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ABSTRACT

John Atsu-Swanzy, A Siudy of the N-Body Problem in Celestial Mechanics for
College Students, 1997, J. Sooy, Mathematics Education.

The purpase of rhe study is to investigate simple solutions of e MAany-
body problem otherwise known as the n-body problem. The study focuses on
elementary solutions of the n-body problem that can be understood. by
undergraduare students and college preparatory studenis of appliec. mathernatics.

Historical origins of the problems were raced 1o the ancient Egyptians
Babyloniang, and Greeks. Further dsvelopment and interest dated tack to the time
of Copernicus, Galileo, Kepler, and finally 1o Newton who proposed its madern
form.

Anzlytical and numerical solutions of specific n-body problems were solved
10 demonstrate solvability of certain type of n-body problems. Analytical solntions
for velocities of the masses were ¢alculated. Numerical mathods written in the QB
commputer language generate solurions of specific n-body problems. Two- and
three-body numerical solations were solved 10 demonsirate solvability by writing a
computer algorithm using the Euler or Runge-Kutta method. The nomerical
solution displays the trajectories of the masses in graphics and the Bebavior the
masses are shown. No formula has been developed for determining general

solutions of n-body problems in this research.
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In ¢onclusion, there are simple soluriong for eertain n-body problems. The

subject can be studied a1 the undergraduate and college prepararory lavel



MINI ABSTRACT

John Arsu-Swanzy, A Study of the N-Body Problem in Celestizl I'(;Icchanics for
College Students, 1997, I. Sooy, Mathematics Education.

The primary purpose of this study was to generare interest in the n-hody
problem ar the undergraduate level. Simple solutions of specific n-body problems
were provided. Numerical and analyrical solutions were prasented’at a level that
the undergraduare and the college preparatory students can c:c:mpﬁahand, The
study concluded that there are simple solutions of the n-body problem thar the

undergraduate and college prep students can undergrand.
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CHAPTER 1

Introduction to the Study

Inér tion
'This chapter inoduces the n-body problem and the difficulty of finding
silnple solntions 0 the problem. The chapter includes background information, the
statement of the problem, the significance of the study, limirarions of the study,

definitions of terms, and procedures for implementing the study.

Background Information

‘The n-bodv problem is not a new topic in mathematics. Although the question
was first posed by Isaac Newton in 1687, the problem is older than Stonchenge. It
assumed 1ts modern form when Newton (1687) proposed this problem in ﬁs
philosophical essays of Philosophiae Nauralis Principia Marhemarica.
Mathematicians of all centuries since Newton’s days have been preaccupied with
finding solutions to the n-body problem. Different methods of solations have been
presented ar mathematical foroms, but 10 my knowledge, no colleciion of simple
sohitions has vet been presented. The n-body problem haé many applications in
today’s space exploration. For example, computer-generated solurions of
rajectories of celestial bodies and satellites’ motions are commen ipplications of

the n-body problem.



The studv of how celestial bodies move under gravirarional faiceg is an old
prablem for encient aod modern man. This subject area traces its origins to the
earhiest reaches of mankind, It is very easy to preempt that the study of the many
bordizs, referred 1o 25 n-hody problem, is the “world's oldest profession.” “If it

isn’t the oldest, then most surely it i3 the second oldest™ (Saard 19523,

[ the Problem
The purpase of the srady 19 to present the case of simple solutions of the n-
bady problem. Thess simple solurions are for the understanding of the college
undergraduate students and upperclassmen in high schools in mathemarics and

DIVSICS PIroETams.

Sienifi * the §
The researcher has recently examined several texts and rasearch arricles on the
n-body problem. This exarmination indicates there are no simple solutions of the n-
body problem for ngh sehool and wndergraduats siudents. Almostall relevant
researches on the n-body problem are written for an advanced sudisnce. The
aimpde solutions of the n-body problem for the undergraduate students will
generate early interest in the n-hody prolein, Therslore, there eadsts a need for

simple analytical and ammerical solutons of the n-body problem.



Limitationg of the Studv
The study has considerable limirarigns among which:
There 15 scarcity of relevant research and literaturs that addhiesses the n-body
problem at this particular level;
there is no single texthoole devated solely 1o simple solutions of the n-body
problem;
the researcher bas observed that there is a Jack of awareness among high
school teachers abour the existence of the n-body problam:
the scope of the study is limited to undergraduate mathematics and physics
major students:
the students rust have 83 o prerequisite 4 physics course that gives them
considerable imowledge of Kepler's Laws of Gravitational Motion ang

Newton’s Law of Motion.
‘The solstion is Gruited to cases of mass of bodies; n={2,3, 4.5, 6. ... n}

with 2 fixed body at the center or not at the center.



Definition.of Terms

Acceleration: the raie of change of velacity *v” with respect o time “r** (dv/rv
= a). For a parricle moving along 4 curved path, the velocity is directed along the
tangent 1o the parh {(James and Jamesz, 1959).

Angular Acceleration (): the rime rare of changs of angular velochy (w), o =
du/dt.

Angular Velociry: the tare of change of the angle between a fiwed line and the
line joining the moving particle to a fixed poinr. It is centriperal, aormal, and
tangential components of acceleration (JTames and James).

Centripeiz] Force: the force which restrains a body, in motion. from going in a
straight line. It is directed towards the center of curvamre (James snd James).

Cenirifugal Force: the farce which a mass m, constraining 1 ragve in a parh,
exerts ¢n the gonsiraint in a direction along the rading of curvature. It is equal and

apposite ro cenmiperal force, When the path is & circle of radius r, the magnitede

of this force is rew® = v (James and James).

Lniversal Constant of Gravity: G = 6.67 x 10! Nm’kg? {James and James)
Law of Univergal CGravitaijon: the law of attraction. Formulated by Newton in

accordangs wirth which two particles of masses M and m Interact s that the force
of atrraceion i proportional 1o the product of the masses and varies inversely as

the square of thz distance between rhe parricles. Tn symbols, F = GMmA® whers 1



ig the distance between the particles and G is the universal congtant of gravitation

(Jemes and Jamgs),

Procedures

The first phase is to read and analyze relared research and literature o the n-
body problem. This will involve searching the on-ling libracies, the Rowan
Univeraity Libwary, and libraries of colleges in ¢lose proximity of the researcher,
mchuding the Universities of Pennsylvania, Delawars, Tempie, Dreusl, Rutgers,
and Pringston,

The second phase is ro digcuss with Dr. T.J. Osler, a professor of applied
mathemarics ar Rowan University, on the research outcomes and work with him

an simple solutions to the specific n-body problams.



CHAPTER 2

Review of Related Literature and Research

Introduction

‘The priunary purpose of this chaprer is to introduce relevant research ang
literature to support the study. There is very Ettle pubfished research to the n-body
problem that is relevant to the undergraduate or academically excelled high schoal
student. However, there is adequate relevant research and literacurs that is suitable
for advanced course work on the n-body problem. There are good:rexrbooks on
celestial mechanics which appropriately trear the subject of gravitational motions
of heaveniy bodies. These books are cited in the relevanr lirerature. section of thig
chapter, The chapter also introduces the historical development of astronomy from
the times of ancient Egyptians, Babylonians, and the Greeks with their
preoccupation of movement of heavenly bodies. During the Renaissancs and the
Age of Reason periods, schalars like Copernicus, Gaileo, Kepler, Newton, and
others were also able to put together a scientific explanation of the movements of
the heavenly bodies ingtead of some of the superstitious explanations given by

earlier ancient astronamers.



istorigal

1t is difficule to credit a particular grouwp or person for the carly astronomical
discoveries. Probably, these discoveries were made in srages and rediscovered and
then spread slowly, According to Rogers (1960}, urban civilizarions developed i
several great river valleys 5,000 or more years ago. Much applied science had
already besn discovered a few thousand vears before this rime. Arvifimial frrigation
of crops by canals and ditches, the plow, sailboat, and wheelzd vehicks, use of
animals for power; prodncton, use of copper, bricks, glazes; and finally, a solar
caiendar; writing; a number system; and the use of bronze had been developed too
by the ancient Babylonians, Egyprians, Sumerians, apé Chaldeans.

By 2000 B.C., there were tawns flourishing wirh exrensive trade. They had
excellen: commerical arithmetic that was almoest algebra. They conld solve
problems leading ro quadratic, even cubic, equations. The value of 2 was
zccurately known, but T was raken 1o be roughly 3. They used similar triangles and
knew Pythagoras® rule. They had good weights and meagure, sundials and water-
ciocks, Near the equator, the sun’s path did not provide a good wierking bagis for
the calendar, 50 the moon was much easier as the basis for the cﬂjﬁﬁdar. The: sarly
Babylonians based rheir calendar on new moons but had to reduce that into a solar
calendar of szasons for agriculivre and seasonal religious ceremnnj;zs. Careful
observations of the moon and the sun wera required. A careful mathematical

system for predicting the motions of the gun and the moon was developed. Belicl
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in omens took a prophetic tum, and astrology ook a stronghold of the people
(Rogers, 1960).

