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ABSTRACT

Daniel I. Kraft, A Course in Mathematics Appreciation, 1995, J. Sooy, Mathematics
Education.

The purpose of this study is to create a mini-corse in mathematics appreciation at

the senior high school level.

The mathematics appreciation course would be offered as an elective to students in

the lth or 12th grade, who are concurrently enrolled in trigonometry or calculus.

The topics covered in the mathematics appreciation course include: systems of

numeration, congrunces, Diophantine equations, Fibonacci sequences, the golden section,

imaginary numbers, the exponential function, pi, perfect numbers, numbers with shape,

ciphers, magic squares, and root extraction techniques.

In this study, the student is exposed to mathematical proofs, where appropriate, and

is encouraged to create practice problems for other members of the class to solve. Also,

areas for research are suggested so that the student may explore, even more deeply, areas

which hold a particular interest for that student

These topics are treated with a three-pronged approach-historical, recreational, and

practical. It is the author's contention, supported by research, that this approach, along

with tbe choice of topics, will assist in developing and enhancing the mathematics potential

of the student to the highest possible extent.



MINI-ABSTRACT

Daniel J. Kraft, A Course in Mathematics Appreciation, 1995, J. Sooy, Mathematics
Education.

The purpose of this study is to create a mini-course in mathematics appreciation for

1 lth or 12th grade students who are concurrently enrolled in trigonometry or calculus.

The topics in this course are treated with a three-pronged approach-historical,

recreational, and practical which, according to research, will assist in developmg and

enhancing the mathematics potential of the student.
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CHAPTER I

Introduction to Thesis

Introduction

In a typical high school course of study, there exists a core curriculum for each subject

matter area. in the field of English, students typically follow a sequence consisting of

English I, II, and EI; in the field of science, students are offered biology, chemistry, and

physics; and in the field of foreign language, students take thiee years of a selected

language. In addition to the core curriculum, many students are offered the opportmity to

select supplemental courses in various disciplines that enhance the student's understanding

of the subject matter and offer an aesthetic approach that does not exist in the maiastream

curriculum. For example, courses in English literature, astronomy, or French civilization

afford the interested student an opportunity to study topics in a selected area for the sheer

enjoyment of the subject. Unfortunately, a high school student is rarely afforded the

opportunity for aesthetic pursuit in the field of mathematics.

Background

In the field of matheiatics, the courses which normally constitute the high school

core curriculum are algebra 1 and II, geometry, trigonometry, and calculus. In these

courses, designed to prepare college-bound students for careers in mathematics, science,

and other related fields, topics are encountered that develop skills requiLed for successful

mastery of higher mathematics. Rarely in the standard high school curriculum do students

encounter courses that concentrate solely on the historical development, mathematical

derivation, or aesthetic treatment of these topics.
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Statement of Pro.ble.

The purpose of this study is to reate a mini-course in mathematics appreciation at the

seuiot high school level.

Significance qf the Problem

Because of the time constraints imposed by the scope and sequence of the

aforementioned core coarses in mathematics, the student is not afforded the opportunity to

study aicillary topics such as pi, the golden ratio, magic squares or. Pythagorean triples in

great detail. A course in mathematics appreciation would enable the student to pursue many

of the historical and cultrtal aspects of mathematics associated with these topics. While the

core courses in mathematics provide the student with what could be called "vertical

development", a course in mathematics appreciation would provide the student with the

opportunity for "horizontal development." An example of the importance assigned to the

philosophy behind such a course can be found in the description of the mathematics

urmculum at Holy Family College in Philadelphia, which states: 'To help instill an

appreciation of the natural origin and evolutionary growth of the basic mathematical

ideas'."

And in the book, Number: The Language of Science, Tobias Dantzig supports this

philosophy by stating that "... our school curricula, by stipping mathematics of its

cultural content and leaving a bare skeleton of technicalities, have repelled many a fine

mind."2

Therefore, the purpose of this study is to create a mathematics elective intended for

those students who wish to gain an appreciation of concepts not thoroughly developed in

the typical mathematics core curriculum.

Limitations of the Study

The mathematics appreciation course should be offered as an elective to students in the

I lth and 12th grade concurrently enrolled in trigonometry or calculus. The mathematics
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appreciation course is not intended to replace the mathematics core courses, bu rather to

enhance topics which are given only an ephemeral treatment in these courses.

Procedures

The topics that will be addressed in the mathematics appreciation course will include:

numeration systems, congruence, Diophantine equations, Fibonacci sequences, the golden

section, imaginary numbers, the exponential function, pi, perfect numbers, the shapes of

numbers, cryptology, mystic arrays, and root extraction.These topics appear frequently in

books on number theory and seem to be held in high regard by the authors. For example,

in his book, The Matematical Traveer Calvin C. Clawson states, "Then we will free our

imaginations and discover the strange transenedental numbers, such as 3t-- numbers so

peculiar that we cannot even write them down."3

Each of these topics in the mini-course will be treated with a three-pronged approach.

First, an historical background of each topic will be offered in order to enable the reader to

grasp the deeper significance of the subject. The purpose of the historical approach is, as

Kenneth H. Rosen states in his book dealing with number theory, "to emphasize that

number theory has an old and rich history as well as a moder vitality'. 4 Secondly,

mathematical derivations or suggested activities dealing with the topic will be presented,

many with a recreational approach. This approach is supported by'Martin Gardner, who

has written a book designed to stimulate popular interest in mathematics. In his book,

Mathematical Puzzles and Diversions. Gardner states that"... popular interest in

recreational mathematics has continued to increase."s Third, one or more practical

applications of the topic will be suggested so that the student may discover its relevancies.
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Notes

1 Holy Family College, Catalog, 1994-96, 82.

2 Tobias Dantzig, Number: The Langage of Science (New York: The

MacMillan Company, 1954), viii.

3 Calvin C. Clawson, The Mathematical Traveler (New York: Plenum Press,

1994), 3.

4 Kenneth H. Rosen, Elenaitag Number Theory (New York: Addison-Wesley

Publishing Company, 1988), vi.

5 Martin Gardner, Mathematical Puzzles and Diversions (New York: Simoa

and Schuster, 1961), 9.
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CHAPTER 2

Review of Related iteramre

Introduction

Research shows that a three pronged approach (historical, reereational, and practical)

to the teaching of mathematics has a great deal of merit. The various components of this

approach have been supported by: authors of books dealing with assorted topics of

mathematics; the Commission on Standards for School Mathematics; members of the

educational community; and contributors to the annual yearbook publications of the

National Council of Teachers of Mathematics (NCTM). It is also the author's contention

that the utiliiaion of this approach in a mathematics appreciation course will assist in

developing and enhancing the mathematics potential of the student to the highest possible

extent.

Review of the Literature

The review of the literature suggests that ther is an interest in the relationship between

understanding the history of certain mathematical concepts and the purposes that these

concepts serve. The review also implies that a knowledge of these historical topics can

further enhance the student's interest in the study of mathematics.

Mathematics does not exist in isolation. Historically, mathematics has influelced

many fields and in turn has been influenced by many developments. It is research into

these developments that contributes to the reation of a cumrcuum based on historical

mathematical concepts. Myron Rosskopf offers that events in history, ranging from the

settlement of the New World to the Industrial Revolution, have contributed to the
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development of curricula which sometimes emphasize education and at other times push it

into the background.l

In 1969 the National Council of Teachers of Mathematics deemed the study of the

history of mathematics important enough to create a yearbook on the use of the history of

mathematics in the teaching of mathematics. The authors proposed that the curriculum

should include topics of significant value for all grade levels and that it should encourage,

"the teacher or the student to do further reading or study in the same or related topics."

They further expressed "hope that this will increase the interest of the students in

mathematics and their appreciation for the cultural aspects of the subject.'"

One of the dangers of teaching mathematics in isolation was expressed by Jacques

3Bazun (Teacher in America) who states, "I have more than an impression-it amounts to a

certainty--that algebra is made repellent by the unwillingness or inability of teachers to

explain why.... There is no sense of history behind the teaching, so the feeling is given

that the whole system dropped down ready-made from the sides, to be used only by born

jugglers.' 4

Another reason for a teacher to adopt the historical approach is that situations are

created which afford the students the opportunity for discovering the relationship between

the concrete and the abstract on their own. "A sufficiently coneree and detailed tracing of

the history of the development of a generalized idea is one of the best ways to teach an

appreciation of the nature and role of generalization and abstraction."5

The panel of the NCTM cautions that a proper balance between the historical approach

and the modem curriculum should be maintained. "The important thing is neither to throw

ouI all that is old nor to add whatever is new but to develop and pass on to our students

new syntheses of old ideas and systems as well as to introduce new concepts and systems

that are appropriate. Insight into the development (history) of ideas can serve to improve

both the curriculum maker's choices and the teacher's power to communicate insights and
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stimulate interest." 6 Tom Kieren appears to agree when he observes that although current

society learns from the past, it does not necessarily do new things with the same topics, but

it certainly does things in a different way. The process has been an evolution which has

taught people to value the past.7

In 1986, the Board of Directors of NCTM established the Commission on Standards

for School Mathematics. The Standards is a document designed to establish a framework

for school mathematics and to determine what the mathematics cutculunm should include in

terms of emphasis and priority. Through this document, the NCTM panel has encouraged

educators "to focus attention on the need for student awareness of the interaction between

mathematics and the historical situations from which it has developed and the impact that

interaction has on our culture and our lives." 8 This panel also advocates mathematics as a

concentration which can contribute to the better understanding of many other disciplines

and content areas3 The contributors believe that this method of approaching mathematics

will "enhance the students' self-concepts as well as their attitudes toward, and interest in,

mathemautcs."10

The standards of the NCTM call for three key items to be examined in all grade levels

of mathematics: "communicating, connecring, and valuing mathematics. History allows us

to study all three." 11 It is a way to humanize the study of numbers. It allows students to

see relevancy and therefore, perhaps, to become interested in the study of mathematics and

to want to investigate further. The excitement created can only enrch the study of

mathematics. 2

As important as it is to consider the past when developing a rigimen for the present, it

is also necessary to contemplate the future. Robert Swain, in his article Moderm

Mathematics and School Arithmetic, exhorrs the educator to take a serious look at what the

fotute of mathematics may hold and to plan accordingly. He sees possible attention being
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given to such topics as Diophantine problems and modular arithmetic. He hopes that

students will think of mathematics as a functional tool, as well as an end in itself. 3

When one is considering the creation of a high school mathematics curriculum, it is

necessary to keep in mind the values which the different areas of mathematics possess.

These values may include, but not be limited to, the use of mathematics in the future, the

merits of mathematics in other fields, and mathematics for its own sake. Cain, Carry, and

Lamb suggest that each high school must select those goals, values, and priorities that are

valid for itself. They believe that mathematics for its own sake would target approximately

the top 10 percent of the student population. These are the students who would benefit the

most from expansion into such an area of mathematics. 14

The needs of these students must be addressed. The recreational approach could prove

to be an effective way to meet these needs. "Teaching so that students understand the

'whys,' reaching for meaning and understanding, teaching so that children see and

appreciate the nature, role, and fascination of mathematics, teaching so that students know

that men are still creating mathematics and that they too may have the thrill of discovery and

invention--these are objectives eternally challenging, ever elusive.":15

In the core curriculum, the student is often faced with a great deal of tedium in an

attempt to. master the curriculum. In the proposed mini-course in mathematics appreciation,

rbe student would be aftorded the opportunity to experience the rereational approach. Jan

Mokros writes in The Education Digest that students are not able to mature in mathematics

sufficiently if they have a steady diet of only rote leaming of numbers. They lack a varietal

approach which would tend to stimulate them to go further in their mathematics study.

They need to experience their own strategies and discoveries, both the successes and the

failures. "They never experience the aesthetic high of inventing theorems or get to explain

and defend the problem-solving strategies. Simply put, they neither do nor experience

much mathematics."16
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The study of the history of mathematics and the development of different number

systems assist in illustrating the relationship between mathematics and the practical world.

There are those who draw a connection between mathematics and the worlds of music, art,

and science. 17 "If mathematics is an art, some appreciation of this fact, and of the relation

of mathematics to the world of physical reality, can be as much a part of the liberal

education of a doctor, lawyer, or average intelligent citizen as is some appreciaton of the

humanities."l S

The relationship between mathematics and the real world should enable the student to

appreciate the value of mathematics. In her review of Street Mathematica and School

Mathematics, Wendy L. Millroy states that there has long been a fascination with the

relationship between the mathematics learned in the schools and that which is used outside

the coafTnes of the school. 9

Others have felt strongly about the relationship between mathematics and the real

world. in his rmeiew ofan 1811 mathematics textbook, Frank J. Swetz points out the

emphasis on the practical applications of mathematics. The text stresses the importance in

the society of the day of doing arithmetic and solving problems. 20

The panel of the NCTM cautions that the connections between the study of

mathematics and the applications to the practical world are not always obvious nor always

expected. It is the teacher's task to assist the student in determining these connections.21

Therefore, curriculum development and revision can be a very difficult task Koeno

Cravemeijer suggests that "compiling a curriculum is comparable to solving a jigsaw

puzzle, akin to taking pieces of history to form a coherent whole in the present, with

possibly a new perspective." 22 Once the philosophy of the curriculum has been

determined, the next task is to determinne which topics should be included for study.
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1 Myron F. Rosskopf, "Mathematics Education: Historical Perspectives,' The

Teaching of Secondary School Mathematics. (The National Council of Teachers of

Mathematics, 1970): 3-15.

2 Historical Topics for the Mathematics Classroom, (The National Council of Teachers

of Mathematics, 1969): ix.

3 Historical Topics, x.

4 lacques Barzun, Teacherijn.Aieica, cited in Historical Topics for the Mathematics

Class.orm, (The National Council of Teachers of Mathematics, 1969): 1.

5 Phillip S. Jones, "The History of Mathematics as a Teaching Tool," Historical

Topics for the Mathematics Classroom, (The National Council of Teachers of Mathematics,

1969): 13.

6 Jones, 17.

7 Carolyn Kieran, "Dorng and Seemng Things Differently: A 25 Year Retrospective of

Mathematics Education Research on Learing," Jonumal For Research in Mathematics

Education, 25, no.6 (December 1994): 604.

8 Curriculum and Evaluation Srtadards for School Mathematics (The National

Council of Teachers of Mathematics,l199): 6.

9 Curriculum and Evaluation Standards, 11.

0 Curriculum and Evaluation Standards, 131.

11 James K. Bidwell, "Humanize Your Classroom with the History of Mathematics,"

Mathematics Teacher, (September 1993): 461.

12 Bidwell, 464.

13 Robert L. Swain, "Modem Mathematics and School Arithmetic," Instruction in

Arithmetic (The Natioal Council of Teachers of Mathematics, 1960): 292 294.
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National Council of Teachers of Mathematics, 1985): 22-23.

15 Jones, 1.

16 Jan Mokros, "Math Textbooks: Where's the Math?" The Education Digest,

(Nov. 1994): 62.

