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Abstract 

Robert Mudrowsky 

ROBUST SPEAKER RECOGNITION IN THE PRESENCE OF SPEECH CODING 

DISTORTION 

2015-2016 

Ravi P. Ramachandran, Ph.D. 

Master of Science in Electrical and Computer Engineering 

 

 For wireless remote access security, forensics, border control and surveillance 

applications, there is an emerging need for biometric speaker recognition systems to be 

robust to speech coding distortion. This thesis examines the robustness issue for three 

coders, namely, the ITU-T 6.3 kilobits per second (kbps) G.723.1, the ITU-T 8 kbps 

G.729 and the 12.2 kbps 3GPP GSM-AMR coder. Both speaker identification (SI) and 

speaker verification (SV) systems are considered and use a Gaussian mixture model 

(GMM) classifier. The systems are trained on clean speech and tested on the decoded 

speech. To mitigate the performance loss due to mismatched training and testing 

conditions, four robust features, two enhancement approaches and feature (SI) and score 

(SV) based fusion strategies are implemented.  

The first proposed novel enhancement method is feature compensation based on 

the affine transform and is used to map the features from the test scenario to the train 

scenario. The second is the McCree signal enhancement approach based on the spectral 

envelope information. A detailed two-way analysis of variance (ANOVA) supplemented 

with a multiple comparison test is performed in order to show statistical significance in 

application of these enhancement methods. 
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Chapter 1 

Introduction 

1.1 Statement of the Problem 

The main objective in the design of any speaker recognition system is to 

maximize performance in regards to correctly identifying or verifying a given speaker for 

any test condition. The quality of speech passed through a speaker recognition system 

will have an effect on overall system performance. The degradation of this speech quality 

is apparent in many forms of additive noise which include echo, latency, packet loss, 

packet delay variation, and distortion originating from the speech coder [1][2]. Distortion 

introduced by the speech coder will degrade the speech quality which will reduce system 

performance. The examination of distortion originating from the speech coder will be the 

main focus of this study. A GMM-UBM (Gaussian Mixture Model-Universal 

Background Model) speaker recognition system is implemented for both speaker 

identification (SI) and speaker verification (SV) to investigate the problem of speech 

coder distortion. In this thesis, the term speaker recognition is generic and refers to 

speaker identification and/or speaker verification. Training of the SI and SV systems is 

done on clean speech. The testing phase is done on the decoded speech which is the clean 

speech passed through the speech coder and then, decoded. 

1.2 Motivation 

This study will examine three contemporary speech coders of various bitrates. 

The speech coders used are G729 and G723.1 from the ITU standards  (International 

Telecommunications Union) as well as GSM AMR (Groupe Spécial Mobile Adaptive 
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Multi-rate codec) from the 3GPP (3rd Generation Partnership Project). The G.729 coder 

which is used primarily in VoIP (Voice over Internet Protocol) applications and uses a bit 

rate of 8 kbit/s [3][6]. The G723.1 coder is used in VoIP multimedia applications and 

uses a bit rate of 6.3 kbit/s [4][5]. The GSM AMR coder is a variable bitrate coder in 

which the bit rate of 12.2 kbits/s will be exclusively used in this study. GSM AMR is 

used primarily in mobile communication technologies [3][7]. These selections allow for a 

varied sampling of speech coders in current use. Each coder uses a different bit rate. The 

effect of the bit rate with regards to speech coding distortion will be investigated. Speaker 

recognition performance as a function of bit rate is investigated by simulating these three 

coders. 

1.3 Objective of Thesis 

The objectives of this thesis are: 

1. To improve the performance of a speaker recognition system by reducing the 

effect of speech coder distortion. 

2. To implement a GMM-UBM based system. 

3. To implement feature enhancement by applying the Affine transform 

4. To implement signal enhancement by applying the McCree method. 

5. To combine feature and signal enhancement. 

6. To implement post-processing fusion techniques to further augment performance. 

7. To determine the optimal set of system parameters for the implementation of a 

speaker recognition system. These parameters include the number of Gaussian 
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mixtures, the speech features used, the type of enhancement method and the 

fusion strategy. 

8. To apply statistical techniques to compare the different approaches to determine 

statistical significance. 

 

1.4 Thesis Focus and Organization 

The focus of this thesis is the implementation and analysis of a GMM-UBM 

based speaker recognition system designed to mitigate the effects of speech coding 

distortion and to improve overall system performance using feature and signal 

enhancement. 

 The first chapter is an introduction to the problem of speech coding distortion as 

well as a description of the purpose of this thesis. 

 The second chapter provides a background of the speech coding standards used, 

the training and testing parameters, a description of the features, a complete description 

of GMM-UBM system parameters, enhancement methods and fusion strategies. 

 The third chapter explains the design approach of the GMM-UBM speaker 

recognition systems and a detailed explanation of the experimental procedure for both SI 

and SV systems.  

 The fourth chapter contains the results and findings related to the GMM-UBM 

speaker recognition systems. The effectiveness of fusion strategies as well as analyses to 

determine statistical significance will be discussed. 
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 The fifth chapter summarizes and lists the conclusions and successes of the thesis. 

Recommendations for potential future work and considerations are discussed as well. 
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Chapter 2 

 Background 

This chapter contains a complete review of all the aspects related to the design of 

the speaker recognition systems for this thesis. The parameters of the narrow-band speech 

coders used in the experimentation are discussed. A comprehensive description of the 

feature extraction methods and related features are also discussed. 

 A discussion of the characteristics of the Gaussian Mixture Model (GMM) using 

a universal background model (UBM) speaker recognition system is provided. An 

explanation of maximum a-posteriori estimation (MAP) as well as the use of expectation 

maximization (EM) as it relates to the UBM is presented. 

Two types of speaker recognition systems will be examined. An explanation of a 

speaker identification (SI) system and a speaker verification (SV) system as well as their 

respective performance metrics will be discussed. 

 The usage of enhancement methods and their variations, which are the primary 

contribution of this thesis, will be discussed. An explanation of the McCree method of 

signal enhancement and the affine transform which allows for feature enhancement will 

be examined. Various fusion methods to further augment speaker recognition system 

performance will also be discussed. A statistical analysis will also be performed in order 

to prove statistical significance. This includes a two-way analysis of variance (ANOVA) 

and a t-test. 
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2.1 Narrow-Band Speech Coding 

The speech coders covered in this study operate using narrow-band audio 

channels which range from 300-3.4 kHz using a sampling frequency of 8 kHz [1]. This 

convention does not cover the entire human vocal range but it still allows for adequate 

intelligibility of speech. Preserving the intelligibility of speech is one of the primary goals 

of any speech coding algorithm. The three speech coders that used in this thesis adhere to 

these basic principles. 

The coders under investigation provide a current sampling of contemporary 

speech compression methods. The relationship between system performance and the 

various bit rates of the coders will be examined. 

2.1.1 G723.1. The G.723.1 speech coder is also an ITU standard used primarily 

for low bandwidth VoIP applications. There are two bit rates utilized by this speech 

coder. This thesis makes use of the 6.3 kbit/s bit rate option which employs a fixed frame 

size of 24 bytes per 30 ms frame. The G.723.1 speech coder uses multi-pulse linear 

predictive coding with maximum likelihood quantization (MPC-MLQ) algorithm 

[1][4][5]. 

2.1.2 G.729. The G.729 speech coder is an ITU standard used in wireless 

communication as well as VoIP applications where the conservation of bandwidth is a 

principal requirement. It operates at a fixed bit rate of 8 kbits/s and fixed frame size of 10 

bytes per 10 ms frame. The G.729 speech coder uses a code-excited linear prediction 

algorithm (CELP) [1][6].  



 

 

7 

 

2.1.3 GSM-AMR. The GSM-AMR speech coder is a multi-rate speech coder 

which is a standard governed by the 3GPP (3rd Generation Partnership Project) primarily 

used in mobile phone applications. There are eight bit rates to choose from for this coder. 

This thesis will examine the 12.2 kbits/s bit rate selection that uses a fixed frame size of 

244 bits per 20 ms frame. The GSM-AMR speech coder uses a CELP algorithm [3][7]. 