The ancient Egyptians were the forerunners for astronomical studies. They
engaged i fewer warg and devoted more time to spiritual angd intellectual
devclopments. The ancient Egyvplians lived peacefully and with more “Giendly™
gods. Their gods did not enconrage wars but devoted their priestly class 1o
mathematics, asranomy, and astrology, Ancient Bgyptian mathemaricians served
an magwe and commerce, recorded corn sralls, divided property, and built an exact
pyramid. Egyptian astronomy was simpler than Babylonians® astrofomy. They had
an efficient solar year of twelve months of thirty days each phos five extra days; so
they paid 12ss atrention 10 eclipses of the moon and the planers. Two thousand
vears before Christ was born, they recorded accurate planetary obszrvariong
(Rogers, 196().

Next and cioscly related o the ancienr Egyntians were the Groek city states.
Schoiars and prigsts travelled between the two lands exchanging knowledge. The
city of Alexandria in Egypr was samed afler Alexander the Great of Greeoe
(Rogers, 1960). About some 3,000 years ago, Greck civilization began o evolve.
It produced mathematicians, scientists, and philosophsrs who made such important
advances. Thales (000 B.C.) was a founder of Greel: science and philcrscpphy. He
coliscred geoinewical knowledge perhaps fram the Egypriang and ]:j:aga_u o reduce

geomerry 10 a svatem of principles and deductions; thar was the beginning of
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science that Buclid later was to bring into Fuition. Euclid set forth:an explanation
of the universe in his book Elements (Buclid~323 B.C.). After this period, not
much activity on celestial mechanics had been recorded until the time of the
Renaissance. The earlier advances made by Thalss, Ptolemy, and Aristotle became
the prevailing views on celestial morions. The Renaissance, which 'was at its peak
in the seventeenth century, spread all over what is known today a3 western
Europe. It brought in many advances in scientific, technological, and economic
leadership of the English Channel. Scholars began to pay less attenrion o what
was already writren and place more reliance on their own observations. This period
was characterized by an eagermess to experiment and to determine how things
happen. The appearance of William Gibler’s De Magnete in 1600, the first treatise
an physical science, to Newton’s Gpriks in 1704 brought in a new awakening in
the spirit of inquiry. In between the De Magauere and the Op#iks came Kepler's
theory on planetary motions. Kepler built on earlier works of Tycho Brahe (1546-
1601) and refuted the prevailing Aristotelian concept of “ideal circular motions™
and pushed forward an explanation for elliptical orbits. Kepler then formulated the
Laws of Terrestriat Motion in 1619. The period 1637 to 1687 Wasijregardf:d as the
fountainhead of modern mathematics. The first date, 1637, alludes o the
publication of Rene Decartes’ La Geometric and the second, 1687, to Newton's
Principio Mathematica. The rwo works had 4 considerable influence on

mathemarical thoughts of the period and influenced problem solving in
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mathematics. Prior to this, rhe mathematician-physicist-astronomer Galileo Galiled
(1564-1642) laid a permanent foundarion for modem science. He was credited
with the invention of the telescope for observarion of heavenly bodics. He
observed four satelhies revolving around the planet Jupirer. This was a dramatic
disproot of the exlsting Aristotelian notion of the earth as the center of all
astronomical morions. His observations were pablished in a twenty-nine page
booklet entitled Siderens Nurcius (The Staffy Messenger). This was the beginning
of the recognition of the existence of unlmown stars, the Milky Way, and the
mypped surface of the moon. Galileo’s discoveries were so grartling thar some
profegsors of his time refused to look into his telescope for fear of seeing in it
things that would discredit the infallibility of Aristotle, Prolemy, and the Church.
Cialileo’s publications of Copernican views made him an enemy of the church and
his position ar Paduoa, a stronghold of Aristotclianism, untenable. The Aristotelian
conceprion of the universe which was elaborated by Plolemy placed the earth at
the cenier of the universe. At increasing distances from ir came nins crysralline and
concenttic gpheres. The first seven carricd the sun, the moon, and the five known
planets, and the fixed starg were arrached 10 the eighth one, often call the
“frmament.” On the outside lay rhe ninth sphers, known ag the “pfamium obile”
and representing the Prime Mover or God. Beyond thig was no matter, no SpAcE,
notiing at all. It makes the universe fnite, one contained within thf;t premium

mobile, From the standpoint of Aristote, the earth was the main body in the

BNy



uiliverse, and everything else existed for irs sake and the sake of its inhabitants. In
the new cosmology produced by Nicolaus Copemicus (1473-1543%, the sun
changed places with the earth, the sun became the central body, and the earth
merely one of several planets revolving around the sun. It was Galileo who
advorated the Copernican view and was tried by the Inquisition and imprisoned by
the church because his teachings were against the aurhority of the church, Galileo
wias given a papal apology posthumousty in 1992 by Pope John Paul I1. Johannes
Kepler (1571-1630) was taught the Copernican theory of the universe secrerly by
Michael Masshn, a professor of mathematics at the University of Tubingen in
southern Germany. Kepler published his astronomical observations in the
Mysterim Cosmogaphicun {The Mystery of the Universe) in 15935, Kepler was
sent packing out of town after this publication. His book caught ths attention of
the Danish astronomer Tycho Brahe (1546- 1601) who employed him as hig
assistant, Kepler was a brilhant mathematician but a poor observer; and Tycho
Brahe was a brilliant observer bui a poor mathematician. The two hecame a
formidable par and worked together to produce the most sophisticated table of
celestial motions. After Tycho Brahe’s death, Kepler continned to work on the
data and developed his three planetary laws of motion with his obszrvarional data
based on Mars and used that data to generalize for the motion of fj:ther planets in

fis book Astronomica Nova in 1609, Kepler’s celebrated Laws of P]anetary

Motion are:

«11-



1. The planets move in elliptizal orbits with the sun as the focis.

2. Each planct moves around its orhiz, not unfirmly, but in such a way thar 2
sralght ling drawn from the sun to the planer sweeps oui syual areas in
equal time mreTvals

3. The squares of the times required for any two planets to miks complere
0rbits about the sun is proportional 10 the cubes of their mean distances
from the sun.

His laws overmrned the cxdsting Aristotelean cosmalogy and physics. The
guestion of what held the plancis together was not yet explainsd. Thiz task foll 1o
Isaac Newton (1642-1727). Young Newton went to Cambridse Unfversity ag a
paor student who helped provide domestic sevices to other smdsnts in arder 10
finance his gwn education. During the plague, Newton went back to his native
villge of Woolsthorpe in Lincolnshire, England. One right during this period in
his Hife, he was gitting in the family farm when he saw an apple falling, He looked
up and saw the moan and quickly thought gbout the connection berween rhe moon
and the apple as bodies in space, He bepan to wonder about what kept the moon
from, falling to the ground. He questioned himgelf: “Why did applGSI§ {all straight
down 10 the carth’s surface, rather than askance? Whar if the applﬁ:" had started
from higher alrimide—yprobably a mile, a hundred miles, or as high as the
moon—would it sall have fallen 10 the carth?” (Guillen, 19935}, Newton came ro

the realization thar the moon had 4 tug on the Barth as the Barth had a mg on the

-12-



roon. The Aristotelian conceprion was the moon existed in hzaven and wag
incorruptible as a heavenly body. The universe had two domains according o
Aristotelian phitogophers: the earthly corruptible end the heavenly incorruptible,
Mewton’s speculation then became heretical How conld a corrupr Earth have
gravitatlonal influence on an incormprible heaven? That was the kind of staremenr
thar gent Galileo and Copernicus to the Taquisition. He realized that if the moon
felr the Barth's tug, it would fall to the ground like the apple. He conjectured by
using Huygen's centrifugal force equation rhar the moon pulled away from the
Earth and the Earth pulled away from the moon with the same force, and that kept
the moon in orbir. This wag a significant revolutionary thinking rha: Newton ¢ame
to understand. About a milleria earlier, Kepler had discovered the rhres laws of
planetary motions. If T stands for the rime the planet (akes (0 complate one
revolation and d stood for the planet’s distance from the sun, then Kepler's
discovery world would be written as: T? = constant times 7. the reguh of his
painstaking observations and calenlarions Kepler did with Brahe. In plain English,
the square of a planet’s year always equaled some moltiple of the cube of the
pianst’s dhstance from the sun. That is, planers close 1 the sun had short ycars,
rncl thase far had long years. Newton built up on this statement o propound his
own graviretional faws, He reckoned that if the moon did nor fall, taen the Barth's
gravitatinnal foree wag being opposed by the moon’s own cenrmifusat foree.

Newton realized that the moon’s centrifugal force depended first on the mass “m™

-13-



of the moon, second on the distance berween the moon and the Barth “d.” and rhe
third or the tmes “1™ i tock the moon to make £ complete journey, normally
called one Earth year, Using Kepler’s equarion,

TP =(d? 2-1
Newton substituted the right-hand side of (he equation into Huyge:’s Centrifugal
Force equation.

Moon"s Centrifizgal Foree = Cmd/T?
which is the mass of the moon “m” tmes “d”™ (he distance of the moon fram the
Earrh rimes & constant which was later determined 10 be Newton's constant of
Universal Graviry (¢3) and divided by the square of the tims *T."" The centrifugal
force for any orbiting abjecr became:

Cenirifugal Force = Cmd
T 2-2

Bur Kepler had argued earler that the planets whirled around the sun in
elliptical orbirs and that they obeyed the law of marion given as:
T = Cg?
where T is the time, and d is the disianee from the sun. This simple law became
vary usciul and the cornerstone for Newton to launch his new mathematical
revolution, Newion summaerized this as rhe Centrifugal Fores of the Mooen, which
is the producr of a constant and the mass of the moon divided by the square of the

distance barween the moon and the Barth.