17 Jones, 9.

is Jones. 9 10.

1 9 Wendy L. Millroy, "Exploring the Nature of Street Mathematics," Journal for

Research in Mathematics Educaticn, 25, no.3 (May 1994): 304.

20 Frank J. Swetz, "Back to the Present: Ruminations on an Old Arithmetic Text,"

Mathematics Teacher, (Sept. 1993): 493494.

21 Jones, 11.

2 2 Koena Gravemeijer, "Educational Development and Developmental Research in

Mathematics Education,' Journal for Research in Mathematics Education, 25, nO 5

(November 1994): 447.
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CHAPTER 3

Procedures

Introduction

The selection of the following topics for the mathematics appreciation course is a result

of their inclusion in numerous books on number theory and other branches of mathematics.

Additional testimony to the importance of these topics is provided by numerous articles

written by the mathematical community and found in publications such as those written by

the National Council of Teachers of Mathematics. The student enroled m the mathematics

appreciation course will be afforded the opportunity to view each of the selected topics

through historical, recreational, and practical lenses.

Procedures

The following topics have been selected for inclusion in the mathematics appreciation

course along with the rationale for their selection.

Nueration Systems

The first topic in the mathematics appreciation course will involve various systems of

numeration. Working in different numeration systems involves the use of inductive

reasoning and those psychological abilities that are common to creative thinkers.l Working

with different numeration systems, or number bases, will afford the student the opportunity

to see how a numeral acts in a different number system. By working with various

number bases, a student can gain insight into the value of the decimal system. 2

The student will be shown the following techniques: converting decimal numbers into

a different numeration system; converting numbers of various number systems into the
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decimal system; performing addition, subtraction, multiplication, and division in

numeration systems other than the decimal system; and solving an anecdote written in a

different number system.

Conjruience

"Although congruences form a vital tool in the theory of integers, Gauss recognized

tbeir utlity, also, in showing certain polynomial equations to have no rational roots."3

Congruence is often applied to happenings of a recurring nature, soch as the recording of

time.4 The student wil be made aware that modular mathematics is encountered

everywhere in daily life from clocks to calendars.

One of the applications of congruences is the technique of casting out nines. Casting

out nines is a useful method for checking addition and multiplication and can lend accuracy

to a student's performance. 5 This property of the number nine has been known since

ancient times and its discovery led to new questions and inquiries.6 William B. Wetherbee

postulates that the Romans were probably the first to use this process, followed by the

Arabs, and eventually the Hindus in their work with astronomy. It was taught early in

America's history, disappearing during the nineteenth century, only to return at the

beginning of the twentieth century.7 Philip Davis writes that '.t remains today as a source

of amusement, the basis of many number tricks involving large numbers, and a fine

introduction to a part of number theory known as the Theory of Residues."s

Other techniques will include: solving linear congroences; applying the Chinese

Remainder Theorem; finding remainders of large numbers; designing a round robin

tournament; understanding ISBN numbers; and discovering the theories behind divisibility

rests.

Diophantine Equations

J. A. H. Hunter and Joseph S. Madachy, describing Diophantos as the most famous

Greek mathematician of his day, state that his methods for solving these types of problems
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"were centuries in advance of the general level of mathematical knowledge of those

days." 9 Kenneth I-I. Rosen also makes a ease for the learning of these equations.

Solving Diophantine equations will enhance the student's algebraic skills as well as

reinforce the student's ability to solve systems of equations. 10

The student will study both linear and nonlinear Diophantine equations. The use of

congruences, which will have been studied in the previous section, will facilitate the

solving of linear Diophantine equations.

Nonlinear Diophantine equations will also be solved, and some of their applications

will be examined. One such application includes the study of the Pythagorean triples, or

finding solutions to the equation x2 + y2 - z2. James Fey reports that Pythagoras was not

the first person to study these triples; he states that the Babylonians also used them. 1

Knowledge of their inner workings was extremely helpful in the construction of

buildings. 12 "These integers have, in modem times, led to many discoveries in number

theory and also to many perplexing problems, some ofwthih still await solutions." 13

Other applications of nonlinear Diophantine equations will include integers which can

be expressed as the sum of two squares (x2 + y2 - z) and the famrous Peil equation.

Fibonacci Numbers

Jerome S. Meyer attests to the "fascinating features"14 of these numbers. An

understanding of this series will lead to a great comprehension of a certain aspect of

botany the arrangement of leaves on a steml 5 There is also a connection between the

Fibonacci sequence and the golden section as well as with other branches of mathematics,

such as random numbers, primes, and factorization properties. 16

The Golden Section

This has probably been known even before the time of the Creeks. The golden

rectangle represents the aesthetic and artistic properties of this ratio.17 The name phi,
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sometimes used to represent the golden section, was selected by an American who chose it

because it represented the first name of the Greek who used the ratio in his sculpture., S

The student will learn that the golden ratio, or golden section, is the only number

which is transformed into its own reciprocal by subtacting the number one. 19 The student

will also study the occurrence of the golden section among the sides and diagonals of a

regular polyigon

The Tmartina v Numbers

The imaginary numbers are vital in their role with complex numbers and fnrction

theory. "Imaginaries are useful and essential to the development of mathematics and

developed from the logical extension of certain processes."2 0 "The imaginary number, i,

plays a vital part in higher mathematics, physics and, parricularly, theoretical electricity."2 1

The core curriculum will then be reinforced by the high school student's exposure to

imaginary numbers m a mathematics appreciation course.

Th.eF.nxcp.erl.altEunc.tion

Using nonalgebraic numbers, work with hyperbolic logarithms by such scientists as

John Napier, John Speidell, James Gregory, Newton, and Leibniz led to the identification

of these numbers.22 Learning how to facilitate these computations may encourage students

in their own searches for ways to utilize these numbers. Edward Kasner and James

Newman allow that "one of the fruits of higher education is the illumiaring view that a

logarithm is merely a number that is found in a table. We shall have to widen the

eCuiceululL' 23 "Besides serving as the base for the natural logarithms, the exponential

function, e, is a number useful everywhere in mathematics and applied science. No other

mathematical constant, not even 7, is more closely connected with human affairs than e. It

has helped to do one thing better than any number yet discovered. It has played an integral

part in helping mathematicians describe and predict what is for man the most important of

all narral phenomena--that of growth."24
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Kasner and Newman ask why so much time has been devoted to pi (7). One reason is

to find a clue to its transcendental nature, while a second 'the fact that c, a purely geometric

ratio, could be evolved out of so many arithmetic relationships out of infinite series, with

apparently little or no relarion to geometry--was a never-ending source of wonder and a

never-ending stimulus to mathematical activity." 25 James K. Bidwell, in an article about

Archimedes, remnids the reader that this great scientist, who described iX, wrote

mathematics in a style that is still very readable today.26 The applications of x are so

numerous that one can hardly doubt the value of studying the properties of C in a course on

mathematics appreciation.

Perfect Numbers

"Perfect numbers are not useful in the construction of bombs.: In fact, they are not

useful at all. They are merely interesting and their story is an interesting one." 27 There is

much that remains to be discovered about the development of perfect numbers. Students

will be encouraged to pursue conjectures not yet proven, such as the search for an odd

perfect number.

Nunnbers with Shape

Fermat used the principles of these numbers with shape in the summation of certain

series.2- Some of these numbers of shape include triangular numbers, square numbers,

and oblong numbers. Like perfect numbers, these numbers of shape contain many

unusual properties which the student will be encouraged to pursue.

Ciphers

The history of the world changed because of the use of ciphers, or codes. Codes

range from the very simple to the extremely complex and almost impossible to decode.

Codes can use either letters or numerals. 29 Kenneth H. Rosen mentions the imponranee of
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ciphers with respect to number theory.3o By working with ciphers the student will gain

experience with prime numbers and deductive reasoning.

Maeic Squares

These are probably of Chinese origin and still have a connection with mysticism in

Asian countries. In Europe they were connected to alchemy and astrology. They have

been applied to problems in probability and analysis and most recently in the design of

experiments.31 Agricultural research has benefitted from the application of certain magic

squares, as has atomic research, marketing research, and sociology. 32 "Magic squares

brilliantly reveal the intrinsic harmony and symmetry of numbers; with their curious and

mystic charm they appear to betray some hidden intelligence that governs the cosmic order

that dominates all existence. They have been compared to a mirror reflecting the symmetry

of the universe, the harmonies of nature, the divine norm. It is not surprising that they

have always exercised a great influence on thinking people." 33 "The beauty of magic

squares is they can be used as simple recreations or they can be studied mathematically.

They can find a place in the enjoyment of children as well as the mathematical inspections

of adults."34 Students in the mathematics appreciation course will practice both odd and

even magic squares.

Root Extraction

Root extractions enable the student to better visualize binomial expansions. "It is

worthwhile to understand the why and the wherefore of these operations.35 In the

proposed mathematics course, students will be practicing the solutions to square roots and

cube roots without the ose of a calculator.
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CHAPTER 4

A Course in Mathematics Appreciation

Inmtoduction

Mathematics appreciation is an elective course designed for the 11th or 12th grade high

school student who has an interest in mathematics. The student must have successfully

completed courses in algebra I, algebra I, and geometry in order to enroll in the

mathematics appreciation course. In addition, it is highly recommended that the student be

concurrently enrolled in a trigonometry or calculus course, depending on the student's

grade level. The mathematics appreciation course is designed to be nine weeks in length.

The Topics

There are thirteen topics, with each topic providing the student with several days of

mathematical investigation. The classroom teacher is encouraged to assign problems to the

class according to the ability and interest level of the class.

NrnTerraiou SvremM

Introduction

Various civilizations have used number systems other than the decimal system (base

ten), such as the base sixty system of the Babylonians or the base twenty system of the

Mayan Indians.' The numbers will be written with subscripts representing the base, so

that 35a will be read as "thirty-five base eight".

Counting

In the octal system (base eight), only the digits zero through seven are used. Counting
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from one to one-hundred in base eight is done as follows: one, two . ., six, seven, ten,

eleven ... sixteen, seventeen, twenty, twenty-one,.. ., twenty six, twenty seven,

thirty, ... , seventy, seventy-one, ... seventy-six, seventy-seven, and finally, one-

hundred. Since there is no eights digit in base eight, the number seven is followed by ten,

and the number seventy seven is followed by one hundred. Notice that there are eight (81)

integers from one through ten in base eight, and that there are sixty-four (82) integers from

one through one-hundred in base eight.

"If we had twelve fingers instead of ten, we would tend to count objects in groups of

twelve."2 It could also be argued that a base twelve number system would be better than a

base ten number system, since twelve has more divisors than ten. Since twelve digits are

required in base twelve, two additional digits T (called dek) and E (called el) must be

included. Counting from one to one-humdred would be performed as follows- One, two,

... , eight, nine, dek, el, twenty, twenty-one...., twenty-eight, twenty-nine,

twenty dek, twenty-el, thirty,.. ., ninety, ninety one,..., ninety-eight, ninety nine,

ninety-dek, ninety-el, dekty, dekty-one,..., dekty-nine, dekty-dek, dekty-el, elty, city-

one, .. elty-nine, elty-dek, elty-el, and finally, one-hundred, Notice that there are a

total of one-hundred and forty-four (122) numbers from one through one-hundred in base

twelve.

Converting Between Number Bases

A base eight number is converted to a decimal number by using expanded notation in

powers of eight.

Problem: Convert 2548 to the decimal system.

Solution:
2548= (2 x 8 2) + (5 x 8) + (4 x 80)

=(2 x64)+(5 xS) +(4x 1)
= 128+40 +4
- 172Io.

Therefore, 254 - 172o0.
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To convert from decimal to octal, find the highest power of eight which is not greater

than the decimal number, and then divide that highest power of eight ilto the decimal

number. The quotient is the first digit of the octal number. Divide'the next highest power

of eight into the remainder. This will yield the next digit of the octal. Repeat the process

until eight to the zero power is the last divisor to be used.

Problem: Convert 17210 into the base eight number system

Solution: Since 83 = 512 is larger than 172, S8 is used for the first division.

172 / 64 = 2 (remainder 44),
44/8 - 5 (remainder 4),
4/ 1 =4 (remainder 0).

Therefore, 17210 = 254g.

The octal system (base eight) is useful because of the ease of conversion between it

and the binary system (base two). The binary system is used by computers since that

system consists of the digits zero and one, and all numbers can be represented

electronically by switches where one is "on" and zero is "off'.3 Counting from one to one-

hundred would be done as follows: one, ten, eleven, and one-hundred. Note that there are

two-squared or four numbers from one to one-hundred in the binary system. Conversions

between base two numbers and decimal numbers are accomplished.by using the same

methods as outline above.

Problem: Convert 110012 into decimal form.

Solution:
110019 = (1 x2 4) + ( x 23) +(0 x 22 )+(0 x 2)+ (1 x 2°)

- (1 x 16) +( x ) + (0x 4) + (0 x 2) + (1 x 1)
=16+8+0+0+1
=251o.

Therefore, 110012 =25o.

Problem: Convert 251o into binary form.



24

Solution:
25/16- 1 (remainder 9);

9/ - 1 (remainder 1),
1/4=0 (remainder l);
1 2 = 0 (remainder 1);
1 / 1 - 1 (remainder 0).

Therefore, 251o = 110012.

Problem: Convert 3TE 2 into decimal form.

Solution:
3TEI2 = (3 x 122) + (T x 121) + (E x 12°)

=(3x 144)+(10x 12)+(11 x l)
=432+ 120 + 11
- 56310.

Therefore, 3TEI2 = 5631o.

Problem: Convert 5631, into base twelve.

Solution:
563 / 144 - 3 (remainder 131),

131 /12 -T (remainder t),
11 / 1 = B (remainder 0).

And so, 5631o = 3TE 2.

The hexadecimal (base sixteen) system is in computers because of its relationship of

sixteen (two to the fourth power) to the number two. Since the hexadecimal system uses

sixteen digits, zero through fifteen, computer progrmmers commonly use the letters A,

B,C, D, E, and F as the extra digits.4

Two examples of the ease of conversion between the hexadecimal and bmary systems

are based on the principle that one hexadecimal digit is equal to four binary digits.

Problem: Convert 4AE16 to binary.

Solution:
4=0100,

A 1010,
E- 1110.

So, 4AE16 = 100101011102.

Problem: Convert 1110110 1102 to hexadecimal.
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Solution: Breal the binary into groups of four starting at the right.

0111 -7,
0110 -6,
1110= E.

Thus, 11101101110 =76E1 6

Simple Operations in Other Bases

The rani reason for studying numeration systems in bases other than ten is not to

leam arbitrary numeration systems, but rather to gain insight into the structure of the

familiar Hindu-Arabic decimal system.5

Addition in any numerical system depends on place value as well as face value.

When a sum has two digits, the left digit is "carried" to the next position. An addition table

is helpful although the serious student should be able to perform addition without it.

