). The log plots of each protein abundance 

study against average RPKM show linear patterns (Figure 8). Consequently, the 

Spearman correlations coefficients of the protein abundance values in each study 

compared to the RPKM values were relatively high, ranging from 0.62 to 0.73 (Table 2).  

 

 

 

 

 

Protein abundance datasets were normalized by rank for comparison with the 

average rank RNA-seq dataset. The resulting plots are shown in Figure 9. The Spearman 

correlation coefficients of protein abundance ranks compared to RNA-seq ranks, which 

ranged from 0.65 to 0.70, are shown in Table 2.  

 

 

 

Figure 8. The natural log of average RPKM values (with low variability) was plotted against 

the natural log of the protein abundances values obtained by Chong et al. (2015), Newman et 

al.,(2006), and Ghaemmaghami et al. (2003). 
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In the past, researchers have obtained RNA abundance measurements through 

other methods, such as Affymetrix microarray. As a comparison, we have plotted the 

averages of our RNA-seq data from two normalized datasets against Affymetrix 

microarray data obtained by Legronne et al. (2004). The resulting plots are shown in 

Figure 10. The Spearman correlation coefficients indicated a high amount of similarity 

between RNA-seq and Affymetrix microarray values and are shown in Table 2. However, 

the lowest expressed genes (bottom 10% of expressed genes in Affymetrix microarray 

dataset) showed much lower correlations (RPKM: 𝑟𝑠= 0.337, Rank: 𝑟𝑠= 0.179). The genes 

with highest expression (top 10% of expressed genes in the Affymetrix microarray 

dataset) also showed lower correlations (RPKM: 𝑟𝑠=0.567, Rank: 𝑟𝑠= 0.543). 

 

 

 

Figure 9. The ranks of RNA-seq values were plotted against ranks of protein abundances 

derived from the datasets by Chong et al. (2015), Newman et al. (2006), and 

Ghaemmaghami et al. (2003). 
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Table 2 

Rna-seq Spearman’s Rank Correlation Coefficients  

  Study 

Spearman Correlation Coefficient (𝑟𝑠) 

Average RPKM  

vs. 

 Protein Abundance  

RNA Abundance Rank 

vs 

Protein Abundance Rank  

Protein 

Abundance 

Chong et al. (2015) 0.6839492 0.6572164 

Newman et al. 

(2006) 
0.7342717 0.706059 

Ghaemmaghami  

et al. (2003) 
0.6244115 0.6129629 

RNA 

abundance 

by 

Affymetrix 

Microarray 

Study  

Spearman correlation coefficient  

 Affymetrix Microarray 

Values vs.  

RPKM Values 

Affymetrix Microarray 

Rank  

vs.  

RNA-seq Rank 

Lengronne et al. 

(2004) 
0.8378342 0.8236243 
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Descriptive Categories Sorted by Mean 

 The next question that we wanted to answer was whether RNA or protein 

expression level was related to protein function or localization. To test this, the mean 

expression values for each localization and GO category were compared for the RPKM, 

low variability RPKM, and protein abundance (Newman et al., 2006) datasets. Table 3 

shows the localization category means sorted from lowest to highest by the RPKM 

dataset values, and Table 4 shows the GO category means sorted from lowest to highest 

by the RPKM dataset values. The values are color coded, with white indicating the lowest 

mean in the sample and red indicating the highest mean in the sample.   

 

 

 

 

 

Figure 10. This figure shows the plots of normalized RNA-seq data against RNA abundance 

data normalized by rank (left) or transformed by natural log (right) obtained through 

affymetrix microarray by Legronne et al. (2004). 
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Table 3  

Comparison of RNA-seq and Protein Dataset Means for each Localization Category 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Category Average 

Localization Category 
RPKM 

Dataset 

Low 

Variability 

RPKM 

Dataset 

Protein 

Abundance 

Dataset 

(Newman 

et al., 2006) 

microtubule 27.9 26.8 184.0 

spindle_pole 30.8 30.6 117.0 

endosome 42.1 43.7 143.4 

bud_neck 46.4 45.6 203.2 

peroxisome 56.4 45.8 362.7 

mitochondrion 83.3 86.3 294.0 

bud 84.7 80.4 385.6 

nuclear_periphery 87.4 86.9 390.2 

actin 92.5 97.6 485.5 

late_golgi 97.7 100.2 372.4 

lipid_particle 103.1 106.7 651.0 

golgi 120.3 121.4 426.8 

punctate_composite 121.1 132.1 589.5 

er_to_golgi 125.8 125.8 604.7 

early_golgi 126.7 126.2 472.7 

nucleus 142.9 153.4 826.0 

vacuolar_membrane 147.8 148.2 703.1 

cell_periphery 154.8 168.6 655.2 

nucleolus 183.4 185.8 503.5 

vacuole 246.9 285.8 639.4 

er 296.5 300.8 650.0 

cytoplasm 307.9 292.1 1505.9 
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Table 4 

