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ABSTRACT

John Atsu Swarny, A Study of the N-Body Problem in Celestial Mechanics for
College Students, 1997, J. Sooy, Mathematics Education.

The purpose of the study is to investigate simple solutions of the many-

body problem otherwise known as the n-body problem. The study tocuses on

elementary solutions of the n-body problem that can be understood by

undergraduate students and college preparatory srudents of applied. mathematics.

Historical origins of the problems were traced to the ancient Egyptians

Babylonians, and Greeks. Further development and interest dated back to the time

of Copernicus, Galileo, Kepler, and inally to Newton who proposed its modern

form.

Analytical and numerical solutions of specifc n-body problems were solved

to demonstrate solvability of certain type of n-body problems. Analytical soluions

for velocities of the masses were calculated. Numerical methods written in the QE

computer language generate solutions of specific n body problems. Two- and

three-body numerical solutions were solved to demonstrate solvability by witing a

computer algorithm using the Euler or Runge Kutta method The numerical

solution displays the trajectories of the masses in graphics and the behavior the

masses are shown. No formula has been developed for determining general

solutions of n-body problems in this research.
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In conclusion, there are simple solutions for Certain n-body problems. The

subject can be studied at the undergraduate and college preparatory Level
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MINI ABSTRACT

John Atsu-Swanzy, A Study of the N-Body Problem in Celestial Mechanics for
College Students, 1997, J. Sooy, Mathematics Education.

The primary purpose of this study was to generate interest in the n-body

problem at the undergraduate level. Simple solutions of specific nobody problems

were provided. Numerical and analytical solutions were presented at a level that

the undergraduate and the college preparatory students can comprehend, The

study concluded that there are simple solutions of the n-body problem that the

undergraduate and college prep students can understand.
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CHAPTER 1

Introduction to the Study

Introduction

This chapter introduces the n-body problem and the difficulty of finding

simple solutions to the problem. The chapter includes background information, the

statement of the problem, the significance of the study, limitations of the study,

definitions of terms, and procedures for implementing the study.

Background Information

The n-body problem is not a new topic in mathematics. Althorgh the question

was first posed by Isaac Newton in 1687, the problem is older than Stonehenge. It

assumed its moder form when Newton (1687) proposed this problem in his

philosophical essays of Philosophiae Naruralis Principia Marhema rzca.

Mathematicians of all centuries since Newton's days have been preoccupied with

finding solutions to the n-body problem. Different methods of solui ions have been

presented at mathematical forums, but to my knowledge, no colleclion of simple

solutions has yet been presented. The n-body problem has many applications in

today's space exploration. For example, computer-generated solutions of

trajectories of celestial bodies and satellites' motions are common applications of

the ni-body problem.
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The study of how celestial bodies move under gravitarional fohices is an old

problem for ancient and modem man. This subject area traces its o;igins to the

earliest reaches of mankind. It is very easy to preempt that the study of the many

bodies, referred to as n-body problem, is the "world's oldest profession." "If it

isn't the oldest, then most surely it is the second oldest" (Saari 1992).

Statement of the Problem

The purpose of the study is to present the case of simple solutions of the n-

body problem. These simple solutions are for the understanding of the college

undergraduate students and upperclassmen in high schools in marhimaTics and

physics programs.

SiPnificance nf the Stndy

The researcher has recently examined several texts and research articles on the

n-body problem. This examination indicates there are no simple solutions of the n-

body problem for high school and undergraduate students. Almost all relevant

researches on the n-body problem are written for an advanced audience. The

simple solutions of the n-body problem for the undergraduate students will

generate early interest in the n-body problem. Therefore, there exists a need for

simple analytical and numerical solutions of the n-body problem.

2



Limitations of the Studv

The study has considerable limirarions among which:

* There is scarcity of relevant research and literature that addre¢;ses the n-body

problem at this particular level;

* there is no single textbook devoted solely to simple solntions of the n-body

problem;

* the researcher has observed that there is a lack of awareness among high

school teachers about the existence of the n body problem:

* the scope of the study is limited to undergraduate mathematic; and physics

major students;

* the students must have as a prerequisite a physics course that gives them

considerable knowledge of Kepler's Laws of Gravitational Motion and

Newton's Law of Motion.

i The solution is limited to cases of mass of bodies; n - {2, 3, 4, 5, 6 ... , n)

with a fixed body at the center or not at the center.

-3-



Definition.of Terms

Acceleratijo: the rate of change of velocity "v" with respect to time "t" (dv/tv

- a). For a particle moving along a curved path, the velocity is directed along the

tangent to the path (James and James, 1959).

Anmular Acceleration (rl: the time rate of change of angular velocity (w), a -

dwi/dt.

Angular Vencity: the rare of change of the angle between a fi.ed line and the

line joining the moving particle to a fixed point. It is centriperal normal, and

tangential components of acceleration (James and James)

Centripetal Force: the force which restrains a body, in motion. from going in a

straight line. It is directed towards the center of curvarure (James fnd James).

Centrifugal Force: the force which a mass m, constraining to move in a path,

exerts On the constraint in a direction along the radius of curvature. it is equal and

opposite to centripetal force. When the path is a circle of radius r, :he magnitude

of this force is ro 2 = v2/r (James and James).

Universal Constant of Gravity: G = 6.67 x 10'1 Nm2kg 2 (James and James)

Law of Univeal Gravitation: the law of attraction. Formulated by Newton in

accordance with which two particles of masses M and m interact so that the force

of attraction is proportional to the product of the masses and varies inversely as

the square of the distance between the particles. In symbols, F = GMm/r3 where r

-4-



is the distance between the particles and G is the universal constant of gravitation

(James and James).

Procedures

The first phase is to read and analyze related research and lite atuxe on the n-

body problem. This will involve searching the on-line librares, the Rowan

University Library, and libraries of colleges in close proximity of th e researcher,

including the Universities of Pennsylvania, Delaware, Temple, Drexcel, Rutgers,

and Princeton

The second phase is ro discuss with D. T.J. Osler, a professor of applied

mathematics at Rowan Umversity, on the research outcomes and work with him

on simple solutions to the specific n-body problems.

-5-



CHAPTER 2

Review of Related Literature and Research

Introdution

The primary purpose of this chapter is to introduce relevant research and

literature to support the study. There is very little published research to the n-body

problem that is relevant to the undergraduate or academncafly excelled high school

student. However, there is adequate relevant research and hteraturtK that is suitable

for advanced course work on the n body problem. There are good textbooks on

celestial mechanics which appropriately treat the subject of gravitational motions

of heavenly bodies. These books are cited in the relevant literature section of this

chapter. The chapter also introduces the historical development of astronomy from

the times of ancent Egyptians, Babylonians, and the Greeks with fteir

preoccupation of movement of heavenly bodies. DuMng the Renaissance and the

Age of Reason periods, scholars like Copernicus, Galileo, Kepler, Newton, and

others were also able to put together a scientific explanation of the movements of

dte heavenly bodies instead of some of the superstitious explanations given by

earlier ancient astronomers.
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Historical Backgronlu,

It is difficult to credit a particular group Or person for the early astronomical

discoveries. Probably, these discoveries were made in stages and rediscovered and

then spread slowly, According to Rogers (1960), urban civiliarions developed in

several great river valleys 5,000 or more years ago. Much applied ;cience had

already been discovered a few thousand years before this time. Anificial rrigation

of crops by canals and ditches, the plow, sailboat, and wheeled vehiles; use of

animals for power; production, use of copper, bricks, glazes; and finally, a solar

calendar; writing; a number system; and the use of bronze had been developed too

by the ancient Babylonians, Egyptians, Sumerians, and Chaldeans.

By 2000 B.C., there were towns flourishing with extensive trade. They had

excellent conmerical arithmetic that was almost algebra. They could solve

problems leading to quadratic, even cubic, equations. The value of -2 was

accurately known, but x was raken to be roughly 3. They used similar triangles and

knew Pythagoras' rule. They had good weights and measure, sund als and water-

clocks, Near the equator, the sun's path did not provide a good working basis for

the calendar, so the moon was much easier as the basis for the calendar. The early

Babylonians based rheir calendar On new moons but had to reduce chat into a solar

calendar of seasons for agriculture and seasonal religious ceremoni s. Careful

observations of the moon and the sun were required. A careful mathematical

system for predicting the motions of the sun and the moon was de eloped. Belief
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in omens took a prophetic turn, and astrology took a stronghold oil the people

(Rogers, 1960).