2.2 Features 

Four feature sets are used in this thesis. The features are as follows: linear 

predictive cepstrum (CEP), adaptive component weighting weighted cepstrum (ACW), 

postfilter cepstrum (PST), and mel-frequency cepstral coefficients (MFCC). Linear 

predictive (LP) analysis is used for the CEP, ACW, and PST features [9][10]. The feature 

extraction process for MFCC is based on the filter bank processing of the Fourier 

transform of the speech followed by cepstral analysis using the discrete cosine transform 

(DCT) [2][19]. Energy thresholding is implemented in order to ensure that only frames 

that contain sufficient speech information are used when calculating the feature vectors. 

2.2.1 Linear prediction. As stated above, the feature extraction process for CEP, 

ACW, and PST is accomplished by use of linear predictive (LP) analysis. Linear 

predictive analysis is based on the idea that a speech sample is a weighted linear 

combination of p previous samples which results in a set of weights labeled ak [8]. 

The equation is given as: 

𝑠(𝑛) = ∑ 𝑎𝑘𝑠(𝑛 − 𝑘) + 𝑒(𝑛)

𝑝

𝑘=1

 

(2.1) 
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where s(n) is the speech signal and e(n) is the error or LP residual. The weights 

correspond to the coefficients of a non-recursive filter given as: 

𝐴(𝑧) = 1 − ∑ 𝑎𝑘𝑧
−𝑘 = ∏(1 − 𝑓𝑘𝑧−1)

𝑝

𝑘=1

𝑝

𝑘=1

 

(2.2) 

where fk for 1 ≤ 𝑘 ≤ 𝑝 represents the zeros of A(z). The calculation of the LP coefficients 

ak is based on the minimizing the weighted mean squared-error Emse on a segment of 

speech comprising of N samples. The weighting is accomplished by applying a Hamming 

window to the segment of speech. Finding ak by minimization of the Emse is accomplished 

by an autocorrelation analysis and solving a system of linear equations using the 

Levinson-Durbin algorithm. Using this algorithm assures minimum phase of A(z) [9]. 

The all-pole LP transfer function is given as: 

𝐻(𝑧) =
1

𝐴(𝑧)
= ∏

1

1 − 𝑓𝑘𝑧−1
= ∑

𝑟𝑘
1 − 𝑓𝑘𝑧−1

𝑝

𝑘=1

𝑝

𝑘=1

 

(2.3) 

where rk represents the residues and fk represents the poles of H(z). The poles being 

represented as: 

𝑓𝑘 = 𝜎𝑘𝑒
𝑗𝜔𝑘,     𝑘 = 1,2, … , 𝑝 

(2.4) 

where ωk is the kth
 center frequency and σk is the magnitude of the poles that fall in the 

range of (0,1). 
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The causal impulse response is given as: 

ℎ(𝑛) = ∑ 𝑟𝑘𝑓𝑘
𝑛 = ∑ 𝑟𝑘𝜎𝑘

𝑛

𝑝

𝑘=1

𝑒𝑗𝜔𝑘𝑛

𝑝

𝑘=1

 

(2.5) 

Since A(z) is guaranteed to be minimum phase the CEP, ACW, and PST features are 

causal (exist only for quefrencies n ≥ 0) [9]. 

2.2.2 Linear predictive cepstrum feature (CEP). For a system function P(z), the 

cepstrum is generally defined as the inverse z-transform of log[P(z)] [9] given as: 

𝐶(𝑧) = log P(z) = ∑𝑐𝑝(𝑛)𝑧−𝑛

𝑛

 

(2.6) 

A pole zero transfer function P(z) is given as: 

𝑃(𝑧) =
𝑈(𝑧)

𝑉(𝑧)
=

∏ (1 − 𝑢𝑘𝑧−1)𝑢
𝑘=1

∏ (1 − 𝑢𝑘𝑧−1)𝑢
𝑘=1

 

(2.7) 

If P(z) is minimum phase, the cepstrum can be calculated by a recursion based on the 

polynomial coefficients or by taking into consideration the polynomial roots vk and uk 

given as: 

𝑐𝑝(𝑛) =
1

𝑛
∑ 𝑣𝑘

𝑛 −
1

𝑛
∑ 𝑢𝑘

𝑛

𝑢

𝑘=1

𝑣

𝑘=1

 

(2.8) 
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where 𝑛 > 0. 

In the case of the linear prediction filter A(z), the cepstrum corresponding to 1/A(z) or 

equivalently the inverse z-transform of log[1/A(z)] is referred to as the LP cepstrum and 

is denoted by clp(n). The CEP feature is clp(n) and can be efficiently and recursively 

calculated (without root finding) from the predictor coefficients an [9]as: 

𝑐𝐿𝑃(𝑛) = 𝑎𝑛 + ∑ (
𝑖

𝑛
)

𝑛−1

𝑖=1

𝑐𝐿𝑃(𝑖)𝑎𝑛−𝑖 

(2.9) 

2.2.3 Adaptive component weighting (ACW). The ACW cepstrum is obtained 

by first performing a partial fraction expansion of the LP function 1/A(z) which is shown 

as: 

1

𝐴(𝑧)
= ∑

lim
𝑧→𝑓𝑘

[
1 − 𝑓𝑘𝑧−1

𝐴(𝑧)
]

1 − 𝑓𝑘𝑧−1

𝑝

𝑘=1

= ∑
𝑟𝑘

1 − 𝑓𝑘𝑧−1

𝑝

𝑘=1

 

(2.10) 

where fk  are the poles of A(z) and rk are the corresponding residues. The variations of rk 

are removed by setting 𝑟𝑘 = 1 for every k. Therefore, the corresponding transfer function 

is a pole-zero type of the following form: 

𝑁(𝑧)

𝐴(𝑧)
= ∑

1

1 − 𝑓𝑘𝑧−1

𝑝

𝑘=1

 

𝑁(𝑧)

𝐴(𝑧)
=

1

𝐴(𝑧)
∑ ∏ (1 − 𝑓𝑘𝑧

−1)

𝑝

𝑖=1≠𝑘

𝑝

𝑘=1
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𝑁(𝑧)

𝐴(𝑧)
= 𝑝 [

1 − ∑ 𝑏𝑘𝑧
−𝑘𝑝−1

𝑘=1

1 − ∑ 𝑎𝑘𝑧−𝑘𝑝
𝑘=1

] 

(2.11) 

It has been shown in [10] that N(z) is minimum phase by recognizing that a circle that 

encloses all of the zeros of a polynomial also encloses all of the zeros of its derivative. 

Standard polynomial root finding does not need to be applied and N(z) can be easily 

calculated from A(z) as shown in [10]. The ACW feature is determined by computing the 

cepstrum of N(z)/A(z) by a recursion based on the polynomial coefficients of N(z) and 

A(z) [9]. 

2.2.4 Postfilter cepstrum (PST). The postfilter is obtained from A(z) and its 

transfer function is given as: 

𝐻𝑝𝑠𝑡(𝑧) =
𝐴 (

𝑧
𝛽
)

𝐴 (
𝑧
𝛼)

 

(2.12) 

where 0 < 𝛽 < 𝛼 ≤ 1. The cepstrum Hpst(z) is the postfilter cepstrum (PST/PFL) which 

is equivalent to weighting the LP cepstrum [9] shown as:  

𝑐𝑝𝑠𝑡(𝑛) = 𝑐𝑙𝑝(𝑛)[𝛼𝑛 − 𝛽𝑛] 

(2.13) 

where 𝛼 = 1.0 and 𝛽 = 0.9 
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2.2.5 Mel-frequency cepstral coefficients (MFCC). Unlike the other features 

used in this thesis, the mel-frequency cepstrum coefficients (MFCC) feature extraction 

method is not based on LP analysis. Instead, it is computed by the filter bank processing 

of the Discrete Fourier transform (DFT) of the speech followed by a cepstral analysis of 

the discrete cosine transform (DCT). The magnitude of the DFT is logarithmically 

smoothed using a mel spaced filter bank. The DCT of the filter bank outputs yield the 

MFCC which is a basically a compact representation of the spectrum of the speech 

[2][19].  