Comparison of RNA-seq and Protein Dataset Means for each GO Category 

 Category Average 

GO Category 
RPKM 

Dataset 

Low Variability 

RPKM Dataset 

Protein 

Abundance 

Dataset 

(Newman et 

al., 2006) 

DNA recombination 39.2 40.4 178.8 

peroxisome organization 45.8 47.9 291.5 

microtubule organizing center 47.0 50.3 346.2 

nucleic acid binding transcription factor activity 53.3 47.1 180.8 

histone binding 54.3 50.1 283.9 

transposition 55.0 52.7 280.3 

chromosome segregation 55.9 60.4 325.1 

cell morphogenesis 56.0 69.0 399.0 

DNA replication 56.9 55.5 552.5 

peroxisome 57.2 62.6 265.9 

organelle fission 58.7 62.7 424.2 

tRNA processing 59.3 59.6 232.5 

regulation of DNA metabolic process 59.3 56.0 427.1 

protein lipidation 59.9 60.7 161.8 

transcription factor binding 63.3 68.2 256.8 

mitochondrial translation 64.4 67.9 273.6 

helicase activity 65.8 69.7 698.3 

endosomal transport 65.9 62.8 214.8 

oligosaccharide metabolic process 66.2 66.0 531.2 

transcription factor activity, protein binding 67.8 75.4 266.1 

chromatin binding 67.9 68.2 266.7 

mitotic cell cycle 68.9 71.6 355.6 

vitamin metabolic process 71.3 88.2 261.1 

protein dephosphorylation 72.9 76.1 304.9 

protein binding, bridging 73.5 76.1 402.2 

DNA-templated transcription, elongation 75.1 74.1 365.4 

cytoskeleton 77.0 83.7 371.0 

transcription from RNA polymerase II promoter 77.3 80.5 341.7 

regulation of transport 78.9 82.8 250.3 

mRNA processing 79.6 84.0 370.2 

methyltransferase activity 79.9 81.4 529.4 

nuclease activity 79.9 86.6 188.6 

DNA repair 80.5 90.1 480.5 

RNA splicing 80.9 85.8 303.5 

protein acylation 81.6 88.4 298.4 

chromosome 81.6 90.5 460.6 

DNA-templated transcription, termination 82.0 84.6 581.6 

phosphatase activity 82.1 87.3 297.7 

regulation of cell cycle 82.2 90.7 544.7 
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Table 4 (continued) 
lipid transport 83.5 74.2 469.6 