TABLE I

Addition in Base Five

+- 0 1 2 3 4
0 0 1 2 3 4

1 1 2 3 4 10
2 2 3 4 10 11
3 3 4 10 11 12
4 4 10 11 12 13

Problem: Add 4335 and 2145.

Solution:

Step 1: 4 3 3 3 + 4 - 125; write 2 and carry 1.
+21 4

2
1

Step 2: 433 I + 3 + l-105; write 0 and carry 1.

+21402

Step 3: 433 1+4+2= 125; write 12.
+2 1 4
1202

Therefore, 433 + 2145 = 12025.
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Subtraction is basically the same in base five as in the decimal system. Sometimes

"bonowiug" may be required.

Problem: Subtract 2145 from 12025.

Solution:

Step 1: 1
1 4 1
142

214
3

1 4 1
Step 2: 1 24 2

-214
33

Step 3: 1202
21A
433

Therefore, 1202,

12 4 - 35 (See addition table).
Borrow I from the 2 leaving 1,
boaow I fom the 10 leaving 4, and write 3.

4 - I = 35 (See addition table). Write 3.

11 - 2 = 45 (See addition table). Write 4.

2145 =4335.

Multiplication and division in base five are made easier by the use of a multiplication

table. Multiplication in base five may require "carrying over". Se6 Table 2 below showing

base five multiplication.

TABLE 2

Multiplication m Base Five

Problem: Multiply 345 times 425.

Solution:

Step 1: 34 2x4= 131. Write 3, eatry 1.
x 42

3

x 0 1 2 3 4
0 0 0 0 0 O
1 0 1 2 3 4
2 0 2 4 11 13
3 0 3 11 14 22
4 0 4 13 22 31
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x4 2

1231 2 3
1

3 4
x4 2

123
301

3 4
x42

2x3+ 1 -125. Write 12.

4x4-315. Wdre 1, cary3

4 x 3 + 3 -30. Write 30.

Add.

1 2 3
3 0 1123301

3133

Therefore: 34s x 425 - 3133S.

Problem: Divide 42325 by 35.

Solution: The reasoning in base five is the same as in base ten.

Step 1: 3 divides into 4 otee.
Multiply and divide.

1 42 2

3

Step 2: Bring down the 2.
3 divides into 12 twice.
Multiply and subtract.

Step 3: Bring down the 3.
3 divides into 13 twice.
Multiply and subtract.

1 2
3 4 2 3 2

3
t 2
1 1

1
1 2

3 4 2 3 2
3
1 2
- 1

13
1 1

2

Step 2:
1
3 4

x42

123

27

Step 3:

Step 4:

Step 5:
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Step 4: Bring down the 2. 1 2 2 4
3 divides into 22 four times. 3 4 23 2

Multiply and subtract 3
1 2
1 1

1 3
1 1

2 2

0

Since the remainder is zero: 42325 / 3: - 12245.

A Base Four Storv6

An eccentric mathematician, when he died, left a stack of unpublished papers. When

his friends were sorting them, they came across the following statement:

"I graduated from college when I was 44 years old. A yeax later, I, a 100-year-old

man, married a 34-year-old young girl. Since the difference in our ages was only 11 years,

we had many common intreests and hopes. A few years later we had a family of 10

children. I had a college job, and my salary was $1300 a month. One-tenth of my salary

went for the support of my parents. However, the balance of $1,120 was more than

sufficient for us to live on comfortably."

How eccentric was the mathematician? The student is encouraged to rewrite the

puzzler before reading the explanation below,

Note that when 1 was added to 44, the result was 100. Since 44 is the highest two-

digit number, the eccentric mathematician must have been using a base five numeration

system. The base five numbers can therefore be conveted to base ten numbers as follows:

445 -4x5 +4 x5 0 =24 1 ,
1005 = lx5+0x51 +0x5°=25 10 ,
345 =3x5 1 +4x 5D- 191 ,
115 -1 x 1+ I x 0- 61o,
105 -1x5' + 0x5°=5 ,

13005 =1 x5 3 +3 x 52 + 0 x5 +x5 0 =2001o,
(1110)5 =1/( x 5 +Ox 5 ) = 115,

11205 - x 5+ x52 +2x51 +0x50= 1601.



29

"I graduated from college when I was 24 years old. A year later, I, a 25 year old

man, married a 19 year old young girl. Since the difference in our ages was only 6 years,

we had many common interests and hopes. A few years later we had a family of 5

children, I had a college job, and my salary was $200 a month. One-fifth of my salary

went for the support of my parents. However, the balance of $160 was more than

sufficient for us to live on comfortably."

The student is encouraged to write an unusual anecdote in a numeration system other

than base five or base ten.

A Base Two Trick7

Place nie small envelopes and S5.11 in change on a table. Distribute the money in

the envelopes and then announce that you can hand over any sum of money up to $5.11

without counting the money. Someone names $3.46 and you hand that person certain

envelopes. The person counts the money and finds that

1 envelope contains $2.56,
I envelope contains $0.64,
I envelope contains $0.16,
1 envelope contains $0.08,
1 envelope contains S0.02.

Total $3.46.

Again, the student is encouraged to solve this anecdote before reading on.

The problem is easily solved using the base two numeration system. Recognize that

I + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 = 511 and that each of these powers of two

corresponds to a dollar amount distributed among the nine envelopes. Arrange the

envelopes in the following order.

1st 2nd 3rd 4th 5th 6th 7th. 8th 9th
2.56 1.28 0.64 0.32 0.16 0.08 0.04 0.02 0.01

To choose which group of envelopes contains exactly S346, simply convert 346

mentally from the decimal system to the binary system using the methods previously

discussed. Since, 34610 - 101, 011, 0102, choose those envelopes which correspond to
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the ones in the binary number. Thus, the performer of the trick chooses envelopes 1, 3, 5,

6, and 8 whose sum is equal to $3.46.

Conclusion

Numeration systems have been examined from an historical point of view by

recognizing the different number systems used by different cultures such as the

Babylonians. The anecdotes given above allow the student to apply various number

systems in a recreational way. Finally, converting from one base to another and

performing simple operations in bases other than base ten, afords the student the

opportunity to make practical use of the place value system inherent in all of the numeration

systems investigated in this chapter thereby increasing the student's understanding of the

base ten number system.

Congrueace

Introduction

The special language of congruences is extremely useful in number theory. The

language of congruences was introduced by Karl Friedrich Gauss in 1801, when he was

twenty-four years old.A

Congruences often arise in everyday life. For example, clocks work on modulo 12 or

24 when measuring hours and modulo 60 when measuring minutes and seconds.

Calendars work on modulo 7 when measuring weeks and modulo 12 when measuring

months.?

A set of integers can be divided into m different sets called congrvence classes modulo

m if all the members of a particular class produce the same remainder when divided by m.

Thus, 7 1 2 (mod 5), which reads seven is congruent to twelve in modulo five, means

that 7 and 12 are in the same congruence class modulo 5 since both yield a remainder of 2

when divided by 5.
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The five congruene classes mnodlo 5 are given by:

... = -10 = 5 = O = 5 10 = . .. (mod 5)

... = -9 = 4 = =6= 11 =... (mod 5)
.. -8= -3 = 2 7 12 = .. (mod 5)

.. = -7 =-2 = 3 8 13 ... (mod 5)
(mod 5)

Problem: Is 23 = 48 (mod 5)?

Solution: Dividing both 23 and 48 by 5 yields a remainder of 3.

Therefore, 23 = 48 (mod 5).

Problem: Add (9 + 13) (mod 5).

Solution: First add 9 + 13 to get 22. But 22/5 leaves a remainder of 2.

Therefore, 9 + 13 = 2 (mod 5).

Problem: Multiply (S x 7) (mod 5).

Solution: Multiply 8 x 7 to get 56. But 56/5 leaves a remainder of i.

Therefore, 8 x 7 = 1 (mod 5).

The following three theorems on congruence will be stated without proof. The

proofs, which can be found in most books on number theory, should be attempted by the

student. These theorems will prove valuable in the remainder of the congnence section.

If a, b, c, k, and m are integers such that k > 0 and m > 0, then:

Theorem 1: If a - b (mod m) and c = d (mod m), then, (a + c) (b +- d) (mod m).

Theorem 2: If a = b (mod m) and c s d (mod m), then, (a x c) = (b x d) (mod m).

Theorem 3: If a = b (mod m), then ak = bk (mod m).

Linear Congruence

A congruence of the form ax = b (mod m) is called a linear congruence in one

variable.' 0 Asking how many of the m congruence classes are solutions to a linear equation

.. -6--i1449=9144
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is the same as asking how many inconguent solutions there are in module m. Also, the

greatest common divisor of a and b is wXaten (a, b). Let a, b, and m be integers with

m > 0 and (a, m) = d. Then, if d t b, then ax = b (mod m) has no solutions. And if d I b,

then ax - b (mod m) has exactly d incongruent solutions modulo m. Below are four

examples which illustrate various methods used in solving linear congruencies.

Problem: Solve the equation 5x = 4 (mod 9).

Solution: Note that (5, 9) - 1 so that there is a unique solution modulo 9. The

equation is solved by multiplying both sides of the equation by a, the

multiplicative inverse (mod m) of a. Thus, a x a will be equal to 1, and

the equation will be solved. In this case, the inverse of 5 is 2 since

2 x 5 = 1 (mod 9). Multiplying both sides of the equation by 2 yields,

5x 4 (mod 9),

(2)(5x)= (2)(4) (mod 9).

Therefore, x = 8 (mod 9).

Problem: Solve the equation 36x 8 (mod 102).

Solution: Note that (36, 102) = 6 8.

Therefore, there is no solution (modIO2).

Problem: Solve the equation 6x = 15 (mod 21).

Solution: Note that (6, 21) - 3 115. Thus there ae 3 solutions. The process is

simplified by reducing 6x = 15 (mod 21) to the form 2x = 5 (mod 7). The

particular solution is then found by multiplying both sides of the equation

by the inverse of 2 module 7. Thus,

2x _ 5 (mod 7),

(4)(2x) (4)(5) (mod 7),

x 20 = 6 (mod 7).
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The general solution is found by listing all possible solutions in modulo class 21. Thus,

x - 6 4 7 T where T - 0,1, and 2.

Therefore, all solutions are x - 6, 13, and 20 (mod 21).

Problem: Solve the equation 25x = 15 (mod 29).

Solution: Note that (25, 29) = 1 indicating that there is exactly one solution.

However, it is difficult to find the inverse of 25 (mod 29) by tial and

error. Fomrtnately, the division algorithm will simplify the task. Dividing

29 by 25 yields a remainder of 4. Then, using the division algorithm

yields, 4 = 29 1(25). Dividing 25 by 4 yields a remainder of 1.

Therefore, by the division algorithm, 1 = 25 - 6(4).

Thus, 1 - 25 6(4),
1 25 - 61(29 - 1 (25)],
1 = 7(25) 6 (29).

But, 1 = 7(25) - 6(29),
1 - 7(25) 6(0) (mod 29),
1 - 7(25) (mod 29).

Thus, 7 is the inverse of 25 modulo 29

Hence, 25x = 15 (mod 29),

(7)(25x) (7)(15) (mod 29),

x = 105 (mod 29).

Therefore, x = 18 (mod 29).

The strdent should create, and then solve, several linear congruences.

The Chinese Remainder Theorem (Simultaneous Congruences)

The Chinese Remainder Theorem deals with simultaneous linear congruences in one

variable, with different moduli. Such systems arose in ancient Chinese puzzles.11 The

method for solving such puzzles is given in the following theorerm
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Theorem 4: Let m,, m, . .. , mk be pairwise relatively prime positive integers.

Then the system of congruence

x = a, (mod m,),

x = a (mod mr),

x = ak (mod m),

has a unique solution module M - mlm:...mk.

Problem: Find the smallest number that leaves a remainder of 2 when

divided by 5, a remainder of 3 when divided by 7, and a remainder of 4

when divided by 11.

Solution: The system of congruences which represents the puzzle is:

x = 2 (mod 5), x = 3 (mod 7), and x _ 4 (mod 11).

M =(m)(m2)(nm) = (5)(7)11) = 385.

The technique is to find:

2 (mod 5) = (?)(7)(11) (mod 5) = (1)(7)(11) (mod 5) = 77(mod 5);

3 (mod 7) - (?)(5)(1 I) (mod 7) = (4)(5)(11) (mod 7) 220(mod 7);

4 (mod 11) = (?)(5)(7) (mod 11) = (2)(5)(7) (mod 11) _ 70(mod 11)

Thus, x = 77 + 220 + 70 - 367 + 385 T.

Therefore, if T - 0, then, x = 367 (mod 385).

Problem: Find a multiple of 11 that leaves a remainder of 1 when divided by 2, 3,

5, and 7.

Solution: The system of congruences which represents the puzzle is:

x = 1 (mod 2), x = 1 (mod 3), x = 1 (mod 5), x I1 (mod 7), and

x=0(mod I1).

M - (m,)(m,)(n)(m4)(m,) - (2)(3)(5)(7)(11) - 2310.
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The technique is to find:

I (mod 2) = )(3)(X5)(7)(1 X)(od 2) = (1)(3)(5)(7)( 11)(mod 2) =
1155 (mod 2);

1 (mod 3) = (?)(2)(5)(7)(11 )(mod 3) = (2)(5)(7)(11 )(mad 3) -
1540 (mod 3);

1 (mod 5) = (?)(2)(3)(7)(T 1)(mod 5) - (3)(2)(3)(7)( I1)(mod 5) =
1386 (mod 5);

I (mod 7) = (.(2)(3)(5)(1 l)(mod 7) = (1)(2)(3)(5)( l)(mod 7) =
330 (mod 7);

0 (mod 11).

Since, x = 1155 + 1540 + I386 + 330 + 0 4411 + 2310T.

Therefore, ifT = -1, then, x = 2101 (mod 2310).

The student should try the following problem: Five men and a monkey are

shipwrecked on an island. The men have collected a pile of coconuts which they plan to

divide equally among themselves the next morning. Not trusting the other men, one of the

group wakes up during the night and divides the coconuts into five equal parts with one left

over, which he gives to the monkey. He then hides his portion of the pile. During the

night, each of the other four men does exactly the same thing by dividing the pile they find

into five equal parts, leaving one coconut for the monkey and hiding his portion. In the

morning, the men gather and split the xemaiuing pile of coconuts, leaving one for the

monkey. What is the minimum number of coconuts that the men could have collected for

thei oiginal pile? 2

Rem_ j ndere_of-L.arige..Numbers

Problem: Find the remainder vwhe 2102 is divided by 25.

Solution: It is seen that 210 = 1024 = 1 (mod 25).

Then, 2 n10 (2-1 )(25)
- (210)10(4)
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= (l)l1°(4)(mod 25)

= (1)(4)(mod 25)

= 4 (mod 25).

Thus, the remainder is equal to 4.

Problem: Find the remainder when 4165 is divided by 7.

Solution: It is easily seen that 41 = I (mod 7).