2.2.6 Delta feature. In order to better capture transitional information between 

frames, a 12-dimensional delta feature is computed for the four features for each frame. A 

delta feature uses a frame span of five (current frame plus look ahead and behind two 

frames) in order to derive first derivative information [11]. A delta feature can be 

computed using the following equation:  

∆𝑓𝑘 =
∑ 𝑛𝑓𝑘+𝑖

𝑚
𝑛=−𝑚

∑ 𝑛2𝑚
𝑛=−𝑚

    

(2.14) 

where 𝑓𝑘 is a feature vector at frame k  and m = 2 corresponds to a frame span of 5. To 

obtain second derivative information the delta feature at frame k (∆𝑓𝑘) is used as an input 

to once again calculate the above equation. Concatenation of the first and second 

derivative of the feature vector results in a 36 dimensional vector [11].  
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2.3 Speaker Recognition Systems  

A speaker identification system (SI) and speaker verification system (SV) are 

considered in this thesis. A SI system determines the closest identity of a test utterance 

based on all available speaker models which is a 1:N problem. A SV system determines if 

the test speaker’s claimed identity matches only the target speaker model which is a 1:1 

problem.  

Two different performance metrics are used. The SI system performance is 

measured by the identification success rate (ISR) in which the total number of correct 

identifications is divided by the total number of test trials. The SV system performance is 

measured using the equal error rate (EER) which is the operating point on the receiver 

operating characteristic (ROC) where the false accept rate (FAR) equals the false reject 

rate (FRR). A false acceptation is when the test speaker in question is accepted by the SV 

system when it actually should be rejected. The number of false acceptations divided by 

the total number of acceptances equals the FAR [3]. A false rejection is when the test 

speaker in question is rejected by the SV system when it actually should be accepted. The 

number of false rejections divided by the total number of rejections equals the FRR [3]. A 

ROC curve is a plot that depicts the FAR against the FRR. Both speaker recognition 

systems make use of a GMM-UBM classifier which is described in the following 

sections. 
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2.3.1 Gaussian mixture model (GMM). A Gaussian Mixture Model classifier is 

used as the basis of both speaker recognition systems. A GMM speaker model is 

described as a conditional probability density expressed as a linear combination of 

Gaussian densities [11] shown as: 

𝑝(𝑥 | 𝜆) = ∑𝑤𝑖

𝑀

𝑖=1

𝑝𝑖(𝑥) 

(2.15) 

where x is a D-dimensional feature vector, and wi are the mixture weights which satisfies 

∑𝑤𝑖 = 1 for 𝑖 = 1 to M where M is the number of Gaussian Mixtures. The density pi(x) 

is given as: 

𝑝𝑖(𝑥) =
1

(2𝜋)𝐷/2|𝛴𝑖|1/2
exp {−

1

2
(𝑥 − 𝜇𝑖)

𝑇𝛴𝑖
−1(𝑥 − 𝜇𝑖)} 

(2.16) 

where µi is a D x 1 mean vector and 𝛴𝑖 is a D x D covariance matrix. The parameters are 

denoted as 𝜆 = {𝑤𝑖, 𝜇𝑖, 𝛴𝑖} [11] [12]. 

 

2.3.2 Expectation maximization (EM). Expectation maximization (EM) is an 

iterative technique for maximum likelihood estimation (MLE). The maximum likelihood 

estimates of λ are obtained using EM [17][18]. There are two steps involved in each 

iteration of the EM algorithm. The first step is to compute the posterior probability given 

the current model and the second step is to update the model using the equations for the 

weights, means, and covariances. These two steps are iterated until the desired 
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convergence criteria have been satisfied. This refines the GMM parameters which 

increases the likelihood that the estimated model is closer to the observed feature vectors 

[1][3][12][17][18]. 

2.3.3 Universal background model (UBM). A Universal Background Model 

(UBM) is an alternative speaker model which consists of speakers pooled together that 

represent the expected speech characteristics of the speakers that will be enrolled in the 

SI and SV systems. It can be thought as one very large GMM that represents the impostor 

space [12]. The selected speech from speakers for the UBM is from a different partition 

of the TIMIT database then that of the speech from speakers that are enrolled in the SI 

and SV systems. For every mixture, the weights, means, and variances are computed 

using the EM algorithm from i = 1 to M where M is the number of mixtures [20]. This is 

repeated for all of the utterances used (10) for all of the speakers (168) to create the UBM   

Once the UBM is created it is then adapted to develop the individual speaker 

models. The UBM serves as the initial condition in the training phase for the MAP 

adaptation of the GMM models for all speakers. There are two ways in which to perform 

the MAP adaptation of the GMM models. The first way is to use all of the statistics 

which include the weights, means, and variances and the second way is to use the means 

only. It has been shown in [12] that use of only the means is not sufficiently different 

when compared to using all three of the statistics. The GMM models are also computed 

for the number of mixtures for every training utterance (8) for each speaker (90 total). 

Ideally this computation for each mixture will gradually make the speaker model more 

robust. 
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Once training is complete the UBM is no longer used in regards to the SI system. 

When testing the SI system a test utterance is input and the feature vectors are created. A 

log likelihood based score for every speaker GMM model is then calculated. The identity 

of the speaker is specified as the largest score out of all of the compared GMM models. 

The UBM has an essential role in regards to the testing of the SV system. A test 

utterance is input and feature vectors are created as in the SI system. However there are 

two sets of scores for the SV system. The true score is computed as the difference 

between the single target speaker model score and the score for the UBM. The true score 

is required to calculate the FRR [12]. The target speaker is in reality the claimed speaker 

and is compared to their actual GMM speaker model as shown in the following figure. 

 

 

Figure 2.1. True/imposter score calculation 

 

The imposter score is computed in the same way as the true score except that the 

target speaker is not actually the claimed speaker so it is not compared to their correct 

GMM speaker model. The imposter score is required to calculate the FAR. Once both 

scores are calculated then the FAR and FRR can be calculated which then allows for the 

EER to be calculated which is the performance metric for the SV system [3][12][13][14]. 
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2.4 Enhancement Techniques 

There are two pre-processing enhancement techniques utilized in this thesis. The 

principal contribution of this thesis is the application of the affine transform as a form of 

feature enhancement. The other technique is a form of signal enhancement. There are 

also unique fusion strategies implemented for both the SI and SV systems. 

2.4.1 Affine transform. The affine transform enables feature enhancement by 

mapping a feature vector derived from the test speech to another feature vector in the 

region of the D-dimensional space occupied by the clean speech training vectors. This 

allows for a more consistent match between training and testing conditions which 

enhances the feature in question by compensating for this distortion [11]. The affine 

transform is given as: 

𝑦 = 𝐴𝑥 + 𝑏       

(2.17) 

where A is a p by p matrix and y, x and b are column vectors of dimension p.  Expansion 

of equation 2.17 results in: 
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Where 𝐚𝐦
𝐓  is the row vector corresponding to the mth row of A. Parameters A and b are 

determined using only the training data. The feature vector for the ith frame of the 

training speech is labeled as y(i). The feature vector for the ith frame of the training 

speech with coder distortion is labeled as x(i). A total of N sets of vectors are collected 

from y(i) and x(i) and a squared error function [11] is given as : 

 

𝐸(𝑚) = ∑ [𝑦(𝑖)(𝑚) − 𝑎𝑚
𝑇 𝑥(𝑖) − 𝑏(𝑚)]

2𝑁
𝑖=1   

(2.19) 

where 𝑎𝑚
𝑇  once again corresponds to the mth row of A and y(i)(m) and b(m) are the mth 

components of y(i) and b. The minimization of equation 2.19 with respect to 𝒂𝒎 and b(m) 

[11] is shown as follows: 

 

𝐸(𝑚) = ∑{𝑦(𝑖)(𝑚) − 𝑎𝑚
𝑇 𝑥(𝑖) − 𝑏(𝑚)}

𝑁

𝑖=1

{𝑦(𝑖)(𝑚) − 𝑥(𝑖)𝑇𝑎𝑚 − 𝑏(𝑚)} 

𝐸(𝑚) = ∑{𝑦(𝑖)(𝑚)}
2

𝑁

𝑖=1

− 2𝑎𝑚
𝑇 ∑𝑦(𝑖)𝑥(𝑖)

− 2𝑏(𝑚)∑𝑦(𝑖)(𝑚)

+ 𝑎𝑚
𝑇 ∑𝑥(𝑖)𝑥(𝑖)𝑇𝑎𝑚 + 2𝑏(𝑚)𝑎𝑚

𝑇 ∑𝑥(𝑖) + ∑ 𝑏2(𝑚) 
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𝜕𝐸(𝑚)