-14-



T = Cm/d*
The moon’s Cenrifugal Force squals rhe produdt of the mass of the moen and the
distance between the moon and the Earth divided by the distance cubed.
Substituting the right-hand side of equation 2-1 into equarion 2-2 gave the new
cquation for Newton ag:

Moon's Cenmifugal Force = Cr/d?
MNewton summarized this as the centrifugal foree of the moon as ths product of 2
conztant and the moon’s mass divided bv the square of the distance between the
moon and the mertial frame of reference.

F = Cafd®
He concluded rhar if there were a cosmic stand off hetween the moon and rhe
Earth, then the Barth’s Gravitational Force (EGE) would egual the Moon s
Cenirifugal Force (MCF).

BEGEF =MCF =Cm
dE

That 15, the Earth’s gravitational pull weakened the farther away the moon was
from the Earth. Tt weakened inversely with the square of the distanze, smaller and

smaller force resutted by dividing by bigger and bigger d”.
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n‘/ ‘
- ﬂ/
Figurs 2-1

Flouze 2.2

Newton came up with the conclusion that if rwo parteles exert gravitational
force on each other, then the force equation would be the product af the masses of
the rwo bodies Hmes & constant divided by the square of the distanie between the

two bodies, writien simply as F = CMm.
dZ

I M and m remain unchanged bur the dwtance between the two doubled, then,

I =CMm = CMm
(2d)?  44°

which iy one-fourth the force on the original parricles. This directly confirmed his
nbservationg that the further away the pamicles are from each other, (he weaker the
centrifugal force. This thegry was in complele agreement with earker experimzntal
regults about intensity of light: diminishes as an object moves further away fom
the soures of light. Mewton's reduction of the concepr info particle physics
changed how we lock &t ¢elestial motions. Te conlcuded that the Farth's gravity
did not belong exclugively to the Eacth; that all particles of marter {elr a force of

ATTFACTION between them.
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3-Body

m}A ?rh

ma3 j«l—} ‘:X 2 md Vé; {——2'/1’
m

Figure 2-3 Figure 2-4

Newron then represented the mass of the Barth by M ang the mass of a vody by m.
The revised conception did not change the perfect equation of the Farth’s

Grravitanional Foree.,

Earth's CGravitetional Force = GMm
d_z

This means, berween the Earth and massive objects clase to ir. the force of
RITTACET was very strong and iresistable; berween the Barth and tiny objects far
BWEY, the [orce was quite weak. In shart, the Earth and any other abject were
attracted to one Anorier with & force whose strength depended on the digtance
between their centers, their two massss, and some constant number. Later
aeientilic experiments gave a very accurare valng of’ the constant of propertionality
of the force This value is called Newton’s gravitational constant reprasented by .

‘The new equation Is now:

1t



Farth’s Gravitational Faree = Givim
di

in the most general rermg, Newlon's equation expressed the: gravitational
force between any two objects; the letiers M and m could stand for the mags of the
moon ard Jupiter, or 2 comet and the gon, o any pair of bodies; if two bodies s
invalved, we then have & two-body prablem. In shozt, Newton concluded thar
gravity wag rhe force that glues objects togethar everywhere in the umiverse. With
all of these achievements, Newton was regularly bnllied by Robert Hooks, &
sember of the Royal Sociery and Jater, its president. Tlooke was very jealous of
Newton's depth of knowledge and constantly opposed his papers. Newron wag
afraid to face rejection, possibly the resuli of a childhood trauma thar always
faunted him. Edmund Halley admired Newton’s works and gave him
encouragement to publish his papers. Newton published his findings in the
Principia and weited after the death of Hooke 10 publish the Opiiks, the work thar
he wrote on the lighs spactrum and his newly invented telescope wihich Hooke
aritigized with hate and jealonsy. By developing the construct of particls physics of
celestinl motkong, Newton then became the proposal of the p-body problem. s
preoccuparion with the apple and the moeon in his family farr in Lis village
revolutionized how we look at celestial motions. Tf one considers the Earth and the
mooa, then we have the rwo-body prablem. I one adds the sun, rhe moon, angd the

Earth, we have the rhree-body problem; so the list can conrinue into infinite bodies.
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It was not surprising, therefore, that in 1969, many people thonghr the ides of
going to the moon was impossible. Some were skeptical for technizal reasons.
Haw could we transport ouwrselves 1o something that was a quarer of a milkion
mides away, let alene land on it and return safely? Others were doubtful for
religions ressans. The Earth's gravity might extend nto the heavenly realm, but
anrthlings rhemgelves would oever do so. They would never plant Uheir dirty feet
on the maoon of any other heavenly body. The doubters notwithstanding, the
Limted Srares had pressed ahead in response to President John F. Kennedy's 1961
S1ate of the Umion Challenge. The United States, under the leadership of the
Matipnal Aeronautics apd Space Administration (NASA), formed @ “think tank” oo
Ianding & man o0 the moon, NASA was racing o beat the Russians in space
explorations. NASA was trying also to fill a visceral desive first articntared by the
astronomer Johannes Kepler in his book Somniur: (meaning ““The Dream™),
brstary’s first work of science fiction. Published posthumously in 1634, Somainm
had deseribed & boy jowmeyving 10 the moon with the supermatural aid of a fendly
demon, conjured up by the boy’s wirch of g morher. Thig grory way unbehevatle
but had affected other writers like the Frenchman Jules Verne (15865 In his novel,
From the Earih to the Moon, Jules Verne wrote how three men made a long
Journgy ingide & buge alominum bulle: fired from a 200-foot-long Cast-iron camnon
locared In Tampa, Florida. A ¢entury later, NASA sent three men lo the moon

rravelling ingide what amounted 10 2 giant tanium bollet fred fom & lagneh pad
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i Cape Cangveral, Florida, one-hundred milss direetly cast of Tampa, The
astranauts rode in a iguid-fueled rocket, the Satarn V. It sounded 50 detached
from Newton's work of gravitational equations, yet Newton's equation plaved a
crucial role in man's mission (o the moon. Usng Newton's equatio s, ASTOmOETs
aver the years had calculated the moon’s orhit so precisely that NASA engincers
were now zhle 1o know exactly where their Junar target would be at any moment in
time. By calculating the rate ar which the Earth’s gravity diminished at any point
along the way to the moon, NASA also had been able to determine what rocket
size was neeced for the job. Tt was t0 give the rockets 2 5% boost that NASA. had
chosen to launch them from Cape Canaveral, which was closer 1o the eqeator than
any other place in the T1.5. There, close to the equator, the efiect of the Earih's
spinning was felt more than anywhere else in the coungy. The rockets were
whipped around with the greatest centrifugal force ar the equator, because the
gguator was far ficm the Barth's axis. NASA rook full advanrage of the sartaly
boost to find an answer (o a threc-body problem of the Earth, moon, and speceship
onee 1t was rocicered inrg morion. The hast one could do was to approximate
angwers wirh the aid of eompnrers by application of Newtan’s zquation to the
landing of the spaceship on the moon. The giant rocket inchned slowly vpwand
apainst the worelenting fores that had held us caprive on the sarth. Somewhere in
the clonds, it spins lilce a bullet travelling at 23,000 miles per hour:. Once out of the

Earth’s gravitational field, it started speeding up without the vie of excessive fuel.
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Newton’s prediciion ¢ame true. The dream of Johannes Kepler (Somnium) cane
true. Newton's perfection of the Kepler equartion and his dream of the atiraction
detween the moon and the apple bad come true when Mell Armstrong, ihe
astronant of Saturn ¥V, intered, “One glant leap for mankind.”

Historical development here just shows ancient and modern man’s interest in
celesiial mechanics. It is not a new field of siudy, but rather, we are revisiting the
aldest profession of planezary studies. The history here again shaws clearly how
science grows and how scientific theory evolves over the centuries. It is this
gradual observation and collection of data ihat created a body of knowledge that
defines what we call the solar system today. The solar system is considered a3 the
sunl, moon, and the Earth, which are the large visible planets to the naked eye, and
other planets that are not easily visible 1o the naked eye. A further treatment of the
historice! perapecrive will shed some lighr on the relationship between scientific
discovery, social enviromment, and other branches of philosephy. This chapter does
nof sef oul (0 achieve all that, This T leave ol for the inguiring mind 10 pursue for
joy or far the rigars of imellectuzl discourse. The historical discowrse here s (o
establish how small steps over many years culminated I a giant leap. Man’s first
visit (o the moon was 1ot formulated, planned, and execured 3oiely in the 1960s.
Rather, this was an idea that was shaped over rthe veara by numerous significant
bul minoe achisvenmesnts, Thar 1s whar thig secrion tars our to schieve. Tt 1s not a