snoRNA processing 84.4 91.1 257.1 

ubiquitin-like protein binding 84.8 92.7 410.4 

cell cortex 85.0 90.1 356.2 

enzyme binding 86.2 92.2 367.9 

cytokinesis 88.0 93.2 281.2 

meiotic cell cycle 88.2 100.8 659.0 

amino acid transport 89.3 100.0 889.4 

protein modification by small protein conjugation or 

removal 89.6 96.2 1012.3 

cytoskeleton organization 89.7 94.0 336.4 

peptidyl-amino acid modification 92.7 102.9 501.0 

response to osmotic stress 93.3 96.7 947.9 

pseudohyphal growth 93.8 97.7 600.3 

cytoskeletal protein binding 95.3 99.6 332.7 

vesicle organization 95.9 91.9 288.5 

membrane invagination 96.4 104.8 509.8 

cellular response to DNA damage stimulus 97.1 109.0 589.5 

telomere organization 98.4 103.2 953.8 

nucleus 100.0 104.0 631.8 

RNA modification 100.7 102.8 303.9 

transcription from RNA polymerase I promoter 100.7 101.6 390.8 

mitochondrion organization 100.9 94.5 608.3 

DNA binding 101.2 108.9 570.6 

nucleus organization 102.1 111.1 460.3 

peptidase activity 103.4 106.7 351.1 

proteolysis involved in cellular protein catabolic 

process 105.2 111.2 611.0 

protein maturation 105.8 110.2 378.6 

lipid binding 106.9 114.4 394.8 

DNA-templated transcription, initiation 107.6 110.1 350.6 

protein complex biogenesis 109.3 110.7 454.9 

Golgi apparatus 110.5 113.8 351.6 

kinase activity 113.2 123.8 1152.6 

signaling 113.4 107.4 416.8 

transcription from RNA polymerase III promoter 115.4 111.2 407.1 

exocytosis 116.4 126.3 256.0 

histone modification 117.2 131.8 679.7 

hydrolase activity 117.7 125.4 776.3 

nucleolus 118.8 126.0 518.6 

lipid metabolic process 119.7 117.2 510.6 

protein phosphorylation 120.9 138.2 569.1 

response to heat 123.1 133.0 423.9 

chromatin organization 123.5 132.3 537.5 

transferase activity 123.9 133.6 788.8 

Golgi vesicle transport 124.6 128.6 434.9 

cell budding 125.0 138.2 401.1 

endomembrane system 125.9 125.8 432.9 

protein targeting 126.8 132.7 914.1 

protein alkylation 129.5 145.0 624.2 
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Table 4 (continued) 
carbohydrate transport 129.9 185.9 2416.8 

endocytosis 130.9 140.9 479.7 

cellular respiration 133.7 143.3 391.9 

cytoplasmic, membrane-bounded vesicle 134.7 136.7 576.4 

nucleotidyltransferase activity 136.5 143.9 1168.7 

sporulation 138.2 166.0 1023.2 

ion binding 142.5 126.8 1672.7 

response to starvation 144.2 160.1 738.1 

RNA catabolic process 145.9 161.4 574.4 

transferase activity, transferring glycosyl groups 147.1 164.4 336.2 

invasive growth in response to glucose limitation 148.2 177.9 192.4 

transmembrane transporter activity 148.3 159.2 760.4 

hydrolase activity, acting on glycosyl bonds 148.4 170.6 184.6 

transmembrane transport 149.5 156.8 1288.9 

regulation of organelle organization 150.3 166.9 447.5 

cellular ion homeostasis 150.9 169.7 697.9 

mitochondrial envelope 154.4 138.7 567.2 

endoplasmic reticulum 156.2 148.5 497.3 

guanyl-nucleotide exchange factor activity 156.6 144.5 545.0 

protein transporter activity 158.3 156.8 636.4 

ion transport 158.7 172.3 833.8 

ATPase activity 161.1 176.2 1397.8 

GTPase activity 161.6 161.7 583.0 

site of polarized growth 167.3 177.5 451.2 

ligase activity 172.7 176.2 1464.6 

membrane 174.6 184.2 932.1 

regulation of protein modification process 181.2 201.8 1031.2 

protein glycosylation 183.7 188.8 983.7 

cellular bud 187.6 201.3 447.4 

response to chemical 189.7 201.9 713.9 

enzyme regulator activity 192.6 220.3 841.2 

organelle inheritance 196.4 176.0 449.2 

mRNA binding 204.1 232.5 1000.1 

vacuole 207.0 221.3 1311.5 

mitochondrion 213.3 220.2 1299.4 

conjugation 229.3 280.9 708.7 

tRNA aminoacylation for protein translation 230.5 230.5 2053.1 

signal transducer activity 232.5 340.1 304.6 

cytoplasm 250.9 245.8 1079.5 

cellular amino acid metabolic process 273.0 307.4 1683.7 

response to oxidative stress 281.6 301.2 1182.0 

translational initiation 285.8 262.1 1715.0 

protein folding 302.4 336.6 2485.5 

organelle fusion 308.5 335.4 467.7 

cell wall organization or biogenesis 324.0 365.1 1143.3 

oxidoreductase activity 327.2 376.5 1885.4 

unfolded protein binding 342.7 363.3 3352.2 

membrane fusion 344.3 377.9 493.5 

ribosomal subunit export from nucleus 347.5 380.0 991.9 
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Table 4 (continued) 
RNA binding 356.3 376.6 2053.0 