Therefore, 4165 - (-1)6 (mod 7)

-(l) (mod7)

6 (mod 7).

Thus, the remainder is equal to 6.

ISBN Numbers

An ISBN is a ten-digit number; the ISBN number for one of the references in this

study is 0-673-38829-S.13 The first digit, in this case 0, identiies the book as having been

published in an English speaking country. The next digits, 673, identify the publisher,

while 38829 identify the particular book. The final digit, 8, is the check digit. To find the

check digit, start at the left of the ISBN number and multiply the digits by 10, 9, 8, ....

4, 3, and 2, respectively, and then add these products. In this example, 10(0) + 9(6) +

S(7) + 7(3) + 6(3) + 5(8) + 4(8) + 3(2) + 2(9) - 245. The check digit is the smallest digit

that must be added to the result, 245, so that the final sum is congruent to 0 modulo 11. In

this case. 245 - S8 - 253 -0 (mod 11). If the required check number is 10, the letter X is

used instead of ten.

When the order for a book is received, the ISBN is entered into a computer, and the

check number is evaluated. if this result does not match the check number on the order,

then the order will not be processed.

The student should verify the ISBN from an assortment of available books.
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Rmnim--Rn'hin Tnnmimntrt

Congruences can be used in order to schedule round-robin tournaments, where N

different teams play every other ream exactly once. The method about to be described was

developed by J. E. Freund. 4

Note that if N is odd, then not all teams can play every round. In that case, a dummy

team is added to make N even A ream that is scheduled to play the dummy leam is then

said to have drawn a bye.

Label the N teams with the integers 1, 2, 3, . .. , N-, and N. Pairings in the kth

round ae scheduled ia the following way. Team i is paired with tea j, where i - N, j *

N, i j, and ij =k (modN 1). This will schedule all teams in round k except for team

N and the one team i for which 2i = r (mod N - 1). These two teams will then be matched

with each other in round k, thus completing the pairings.

For example, for N = 5, the pairings are lsted in Table 3 below

TABLE 3

Pairings for a Five-Team Round Robin Tournament

The student should set up a round-robin tournament schedule for 6, 7, 8, 9, and 10

reams

Team 1 2 3 4 5

Round
1 5 4 bye 2 1

2 bye 5 4 3 2

3 2 1 5 bye3

4 3 bye 1 5 4

5 4 3 2 1 bye
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Casting Out Nines

There is one property of the number nine, known since antiquity, that does not depend

upon its relationship with other numbers. This is the fact that nine, divided into any power

of ten, always leaves a remainder of one. In the days when computations were performed

on counting boards, nine was commonly used as a check. This ancient computational

check was called casting out nines. An understanding of casting out nines requires a

knowledge of the concepts of congruence and digital roots. 15

The digital root of a number is the single integer reached by continued summation of

the digits of the number.1' Given the number 789, the digital root Is found by the

following process: the sum of the digits of 789 is 24; the sum of the digits of 24 is 6; thus

the digital root of 789 is 6.

Note that if the digit "9" is not included in the digital root process, the digital root can

still be found. Ignoring the "9" digit in 789, the sum of the digits of 78 is 15; the sum of

the digits of 15 is 6; thus the same digital root is reached.

In a different example, consider the number 34567. Following the same process, the

sotm of the digits of 34567 is 25 and the sum of the digits of 25 is 7, which is the digital

root.

Note, however, that the sum of 3 and 6 is 9, and that the sum 4 and 5 is also 9.

Striking out the digits that sum to 9 (34547) leaves 7 which, as just seen, is the digital root

of 34567.

A question the student may ask is, "Can the digital root always be found by striking

out either the nines digit(s) and/or those digits which sum to nine, ad then performing

continued summation on the remaining digits, thereby simplifying the calculations?"

The answer is yes, because if there are n such combinations of nine as previously

described, and if the remaining digits sum to k, then:
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9n+k=(10 l)n+k
= 0On- I n+k
=n-n+k(mod 10)

k(modlO),

and therefore, the nines can be "casted out". 17

Another way to cast out nines is to subtract 9 repeatedly from a number until a new

whole number less than 9 is left. Since division is repeated subtraction, to cast out nines

from a number in this way means to divide the number by 9, and behold the remainder.

The remainder is called the "excess of nines".'s

"Why is finding the digital root of a number equivalent to finding the excess of

nines?" This question is answered by noting that if n is any natural number, then 10n" 1

(mod 9). This can be proven by making use of Theorem 2:

10 = 1 (mod 9) since 10/9 yields a remainder of 1;

10 1 (mod 9) since 10 =101;

102 1 (mod 9) by the multiplication property;

10' 1 (mod 9) by repeated use of the multiplication property.

For example, the number 526 has a digital root of 4. The excess of nines of 526

should also be equal to 4. Using the fact that 10" = I (mod 9), the excess of nines can be

found in the following way:

5 x 100=5 x 102 5 x (mod 9) 5 (mod 9);

2x 10=2x 10' =-2x 1 (mod9)-2 (rmd 9);
6 x 1 - 6 x 10 6 x 1 (mod 9)- 6 (mod 9).

Therefore, 500 + 20 + 6 = (5 + 2 -+ 6) (mod 9) = 4 (mod 9) which is the desired

result. 19

Casting out nines is often useful in checking addition problems. The reason this

works is easy to demonstrate by making use of Theorem 1,

Let a. b, and c be natural numbers, and let a, b', and c' be their respective
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remainder, modulo 9. Since a = a' (mod 9), b = b' (mod 9), and c = c' (mod 9), then by

the additive property, if a + b = c, then a' + b' = c'. 2°

The following addition problem illustrates an example of checking addition by casting

out nnes.
a=569

+ b-273

c = 842

a' = 2 (mod 9)

+ h' = 3 (mod 9)
c' = 5 (mod 9) /

Casting out nines is also useful in checking multiplication problems. This is also easy

to demonstrate by making use of Theorem 2.

Let a> b, and c be natural numbers, and let a', b', and c' be their respective

remainders, modulo 9. Since a - a' (mod 9), b = b' (mod 9), and c = c' (mod 9), then by

the multiplicative property, if a x b - c, then a' x b' - c'.2

The following multiplication problem illustrates an example of checking multiplication

by casting out nines.
a- 246

x b= 53
c 13038

a' - 3 (mod 9)

x b' a S (mod 9i

c' = 6 (mod 9) '

In all numeration systems, checking is accomplished by casting out the highest digit in

the system. Casting out sevens would be required in an octel numeration system, while

casting out els would be required in a base rwelve numeration system.

Check the following addition problem in base 5 by casting out fours:

a= 4345
+ b= 3125

c=13015

a' = 3 (mod 4)

+b'= 2 (mod 41

c' 1 (mod 4) 1

Casting out nines can lead to a better understanding of the decimal number system.

Therefore, the student is encouraged to check addition and multiplication problems

whenever the opporunity arises. Subtraction and division can be similarly checked by

reversing the process.
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Dijv iiJ.itiTe.sit- 2

Congruences can be used to devise divisibility tests for various integers based on their

expansions with respect to different bases. Let the number n = (akak. .. alao)o. Then the

decimal expansion of u becomes u = klOk + ak-IlOk i + -+ &a0l + ao10 0.

The first test to be developed is for divisibility by 2. Since 101 = 0 (mod 2), it follows

that 102 = 0 (mod 2), 103 = 0 (mod 2),..., 10o = 0 (mod 2), for all positive integers k.

Then, n - ak1Ok. alOk]1l 4. . +a2 l10 2 +al101 +O1l0

- aok) + a-.1(0) + . . + a2(0) + a,(O) + ao(l)

= ao (mod 2).

Therefore, the digits ak, at. ... ., as d al are "unimportant" when considering

divisibility by two, since these digits are eliminated by their respective powers of ten.

However, a0 is "unprotected" by its respective power often since 100 is not zero in module

two. Consequently, only the last digit needs to be tested to determine if n is divisible by 2.

Next, consider divisibility by 4. Since 102 - 0 (mod 4). it follows that 103 = 0

(mod 4), 104 = 0 (mod 4),. .. , 10L = 0 (mod 4), for all positive integers k. Then,

n = alO1k + alO" +. . . + a102 + a,101 + ao100

= a(0O) + ak.lOt) +... + a2(0) + a(10) + a(l)

- aao (mod 4).

Therefore, the digits ax, a,.,, ... a 3, and a1 are "unimportant" when considering

divisibility by four, since these digits are eliminated by their respective powers of ten.

However, a, and a. are "unprotected" by their respective powers often since 10' and 100

are not zero m modulo four. Hence, only the last two digits need to be tested to determine if

n is divisible by 4.

In general, consider divisibility by 2J. Since 101 - 0 (mod 2 1) and 102 0 (mod 22), it

follows that 10Y = 0 (mod 2') for all positive integers j. SincelO( = 0 (mod 2i), it follows
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that I0+ 1 - 0 (mod 2j), lJ +2 = 0 (mod 21),..,, 10k = 0 (mod 2J), for all positive integers

kandj. Then,

n = akl10 +... + al0J + aj. 1l +. .- a210 2 + a 101 + a0l

- a,(O) + .. . + a(O) + -l i, '... + a.(100) + al(10) + a4(l)

= a, a 2- . . a2aa] (mod 2).

Therefore, the digits a, ak.I.... aj, are "unimportant" when considering

divisibility by 2i, since these digits are elirmnated by their respective powers of ten.

However, a;, a. 2, ... , a2, a,, and a0 are "unprotected" by their respective powers of ten

since 10j , 10j 2..., ,102, 101, and 10i are not zero in modulo 2J. Accordingly, only the

lastj digits need to be tested in order to determine if n is divisible by 2j.

For example, let n = 15387248, Then, 2 1 n (2 divides n without remainder) since

2 I 8, 4 I n since 4 1 48, I n since8 248, 16 n sce 161 7248, but 32 ' n since

32 , 87248.

The next test to be developed is for divisibility by powers of 5. Since 10 = 0 (mod 5),

then divisibility tests for 5 are analogous to those for powers of 2. Check the last j digits in

order to determine the divisibility of n by 5i.

For example, let n = 214365875. Then, 5 I n since 5 1 5, 25 I n since 25 175, 125 I n

since 125 1 875, but 625 t n since 625 ' 5875.

The next divisibility test to be developed is for powers of 3. Since 10 = 1 (mod 3),

then it follows that 10J k 1 (mod 3). Therefore,

n - (aa,.i.. aa.),0
= al0 + a,,ilO T +.. . a 2102 + a, 10' + a 010

= ak + ak, + . .. + al + ao (mod 3).

This indicates that the n is divisible by 3 if the sum of the digits of n is divisible by 3. The

student should develop a similar divisibility test for 9 showing that 9 divides n if 9 divides

the sum of the digits Of an
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For example, let n - 347127. The sum of the digits ofn is 3 + 4 + 7 + 1 + 2 + 7 -

24. Thus, 3 I n sinc 3 I 24, but 9 ' n since 9 k 24.

The test for divisibility by 11 is found by observing that since 10 -1 (mod 11), then

n - (akak. ... al)l
= aklO k + ak. 10k +... + a210 + a,101 + ao10i

-ak(l )k + a,; ()kl + .. + a2 - a, + ao (mod 11).

Ths shows that n is divisible by 11 if, the integer formed by alternately adding and

subtracting the digits of n, is divisible by 11.

For example, let n = 24371853. Then alternarely adding and subtracting the digits of

n yields 2 - 4 + 3 - 7 + I - 8 + 5 - 3 -11 which is divisible by 11.

Finally. a test for the divisibility of 7, 11, and 13 can be developed simultaneously.

First, note that 7 x 11 x 13 = 1001 and that 103 - 1000 = 1 (mod 1001). Therefore,

n- (akal... aia),l
=ak10+ ak 10 + . . . + a10 1 + ao10
- a + 10a, + 100a, + 1000(ag + 10a4 + 100a 5) +

10002(a + 10a 7 + 100a.) +...

= (ao + 10a, + 100a 2) - (a 3+ 10a4 + lOOa) +
(a6 + 10a 7 +100as) -, . (mod 1001)

= (a 2aiao)o - (aSa 4a3) l0 +- (aa 7a)[ - . . (mod 1001).

This indicates that n is congruent modulo 1001 if, the integer fonred by alternately

adding and subtracting sccessive blocks of three starting with the units digit, is divisible

by 1001. Since 7, 11, and 13 are divisors of 1001, the check of their divisibility involves

alternately adding and subtracting successive blocks of three in order to determine if the

result is divisible by 7, 11, or 13.

For example, let n - 59358208. The alternating sum and difference of the blocks of

three is equal to 208 - 358 + 59 - 91. Thus, 7 I n since 7 1 91, 13 i n since 13 1 -91, but

11 n since 11 d 91.

Using the methods described above, the student should now be able to derive the

divisibility rules for 6, 9, 10, and 12



Conclusion

Congruences have been used since Gauss introduced them around the beginning of the

nineteenth century. The anecdotes give the student practice in applying congruences.

Congruences have many applications in everyday life as well as in number theory. The

student should attempt to master the inuticacies of congruence and try to discover their inter

relationships with the real world.

DiohaneEuations

Introduction

Diophantus was not the first mathematician to solve indeterminate problems, but he

was the firs to make an extensive study of the types of problems and equations that axe

associated with his name.23

Diophantus, the most famous Greek mathematician of his day, was known to have

resided in Alexandria about 250 A.D. Many of the books and treatises which he had left

for fature generations of mathematicians have been lost. However, several books from his

Arithmetics series, have been preserved."'

What little is known about the life of Diophantus comes from an epigram found in a

collection called the GreekAnthology: "Diophaunrs passed one-sixth of his life in

childhood, one-twelfth in youth, and one-seventh as a bachelor. Five years after his

marriage was bor a son who died four years before his father, at half his father's age." If

x was the age at which Diophantus died, then the equation becomes

1 1 1 1
x--x+- - x+ x+5+ x+ 4 ,

and Diopbantus must have died at the age of 84.25

Diophantine equations may be divided into linear and nonlinear categories. In this

course, general solutions will be found which will include all particular solutions of an

inial set of condirions.
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Linear Diophantine Equations 6

The three theorems below, given without proof, will be helpul in solving linear

Diophantine equations.

Theorem 5, For integers a and b, with b > 0, there exist unique integers q and r such that

a = bq + r, where 0 S r < b. In this equation, known as the Division

Theorem the integers q and r are called the quotient and remainder in the

division of a by b.

Theorem 6. For non-zero integers a and b, there exist integers x and y such that ax + by

= (a, b), the greatest common divisor of a and b. This is the famous

Euclidean Algorithm,

Theorem 7, If a, b, and e are integers, then ax + by = c represents a linear Diophantine

equation. Let d - (a, b). If d t c, then ax + by = c has no integral

solutions. If d I c, then ax + by = c has infinitely many integral solutions.

If (xo, y0) is a particular solution of ax + by + c. and if n is an integer, then

all solutions can be expressed as (xo + [b/d] n, y0 +i [a/d] n).