The ancient Egyptians were the forerunners for astronomical studies. They

engaged in fewer wars and devoted more time to spritual and intellectual

developments. The ancient Egyptians lived peacefully and with more "friendly"

gods. Their gods did not encourage wars but devoted their priestly class to

mathematics, astronomy, and astrology. Ancient Egyptian mathemaicians served

on magic and commerce, recorded corn stalls, divided property, and built an exact

pyramid. Egyptian astronomy was simpler than Babylonians' astronomy. They had

an efficient solar year of twelve months of thirty days each plus five extra days; so

they paid less attention to eclipses of the moon and the planets. Tx o thousand

years before Christ was born, they recorded accurate planetary observations

(Rogers, 1960).

Next and Closely related to the ancient Egyptians were the Greek city states.

Scholars and priests travelled between the two lands exchanging kniowledge. The

city of Alexandria in Egypt was named after Alexander the Great of Greece

(Rogers, 1960). About some 3,000 years ago, Greek civilization began to evolve.

It produced mathematicians, scientists, and philosophers who made such important

advances. Thales (600 B.C.) was a founder of Greek science and philosophy. He

collected geometrical knowledge perhaps from the Egyptians and began to reduce

geometry to a system of principles and deductions; that was the beginning of
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science that Euclid later was to brnin to fruition. Euclid set forth an explanation

of the universe in his book Elements (Euclid-323 B.C.). After this period, nor

much activity on celestial mechanics had been recorded until the time of the

Renaissance. The earlier advances made by Thales, Ptolemy, and Aristotle became

the prevailing views on celestial motions. The Renaissance, which was at its peak

in the seventeenth century, spread all over what is known today as western

Europe. It brought in many advances in scientific, technological, and economic

leadership of the English Channel. Scholars began to pay less attention to what

was already written and place more reliance on their own observations. This period

was characterized by an eagerness to experiment and to determine how things

happen. The appearance of William Gibler's De Magnete in 1600, he first treatise

on physical science, to Newton's Optiks in 1704 brought in a new awakening in

the spirit of inquiry. In between the De Magnete and the Optiks came Kepler's

theory on planetary motions. Kepler built ou earlier works of Tycho Brahe (1546

1601) and refuted the prevailing Aristotelian concept of "ideal circular motions"

and pushed forward an explanation for elliptical orbits. Kepler then formulated the

Laws of Terrestrial Motion in 1619. The period 1637 to 1687 was regarded as the

fountainhead of modern mathematics. The first date, 1637, alludes to the

publication of Rene Decartes La Geometric and the second, 1687, to Newton's

Principia Mathematica. The two works had a considerable influence on

mathematical thoughts of the period and influenced problem solving in
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mathematics. Prior to this, the mathematician-physicist-astronomez Galileo Galilei

(1564 1642) laid a permanent foundation for modem science. IHe was credited

with the invention of the telescope for observation of heavenly bodies. He

observed four satellites revolving around the planer Jupiter. This was a dramatic

disproof of the existing Aristotelian notion of the earth as the center of all

astronomical motions. His observations were published in a twenty-nine page

booklet entitled Sidereus Nuncius (The Staffy Messenger). This wa;s the beginning

of the recognition of the existence of unknown stars, the Milky Way, and the

rugged surface of the moon. Galileo's discoveries were so startling that some

professors of his time refused to look into his telescope for fear of seeing in it

things that would discredit the infallibility of Aristotle, Ptolemy, and the Church.

Galileo's publications of Copernican views made him an enemy of the church and

his position at Padua, a stronghold of Aristotelianism, untenable. The Aristotelian

conception of the universe which was elaborated by Ptolemy placed the earth at

the center of the universe. At increasing distances from it came nin= crystalline and

concentric spheres. The first seven carried the sun, the moon, and I:he five known

planets, and the fixed stars were attached to the eighth one, often call the

"firmament." On the outside lay the ninth sphere, known as the "ptemium mobile"

and representing the Prime Mover or God. Beyond this was no matter, no spacee

nothing at all. It makes the universe finite, one contained within the premium

mobile. From the standpoint of Aristotle, the earth was the main body in the

10



universe, and everything else existed for its sake and the sake of it inhabitants. In

the new Cosmology produced by Nicolaus Copernicus (1473-1543 1, the Sun

changed places with the earth, the sun became the central body, and the earth

merely one of several planets revolving around the sun. It was Galileo who

advocated the Copernican view and was tried by the Inquisition and imprisoned by

the church because his teachings were against the authority of the church. Galileo

was given a papal apology posthumously in 1992 by Pope John Pail IL Johannes

Kepler (1571-1630) was taught the Copernican theory of the universe secretly by

Michael Masslin, a professor of mathematics at the University of Tubingen in

southern Germany. Kepler published his astronomical observations in the

Mysreniam Cosmogaphicum (The Mystery of the Universe) in 159 5. Kepler was

sent packing out of town after this publication. His book caught th: attention of

the Danish astronomer Tycho Brahe (1546 1601) who employed him as his

assistant, Kepler was a brilliant mathematician but a poor observer and Tycho

Brahe was a brilliant observer but a poor mathematician. The two became a

formidable pair and worked together to produce the most sophisticated table of

celestial motions. After Tycho Brahe's death, Kepler continued to work on the

data and developed his three planetary laws of motion with his observational data

based on Mars and used that data to generalize for the motion of other planets in

his book Astronomica Nova in 1609. Kepler's celebrated Laws of Planetary

Motion are:

-11-



I, The planets move in elliptical orbits with the sun as the focus.

2. Each planet moves around its orbit, not unfitrly, but in such a way that a

srraigh line drawn from the sun to the planer sweeps out equal areas in

equal time intervals

3. The squares of the times requied for any two planets to make complete

orbits about the sun is proporional to the cubes of their mean distances

from the sun.

His laws overturned the existing Aristotehean cosmology and physics. The

question of what held the planets together was not yet explained. Thts task fell to

Isaac Newton (1642-1727). Young Newton went to Cambridge University as a

poor student who helped provide domestic sevices to other smuden s in order to

finance his own education. During the plague, Newton went back to his native

village of Woolsthorpe in colnshire, England. One night during this period in

his life, he was sitting in the family farm when he saw an apple falluig, He looked

up and saw the moon and quickly thought about the connection be:ween the moon

and the apple as bodies in space, He began to wonder about what kept the moon

from falling to the ground. He questioned humself: "Why did apples fall straight

down to the earth's surface, rather than askance? What if the apple had started

from higher altitude-probably a mile, a hundred miles, or as high as the

moon-would it still have fallen to the earth?" (Guillen, 1995). Newton came to

the realization that the moon had a tug on the Earth as the Earth had a tug on the

-12-



moon. The Aristotelian conception was the moon existed in heaven and was

incorrptible as a heavenly body. The universe had two domains according to

Aristotelian philosophers: the earthly corruptible and the heavenly corruptible.

Newton's speculation Then became heretical How could a corrupt Earth have

gravitational influence on an incorruptible heaven? That was the kIdld of statement

that sem Galileo and Copernicus to the Inquisition. He realized that if the moon

felt the Earth's tug, it would fall to the ground like the apple. He conjectured by

using Huygen's centrifugal force equation that the moon pulled away from the

Earth and the Earth pulled away from the moon with the same force, and that kept

the moon in orbit. This was a significant revolutionary thinking tha: Newton came

to understand. About a millenia earlier, Kepler had discovered the rhree laws of

planetary motions. If T stands for the rime the planet takes to complete one

revolution and d stood for the planet's distance from the sun, then Kepler's

discovery world would be written as: T 2 = constant times d 3, the result of his

painstaking observations and calculations Kepler did with Brahe. Irn plain English,

the square of a planet's year always equaled some multiple of the cube of the

planet's distance from the sun. That is, planets close to the sun had short years,

and those far had long years. Newton built up on this statement to )ropound his

own gravitantional laws. He reckoned that if the moon did nor fall, nten the Earth's

gravitational force was being opposed by the moon's own centrifual force.

Newton realized that the moon's centrfugal force depended first on the mass "m"

-13-



of the moon, second on the distance between the moon and the Earth "d," and the

third on the times "T" it took the moon to make a complete journey, normally

called one Earth year. Using Kepler's equation,

T = Cd 2-1

Newton substituted the right-hand side of the equation into Nuygei's Centriffiual

Force equation.

Moon's Centrifugal Force - CnmdT 2

which is the mass of the moon "m" times "d" the distance of the moon from the

Earth times a constant which was later determined to be Newton's constant of

Universal Gravity (G) and divided by the square of the time 'T 7' The centrifugal

force for any orbiting object became:

Centrifugal Force .Cmd
TV 2-2

Bur Kepler had argued earlier that the planets whirled around the sun in

elliptical orbits and that they obeyed the law of motion given as:

T2 = Cd

where T is the time, and d is the distance from the sun. This simple law became

very useful and the cornerstone for Newton to launch his new mathematical

revolution. Newton summarized this as the Centrifugal Force of the Moon, which

is the product of a constant and the mass of the moon divided by the square of the

distance between the moon and the Earth.
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F- CmT/d

The moon's Centrifugal Force equals the product of the mass of the moon and the

distance between the moon and the Earth divided by the distance cubed.