hisrarical accounr of those who made it happen. “No scientific victory was ever
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won by sheer numhers or hy the mass of projecriles. Each was won by & series of
efforts, the hmmblest of which was deliberare 1o a degree™ (Sarton, 1931),
Today’s space cxploration corlirms what the ancieni asorononiers had
recorded. They recorded the movement of the planets and the stars. It has been
docymented that a few bright stars do change thelr positions and wove 50
wnevenly compared with the sun, moorn, and the rest, that they are called planets,
meaning “wanderers.” These planets look like bright stars with 18t twinkchng,
wandering across the sky in tracks of thelr own near the elliptic path (Burton,
1995}, They follow the general backward movement of the sun and the moon
through the constellations of the zodize, but at different speeds and! with
gecagional reverse motlons. The zodiac balt includas the gun’s yearly parh ang the
moon’s monthly, and the wandering paths of all the planets. In raodem terms, the
orbits of the earth, moon, and other planets all lie in the same plans, Hive
wandering plansts wers known 10 sarly agtrongmers in addirton to the sun and the
roor which were gounted with them. These are Mercnry, Veanne, Jupiter, Mars,
and Saturn. Mercury and Venus are bright “stars™ which never wander far fom the
sun but move (e and fro in front or behind it. They dre geen only mear dawn O
sunser. Mercwry is small and keeps close o the s, so it is difficult to locats.
Venus is a great bright lamp in the evening or morning. It was calld the “cvening
star” and the “morning star” by the early asronomers whoe did oot reakze it was

the same planet they were locating twice. Mars is a reddish “star™ which wanders
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in 2 looped ack aronnd rhe zodiac path, taking about (we Earth yzars for a
complete trip. Jupiter is a very hrighr “srar” wandering slowly around the ciliptic
once in a dozen years. Saturn is a hrighr “srar” wandering slowly awound the
elliptic once in about thirry years. Jupirer and Sarurn make many loops o dheir
rrack—ane loop in each of our Earth years (Figure 2-53. When one of the cuter
plarets, which are Mars, Juniter, or Saturr, makes 4 Joop along its path, &t
“crawls” slower and slower eastward among rhe srars, comes 10 5 Uop, then
ciawls In reverse direction westward for a while, then comes to a siop. It than
crawli easbwiard again like the sun and the moon This movement 1 known as the
epicyelold, which comes from the Greek word for outercircle (Figure 2-6). This
strange motion of the outer planets excited much wonder and superstition among
the anclent asironomers. We can explain this movement today by Cemonstrating
with two circlas—one big end other gmaller, When a large wheal V7 sping steadily
around & fixed axle, at some paint A on 118 rim, there 3 an axle caerying a amat
wheel w, which spins much fasrer rhan rhe big wheel W. The poing P an the rim of

the smaller circle traces an epicycloid.

Figure 2-6

Figure 2-5
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view of Relat rch

There are two Informative articles from the Marhematical Intelligencer
wrirten by Florin Piacn (1993 and 1996) on the n-body topic in two dilfferent
volumes of the journal. Another gxcellent source of research artick: Is the
American Marhemarizal Moprhly with ariicles written by Dongld Saari (1990}
Saari (1990) in his arricle, “A Vigit 1o the N-Body Proiblem Via Complex
Analysis,” presenred a sohition suirable for an advanged sudience, g soluions,
like the others, are nat adequate for 2asy comprehension for the undergraduare
student but have offered tremendous insight into how ta solve the n-body problem
by anatyfical methods, Saani’s introduction of elementary complex analysis helped
o shed Light on how to understand the advanced texis on n-body problems. fetf
XA (1988), & former student of Saari, alse wroie on the n-body problem but
resiricied his solution to the 5-body problem in his doctoral thesis. Xia showed
hoe badies in padrg moved in highly eccentric orbitg parallel with the x-v plane. He
further proved Paul Painleve’s (1987) conjecrure for the case of 5-body problem.
The conjecture stated simply that “for n=4, selurions of the n-body problem admit
solutions with noncollision singularitics.” Painleve had proved the Sase for nz 3
using differential equations as the method of somrion. Fainleve in 1887, as 2 yonng
graduate student, suspected that one particle could oscillate berweizn twa others in
a three-body mation without colliding but becoming closer and closer at cach close

encounizr, Many of Painleve’s contemporaries ried (o find exampics of solotions
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with pseudocallisions, but ao one socceeded. Diacn (19933, in hig arpcls envirled
“Painleve Conjecture,” wrote on the lost vears of the n-body prablem since its
formal proposal by Newton in the Principia. Thacn reviewed the ciase when Gosta
Mirag-Leffler. the Ediror-in-Chief of Acrg Mazhemarics, wag 10 coordinare a ream
that would find a solution of the n-body problem as a birthday present to King
Oscar If of Norway and Sweden on his sixtieth birthday on Januanr 21, 1889, The
questions were paritly formuiated by Karl Welersirass who was on ibe comuties.
The original propesal was i both Germean and French, but an Exnglish wanslation
by Damel Gored (1993) reads: “Given a system of arbitrarily many mass poimnts
thar atiract each other according to Newton's laws, under the assumption that oo
two poinis ever collide, iry o Ond a representation of the coardinaias of each point
as & senics in a varable that is some known fonetion of time gad for all of whose
vilues the series converges aniformly.” There was no berter solation than the one
praduced by Henry Poincaré out of twelve othars submirted. His solution was later
found out to be full of mistakes after he was awarded the prize. According to
Dvacu (1996), it was reported in volume 7, 1886/87 of Acia Mathematica that a
aolution wag required for the 3-body prohlem in power-series. Pomcars later
published his selution in volame 12 of the Acte Marthematica in 1890, His
contributions were remarkable for the understanding of dynamics cquations called
today Hamiltoman Systems for the many new ideas he brought nto matherratios

and mechanics. More than a century earlier, o 1710, John Bernoalli provided a
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solutiot 1o the 2-body prablem normally called Kepler Problem in honor of Kepler
for his excelient works on planetary moniong. Diagn (1996G), writing on the theme
“The Solution of the N-Body Problem,” commented on earlisr atremprs made by
prominent mathematicians who for more than a century after Bemoalli had solved
the Z-body problem, med o find solutions for n=3-bady problem. [nterest in the
praftem grew towards the end of the 1800s, and atiention was paid to celestial
mechames mote than ever before. Another interesting work on the: n-body probiem
was from Luirzer Bronver, the ediror of the Duotch journal Marhenailsche Anmile.
In 1913, as rhe chief editor, he rejected all solutions wy the probler sng reductio
ad ahsurdum, a method of marhemarical proof thar assumes the opoaosie of the
resulr 1o he e and procesds ro ghow rhat it 13 ingorrect, and that the opposte of
the origingl azgumption 18 bue. His rejection brought conflict betwean propoments
of Farmalism and Inmiirionism, the main schools of mathemarical-philosophy at the
beginning of the rwentieth century. The quest for a perfect solotion for the n-body
problem created challenging rival camps for the good of mathematics. On one band

was the Intultionist led by Brouver, the chief editor of the mfluential Dutch journal
Mathematische Anralen, and his opponents were led by a German, Hilbert, and his
school of Formaliem. These were the two main sckools of mathematical
philosophsrs at the besinning of our century. In this repard, the Gieran wis
wrong 1o assert that all theorems can be deduced by loglcal steps. [ 1913, when

Brouver was Jaunching s attack on Formalisn, be was unawse of the solution
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pravided by a Finn, Karl Sundman. Sundmar (1612 published s sohotion afer he
recaived some of hig own earlier works and built up on the works of the Iiakian
methemarician Ginto Bisareini (1906G). Sundman provided a series solution 1o the
3-body problem and showed that the series converges for those values when
angular momentum is zero. Sundman’s method failed to apply o the case of n=3.
in 1991, a Chinese student, Quidong Don Wang (1991), provided = convergence
power serics soluton of the n-body problem. He omitied only the case of solations
trading ta singularities—collision in particular. Paradoxically, Sundman’s and
Wang's solutions provide very slow convergence for insignificantly short intervals
of time. At Lirst it looks like a soletion was provided, but to sum up millions of
terns 10 deterniine the moton of the particle for insulficiently short ntervals of
time makes the work unusable. In 1984, Joo Gerver, rom Ruteers Univezsity in
New Brungwick, New Jorsey, propoged a solution for 2 plamar 3-body probien in
which rthe particle escapes to mfiniry in finits rime. Gerver did not give a complete
proof of his assumption but provided support for the existence of such a problem.
Later, wsing ragial symmetry, Gerver obtaingd a solurion for hiz plinar case by
proving his previous heursrtic example. His 18 the first confimmarion of Painleve’s
conjeciure using 2 planar solution. Six months prior to Gerver's sclution, Xia had
successfully submitted a solution to the Painleve’s conjecture for a 5-body
problem. Xia and Gerver differed in their approaches in the solztions. In his

unpublished manual on the n-body problem, Osler (1996) systematically mfroduced
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how 1o set up both numerical and some analytical solations of the n-body problem.
His numerical solution with computer-zided programs demonstrated a visual image
of the n-hody problem. If anything, his method of solutions has made the
conceptualization more meaningful. 1 lean towards his style and method. All these
regearches are relevant but rather difficult for the beginning scholar of the n-hody

prablem,

Review of Related Literature
Forrest R. Moulton (1970) treated celestial mechanics with increasing