A series of examples may be helpfnl in understanding how these Theorems can be

used to solve various Diophantine equations along with their practical applications.

Problem: Solve 2x + 5y = 113.

Solution: By Theorem 5, the Diophantine has integral solutions since (2, 5) = 1

which divides 113.

2
215

4
1

Using Theorem 3, the above division problem can be written as

1-5 - 2. (1)
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Muliplying both sides of (1) by 113 and shuffling the terms yields

2[ 226] + 51131 = 113. (2)

Adding +10n and -10n to (2) in a clever way yields

2[-226+ 5n +51 13 - 2n] 113. (3)

Now, from (2), x = -226 and y - 113 is a particular solution of the

Diophantine equation; and from (3), the general solution is x = -226 + 5n

and y = 113 - 2n. If only positive integral SObtios are desired, then

-226 + 5n > 0
5n > 226

and
and

n> 45.2 and
n >46 and

13 -2n>0,
2n< 113,
n < 56.5,

n 56.

Therefore: 46 < n < 56, and the solutions become (4, 21), (9, 19), (14, 17),

(19, 15), (24, 13), (29, 11), (34, 9), (39, 7), (44, 5), (49, 3), (54, 1).

Problem: Solve 2x + 6y - 117.

Solution: This Diophantine equation has no solution since (2, 6) - 2 does not divide

117.

Problem: Solve 666x + 1414y = 800.

Solotiou: The Diophantine has integral solutions since (666, 1414) = 2 which

divides 00.

2
66611414

1332
B2

8
821666

656
10

1
0

From Theorem 3,

Then,

2=82- -10,
10= 666 - 882,
82= 1414-2 666,

2= 82 - 8(666 - 8.82)
=65 .2-8 666
=65(1414 2 -666) S -666
= 65-1414- 138 -666.
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So,
666(-138) + 1414(65) - 2.

666( 55200) + 1414(26000) = 800 is the particular solution.
666(-55200 + 1414 n) - 1414(26000 - 666 n) = 800 is the general solution.

If only positive integral solutions are desired, then

"55200 + 1414 n > 0
1414 n > 55200

n > 39.04
n >40

and
and
and
and

26000 - 666n > 0,
666n < 26000,

n < 39.04,
n< 9.

Therefore: x and y cannot both be positive. However, there are infinitely many

solutions where x and y are opposite in sign.

Problem: A postal worker has only 14-cent and 21 cent stamps for sale. What

combinations of these stamps will total $3.50?

Solution:
14x +21y- 350;

(14, 21) - 7 1 350
2x + 3y= 50;

2(10) +3(10)= 50;
2(10+3n)+ 3(10 - 2n)= 50.

10+ 3n>0
3n > 10
n > -3.33

nŽ 3

and
and
and
and

O0-2n>z0,
2n < 10,

n <5,
n<5.

Therefore: 3 < n • 5, and the solutions become (1, 16), (4, 14), (7, 12), (10, 10),

(13, 8), (16, 6), (19, 4), (22, 2), and (25, 0).

Problem: Which combinations of pennies, dimes, and quarters have a value of 99¢?

Solution: The Diophantine that can be used to solve the given conditions is P + 10D

+ 25Q = 99. Let W = P + 10D. Then, W + 25Q = 99. In particular,

1(-1) 25(4)- 99. In general, 1(- + 25m) + 25(4 m)= 99. So,

W- l+25mandQ 4 m. Ifm= 0,thenW=-1;thusP+10D--1.

By inspection, 1(9) + 10(-1) = -1 and 1(-225m) + 10(25m) - +25m. So

1(9 - 225m) + 10(25m - 1) - -1 + 25m. In general, 1(9 225m + 10n) +

10(25m I n)- 1 + 25 m. Therefore, P = 9 - 225m + 10n, D - 25m -
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1 - n, and Q = 4 - m. Requlmng positive vales,

9 225m + IOn 0
lOn > 225m - 9
n > 22.5m -0.9

25m- -n > 0
nu 25m- I

4-mf Ž0,
m<4

0 <m <4.

So that, 22.5m- 0.9 < n < 25m- 1 and 0 m 4.

If m - 0, then n - I which gives negative values for P and D. If m - 1.

then 22 c n _ 24. Ifm= 2,then 45 < n 49. Ifm-3,then

67 n 74. Ifm=4,then 90 n <99.

The solutons are given below in Table 4.

TABLE 4

Solutions to P + 10D + 25Q = 99

m n P D Q
1 22 4 2 3
1 23 14 1 3
1 24 24 0 3
2 45 9 4 2
2 46 19 3 2
2 47 29 2 2
2 48 39 1 2
2 49 49 0 2
3 67 4 7 1
3 68 14 6 1
3 69 24 5 1
3 70 34 4 1
3 71 44 3 1
3 72 54 2 1
3 73 64 1 1
3 74 74 0 1
4 90 9 9 0
4 91 19 8 0
4 92 29 7 0
4 93 39 6 0
4 94 49 5 0
4 95 59 4 0
4 96 69 3 0
4 97 79 2 0
4 98 89 1 0
4 99 99 0 0
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Nonlinear Dionhantine Eauations

The generation of all possible Pythagorean triples can be achieved through the use of

nonlinear Diophantine equations.2 Consider the Pythagorean equation x2 + y = z 2, where

the greatest common factor of x, y, and z is equal to one. Let x + z - m, and z x - n,

where m and n are integers. Then,

x = (m - n)/2, y 2 = mn, and z = (m + n)/2,

In order to satisfy y' = mn, let m - rp', and n = rq2 , where r, p, and q are integers.

Then,
x - r(p - q)/2 , y - pqr, and z - r(p2 + q2)/.

Since the greatest common factor of x, y, and z is equal to one, then r must be equal to

one. Also, x, y, and z can be multiplied by two without affecting the validity of x2 + y2 =

z2 Thus,
x = p 2 - q y = 2pq, and z = p2 + q,

and so the entire family of Pythagorean triples can be generated by assigning inegral values

to p and q.23 Table 5 shows a partial listing of the Pythagorean trples that can be obtained

noting that p t q (otherwise x would equal zero), and that p > q (otherwise, x would be

negative).

TABLE 5

A Panial List of Pyrbagorea Triples

p __q x y z
2 1 3 4 5
3 1 8 6 10
3 2 5 12 13
4 1 15 8 17
4 2 12 16 20
4 3 7 24 25
5 _1 _24 10 26
5 2 21 20 29
5 3 16 30 34
5 4 9 40 41
6 1 35 12 37
6 2 32 24 40
6 3 27 36 45
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It is apparent that when p and q are not relatively prime, or when p and q differ by an

even number, then the Pythagorean triple thus generated is a multiple of some previous

one. This redundancy can be eliminated by requiring that x, y, and z have a greatest

common factor of one. When (x, y, z) = 1, then x2+ y2 = z2 is called a primitive

Pythagorean triple.2 To generate a primitive Pythagorean triple, some additional

restrictions must be placed upon p and q. In order to verify the restrictions, some

Theorems most be stated and proven.

Theorem 8: The square of an even number is congruent to zero modulo 4,

Proof: Let n = 2k be any even number. Then, nZ = 4k-O0 (mod 4).

Theorem 9: The square of an odd number is congruent to one modulo 4.

Proof: Let n = 2k + 1 be any odd number. Then n2= 4k 2+ 4k + 1 = 0 + 0 + 1
(mod 4) = 1 (mod 4.

Corollary 1: The square of any number is congruent to 0 or 1 modulo 4.

Proof: Since numbers are either odd or even, this follows from Theorems 1 and 2.

Theorem 10: If x and y are both even, then the Pythagorean triple x2 + y2 - z2

cannot be primitive.

Proof: Let x - 2k and y - 2j. Then x2 - 4k and y 2 _ 4j2. Thus, x2 + y2 - z2 _ 4k2 +

4j = 4(k2 + j 2). And so, z - 2 . j . But x, y, and z have a common

factor of 2. Therefore, the Pythagorean triple cannot be primitive.

Theorem 11: Ifx and y are both odd, then the Pythagorean triple x2 + y 2- z cannot

exist.

Proof Let x = 2k + 1 andy = 2j + 1. Then, x 2 =4k2+ 4k+ 1 and y 2= 4j2 + 4j + 1

Thus,x 2+y-z 2 =4k2 +4k+1 4j +4j + 1-4(k+ k+j 2 +j) + 2=

0 + 2(mod 4) _ 2 (mod 4). But by Corollary 1, no number squared can be

congruent to 2 modulo 4. Therefore, the Pythagorean triple cannot exist1
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Corollary 2: If the Pythagorean triple x2 + y2 - z2 is primitive, then x and y must

have opposite parity.

Proof: f x and y are both even, then by Theorem 3, the Pythagorean triple is not

primitive. If x and y are both odd, then Theorem 4 states that the

Pythagorean triple cannot exist. Therefore, x and y must opposite parity.

The restictions on p and q, the generators of the Pythagorean triple x2 + y2 = z 2, can

now be verified.

Theorem 12: If (p, q) • 1, then x2 + y2 = z2 is not primitive.

Proof: Assume that (p, q)= d where d is an integer greater than one. Let p = dk and

q - dj. Then p 2 - d2k and q2 - dj 2. Now, x 2 - p2 -q 2 - d2k 2 - d2j 2 -

d2 (k' -fj), y = 2pq = 2(dk)(dj) - d2 (2kj), and z2 = p2 + q2 = d2k2 + d'j' -

d2 (k 2 +j 2). Andso, x=d -j, y=d2,andz=d k+j 2.

Therefore, (x, y, z) - d, and thus x2 + y - z2 is not primitive.

Corollary 3: If p and q are both even, then x2 + y2 = z2 is not primitive.

Proof: If p and q are even, then by Theorem 5, d - 2, and theefore x2 + y2 - z2 is

not primitive.

Theorem 13: If p and q are both odd, then x2 + y 2 - z2 is not primitive.

Proof: Letp=2k+ 1 and q = 2j + 1. Then, p= 4k 2 + 4k + 1 and q = 4j2 +4j + 1.

Now, x2 - p - q2 - 4k2 + 4k + 1 - 4j2 - 4j - - 4(k + k - j1 - j) - 0 (mod 2).

Therefore, x is even. But, y2 = 2pq = 0 (mod 2). So, y is even. But by

Corollary 2, x and y must have opposite parity. Therefore, p and q cannot

both be odd. So, in order for x2 + y2 = z2 to be primitive, generators p and q

must have a greatest common factor of one and opposite parity. Thus, a

partial list of primitive Pythagorean triples can be generated.
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TABLE 6

A Partial Listing of Primitive Pythagorean Triples

P ...... -q x _ z__
2 1 3 4 5
3 2 5 12 13
4 3 7 24 25
4 1 15 8 17
5 4 9 40 41
5 2 21 20 29
6 5 11 60 61
6 1 35 12 37
7 6 13 84 85
7 4 33 56 65
7 2 45 28 53
8 7 15 112 113
8 5 39 80 89
8 3 55 48 73

.8 _1 63 16 65
9 8 17 144 145
9 4 65 72 97
9 2 77 36 85

The preceding problem dealt with nonlinear Diophantine equations of the form

x2 + ye = z'. Another problem to be considered is to find pairs of integers x and y such that

x2 + y2 = z. II other words, what integers can be expressed as the sum of two squares?

For example, the integer 29 can be written as 22 + 52, but the integer 19 cannot be written

as the sum of two squares. A look at the first twenty positive integers reveals:

1 - 0 + 12,
2 = 12 + 12,
3 is not the sum of two squares,
4 - 22 + 02,
5 =1 +22,
6 is not the sum of two squares,
7 is not the sum of two squares.
S - 22 + 22,
9-32 -- 0',

10 = 32 + 2

11 is not the sum of two squares,
12 is not the sum of two squares,
13 = 32 + 2',
14 is not the sum of two squares,
15 is not the sum of two squares,
16 42 + 2,
17 - 4+ 12,
18 = 32 + 32,
19 is not the sum of two squares)
20 = 22 + 42.

It is not cftficult to recognize numbers which cannot be written as the sum of two

squares. Recall that the square of an even integer is congruent to 0 modulo 4, while the
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square of an odd integer is congruent to 1 modulo 4. Therefore, the sum of the squares of

two even integers must be congruent to 0 +0 = 0 (mod 4); the sum of the squares of two

integers of opposite parity is congruent to 0 + 1 = 1 (mod 4); or the sum of the squares of

two odd integers is congruent to I + I = 2 (mod 4). So, an integer of the form 4k + 3,

which is 3 (mod 4), cannot be expressed as the sum of two squares. This includes

numbers such as 3, 7, 11, 15, or 19.

However, even integers, or integers of the form 4k + 1, may or may not be able to be

expressed as the sum of two squares. To determine if z can be expressed as the sum of

two squares, it is necessary to factor z into its prime factors. Note that these factors must

include powers of the integer 2, or powers of integers having the form 4k + 1 or 4k +3. It

is important to know which of these primes can be expressed as the sum of two squares.3

It is easy to see that 2 can be expressed as the sum of two squares since 2 = 1 + 12.

Next to be considered are primes of the form 4k + 1. Fermat stated, and Euler proved a

century later, that every pnme number of the form 4k + 1 can be expressed as the sum of

two primes. Finally, as proven earlier, primes of the form 4k + 3 cannot be expressed as

the sum of two squares.

These three results can be applied to a composite number with the help of Theorem 14.

Theorem 14: If integers m and n can each be expressed as the sum of two squares,

then their product, m-n, can be expressed as the sum of two squares.

Proof: Let m = a2 + bY and n = c2 + d2. Then, m.n = (a2 + b2) (c2 + d2) = a c 2+ b2

d2 + a2 d2 + b2 c - a2c2 + 2abcd + b2 d2 + aZ d2 - 2abd + b2 c2'- (ac + bd) +

(ad - bc) 2. Therefore, m-n can be expressed as the sum of two squares.

Theorem 6 accounts for combinations of primes which can be expressed as the sum

of two primes. Theorems 7 and 8 will deal with combinations of primes which cannot be

expressed as the sum of two prines.
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Theorem 15: If an integer contains a prime factor of the form 4k + 3, then in order

for the integer to be written as the sum of two squares, this prime

factor must occur an even number of times.

Proof: (4k + 3)2 -= [(4k + 3)2]" _ (16 k2 + 24k + 9)n = [I(mod 4)1]. Since 1

(mod 4) is a perfect square, it cam be expressed as the sum of two squares,

itself and zero. Therefore, [1(mod 4)]" can be expressed as the sum of two

squares since Theorem 6 can be applied n times.

Theorem 16: If an integer contains a prime factor of the form 4k + 3 an odd number

of times, then the integer cannot be expressed as the sum of two

squares.

Proof: (4k + 3)20 -' = (4k + 3)2- (4k + 3)1 = 1.3 (mod 4) = 3 (mod 4).

Therefore, (4k + 3)2 + ' cannot be expressed as the sum of two squares.