Substituting the right-hand side of equation 2 1 into equation 2 2 gave the new

equation for Newton as:

Moon's Centrifugal Force - Cmn/d 2

Newton summarized this as the centrifugal force of the moon as thI product of a

constant and the moon's mass divided by the square of the distance between the

moon and the inertial frame of reference.

F - Cm/d 2

He concluded that if there were a cosmic stand off between the moon and the

Earth, then the Earth's Gravitational Force (EGF) would equal the Moon's

Centrifugal Force (MCF).

EGF- MCF = Cm
d'

That is, the Earth's gravitational pull weakened the farther away the moon was

from the Eaith. It weakened inversely with the square of the distance, smaller and

smaller force resulted by dividing by bigger and bigger d2.
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NewIon came up with the conclusion that if two particles exert gravitational

force on each other, then the force equation would be the product of the masses of

the two bodies times a constant divided by the square of the distanice between the

two bodies, written simply as F = CMm.
d2

If M and m remain unchanged but the distance between the two doubled, then,

F - CM - M
(2d)2 4d2

which is one-fourth the force on the original particles. This directl) confirmed his

observations that the further away the particles are from each other:, the weaker the

centifugal force. This rheory was in complete agreement with earlier experimental

results about intensity of light: diminishes as an object moves further away from

the source of light. Newton's reduction of the concept into particle physics

changed how we look at celestial motions. He conlcuded that the Earrh's gravity

did not belong exclusively to the Earth; that all particles of matter ielt a force of

attraction between them.
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3-Body
4-Body

Amoat > ~< 7m2m3

m3 A < i m2 m4 i
ml

Figure 2-3 Figure 2-4

Newton then represented the mass of the Earth by M and the mass of a body by m.

The revised conception did not change the perfect eqnation of the Earth's

Gravitational Force.

Earth's Gravitational Force - GMm
d'

This means, between the Earth and massive objects close to it. the force of

artractio | was very strong and irresistable; between the Earth and tiny objects far

away, the force was quite weak. In short, the Earth and any other object were

attracted to one another with a force whose strength depended on i he distance

between their centers, their two mases, and some constant number. Later

scientific experiments gave a very accurate value of the constant of proportionality

of the force This value is called Newton's gravitational constant represented by G3.

The new equation is now:
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Earth's Gravitational Force - OMrt
d 2

In the most general terms, Newton's equation expressed the gravitational

force between any two objects; the letters M and m could stand for the mass of the

moon and Jupiter, or a comet and the snn, or any pair of bodies; if two bodies are

involved, we then have a two body problem. In short, Newton concluded that

gravity was the force that glues objects together everywhere in the universe. With

all of these achievements, Newton was regularly bullied by Robert Hooke, a

member of the Royal Society and later, its president. Hooke was ver jealous of

Newton's depth of knowledge and constantly opposed his papers. Newron was

afraid to face rejection, possibly the result of a childhood trauma that always

haunted him. Edmund Halley admired Newton's works and gave him

encouragement to publish his papers Newton published his findings in the

Princzpia and waited after the death of Hooke to publish the Optik.s, the work that

he wrote on the light spectrum and his newly invented telescope winch Hooke

crntcled with hate and jealousy. By developing the construct of particle physics of

celestial motions, Newton then became the proposal of the n-body problem. His

preoccupation with the apple and the moon in his family farm in his village

revolutionized how we look at celestial motions. If one considers the Earth and the

moon, then we have the two-body problem. If one adds the sun, the moon, and the

Earth, we have the three-body problem; so the list can continue into infinite bodies.
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It was not surprising, therefore, that in 1969, many people rhc'ughr the idea of

going to the moon was impossible. Some were skeptical for techni:al reasons.

How could we transport ourselves to something that was a quarter of a million

miles away, let alone land on it and return safely? Others were doubtful for

religious reasons. The Earth's gravity might extend into the heavenly realm, but

earthlings themselves would never do so. They would never plant their dirty feet

on the moon or any other heavenly body. The doubters notwithstanding, the

Urnted States had pressed ahead in response to President John F. Kennedy's 1961

Stare of the Union Challenge. The United States, under the leadership of the

National Aeronautics and Space Administration (NASA), formed ; "think tank" on

landing a man on the moon. NASA was racing to beat the Russians in space

explorations. NASA was trying also to fill a visceral desire first articulated by the

astronomer Johannes Kepler in his book Somnium (meaning "The Dream"),

history's first work of science fiction. Published posthumously in 1634, Somnium

had described a boy journeying to the moon with the supernatural aid of a friendly

demon, conjured up by the boy's wirch of a mother. This story wa'3 unbeievable

but had affected other writers like the Frenchman Jules Verne (1865.) In his novel,

From the Earth to the Moon, Jules Veme wrote how three men mide a long

journey inside a huge aluminum bullet fired from a 900-foot-long cast-iron cannon

located in Tampa, Florida. A century later, NASA sent three men l.o the moon

travelling inside what amounted to a giant titanium bullet fired from a launch pad

-19-



in Cape Canaveral, Florida one-hundred miles directly east of Tampa. The

astronauts rode in a liquid-fueled rocket, the Saturn V. It sounded so detached

from Newton's work of gravitational equations, yet Newton's equation played a

crucial role in man's mission to the moon. Using Newton's equation, astronomers

over the years had calculated the moon's orbit so precisely that NASA engineers

were now able to know exactly where their lunar target would be Lt any moment in

time. By calculating the rate at which the Earth's gravity diminished at any point

along the way to the moon, NASA also had been able to determine what rocket

size was needed for the job. It was to give the rockets a 5% boost that NASA had

chosen to launch them from Cape Canaveral, which was closer to the equator than

any other place in the U.S. There, close to the equator, the effect of the Earth's

spinning was felt more than anywhere else in the country. The rockets were

whipped around with the greatest centrifugal force at the equator, because the

equator was far from the Earth's axis. NASA took full advantage of the earthly

boost to find an answer to a three-body problem of the Earth, moc n, and spaceship

once it was rocketed into motion. The best one could do was to approximate

answers with the aid of computers by application of Newton's equation to the

landing of the spaceship on the moon. The giant rocket inclined slowly upward

against the ulelenting force that had held us captive on the earth. Somewhere in

the clouds, it spins like a bullet travelling at 25,000 miles per hour. Once out of the

Earth's gravitational field, it started speeding up without the use oFexcessive fuel.
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Newtou's prediciton came true. The dream of Johannes Kepler (Somnium) came

true. Newton's perfection of the Kepler equation and his dream of the attraction

between the moon and the apple had come true when Neil Armstrc ng, the

astronaut of Saturn V, intoned, "One giant leap for mankind."

Historical development here just shows ancient and modem man's interest in

celestial mechanics. It is not a new field of study, but rather, we are revisiting the

oldest profession of planetary studies. The history here again shows clearly how

science grows and how scientific theory evolves over the centuries. It is this

gradual observation and collection of data that created a body of knowledge that

defines what we call the solar system today. The solar system is cousidered as the

sun, moon, and the Earth, which are the large visible planets to the naked eye, and

other planets that are not easily visible to the naked eye. A further treatment of the

historical perspective will shed some light on the relationship between scientific

discovery, social environment, and other branches of philosophy. This chapter does

Dot set out to achieve all that. This I leave out for the inqiring mind to pursue for

joy or for the rigors of intellectual discourse. The historical discourse here is to

establish how small steps over many years culminated in a giant leLp. Man's first

visit to the moon was not formulated, planned, and executed solely in the 1960s.

RatherT this was an idea that was shaped over the years by numerous significant

but minor achievements. That is what this section sets our to achieve. It is not a

historical account of those who made it happen. "No scientific victory was ever
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won by sheer numbers or by the mass of projectiles. Each was won by a seies of

efforts, the humblest of which was deliberate to a degree' (Sarton, 1931).

Today's space exploration confirms what the ancient astronomers had

recorded. They recorded the movement of the planets and the stars. It has been

documented that a few bright stars do change their positions and move so

unevenly compared with the sun, moon, and the rest, that they are alled planets,

meaning "wandeers." These planets look like bright stars with less tw)iklmg,

wadderng across the sky in tracks of their own near the elliptic pa:h (Bunron,

1995). They follow the general backward movement of the sun and the moon

through the constellations of the zodiac, but at different speeds and with

occasional reverse motions. The zodiac belt includes the sun's yearly path and the

moon's monthly, and the wandering paths of all the planets. In modern terms, the

orbits of the earth, moon, and other planets all lie in the same plane. Five

wandenng planets were known to early astronomers in addition to the sun and the

moon which were counted with them These are Mercury, Venus, Jupirer, Mars,

and Saturn. Mercury and Venus are bright "stars" which never waider far from the

sun but move to and fro in front or behind it. They are seen ony rnear dawn or

sunset. Mercury is small and keeps close to the sun, so it is difficult to locate.

