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Abstract 

 

 

George Avery 

SENSITIVITY STUDIES ON THE SHEAR LAG PARAMETER β USING 

ANALYTICAL AND NUMERICAL TECHNIQUES 

2015-2016 

William T. Riddell, Ph.D. 

Master of Science in Mechanical Engineering 

 

 

The strength of fiber-reinforced composites is dependent on the strength of the 

fiber-matrix interface bond.  Thermal, chemical, and other means have been used to 

modify the surface of fibers, resulting in increased fiber-matrix interface bond strength.  

However, researchers are still dependent on empirical methods to relate surface 

modifications to composite performance.  Additional efforts are required to develop 

physics-based models for micro-mechanical effects on interfacial bond strength that will 

be needed for the improved design and processing of fiber reinforced composites.  It is 

anticipated that experimental, numerical, and analytical efforts will be needed to 

contribute toward this endeavor. 

A numerical approach is presented in this thesis that allows the shear lag 

parameter, β, to be extracted from finite element results.  Extracting the shear lag 

parameter from numerical data allows numerical and analytical approaches to be 

compared.  Axisymmetric finite element analyses of fiber pull out, axisymmetric 

macrobond, and fully embedded fiber fracture tests are discussed in light of this 

approach.  Material and geometric properties used in numerical models are then varied to 

study their effects on the fitted value of β.  It is anticipated that this approach will enable 

and enhance future research efforts to simulate the effect of fiber surface texture on pull 

out strength.   
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Chapter 1  

 

 

Introduction 

 

 

 Increasing demand for high performance and low operating cost in products has 

led to an increased demand for high strength to weight and high stiffness to weight ratios 

for materials systems.  This demand has led to the development and adoption of fiber-

reinforced composite systems, where strong and stiff fibers are embedded in a lighter, but 

weaker matrix material.  Typical examples of fiber reinforced composite material systems 

are glass fiber-reinforced, carbon fiber-reinforced and aramid fiber-reinforced polymer 

composites.  The strength of fiber-matrix composites is largely governed by the 

interfacial bond strength between the fiber and the matrix, rather than the strength of 

either the fiber or matrix materials individually.  Therefore, many efforts to improve the 

strength of fiber matrix composites have focused on improving this bond strength.  

Unfortunately, despite experimental, theoretical and numerical efforts, the transfer of 

loads from matrix to fiber through interfacial shear is still not well understood. 

 The goal of this thesis is to explore the relationships between a theoretical shear 

lag model, and results from finite element approaches.  Predictions from these models are 

compared to published experimental data, where appropriate.  The approach and 

subsequent results are broken up into several chapters.  Previous efforts to understand the 

material properties of fiber composites including analytical, experimental, and numerical 

approaches are further discussed in chapter 2.  The approach used to conduct the research 

described by this thesis is outlined in chapter 3.  The shear-lag based analytical solution 

to the stress transfer of different experimental cases is described in chapter 4, while the 
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numerical FEA approach is outlined in chapter 5.  These two methods are then compared 

for the purposes of optimizing the shear lag parameter 𝛽, which allows for the 

interpretation of the rate of stress transfer between the fiber and matrix in the composite.  

This is accomplished using several methods discussed in chapter 6.  With a method of 

extracting a β value we can better understand how material properties along with certain 

geometric properties of a pull-out test can affect the stress transfer within a composite.  

Chapter 7 show how the ratio of Young's modulus along with fiber embedment length 

and test grip location can affect β.  Chapter 8 then takes these parameters and then sets 

them to match certain published experiments to see if the published data can be replicated 

through modeling.  A discussion of how the best fit value of β, along with the methods of 

determining the best fit β change between the different boundary conditions expressed in 

chapter 3 and the parameters studied in chapter 7 is held in chapter 8. 
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Chapter 2 

 

 

Literature Review 

 

 

 The strength of fiber composites can be greatly influenced by the strength of the 

bond between the fiber and the matrix material.  As this bond strengthens, the amount of 

load that a composite can withstand increases.  An added benefit to this method is that 

existing composite configurations can be enhanced instead of spending energy and 

resources developing new materials to accomplish the same task.  In an effort to 

strengthen this bond, surface treatments have been used to alter the fibers being 

embedded in the composite.  The treatments include but are not limited to exposure to 

chemical baths [1] or UV radiation [2,3].  The objective of these treatments is to increase 

surface roughness to allow an increase in surface area for the resin of the matrix to adhere 

to. 

 Unfortunately, the work needed to analyze the effectiveness of various surface 

treatments can be time consuming and costly.  Currently, the effectiveness of surface 

treatments on fibers is evaluated using experimental approaches.  These experiments 

include measuring the force needed to debond an exposed fiber from a droplet of matrix 

material.  These tests can take the form of microdroplet tests as performed by Miller et al. 

[4] Nishikawa et al. [5] and Cen et al. [6].  These tests can also be performed with a large 

amount of matrix material which are known as macrodroplet or macrobond tests.  

Examples of this method are found in the work by Piggot et al., [7] and Takaku et al., [8] 

and Hann et al. [9].  The majority of these experiments are conducted by pulling the fiber 

through a rigid plate or knife edges creating a top fixity boundary condition for 
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displacement.  Bottom fixity conditions are also used by Tsai et al. [10] and partly by 

Brandstetter et al. in their study of fiber bundles as opposed to single fiber experiments 

[11].  Fragmentation tests such as those performed by Bannister et al. [12], and Galiotis 

et al. [13] fully embed the fiber in a matrix coupon.  Examples of these test geometries 

can be seen in figure 1.  Note that the geometric constraints are not shown, as these are 

different for different test configurations. 

 

 

 

  
 

 

 

 
Figure 1. Concentric cylinder model for exposed (microdroplet, macrobond, pull-out tests) and 

fully embedded fibers (fragmentation tests) 

 

 

 

 In addition to measuring debond force, Raman spectroscopy can be used to 

measure internal stress within the composite.  Through Raman spectroscopy [14], stress 

concentrations can be measured by the scattering of light by molecular vibrations induced 

by loading.  The magnitude of the scattering corresponds to a specific stress 

concentration within the material being studied.  In addition to measuring debond force, 

the various forms of pull out and fragmentation tests can measure the strength of the 

composite after the fibers have begun to debond from the matrix material.  Multiple 
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iterations of these tests must be performed to characterize the effect of various surface 

treatment parameters, making the process of finding an ideal surface treatment a long and 

expensive process.  Raman spectroscopy can also be costly since it requires high quality 

sensors and light sources to ensure accurate measurements of the sensitive shifts in the 

Raman peak [14].  Another hindrance of pull out tests is that aside from the use of Raman 

spectroscopy, the results come in the form of load vs displacement.  Stress behavior must 

then be inferred by converting the load transfer into stress transfer throughout the 

composite. 

 To better understand the behavior of surface treatments on composite materials a 

simplified model can be analyzed to understand the general behavior of stress along the 

fiber interface.  Stress transfer [15,16] and energy release rate [17,18] are two concepts 

with analytical solutions that have been developed to characterize composite behavior 

and the overall debond force.  The shear lag theory can be implemented by either using 

an approach which can be solved to be based on either the far field strain in the 

composite [13,19,20] or by using the far field stress acting on the fiber [11,16,21].  These 

two solutions are similar and are separated by the far field term.  Hooke's law relates 

stress and strain which in turn relates the two solutions.  The analytical method discussed 

in this paper is a form of the stress-based shear lag method first developed by Cox in 

1952 [21], who presented a governing equation for the average axial stress of a fiber 

embedded in a matrix.  This governing equation has been found to be applicable to many 

different pull out scenarios through slight modifications that are dependent on the 

configuration.  The shear lag method is a way to analytically model the uneven stress 

distribution of an object under load that is partially anchored to or within a rigid body.  In 
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his solution Cox uses a parameter β which quantifies the fiber’s ability to transfer load to 

the matrix and is a function of material properties and the volumetric fractions of the 

fiber and matrix.  Cox’s original equation for the shear lag parameter β was modified by 

Nayfeh [22].  The value of β has also been shown to be sensitive to the geometry of the 

experiment beyond the volume fractions [23-25].  Furthermore, there is a limited range of 

volume fractions for which the analytical solutions agree with experimental results [18].  