𝜕𝑎𝑚
= −2∑𝑦(𝑖)(𝑚)𝑥(𝑖) + 2∑𝑥(𝑖) 𝑥(𝑖)𝑇𝑎𝑚 + 2𝑏(𝑚)∑𝑥(𝑖) = 0 

𝜕𝐸(𝑚)

𝜕𝑏(𝑚)
= −2∑𝑦(𝑖)(𝑚) + 2𝑎𝑚

𝑇 ∑𝑥(𝑖) + 2∑𝑏(𝑚) 

(2.20) 

This results in the system of equations given as: 

[
∑ 𝑥(𝑖)

 
𝑁
𝑖=1 𝑥(𝑖)𝑇 ∑ 𝑥(𝑖)𝑁

𝑖=1

∑ 𝑥(𝑖)𝑇𝑁
𝑖=1 

𝑁
]  [

 
𝑎𝑚

𝑏(𝑚)
 

] =  [
∑ 𝑦(𝑖)(𝑚)𝑥(𝑖)

 
𝑁
𝑖=1

 
 ∑ 𝑦(𝑖)(𝑚)𝑁

𝑖=1 

]  

(2.21) 

So the function E(m) is minimized for m  =  1 to p. Therefore there are m different 

systems of equations of dimension (p + 1) are solved. It is noted that since the left-hand 

matrix of equation 2.21 only needs to be calculated once because it is independent of m 

[11]. The affine transform allows for the compensation of scaling, translation, and 

rotation of the feature vectors which is caused by multiple types of distortion in the 

speech signal and generally includes the cases of speech coding distortion, additive noise 

distortion and communication channel distortion. 

2.4.2 McCree method. A method of signal enhancement that we have referred to 

as the McCree method is implemented as laid out in [13]. The first step is to perform an 

LP analysis of the decoded speech. The second step is to pass the decoded speech through 

the nonrecursive filter A(z). The final step is to perform LP synthesis filtering with the 

transmitted LPC of the input speech to the coder in order to restore the correct spectral 

envelope [13]. 
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2.4.3 Fusion strategies. Fusion strategies are implemented in order to augment 

system performance. Different fusion methods are utilized for the SI and SV systems 

namely feature level fusion and score level fusion respectively. A description of these 

methods is separated based on the speaker recognition system. 

2.4.3.1 SI system fusion. The fusion methods for the speaker identification 

system are feature based. A decision level fusion strategy is implemented. The decision 

of a given feature is its greatest log-likelihood score. The index of that score represents 

the corresponding speaker. The four features contribute one speaker decision for every 

speech utterance. The speaker that received the most votes out of the four features would 

become the new speaker decision for a given test utterance in decision level fusion [11].  

The second fusion method for the SI system is the use of Borda count.  The Borda count 

method allows for the log-likelihood scores for every speaker for a given test utterance to 

be considered. The scores are ranked from lowest to highest for individually for each 

feature for every test utterance and are given a new voting total based on where the 

corresponding score ranks [11]. The highest voting total among all the features 

considered will then become the new speaker decision. 

2.4.3.2 SV system fusion. Score level fusion is implemented for the SV system 

using the log likelihood scores from the features. Since the scores vary greatly in numeric 

value it is necessary to normalize the scores before the fusion processes are implemented. 

This is accomplished by mapping all of the scores for a single feature on the interval of 0 

to 1. Where the highest score is 1 and the lowest score is 0. Each feature is normalized 

individually. These new normalized scores are used in the three score fusion techniques 



 

 

21 

 

implemented for the SV system [15]. The three score fusion techniques in the SV system 

are sum, product, and maximum. 

Sum fusion is computed by directly summing the scores the individual features which 

results in a final score Sfinal. This is shown in the following equation. 

𝑆𝑓𝑖𝑛𝑎𝑙 = ∑𝑆𝑖

𝑛

𝑖=1

 

(2.22) 

where Si is all of the normalized feature scores and n = 4 since there are four features 

[15]. 

Product fusion is computed by multiplying the scores of the individual features [15] 

depicted in the following equation. 

𝑆𝑓𝑖𝑛𝑎𝑙 ∏𝑆𝑖

𝑛

𝑖=1

 

(2.23) 

where Si is all of the normalized feature scores and n = 4. 

Max fusion is computed by taking the maximum score from all features as the final score 

[15]. 

𝑆𝑓𝑖𝑛𝑎𝑙 = max (𝑆1, 𝑆2, … , 𝑆𝑛) 

(2.24) 

where n = 4. 
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2.5 Statistical Analysis 

A statistical analysis is required in order to prove the statistical significance of the 

results obtained from the speaker recognition experiments. A t test and two-way analysis 

of variance (ANOVA) followed by a multiple pairwise comparison are considered. All of 

the statistical methods described make use of a 95% confidence interval. 

A two-sample t-test with unequal variances is performed to determine if the 

performance on clean speech is significantly better than the methods and techniques 

proposed in this thesis. 

A two-way ANOVA allows for the analysis of two factors (feature and method) 

in which we can determine if there is a statistical difference among levels in the first 

factor, among levels in the second factor, and to see if there is an interaction effect 

between the two factors [16]. 

  A multiple comparison procedure is implemented based on Tukey’s procedure 

which enables comparison among all the group means which in turn allows us to choose 

the optimal combination of factors with statistical certainty [16]. 
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Chapter 3 

Approach and Methodology 

Chapter 3 will detail the design approach and methodology of both speaker 

recognition systems. A description of the dataset partitioning, training procedure, and 

feature extraction process will be provided. A description of shared experimental testing 

protocol will be described. The experimental protocol for the SI and SV systems will be 

provided in full. The chapter will also discuss the SI and SV performance measures and 

fusion strategies. A discussion of the variation of system parameters will be included. 

The generation of multiple experimental trials and the application of statistical techniques 

to determine statistical significance will be discussed.  

3.1 Dataset Initialization 

The TIMIT database is used for both training and testing. All of the speech 

utterances for training and testing that are used from the TIMIT database are down 

sampled to 8 KHz prior to use in the speaker recognition systems. First, a separate 

partition of 168 unique speakers each having 10 speech utterances of the TIMIT database 

is set aside for training of the UBM. All 10 speech utterances from these 168 speakers are 

used in the training of the UBM. These 168 speakers will represent an alternative 

hypothesis or imposter model. The UBM is basically one large GMM. Another separate 

partition of 90 unique speakers of the TIMIT database also consisting of 10 speech 

utterances is used for the enrollment of the speaker recognition systems. These 90 

speakers have their 10 respective utterances separated with 8 used for training and 2 used 
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for testing. There will be one GMM model for each speaker for a total of 90 GMMs. This 

set of 90 GMMs are different for each feature. 

3.2 Training Phase 

Consider a clean speech utterance from the TIMIT database as input. A total of 8 

speech utterances are used to train a single GMM speaker model. This process is repeated 

once for each of the 90 speakers in the training phase. 

3.2.1 Feature extraction. A speech utterance is divided into frames of 30 ms 

duration with a 20 ms overlap. Linear predictive analysis is performed in that the 

autocorrelation method is used to get a 12th order LP polynomial. The LP coefficients are 

then converted into a 12 dimensional CEP, ACW and PST feature vector. The MFCC 

feature is computed using a DFT followed by a cepstral analysis using a DCT. For each 

of the four features, a 12 dimensional first derivative (delta) feature and second derivative 

(delta delta) feature is computed in each frame using a frame span of 5 (frame plus look 

ahead/behind 2). An energy thresholding process is performed on these 36 dimensional 

feature vectors where the sections of the utterance with low energy are removed [21]. 

Segments of silence must be removed so that only meaningful speech information 

contributes to the speech features. This energy thresholding process is performed on each 

utterance such that frames of relatively high energy corresponding to speech are 

identified and used to compute the feature vectors. 
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 Figure 3.1. Feature extraction process 

 

3.2.2 UBM computation. A UBM is randomly seeded by using five iterations of 

the k-means algorithm to initialize the parameters of an M mixture GMM speaker model 

with a diagonal covariance matrix [12]. A total of 10 iterations of the EM algorithm are 

performed which results in a refined GMM model. A UBM is calculated for each feature 

for the selected number of mixtures. 