Venus is a great bright lamp in the evening or morning. It was called the "evening

star" and the "morning star" by the early astronomers who did not realize it was

the same planet they were locating twice. Mars is a reddish "star" which wanders
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in a looped track around the zodiac path, taking about two Earth y:ars for a

complete trip. Jupiter is a very bright "star" wanderig slowly around the elliptic

once in a dozen years. Saturn is a bright "star" wandering slowly around the

elliptic once in about thirty years. Jupiter and Saturn make many loops in their

track-one loop in each of our Earth years (Figure 2-5). When one of the outer

planets, which are Mars, Jupiter, or Saturn, makes a loop along its path, it

"crawIs" slower and slower eastward among the stars, comes to a itop, then

crawls in reverse direction westward for a while, then comes to a stop. It then

crawls eastward again like the sun and the moon. This movement i,; known as the

eplcycloid, which comes from the Greek word for outercircle (Figure 2 6). This

strange motion of the outer planets excited much wonder and superstition among

the ancient astronomers. We can explain this movement today by demonstrating

with two circles-one big and other smaller. When a large wheel Wi spins steadily

around a fixed axle, at some point A on its rim, there is an axle canrng a small

wheel w, which spins much faster than the big wheel W. The point P on the rim of

the smaller circle traces an epicycloid.

p

Figure 2-6Figure 2-5



Review of Related Research

There are two informative articles from the Mathematical Intlligencer

written by Flonn Diaca (1993 and 1996) on the n-body topic in two different

volumes of the journal. Another excellent source of research artick: is the

American MaRhematcal Monthly with articles written by Donald Saari (1990).

Saari (1990) in his article, "A Visit to the N-Body Prolblem Via Complex

Analysis," presented a solution sutrable for an advanced audience. -Os solutions,

like the others, are not adequate for easy comprehension for the undergraduare

student but have offered tremendous insight into how to solve the iibody problem

by analytical methods. Saari's introduction of elementary complex analysis helped

to shed light on how to understand the advanced texts on n-body problems. Jeff

Xia (1988), a former student of Saari, also wrote on the n-body problem but

restricted his solution to the 5-body problem in his doctoral thesis. Xia showed

how bodies in pairs moved in highly eccentric orbits parallel with the x-y plane. He

further proved Paul Painleve's (1987) conjecture for the case of 5 body problem.

The conjecture stated simply that "for nŽ4, solutions of the n body problem admit

solutions with noncollision singularities." Painleve had proved the ;ase for ln3

using differential equations as the method of solution. Painleve in I 887, as a young

graduate student, suspected that one particle could oscillate between two others in

a three body motion without colliding but becoming closer and closer at each close

encounter. Many of Painleve's contemporaries tried to find examples of solutions
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with pseudocollisions, but no one succeeded. Dlacu (1993), in his atircle entrled

"Painleve Conjecture," wrote on the lost years of the n-body problem since its

formal proposal by Newron in the Principi. Diacu reviewed the case when Gosta

Mifnag-Leffler. the Editor-in-Chief of Acra Mathemarics, was to coordinate a team

that would find a solution of the n body problem as a birthday present to King

Oscar 1i of Norway and Sweden on his sixtieth birthday on January 21, 1889. The

questions were partly formulated by Karl Weierstrass who was on ihe committee.

The original proposal was in both German and French, but an English translaton

by Daniel Goroff (1993) reads: "Given a system of arbitrarily many mass points

that attract each other according to Newton's laws, under the assumption that no

two points ever collide, try to ind a representatiOn of the coordnates of each point

as a series in a variable that is some known function of time and ofo al of whose

values the seres converges uniformly." There was no better solution than the one

produced by Henry Poincare out of twelve others submitted. His solution was later

found out to be full of mistakes after he was awarded the prize. According to

Diacu (1996), it was reported in volume 7, 1886/87 of Acta Mathcmatica that a

solution was reqmred for the 3-body problem in power-series. Poincare later

published his solution in volume 12 of the Acta Mathenmtica in 1890. His

contributions were remarkable for the understanding of dynamics equations called

today Hamiltonian Systems for the many new ideas he brought into mathematics

and mechanics. More than a century earlier, in 1710, John Bemonlli provided a
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solution to the 2-body problem normally ca]ed Kepler Problem in horo of Kepler

for his excellent works on planetary motions. Diacn (1996), writing on the theme

"The Solution of the N Body Problem," commented on earlier attempts made by

prominent mathematicians who for more than a century after Bernoulli had solved

the 2-body problem, tried to find solutions for n 3 body problem. [nterest in the

problem grew towards the end of the 1 800s, and attention was paid to celestial

mechanics more than ever before. Another interesting work on the n-body problem

was from Luitzen Brouver, the editor of the Dutch journal Marhenlaische Annale.

In 1913, as the chief editor, he rejected all solutions to the problern iasng reducio

ad absurdum, a method of mathematical proof that assames the opposite of the

result to be true and proceeds to show that it is incorrect, and that the opposite of

the origina assumption is true. His rejection brought conflict between proponents

of Formalism and Intuitionism, the main schools of mathematical-F hilosophy at the

beginnig of the twentieth century. The quest for a perfect solution for the n-body

problem created challenging rival Camps for the good of mathematics. On one hand

was the Intuitionist led by Brouver, the chief editor of the influenti :l Dutch journal

Mathematische Annalen, and his opponents were led by a German, Hilbert, and his

school of Formalism. These were the two main schools of mathemitical

philosophers at the beginning of our century. In this regard, the German was

wrong to assert that all theorems can be deduced by logical steps. In 1913, when

Brouver was launching his attack on Formalism, he was unaware of the solution
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provided by a Finn, Karl Sundman. Sundman (1912) published his solution after he

received some of his own earlier works and bult up on the works of the Italian

mathematician Giulio Bisoncini (1906). Sundman provided a series solution to the

3-body problem and showed that the series converges for those vaiues when

angular momentum is zero. Sundman's method failed to apply to the case of n>3.

In 1991, a Chinese student, Quidong Don Wang (1991), provided a convergence

power series solution of the n-body problem. He omitted only the case of solutions

leading to singularities-collision in particular. Paradoxically, Sundman's and

Wang's solutions provide very slow convergence for insignificantly short intervals

of time. At first it looks like a solution was provided, but to sum u p millions of

terms to determine the motion of the particle for insufficiently short intervals of

time makes the work unusable. In 1984, Joe Gerver, from Rutgers University in

New Brunswick, New Jersey, proposed a solution for a planar 5-b)dy problem m

which the particle escapes to infinity in finie time. Gerver did not give a complete

proof of his assumption but provided support for the existence of such a problem.

Later, using radial symmetry, Gerver obtained a solution for his plimar case by

proving his previous heuristic example. His is the first confirmation of Painleve's

conjecture using a planar solution. Six months prior to Gerver's sclution, Xia had

successfully submitted a solution to the Painleve's conjecture for a 5 body

problem. Xia and Gerver differed in their approaches in the solutio ns. In his

unpublished manual on the n-body problem, Osler (1996) systema ically introduced
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how to set up both numerical and some analytical solutions of the n-body problem.

His numerical solution with computer-aided programs demonstrated a visual image

of the n body problem. If anything, his method of solutions has made the

conceptualization more meaningful. I lean towards his style and me.thod. All these

researches are relevant but rather difficult for the beginning scholar of the n-body

problem.

Review of Re!ated Literature

Forrest R. Moulton (1970) treated celestial mecbanics with inr:easing

difficulty of progression in his book Introduction to Ceaestial Mechanics. Moulton

has collaborated on earlier works of Hill, Poincare, and Darwin to present a strong

case for planetary motions. This text, despite its high-level presentation, has

sophistication that, if well-understood by the student of applied mathematics, will

surely advance the body of knowledge on the n-body problem. The book has

treated the 3 body problem in derail using differential equations as the method of

approach. Eric Rogers (1960), in his Physicsfbr the Inquiring Mind, gave a

fundamental account of celestial motions. He gave an excellent hisi orical

presentation on planetary motions. He treated the subject from the rimes of ancient

Egyptian astronomers, the Babylonians, the Greeks, and then to thi present day

view on astronomy. He traced the development from the Aristotelin view of
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movement of heavenly bodies to the Copernican heliocentric view in the ecliptic

system of the universe and recounted the gradual progression of contributions

made by Ptolemy, Copernicus, Tycho Brahe, Johannes Kepler, Galileo Galilei, and

to Isaac Newton, who proposed the n-body problem. Burron (199t5) in his book,

History f Mathematics, gave a good historical perspective on how the ancient

scholars put together the body of knowledge on astronomy and how the various

theories were gradually developed into the physical laws we use today to solve

celestial motion problems Thomson (1986) demonstrated in his book,

Inroducrion to Space Dynamics, how to set up dynamical equations of particle

dynamics in orbits. This book helps the challenging scholar to Capture the golden

heights of celestial motions. In his Five Equations That Changed the World,

Gullen (1995) wrote an excellent reatise on the history of the five most known

equations in mathematics. lHe looked at the achievements of Newton and his

Universal Law of Gravity, Daniel Bernoulli and his Law of Hydropressure,

Michael Faraday and his Law of Electromagnetic Induction, Rudolf Clausius and

the Second Law of Thermodynamics, and Albert Einstein and the Theory of

Spacial Relativity. As we approach the millennia, more scientific discoveries will be

made. New mathematical equations will be discovered to keep the dream alive.