To overcome these sensitivities, Zhandarov et al. [24] and Holsman et al. [26] have used 

β as a fitting parameter to match experimental results instead of directly solving for it.  

This has been accomplished by considering trends in average shear stress versus 

embedment length that are predicted by shear lag models, and identifying the values of 

both of ultimate shear stress and β that allow for the best agreement with experimentally 

observed trends in the average shear stress at delamination vs embedment length, as well 

as fitting fiber strains measured using Raman spectroscopy [13].  In this approach the 

ultimate interfacial shear strength (IFSS) is the value of the curve at le=0, and β 

determines the slope of the curve.  The values are changed until a minimal error is 

achieved between the best fit curve and the experimental data.  However, this process 

requires the use of pull out experiments, denying an independent analytical solution.  

Another disadvantage to this method is that the analytical interpretation for the stress 

transfer along the fiber/matrix interface falls short of the stress concentration that occurs 

where the fiber meets the matrix material. 

 A more popular method of measuring and predicting stress and load behavior 

along the fiber interface is the use of finite element programs.  Through this method, 

debonding in composites can be modeled allowing numerical solutions to fiber pull-out 



7 
 

experiments.  Hutchinson et al. [27], Lin et al. [28], and Tsai et al. [29] among others 

have used finite element models to study fiber debond.  The use of this method is 

attractive because computer models can be adapted to analyze the behavior of a wide 

range of geometries. Yang et al. [30] use FE modeling to determine effects of embedment 

length and matrix radius on the stress in a composite.  Numerical modeling also allows 

for the detailed study of internal stresses.  Marotzke [31] uses a FEA to calculate the far 

stress fields and concentrations in different composite geometries.  Computational 

efficiency can be further increased by the use of axisymmetrical elements [32].  This 

method considers a two dimensional cross-section of the geometry being studied and then 

revolves the geometry around a central axis of symmetry.  This allows for a three-

dimensional analysis with considerably less computational time, but requires axial 

symmetry.  The axis of symmetry also simplifies the boundary conditions needed to 

execute the study.  Another advantage of computer modeling is that the stress 

concentrations at the start and end of the fiber/matrix interface can be more precisely 

modeled than by using a shear lag approach.  The shear lag approach does not capture 

these stress concentrations due to certain assumptions i.e. no radial displacement and no 

transverse stresses [16].  Marotzke [25] shows how changes in analytical boundary 

conditions corresponding to the fiber ends can affect the agreement between shear lag 

and FEA solutions while Zhao et al. [19] shows how refinements to previous assumptions 

can make the shear lag method more robust.  When modeling damage, computer models 

for debonding in composites must use analytical interpretations of how the fiber displaces 

within the matrix i.e. cohesive zones or frictional models.  Chen et al. [33] use a bilinear 

cohesive traction-separation law to model both the linear and nonlinear regimes of the 
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composite.  Hutchinson et al. [27] and Lin et al. [28] use a friction based models to allow 

debonding where Tsai et al. [29] use a mixture of cohesive zones and friction models.  

Modeling outside the linear elastic region of a composite requires a general knowledge of 

how the materials being modeled will behave ahead of time for an accurate model to be 

created, limiting the exploratory nature of the FEA method. 
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Chapter 3 

 

 

Approach 

 

 

 The goal of this work is to better understand the transfer of stress between the 

fiber and matrix during different loading scenarios.  This understanding will be 

developed by combining solutions from both analytical and numerical approaches.  To 

accomplish this, analytical results based on shear lag analysis and FEA results are 

compared for two different configurations that are intended to represent pull-out and 

fragmentation experiments.  The analytical and numerical models are limited to linear 

elastic behavior that occurs prior to any damage in the fiber, matrix, or the fiber-matrix 

interface.  All cases are assumed to be isotropic and have perfect bonds between the fiber 

and matrix.  No efforts to model delamination or failure are made in either the analytical 

or numerical models. 

 The shear lag solution used in this paper uses concentric circle geometries to 

simplify the geometries of the experiments being modeled.  Figure 2 shows the different 

boundary conditions imposed on the two concentric circle models.  Figure 2 shows that 

for any configuration, only one end of a configuration is fixed and the other end is free.  

The first concentric circle configuration modeled is the single exposed fiber.  The main 

feature of this configuration is that the fiber is exposed at one or both ends of the matrix 

material.  Two different boundary conditions were studied for this test configuration.  

The first boundary condition is that of a pull-out test where the bottom of the fiber and 

matrix cylinders are anchored to a rigid surface leaving the rest of the geometry free.  A 

specified load is then applied to the top surface of the fiber. 
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 The second set of boundary conditions used are those of a macrobond test.  In this 

configuration the load is in the same location as the previous configuration.  However, 

the top of the matrix cylinder is now held in place by a rigid plate attached to the matrix 

by rollers placed a specified distance away from the fiber.  This boundary condition is 

similar to the rigid plate used to anchor the experiments performed by Holsman et al. and 

leaves the bottom of the fiber and matrix as free surfaces. 

 The second concentric circle configuration modeled is that of the fragmentation 

test.  For this case the fiber is fully embedded in the matrix and is no longer exposed.  

The bottom surface of the matrix is fixed to a riged surface while a specified load is 

placed on the top surface.  All cases are modeled as axisymmetric.  The axis of symmetry 

ensures that the center of all specimens is fixed against translation in the r-direction 

allowing the use of roller boundaries exclusively.  These geometries and boundary 

conditions are further illustrated and explained in chapter 5. 

 

 

 

 

 

 

Figure 2. Boundary conditions for a) pull-out test, b) macrobond test, c) fragmentation 

test 

z 

Load Load 

Load 

z 
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 Three parameters are used to characterize these configurations.  The first 

parameter is based upon material properties and is the ratio of the Young's modulus of the 

fiber to that of the matrix’ denoted as λ where 

  λ=
𝐸𝑓

𝐸𝑚
 (1) 

 The other two parameters are geometric and describe the embedment length of the 

fiber and the distance from the fiber surface to the macrobond roller boundary (hole 

radius).  Embedment length is denoted as 𝑙𝑒 which is normalized by the diameter of the 

embedded fiber df.  The normalized embedment length is denoted as γ where 

  γ=
𝑙𝑒

𝑑𝑓
 (2). 

The hole diameter is denoted as 𝑑ℎ which is also normalized by the diameter of the fiber 

df.  The normalized hole diameter is denoted as α where 

  α= 
𝑑ℎ

𝑑𝑓
 (3). 

The ratio of hole diameter to fiber diameters applies to only the macrobond test and does 

not exist in the case of the fragmentation tests. 

 For each scenario the corresponding shear lag and FEA solutions will be 

compared.  The shear lag parameter β first proposed by Cox describes the efficiency of 

the fiber to transfer load to the composite.  Cox’s equation for β has later been modified 

by Nayfeh [22].  In addition to the analytical solution to β, a value exists that allows for a 

best fit between both shear lag and FEA solutions.  The revised β by Nayfeh is 

considered in this thesis and is defined as 
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   𝛽 = [
2

(
𝑑𝑓

2
)

2

𝐸𝑓𝐸𝑚

(
𝐸𝑓𝑉𝑓+𝐸𝑚𝑉𝑚

𝑉𝑚
4𝐺𝑓

+
1

2𝐺𝑚
(

1

𝑉𝑚
ln

1

𝑉𝑓
−1−

𝑉𝑓

2
)

)]

1
2⁄

  (4) 

and has units of 1/length.  β controls the rate at which the stress is transferred from the 

fiber to the matrix.   