3.2.3 Individual GMM computation. The individual speaker models are 

obtained by MAP estimation of the UBM parameters. The calculation of these parameters 

are based on the designated option which is either to use all parameters (weights, means, 

and covariances) or to just use means. As stated previously, eight utterances are used in 

the training phase to obtain the feature vectors and perform the MAP adaptation. 

 



 

 

26 

 

 

Figure 3.2. Training of a GMM speaker model 

 

3.3 Testing Phase 

Consider a clean speech utterance from the TIMIT database as input. There are 

two designated utterances for testing of the speaker recognition systems for each of the 

90 speakers. The rotation of these utterances is described later in this chapter.  

The feature extraction process is the same for training and testing for both the 

speaker identification system and speaker verification system with a few exceptions that 

allow for coder and enhancement selections. First, the test utterance is encoded with the 

desired speech coder (G729 8 kbit/s, G723.1 5.3 kbit/s, or GSM AMR 12.2 kbit/s). The 

method of enhancement is then chosen (no enhancement, McCree method, affine 

transform, both McCree and affine). Note that the affine transformation applied after the 

feature extraction is performed as shown in the following figure. 
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Figure 3.3. Testing phase enhancement diagram 

 

3.3.1 Enhancement methods. An established signal enhancement method as well 

as a novel feature enhancement method are investigated. 

3.3.1.1 McCree method. The test utterances for each coder type have the McCree 

method of signal enhancement applied prior to the start of the testing phase. The test 

utterance for the desired coder where the McCree method is applied is used when the 

McCree method is selected. 

3.3.1.2 Affine transform. The affine transform parameters are calculated from the 

first 5 training utterances. These utterances are reserved for the affine transform and are 

not affected by the rotation of the testing data which will be described later in this 
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chapter. The first and second derivative information are not used in the calculation of the 

affine transform. The affine transform is computed prior to the testing phase. There is a 

unique affine transform for each of the four features for all three coders.  In addition, 

there is also a unique affine transform if the McCree method is selected for every feature 

and coder combination. 

3.3.1.3 McCree method and affine transform. A combination of enhancement 

methods is performed. The test utterances with the McCree method applied are used with 

their corresponding affine transform based on feature and coder selection. 

3.3.2 Speaker recognition system experimental protocol. The testing phase 

experimental protocol for the speaker identification system and speaker verification 

system that is not shared is described in this section in detail. 

3.3.2.1 Speaker identification system. The decision logic for the SI system is 

implemented after the feature extraction process is complete and all of selected 

enhancement methods are applied. The SI system attempts to solve a 1:M speaker 

problem where 𝑀 = 90. The objective of the SI system is to determine which speaker’s 

GMM model out of the 90 total speaker models is closest to the input test utterance’s 

feature vectors. 

There are 𝑀 = 90 speakers for which speaker i is represented by GMM 𝜆𝑖. 𝑀
∗ is 

the identified speaker and is chosen to maximize the a posteriori log-probability [11] as 

shown in the following equation.  
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𝑀∗ = arg  max
                              1≤𝑗≤𝑀

∑log𝑝(𝑥𝑖|𝜆𝑗)

𝑞

𝑖=1

 

(3.1) 

where 𝑝(𝑥𝑖|𝜆𝑗) is computed as given in equation 2.15. If the identified speaker matches 

the actual speaker of the test utterance in question, it is recorded as a correct 

identification. 

3.3.2.1.1 Speaker identification performance measure. The performance of the 

speaker identification system is measured using the identification success rate (ISR). The 

ISR is represented as the total number of correct identifications divided by the total 

number of test trials. In a single experimental procedure, there are 90 speakers which 

have two test utterances each which totals for 180 test cases. This process is repeated for 

all possible variations of system parameters in which the ISR is calculated independently 

for each parameter variation. 

3.3.2.2 Speaker verification system. The decision logic for the SV system is also 

implemented after the feature extraction process is complete and all of selected 

enhancement methods are applied. The SV system attempts to solve a 1:1 speaker 

problem where we determine if the test utterance’s feature vectors are a close enough 

match to the claimed identity’s speaker model based on a threshold to either accept or 

reject the claimed identity. 

Let the claimed identity of a speaker be k. The posteriori log-probability as in 

equation 3.1 is computed for the speaker model 𝜆𝑘 and for the UBM model. The SV 

score is calculated by subtracting the speaker model score  𝜆𝑘 by the UBM score. For 
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each feature and for each coder there will be 180 genuine or true attempts where the test 

utterance is actually the claimed identity and there will be 16,020 imposter attempts 

where the test utterance is not actually the claimed identity. Table 3.1 details the true and 

imposter attempts below.  

 

Table 3.1 

True/imposter attempt breakdown 

Type True  Imposter  

Total Number of 

Attempts 

180 16,020 

Explanation 

 

 (2)(90) 

2 utterances for each 

speaker 

 (2)(90)(89) 

2 utterances for each of the 

90 speakers 89 times each 

attempt 

 

 

  3.3.2.2.1 Speaker verification performance measure. The SV score is compared to 

a threshold to either accept or reject the claimed identity. The false accept rate (FAR) and 

false reject rate (FRR) are adjusted based on the threshold chosen which in turn yields a 

receiver operating characteristic (ROC) from which the equal error rate is the 

performance measure. The EER being the point on the ROC in which the FAR equals the 

FRR. Once again this testing process is repeated for all possible variations of system 

parameters in which the EER is calculated independently for each parameter variation. 
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3.3.3 Variation of parameters. The four methods under investigation in this 

thesis are to perform no enhancement, to perform signal enhancement (McCree method), 

to perform feature enhancement (affine transform), or to perform both enhancements 

(McCree method and affine transform). The data set was exhaustively tested for each of 

our four methods for both the SI and SV systems by varying the following parameters. 

The type of speech coder is varied which include the G723.1 speech coder (5.3 

kbps), the G729 speech coder (8 kbps), and the GSM AMR speech coder (12.2 kbps 

selection). 

The number of Gaussian mixtures used for the speaker models was varied from 

16 to 2048 in powers of two (16, 32, 64, 128, 256, 512, 1024, 2048). The GMM speaker 

model is tested with a UBM with the corresponding number of mixtures. So a GMM 

model tested on 16 mixtures is tested with a UBM with 16 mixtures. 

For MAP estimation, there are two options. One is to use all parameters (weights 

means and covariances) and the other option is to just adapt the means only. 

Four features are examined, namely, CEP, ACW, PST, and MFCC. 

3.3.4 Fusion methods. Different fusion methods were utilized for both speaker 

recognition systems. A description of these methods is separated based on the speaker 

recognition system. Each coder and method of enhancement are considered independent 

for all fusion methods. 
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3.3.4.1 Speaker identification system fusion methods. The fusion methods for the 

SI system are feature based. Every combination of feature is considered in the fusion 

methods as described in the following table. A final selection of features to be used in the 

SI fusion methods will be determined experimentally. 

 

Table 3.2 

Feature fusion possibilities 

Feature List Fusion Name 

CEP, ACW, PST, MFCC CAPM 

CEP, ACW, PST CAP 

CEP, ACW, MFCC CAM 

ACW, PST, MFCC APM 

CEP, ACW CA 

CEP, PST CP 

CEP, MFCC CM 

ACW, PST AP 

ACW, MFCC AM 

PST, MFCC PM 

 

 

3.3.4.1.1 Decision level fusion. The four features (CEP, ACW, PST, MFCC) final 

speaker decision are considered where the speaker with the most final decision votes 

become the new decision. A tie (1-1-1-1 or 2-2) is resolved by arbitrarily taking the 

lowest speaker number as the final decision. 

3.3.4.1.2 Borda count fusion. Borda count fusion considers all of the speakers as a 

possible decision instead of only counting the final decision from each feature. The 

speakers are ranked from lowest to highest in log-likelihood score and are then assigned a 

new score based on their cumulative ranking amongst all the features in question. Since 
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all 90 speakers are eligible it is now possible for a speaker that has scored higher on a few 

features but not the highest to be chosen as the final decision.  

3.3.4.2 Speaker verification system fusion methods. The fusion methods for the 

SV system are score based. The score fusion methods in this thesis are considered 

combinational approaches and it is necessary to perform a score normalization before 

fusion [15]. The scores have a great variation of values due to its logarithmic basis. In 

order to accurately represent the normalized scores the following equation is used to 

calculate a normalized score y. 