difficulty of progression in his book Intraduction to Celesiial Mechanics. Moulton
hag collaborated on earlier works of Hill, Poincaré, and Darwin to present a strong
case tor planetary motions. This text, despite its high-level presentation, has
sophistication that, if well-understood by the student of applied mathematics, will
surely advance the body of knowledge on the n-body problem. The boolk has
treated the 3-body problem in derail using differential equations as ;:the method of
approach. Eric Rogers (1960), in his Physics for the Inguiring Mind, gave a
fundamental account of celestial morions, He gave an excellent historical
presentation on planetary motions. He treated the subject from the times of ancient
Egyptian astronomers, the Babylonians, the Greeks, and then to the present day

view on astronomy, He traced the development from the Aristotelian view of
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movement of heavenly bodies to the Copernican kelincentric view an the eclipric
ayarem of the nriverse and recounted the gradual progression of contributions
made by Ptolemy, Copernicus, Tyeho Brahe, Johanoes Kepler, Galileo Qaliled, and
tir Isaac Newton, who proposed the n-hady problem. Burron (19949) in hig book,
History of Mathematics, gave z good historical perspecrive on hoy the ancisar
scholars put together the body of knowledge on astranomy and how the various
theorics were gradually developed into the physical Jaws we use today to solve
celestial motion problems. Thomson (1986) demonstrated in his book,
Inzraducnion i Space Dynaimics, how 1o 88t up dynaical equations of particle
dynamics in orbirs. This book helps the challenging scholar (o capture the gokden
heights of celestial morions. In hig Five Eguations That Changed the World,
Gullen {19593} wrore an excellent wweanse on the listory of the Lve most known
eguations m mathematics. Fle looked ar the achievemams of Newraa and his
Universal Law of Gravity, Daniel Bernoulli and his Law of Hydropressure,
Michea! Faraday and hiz Law of Flscmomagnetic Induction, Rudo!f Clausius and
the Second Law of Thermodynamics, and Albert Einatein and the Theary of
Spacial Relativity. As we approach the millennia, more scientific discoveries will be
made. New mathematical equations will be discovered to keep the dream alive.

The future belongs 1o the young students of today and those yet to be bora,
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CHAFPTER 3

Procedures

nirgduction
The purpose of this chaprer is to explain the procedures the researcher used 1o
write on the n-body problem. The topics discussed in this chapter include how
relevant research material was gathered, how the questions were selected for

solution, and the design of related computer programs.

Relevani Re: h Material

The rasearcher selected articles on the n-body problem afier a library search at
Rowan Universiry’ Savirz Library, the Universities of Delaware, Priaceron,
Fennsylvania, and Rutgers. These library searches did nor produce any information
on simple solutions of the n-body problem. The research vielded articles on the n-
body problesy suitable for advanced graduate work and post-doctoral studies.
Some of these were doctoral digsertations reproduced for publications in
professional journals like the Americar Marhemarical Morrhiy or in the
Mathematical Iniefligencer, and textbooks already mentioned in chapter two. The
Internet was used as a resource center to seek help from the general readership.
Encouragemeni, as well as discouragement, were offered by users ::whu read the

note the researcher posted on the n-body problem on the Internet.

-



election of N-B Problem:

The researcher received assistance in degigning QB programs that solved
numericat solutions for the n-body problem from Dr. Tom Osler of Rowan
University. The number of bodies is ualimited in the use of computer programs
developed for numerical solutions. However, the number of bodies involved in the
analytical solutions were limited. It is the analytical solution type that is commonly
referred 1o 25 “no solutions exist for the n-body problem.” Thers are solutions for
n-body prablems with numerical methods. It is inappropriate 1o say there are no
soludons. The method of analyrical solution wes limired 1o Newroiian mechanics.
Intraduction of differential equations and polar equations were nof included in the
solutions, since the audience of this study is the undergraduate and academically-

excelled high school students.

nst ign of m r Proprams.

The Tesearcher wrote two computer programs to be used in this study whose
purpose was to introduce students 1o computer-gerneraied numerical solutions. The
two programs were designed as to help students gain an understanding of:

1. Euler Method of Numernical Intsgration for g two-body problem.

2. The Runge-Kuita Method of Numerical Integrarion for a two-body

prablem.

3. The Enler Method of Numerical Solution of a three-body:problem.
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4. The Runge-Kutra Method of Numerical Solution of a thre=-body problem.

3. The Buler Method of Numerical Integration of an n-body problem.

6. The Runge-Kuria Merhod of Numerical Integration of an n-body problem.

The computer pragrams numbers 5, 6, and 7 above on the applications of the
Euler, Runge-Kutta, and the Central Force problems with the parameter n can be
manipulated 10 generate different questions of the n-body problem. These different
equarions have different solutions. Whenever n is changed, the solution will be
different from the previous gne, and the graphical displays are différent. AR of
these programs were wriiten in QuickBasic because this is a compister language
which has good graphic capabilities and is commonly available on almost every
IBM-compatible computer.

The researcher developed the BEuler and the Runge-Kntta methods so that
students can see the elficiency and the effectiveness of the ditferen: numerical
methods. Another reason in using these merthods 13 1o keep the algoarithm as simple
as possible so that their basic structure could be easily understood without any
PrioF computer programming knowledge. All of the QB programs used by the
researcher for rthe numerical solations were construcied on g Ques: 480 DX 330-

megahertz TBM-comparible computer,



CHAPTER 4

Anaiysis of Data

Intreduction
This chapter describes the solution of selecred n-body problems by analveical
and numerical methods. The chapter shows solutions of specihic n-bedy problems
in Qbasic. There are graphical illustrations of analytical solutions axd visual
digplays of numerical solutions on the computer,
Specifically, the chapter introduces analyticel and numerical solutions of two-,
three-, four-, six-, and eight-body problems. A numerical sohition of the n-body

problem is also presented by Euler and Runge-Kutta methods.

If mass M rotates in a circle of radius T with velocity V, its acreleration is:

a=Y"

r
The acceleration points towards the circle’s center.
By Newton's second law,

Force = Mass-Acceleration

F=m-¥: 41
T
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Newton’s Law of Universal Gravitation for two masses m an:d M, digtance r,
the foree of attraction between them is:

F=GMm 42
I.I

me—----~«M
___r___

(5 1s gravitational constant. Equarion 4-1 equals 4-2.

mV? = Gmm
r 1

V:i=CGM

T r

The problern invalves finding the velocity of two equal masses, m rotating in a
circle of radius, r.

Fig. 4-1
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Let r be the distance from the center to the mass.
Let 2r be the distance between the masses.

Let v be the velocity of the masses.

By Newton’s Law of Universal Gravitation.

¥ = GM

r (20

e GM

T 4

R i,
ar

v=1 [Gm
E\f r

The problem involves finding analvtic solutton of the velocitics of two unequal

masses M and m rotating in circles around a canrar without any mass at the center.




The origin 0 is the center of gravity. 50,
MR = mr (1)
Bv Newion’s Laws:

F=GMm = v'm
r T

Vs GM (2)

From (1}

E=mr

<.
1

—CM._
T (™ + 1)

M + )’

v=_.M IGM
(M -+ m) r

For the other mass M,

V= m /Gm
M+m)) R

Since M = m , the both have the same angular velocity. We do not expect
r R

them to have equal velocities. The angular velocity o = ¥ = Y.
r R
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Anatvtic Sohtion ¢f a Twg-Boidy Prohlem With a Third Body Fixed at Center
This problem involves finding the velocities of two unegual migss&s Mandm
rotating n 4 circle and a third mass fixed at the center.
Can a third mass M 18 placed &1 rhe origin (OG) of rwo uneqial masses in a

circular motion and the motion still rematn ciccular?

T = GMm Also, F =¥
r I

EM =1m (1)

= GM. Mo (L)

r r+R¥ ¢

Y= _Gm  +GMo (3

B (r+R? R
Using equations (2) nd (3), we can calculate v and V. But ‘s the angnlar

velocity the same?
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(4) ¥=_GM + GM, multiplying {2) by !/,
2 L

From (3), we obrtain:

(5) M=_Gm  +(GMo  multiplying (3) by Yy
R® RR+r* R?

From (1), we obtain:

m=>M we substitute into {5) to obtain:
E r

(8) Vi=a__GM  +GMo
RE rR+1)? R

Comparing (4) and (8}, the first terms are equal, but the second terms GMo/r

and GMo/R? are not equal.
The answer is No. To enable the system to work, we must have m =M and r

=R

Fig. 4-4 s S

M} WO Y

W

Then,

v = GM + GMa
R (2R} R?

V= GM +GMo
R 4R R
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V:=GM + GiMo
4R R

V =_1 (G {M+ Mg is the required velocity.
2 R

Analytic Splution of a Satellite Qrhiting the Earth Problem
This problem involves finding the velocity of a satellite in & circular orbit at an
altitude of 1,000 kilometers from the surface of the Earth, assuming that the Earth

is a homogeneous spherical body,

Fig. 4-5

f

\I_J‘-:r"-'sm

Let R, be the equatorial radius of the Earth and b the altitude of the satelie
above the Earth.
The distance from the center of the earth 1o the satellire is R, + h.

R, +h =(6378136£1)m + 1000 x 1000m

R, +h =7378136£1)m
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F, is the gravitational force acting on the satellite.
gy Fﬂ = %Ms where d is the distance berween the center of the Esrth and
the satellte, My is the mass of the earth, M is the mass of the sarelire.
B, is the centripstal force acting on the satellite,

(2) F.=Mydw* and ¢ is the angular velocity,

Eqguartion (1) and (2)

Let n mean motion in orbital mechanics equal w. But ad is the velocity of

moiion.

w=1 [GMy
dai d

n=1 {GMg
d¥ 4a

V. =nd = ; GMp is the velocity of the satellite
d

V.= [Gx 50742 % 10%
J 7378136

'V:=J T %5,.9742
7378136

-40-



V= 19964934.9 m/s? of the satelite.