 In this thesis β will be used as a fitting parameter, but will be calculated without 

the use of experimental debond forces.  A shear lag derivation for axial and shear stress 

as a function of z will be compared to FEA solutions using a least squares fit.  By 

changing the value of β we can change the slope of the shear-lag based solution until the 

shear lag model achieves a best fit agreement with the corresponding FEA.  This 

comparison will allow us to calculate an optimized value for β for a given test geometry.  

Once optimized, β will then be normalized by the diameter of the fiber dm and denoted as 

C, where 

  𝐶 =
𝛽𝑑𝑓

2
 (5) 

A range of different geometric and material properties will be used to analyze the 

sensitivity of C.  These results will then be compared to experimentally fitted values.  

The goal is to have both numerical and analytical solutions work together to create a 

strong solution for the value of β and therefore the internal stress behavior of the 

composite.   



13 
 

Chapter 4 

 

 

Shear Lag Theory 

 

 

A type of single fiber macrobond and pull out tests, as well as fragmentation tests 

were analyzed in this study.  In these cases, a single fiber is surrounded by a matrix 

material modeled by the concentric circle configuration.  In both cases of the single 

exposed fiber the outer surface of the fiber is free before entering the matrix material.  

The approach developed for the case of an exposed fiber is then modified for 

fragmentation tests.  For this case, the concentric circle model is expanded to include a 

fully embedded fiber.  These scenarios are best analytically characterized by the shear lag 

method of problem solving.  Shear lag solutions can take several forms.  The 

relationships developed by Cox [21] were used to solve for the average axial stress 〈𝜎𝑓〉 

and interfacial shear stress τ as a function of location along the z axis.  The fiber in the 

test geometry is characterized by its diameter 𝑑𝑓, embedment length 𝑙𝑒, and its Young’s 

modulus 𝐸𝑓 and Poisson’s ratio νf.  The matrix material is characterized by its diameter 

𝑑𝑚, and Young’s modulus 𝐸𝑚 and Poisson’s ratio νm.  Both materials were treated as 

isotropic and homogenous..  A range of 𝜆 was studied by changing the Young’s modulus 

of the fiber while 𝐸𝑚 νm and νf were held constant throughout the study. 

Exposed Single Fiber 

 In figure 1 an axial load is placed on the free fiber end of the exposed fiber 

configuration creating an average axial stress 〈𝜎0〉 in the free portion of the fiber.  Note 

that the brackets are used to represent an average value over a given cross section of the 

fiber.  In the portion of the fiber that is embedded in the matrix, the average axial stress 
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〈𝜎𝑓〉 and the interfacial shear stress τ are both functions of z as the load is transferred 

from the fiber to the matrix.  Note that the constraint boundary conditions are not denoted 

in the figure, as the derivation is independent of the constraint.  Cox developed a shear-

lag based solution for an embedded fiber.  The relationship between the derivative of the 

fiber axial stress with respect to location and the shear stress at a given location is given 

by 

  
𝑑〈𝜎𝑓(𝑧)〉

𝑑𝑧
=

−4𝜏(𝑧)

𝑑𝑓
  (6) 

The brackets denote average values, and are left from the original notation by Cox for 

emphasis.  This relation can be derived from the free body diagram of an increment of the 

fiber of length Δz as shown in figure 3. Cox then showed that the average axial stress in 

the fiber satisfies the differential equation 

  
∂2〈σf(z)〉

∂z2 − 𝛽 2〈σf(z)〉 = −𝛽 2〈σf∞〉 (7) 

 

 

 

 

Figure 3. Free body diagram of an increment of fiber embedded in a matrix 

 

 

 
where 〈σf(z)〉 is the average axial stress in the fiber as a function of z, β is the shear lag 

parameter, and 〈σf∞〉 is the average axial stress at large z of a corresponding infinitely 

〈𝜎𝑓(𝑧)〉 

〈𝜎𝑓(𝑧)〉+Δ〈𝜎𝑓(𝑧)〉 

+ 

𝜏𝑧 ∆𝑧 
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long embedded fiber.  For the macrobond test described in Figure 2b, the far field axial 

stress in the fiber is zero.   

 The shear lag parameter β originally proposed by Cox can be solved for using the 

equation 

  𝛽 =
1

rf
√

2Gm

Ef ln
S

rf

 (8) 

where Gm is the matrix shear modulus, Ef is the fiber axial modulus, rf is the fiber radius, 

and S is the mean center-to-center separation of fibers normal to their length.  The 

solution for β was then revised by Nayfeh to be 

  𝛽 = [
2

(
𝑑𝑓

2
)

2

𝐸𝑓𝐸𝑚

(
𝐸𝑓𝑉𝑓+𝐸𝑚𝑉𝑚

𝑉𝑚
4𝐺𝑓

+
1

2𝐺𝑚
(

1

𝑉𝑚
ln

1

𝑉𝑓
−1−

𝑉𝑓

2
)

)]

1
2⁄

 (9) 

where Ef, Em, Gf, are Gm, are the Young’s and shear moduli of the fiber and matrix 

respectively [22].  The radius of the fiber is 
𝑑𝑓

2
, the radius of the matrix is 

𝑑𝑚

2
, and both Vf 

and Vm are volumetric fractions defined as 

  V𝑓 = (
𝑑𝑓

𝑑𝑚
)

2

 (10) 

and 

  V𝑚 = 1 − 𝑉𝑓 (11) 

This solution of β has been widely used in place of Cox’s expression [16].  We can begin 

to normalize equation 9 by rewriting it as 

  𝛽 =
2

𝑑𝑓
[

2

𝐸𝑓𝐸𝑚
(

𝐸𝑓𝑉𝑓+𝐸𝑚𝑉𝑚

𝑉𝑚
4𝐺𝑓

+
1

2𝐺𝑚
(

1

𝑉𝑚
𝑙𝑛

1

𝑉𝑓
−1−

𝑉𝑓

2
)

)]

1
2⁄

 (12) 

The bracketed term in equation 12 is defined as C, resulting in  
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  𝛽 =
2𝐶

𝑑𝑓
 (13) 

Despite the form of the equation, from a physical standpoint the load transfer must be 

relatively independent of  Vf, and Vm when dm˃˃df.  The concept of an effective matrix 

diameter, the size at which additional matrix material does not affect load transfer, has 

been used to account for this discrepancy.  Considering this allows C to be considered a 

function of elastic moduli only when dm˃˃df.  For the axisymmetric macrobond, 〈σf∞〉 is 

zero allowing the solution to equation 7 to be described by the characteristic equation 

  〈σf(z)〉 = 𝐶1𝑒𝛽𝑍 + 𝐶2𝑒−𝛽𝑍 (14) 

 

The boundary conditions that determine the values for C1 and C2 are the average axial 

stress at the locations z=0 and z=𝑙𝑒, where 𝑙𝑒 is the embedment length of the fiber.  

Applying the first boundary condition at z=0 yields 

  〈𝜎𝑓(0)〉 = 𝐶1 + 𝐶2 = 〈𝜎0〉 (15) 

where 〈𝜎0〉 is the average stress acting on the free portion of the fiber (i.e. the applied 

load).  We can then solve for C2 in terms of C1 and the stress 〈𝜎0〉 

  𝐶2 = 〈𝜎0〉 − 𝐶1 (16) 

The equation for the second boundary condition then becomes 

  〈𝜎𝑓(𝑙𝑒)〉 = 𝐶1𝑒𝛽𝑙𝑒 + (〈𝜎0〉 − 𝐶1)𝑒−𝛽𝑙𝑒 = 0 (17) 

C1 becomes 

  𝐶1 =
−〈𝜎0〉𝑒−𝛽𝑙𝑒

𝑒𝛽𝑙𝑒−𝑒−𝛽𝑙𝑒
 (18) 

which simplifies to 

  𝐶1 =
−〈𝜎0〉

𝑒2𝛽𝑙𝑒−1
 (19) 
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We can now write the average stress equation in terms of the shear lag parameter β, 

initial stress 〈σ0〉, and embedment length, le. 