𝑦 =
(𝑥 − 𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

3.2 

where x is the raw score and xmin and xmax are the minimum and maximum scores of a 

single feature and type of score (true or imposter). This equation is implemented for the 

true scores and the imposter scores separately on a feature by feature basis. Once the 

score normalization takes place a score fusion method can be implemented. The three 

methods used in this thesis are to directly add the scores (sum fusion), multiply the scores 

(product fusion), or to take the maximum value of the scores (maximum fusion). The 

scores of all four features are considered when performing score fusion. 

3.4 Statistical Analysis 

In order to perform a statistical analysis, multiple experiment trials are needed in 

order to determine if the results obtained are statistically significant. These trials are 

formed by rotating the testing and training utterances. A total of 10 trials are conducted 
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per method for each speech coder. The last 5 speech utterances for each speaker are 

rotated since the first 5 utterances are reserved for the calculation of the affine transform. 

These 10 trials will be performed on a finalized number of Gaussian mixtures as well as 

the MAP adaptation option that have been experimentally determined to be optimal or 

near optimal compared to the rest of the possible parameters. The following table breaks 

down how the test utterances are used for training and testing for a given speaker. 

 

Table 3.3 

Training and testing utterance convention 

Trial Number Training Utterances  Testing Utterances 

1 8 9 10 6 7 

2 7 9 10 6 8 

3 7 8 10 6 9 

4 7 8 9 6 10 

5 6 9 10 7 8 

6 6 8 10 7 9 

7 6 8 9 7 10 

8 6 7 10 8 9 

9 6 7 9 8 10 

10 6 7 8 9 10 

Note: Utterances 1-5 are always used in training since they are used for when calculating 

the affine transform 

 

 

3.4.1 Two-Factor ANOVA. A two-factor or two-way analysis of variance 

(ANOVA) is utilized to prove statistical significance [16]. The two factors that are under 

investigation are feature and method. These two factors are tested independently for both 

the SI and SV systems and are also tested with and without the application of fusion 

strategies. For the purposes of the ANOVA, a fusion strategy is considered to be another 
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feature. So for example, decision level fusion and Borda count are considered additional 

features for the SI system and the score fusion methods of sum, product, and maximum 

are considered additional features for the SV system. The four methods investigated in 

this thesis are to perform no enhancement, to perform the McCree method (signal 

enhancement), to perform the affine transform (feature enhancement), and to perform 

both the McCree method and affine transform. The table below details the possible 

feature combinations. 

 

Table 3.4 

Features and fusion description 

Speaker 

Recognition 

System 

Features without Fusion Additional Features with 

Fusion 

SI CEP ACW PST MFCC Decision 

level 

Borda 

count 

SV CEP ACW PST MFCC Sum Product Max 

 

 

The three coders used (G729, G723.1, and GSM AMR 12.2) are considered to be 

separate distributions so that a two-way ANOVA is performed for each coder. A total of 

12 two-way ANOVA’s are performed to consider all possible test scenarios in order to 

determine the optimum feature and optimum method selection for each speech coder, 

speaker recognition system, and based on the inclusion or exclusion of fusion strategies. 

The completion of this process will show if the results obtained are statistically 

significant. The two-way ANOVA will show whether or not there is a statistical 
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difference among the features, among the methods, and also if there is an interaction 

effect between the feature and the method for a given distribution. 

3.4.2 Multiple comparison procedure. Further analysis is required in order to 

identify which pairs of feature and method are significantly different from one another. 

This is accomplished by use of a multiple comparison test specifically using the Tukey-

Kramer method [16]. Observing the difference in the pairwise comparison of group 

means allows for the determination of the optimum feature and optimum method 

selection. A confidence interval of 95% is used in the multiple comparison test. 
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Chapter 4 

 Results 

This chapter will contain a comprehensive presentation of the results of the many 

experiments conducted in this thesis. The finalization of initial parameters and the scope 

of experiments performed is explored. The results of the speaker identification system 

and speaker verification system in terms of average identification success rate and 

average equal error rate respectively is detailed. Section 4.3 describes the statistical 

analysis of these results. This includes a multiple comparison procedure that examines 

both enhancement method and feature selection for both the SI and SV system for a 95% 

confidence interval. A two sample t-test is performed on the best approach for each coder 

on both speaker recognition systems and compared to the performance of a clean speech 

benchmark. 

4.1 Initial Parameters 

In preparation for multiple experiment trials it is first necessary to determine 

optimal initial parameters. The number of Gaussian mixtures and MAP adaptation option 

are examined. These initial parameters are determined experimentally. When determining 

initial parameters only one trial is performed instead of a total of 10 (Trial number 10 is 

performed). There are 64 experimental trials per feature which makes for 256 

experimental trials for each coder type for a grand total of 768 preliminary trials. Optimal 

initial parameters can be determined experimentally through analysis of these preliminary 

trials. Table 4.1 depicts a detailed breakdown of the preliminary trial possibilities. 
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Table 4.1 

Preliminary experiment variations 

Testing Variables Amount Details 

Coding Distortion 3 G723.1, G729, GSM-AMR 

Features 4 CEP, ACW, PST, MFCC 

Method of Enhancement 4 
No Enhancement, McCree, 

Affine, McCree & Affine 

Number of Gaussian 

Mixtures 
8 

16, 32, 64, 128, 256, 512, 

1024, 2048 

MAP Adaptation Option 2 
Use All Parameters or Use 

Means only 

Number of Trials 1 Trial 10 only 

Total Preliminary 

Experiments 
768 

(3)(4)(4) 
(8)(2)(1) 

 

 

The number of mixtures was varied from 16 to 2048 in powers of 2. The use of 

128, 256 and 512 mixtures yielded the best comparable performance. This is depicted for 

the CEP feature for the SI system in figure 4.1 and the SV system in figure 4.2. This 

holds true for all four features. Note that a superior ISR value is greater when considering 

the performance of the SI system and a superior EER value is lower when considering the 

performance of the SV system. 

 



 

 

39 

 

 

Figure 4.1. Mixture selection ISR for CEP feature. Depicted are 128, 256, and 512 

mixtures for each speech type and enhancement method combination. Note that a 

superior or desirable ISR value is one that is greater. 

 

 

 

Figure 4.2. Mixture selection EER for CEP feature. Depicted are 128, 256, 512 mixtures 

for each speech type and enhancement method combination. Note that a superior or 

desirable EER value is one that is lesser. 
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  Using more than 512 mixtures resulted in additional computational complexity 

and did not necessarily improve performance. The usage of a greater number of mixtures 

results in diminishing returns in system performance. This is supported by [12]. 

Therefore the number of Gaussian mixtures is set at 256. It was experimentally found that 

it was only necessary to use the means when performing MAP adaptation. This 

determination is also supported by [12]. This fact is shown graphically for the SI system 

in figure 4.3 and the SV system in figure 4.4. This also holds true for all four features. 
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Figure 4.3. MAP adaptation selection ISR for CEP feature. Depicted is 256 mixtures for 

each speech type and enhancement method combination. Note that a superior or desirable 

ISR value is one that is greater. 

 

 

 

Figure 4.4. MAP adaptation selection EER for CEP feature. Depicted is 256 mixtures for 

each speech type and enhancement method combination. Note that a superior or desirable 

EER value is one that is lesser. 
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Once experimental parameters have been finalized the testing phase can be 

implemented. There are 16 experiments conducted for each coder. Each experiment is 

repeated 10 times by rotating the training and testing utterances as described in table 3.3. 

This results in 160 experiments for each coder for a total of 480 experiments. This 

experimental protocol is performed on the SI and SV system separately in the ways 

described previously in sections 3.3.2.1 and 3.3.2.2 respectively. A description of the 

testing possibilities are described below in table 4.2. 

 

Table 4.2 

Finalized testing variations 

Testing Variables Amount Details 

Coding Distortion 3 G723.1, G729, GSM-AMR 

Features 4 CEP, ACW, PST, MFCC 

Method of Enhancement 4 
No Enhancement, McCree, 

Affine, McCree & Affine 

Number of Gaussian 

Mixtures 
1 256 

MAP Adaptation Option 1 Use Means only 

Number of Trials 10 Trials 1 through 10 

Total Preliminary 

Experiments 
480 

(3)(4)(4)(1)(1)(10) 

 

 

4.2 Speaker Recognition System Results 

The following section details the results from the experiments conducted for the 

SI system and SV system in terms of average ISR and EER respectively. Further analysis 

of these results is conducted in Section 4.3 in form of a two-way ANOVA followed by a 

multiple comparison test and a two sample t-test. 