plasma membrane 360.1 417.2 2121.7 

vacuole organization 375.9 421.9 513.7 

extracellular region 379.9 412.7 543.8 

rRNA processing 421.2 479.7 1312.2 

nuclear transport 431.2 456.3 2093.3 

isomerase activity 480.5 401.5 1287.3 

ribosomal large subunit biogenesis 487.7 538.6 1645.2 

regulation of translation 491.2 517.0 1350.9 

translation factor activity, RNA binding 504.2 385.1 5294.7 

nucleobase-containing compound transport 508.5 535.4 2472.5 

carbohydrate metabolic process 525.9 635.2 3052.6 

organelle assembly 552.6 599.5 1385.5 

lyase activity 583.9 676.6 3606.5 

ribosomal small subunit biogenesis 593.8 676.9 1398.6 

rRNA binding 642.2 788.8 1203.5 

nucleobase-containing small molecule metabolic 

process 706.7 844.9 3767.1 

cell wall 788.1 1034.3 4548.3 

cofactor metabolic process 789.0 913.8 4258.2 

generation of precursor metabolites and energy 799.7 1045.8 4162.3 

monocarboxylic acid metabolic process 900.3 1086.0 6099.1 

ribosome 1162.6 1015.6 2553.2 

ribosome assembly 1164.2 1298.7 2062.1 

structural molecule activity 1185.4 1057.4 2204.0 

translational elongation 1414.7 1418.4 6144.7 

structural constituent of ribosome 1645.7 1407.8 2826.3 

cytoplasmic translation 2145.8 1823.5 3914.4 
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Bootstrapping  

 Localization bootstrapping. To determine which localization categories contain 

genes with statistically high or low expression, a bootstrapping statistical analysis 

compared expressions levels in each category to a set of randomly chosen genes that were 

not in the category. The localization categories that contain statistically significant values 

are shown in Figures 11-14. Specifically, for this analysis, we used the RPKM dataset 

(Figure 11), low variability RPKM dataset (Figure 12), Rank dataset (Figure 13), and 

protein abundance dataset (Figure 14). The categories with statistical significance are 

similar between each analysis. All four analyses found that cytoplasm genes had 

statistically significant high expression levels, and spindle pole and mitochondrion genes 

had statistically significant low expression levels.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Statistically Significant Localization Categories in the RPKM Dataset. 

Boxplots are shown for localization categories with p values less than 0.005. Pink dots 

represent individual RPKM values and the green horizontal line represents the average of 

all localization category means.   
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Figure 12. Statistically Significant Localization Categories in the Low Variability RPKM 

Dataset. Boxplots are shown for localization categories with p values less than 0.005. 

Pink dots represent individual low variability RPKM values and the green horizontal line 

represents the average of all localization category means.   
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Figure 13. Statistically Significant Localization Categories in the Rank Dataset. Boxplots 

are shown for localization categories with p values less than 0.005. Pink dots represent 

individual rank values and the green horizontal line represents the average of all 

localization category means.   
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Figure 14. Statistically Significant Localization Categories in the Protein Dataset. 

Boxplots are shown for localization categories with p values less than 0.005. Blue dots 

represent individual protein abundance values and the green horizontal line represents the 

average of all localization category means.   
 

 

 

 

 GO bootstrapping. To determine which GO categories contained genes with 

statistically significant high or low expression values, as above, the bootstrapping 

statistical analyses compared the expression levels in each GO category to a random set 

of genes. The statistically significant localization categories for RPKM are shown in 

Figure 15, for low variability RPKM are shown in Figure 16, for rank are shown in 

Figure 17, and for protein abundance are shown in Figure 18. The categories with 



  

39 

statistical significance are similar between each analysis. All four analyses found that 

cytoplasmic translation, structural constituent of the ribosome, ribosome, nucleobase 

containing small molecule metabolic process, structural molecule activity, cofactor 

metabolic process, and cytoplasm had statistically significant high distributions and 

nucleus, transcription from RNA polymerase II promotor, nucleic acid binding 

transcription factor activity, and DNA recombination had statistically significant low 

distributions.   
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Figure 15. Statistically Significant GO Categories in the RPKM Dataset. Boxplots are 

shown for GO categories with p values less than 0.003. Pink dots represent individual 

RPKM values and the green horizontal line represents the average of all GO category 

means.   
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Figure 16. Statistically Significant GO Categories in the Low Variability RPKM Dataset. 

Boxplots are shown for GO categories with p values less than 0.003. Pink dots represent 

individual RPKM values and the green horizontal line represents the average of all GO 

category means.   
 