The preceding results may be summarized as follows: An integer can be expressed as

the sum of two squares if its prime factors do not contain an odd number of any primes of

the form 4k + 3.

Problem: Show that 130 can be written as the sum of two squares.

Solution: 130 - 2 x 5 x 13. All prime factors are either 2, or powers of the form

4k + L. In addition, since 130 = 2 (mod 4), both squares must be odd.

Therefore: 130- 112 32.

Problem: Show that 72 can be written as the sum of two squares.

Solution: 72 = 22 x 32. All prime factors are either powers of 2, or powers of the

form 4k + 3 to an even power. In addition, since 72 _ 0 (mod 4), both

squares must be even.

Therefore: 72 = 62 + 62.
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Problem: Show that 84 can be written as the sum of two squares.

Solution: 84 = 22 x 3 x 7. All prime factors are either 2, or odd powers of the form

4k+3.

Therefore: 84 cannot be expressed as the sum of two squares.

The student should consider the sum of the squares of the numbers from one to one-

hundred.

Finally, no introduction to Diophantine equations would be complete without mention

of the Pell equation. The Pell equation is a particular type of Diophantine equation named

for the mathematician who first focused on it."

The simplest form of the Pell equation is x2 - 2y2 = 1. This equation has an ininite

number of solutions. Some of the successive pairs of x and y values are:

x

y 0
3
2

17
12

99
70

577
408

etc.
etc.

Notice the following relationship between the respective values of x and y beginning

with the third set of solutions:

17 = 6-3 - 1,
12- 6-2 0,

99 = 6-17-3,
70-6-12 2,

577 = 6-99 - 17,
408 = 6-70 12,

Note that x - 3 is the value of x in the first non-zero solution. Note also that 3 x 2 = 6.

Next, look at the equation x2 - 3y2 1= Some of the successive values of x and y

pairs are:

1
0

2
1

7
4

26
15

97
56

etc.
etc.

Notice the following relationship between the respective values of x and y beginning

with the third set of solutions:

26=4-7-2, 97=4-26 - 7,

Note that x = 2 is the value of x in the first non-eCro solution. Note also that 2 x 2 - 4.

At first glance, the next equation would appear to be xZ - 4y = 1. However, since 4

etc.
etc.

x

y

7=4-2- 1,
4-41 0,

etc
etc.15 ; 44 - 1 56 = 4·11 4,
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is a perfect square, this equation could be written as (x + 2y)(x - 2y) 1. This leads to a

system of simultaneous equations:
x + 2y -
x-2y= I

which has only the solution (1,0), and hence no non-zero solutions. Similarly, equations

such as x2 9y2 = 1, x2 16y2 - 1..., x2 Ay 2 - 1, where A is a perfect square, will not

be considered here.

So, the next eqnatioa to be consideed is x2 - 5y2 = 1, which has the following

successive pairs of solutions:

x 1 9 161 2489 etc.
y 0 4 72 1292 etc.

Notice the following relationship between the respective values of x and y beginning

with the third set of solutions:

161 = 18.9 -1, 2489 = 18161 - 9, etc.
72 184 0, 1292 - 18 72 4, etc.

Note that x = 9 is the value of x in the first non-zero solution. Note also that 9 x 2 = 18.

In general, the Pell equation x' - Ay2 = 1, where A is not a perfect square, yields

successive pairs of integral solutions, after the first non zero pair, of the form:

Xk = 2axi Xk 2
2aykI Y

where x - a is the value of x in the first non-zero solution.

This general solution enables the student to find successive pairs of solutions once the

non-zero solution has been found. Most textbooks give a far more complex and impractical

method of finding these solutions. It is usually quicker, and far more practical, to find the

first non zero solution by trial and error, and then to follow the method outlined here. It is

a sound method, and is almost always more practical.

The most general form of the Pel equation is x2 - Ay2 - B where A is a positive

integer other than a perfect square, and B is a positive or negative integer. There will not
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always be integral solutions for all values of A and B. In fact, for B = -1, there will only

be integral values for A - 2, 5, 10, 13, 17, etc. And for A - 3, there will only be integral

values for B = 1, -2, 3, 4, 6, 8, etc. The technique for solving the most general form of

the Pell equation is outlined below.

Assume that x2 - Ay2 - B has integral solunons over certain values of A and B. Let

(a, b) be the first non-zero solution of x2 Ay2 - B, and let (c, d) be any integral solution

of x Ay2 - 1. Then, x2 Ay2 = (a2 - Ab2)(c - Ad2) = a2c 2 + A2bd 2 -Aad 2d - AbZc2 -

a2c ± 2Aabcd + A2bd 2 - (Aa2d2 ± 2Aabcd + Ab2c2) = (ac _+ Abd)2 - A(ad + be)'.

Therefore, x = ac ± Abd and y - ad + be. By substituting, for c and d, any pair of

values which satisfies 2 - Ad 2 - 1, solutions to the original equation x2 Ay 2 = B can be

obtamied.

For example, in the equation x2 - 3y2 = -11, the smallest integral non-zero solution, by

trial and error, is (1, 2). Then, x = ±(c ± 6d) and y - +(d + 2c) where c and d are integers

which satisfy c2 - 3d2 = I.

Some values of x and y generated by successive values of c and d are:

c 1 2 2 7 7 26 26 etc.
d 0 1 1 4 4 15 15 etc.
x 1 4 8 17 31 64 116 etc.
y 2 3 5 10 18 37 67 etc.

It is possible that not all integral solutions can be found using the proeedure outlined

above. In this case, the procedure must be slightly modified. For example, try to find all

itegral solutions of x - 2y2 - 119 for values of x ess than 200.

By trial and error, the smallest non-zero solution is (11, 1). Then, x = +( lIc ± 2d)

and y - ±(m± 1 id) where c2 - 2d2 = 1. The solutions are:

x 11 29 37 163
y 1 19 25 115

But there may be other solutions. If there are other solutions, they would be found

between the smallest and next smallest solutions found in the first tabulation. Therefore,
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the procedure is to check for y values between 1 and 19. This can be done quickly with the

result that x = 13 and y - 5. This generates a new series of solutions where x = ±(13c ±

10d) and y = ±(5c l13d) where c2 - 2d2 - 1.

The additional solutions become:

x 13 19 59 101
y 5 11 41 71

The search for a third family need not be initiated as a result of a useful rule which

states that if B is the product of n prime numbers, then there will be, at most, 2n-l families

of integral solutions. In this example, since 119 = 7 x 17, then n = 2 and, therefore, there

are 2 such farmiies which, in this case, have already been identified.

Conclusion

Thus ends the discussion of Diophantine equations. Such equations arise in both

practical and recreational problems. Only a small part of the entire field of Diophanrine

equations has been discussed here. It is hoped that the student will have been given some

insight into the vast field of Diophantine equations.

Additional Topics

The Fibonaeci Sequence

Number sequences have long provided mathematicians with thought-provoking

problems and interesting applications to the real world. One particular sequence, the

Fibotacci sequence, is especially interesting and powerful in its mathematical

applications. 32 The Fibonacci sequence is produced by starting with 1 and adding the

previous two numbers in the sequence in order to produce the next number in the sequence:

1, 1, 2, 3, 5, 8, 13, 21, .... The Fibonacci sequence can be represented by a recursive

formula If Fn represents the nth Fibonacci aumber, then F, - F. 1 + F, 2 for n > 3.

The Fibonacci sequence was given as a solution by Leonardo.of Pisa (Fibonacci) to a

famous problem which shall be renamed the "amoeba problem". A baby amoeba, called
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"a", takes a day to matre into an adult, called "A".33 As an adult, it asexually reproduces

to produce a baby amoeba, and, at the same time it continues to live. After a day, the baby

becomes an adult while the original adult reproduces again. This contiauing process is

illustrated below.
a

A
A a

/ I \
A a A

/1 I\
AaA A a
I I \ I\ \

A aAAaaA A
/ I / /I /\ I I N 1\

A aAAaAaAAa Aa A

FIGURE 1

Family "Tree" of a Single Baby Amoeba

The student can continue the diagram through several more generations. In doing so,

notice that the number of amoebae present on successive days form a Fibonacci sequence.

For example, there is one amoeba present on day one, followed by one again on day two.

Then there are two on day three, followed by, three, five, eight, thirteen, and so on. The

sequence could be continued indefinitely because the Fibonacci sequence is an infiite

sequence.

Fibonacci numbers appear in many probability problems related to the binomial

theorem. The student should recall Pascal's triangle which is used in order to simplify

binomial expansions. Here, a different application of Pascal's triangle can be used. Notice

how the Fibonacci sequence can be derived by summing the diagonals in Pascal's triangle

as illustrated in figure 2 on the following page.
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I

I

1 3

i

1

6 4 1

10 5

etc.

FIGURE 2

The Fibonacci Sequence from the Diagonals of Pascals Tnangle

Problem: If a coin is flipped N times, how many unique sequences of heads and

tails are possible provided that the coin cannot come up heads twice in a

row?

Solution:
TABLE 7

Sequences of Heads and Tails without Consecutive Heads

Note that the total number of outcomes is always a Fibonacci number.

1 1

Number Sequences Total
of Flips

1 {Hi, (T} 2
2 ({HT}, {THI, {TTI 3
3 {HTH}. {-ITT}, [THTI, {TTHI, {TTT} 5
4 [HTHT}, {HTTH}, {HTTT}, {THTH}, 8

{THTT}, ITTHT}, TTTTH}, [{TT}___

��F
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In nature, Fibonacci numbers have been found to be associated with natural spirals in

objects such as pine cones, daisy blossoms, and pineapples. In the daisy blossom, for

example, there are two sets of spirals. The clockwise set contains 21 spirals, while the

counterclockwise set contains 34 spirals. Both are Fibonacci numbers.

In addition, Fibonacci numbers are found in patterns of the leaves and branches of

many different species of trees. This phenomenon is called phyllotaxis where the

arrangement of leaves around a stem can be expressed as a fraction:

number of complete turns .
number of leaves per cycle

For example, the cherry and oak have a phyllotaxis of 2/5, while the beech has a

phyllotaxis of 1/3. Other examples are pear, 3/8, and the willow, 5/13.34

There are many excellent references dealing with Fibonacci sequences. Some of these

include, Fun with Mathematics by Jerome Meyer, Mathematical Diversions by J. A. H.

Hunter and Joseph Madachy, and Mathematical Ideas by Charles D. Miller, Vern E.

Heeren, and E. John Hornsby, Jr. The student should consult these and many other books

for more applications of the Fibonacci sequence, which include their relationship with the

golden ratio, examined in the following section.

The Golden Section

The Paprus of Ahmes, inscribed hundreds of years before the rise of ancient Greek

cuIlte, contains a detailed account of the btildiug of the Great Pyrarmid of Gizeh. The

account refers to a "sacred ratio" of the slant edge length to the distance from the base edge

to the ground center which was equal to 1.618. This ratio is the Golden Section of the

ancient Greeks.? 5

If a line segment is partitioned so that the larger part is the mean proportion between

the shorter part and the entire segment, then the ratio of the larger part to the smaller part is

called the golden section. Referring to Figure 3 on the following page, if the larger part of
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the line segment is called "x" and the lesser part of the line segment is called "y", then

x+V - .
x y

x I Y I
FIGURE 3

A Line Segment Partitioned into a Greater and Lesser Part

Thos, x2 -xy - y2 - 0, and therefore x - 1 + 75 = 1.618 ... is the golden section,
y 2

Another approach that leads to the golden section can be seen from the regular

pentagon in Figure 4 below.36
D

C E

B A

FIGURE 4

A Regular Pentagon

In regular pentagon ABCDE, of side s, diagonals AC and BE intersect at F, with CF -

x and AF = y. Since A ABC is isosceles with Z ABC - 108°, theh Z BCA - 36°. Also,

A ABF is isoseeles, and so, Z CBF = 108° - 36° = 72° and / CFB - 180° - 72* - 36° - 72°.

Hence, CF = CB, and therefore, x = s. If an altitude is drawn from B to AFC, then it can

be easily shown that x + y - 2s cos 36. Similarly, drawing an altitude from F to AB,

1



yields y 2 cos 6 Then, x
2 cos 36

s(4 cos2 36 - 1)
2 cos 36 But, since x = s, then

4 cos236 - 1 = 2 cos 36 or 4 cos' 36 -2 cos 36 - 1 = O with positive solution:

cos36 =- -(+ 35 ).

The
2s x 1

n.x = sandy = (- ) , and so, = 2 (1 + ), the golden
(1+5) y 2

Problem: Prove, that in Figure 5 below, AC: AB - AC: AN - AN:

NC - AM: MN - OD: DF = the golden section.

Solution: This is to be left as an exercise for the student.

A

E

section.

B

D C
S

FIGURE 5

A Star within a Pentagon

Ar this point, two curious aspects of the golden section may be noted. First, it is easy

to see with a calculator that the golden ratio ean be transformed into its reciprocal merely by

subtracting 1 from it, yielding 0.618 ,... Secondly, if the height of one's body is divided

by the height of one's navel, a number very close to 1.618 is obtained,37

A final method presented here to discover the golden section comes from dividing the

nth term of a Fibonacci sequence by the (n - 1)th term and observing the result. As n

63
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increases to infinity, the ratio obtained converges to the golden section. A look at the first

twelve such ratios are shown in Table S below. 3

TABLE 8

The First Twelve Ratios for Successive Fibonacci Numbers to Four Decimal Places

111 = 1.0000 21/13= 1.6154
2/1 -2.0000 34/21 -1.6190
3/ - 1,5000 55/34 - 1.6176
5/3 = 1.6667 89/55 = 1.6182
8/5- 1.6000 144/89 - 1.6180

13/8 = 1.6250 233/144 = 1.6181

Many Renaissance mathematicians became intrigued with the golden section. H. S.

M. Coxeter quotes Kepler as follows: "Geometry has two great treasures: one is the

theorem of Pythagoras; the other, the division of a line into extreme and mean ratio. The

first we may compare to a measure of gold; the second we may name a precious jewel."3 9

Further study of the golden section should be pursued by the student. Some of the

possible areas of investigation include inscribed decagons, golden rectangles (rectangles

with sides in golden ratio), icosahedrons, dodecahedrons, and logarithmic spirals. Some

references include: Der goldene Schnitt by Adolf Zeising; Nature's Harmonic Unitv by

Samuel Colman; The Curves of Life by Six Theodore Cook; Mathematical Puzzles and

Diversions by Martin Gardner; Mathematical Diyersji.ons by J. A. H. Hunter and Joseph S.

Madachy; and Mathematical Ideas by Charles D. Miller, Vem E. Heeren, and E. John

Hornsby, Jr.

The Imgmnary Number i

An imaginary number is a precise mathematical idea. It forced itself into algebra in

much the same way as did the negative numbers. Raphael Bombelli of Bologna saw that

equations of the form x2 + a = 0, where a is any positive number, could not be solved

without the aid of imaginaries.4
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Thus, i - l, and herefor i = -1, i = -i =+, i = i ,. and the process

keepsrecycling. A number of the form a + bi is called a complex number and is a mixture

of a real and an imaginary number.