  〈𝜎𝑓(𝑧)〉 =
〈𝜎0〉

1−𝑒−2𝛽𝑙𝑒
𝑒−𝛽𝑍 −

〈𝜎0〉

𝑒2𝛽𝑙𝑒−1
𝑒𝛽𝑍 (20) 

We then apply equation 6, Cox’s axial/shear stress relation to allow us to solve for the 

shear stress as a function of z  

  𝜏𝑓(𝑧) =
𝑑𝑓

4
[

𝛽〈𝜎0〉

1−𝑒−2𝛽𝑙𝑒
𝑒−𝛽𝑍 +

𝛽〈𝜎0〉

𝑒2𝛽𝑙𝑒−1
𝑒𝛽𝑍] (21) 

 Equations 20 and 21 can be adapted to the first case of infinite embedment length 

by taking the limit le→∞.  These equations then take the form 

  lim
𝑙𝑒→∞

〈𝜎𝑓(𝑧)〉 = 〈𝜎0〉𝑒−𝛽𝑍 (22) 

  lim
𝑙𝑒→∞

𝜏𝑓(𝑧) =
𝑑𝑓

4
[𝛽〈𝜎0〉𝑒−𝛽𝑍] (23) 

Fully Embedded Single Fiber 

 This approach can be extended to the case of a fiber that is fully embedded in a 

matrix material, as shown in figure 2c.  In this case, the full fiber length spans from 0 to 

2le, but we consider only half of the fiber so that z can range from 0 to 𝑙𝑒, with z=0 at the 

free end of the fiber and z=𝑙𝑒 at the midplane of the fiber.  The stress at z=le is equal to 

〈σ∞〉 for large values of le, and can be calculated by using the rule of mixtures for 

composites [34].  As the fiber stresses no longer approach zero for large z, the 

characteristic equation derived from equation 7 becomes 

  𝐶1𝑒𝛽𝑍 + 𝐶2𝑒−𝛽𝑍 = −𝛽 2〈σf∞〉  (24) 

where 〈σf∞〉 describes the far field stress as some constant denoted as 〈σ∞〉, which is 

equal to the stress in the fiber at large z.  The solution to this equation then takes the form 

  〈𝜎𝑓(𝑧)〉 = 𝐶1𝑒𝛽𝑍 + 𝐶2𝑒−𝛽𝑍 + 〈σ∞〉   (25) 
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The rule of mixtures [34] states that for long fibers, a longitudinally loaded composite is 

treated as two springs in parallel and therefore both fiber and matrix materials have equal 

strain.  The effective Young’s modulus is given by a combination of fiber and matrix 

moduli weighted by their volumetric fractions given by equations 10 and 11.  The upper 

bound strain in the composite and the composite’s Young’s modulus for a longitudinally 

loaded fiber are written as 

  𝜀𝐶 = 𝜀𝑓 = 𝜀𝑚  (26) 

  𝐸𝑐 = (𝑉𝑓𝐸𝑓) + (𝑉𝑚𝐸𝑚) (27) 

where 𝜀𝑐 is the strain in the overall composite, 𝜀𝑓 is the strain in the fiber, 𝜀𝑚 is the strain 

in the matrix material, and Ec is the effective modulus of the composite.  Once the 

effective Young’s moduli are calculated, the effective stresses can found by the use of 

Hooke’s law.  

  〈𝜎𝑐〉 = (𝑉𝑓〈𝜎∞〉) + (𝑉𝑚〈𝜎𝑚〉) (28) 

  〈σ∞〉  =
(𝐸𝑐𝜀𝐶)−(𝑉𝑚𝜀𝐶𝐸𝑚)

𝑉𝑓
 (29) 

The artificial boundary conditions for the problem are that the stress at the free end of the 

fiber is zero, expressed as 

  〈𝜎0〉 = 0 (30) 

and that symmetry conditions exist in the middle of the fiber, expressed as 

  
𝜕𝜎𝑙𝑒

𝜕𝑧
= 0 (31) 

Considering the first boundary condition leads to 

  𝐶1 + 𝐶2  = −〈σ∞〉 (32) 
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Solving for C1 first and substituting into equation 25 allows us to solve for C2 which 

becomes 

  𝐶2 =
−〈𝜎∞〉

1+𝑒2𝛽𝑙𝑒
 (33) 

Substituting equation 33 into 32 allows us to find C1 which becomes  

  𝐶1 =
−〈𝜎∞〉

1+𝑒−2𝛽𝑙𝑒
 (34) 

Equation 25 then takes the form 

  〈𝜎𝑓(𝑧)〉 =
−〈𝜎∞〉

1+𝑒−2𝛽𝑙𝑒
𝑒𝛽𝑍 −

〈𝜎∞〉

1+𝑒2𝛽𝑙𝑒
𝑒−𝛽𝑍 + 〈σ∞〉  (35) 

We can then obtain the shear stress as a function of z by using Cox’s relation in equation 

6. 

  𝜏𝑓(𝑧) =
−𝑑𝑓

4
[

𝛽𝜎∞

1+𝑒2𝛽𝑙𝑒
𝑒−𝛽𝑍 −

𝛽𝜎∞

1+𝑒−2𝛽𝑙𝑒
𝑒𝛽𝑍] (36) 

Note that the main difference between these two configurations is that for a single 

exposed fiber the initial stress acting on the free end of the fiber must be known for the 

analysis whereas the configuration of a fully embedded fiber requires the far field 

midplane stress of the fiber determined from the law of mixtures. 
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Chapter 5 

 

 

Finite Element Analyses 

 

 

Infinite Embedment Length Case 

 

 All finite element models discussed in this thesis were created and analyzed with 

Comsol Multiphysics software with each geometry composed of axisymmetric elements.  

The first case studied was intended to represent an infinite embedment length.  Single 

fiber pull out and macrobond boundary conditions were used in the analysis and can be 

seen in figure 4.  The boundary conditions used to create each geometry were simulated 

by using roller constraints in the appropriate locations.  The matrix diameter was 40df and 

the embedment length was 20df for preliminary analyses to approximate the case of 

infinite embedment length.  Sensitivity studies suggest that these matrix dimensions are 

large compared to the fiber radius and the resulting normalized solutions presented in this 

paper are not sensitive to small changes in the dimensions. 

 The boundary conditions for the fiber pull out study included the bottom of the 

composite (fiber and matrix) fixed against translation in the z direction through the use of 

the aforementioned roller constraint.  The modeling program automatically assigned 

boundaries to fix the axis of symmetry against translation in the r direction. 

 The geometry for the macrobond tests was kept the same, but the boundary 

conditions were changed.  For this configuration, the roller constraint was moved from 

the bottom of the composite to the top of the matrix material only.  A convergence study 

was used to determine the distance from the fiber interface to the roller constraint.  This 

distance was to be the appropriate size for the hole in the macrobond testing apparatus 
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used by Holsman et al [26].  The hole was expanded until the measured value of average 

axial stress 〈𝜎𝑓〉 at the beginning of the fiber/matrix interface approached the initial stress 

acting on the free end of the fiber 〈𝜎0〉.  The diameter for the hole was evaluated to be 

approximately two fiber diameters.  The combination of a long embedment length and a 

large hole diameter was sought for the purposes of decreasing stress concentrations in the 

system. 

 

 

  
Figure 4. Axisymmetric configurations representing a) pullout, and b) axisymmetric 

macrobond test 

 

 

 

A range of λ of 0.33 to 80 were used to study these configurations. 