  

42 

   

F
ig

u
re

 1
7

. 
S

ta
ti

st
ic

al
ly

 S
ig

n
if

ic
an

t 
G

O
 C

at
eg

o
ri

es
 i

n
 t

h
e 

R
an

k
 D

at
as

et
. 

B
o
x

p
lo

ts
 a

re
 s

h
o
w

n
 f

o
r 

G
O

 c
at

eg
o
ri

es
 w

it
h
 p

 v
al

u
es

 

le
ss

 t
h
an

 0
.0

0
3
. 
P

in
k
 d

o
ts

 r
ep

re
se

n
t 

in
d
iv

id
u
al

 r
an

k
 v

al
u
es

 a
n
d
 t

h
e 

g
re

en
 h

o
ri

z
o
n

ta
l 

li
n
e 

re
p
re

se
n
ts

 t
h

e 
av

er
ag

e 
o

f 
al

l 
G

O
 

ca
te

g
o
ry

 m
ea

n
s.

 



  

43 

 
Figure 18. Statistically Significant GO Categories in the Protein Abundance Dataset. 

Boxplots are shown for GO categories with p values less than 0.003. Blue dots represent 

individual protein values and the green horizontal line represents the average of all GO 

category means.   
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Artificial Neural Network Results  

 Normalized RNA-seq data. In order to determine whether the GO and 

localization descriptions could predict gene expression levels, we used an artificial neural 

network approach.  Gene descriptions (i.e., GO annotations or localization) were used in 

the input layer and expression levels (i.e., RPKM, RPKM Low Variability, Rank) were 

used in the output layer throughout the training and testing of the neural network. The 

neural network’s ability to predict gene expression levels throughout 50 repetitions is 

shown in Figure 19. GO categories were able to predict binary RNA-seq levels with an 

average of 75.1 % accuracy. Localization categories were able to predict binary RNA-seq 

levels with an average of 66 % accuracy. As a control, GO and localization values were 

only able to predict the random binary vector with an average of 50.6 % accuracy, as 

expected. Individualized average prediction accuracy percentages are shown in Table 5.  
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Figure 19. Prediction Accuracy of Artificial Neural Network for RNA-seq data. The 

prediction accuracy is shown for 50 repetitions of the neural network for all dataset 

combinations. 

 
 

 

Table 5 
Average Prediction Accuracy of Artificial Neural Network for Normalized RNA-seq Datasets 

Combinations of datasets used for input variables (left) 

and output variables  (right) 

Average Percentage 

of Correct 

Predictions 

Go 

RPKM 74.7% 

 Low Variability RPKM 75.6% 

Rank 75.1% 

Random 50.5% 

Localization 

RPKM 66.1% 

Low Variability RPKM 66.4% 

Rank 65.6% 

Random 50.6% 
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Protein abundance data. The ability of localization or GO categories to predict protein 

expression level was tested as above using the neural network.  Gene descriptions (i.e., 

GO annotations or localization) were used in the input layer and protein expression 

levels, obtained from the Newman et al., (2006) protein abundance dataset, were used in 

the output layer throughout the training and testing of the neural network. The neural 

network’s ability to predict gene expression levels throughout 50 repetitions is shown in 

Figure 20. GO categories were able to predict binary protein abundance levels with an 

average 69.9% accuracy. Localization categories were able to predict binary protein 

abundance levels with an average of 66.2% accuracy. In contrast, GO and localization 

values were only able to predict the random binary vector with an average of 50.65 % 

accuracy, as expected. Individualized average prediction accuracy percentages are shown 

in Table 6. 
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Figure 20. Prediction Accuracy of Artificial Neural Network for Newman et al. (2006) 

Protein Abundance data. The prediction accuracy is shown for 50 repetitions of the neural 

network for all dataset combinations.  