A most fascinating discovery was that every number has n nth roots.4 1 The number

64, for example, has 2 square roots, 3 cube roots, 4 fourth roots, and so on. Many people

may know that the square roots of 64 are +8 and -8. But perhaps less people know that the

cube roots of 64 are 4, -2 + 2i ,3, and 2 2i '3. Thus, the concept of complex numbers

is introduced. The general form for finding the nth roots of x is given by:

xI /n - x / (cos 2kzrn + i sin 2krn) with k = 0, 1, 2,...,n - 1.

The student should attempt to find the fourth and fifth roots of 32 using this formula.

Imaginary numbers occur in many other applications in mathematics and physics

including electronics. The student should pursue the properties of i in various

mathematical and physics references such as the ones listed in the section on it.

The Exponential Punction

In 1614, John Napier issued his Mirifici Logarihmorum Canonis DeLsciptio, the ftist

treatise on logarithms. 2 His invention may have been as important to mathematicians as

Arabic numerals. If logarithms had not been discovered, mathematics, astronomy, and

physics would have been put back a century or more.43 Since e and logarithms are closely

relared, a close look at logarithms should reveal something about the nature of e.

The two progressions:

Arithmetic 0 1 2 3 4 5 6 7 8 9...

Geometric-- 1 2 4 8 16 32 64 128 256 512...

share the folowing relationship. If the terms of the arithmetic progression are regarded as

exponents of 2, then the corresponding terms of the geometric progression represent the

powers of 2. Thus, in base 2, each term in the arithmetic progression is the logaritm of

the corresponding term in the geometric progression.44
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Extensive tables of logarithms have been constructed in base 10 and in base e, the

Napierian or natural base. Like T, the number e is transcendental. The most familiar

infinite series of e is given by:

e= 1 + 1/1! + 1/2! + 1/3! + 1/4+....

Thuns the value of e may be ascertained to as much accuracy as desired. To the renrh

decimal place, e - 2.7!82818285.

The student should try to prove that as n goes to infinity, then (1 -- 1/n)" will produce

the ilfnite series of e.

The constant e also plays an important role in the derivation of the tables of the sine

and cosine functions with the help of i. Since e - 1 + x + x2/2 + x3/3! + .. , then

substiruting ie for x gives

e i a _ + i +(i )/2! +(i 0)/3! +...

=-+i - 02/21 i 30/3!+...

since i = -1 and i3 - -i.

Noting that every other term contains , and remembering that Leonhard Euler, a Swiss

mathematiciau in the eighteenth century 45, proved that ei1 = cos 0 + i sin 0, then:

3 of 0 7 0 2 4 o6

sin 0 = 0 + -- + ... and cos = 1- + + ...3! 5! 7! 21! 4! 6!

where 0 is measured in radians.

Other applications of e can be found in various disciplines of science and mathematics

such as: physics, chermstry, biology, calculus, number theory, and economics. Some

applications include: RC series circuits, RL series and parallel circuits, half-ife. reaction

rates, bacredal growth and decay, cryptology, compound interest, and annuities. The

student should do some research mn some of these applications using the references

mentioned following the discussion on 7t.
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Ei

Archimedes, who lived mr the second century B.C., proved that the value of T was

less than 22/7 and greater than 223/71 by using a regular polygon of 96 sides. Ptolemy, in

150 A.D., used the value of 3.1416 for 7c. By the middle of the sixteenth century, the

fraction 355/113 was discovered, giving the value of tc to six decimal places. By the early

seventeenth century, van Cealea, a German mathematician, calculated xi to more than 20

decimal places and got 3.141592653589793238464. Since the invention of calculus and

the discovery of infinite series, the value of rt can be calculated to any number of decimal

places desired.4 An exact expression for c/4 is given by the infinite series:

t/4 =- 1 - 3 + 15 - 1/7 + 1/9 -....

The value of 7 even occurs in the laws of chance. An experiment that the student may

wish to try is the famous Buffon experiment. To perform this experiment, a needle and a

horizontal surface ruled by a grid of parallel equidistant lines are needed. The distance h

between the lines and the length I of the needle must satisfy the relationship 1 < h. Toss the

needle so that it lands at random angles with respect to the parallel lines. After each toss,

note whether the needle intersects with any of the parallel lines Let m be the number of

times the needle makes an intersection in n throws. Then xc can be approximated by using

the equation 7 - 21 x n . As n increases, the value of I is more closely approximated.4
h m

One of the most famous problems in mathematical history is the "squaring of the

circle". The problem is to construct a square equal to the area of a given circle using only a

straightedge and a compass. The Greeks, and later mathematicians, sought such a

constuction but always failed The German mathematician Lindemann, in 1882, published

a proof that 7i was a transcendental number, and thus confrmiug that the circle can never be

squared. 4s

These and numerous other allusions to the irrational number T should be investigated
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by the student. References are plentiful and include: Mathematics Hnd the Iraginarion by

Edward Kasner and James Newman; Mathematics for the MilliJo by Lancelot Hoghen; A.

New Look at Arithmetic by Irving Adler; and Fun with Mathematics by Jerome S. Meyer.

Perfect Numbers

Six is the first "perfect" number. The Greeks called it perfect because it is the sum of

its proper divisors. The next four perfect numbers are 28, 496, 8128, and 33,550,336.

The student is asked to verify that these five numbers are indeed perfect. It took more than

two thousand years for mathematicians to find rhe next seven. Then, in 1952, a University

of California professor discovered the first new perfect number in seventy five years and,

in the next few months, he discovered four more for a total of seventeen.49

It may be noteworthy that the Pythagorens hailed ten as "perfect", but not in the way

that six is. It had the special charm that it is the sum of one (the point), two (the line), three

(the plane), and four (the solid).50

There are still many unanswered questions about perfect numbets. It is not known if

there are infinitely perfect numbers: all known perfect numbers are even; it is not known if

any odd perfect numbers exist; and an even number is perfect if and only if it is of the form

2"'- (2" - 1), where 2' - I is called a Mersenne prime assuming that n is prime.51

The Merserme primes have always received special attention because they are closely

related to the perfect numbers.52 The student should erify that the first seven Mersexne

primes are: M2 - 3, M - 7, M - 31, M 7 - 127, M,3 - ,191, Ml? = 131,071, and Ml -

524,287. So, the problem of finding a new even perfect number is essentially the same as

finding a new Mersenne prime. Thus, since M, is a Mersenne prime, then 22 x Ma = 28 is

a perfect number. Similarly, since M5 is a Merserme prime, then 24 x Ms - 496 is a

perfect number.

There are more interesting facts about perfect numbers: all known perfect numbers,
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except six, have digital roots of 1; every known perfect number, except six, is the sum of

consecutive odd cubes; and all perfect mumbers ate te sum of successive powers of 253

If a number is not perfect, then it is either deficient or abundant A counting number is

deficient if it is greater than the sum of its proper divisors. It is abundant if it is less than

the sum of its proper divisors.54

There is a class of multiperfect numbers in which the sum of the divisors of the

number is a multiple of the number. For example, the sum of the divisors of 120 is 1 + 2 +

3 + 4 + +6+ S + 10+ 12+ 15 +20+ 24 +30 + 40 + 60 =240 55

Not quite as old as perfect numbers, but quite old are the amicable numbers.56 The

counting numbers a and b are amicable, or frieudly, if the sum of the proper divisors of a is

b, and the sum of the proper divisors of b is a. The smallest pair of amicable numbers, 220

and 284, was known to the Pythagoreans, but it was not until over one thousand years later

that the next pair, 18,416 and 17,296, was discovered. 7

The student may find more information on perfect numbers in the following

references: Mathemati.caLijversjQns by J. A. H. Hunter and Joseph S. Madachy; From

Zero to Infinity by Constance Reid; Mathematical Ideas by Charles D. Miller, Vern .

Heeren, and E Johu Hornsby, Jr.; Number--The Language of Science by Tobias Dantzig;

A New Lookl at Arithmetic by Irving Adler: and Elementary Number Theory by Kenneth

H. Rosen.

The Shaues of Numbers

To the Pythagoreans, the important secrets of nature could all be expressed by simple

relationships among the whole numbers. Numbers were very real to the Pythagoreans, and

they had very distinctive shapes. The four most important shapes were triangular, square,

oblong, and gnomons. 5?

Triangular numbers are those numbers that Can be fitted into a triangle. The triangular

numbers are one, three, six, ten,..., and are written as follows:
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The ath triagular number (T,) is equal to the sum of the first n integers. For example,

T, - 1+ 2 = 3; T3 = 1 + 2 + 3 = 6; and in general TT - n (n+l)/2. Thus, the 6th

triangular number would be: T, = (6)(7)/2 = 21.

Square umbers are those numbers that can be fitted into a square. The square

numbers are one, four, nine, sixteen, ... , and are written as follows:

* 8 :> :

* * ** * 4*: * 6

* A SC $r * | * Y Y

The nth square number (S,) is equal to the sum of the Afrst n odd integers. For

example, S, - 1+ 3 = 4; S = 1+3+5=9; and in general, F - n2. Thus, the 6th

square number would be: S - 62- 36.

Oblong numbers are those numbers that ca. be fitted into an n by n + I rectangle. The

oblona numbers are two, six, twelve, twenty, ... , and are written as follows:

is¥ ** * A!1 X SN4 r * V * 4

The nth oblong number (O.) is equal to the smn of the first n even integers. For

example, 0 2= 2 + 4 - 6; O0 -2 + 4 + 6 = 12; and in general, O, = D (n + 1). Thus, the

6th oblong number would be: O = (6)(7) - 42.

The gnomons are all of the odd numbers, and they are written in the shape of a

nomon or carpenter's square:
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Vaions kinds of numbers can be combined. For example: a square number is

always the sum of successive gnomons; any two successive triangular numbers also make

a square number; and any two equal triangular numbers make an oblong number. The

student should verify these facts with diagrams.

There are other families of numbers to be investigated. Expanding in two dimensions,

there are pentagonal, hexagonal,. nurmbers. Expanding in three dimensions, there are

multi-layered rerrahedral, pyramidal, ... numbers. An excellent book on the subject is

Mathematics for the Million by Lancelot Hogben. The student can'develop both free-form

and recursive formulas for all of these numbers with shapes.

Cryptolovg

Introduction to CrvCtolov

Ciphers, or secret messages, have been sent among people since antiquity. While the

need for secret communication has traditionally occurred in both diplomatic and military

affairs, electronic advances have prompted secrecy in areas such as banking and sports.5 9

The following terms should be defined since they will be used throughout tEis

discussion on cryptology. Cryptology is the study of secrecy systems+ Plaintet is the

message that will be altered and will be denoted by "P". Ciphertext is the altered text and

will be denoted by "C". The key is the transformation to be used.: Enciphering is the

process of transforming P into C. Deciphering is the process of transfnormng C into P.

The following ciphers represent only a few of the many ciphers in existence. In fact,

the student may want to design a cipher that can be used among friends. The ciphers will

appear in order of increasing complexity.
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Types of Ciphers

The first type of cipher to be studied is the simple shift cipher. 0 The enciphering key

is mathematically expressed as C = P + k (mod 25). To encipher, group the letters of the

plaintext into groups of five. The purpose of this is to prevent a poteitial eodebreaker from

recognizing familar word patterns. Then, write the number equivalents of the plaintext.

Next, use the shift transformation to find the number equivalents of the ciphertext Finally,

translate the numbers into the ciphertext.

Specifically, if k = 6, then the following relation is shown between the plaintext and

the ciphertext.

00 01 02 03 0405 06 07 0809 10 11 2 1 1 4 15 16 17 18 19 20 21 22 23 24 25
plaintext: AB CD E F HIJKLMNOP QRS TU V W X Y Z

06 07080910 11 12 13 14 1516 171 19 2021 22 2324 250001 02030405
ciphertext: GH I K L M N O P Q R ST U V W X YZ AB CDE F

For example, encipher the following message using the transformation C = P + 6

(mod 25).

TIS IS A SIMPLE SHIFT CIPHER.

Breaking the plaintext into groups of five letters gives:

THISI SASIM PLESH IFTCI PHER:

Convertig the plaintext into number equivalents yields

1907081 08O 18 00 180812 15110418 07
08 05 19 02 08 15 07 04 17.

Using the transformation C = P + 6 (mod 25) yields

25 13 14 24 14 24 06 24 14 18
1411250814 21 1U

21 17 1024 13
10 23.

Translating into the ciphertext results in

ZNOYO YGYOS VRKYN
OLZIO VNKX.
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To decipher, use the inverse transformation P = C - 6 (mod 25), and reverse the above

procedure in order to change the ciphertext back into the plaintext.

Another type of cipher is the cyclic shift cipher.61 Here, a number called the key, is

repeated in order to transform the plaintext into the ciphertext. The mathematical

expression for this procedure is C,=P, + kn(modM) (mod 26) where M is the number of

digits in the key.

An example of a cyclic shift cipher with the plaintext, a key of' 125, and the ciphertext

would be

THIS IS A CYCLIC SHIFT CIPHER
1251 25 1 251251 25125 125125

UJNT KX B EXNNID UMJY DKUIGW.

A more general type of cipher is the affine transformation 62 which ca be expressed

mathematically by C - aP + b (mod 26). It is required that (a,26) - I so that as P runs

through a complete system of residues modulo 26, C also does. Note that when a = 1 and

b = 0, a simple shift cipher results. The inverse relationship would be expressed by

P a (C - b) (mod 26).

As an example, let a = 7 and b = 10. Then, the enciphering equation would be

C = 7P + 10 (mod 26), and the deciphering equation would be P 15(C - 10) (mod 26),

since 15 is the inverse of 7 module 26. The student should now construct a table, using

these parameters, similar to the one conustmted for the simple shift cipher.

Problem: IF a - 7 and b - 10, encipher the plaintext given by:

PLEASE SEND MONEY.

Solution: LJMKG MGXFQ EXMW.

Problemn If a - 7 and b = 10, decipher the ciphertext given by:

FE XEN XMBMKJ NHM GMYZMiN.

Solution: DO NOT REVEAL THIS SECRET.
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Exponential ciphers were invented by Pohlig and Hellman in 194S. 63 Let (k, p - I) -

1 where k is the enciphering key and p is an odd prime. Then, the enciphering equation is

C - P k (mod p), and the deciphering equation is P = CJ (mod p) where i is the inverse of k

modulo (p - 1).

For example, let p = 2633 and k = 29 so that (k, p - 1) - (29, 2632) - 1. Let the

plaintext be THIS IS AN EXAMPLE OF AN EXPONENTIAL CIPHER, Then, the letters

are converted into their numerical equivalents in blocks yielding:

1907 0818 0818 0013 0423
0012 1511 0414 0500 1304
2315 1413 0413 1908 0019
0814 1302 0815 0704 1723.