 Quadratic quadrilateral and triangular shaped elements were used to model the 

composite.  A uniform quadrilateral mesh was generated within the fiber, while triangular 

elements were used within the matrix.  A close up view of the fiber/matrix interface 

region is shown in figure 5.  A convergence study was conducted to find the appropriate 

element size for the fiber, growth ratio for the triangular elements in the matrix, and the 

maximum element size for the matrix.  The symmetric quadrilateral elements used within 

the fiber were made to have a length of 0.02df.  The triangular elements used in the 
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matrix started at the fiber/matrix interface with the same element length as the square 

mesh and grew at a rate of 20 percent of the adjacent element. 

 

 

 

 

 
 

Figure 5. Optimized mesh for FEA analyses 

 

 

 

Finite Embedment Length Case  

  The macrobond geometry and boundary conditions were used exclusively to 

analyze the case of finite embedment length.  The geometry was modified to closely 

resemble experiments performed by Holsman, et al. [26] so that a better comparison 

between the numerical model and their experimental results could be obtained.  

Modifications included reducing the fiber diameter to 0.0105in (30 Gauge) and reducing 

the embedment length to less than 10df.  The matrix material was also repositioned to be 

approximately 95df (1in) above the fiber end to better simulate experiments by Holsman 

et al.  It should be noted that sensitivity studies showed that repositioning the matrix 

material away from the fiber end (i.e. bottom fixity BC) had no effect on load transfer.  

The geometry used for finite embedment length studies can be seen in figure 6.  The most 

extreme case considered in the analyses consisted of an embedment length of 3df and a 
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hole diameter of 1.1df.  This analysis was then performed for values of λ ranging from 1 

to 80.  Studies of the effects of hole diameter started with a diameter of 1.1df which 

represents a hole size that is reasonably similar to that used for experiments described by 

Holsman et al. and ending with a diameter of 3df.  Results from FEA simulations 

exhibited behavior similar to that reported by Herrera-Franco [35].  γ values ranging from 

3 to 30 were also evaluated for each hole diameter. 

 Results were extracted in the form of stress vs location for shear stress taken 

along the fiber/matrix interface.  Average axial stress was taken from calculating the 

average stress along a 2D cross-sectional cutlines placed along the fiber radius.  Cutlines 

were taken at intervals of 0.10df along the z axis fibers with a length of less than 10df and 

intervals of 0.25df for fibers with a length over 10df. 

 

 

 

 

Figure 6. Geometry for macrobond tests with finite embedment lengths 
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Fully Embedded Fiber Case 

 

 The final case of a fully embedded fiber was modeled with axisymmetric 

concentric circles.  The fiber diameter from the second case of a finite macrobond 

geometry was kept for the fully embedded geometry.  The fiber was then centered in a 

matrix consisting of a constant length of 5in and a radius of 10df while 6 fiber lengths 

starting from 3df and ending at 100df were studied.  λ of the composite was kept constant 

at a value of 40 for all studies.  A roller constraint was placed on the bottom edge of the 

matrix to enforce boundary conditions while a specified load was placed on the top edge 

of the matrix.  The same elements and element sizes from the single exposed fiber 

configurations were used for this configuration.  Again, symmetric square elements of 

0.02df were placed inside the fiber and triangular elements with a growth rate of 20% 

were placed in the matrix.  The geometry with its dimensions and boundary conditions 

can be seen in figure 7 

 

 

 

 

Figure 7. Geometry for fragmentation test 
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 For these analyses, it was assumed the solution was symmetric about the 

midplane and therefore, only fiber stresses from half of the fiber were used for the 

comparison to the analytical solution.  Numerical solutions for shear stress were obtained 

from the lower half of the fiber/matrix interface.  In addition to the use of cross-sectional 

cutlines to pull solutions for average axial stress, the non-averaged axial stress along the 

axis of radial symmetry was pulled from the analyses.  At a given distance z from the end 

of the fiber, the average axial stress on the cross section of the fiber disagrees with non-

averaged axial stress along the axis of symmetry for a distance of approximately 1 fiber 

diameter.  At 1 fiber diameter from the free surface, the difference between these two 

values is less than 2%, and continues to decrease to well below 1% by 2 fiber diameters.  

This study was conducted for fiber lengths of 3df, 5df, and 10df. 
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Chapter 6 

 

 

Comparison between FEA and Shear Lag Theory 

 

 

 The shear lag parameter β is sensitive to the geometry of the pull-out scenario.  

For this reason it is not widely used for characterizing interfacial bond strength.  

Zhandarov et al. [24] proposed using β as a fitting parameter to experimentally fit β using 

average debond stress.  Holsman et al. [26] expanded on this method by using a 

normalized β value denoted as C to fit debond stress through multiple fiber diameters. 

 In this study β was also used as a fitting parameter to minimize the error between 

the analytical and FEA solutions for shear and average axial stress.  This best fit method 

to determine β in this thesis is similar to that used by Galiotis [13] but is different from 

that used by Zhandarov et al. [24] and Holsman et al. [26].  Galiotis et al. found the value 

of β that resulted in a least squares error between axial fiber stress found from 

experimentally measured strains and fiber stress predicted with a shear lag model.  In this 

thesis, fiber stress found using finite element analyses are used instead of experimentally 

measured values.  In the studies by Zhandarov et al. and Holsman et al., the failure loads 

from multiple tests were plotted against embedment length or normalized embedment 

length, and both ultimate interfacial shear strength and β or C were varied until a best fit 

with the experimental data was obtained. 

 In this approach, the value of β is varied until the analytical solution in question 

agrees with the corresponding FEA solution for a given value of z.  Several methods can 

be applied by choosing which type of stress to compare.  Initially, the shear lag and FEA 

solutions were compared by using average axial stress by embedded the solutions in the 
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equation for strain energy per unit volume.  This method squares the values of average 

axial stress for a given value of z achieving a more critical fitting of β.  Solutions from 

the FEA are not dimensionless or normalized so the shear lag parameter β must be used 

in the least squares fit and then made dimensionless after being optimized.  This method 

takes the form 

  𝑓𝛽 = 𝜋𝑟𝑓
2Δz ∑ [(

〈𝜎𝑆𝐿𝑖
〉2

2𝐸𝑓
−

〈𝜎𝐹𝐸𝐴𝑖
〉2

2𝐸𝑓
)]

2
𝑙𝑒
𝑧𝑖=0  (37) 

where 〈𝜎𝑆𝐿𝑖
〉 is the shear lag solution from equation 20 for a given value of z, 〈𝜎𝐹𝐸𝐴𝑖

〉 is 

the corresponding solution from the FEA, Δz is the difference between 𝑧𝑖+1 and 𝑧𝑖, 𝑟𝑓 is 

the radius of the fiber, and 𝐸𝑓 is the Young’s modulus of the fiber.  Once a value of β that 

results in a minimum error was found, equation 13 was used to solve for a corresponding 

C value for use in further studies.  The least squares fit was evaluated using thirty 

different values of β.  The domain was adjusted until a minimum value was located and 

then reduced to increase resolution.  A typical error distribution from this method can be 

seen in figure 8. 

 Initial difficulties in obtaining a sufficient number of values of strain energy per 

unit volume for the required detail of fit led to a second method of least squares 

optimization in which the shear stress solutions were directly compared.  This method 

takes the form  

  𝑓𝛽 = ∑ [(𝜏𝑆𝐿𝑖
− 𝜏𝐹𝐸𝐴𝑖

)]
2𝑙𝑒

𝑧𝑖=0  (38) 
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Figure 8. Minimized error function for γ=10, λ=10, α=1.5 

  

where 𝜏𝑆𝐿𝑖
 is the shear lag solution from equation 21 for a specified value of z and 𝜏𝐹𝐸𝐴𝑖

 

is the corresponding FEA solution.  Using this method allowed for both a large increase 

in the number of values used in the fit and a reduction of Δz.  To evaluate the case of a 

fully embedded fiber, the method described by equations 38 was altered by using the 

shear lag solution described by equation 36. 