The future belongs to the young students of today and those yet tc be born.
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CHAPTER 3

Procedures

Introduction

The purpose of this chapter is to explain the procedures the researcher used to

write on the n-body problem. The topics discussed in this chapter include how

relevant research material was gathered, how the questions were selected for

solution, and the design of related computer programs.

Relevant Research Materials

The researcher selected articles on the n-body problem after a library search at

Rowan University' SaviTz Library, the Universities of Delaware, Rihinceton,

Pennsylvania, and Rutgers. These library searches did not produce any information

on simple solutions of the n body problem. The research yielded articles on the n

body problem suitable for advanced graduate work and post-doctcraI studies.

Some of these were doctoral dissenrations reproduced for publications in

professional journals like the American Marhemaical Monrhly or n the

Mathematical Intelligencer, and textbooks already mentioned in chapter two. The

Internet was used as a resource center to seek help from the general readership.

Encouragement, as well as discouragement, were offered by users who read the

note the researcher posted on the n-body problem on the Internet.
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Selection of N-Bodv Problems

The researcher received assistance in designing QB prograns that solved

numerical solutions for the nobody problem from Dr. Tom Osler of Rowan

University. The number of bodies is unlimited in the use of computer programs

developed for numerical solutions. However, the number of bodies involved in the

analytical solutions were limited. It is the analytical solution type tlat is commonly

referred to as "no solutions exist for the n-body problem." There are solutions for

n-body problems with numerical methods. It is inappropriate to say there are no

solutions. The method of analytical solution was limited to Newtonian mechanics.

Introduction of differential equations and polar equations were not included in the

solutions, since the audience of this study is the undergraduate and academically

exceled high school students.

Constrection of Related Comouter Programs

The researcher wrote two computer programs to be used in this study whose

purpose was to introduce students to computer generated numerical solutions. The

two programs were designed as to help students gain an understanding of:

1. EuJer Method of Numerical Integration for a two-body problem.

2. The Runge-Kutta Method of Numerical Integration for a t:wo body

problem.

3. The Euler Method of Numerical Solution of a three-body problem.

-31-



4. The Runge-Kutta Method of Numerical Solution of a Thre body problem.

5. The Euler Method of Numerical Integration of an n-body iroblem.

6. The Runge-Kutta Method of Numerical Integration of an 1-body problem.

The computer programs numbers 5, 6, and 7 above on the applications of the

Euler, Runge-Kutta, and the Central Force problems with the parameter n can be

manipulated to generate different questions of the n-body problem. These different

equations have different solutions. Whenever n is changed, the solution will be

different from the previous one, and the graphical displays are diff rent. All of

these programs were written in QuickBasic because this is a computer language

which has good graphic capabilities and is commonly available on almost every

IBM-compatible computer.

The researcher developed the Euler and the Runge-Kutta methods so that

students can see the efficiency and the effectiveness of the differemn numerical

methods. Another reason in using these methods is to keep the algoithm as simple

as possible so that their basic structure could be easily understood without any

prior computer programming knowledge. All of the QB programs used by the

researcher for the numerical solutions were constructed on a Ques' 486 DX 330-

megahertz IBM-compatible computer,
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CHAPTER 4

Analysis of Data

Introduction

This chapter describes the olution of selected n-body problems by analytical

and numerical methods. The chapter shows solutions of specific n-body problems

in Qbasic. There are graphical illustrations of analytical solutions and visual

isplays of numeical solutions on the computer,

Specifically, the chapter introduces analytical and numerical solutions of two,

three-, four-, six-, and eight-body problems. A numerical solution of the n body

problem is also presented by Euler and Runge-Kutta methods.

Newtonian Mechanics of Obiects in Gravitational Orbits

If mass M rotares in a circle of radius r with velocity V, its acceleration is:

a =
r

The acceleration points towards the circle's center.

By Newton's second law,

Force - Mass-Acceleration

F- m -iV 41
r
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Newton's Law of Universal Gravitation for two masses m andi M, distance r,

the force of attraction between them is:

F -G Mm 42
n 2-

r

G is gravitational constant. Equation 4-1 equals 4-2.

TV. -QGmm
r r9

v2 =GM
r r

Analvtical Solution of a Two-Rlodv PrnhlemT-Enial hassme

The problem involves finding the velocity of two equal masse:;, m rotating in a

circle of radius, r.

Fig. 4-1

l~~~~~~~~~~~~ ~~~~~I I

m

x
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Let r be the distance from the center to the mass.
Let 2r be the distance between the masses.
Let v be the velocity of the masses.
By Newton's Law of Universal Gravitation.

Ž-GM

r (2T)3

r 49

v 2-GM
4r

2Vr

is the velocity of two equal bodies rotating in a circle from a center.

Analytical Solution of Two-Rodv Prholem-UTneinial r/aies

The problem involves finding analytic solution of the velocitie i of two unequal

masses M and m rotating in circles around a center without any mass at the center.

¥y

,{///;~Y

I 0

x
I'ig. 4-2
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The origin 0 is the center of gravity So,

MR mr (1)

By Newton's Laws:

F = GMm = v-m
r? r

v= GM
r (R+r)2

From (1)

M

r
= _GM

(/M + r)2

r r(M + m)'

(M= ' M)2

(M+m) r

For the other mass M,

V nm Urn
(M + m) u R

Since M ~- m, the both have the same angular velocity. We do nor expecr
r R

them to have equal velocities. The angular velocity o y - Y.
r R
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Anlvtfi Snlution onfa Twn-Bndv Prnhlem With a Third Rndv fixed at Center

This problem involves finding the velocities of two unequal misses M and m

rotating in a circle and a third mass fixed at the center.

Can a third mass M. is placed at the ongm (CG) of two uneq al masses in a

circular motion and the motion still remain circular?

v

Fig. 4-3

F GMm

RM = rm

r GM R). GMo
r (r+ )2 3

Also, F = ym

(1)

(2)

V;- Gm +GMo
R (r +R) R2

Using equations (2) nd (3), we can calculate v and V. But is the angular

velocity the same?
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(4) v2- GM n + OM
r2 r(R + r) rS

multiplying (2) by '/,

From (3), we obtain:

(5) Y =- 0m +-MQ multiplying (3) by '/
R2 R(R + r) R3

From (1), we obtain:

m - M we substitute into (5) to obtain:
R r

(6) V = -GM
R2 r(R + r)2 RI

Comparing (4) and (6), the first terms are equal, but the sewotd terms GMo/r

and GMo/R' are not equal.

The answer is No. To enable the system to work. we must ha;e m - M and r

=R

Fig. 4-4
_A-

Ml

v.

V

Then,

v2 - GM + GM
R (2R)' R2

V = GM + GMo
R 4R2 R2
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V 2 - M + GMo
4R R

V - I fl M c 4MolF
is the required velocity.

Analvtic Solution of a Satellite Orbiting the Earth Problem

This problem involves finding the velocity of a satellite in a ckirular orbit at an

altitude of 1,000 kilometers from the surface of the Earth, assuming that the Earth

is a homogeneous spherical body,

Fig. 4-S

h
4

x

/
/

Let R. be the equatorial radius of the Earth and h the altitude of the satellite

above the Earth.

The distance from the center of the earth to the satellite is R, - h.

R, +h - (63781361)m + 1000 x 1000m

R, + h =7378136±1)m

39
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Fg is the gravitational force acting on the satellite

(1) F- GM MS where d is the distance between the center of the Earth and
d2

the satellite, M. is the mass of the earth, M, is the mass of the satellite.

F is the centripetal force acting on the satellite.