Anaiviic Solntion of 2 Four-Body Prohlem

This problem involves finding the velociry of four equal masses m rorating in a

circle with radins .

M,

N *HJ f/r )
S

Fig, 4-6 Fig. 4-7

rd

\

£

Fa | F

Nk

Lat ¢ be rhe cisranes from the center of the omcle ta rhe mass.

The digrtance berween any rwo diamstrically opposite masses is 2.

The distance between any two closest masses on the circle is2r.

M, has forces FCos - horizontally FSine- vertically acting an it Where 4 =
™/, Forces acting on M, are M, relative 1o M, M, relative to M, M, relative to
M,. The forces acting an M, and M, are equal; M, =M, = M. = M..

By Newtonizn Mechanics, F = GMm = mV?
r’ I
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ﬁ=_CLM+ GM_Cos™. + GM_ Cos ™/,
r ()P (W2 G2

Vi=GM+GM . 1 +GM_1
roo4rr 242 2 A2

V2= GM + 2GM 1
r 4 2P 42

YV:=GM + GM
T 4R VP

V2= GM +y2GM
T 40 2

f:m(uzﬁi
r et

V2 =GM (2V2Z + 1)
4r '

V=1 / OM(VZ+1) is the velocity of the mass.
2V -
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IX- fem
This problem requires finding the velocity of six equal masses m rotating in 4

circular orbit with a mass M at the cenier of gravity.

Fig. 4-8 Fig. 4-9

i

M AT iy

Fig. 4-10

T

. r+3
The distance between m, and m, = 2r.
The distance between m, and m, eguals the distance between m, and m,.
The distance between m, and m, cquals the distance between m, and m,.

m12m22m32m4:m5=m5_
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The sum of the forces of attraction berween M, aad M, My, M,. M;, and M,
and M are respectively.
Y2 =0m, Cos &+ GM, Cos a+0M + GM,_ Cos 2+ Gm, Cos & + GM
L ERNE & 3 (2 3 6 ¥ 6
Butmy =, =y = My = M5 = I, = 7

Vi=Gm 1+ Gm 1+ G - Go/ 3+ Gm 3 + GM
r 22 A o4 w2 o3 2 2

V2 = 50 + Gl 3 - GM
ro 47 3 r

V2 = |30Gm + W 3Gm + 12GM
T 127 12r 127

Ve G| (15+4/3m+ 12]".41)
121'(

!

V= /—ﬂ[(lﬁ + 4 3)m + IEM] ig the required velocity.
V172r

lution of ag Eighi-B i1
This problem involves finding the velocity of ¢ight equal mastes m rotating in

a circle with radius r.

Kig, a-11

P, is the distance between m, and m,




Fig. 4-12

Pl=r+1"-2rr. Cos ™Y,

P =20 - 2 Cos o,

Pl=2r {11 =
ff | 4,

PP =2 (- 1) r
77
i

Pl=v 262 1) P
Fig. 4-14
PP=r (2-42)

The distance between m, and m, is 1v' 2.
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m;

Fig. 4-15

The distance between m, and my, is P,.
p.2=r"+1- 2rr. Cos ¥,
Pzz = 2]“2 - Z-I.prn CDS 3:/4

P2 = 2% (1- Cos /)

PR =271+ 1.0
3

2

P =2 +2)
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Where, the acceleration of M, due to M, = acceleration of M, due 10 My
the accelaration of M, due to M, = accelerarion of M, Jue 10 M
the: acceteration of M, due 0 M, = acceleration of M, due to M,.

Acceleration of mass = acceleration of M; and M, + acceleration of M, and

M, + soeeleration of M, and M, + acceleration of M;

¥, = 2Cm Cos 3n/8 + 20m Cos /s + 20m Cos /4 4 G
SR P’ (r/ 2)° (2ry

1M+Mﬁ+_ﬁm¢+@n
r (22 Py e 2 48

V= 4EE_CDS3ME+M+_L§L*QE1
(247 (2+4 D 2 4

Bur, Cos 3n/8 = Cos (2n/8 + n/8)
Cos 37/, = Cos /4 Cos /8 - Sin nt/4 §in n/8

Cos 3n/8 = 1 Cos m/8 - _1 Sin /&
2 v

Cos 318 = _1 (Cos /8 - Sin 7/8)
+Z

Al Cos nfs-f—/ygmmd And, Sin T \/_L Eﬂﬁﬂ[ _J l_f.}
Cos MELF;?E‘ Sin /8 =L V{’(‘?ﬁ-

Cos 3= L1V VD 1272

i 2 2
Cos 3= 1 W(2+70) ~TT-72)
W2
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Cos 3n/8 = L WE VD V- T3
4

Theretore,

l @(1+Eﬁ+£ FIET7 - ﬂZ-?ﬁl +Z 2]
P 4 2L (Z-4D) e

ﬁﬁv A A N T T 22 }
r

x&:g};ﬁ[nwzwmﬁ(ﬁ(ﬁﬁ)z)}
r 4 |

N:=0m [1+4J2+2~f242+ﬁ}
r 4r

V=G [1 22+ + Jé] i% the acceleration.
r A

4r

V= 11+2~}"(?+{i+t_]

V=14 \/ Gmf (1 + 2d2(2 ++ 2+ +'2) is the required velociry.

This program generates a numerical solution of & two-body problem using ths

Eupler method. The number of meagses, rhe coordinates of the masses, and the nital

YeJQCITes are given.

N=2 ™ = number of bodies
X X yxX, MY M
100 DATA 1, 0, 0, 1, 1
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110

120
130
140

150
160

200
210

DATA -1, 0, 0, -1, 1
FORI=1TON

READ X(D), Y(D), VX(I), VYD), M(D)

NEXTI

G=1 "' Universal gravitationzl constant

T=0DT=.001 'Initial ime and ncrement
' Establish screen paramsters

SCREEN 12 "VGA resolution
RAD =3 " Screen RADius

' distances times 1.33333 so thar circles look circular

WINDOW (-1.33333 * RAD, RAD)-(1.33333 * RAD, -RAD)
L3

* Calenlare next positon

PSET (0, ) ' Mark center of coardinates
WHILE KEYS ="" ' Loop until key pressed
FORI=1TON

' Find AX(1) and AY{I) components of acceleration on [-th mass
AX(D =0: AY(1)=0
FORI=1TON
IFJ <1 THEN
DELTAX = X() - X(I)
DELTAY( = Y{I) - Y{(I)
R{J) = (DELTAX(J) A 2+ DELTAY() A 2) A .5
AX(D = AXM + G * M(JI) * DELTAX(I) / R{J) A P+1
AY(D = AY() + G * M(J) * DELTAY(D /R(D A P+
ENDIF
NEXT ]

FIND dVX, dVY, dX, and dY on the left of our interval
DVX( = AX(I) * DT

DVY{I) = AY{I) * DT

DXI) =VXI) * DT

DY) =VY(D) *DT
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VX(I) = VX(I) + DVX(D)]
VYD) = VYD + DVY(D)
X(D) = X(@ + DX

Y(I) = Y@ + DY)

410 PSET (X(D, YOI 'Plot POsition on screen
T=T+DT

LOCATE 1, 1: PRINT USING "Time : #4584 " T

420 KEYS =INKEY$ - Seeif key is pressed to stop progrim

NEXT1
430 WEND ' Start while loop again to calculare
' next position
STOP

Thig program generates the solution of a two-body problem using the Runge-
Kutta method. The number of masses, coordinates of the masses in the x-y planes

7

and the inidal velocitics are already determined.

G=1 ' Universal gravitational constant
P=2 ' Central force = G M m / rAP
N=2 ' N = number of bodies

. e MY O ONY M
100  DATA 1, 0, Q, .55, i
110 DATA -1, 0, 0, -.55, 1

120 FORI=1TON

130 READ X(I), Y(I), VX(I), VYD, M(D

140 NEXTI

150 T=0:DT=.01 " Inirial time and increment

' Establish screen paramezers

200  SCREEN 12 " VGA resohition
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210

220
230

300

310
320

400
410
420
430
44
450
460
470
480
490

500
310
320
520

600
610
620
630
644}
700

800

RAD =73 'SCREEN RADius
' x distances times 1,33333 50 that circles look circular

WINDOW (-1.33333 * RAD, RAD)-(1.33333 * RAD, -RAD)
CLS

' Calculate next position

PSET (0, ) " Mark cenrer of coordinates
WHILE KEY$ =" ' Loop until key pressed
FORI=1TON

" Find AX(T) and AY(I) components of acceleration on I-th mass
AXD =0: AY(D) =0
FORY=1TON
IFJ <=1 THEN
DELTAX(J} = X(J) - X(T)
DELTAY(J) = Y(J) - Y(D)
R(J) = (DELTAX(]) A 2+ DELTAY(D A2) A 5
AX(D = AX(T) + G * M(J) * DELTAX() /R(V AP + 1)
AY(D) = AY(D) + G * M(T) * DELTAY(® / R(OD AP + 1)
END IF
NEXT]J