The two digits 23 (correspondiDg to the letter X) were added to the end ia order to fill out

the message.

Next, convert the plaitext number equivalents into the ciphertext number equivalents

using C = P9' (mod 2633), which gives:

2199 1745 1745 1206 2437
2425 1729 1619 0935 0960
1072 1541 1701 1553 0735
2064 1351 1704 1841 1459.

To decipher using k = 29 and p - 2633, the inverse of 29 (mod 2632) is found using

the division algorithm as in the section on congruences. Thenj, the inverse of

k (mod 2632), is found to be 2269. Then P = C 2632 (mod 2633).

Finally, public key cryptology, invented by Rivest, Shamir. and Adleman, involves

transformations which are made public.6 The key is (k,n) where k is the exponent and n is

the product of two large primes such that (k, j (n)) = 1. The enciphering key can be made

public because an unreasonably large amount of compruer time would be required to find

the deeiphering transformation. The Euler function, O(n), is defined as the number of
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positive integers not exceeding u which are relatively prime to n. Knowing that

¢(p) -p 1 if p is prime, and that 4(mn) = @(n) ¢(m) if m and n are relatively prime, it

follows that P = Ck (mod n) and C = PJ (mod n), where k and j are inverses modulo ¢(n).

For example, if the two primes are 43 and 59 (these are much smaller than the primes

that would normally be used), and ifk = 13, then n - 43 x 59 - 2537, (13, 42 x 58) = 1,

andj equals the inverse of 13 (mod o(2537)) = 13 (mod 43 x 59) = 2436. After applying

the division algorithm, it is found thatj - 937.

Using this information, the student should encipher the following plaintext:

PUBLIC KEY CRYPTOLOGY

The ciphertext becomes:

0095 1648 1410 1299
0811 2333 2132 0370
1185 1457 1084.

Two useful references on cryptology are Elementary Numrbe Theory by Kenneth H.

Rosen and Mathematics--Its Maiec and Mystery by Aaron Baksr. These references also

deal with looking for patterns in order to break codes.

MysticArrays

There seems to be no particular point in time when magic squares were first noted.

According to legend, a tinle was found with a magic square on its shell many centuries

before the birh of Christ. The Lo Shu 3 x 3 magic square was known around 1000 B.C.65

A magic square is magic when the sum, called the magic constant, of all of the rows,

columns, and diagonals is the same. A 3 x 3 magic square contains nine different integers;

the simplest would contain the integers one through nine. The magic constant of this

simplest of magic squares is fonwd by summing all of the integers and then dividing by

three. Using the formula for the sum of an arithmetic progression yields, (1 + 2 +...

9)/3 = (9)(10)/2/3 - 15.
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There is only one basic 3 x 3 magic square although eight patterns can be produced by

making the appropriate rotations and reflections of the basic pattern. The method of

construction of a 3 x 3 magic square, called the de la Loubere method66, proceeds as

follows. Write the digit 1 in the top Center cell and continue to write consecutive integers, if

possible, in a right-upward diagonal path. When the top row of cells is reached, enter the

next digit in the bottom row, one column to the right This is called the "knight move".

When the right column of cells is reached, enter the next digit in the left column, one row

up (the knight move). Neither of the first two maneuvers is possible if the top right cell is

reached. When this occurs, write the next digit in the cell directly below. This is called

"dropping down", Also, if a cell is occupied, then drop down.

FIGURE 6

A 3 x 3 Magic Square

In the above figure, after 1 is entered in the top center row, the diagonal path is

impossible. So 2 is entered using the knight move. Since 2 is in the right colomniu, 3 is

placed using the knight move. Now, the diagonal path is blocked, so 4 is positioned by

dropping down. The diagonal path is opened for 5 and 6, but then 7 must be entered by

dropping down, since the 6 is in the upper right comer. Finally, the 8 and 9 are placed by

using the knight moves.

All odd-order magic squares ca be constructed using the technique described above.

The student should attempt a 5 x 5 and a 7 x 7 magic square remembering to follow an

upward-right diagonal path whenever possible.

8 1 6

3 5 7

4 9 2
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Even-order magic squares are quite a different story. The sum of the rows, columns,

and diagonals is equal to (16)(17)/2/4 = 34. The general method of construction is credited

to de la Hire.e7

Starting at the top left cell with the number 1, and working left to right while counting

to 16, place the numbers only in the cells through which the main diagonals pass. This will

give:
1 . . 4
*67
* 1011-
13- - 16.

Now, go back to the top row and fill in the missing numbers starting with 16 and

counting backwards. The completed square will look like:

1 15 14 4
12 6 7 9
8 10 11 5

13 3 2 16.

There are exactly 880 different 4 x 4 magic squares, ignoring rotations and mirror

images. The earliest recorded fourth order square, shown below, is shown i Diirer's

famous 1514 engraving known as Melanchoiafi.

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

FIGURE 7

A Diabolic Magic Square

This square belongs to a special class called diabolic squares of which there are 48 basic

types. 69 All the rows, columns, and diagonals add up to 34, just as in any ordinary 4 x 4

magic square. However, the four corer squares (16, 13, 4, 1) and the four center squares



78

(10, 11, 6, 7) also add up to 34; so do the opposite pairs of squares (3, 2, 15. 14 and 5,

9, 8, 12), as well as the slanting squares (2, S, 15, 9 and 3, 5, 12, 14). Also, the four

corner blocks (16, 3, 5, 10; 2,13,11,8; 9, 6, 4, 15; and 7, 12, 14, 1) each sum to 34.

The sum of the numbers in the first two rows equal the sum of the numbers in the last

two rows. In addition to this, the sum of the squares of these rows is also equal. Thus

16+3+2+ 13+5+ 10+11+8=
9+6+ 7+ 12+4+ 15+ 14 +1 =6

and
16+ 3 + 22+ 132 + 52+ 102 + 112+ 82-
99 + 6 + 72 + 122 + 42+ 152+ 142 + 12 - 74.

Additionally, the sum of the numbers of the alternate rows (first and third, second and

fourth) and the sum of the squares of these numbers also add up to 68 and 748,

respectively.

The same patterns can be shown for the colunors. (The student should check this.)

Furthermore, the sum of the numbers in the diagonals equals the sum of the numbers

not in the diagonals; the same can be said for the sums of the squares and cubes of these

numbers. Thus:

16+10+7+1 +4+6+11 + 13=
5 +3 +2 + + 12 + 14+ 15 + 9 68, and

16O+ 10 +72+ 12 +42+62+ 112+ 132=
52 + 32 + 22 + 82 + 122 + 142 + 152 + 92 = 748, and

163 + 10 3+ 73 + 13 + 43 63+ t + 13 -
53 + 33 + 23 + 83 + 123 + 143 + 15 3 + 93 - 9248.

Note also that the sums of the numbers in the opposite slanting cells, their squares,

and their cubes are equal. Thus:

2 + 8 + 9 + 15 = 3 + 5 + 12+ 14- 34, and

22 + 2 + 92 + 15 3+ 52 + 122 + 142 = 374, and

23 + 3 + 9 + 153 - 33 + 53 + 123 + 143 = 4624.

Finally, the date of the painting, 1514, can be found in the bottom row of the square.7
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The student is encouraged to investigate 6 x 6 and 8 x 8 magic squares. Information

on the methods of forming these mystic arrays can be found in the following booksT

Mathematical Dive. n by J. A. H. Hunter and Joseph S. Madachy, Mathematical

Puzzles and Diversions by Martin Gardner, and Fun with Mathematics by Jerome S.

Meyer.

Root Extraction

Extracting Square Roots

The operations in finding the square root of a number without the use of a calculator

are based upon principles found in algebra.7 The root is represented by a binomial of the

form a + b with a an integer and b the remainder. The square is of the form a2 + 2ab + b2.

The integer a is found by successive approximations. To illustrate, find the square root of

207,936.

456
20 79 36
16
4 79 80
4 25 5

54 36 85 900
54 36 6

0 906

1. Divide the number to be squared into groups of two digits each, from right to left

2. Find the largest perfect square that is less than or equal to the first group (20). Write

that perfect square (16) below the group and its square root (4) above the group.

3. Subtract the perfect square from the first group, then bring down the next group to

make the first remainder (479).

4. In a separate memorandum column to the right, double the quotient, thus far, and add

one zero (80).

5. Now, estimate the digit (5) that must be added to the memo number (80) so that when

the resulting sum (S5) is multiplied by that digit (5), the product (425) will be the
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largest possible without exceeding the first remainder (479), Wrte this digit (5), when

correctly estimated, as the second digit of the quotient.

6. Write the product just found (425) under the first remainder, subtract, ad bring down

the next group of two to form the second remainder,

7. Repeat steps 4, 5, and 6 until all of the groups are exhausted. If the original number is

not a perfect square, maTk the decimal and add as many zeros, in groups of two, as

needed for desired accuracy.

In order to see why the algorithm works, recall that the square of a number is of the

form a2 + 2ab + b2, while the root is of the form a + b, with a being the integral part of the

root andb being the remrinder. Then, when 4 was written as the first digit of the root, the

implication was that a = 400. When a2 was subtracted from the original number, the

remainder was of the form 2ab + bt, which is treated as b(2a + b). It can now be seen why

a was doubled and added to b, the sum then being multiplied by b.. (Incidently, the 80

written in the memo is really 800, but the zero is dropped for convenience.)

Having completed these operations, the new quotient becomes a new a, and then a

new b becomes the next digit of the root, and so on.

Extracting Cube Roots

The operations in finding a cube root are based on similar algebraic principles. 72 The

number is of the form a3 + 3a 2b + 3aba + b3 while the cube root is of the form a + b. To

illustrate, find the cube root of 76,765,625.

4 2 5425
76 765 625
64 4800
12 765 240 529200
10 088 4 6300
2 677 625 5044 25
2 677 625 535525

0
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1. Divide the number to be cubed into groups of three digits each, from right to left.

2. Find the largest perfect cube that is less than or equal to the first group. Write that

perfect cube (64) below the group and its cube root (4) above the group.

3. Subtract the perfect cube from the first group, thea bring down the next group to make

the first remainder (12765).

4. In a separate memorandum column to the right, triple the square of the quotient, thus

far, and add two zeros (4800).

5. Now, estimate the digit (2) whose square (4) must be added to the sum of the memo

number (4800) and the product of three times the quotient thus far (4) times the digit

(2) with a zero added (240), so that when the resulting sum (5044) is maltiplied by

that digic (2), the product (10088) will be the largest possible without exceeding the

first remainder (12765). Write this digit (2), when correctly estimated, as the second

digit of the quotient.

6. Write the product just found (10088) under the first remainder, subtract, and bring

down the next group of three to form the second remainder.

7. Repeat steps 4, 5, and 6 until all of the groups are exhausted, If the onginal number is

not a perfect cube, mark the decimal and add as many zeros, in groups of three, as

needed for desired accuracy.

In order to see why this algorithm works, the student should recall that the cube of a

number is of the form a a+ 3a2b + 3ab2 + b3, while the root is of the form a + b, with a

being the integral part of the root and b being the remainder. Then, when 4 was written as

the first digit of the root, the implication was that a = 400. When a 3 was subtracted from

the original number, the remainder was of the form 3a^b + 3ab2 + b3, which is treated as

b(3a2 + 3ab + b 2). It can now be seen why a was squared, and added to 3ab and b2, the

sum then being multiplied by b. (Incidently, the 4800 written in the memo is really the

number 4,800,000, but the three zeros are dropped for convenience.)
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Having completed these operations, the oew quotient becomes a new a, and then a

new b becomes the next digit of the root. and so on.

It is recommended that the student, using the principles of algebra, develop an

algorithm for finding fourth roots without a calculator.
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CHAPTER 5

Summary, Conclusions, and Recommendations

Introduction

A course in mathematics appreciation has been developed using historical research

because a need was perceived for this type of mathematics elective at the senior high school

level. High school students are not typically introduced to many of the topics chosen for

this course. In addition, high school students are rarely exposed to mathematical topics

through a combination of historc, recreational, and practical lenses. Both the topics

chosen and the multifaceted approach in this study are supported by research.

Also, high school students are not normally afforded the opportunity to study

mathematics for its own sake. The topics chosen were selected with the hope that they

would lend themselves toward that end. The philosophy which pervades throughout this

study is supported by NCTM in their Commission on Standards for School Mathematics.

Summry of Findings

The topics chosen for the mathematics appreciation course were found in virtually

every mathematics book on number theory or recreational problems. In the section on

numeration systems, students are introduced to: converting between various bases; adding,

subtracting, multiplying, and dividing in various numeration systems; and two recreational

anecdotes. Various applications to congruence are studied including linear congruence, the

Chinese Remainder Theorem, remainders of large numbers, ISBN numbers, designing

round robin tournaments, digital roots, casting out nines, deriving the divisibility rules of

selected numbers, and an anecdoal problem. Diophantine equations are divided into linear

and nonolnear types including applications such as Pythagorean triples, integers as the sum
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of two squares, and the famous Pell equation. In the study of the Fibonacci sequence, the

student is presented with the concept of recursion as well as the relationship of the

Fibonacci to Pascal's trangle and to nature. The derivation of the golden section is

presented, and its occurrence in geometric shapes and in the Fibonacci sequence is noted.

The properties of imaginary numbers and their application to finding all of the nth roots of a

number are developed. The concept of the exponential function and its representation as a

power series is examined. Students are encouraged to attempt the famous Buffon

experiment dealing with the experimental determination of the value of 7. Perfect numbers

and their relationship with Mersenne primes are studied, along with some curious oddities.

The fact that numbers have shape can be seen by the student as a result of having studied

triangular numbers and their many families. Various types of ciphers are examined, and

the student is encouraged to perform further research on enciphering and deciphering.

Algorithms for both odd and even magic squares are shown, and it is recommended that the

student construct some higher order mystic arrays. Finally, the algorithms for square root

extraction and cube root extraction are explained, and the relationship between the

extraction techniques and the binomial expansion is emphasized.

Conclusions

The frequency of occurrence of the topics chosen in this study appears to indicate their

value. It is the conclusion of the author that these topics will serve to open up a whole new

world of mathematics for the interested high school student. The topics are presented

utilizing an approach to mathematics to which the typical igh school student might not

otherwise be exposed. It is therefore hoped that the mathematics appreciation course will

serve to enhance the repertoire of the serious high school mathematics student.

Recommendations

Each of the topics covered in this study Cei be expanded, depending upon the interest

and expertise of the class. In addition, a mathematics appreciation course such as the one
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presented here could serve as a second semester complement to a first semester course on

number theory at the college level. Also, many of the topics, such as Fibonacci sequences

and numeration systems could prove quite usefol to computer science students because of

their applications to computer programmmag. Finally, because there is approximately one

month available to students after havng taken their advanced placement exams, the author

suggests that advanced placement physics teachers could successfully utilize many of the

topics presented in this course during this time, as well as throughout the school year as an

alternative physics laboratory.
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