(2) F = MgdwO and o is the angular velocity

Equation (1) and (2)

d'

GM= - Mzd
d-adM

d3

d=I EdY d

Let n mean motion in orbital mechanics equal a. But nd is the velocity of

motion.

dV d

d 1 d& cid

V = nd = E is
Vd

the velocity of the satellite

V9 = 6 x lr5-9742 lx 104
' 7378136

V, = 6.67~' fLg.5~2y42 x C0aa
' 7378136
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V, - 19964934,9 m/is of the satellite.

Analytic Solution of a Four-Body Problem

This problem involves finding the velocity of four equal masses m rotating in a

circle wirh radius r.

M,

x
M,

Fig. 4-6 FPg 4-7

Let r be the distance from the center of the circle to the mass.

The distance between any two diametrically opposite masses is 2r.

The distance between any two closest masses on the circle is :'2r.

Ml has forces FCos B horizontally FSin-- vertically acting on it Where -- =

"/. Forces acting on M, are M relative to , M2 relative to M,, M1 relative to

M 4. The forces acting on MŽ and M4 are equal; M1 - M2 - M; - M,.

By Newtonian Mechanics, F = GMm = mV
r 2 r
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V = GM- + GiM Cos'=/, + G Cos' 4
r (2r)2 (4-2r) = (12r)2

= 3M + M J4 + 2 M 1
r 4r 2r 1' 2 2r 2

V2=
r

T

GM + gM J-
4r2 2 '12

GM
4r=

+ GM
r 2r

V2 = M + 2GCM
T 4i2 2r9

V-= GM1 +212
r 4r I

V 2=M (22 + 1)
4r

is the velocity of the mass,
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AnalyticiS.olitinn nf a Six-Body Problem

This problem requires finding the velocity of six equal masses m rotating in a

circular orbit with a mass M at the center of gravity.

Fig. 4-8 Fig. 4.9

r

V m,

M

Fig. 4-10

The distance between m, and m4 - 2r.

The distance between m, and m2 equals the distance between Mn and m6

The distance between ml and m3 equals the distance between ml and mi.

mi = m? - ma - m 4 = m S - mi
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The sum of the forces of attraction between M, and M,, M 4, N M 5,, and M.

and M are respectively.

-= Grm2 Cos + GM s _DQM + GM_ Cos -_
T r2 3 r 3 (2r) 3i 6

+ Gm, Cos ± + GM
39 6 r

But mi, -= m - = m- = m 11 = i- = -

Y - CG + m + iG + OL Gnm 4 + GM
r r 2 r-2 2 4-

V = 5Gim + +M +£im
r 4r 3r2 r2

2= 15Gm + 4Gmrn + 12GM
r 1292

12T i

12rT 12r

3r22 3r 2

(15 +4f3)m+ 12M)
I

V= - _Ql(15 + 43)m + 12M] is
'V 12T [

the required velocity.

Annlvtic Solutinn of an FEihtf-Rodv Prnhbem

This problem involves finding the velocity of eighr equal masses m rotating in

a circle with radius r.

Fig. 4-11

P1 is the distance between m 2 and m,n
m.
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Fig. 4.12

Fig. 4-13
m9

F1

P-2 = 2 + -2. C os /4

P12 = 2r - 2r Cos /4

P, -= 2ri (1 - _

P1- = r2 (L - )

Pi

Fig. 4-14

The distance between ml and m, is r4V.
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\--m,
r

Fig. 4-15

The distance between ml and m4 is P2

Pz2 = r + - 2r.r. Cos 3/4

P2a - 2 - cr. Cos 314

P2 = 2r (1- Cos " /4)
rn
,,, .....

P2
2 - t(1 +_J ) 2

2

2= = r( + 2)



Where, the acceleration of M, due to Mz = accelranton of MI1 due to Ms

the acceleration of ML due to M4 - acceleration of M, due To M

the acceleration of M1 due to Ms - acceleration of M1 due to M,.

Acceleration of mass = acceleration of M2 and Mh +- acceleration of MN and

M, + acceleration of M, and Mn + acceleration of i 5,

Y2 = 2mCo Cos n8/ + 2 Cm Cos8 + 4 -+ Gm
r P Pz P 2 (2)2 (2r)2

V2 - 2GOnm Cn 3z- + 2Cim Cosi + 2Gim L + - m
r r(2- 2) 2(27 +12) 2F 12 4r2

- 2IGmn Cos 3s/8 + 2Gi ML L/L + 1 m + 1,
r (2 -2)r 2 (2+ 12)r 12 tr 4r

Bor, Cos 3rT:/ = Cos (21/8 + TC/8)

Cos 3r/e = Cos -ti4 Cos trr/ Sin E/4 Sin 1/8

Cos 3/8 = .LCos i/S8 - . Sin T/S
r2 47

Cos 3/8 - 1 (Cos Ti/8 - Sin r/S)

Also, Cos r/8 = 4.os And, Sin J = / si
2 8 2 2

Cos s/-8 -- 1 (2T2- , Sin /38 =_L (I2-)
2V 2V

Cos T./8 -=_ L2 ) - (-_~)]
22 2

Cos 3,/S =.. -. [(2-~-7) -T---)]
247
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Cos 3r/S = z [r(2J'^') -i2)]
4

Therefore,

r
r

Gm 4 2 [ (2-- 2 + 324+.4
r2 4 2 \ (2 - 2) ) 2 +12

+ 212 + r2(2 + [2) 3. - 212 +-2 + 2/' 2

2)1

is the acceleration.

V YG/= ' (I + 2'2(2 + 2/T 'Z2) is the required velocity.

NI..mr-.'nal fIhtkinn fnr i T.n.R-Rnflv Prmhlem 1lsinK Euler Method

This program generates a numerical solution of a two-boty problem using the

Euler method. The number of masses, the coordinates of the masses, and the initial

velocities are given.

N - 2 'N = number of bodies
X_ Y yx. VY M

100 DATA I, 0, 0, 1, 1

48

+ 412 + 2,f--(R2 )

=Gm [1
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+ 412 + 222 +1'-

l'V =- m

r 4re

v - MIr + 2[2(2 + I ]
4r I

r 4r2

+ 212(2 + -~2



0, -1, 1

120 FOR I = 1TON
130 READ X(I), Y(I), VX(I), VY(I), M(I)
140 NEXT I

150 G 1 ' Universal gravitational constant
160 T - 0 DT = .001 ' Initial rime and increment

'Establish screen parametes

200 SCREEN 12
210 RAD=3

' VGA resolution
' Screen RADius

' x distances times 1.33333 so that circles look circular

220 WINDOW (-1.33333 ` RAD, RAD) (1.33333 RAD, -RD)

230 CLS

' Calculate next positi
300 PSET (0, 0) 'Mark center of coordinates

310 WHILE KEYS = ""' 'Loop until key pressed
FOR I = 1 TO N

' Find AX(1) and AY(I) components of acceleration on Ith mass

AX() = 0: AY(I) = 0
FOR J 1 TO N

IF J > I THEN
DELTAX(J) = X(J) X(I)
DELTAY(J) = Y(J - Y(I)
R(J) - (DELTAX(J) A 2 + DELTAY(J) A 2) A .5
AX(I) = AX(I) + G * M(J) * DELTAX(J) / R(J) A (P + 1)

AY(I) - AY(I) + G * M() * DELTAY(J) / R) A (P + 1)

END IF
NEXT J

'FIND dVX, dVY, dX, and dY
DVX(I) - AX(I) * DT
DVY(I) - AY(I) * DT
DX() VX(I) * DT
DY(I)VY(I) *DT

on the left of our interval
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VX(I)- VX(I) + DVX()]
VY(I) VY(I) + DVY(I)
X() - X() + DX(I)
Y(I) = Y) + DY(I)

410 PSET (X(I), Y(I) ' Plot position on screen
T = T + DT

LOCATE 1, 1: PRINT USING "Time: Wt### "; T

420 KEYS = INIKEY$ See if key is pressed to stop program
NEXT I

430 WEND Start while loop again to calculate
next position

STOP

Numerical Solution of a Two-Bndy Prnhlern of the Run.e.utta Methnd

This program generates the solution of a two-body problem using the Runge-

Kutta method. The number of masses, coordinates of the masses in the x-y planes,

and the initial velocities are already determined.