 After optimizing β by use of equation 38, the shear lag solutions were plotted 

against the FEA solutions for both shear and average axial stress and can be seen in 

figures 9 and 10.  Solutions for SL and FEA were normalized by diving all solutions by 

the initial axial stress acting on the fiber.   

 Fitting methods using equations 37 and 38 were compared while simultaneously 

comparing the difference in boundary conditions for an infinitely embedded exposed 

single fiber.  The resulting strain energy-optimized values of C, along with shear-stress-

optimized values of C are plotted against λ in figure 11 for both pull-out and 

axisymmetric macrobond configurations. 
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Figure 9. Normalized values of SL average stress and FEA average stress located along 

the embedded fiber length 

 

 

 

 

Figure 10. Normalized values of SL shear stress and FEA shear stress located along the 

embedded fiber length 

 

 

 

  

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

σf/σo

z/df

FEA

Shear Lag

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

τ/σo

z/df

FEA

Shear Lag



30 
 

 When shear stress was used to optimize β at low values of λ, the calculated values 

of C were higher than the values calculated by using average axial stress for the 

optimization.  For λ=0.33, a difference in C of 0.224 was observed.  However, this 

difference had an inverse relationship with λ.  For λ=10, a difference of only 0.0224 was 

observed.  An apparently erroneous result was observed for the strain energy-optimized 

pull-out data for λ=2.  It was determined that the limited number of z values used for the 

least squares fit did not provide enough resolution to capture the full behavior of the 

model.  It is anticipated that increasing the number of z values for which data are 

obtained would result in this data point approaching the trend for the other data.  A more 

detailed comparison between the top and bottom fixity boundary conditions and between 

shear and strain energy optimization of β was performed by Avery et al. [36]. 

 

 

   

Figure 11. Optimized C fit vs. λ  
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 The lack of resolution in the behavior of average axial stress needed to be 

addressed so that a more detailed behavior of the configurations being modeled could be 

observed.  The nature of the FEA software was that the number of data points for shear 

stress pulled from the fiber/matrix interface was two orders of magnitude greater than the 

number of cross-sectional cutline data points obtained within an acceptable time limit.  

The average axial stress values for a given z were needed for the comparison of strain 

energy per unit volume, therefore it was decided that equation 38 would be used to fit β 

for the remaining analyses along with using Cox’s relation from equation 6 to integrate 

the FEA shear stress solution and create a quasi FEA solution for average axial stress.  

The values for average axial stress would ultimately be a shear lag solution but obtained 

from FEA values.  The result was good agreement between the FEA and shear lag 

solutions for average axial stress among most specimen geometries modeled.  Validation 

of this new method was shown when the new method converged with average axial stress 

values taken from cross-sectional cutlines along the fiber length.  This also allowed 

insight into whether it was better to optimize β using shear stress or average axial stress.   

 Throughout the study, specific parameters of the configuration were varied so that 

the effects of these parameters could be observed.  This allowed for a diverse degree of 

agreements between the shear lag and FEA solutions for shear stress.  Even though the 

agreement of the two solutions for shear stress ranged from poor to good, the agreement 

between the two solutions for average axial stress never extensively deteriorated. 

 When fully embedded fibers were studied, the method of integrating shear 

became insufficient to study the behavior of average axial stress.  For long fiber lengths, 

the average axial stress derived from equation 6 fell short of the analytical solution for 
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maximum fiber stress.  Non-averaged axial stress values were pulled from the axis of 

symmetry along the fiber portion of the composite for the new series of comparisons.  

The new series of axial stress values were compared to average values taken from 

cutline’s places every 0.10 fiber diameters.  Fiber lengths of 3df, 5df, and 10df were used 

for validation purposes.  For each case, at a given z value greater than one fiber diameter 

away from the free end, the average axial stress over the entire cross section agrees with 

the axial stress along the axis, i.e. at r=0.0.  The new values of axial stress allowed for the 

FEA and shear lag solutions optimized by equation 38 to converge, but for long fiber 

lengths of 50df and longer.  The non-averaged axial stress values were used directly in a 

least squares fit to optimize β in the same way that the shear stress values were used. 

  𝑓𝛽 = ∑ [(𝜎𝑆𝐿𝑖
− 𝜎𝐹𝐸𝐴𝑖

)]
2𝑙𝑒

𝑧𝑖=0  (39) 

This new method allowed for a convergence in midplane axial stress values for all fiber 

lengths with only slight variations in the agreement between solutions.  Axial stress was 

then used to optimize β for all cases of the fully embedded fiber. 
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Chapter 7 

 

 

Effects of Geometric and Material Parameters 
 

 

 The pull out and macrobond configurations were evaluated for long embedment 

lengths and constant hole size for the macrobond configuration such that only λ was 

varied.  The long embedment length ensured that the axial stress in the fiber behaved as 

the infinite embedment length case would.  For the macrobond configuration, the hole 

size was chosen to be in a range where the effect on changes in hole size would have a 

small effect on the fitted value of C.  As λ increased, the rate of stress transfer decreased 

and consequently so does the fitted value of C.  This behavior can be observed in figure 

12. 

 

 

 

Figure 12. λ effects on the infinite macrobond geometry 
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 The macrobond test configuration with a top fixity boundary condition was 

considered to study the effects of changes in γ and α on the fitted value of C.  In addition 

to varying γ and α, a range of λ was also varied so that better insight could be obtained 

toward the creation of a macrobond test.  The most extreme case for embedment length of 

3df was used for the initial study.  The hole diameter of the macrobond configuration was 

set to a mean value of 1.5df.  Figure 13 shows the shear stress along the fiber-matrix 

interface as a function of the location along the z axis for both FEA and the best fit shear 

lag solution.  Figure 14 shows the average axial stress comparison using data collected 

from cross-sectional cutlines every placed every 0.10df and the best fit shear lag solution. 

 

 

 
 

Figure 13. FEA and SL solutions for shear stress plotted against location along the z axis 

for λ=15.625, γ= 3, α=1.5 
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Figure 14. FEA and SL solutions for average axial stress plotted against location along 

the z axis for λ=15.625, γ= 3, α=1.5 

 

 

 

 When the shear lag solution was plotted against the FEA solution for the stress 

transfer behavior along the fiber-matrix interface, the shear lag solution was in good 

agreement except near the matrix surfaces.  A singularity exists at the point of z=0 where 

the stresses approach infinity [16,23].  At the end of the fiber there is also a sharp 

increase in shear where the load being transferred from the fiber is not allowed to 

approach zero.  It is at these points that the shear lag solution does not capture the true 

behavior of the composite. 

Effects of Hole Diameter α and Embedment Length γ on β  

 An oscillation in the stress curve of the numerical solution for shear occurs for 

geometries with a finite embedment length.  A sensitivity study on the effect of the hole 

diameter on the oscillation was conducted using values of α ranging from 1.1 to 3 seen in 

figure 15. 
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 The magnitude of stress concentrations near the matrix surface increases as the 

hole diameter approaches the diameter of the fiber. As the size of the hole increases the 

amplitude of the oscillation decreased and the oscillation itself shifted away from the 

beginning of the fiber/matrix interface.  The presence of this initial spike in shear stress 

increased the fitted value of C up to 2.5 times the value for an infinite case when using a 

hole diameter of 1.1df.  This correlation was further studied by plotting each fitted value 

of C against α in figure 16.  The impact of the hole diameter on the effective value of C 

began to decrease after a value of 1.6df, but the value of C never truly converged within a 

reasonable range of hole diameters. 