 
 

 

Table 6 
Average Prediction Accuracy of Artificial Neural Network for Newman et al. (2006) Protein 

Abundance Dataset  

Combinations of datasets used for input variables (left) 

and output variables  (right) 

Average Percentage 

of Correct 

Predictions 

Go 
Protein 69.9% 

 Random 50.5% 

Localization 
Protein 66.2% 

Random 50.8% 
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Chapter 4 

Discussion 

Correlation Analysis 

RNA-seq is an effective method for consistently quantifying genome-wide 

expression levels. Here, we demonstrated the consistency of steady-state expression 

levels measured by RNA-seq quantifications by correlating S. cerevisae expression data 

obtained in similar conditions by six different research teams. The similarity in 

expression levels was high, as genome-wide correlations coefficients ranged from 0.684 

to 0.964. This high amount of consistency suggests the expression level of each gene is 

fixed. The slightly lower correlations of Fox et al. (2015) to all other samples may be a 

result of the platform used, which may vary slightly in sensitivity (SEQC/MAQC-III 

Consortium, 2014). While we observed high reproducibility in the RNA-seq expression 

levels measured in S. cerevisiae under steady-state conditions, the reproducibility of 

RNA-seq measurements has been previously reported by other researchers who have 

examined expression levels in different cell types, including cells from mouse tissues 

(Mortazavi et al., 2008), and human tissues (Marioni, et al., 2008). 

Previously, researchers have found good correlations between Affymetrix 

microarray data and RNA-seq data when quantifying differential expression in S. 

cerevisiae (Nookaew et al., 2012). However, the correlations have not been shown to be 

as strong for genes expressed at low levels (Mortazavi, et al., 2008). In our study of 

steady-state gene expression, we also observed a high degree of similarity between RNA-

seq data and Affymetrix microarray data, with correlation coefficients ranging from 

0.823 and 0.837. In agreement with previous studies, we found that genes with the lowest 



  

49 

expression had much lower correlations, and genes with high expression showed 

somewhat lower correlations. This finding gives further support for the utilization of the 

RNA-seq method for the study of genome-wide expression.  

 Although protein abundance sets were gathered from varying strains, conditions, 

and methods, the correlation coefficients of protein abundance datasets compared to each 

other were fairly high ranging from 0.605 to 0.875. In comparison to the RNA-seq 

datasets which spanned the majority of the transcriptome (5552-7130 genes represented 

in each set), the protein abundance datasets contained a much smaller collection of data 

(2,385-3868 genes represented in each set). While the protein and RNA-seq data sets 

were not perfectly correlated with each other, their correlation coefficients, ranging from 

0.613 to 0.734, showed that there is a high degree of similarity between protein 

abundance and RNA-seq expression levels. In previous research, the correlations between 

mRNA and protein abundance data in yeast have widely varied with Pearson correlation 

coefficients (R2) ranging from 0.34 to 0.87 (Abreu, et al., 2009). Our data may have 

shown higher correlations in comparison to some of the correlations previously obtained 

by researchers due to our use of data obtained through the very consistent RNA-seq 

method, rather than previously used methods such as microarray.  

Limitations in RNA-seq & Protein Abundance Measurements 

The differences observed between the RNA-seq count levels and protein 

abundance levels could be due to a variety of factors. Post-transcriptional factors likely 

attribute to some of this difference (Guimaraes, Rocha, & Arkin, 2014). The differences 

could also be due to the size of the datasets used in this study. As mentioned earlier, the 

protein datasets that were collected measured the protein abundance coded by 
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approximately 2385 to 3868 genes, while the RNA-seq datasets spanned more of the 

genome, covering between 5552 and 7130 genes. Thirdly, while variability was reduced 

through normalization methods, some differences could be due to the variations in 

methods used by different researchers. The importance of using both mRNA and protein 

expression data was confirmed through the comparison of category means and 

bootstrapping.  

Expression Trends  

 Similarities between RNA-sequencing and protein abundance methods were 

found when mRNA and protein datasets were merged with localization and GO 

categories. As shown in Tables 3 and 4, categories with low expression averages in the 

RNA-seq datasets tended to have low expression averages in the protein datasets. 

Additionally, categories with high expression averages in the RNA-seq datasets tended to 

have high expression averages in the protein datasets as well. In general, genes with GO 

categories relating to transcription and DNA-related processes tended to have lower 

expression averages, while genes relating to the ribosome and translation tended to have 

higher expression averages. This trend was confirmed by the bootstrapping results.  

 GO categories that were shown to contain genes with statistically significant high 

expression levels in all expression datasets (3 normalized RNA-seq datasets and 1 protein 

abundance dataset) were cytoplasmic translation, structural constituent of the ribosome, 

ribosome, nucleobase containing small molecule metabolic process, structural molecule 

activity, cofactor metabolic process, and cytoplasm. GO categories with statistically 

significant low expression levels, shown in all expression datasets, were nucleus, 
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transcription from RNA polymerase II promoter, nucleic acid binding transcription factor 

activity, and DNA recombination (see Figures 11- 18).  