FIND dVX, dVY. dX, and dY on the left of our interval
DVX(I) = AX(T) * DT

DVY(D) = AY(D) * DT

DX(I) = VX1 * DT

DY) = VY(I) * DT

'Estimate VXR = VX on right side of our interval, VYR = etc
VXRD = VX({I) + DVX(D

VYR{I) = VYD) + DVY(D)

XR(I) = X(I) + DX(D)

YR{I) = Y(I) + DY(I}

NEXTI

FORT=1TON

AXR(I) =0: AYR(D) =0
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310 FORJT=1TON
520 IF 1 <= THEN

830 DELTAXR) = XR(I) - XR(D)

840 DELTAYR() = YR(J) - YR(D)

B30 RR(J) = (DELTAXR({) A 2 + DELTAYR(T) A 2) A .5

860 AXR(T) = AXR(T) + G * M(J) * DELTAXR(J) / RE(]) A (P + )
870 AYR(TY = AYR( + G * M(J) * DELTAYR() / RE(D A (P + 1)
B8O END IT

890 NEXTJ

800  DVER(M = AXR() * DT
910 DVYR(y=AYR(I) *DT
G20  DXR(I) = VXR(I) * DT
430  DYR() =VYR() *DT

950  MIVXA(D) = (DVX(D + DVXR{) / 2

060 DVYAN) = (DVY(D) + DVYR(I) /2 ete
870 DINALN = (XD + DXR) /2

880 DYA(D = DY + DYRQ)) /2

1000 VX = VXD +DVXAD 'new VX =old VX + dVX averags
1010 VYD =VY({) + DVYA() 'etc

1020 X({I) = X{I} + DXAT

1030 Y =Y+ DYAI)

100 PSET (X(I). Y{I)), 1T+ 1 ' Plot position on screen
11D T=T+DT
1120 "Locate 1, I: PRINT USING "Time : & #88  T

1130 KEYS=INKEY$S ' See if key is pressed 1o stop program

1140 NEXTI

1130 WEND " Start while loop again to calculate
' next position

2000 STOP
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Thig program illustrates the numerical solution of 4 three-body problem using

the Buler merhod. The number of masses, initial velocities, and the positions of the

masses are predetermined in the program.

N=73

100
110
115
120
130
140

156
166

200
210

220
230

' N = number of badies

A X MYXx MY M
DATA I, 0, 0, i, 1
DATA -1, 0, 0, -1, |
DATA 0, 1, 0 1, 1
FTORI=1TON
READ X(T), Y(I), VX, VY1), M(D
NEXTI
G=1 " Universal gravitational constant
T = DT =.001 'TInitial rime and increment

' Establish screen parameters

SCREEN 12 'V A resolution
RAD™ 3 ' Screen RADus

' x distances vimes 1,33333 so that circles look circular
WINDOW (-1.33333 * RATY, RAIN-(1.33333 + RAD, -RAD)
CLS

'Caleulate next position

PSET (0,03 ' Mark center of coordinates
WHILE KEYS5 ="" " Laop until kev pressed
FORI=1TON

"Tind AX(T) and AY(T) components of acceleration on I-th mass
AX(M =0: AYT) =0
TORI=1TON
1IF J <=1 THEN
DELTAX(T) = X(I) - X(I)
DELTAY () =Y (T - Y(I)
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R(T) = (DELTAX() A 2) A .5
AX(D = AX(D) + G * M(J) #* DELTAX(D) / R(}) A (P + 1)
AY(D) = AY(D) + G * M()) * DELTAY(I) / R(D) A (P + 1}
END IF
NEXTJ

"Find VX, dVYm dX, and dY on the left or our interval
DVX({I = A * DT

DVY(D) = AY() * DT

DXD =VXD *DT

DY(D) = VY() * DT

VX({I) = VX(I) + DVX(D)
VY (I = VY(I) + DVY(D)
X1 = X{) + DX(T)
Y(I) = Y(I) + DY)

410 PSET (X{D, Y(I)) ' Plot position on screen
T=T+DT
LOCATE 1, 1: PRINT USING "Time : ##H#H8#" T

420  KEY$ =INKEYS$ ' See if key is pressed to stop program

NEXTI
430 WEND " Start while loop again to calculate
' IgXt pPOSItion
STOP
Nuparerical Solution of a Three-Body Problen:

This program illustrates the numerical solution of a three-body problem using
the Runge-Kuita method. The number of masses, the initial velocities, and the

coordinates of the masses are predetermined.

' N =number of bodies
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100
110
113

120
130
14)

150
160

200
210

220
230

300

310
320

410
420G
430
440
450
460
470
180
490

500
510

X X X MY M
DATA -1.5, -2, 0, 0, 4
DATA 1.5, -2, 0, 0, 3
DATE 1.5, e 0, 0, 3
FORI=ITON
READ X(I), Y(I), VX(I), VY(I), M(D)
NEXTI
G=1 ' Universal pravitational constant

T=0: 07 = 000001 ' Initdal time and increment
" Egrabligh sorecn parameters

SCREEN {2 "V A resolition
RaD =5 " Screen RADUs

"% distances times 1.33333 so that creles look circular
WINDOW {-1.33333 # RAD, RATHN-(1.33333 = RAD, -RAD)
LS

' Calculate next position

PSET {0, O) ‘Mark center of coordinates
WHILE KEY$ ="" " Loop until key pressed
FORI=1TON

" Find AX(I} and AY{I) components of acceleration on I-th mass
AXN =0 AY(D=0
FORJ=1TON
IFJ <> 1THEN
DELTAX(Y) = X(T) - X(I)
DELTAY() = Y - Y{I)
R(D) = (BELTAX(I) A 2+ DELTAY(J) A 2) A .3
AX(T) = AX(T + G &M * DELTAX(D /R AP+ 1)
AY(D =AY + G &M * DELTAY(D /RN AP+ 1)
END IF
NEXT]J

'Find dVX, dVY, d¥X, and 4% on the left of our interval

DVX() = AXT) * DT
DVY() = AY({T) * DT
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520 DR = VXD = DT
530 DY) =vYL* DT

"Egrimate VAR = VX on right side of our imerval, VYR = e1¢
600 VXR(D = VXD + DVX(D

GI0 VYX(T = VYD + VYD)

620 XR(D) = X(D + DX

630 YR = Y(I) + DY)

640 NEXTI

700 FORTI=1TON

B) AXRM=0:AYR(D=0
810 TFORJI=1TON

820 IF J <> 1 THEN

£30 DELTAXR() = XR(]) - XR(I)

BA0 DELTAYR(J) = YR(J) - YR(D)

85() RR(J) = (PELTAXR(N) A 2 + DELTAYR(J) A 2) A .5

B0 AXR() = AXR(D + G # VIO * DELTAXR() / RR(TD) AR + 1)
870 AYRT) = AYR(T) + G % M(IT # DELTAYR(T) / RR(D A (P + 1)
R8O END TP

B0 NEXTI

900  DVXR(I) = AXR() * DT
910 DVYR(I) = AYR(I) *DT
920 DERI =VXRD *DT
930 DYR( =VYR(M *DT

950 DVXA(D = (DVX() + DYXRI) /2

960 DVXY(D = (DYY() + DVYR()) /2 'ete
G70  DINALD = (KD + DXROD) /2

980 DYA(D) = (DYINT) + DYR(I)) / 2

1000 VXD = VX)) + DVXA(LD  "new VX =old VA + dVX average
1010 ¥VY(D = VYD) + DYVYA) e

102G XD = A1) + DXAL

G YD =Y +DYA(D

100 PSET (X(5), Y{I)), I+1 ' Plot position on screen

HIG T=T+DT
120 'Locare 1, 1: PRINT USING "Time : REEHRE S T
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£130

1146

1150

KEY$=INKEYS ' See if key is pressed to stop progrem

NEXTI

WEND " Start while Joop again to calculate
" next position

STOP

Numerical Sglution of the N-Body Problem Using the Euler Method

This program illustrates rhe mumerical splurion of the n-body problem nsing the

Euler method. There are two masses given in the program which rnakes it look like

a two-body problem. As many bodies car be added and each with its required

narameters. This, then, is the general nurzerical solution of the n-tody problem.