G 1 ' Universal gravitational constant
P-2 ' Central force = G M m / rAP
N -2 'N = number of bodies

X Y VX VY _L
100 DATA 1, 0, 0, .55, 1
110 DATA -1, 0, 0, -. 55, 1

120 FOR I= TON
130 READ X(t), Y(I), VX(I), VY(), M(I)
140 NEXT I

150 T - 0: DT = .01 ' Irtial tie and increment

Establish screen parameters

200 SCREEN 12 'VGA resolution



' SCREEN RADius

x distances times 1,33333 so that circles look circular

220 WINDOW (-1.33333 * RAD, RAD) (1.33333 * RAD, -RAD)
230 CLS

'Calculate next position
300 PSET (0, 0) ' Mark center of coordinates

310 WHILE KEY$ -" ' Loop until key pressed
320 FOR I = 1 TO N

'Find AX(I) and AY(I) components of acceleration on I-th mass
400 AX(I) = 0: AY(I) -
410 FOR J = I TO N
420 IF J> I THEN
430 DELTAX(J) - X(J) X(I)
440 DELTAY(J) - Y(J) Y(I)
450 R(J) = (DELTAX(J) A 2 + DELTAY(J) A 2) A .5
460 AX(I) = AX(I) + G M(J) * DELTAX(J) /R(J) A(P + 1)
470 AY(I) = AY(I) + G * M(J) * DELTAY(J) / R(J) A (P + 1)
480 END IF
490 NEXT J

'IND dVX, dVY, dX, and dY on the left of our interval
500 DVX(I) - AX(I) * DT
510 DVY(I) = AY(I) * DT
520 DX(I) - VX(I) DT
530 DY(I) = VY(I) * DT

' Estimate VXR = VX on right side of our interval, VYR - etc
600 VXR(I) - VX(I) + DVX(I)
610 VYR(J) - VY(I) + DVY(I)
620 XR(I) = X(I) + DX(I)
630 YR(I) = Y(I) +- DY(I)

640 NEXT I

700 FOR I = 1 TON

800 AXR(I) = 0: AYR(I) - 0
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FOR I = 1 TO N
IF J THEN

DBLTAXR(J) - XR(I) - XR(I)
DELTAYR(J) - YR(J) - YR(I)
RR(J) = (DELTAXR(J) A 2 + DELTAYR(J) A 2) A -5
AXR(I) = AXR(I) + G * M(J) * DELTAXR(J) / RR(J) A (P
AYR(I) - AYR(I) + G M(J) * DELTAYR(J) / RR(J) A (P

END IF
NEXT J

DVXR(I)
DVYR(I)
DXR(I) =
DYR(I) -

DVXA(I)
DVYA(I)
DXA(I) =
DYA(I)

= AXR(I)
= AYR(I)
VXR(I) *
VYR(I) *

+ 1)
+ 1)

*DT
* DT
DT
DT

- (DVX(I) + DVXR(I))
- (DVY(I) + DVYR(1))
(DX(I) + DXR()) /2
(DY(I) + DYR(I)) /2

/2
/2 'etc

VX(I) = VX(I) + DVXA(I)
VY(I) = VY(I) + DVYA(I)
X(I) = X(I) + DXA(I)
Y() - Y(I) + DYA(1)

new VX =old VX + dVX a verage
etc

PSET (X(I). Y(l)), I + 1 'Plot position on screen
T T + DT
'Locate 1, 1: PRINT USING "Time : ###### "; T

1130 KEY$ = INKEY$ 'See if key is pressed to srop prograr

1140 NEXT I

1150 WEND

2000 STOP

' Start while loop again to calculate
' next position
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Numerical Snhltion of_.aThree-Bdod Problem Using the Euler Method

This program illustrates the numerical solution of a thbee-body problem using

the Euler method. The number of masses, initial velocities, and the positions of the

masses are predetermined in the program.

N - 3 ' N = number of bodies

DATA 1
DATA -I
DATA 0
FOR I -1 TON
READ X(I), Y(I),
NEXT I

y_ vx
c, a,
0, 0,

cx

VX(I), VY(I), M(I)

150 G = 1 ' Universal gravitational constant
160 T = 0: DT - .001 ' Initial time and increment

' Establish screen parameters

200 SCREEN 12
210 RAD 3

' VGA resolution
' Screen RADius

x distances times 1.33333 so that circles look circular
220 WINDOW (-1.33333 ¥ RAD, RAD)-(1.33333 * RAD, -RAD)
230 CLS

'Calculate next position
300 PSET (0,0) ' Ma

310 WHILE KEYS = ''
FOR I- 1 TON

;k center of coordinates

' Loop until key pressed

' Find AX(T) and AY(I) components of acceleration on I-tb. mass
AX(I) 0: AY(I) -0
FOR I = 1 TO N

IF J<> I THEN
DELTAX(J) = X(J) X(I)
DELTAY(J) = Y(J) - Y(I)
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R(J) - (DELTAX(J) A 2) A .5
AX(I) - AX(I) + G ± M(J) M DELTAX(J) / R(T) A (P + 1)
AY(I) = AY(I) + G * M(J) * DELTAY(J) / R(Q) A (P + 1)

END IF
NEXT J

'Find dVX, dVYm dX, and dY on the left or our interval
DVX(I) = AX(I) * DT
DVY(I) = AY(I) * DT
DX(I) - VX(I) ~ DT
DY(I) = VY(I) · DT

VX(I) - VX(I) + DVX(I)
VY(I) = VY(I) + DVY(I)
X(I) = X(I) + DX(I)
Y(I) = Y(I) + DY(I)

410 PSET (X(I), Y(I)) ' Plot position on screen
T=T+DT
LOCATE 1, 1: PRINT USING "Time: #W.#i "; T

420 KEY$ - INKEY$ ' See if key is pressed to stop program

NEXT I
430 WEND 'Start while loop again to calculate

next position
STOP

Nimerical Solution of a Three-Bodv Problem

This program illustrates the numerical solution of a three body problem using

the Runge-Kutta method. The number of masses, the initial velociLies, and the

coordinates of the masses are predetermined.

P-2
N - 3 ' N - number of bodies
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X Y VX VY . M.
100 DATA -1.5, -2, 0, 0, 4
110 DATA 1.5, -2, 0, 0, 5
115 DATE 1.5, 2, 0, 0, 3

120 FOR I = I TO N
130 READ X(I), Y(I), VX(I), VY(I), M(I)
140 NEXT I

150 = 1 ' Universal gravitational constant
160 T = 0: DT - ,000001 ' Initial time and increment

'Establsh screen parameters

200 SCREEN 12 ' VGA resolutlon
210 RAD = 6 ' Screen RADius

' x distances times 1.33333 so that circles look circular
220 WINDOW (-1.33333 * RAD, RAD) (1.33333 ' RAD, RAD)
230 CLS

' Calculate next position
300 PSET (0, 0) 'Mark center of coordinates

310 WHILE KEY$ "- ' Loop umtil key pressed
320 FOR I -TON

'Find AX(I) and AY(I) components of acceleration on I th mass
400 AX(I) - 0: AY(I) = 0
410 FORJ -= TON
420 IP J <> I THEN
430 DELTAX(J) = X(J) - X(T)
440 DELTAY(J) - Y(J) - Y(I)
450 R(J) = (DELTAX(J) A 2 + DELTAY(J) A 2) A 5
460 AX(I) - AX(I) + G & M(J) * DELTAX(J) / R(T) A (P + 1)
470 AY(I) - AY(I) + G & M(J) * DELTAY(J) / R(J) A (P + 1)
480 END IF
490 NEXT I

'Find dVX, dVY, dX, and dY on the left of our interval
500 DVX(I) = AX(I) * DT
510 DVY(I) = AY(I) * DT
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520 DX() - VX(I) DT
530 DY(1) - VY() * DT

'Estimate VXR - VX on right side of our terval,
VXR(I) = X(I) + DVX(I)
VYX(I) VY(f) + DVY(I)
XRT) - X(I) + DX(I)
YR(I) = Y(I) DY(I)
NEXT

700 POR I = TO N

AXR(I) -0: AYR(I) - 0
FOR J 1 TON

IFJ <ITHEN
DELTAXR(J) = XR(J) - XR(I)
DELTAYR(J) = YR(J) - YR(I)
RR(J) - (D2ELTAXR(J) A 2 + DELTAYR(J) A 2)
AXR() = AXR(I) + G * M(J)J * DELTAXR(J)
AYR(I) - AYR(I) + G M(J)J * DELTAYR(J) /

END IF
NEXT I

DVXR(I)
DVYR(I)
DXR(I) =
DYR(I) -

DVXA(I)
DVXY(Q)
DXA(I) =
DYA(I) -

VX(I)

X(I) -
Y(J) -

A .5
RR(J)
RR(J)

A
A

- AXR(I) * DT
- AYR(I) * DT
VXR(I) DT
VYR * DT

-(DVX(I) + DVXR(I))
-(DVY(I) + DVYR(I))
(DX(I)+ DXR(T))/2
(DYH(I) + DYR(I)) / 2

VX(I) + DVXA(I)
- VY(1) +DVYA(I)
X(I) DXA(I)
Y(I) + DYA(I)

PSET (X(S), Y(I)), I+- 1
T-T+DT

/2
1/2 ' t

' new VX - old VX + dVX average
'etc

'Plot position on screen

' Locate 1, 1: PRINT USING "Time: Wt#t.W "; T
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1130 KEY$ - INKEYS 'See if key is pressed to stop progrEm

1140 NEXT I

1150 WEND 'Start while loop again to calculate
next position

2000 STOP

Numerical Solution of the NT-BRdv PrEQlem Using the EIfer Mq ehod

This program illusrates the numerical solution of the n-body problem using the

Euler method. There are two masses given in the program which makes it look like

a two-body problem. As many bodies can be added and each with its required

parameters. This, then, is the general numerical solution of the n-body problem.