 In the bootstrapping analysis of expression levels in localization categories, 

cytoplasm was shown to contain statistically significant highly expressed genes in all four 

bootstrapping analyses (3 normalized RNA-seq datasets and 1 protein dataset). The 

categories mitochondrion and spindle pole were shown to have statistically significant 

low distributions in all four bootstrapping analyses. Our results are similar to those found 

by Drawid, Jansen, and Gerstein (2000) who compared the gene expression levels of 

proteins localized to eight subcellular localization compartments in yeast cells. In their 

study, the cytoplasm was shown to have high expression levels and mitochondrion was 

shown to have one of the lowest expression levels. Expression levels of the nucleus 

tended to be low in our study, but did not always show statistically significant low 

expression. However, in the study by Drawid, Jansen, and Gerstein (2000), the nucleus 

was shown to have the lowest expression levels. This difference may be due to the 

additional localization categories that were introduced in our study.  

The results of the artificial neural network repetitions confirmed that there are 

biological processes, molecular functions, cellular components, and localizations that 

differ in the genes that are expressed at high levels versus genes that are expressed at low 

levels, such that the neural network was able to predict binary mRNA or protein levels 

using binary GO or localization categories with 66.1 to 75.6 percent accuracy. The 

prediction accuracy was more similar for mRNA and protein levels predicted by 

localization categories with the average mRNA prediction accuracy of 66.0% and the 

average protein prediction accuracy of 66.2%. The mRNA levels predicted by GO 
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categories were higher for mRNA levels (average of 75.1%) than protein levels (69.9%). 

This variation in prediction accuracy may be due to the smaller number of genes in the 

protein dataset compared to the large number of genes in the normalized RNA-seq 

datasets. If a smaller number of genes is used, the patterns may not be as easily 

detectable.  In all cases, the prediction accuracy was higher for mRNA and protein values 

than random vector values. This confirms that the portion of the predictions exceeding 

~50% is based on the presence of true patterns in the data, and not just a result of random 

chance.  

Conclusion 

 In this study, we’ve demonstrated the reproducibility of the RNA-seq method for 

the quantification of mRNA levels in S. cerevisiae under consistent conditions. This high 

level of reproducibility indicates that the level of each gene is fixed under constant 

conditions.  

Both the mRNA and protein abundance levels tended to be high for genes 

involved in translation and the ribosome, and low for genes involved in transcription and 

DNA-related processes. This may indicate that the S. cerevisiae needs high levels of 

translation and ribosomal proteins to survive, such that the high cost required to produce 

these proteins is outweighed. On the other hand, the yeast cell may not need a large 

amount of protein to complete the transcription and DNA-related processes necessary for 

the survival of the cell. These levels can remain low to balance the energy costs of the 

cell. This may suggest the genes expressed at low levels are non-essential, are needed in 

only low concentrations, or function in a smaller volume within the cell.  
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 Statistically significant high expression levels were shown for cytoplasmic 

translation, structural constituent of the ribosome, the ribosome, nucleobase containing 

small molecule metabolic process, structural molecule activity, cofactor metabolic 

process, and the cytoplasm. Statistically significant low expression levels were shown for 

the nucleus, transcription from RNA polymerase II promoter, DNA recombination, 

nucleic acid binding transcription factor activity, the spindle pole, and the mitochondrion. 

These categories represent potential evolutionary pressures for the high or low expression 

of genes in yeast.  

The distinction in gene ontology and localization characteristics of genes which 

were highly expressed, compared to those which were expressed at low levels, was 

confirmed through the use of an artificial neural network.  

Future Research  

At the current time, the gene ontology or localization categories of some genes in S. 

cerevisiae are identified as ambiguous or unknown. As the categorizations of more genes 

are identified, it will be important to reanalyze the expression levels in each category, and 

to rerun the neural network analysis to obtain more accurate results.  

 This research should also be carried out in other organisms using a combination 

of RNA-seq and protein abundance data. The expression levels of the genes of the same 

cell type in other organisms should be measured under standard conditions to confirm 

that the level of a gene’s expression is fixed under consistent conditions. Our findings 

would be further supported if the GO and localization categories of other organisms show 

similar expression trends to those shown in our study. 
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