N=n

100
110

120
130
140

150
160

"N = nimber of bodies

X X yX MY M
DATA 1, D, 0, 1, 1
DATA -1, 0, 0, -1, 1
FORI=1TON
READ X(T), Y(I), VX)), VYD), M(I)
NEXTI
G=1 " Tniversal gravitarional constant

T=0: DT =001 'Initial time and increment

' Establish screen parameters

200
210

220
230

SCREEN 12 '"VGA resolution
RAD =3 ' Sereen RADIus

' x distances vimes 1.33333 so that circies look circular
WINDOW (-1.33333 * RAD, RAD)-(1.33333 * RAD, -RAD)
CLLS



300

313

410)

420

430

' Calculate next position

PSET {0, ) " Mark center of coordinates
WHILE KEYS =" " Loop it key pressed
FORI=1TON

'I'md AX(I) and AY(I) components of acceleration on T-th mass
AX(D =0 AY(I =0
FORJ=1TON
IFJ<>1TTHEN
DELTAX(T) = X{I - X(I)
DELTAY () =%({T) - Y{I)
RN =(DELTAXD A2+ DELTAY(D A2 A S
AX(D = AX(D) + G * M(D DELTAX(D /R A P+ 1)
AY(D = A% + G MIN DELTAY (N fRED A TP+ 1)
ENDIF
WEXT

"Find dVX, dVY, dX, and &Y an the left of our interval
TVX() = AX(D ~ DT

DVY(T) =AY = DT

DX =VvX(H*DT

DY =VYM*DT

VX(I) = VXD + DVXT)
YY(I) = VY(D + DVY{I)
X = X(I) + DXL
Y0 = Y(I) + DY)

PSET (X(I), Y (I " Plot postion on soreen
T=T+DT
LOCATE 1, 1: PRINT USING "Time : $85E5H ", T

KEYE = INKEY?F ' See if key is pressed to stop program

NEXTI

WEND " Start while loop again to calculate
" next position

STOP
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Thig program hustrates the general solution of the n-body problem using the

Runge-Kurta method. Six specific masses are stared in the program. This is just to

illustrate how masses can be included in the program. To generate solutions,

masses must be included n the program with required pammeters‘stated. More

masses can be added, and those already stated can be changed cornpletely or partly

to generare the desired n-body problem.

70 G = 6.67259E-11 'Universal gravitarional constant

20 P=2 "Central force = G M m /AP
g0 N=6 "N = nomber of bodies
X X NX MY
100 DATA 2.5E+1Q, Q, 0, A5ZE+41,
110 DATA -2.3E+140, Q, 0, -1.133E+%-1,
DATA Q. Q. ¢, a,
DATA SE+11 Q. 0, 4.8F+4
DATA 1E+11, Q, 0, 3.5E+4,
DATA 0, 1.5E+11, -3E+4 0,

120 FORI=1TON
130 READ X(I), Y(I). VX(I), VY{I). M(I)
143 NEXTI

150 T=0:DT=360 ' Imitial time and increment

' Establish scTeen parameters

200 SCREEN 12 ' VGA resalutgon
210 RAD =3E+10 ' Sereen RADns

' x distances times 1.33333 so that circles look circular
220 WINDOW {_1.33333 # RAD, RAD)-(1,33333 * RAD, -RAD}
230 CLS

" Calcalate ngxt positon
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300

314

400
410
420
430

450

470
486
A9

500
310
320
330

600
Gl
620
630

HaD
700

200
&10
820
330
g4
83}
860
870
gl
890

PSET (0, O ' Mark center of coordinates
WHILE KEYF ="" ' Laoop unril key pressed

" Find AX(T) and AY(I) components of acceleration on I-11t mass
AXM =0 AY{)=0
FORI=1TON
IFJ <=} THEM
DELTAX( = X - X(D
DELTAY(N =Y(D - ¥(T)
Ri) = DELTAXN A2 +DEL:TAYT AZYA S
AXD = AX() + G * M) * DELTAX(D /R AP+ 1)
AY(D = AY(D + G * M(T) * DELTAY(T) /R A (P + 1)
ENB IF
NEXT |

'Find VX, dVY, X, and dY on the left of pur interval
DVX(D) = AX() * DT

DVY([) = AY(D) * DT

DX = VXD * DT

DY(D) = VY(I) * DT

'Estimate VXR = VX on right side of our imigrvel, VYR = ei¢
VEER(T) = VX(I) + DVX(I)

VYR = VYD + DVY(D)

XR(D) = X(I) + DX(I)

YR(I) = Y(I) + DY)

NEXT Y
FORI=1TON

AXR(T) = 0: AYR(T) = 0

FORT=1TON
TF J <> I THEN
DELTAX(D = X(J} - X(I)
DELTAY(T) = Y(J) - Y(I)
R(J) = (DELTAX()) A2 +DELTAY(DAD A5
AX() = AX(D + G ¥ M{H DELTAXD / R(D A (B + 1)
AY() = AY(T) + G * MDD DELTAY(D) / R(D A (P + 1)
END [F

NEXT T



Y00
210
020
930

Q50
Q)
270
Q80

1000
1010
1020
1030
L1060
1110
1120
1130
1140
1150

2000

DVXR(D = AXR(T) * DT
DVYR(I) = AYR(D) * DT
YR = VR * DT
DYR(D) = VYR(I) * DT

DVXA(D = (BVE(T) + DVXR(D) /2
DVEYM = (OVYTD +DVYRID /2 e
DA = (DX(D) + DXR) / 2

DYA(D = (DYIND) + DYR() / 2

VD) = VXD + DVXA(D ' new VX = old VX + dVX average
VYD) = VY + DVYA(D  etc

X(0) = X(D) + DXA(T

Y =Y() +DYAQD

PSET (X{8), Y(I)»,I+1 "Plot position on $Grasn
T=T+DT
"Locare 1, 1: PRINT USING "Time : #5342 " T

KEYF = INKEYS ' See [ key i3 pressed o srop program

NEXT1

WEND ' Start while loop again to ¢eleulate
"nexl position

STOP
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CHAPILER 5

Summary of Findings, Conclusions, and Recommendaticns

Introduciion
This chapter sumnarizss the content of the n-body problem sclved by the
researcher, Conclugions on the introduction of the n-boedy problenis in the college
preparatory and undergraduate curricyhom is discussed. The researcher concludes
this chapter with recommendations concerning the development of & syllabus thar

will integrate matheizatics and physics as a course to be offered.

Summary of Findings
The researcher has solved specific n-body probiems that are appropriate at the
undergraduate level The researcher hag found that topics suitable for
undergraduate and college preparatory students are:
1.  Analytic solution of a two-body (two cqual masses) problem rotating in a
circle.
2. Analytic solution of a rwo-body problem with a third bocy not in moton
but bigger than the two equal masses in motion.

3. Analytic solution of a two-body problen involving rwo unequal masscs.
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4. Analvtic solution of a four-body problem. Four masses of equal magses
rotating in & ¢irgle.

5. Analytic sohition of a six-body probler with a seventh miss of different
glze: ar the center.

6. Analytic solution of an eight-body probiem.

7. The pumercal solurion of a twoe-body problem by Euler’s method.

8.  The apmerical solution of 2 two-body problem by Rungs Kutta,

9. The numerical solution of a three-body problem by the Euler meihod.

10. The numerical golution of a three body problem by the Runge-Kura
method.

11. The nurmerical sohrtion of an n-body problem by rhe Enler methoc.

172, The numerical solution of an n-body problem by the Rungze-Kuotta method.

ncingi
Based on the solutions provided at the elementary level, a course in the n-body

problem for undergraduate and college preparatory studants can be developad.

R ndation
Applied mathemarics is not popular in the high school mathematics curriculum.

The inoduerion of n course in physics with mathemarics will generale interest in
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applkicd mathematics, This course could be taught to college preparatory juniors
and seniors throughont the college undergraduate curriculnm. The: success of this
program will gradually create a pool of future apphied mathematiciang who can

devote time to the n-body problem.



BIBLIOGRAPHY

Burton, David M. (1995). Ar Intreduction o History of Mathematics. Boston:
Wm. C. Brown Publishers.

Diacu, Florin. (1996, Spring). The solution of the n-body problem, The
Marhematical fnielligencer. Vol. 18, No. 3, pp. 66-70.

Diacy, Florin & Holmes, Philip. (1996). Celestial Encounters, The Origins of
Chaos ard Stabiliry. Princeron: Princeton University Press.

Dhacu, Florin N. {1993, Spring). Painleve’s conjecture. The Mathematical
Intelligencer. Vol. 15, 2. pp. 6-12.

Gullen, Michale. (1995). Five Equations That Changed the Worid, New York:
Hyperion.

James, G. & James, R. {1959). Dictionary of Mathemarics. New York: D, Van
Nosgtrand Company, Inc.

Moulion, Forrest R. (1970). An Introduction to Celesiial Mechaizics. 2nd New
York: Dover Publications, Inc.

Newton, Isaac. (1687). Philosophiae Naturalis Principia Mathematica. NY:
Prometheus Books.

Osler, Thomas J. (1996). Unpublished works on n-body problems.

Rogers, Bric M. (1963). Physics for the Inquiring Mind: The Merhods, Natre,
ard Philosophy of Physical Science. Princeton: Princeton University Press.

Rosen, E. (1967). Kepler's Somnium. London: University of Wisconsin Press,

65~



Saari, Donzld. (February 1990). A Visit 1o the Newtonian K-Body Prohlem via

Elementary Complex Variables. The American Mathemazical Monthly. Vol

97, pp. 103-119.

Szebehely, Victor G. (1993). A first course in the theory of orbils. Adveniures in
Celestal Mechanics. Austin: University of Texas Press.
Verne, Jules (1963). From the Earth to the Moorn, New York: Afmoomt Poblighing

Company.

-6~



Registretion Shast Hods

1 bivide 1iles

! Eaa& File ID

Btarags Sptting

XFRQNT SIDE [ 0B 2 PAGE [_]F/B 1 PAGE
| NORKAL | FINE
;DTE:{T o] FHOTE

pack | [ ] P[] [ Liske

Total Mombee o Warhe

1 2 8§ 4 & &
SO R O




	A study of the n-body problem in celestial mechanics for college students
	Recommended Citation

	N-BODY PROBLEM CELESTIAL MECH.