 

 

43 

 

4.2.1 Speaker identification system results. Table 4.3 contains the average ISR 

for a given condition and feature over 10 trials. A test on clean speech (no coder 

distortion added) is performed for comparison. Each coder is tested for all four features 

(CEP, ACW, PST, MFCC) and for all methods of enhancement (no enhancement, 

McCree signal enhancement, affine transform feature enhancement, McCree signal 

enhancement combined with affine feature enhancement).The two feature fusion 

methods, decision level and Borda count, consider all four features when determining the 

fused ISR and also represent an average over 10 trials. The feature fusion methods add an 

additional 240 experiments to the overall SI system experiment total (80 for each coder). 

 

Table 4.3 

ISR for all testing conditions 

Condition CEP ACW PST MFCC Decision 

Fusion 

Borda 

Count 

Clean 93.1 93.2 92.1 95.4 95.2 95.2 

G723.1 

G723.1 McCree 

G723.1 Affine 

G723.1 McCree + Affine 

64.6 

70.4 

77.7 

82.8 

62.5 

67.6 

74.2 

78.9 

65.3 

71.2 

77.7 

80.7 

79.3 

83.0 

86.3 

85.8 

69.0 

75.3 

83.4 

86.5 

72.3 

77.3 

84.3 

87.9 

G729 

G729 McCree 

G729 Affine 

G729 McCree + Affine 

65.7 

85.0 

84.3 

86.8 

61.4 

83.5 

80.9 

85.5 

64.6 

83.6 

82.1 

86.7 

78.5 

91.1 

89.3 

90.3 

69.9 

88.3 

87.8 

90.2 

70.2 

89.3 

88.9 

91.1 

GSM-AMR 

GSM-AMR McCree 

GSM-AMR Affine 

GSM-AMR McCree + Affine 

75.9 

86.1 

86.5 

85.3 

73.8 

83.7 

86.6 

84.2 

75.3 

84.2 

86.2 

83.8 

78.9 

84.2 

84.0 

83.6 

78.9 

87.7 

89.8 

88.2 

76.3 

84.4 

85.3 

83.8 

Note: Each ISR is in the form of an average percentage over 10 trials for a given 

condition. McCree + Affine refers to using the combination of both enhancement 

methods. 
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4.2.2 Speaker verification system results. Table 4.4 contains the average EER 

for a given condition and feature over 10 trials. A test on clean speech (no coder 

distortion added) is also performed for comparison. Once again, each coder is tested for 

all four features and for all methods of enhancement. There are three score fusion 

methods performed, sum fusion, product fusion, and maximum fusion. These score 

fusion methods consider all four features when determining the fused EER and also 

represent an average over 10 trials. The score fusion methods add an additional 360 

experiments to the overall SV system experiment total (120 for each coder). 

 

Table 4.4 

EER for all testing conditions 

Condition CEP ACW PST MFCC Sum 

Fusion 

Prod 

Fusion 

Max 

Fusion 

Clean 3.61 3.35 3.39 3.13 2.78 2.77 3.40 

G723.1 

G723.1 McCree 

G723.1 Affine 

G723.1 McCree + 

Affine 

8.43 

7.87 

5.75 

4.95 

8.79 

8.09 

6.61 

5.73 

8.87 

7.67 

6.22 

5.51 

5.98 

5.43 

4.59 

4.29 

6.48 

5.75 

4.60 

4.10 

6.65 

5.88 

4.56 

4.13 

6.62 

6.01 

5.27 

4.74 

G729 

G729 McCree 

G729 Affine 

G729 McCree + 

Affine 

8.11 

4.82 

5.29 

4.05 

8.59 

4.85 

4.85 

4.04 

8.44 

4.80 

4.79 

3.93 

6.69 

3.90 

4.07 

3.51 

6.44 

3.74 

3.79 

3.13 

6.57 

3.67 

3.77 

3.19 

6.63 

4.12 

4.38 

3.77 

GSM-AMR 

GSM-AMR McCree 

GSM-AMR Affine 

GSM-AMR McCree 

+ Affine 

6.63 

5.38 

4.65 

5.34 

6.18 

4.86 

4.58 

4.96 

6.25 

4.94 

4.55 

4.96 

4.61 

3.29 

3.44 

3.39 

4.90 

3.51 

3.26 

3.66 

4.90 

3.47 

3.24 

3.58 

5.77 

4.55 

4.37 

4.89 

Note: Each EER is in the form of an average percentage over 10 trials for a given 

condition. McCree + Affine refers to using the combination of both enhancement 

methods. 
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4.3 Statistical Analysis of Results 

A discussion of the comparison among the methods and features individually is 

given. Considering the interaction between the methods and features, the best approaches 

are also mentioned. 

4.3.1 SI system G723.1. Figure 4.5 and 4.6 show the 95% confidence interval for 

the methods and features respectively. It is clear that combining the McCree technique 

and the affine transform is the best method. The features (includes decision level fusion 

and Borda count) are similarly compared and the best feature is the MFCC. Due to the 

interaction of the feature and method, the best performance (average ISR of 87.9%) is 

obtained using the McCree technique and the affine transform in conjunction with Borda 

count fusion. 
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Figure 4.5. SI comparison of the methods (G723.1) 

 

 

 

Figure 4.6. SI comparison of the features (G723.1) 
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4.3.2 SI system G729. Figures 4.7 and 4.8 show the 95% for the methods and 

features respectively. As in the case of G.723.1 the best method is to combine the 

McCree technique and the affine transform and the best feature is the MFCC. Due to the 

interaction of the feature and method, the best performance (average ISR of 91.1%) is 

obtained using either the McCree technique and the affine transform in conjunction with 

Borda count fusion or the McCree technique with the MFCC feature. 
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Figure 4.7. SI comparison of the methods (G729) 

 

 

 

Figure 4.8. SI comparison of the features (G729) 
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4.3.3 SI system GSM-AMR. Figure 4.9 and 4.10 show the results. The best 

method is using only the affine transform. The best feature is the use of decision level 

fusion. It is the same two approaches that interact the best achieving an average ISR of 

89.8% 
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Figure 4.9. SI comparison of the methods (GSM-AMR) 

 

 

 

Figure 4.10. SI comparison of the features (GSM-AMR) 
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4.3.4 SV system G723.1. Figure 4.11 and 4.12 show the 95% confidence interval 

for the methods and features respectively. It is clear that combining the McCree 

technique and the affine transform is the best method. The features (includes sum, 

product and maximum score fusion) are similarly compared. Although the best feature is 

the MFCC, its 95% confidence interval overlaps with that of sum and product fusion. Due 

to the interaction of the feature and method, the best performance (average EER of 4.1%) 

is obtained using the McCree technique and the affine transform in conjunction with sum 

fusion. Using product fusion is statistically comparable and leads to only a slightly higher 

average EER of 4.13%. 
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Figure 4.11. SV comparison of the methods (G723.1) 

 

 

 

Figure 4.12. SV comparison of the features (G723.1) 
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4.3.5 SV system G729. Figures 4.13 and 4.14 show the 95% confidence interval 

for the methods and features respectively. The best method is to combine the McCree 

technique and the affine transform. Although sum fusion is the best feature its 95% 

confidence interval has considerable overlap with the product fusion and partial overlap 

with the MFCC. Due to the interaction of the feature and method, the best performance 

(average EER of 3.13%) is obtained using the McCree technique and the affine transform 

in conjunction with sum fusion. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

54 

 

 

Figure 4.13. SV comparison of the methods (G729) 

 

 

 

Figure 4.14. SV comparison of the features (G729) 
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4.3.6 SV system GSM-AMR. Figure 4.15 and 4.16 show the results. The best 

method is using only the affine transform. The best features are the MFCC, sum fusion 

and product fusion. Due to interaction, the three best approaches are MFCC with McCree 

(3.29%), sum fusion with affine (3.26%) and product fusion with affine (3.24%). All 

three are statistically indistinguishable. 
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Figure 4.15. SV comparison of the methods (GSM-AMR) 

 

 

 

Figure 4.16. SV comparison of the features (GSM-AMR) 
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The following table lists the optimal feature and method selections for each coder 

and speaker recognition system based on the above results. 