 To further analyze the effects of the hole diameter on the value of the fitted C, a 

parametric sweep of hole diameters was extended to different values of λ.  C values were 

fitted from configurations with λ values ranging from 1 to 80 and α values ranging 1.1 to 

3 while γ was kept at a constant value of 5.  A constant embedment length of 5df was 

chosen to represent a regime between highly finite and infinite behavior.  These plots can 

be seen in figure 17. 
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Figure 15. Interfacial shear stress plotted along fiber-matrix interface for various α values 

 

 

 

     
 

Figure 16. Best fit values of C plotted against hole diameter for γ=3, λ=15.625 
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Figure 17. C vs λ for α=1.1-3, γ=5  

 

 

 

The behavior of C as a function of λ stays consistent throughout the range of α.  As the 

diameter of the hole is reduced the higher stress concentrations shift the plots of C vs λ 

higher while retaining the same behavior for each data series.  As the hole diameter 

decreases the rise in the initial stress concentration allows more load to be transferred at 

low values of z.  The resultant higher C values reflect a more rapid transfer of force from 

the fiber. 

 The same type of analysis was carried out to determine the effects of embedment 

length on the fitted value of C.  The initial test geometry with α=1.5 and λ=15.625 was 

evaluated with different embedment lengths starting from the most extreme case of 3df to 

a depth of 30df.  The plots of shear vs normalized location along the fiber axis for each 

value of embedment length le can be seen in figure 18. 
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Figure 18. Embedment length effect on shear stress along fiber-matrix interface for α=1.5 

and γ=15.625 
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across the fiber-matrix interface as it did when hole diameter was varied.  Figure 19 
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Figure 19. Embedment length effect on C as a function of γ  
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attributed to the fact that the constant C1 from the shear lag solution in equation 20 for 
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  Figure 20. Effect of λ on C for γ=3-30, α=1.5 
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the highest value of λ used from the previous studies.  A model with these parameter 

values was then used to further test the accuracy of using shear stress to optimize C.  The 

resulting shear lag solutions for shear and axial stress can be seen compared to their 

respective numerical solutions in figures 21 and 22 respectively.  The shear stress 

comparison shows a poor fit, in which the shear lag solution misses most of the numerical 

behavior.  However, the resultant solutions for average axial stress show much better 

agreement. 

 

 

 

 
 

Figure 21. FEA vs SL for shear stress corresponding to γ=3, α=1.1, λ=100 
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Figure 22. FEA vs SL for average axial stress corresponding to γ=3, α=1.1, λ=100 

 

 

 

Fully Embedded Fiber Results 

 As there is no hole in the fully embedded fiber configuration, only the parameters 

λ, and γ remained for consideration.  The effects of embedment length were analyzed by 

using a range of γ=3 to 100.  For composites, a critical fiber length exists which governs 

the fiber’s ability to carry its maximum load [34].  This solution for this limit takes the 

form 

  𝑙𝑐 =
𝜎∗

𝑓𝑑𝑓

2𝜏𝑐
 (40) 

where lc is the is the critical length dependent on the fiber’s ultimate tensile strength σ*
f 

and diameter df in addition to the ultimate interfacial shear strength τc.  If a fiber is shorter 

than the critical fiber length, only a partial amount of load from the matrix can be 

transferred.  The maximum value of γ=100 was chosen to be above this critical length 

allowing the fiber to be treated as an idealized infinite fiber.  This allows for the rule of 

mixtures to be used to calculate internal axial stresses and strains at fiber midlength.  The 
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shear lag solutions for all values of γ were evaluated with the same value of 𝜎∞ 

calculated by equation 26.  A behavior similar to the exposed fiber configuration was 

observed in the sense that the fitted value of C had an inverse relationship to the value of 

embedment length.  A plot of C vs embedment length can be seen in figure 23.  The fitted 

value of C starts to converge for embedment lengths of 25df, even though the data point 

at γ=25 seems slightly out of place.  It should be noted that this behavior was observed in 

the fully embedded, i.e., fragmentation configuration when γ≥25 as opposed to γ≥10 for 

exposed fibers.  The stress solutions for axial and shear stress for each fiber geometry can 

be seen in figures 24 and 25 respectively.  Embedment lengths less than 50df do not reach 

the fiber stress value from equation 26.  However, the final axial stress values from both 

solutions converged for every value of embedment length.  The shear lag solutions for 

shear stress showed less agreement with corresponding FEA at short embedment lengths.  

The slope of the function took on a linear characteristic for embedment lengths less than 

25 fiber diameters.  Both shear lag and FEA solutions converged at z=le.   
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Figure 23. Embedment length effect on C for a fully embedded fiber 

 

 

 

 
 

Figure 24. Average axial stress for fully embedded fibers of embedment lengths ranging 

from 3 to100df 
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 The embedment length was set to 100 fiber diameters to study the effects of λ on 

the fitted value of C.  A λ range of 10-200 was chosen specially to study the effects of 

Young’s modulus on the fully embedded fiber configuration.  By increasing the upper 

limit of λ, the behavior associated with stiff fibers i.e. carbon fibers could be observed.  

The embedment length of 100 fiber diameters ensured the composite would behave 

ideally over the full range of λ.  The corresponding fitted values of C were plotted against 

λ and can be seen in figure 26.  The axial stress is plotted against z in figure 27.  As λ 

increases, the rate of change in C with respect to λ does not remain constant.  However, 

the values do not converge even at value of λ=200. 

 

 

 
 

Figure 25. Shear stress for fully embedded fibers of embedment lengths ranging from 3 

to 100df 
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Figure 27 suggests that at lower values of λ, load transfer to the fiber is completed at 

distances from the fiber ends much less than the critical fiber length.  At λ=200, the stress 

becomes constant with location just before reaching the fiber center.  As λ increases the 

rate at which the fiber can transfer its stress is reduced.  For λ=200, the embedment 

length of 100 fiber diameters is just enough for the full transfer to take place.  In this 

scenario the long fiber with a high Young’s modulus behaves similarly to a shorter fiber 

with a lower Young’s modulus. 

 

 

 
 

Figure 26. λ effect on C for a fully embedded fiber of 100df 
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Figure 27. λ effect on stress behavior for a fully embedded fiber of 100df  
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Chapter 8 

 

 

Comparison to Experimental Data 

 

 

 Experimental results from various sources were used to validate the accuracy of β 

and therefore C.  Microdroplet tests from Zhandarov et al. [24] and macrobond tests from 

Holsman et al. [26] were used to assess the results from the exposed fiber cases of both 

large and small embedment lengths.  For the comparison of the first case of large 

embedment length, which approaches the behavior of an infinite embedment length, it is 

important to remember that the only parameter effecting C is the ratio of Young’s 

modulus λ.  The hole diameter α and embedment length γ were given values to reduce 

their effects on the induced fiber stress as much as possible.  With that in mind when the 

plot of C vs λ for the infinite case is superimposed with data points for the finite cases of 

Zhandarov et al. and Holsman et al. there is agreement of the same order of magnitude 

and can be seen in figure 28.  High accuracy was not expected considering Zhandarov et 

al.’s data was for specimens with various fiber treatments and the modeled specimen was 

created with a smooth fiber.  Only the untreated specimen data from Holsman et al. was 

used in the comparison and was very close to the predicted value.  Zhandarov et al.’s data 

was scattered for each value of λ.  This can be attributed to the various fiber treatments 

involved altering the IFSS of the specimen along with the use of different fiber diameters. 
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Figure 28. Numerically fitted values of C vs experimentally fitted values from Zhandarov 

et al. and Holsman et al. 
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 The effects from the change in α were further analyzed by creating finite element 

models for each specific data point from Holsman et al. and solving specific C values.  

These values of C were then used to solve for the ultimate interfacial shear strength for a 

single test explicitly, based on the expression for average shear strength at debond 

presented by Zhandarov et al. [24].  Using this approach, each combination of C and 

ultimate interfacial shear strength results in a unique curve relating average shear stress at 

failure to embedment length.  As there were 7 experiments modeled, this approach results 

in 7 distinct curves, which are now superimposed onto the plot Holsman et al. used to 

establish a single best fit value of C.  This comparison can be seen in figure 29. 