N = n 'N - number of bodes

_ ._ X VY ML
100 DATA 1, 0, 0, 1, 1
110 DATA 1, 0, 0, 1, 1

120 FOR I = 1 TON
130 READ X(), Y(), VX(), VY(I), M(I)
140 NEXT I

150 G - 1 ' Universal gravitational constant
160 T 0: DT = .001 ' Iitial time and increment

'Establish screen parameters

200 SCREEN 12 ' VGA resolution
210 RAD - 3 ' Screen RADius

x distances times 1.33333 so that circles look circular
220 WINDOW (-1.33333 * RAD, RAD)-(1.33333 ' RAD, -RAD)
230 CLS
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' Calculate next po
300 PSET (0, 0)

310 WHILE KEYS -
FOR I = 1 TO N

sition
' Mark center of coordinates

"" . ' Loop until key pressed

' Find AX(I) and AY(I) components of acceleration on I tli
AX(I)= 0: AY(I) = 0
FORJ - 1 TON

IF J >ITHEN
DELTAX(J) = X(J) - X(I)
DELTAY()T = Y() - Y(1)
R(J) = (DELTAX(J) A 2 + DELTAY(J) A 2) A .5
AX(J) - AX(T) G
AY(J) = AY() + G

END IF
NEXT J

' Find dVX, dVY, dX, and d
'DVX(I) = AX(I) * DT
DVY(I) - AYI) * DT
DX(r)
DY(I)

VX(I)
VY(I)
X(I) -
Y(I) =

J* M(T)
MJ)

DELTAX(J)
)DELTAY(J

Y on the left of our interval

VX(I) * DT
VY * DT

= VX(I) + DVX(I)
= VY(I) + DVY(I)
X(l + DX(I)
Y(1) + DY(I)

410 PSET (X(I), Y(I)) 'Plot pOStiOn n screen
T=T +DT
LOCATE 1, 1: PRINT USING "Time: W.h#t "; T

420 KEY$ - INKEY$ ' See if key is pressed to stop program

NEXT I
430 WEND

STOP

' Start while loop again to calculate
' next position
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Nglmenia! SotinonJteg-J3B.od:.. Problem Using the Rtnlge-.Ktta Method

This program illustrates the general solution of the n-body problem using the

Runge Kurra method. Six specific masses are stared in the program. This is jnst to

illustrate how masses can be included in the program. To generate solutions,

masses must be included in the program with required parameters stated. More

masses can be added, and those already stated can be changed completely or partly

to generate the desired n-body problem

70 G - 6.67259E 11 ' Universal gravitational constant
SO P -2 ' Central force G M m / rAP
90 N -6 ' N - number of bodies

X Y VX \y M
100 DATA 2.SE+10, 0, 0, .155E+41, 1E+30
110 DATA -2.5E+10, 0, 0, -1.155E+$-I, 51

DATA 0, 0, 0, 0, 1E+24
DATA .5E+11 0, 0, 4.8E+4 .33E+24
DATA 1E+11, 0, 0, 3.5E+4, 5E+24
DATA 0, 1.5E+11, 3E+4 0, 6E+24

120 FOR I =1 TO N
130 READ X(I), Y(I), VX(I), VY(I), M(I)
140 NEXT I

150 T - 0: DT - 360 ' Initial time and increment

'Establish screen parameters

200 SCREEN 12 ' VGA resolution
210 RAD - 5E+10 ' Screen RADius

' x distances times 1.33333 so that circles look circular
220 WINDOW (L133333 * RAD, RAD)-(1,33333 RAD, -tLAD)
230 CLS

' Calclate next posmeon
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' Mark center of coordinates

310 WHILE KEYS "" 'Loop nntil key pressed

Find AX(I) and AY(I) components of acceleratiod on I-rh mass
400 AX( - 0: AY(I) = 0
410 FOR = 1 TO N
420 IF J <> I THEN
430 DELTAX(J) = X()- X()
440 DELTAY(J) = Y(J) - Y()
450 R(J) - DELTAX() A 2 + DEL:TAY(J) A 2) A .5
460 AX(I) - AX() + G * M(J) * DELTAX(J) / R(J) A (P + 1)
470 AY(I)- AY() + G * M(J) * DELTAY(I) / R(J) A (P + 1)
480 END IF
490 NEXT J

'Find dVX, dVY, dX, and dY on the left of ounr nterval
500 DVX(I) = AX(I) DT
510 DVY() - AY(I) DT
520 DX(I) -VX() DT
530 DY(I) - VY() * DT

'Estimate VXR - VX on right side of our interval, VYR " etc
600 VXR(I) VX(I) + DVX(I)
610 VYR(I) - VY(I) + DVY(I)
620 XR(I) = X(I) + DX(I)
630 YR(I) Y() + DY(I)

640 NEXT I

700 OR I = I TO N

800 AXR(I) - 0: AYR(I) - 0
810 FORJ- TON
820 IFJ I THEN
830 DELTAX(I) X(J) - X(I)
840 DELTAY(J) - Y(J) - Y(I)
850 R(J) - (DELTAX(J) A 2 + DELTAY(') A 2) A .5
860 AX(J) - AX(I) + G * M(J) DELTAX() / R(J) A (P 4 1)
870 AY(J) AY(1) + G * M(J) DELTAY(J) / R(J) A (P + 1)
880 END I
890 NEXT J
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=AXRL)
= AYR(I)
VXR(I) *
VYR(I) *

*DT
*DT
DT
DT

= (DVX(I) + DVXRI))
- (DVY(I) + DVYR(I))
(DX(I) + DXR(I)) / 2
(DYH(I) 4 DYR(I)) / 2

VX(I)
VY'j)
X(1) -

Y(I) -

- VX) + DVXA(I)
- VY(I + DWYA(I)
X() + DXA(I)
Y(I) + DYA(I)

' new VX - old VX + dVX average
' etc

PSET (X(S), Y(I)), I + I 'Plot position On scren
T=T+DT
'Locate 1, 1: PRINT USING "Time: .,'W "; T

1130 KEYS - INKEY$ ' See if key is pressed to stop program

1140 NEXT I

1150 WEND ' Start while loop again to calculate
' next position

2000 STOP

900
910
920
930

950
960
970
9RO

DVXR(I)
DVYR(I)
DXR) -
DYR(I) -

DVXA(I)
DVXY(T)
DXA(I) -
DYA(I) -

/
I

2
2 ' etc

1000
1010
1020
1030

I100
1110
1120



CHAPTER 5

Summary of Findings, Conclusions, and Recommendations

Introduction

This chapter summarizes the content of the n body problem solved by the

rcsearcher, Conclusions on the introduction of the n-body problems in the college

preparatory and undergraduate curriculum is discussed. The researcher concludes

this chapter with recommendations concerning the development of a syllabus that

will integrate mathematics and physics as a course to be offered.

Suinnary of Finings

The researcher has solved specific n-body problems that are aapropriate at the

undergraduate level. The researcher has found that topics suitable for

undergraduate and colege preparatory students are:

1. Analytic solution of a two-body (two equal masses) problem rotating in a

circle.

2. Analytic solution of a two-body problem with a third body not in moton

but bigger than the two equal masses in motion.

3. Analytic solution of a two-body problem involving two runequal masses.
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4. Analytic solution of a four-body problem. Four masses of equal masses

rotating in a circle.

5. Analytic solution of a six-body problem with a seventh mass of diffrent

size at the center.

6. Analytic solution of an eight-body problem.

7. The numerical solution of a two body problem by Etler's method.

8. The numerical solution of a two-body problem by Runge Kutta.

9. The numerical solution of a three-body problem by the Euler method&

10. The numerical solauton of a three body problem by the Rdnge-Kurta

method.

11. The numerical solution of an n-body problem by the Euler method.

12. The numerical solution of an n-body problem by the Runge-Kutta method

Conclusio.

Based on the solutions provided at the elementary level, a course in the n body

problem for undergraduate and college preparatory students can be developed.

Recommendations

Applied mathematics is not popular in the high school matheratics curriculum.

The introducton of a course in physics with mathematics will generate interest in
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applied mathematics, This course could be taught to college preparatory juniors

and senios throughout the college undergraduate curriculum. The success of this

program will gradually create a pool of faure applied mathematicians who can

devote time to the n-body problem.
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