 

Table 4.5 

Optimal selection for each system and coder grouping 

Coder 

and 

System 

G723.1 

SI 

G729 SI GSM-AMR 

SI 

G723.1 

SV 

G729 

SV 

GSM-AMR 

SV 

Optimum 

Feature  

MFCC MFCC Decision 

Level 

MFCC, 

Sum, 

Product 

MFCC, 

Sum, 

Product 

MFCC, Sum, 

Product 

Optimum 

Method 

McCree 

+ Affine 

McCree 

+ Affine 

Affine McCree 

+ Affine 

McCree 

+ Affine 

Affine 

Note: The optimum feature is statistically similar when more than one feature is selected. 

McCree + Affine refers to using the combination of both enhancement methods. 

 

 

4.3.7 Comparison with testing on clean speech. In the case of testing on clean 

speech, neither signal nor feature enhancement is necessary. Also, there is no statistical 

difference among the features and fusion methods for both SI and SV systems. The 

purpose is to compare the performance of the best approaches for each speech coder with 

the performance on clean speech. Table 4.6 gives the average ISR comparisons for the SI 

case. There are two approaches that achieve the best average ISR for the G.729 coder. 

The MFCC feature is selected as the benchmark for clean speech as it achieves the 

highest average ISR. The best approach for each coder is individually compared to the 

test case of clean speech only. Therefore, a two sample statistical t-test with a 5% 

significance level and unequal variances is performed to determine if the performance on 
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clean speech is significantly better than the technique used for each coder. The test is 

based on the 10 trials that are performed for a given experiment.  

Table 4.6 also gives the obtained p-values. Although the methods have mitigated 

the train/test mismatch and led to a substantial performance improvement, the low p-

values indicate that the ISR values are not statistically comparable to that of clean speech. 

Table 4.7 gives the average EER comparisons for the SV case. Product fusion is selected 

as the benchmark for clean speech as it achieves the lowest average EER. Again, the best 

approach for each coder is individually compared to the test case of clean speech only 

using a two sample statistical t-test with a 5% significance level and unequal variances. 

Again, the methods mitigate the train/test mismatch but are not statistically comparable to 

that of clean speech. 

 

Table 4.6 

ISR for comparison with clean speech 

Test Speech Approach ISR p-Value 

Clean 

G723.1 

G729 

G729 

GSM-AMR 

MFCC 

McCree + Affine, Borda Count 

McCree + Affine, Borda Count 

McCree with MFCC 

Affine Transform, Decision Level 

95.4 

87.9 

91.1 

91.1 

89.8 

 

1.6e-07 

6.4e-05 

1.06e-04 

1.52e-07 

Note: Each ISR is in the form of an average percentage over 10 trials for a given 

condition. Two approaches from G729 that resulted in an identical ISR are included. 

McCree + Affine refers to using the combination of both enhancement methods. 
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Table 4.7 

EER for comparison with clean speech 

Test Speech Approach EER p-Value 

Clean 

G723.1 

G729 

GSM-AMR 

Product Fusion 

McCree + Affine, Sum Fusion 

McCree + Affine, Sum Fusion 

Affine Transform, Product Fusion 

2.77 

4.10 

3.13 

3.24 

 

2.3e-05 

0.02 

9.9e-04 

Note: Each EER is in the form of an average percentage over 10 trials for a given 

condition. McCree + Affine refers to using the combination of both enhancement 

methods. 
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Chapter 5 

Conclusions 

This chapter details a final discussion and the conclusions of this thesis. A review 

of the purpose and scope of the thesis is discussed. A complete list of the research 

accomplishments of this thesis is provided. Recommendations for the research and for 

potential future work is also discussed. 

5.1 Thesis Review 

The first chapter is an introduction to a speaker recognition system and the 

problem that speech coding distortion presents. The second chapter provides in depth 

background information for all aspects of the speaker recognition systems which include 

the system initialization, implementation, testing, and statistical analysis. All related 

derivations and equations related to this background information are provided in this 

chapter. The third chapter details the approach and methodology for training and testing 

the speaker recognition systems. The fourth chapter contains the complete results of the 

extensive testing performed using the aforementioned approach. A statistical analysis is 

also performed in order to prove that the results obtained are statistically significant. 

5.2 Research Accomplishments 

The purpose of this thesis was to research, develop, and implement a novel 

enhancement method to mitigate the negative performance effects of speech coding 

distortion on a speaker recognition system. The results showed that the use of the affine 

transform provided a statistically significant improvement of system performance when 

the enhancement method was applied to a speaker recognition system. The objectives as 
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described in the first chapter are restated and the research accomplishments of this thesis 

are examined below: 

1. To improve the performance of a speaker recognition system by reducing the 

effect of speech coder distortion. 

- A software (MATLAB) based speaker identification system (SI) and speaker 

verification system (SV) is designed and implemented. Four features are used for 

both the SI and SV systems which include the cepstrum (CEP), adaptive 

component weighting (ACW), postfilter cepstrum (PST), and mel-frequency 

cepstral coefficients (MFCC). The MFCC feature is generally the optimum 

feature. Each type of coder distortion G723.1 (6.3 kbps), G729 (8 kbps), and 

GSM AMR (12.2 kbps) affect the classification ability of the features. 

2. To implement a GMM-UBM based system. 

- A Gaussian mixture model universal background model based SI and SV system 

is implemented using various numbers of mixtures (16 to 2048 in powers of 2). 

The adaption of the weights, means, and covariances as well as just adapting the 

means only for each of the four features is also performed. A corresponding UBM 

for each feature is developed.   

3. To implement feature enhancement by applying the affine transform 

- The affine transform is the novel feature enhancement method proposed and 

implemented in this thesis.  
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4. To implement signal enhancement by applying the McCree method. 

- The signal enhancement method (McCree method) performs better than feature 

enhancement (affine transform) on the lower bit rate G729 and G723.1 coders. 

Feature enhancement performs better on the higher bit rate GSM AMR coder. 

5. To combine feature and signal enhancement. 

- Both the feature (affine transform) and signal (McCree method) enhancement 

strategies are highly useful in improving the performance of SI and SV systems 

that are trained on clean speech and tested on the decoded speech. The 

combination approach is optimum for the lower bit rate G723.1 and G729 coders. 

Feature fusion (affine transform) is the optimum enhancement method for the 

higher bit rate GSM AMR (12.2 kbps) coder. 

6. To implement post-processing fusion techniques to further augment performance. 

- Feature based fusion methods for the SI system include decision level fusion and 

Borda count method. Both feature fusion methods do not improve performance 

for the lower bit rate G723.1 and G729 coders. Decision level fusion performs 

better for the higher bit rate GSM AMR coder while the Borda count method does 

not. 

- Score fusion methods for the SV system include sum, product, and maximum 

fusion. The difference in performance of sum and product score fusion methods 

when compared to the MFCC feature is not statistically significant for all three 

coders. Sum and product fusion perform better than maximum fusion for G729 

and GSM AMR but not better for the lowest bit rate G723.1 coder.  
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7. To determine the optimal set of system parameters for the implementation of a 

speaker recognition system. These parameters include the number of Gaussian 

mixtures, the speech features used, the type of enhancement method and the fusion 

strategy. 

- The use of 256 mixtures and adapting means only was experimentally found to be 

the optimum parameter set. This narrowed approach allowed for a total of ten 

unique trials to be performed for each feature, each enhancement method, and 

each fusion method. 

8. To apply statistical techniques to compare the different approaches to determine 

statistical significance. 

- A two-way analysis of variance (ANOVA) provides the statistical proof necessary 

to decide which approaches perform better than others. A two-sample t-test allows 

statistical comparison of the final optimal approaches on speech with coding 

distortion to be compared with the optimal clean speech benchmark. 

5.3 Research Recommendations and Future Work Considerations 

The approaches in this thesis have been exhaustively tested in regards to 

mitigating speech coding distortion. Additional variables such as additive noise in 

combination with speech coding distortion could also be investigated. Additional 

classifiers for the purposes of classifier based fusion in a further attempt to mitigate 

speech coding distortion can be investigated. The addition or removal of certain features 

can be explored. The use of different speech coders especially those of higher bit rates 
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can also be considered to see if the enhancement methods that are proposed are still as 

effective. 
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