 

 

 

 

Figure 29. Holsman et al. vs SL shear stress curves  
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 From figure 29 we can analyze incrementally how the geometric parameters 

affect the fitted value of C and the associated shear stress curves.  The black data series 

represent the 0.312mm fibers used in the experiments from Holsman et al.  They allow a 

hole diameter of approximately 2df.  The largest value of γ for the macrobond specimens 

is 6.396 which represents 2/3 of the length required for infinite behavior.  These 

parameters allow for good agreement with the average shear stress curve fitted to 7 

experimental test results by Holsman et al.  However, as γ decreases the numerically 

predicted value of C increases and diverges from the experimental results even though 

there is no change in α.  The larger (0.511mm) fibers result in a hole diameter of 1.24df.  

Numerical simulations predict that the resulting C is sensitive to hole size in this range, 

due to stress concentrations that appear at low values of α.  The significant variation in 

the plots, compared to the single best fit value obtained by Holsman et al. suggests that 

the numerical model predicts a greater sensitivity to hole size than actually occurrs in 

experiments.  It is possible that issues with irregular contact in the experiments results in 

an effective hole diameter that is greater than the physical size of the actual hole in terms 

of load transfer. 

 Experimental results from Galiotis et al. [13] were used for the validation for the 

fully embedded fiber configuration.  The FEA was conducted with the test geometries 

used by Galiotis et al. and an initial strain instead of an initial stress was used to simulate 

the fracture experiment.  The rule of mixtures [34] was used to calculate the axial stress 

in the fiber by using numerical strain values pulled from the FEA.  The fitted β value was 

calculated to be 0.0304μm-1 compared to the experimentally calculated value of 

0.0192μm-1.  One reason for the difference in values is that the material properties of the 
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experiment were not explicitly mentioned by Galiotis et al.  Values for material 

properties were obtained from handbooks.  A difference in λ could then have a large 

impact on the fitted value of C. 
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Chapter 9 

 

 

Summary 

 

 

 In this thesis we analyzed three different cases of fiber pull out scenarios.  First 

we looked at exposed fibers with a relatively infinite embedment length and hole 

diameter, then exposed fibers with finite embedment length and hole diameters, and 

finally fully embedded fibers.  For the case of infinite embedment length multiple 

boundary conditions were studied along with two different methods of optimizing C.  

From the first case we observed that the optimized value of C is very sensitive to 

boundary conditions and how it is optimized for scenarios where the ratio of Young’s 

modulus is less than 10.  For values of λ greater than 10, the fitted values of C for each 

boundary condition and optimization method become similar.  Most experiments dealing 

with fiber composites will have λ greater than10.  For the case of infinite embedment 

length the only parameter affecting the value of C was λ.  The parameters α and γ had 

minimal effects on the initial shear stress along the fiber/matrix interface.  Therefore, 

when C was plotted against values of λ, the values were in good agreement with 

experimental data published by Zhandarov et al. and especially by Holsman et al.  Data 

from Zhandarov et al. was scattered around the predicted values of C, which could be 

caused by the different fiber diameters and fiber treatments used for each value of λ.  

However, the average C value of each value of λ is in very good agreement with 

predicted values. 

 For the case of finite embedment length, embedment length along with the size of 

the hole the fiber was being pulled through were studied using a wide range of values.  
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The effects of α and γ on the fitted value of C were studied.  There is a large stress 

concentration at the initial matrix surface for low values of α and γ.  Through this method 

it was observed that values of C are fairly constant for values of γ greater than 10.  

However, there is no reasonable value of  above which fitted values of C become 

constant.  The effect of λ on both α and γ was also studied.  The slope of C vs λ was 

similar to the infinite embedment length case.  As the values for α were reduced from an 

infinite case the plots of C vs γ increased in magnitude while the slope remained fairly 

constant.  Changes in γ had a similar behavior along with a noticeable stress 

concentration at the fiber end for small values of γ. 

 Experiments from Holsman et al. were modeled using the approach developed for 

finite embedment length specimens.  The goal was to observe the individual stress curves 

with specifically fitted C values bracketing the experimentally fitted stress curve publish 

by Holsman et al.  The stress curves for the smaller fiber diameter behaved this way, but 

there was a large disagreement in ultimate shear strength when the larger fiber diameter 

fibers were modeled.  The larger fiber diameter specimens had a smaller embedment 

length and a relatively small hole diameter.  These two parameters drastically increased 

the initial shear stress in the fiber and therefore increase the fitted value of C.  This 

behavior contradicts the behavior observed by Holsman et al. and one hypothesis is that 

imperfections in the geometry of the matrix material could affect the effective hole 

diameter for the purposes of load transfer.  In this sense the effective experimental value 

of α may differ from the idealized value used for numerical simulations. 

 Minimizing errors in shear stress was found to be a poor means to obtain a fitted 

value of C for fully embedded fibers with short embedment lengths.  As the geometry 
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moved away from being an idealized long fiber, the shear lag solution for the midplane 

stress in the fiber fell short of the numerical solution.  To solve this problem the axial 

stress along the fiber’s axis of symmetry was used in a least squares fit for optimizing β.  

The far field stress could be analytically calculated by modeling a long fiber and using 

the rule of mixtures to find the midplane stress in the fiber.  Once this stress was 

calculated it allowed for the prediction of average axial stress in fibers ranging in length 

from 3 fiber diameters to 100 fiber diameters with good agreement for all scenarios.  The 

fitted C values for the range of embedment lengths were slightly scattered in the area of 

γ=25 but still followed a trend in the sense that the value of C converged after an 

embedment length of 50 fiber diameters.  A range of λ was also studied for the case of 

γ=100.  The behavior of C affected by λ was similar to that of the exposed fiber cases.  It 

was also observed that for very large values of λ the rate of stress transfer was slow 

enough for the composite to simulate the geometry of a short fiber composite even 

though it had an embedment length of 100 fiber diameters. 
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Chapter 10 

 

 

Conclusions 

 

 

 Shear lag solutions with fitted values of  are able to capture the overall behavior 

of fiber pull out configurations that were identified by FEA solutions.  Through the use of 

slightly different boundary conditions, both single exposed fiber and fully embedded 

fiber configurations can be modeled by the shear lag solutions.  The effectiveness of 

methods used to optimize β proved to be case specific.  Optimization using shear stress 

and strain energy per unit volume allowed for a best fit in most scenarios.  Using average 

axial stress for minimizing errors in the shear lag solution resulted in better agreement 

with the FEA solution for midfiber stress for embedded fibers with short embedment 

lengths.   

 Predicted values of β were found to be of the same order of magnitude as 

experimentally fitted values.  Better agreement was observed when the numerical model 

had large values of γ and α.  The behavior of predicted β values was also observed to be 

similar to experimentally observed behavior through the use of Raman spectroscopy.  

This behavior was further validated when the effects of λ on β were in agreement with 

published results. 

 A difference in the sensitivity to different parameters was observed between the 

idealized modeled behavior and experimental behavior.  Numerically fitted values of C 

were observed to be sensitive to changes in γ and α once they reached a specific lower 

limit.  This behavior was not experimentally observed by Holsman et al. 
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 Even though the modeled behavior of the experiment by Holsman et al. did not 

fully agree with the experimental results, the study of the material and geometric 

parameters involved in the creation of pull out tests can give us insight towards how to 

create future tests.  This insight can allow us retool our experiments to isolate and better 

understand these effects with the goal of increasing the accuracy in which we measure 

IFSS.  One example would be to use large values of α to reduce the initial stress 

concentration in a pull-out specimen, allowing more focus to be placed on the IFSS of the 

composite.  More consideration into the preparation of sample is also suggested by the 

results discussed in this thesis.   

 Improved understanding of the load transfer of single fiber pullout configurations 

is a step toward micromechanical effects to models for fiber/matrix interface behavior.  In 

addition to enabling the development of these models, improved test geometries 

facilitated by improved understanding of load transfer will be needed to validate the 

models. 
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