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ABSTRACT

Daniel T. Kraft, A Course in Mathematics Appreciarion, 1993, 1. Sooy, Mathemeatics
Educarion.

The purpose of this stdy is to create a mini-course in mathematics appreciation at
the senior high school level.

The mathematics appreciation course would be offered as an elective to students in
the 11th or 12th grade, wha are concurrendly enrolled in trigonometry or calculus.

The topics covered in the mathematics appreciation course include: systems of
nurmeration, congmences, Diophantine cquations, Fibonacel sequences, the golden section,
imaginary numbers, the expenentia! finetion, pi, pecfect numbers, numbers with shape,

ciphers, magic squares, and root extraction technigues.

In this study, the student is exposed to mathematice] proofs, where appeopriate, and
is encouraged to creare practice problems for other members of the class to solve. Also,
arcas for research are suggested so that the shudent may explore, ¢ven more deeply, arcas
which hold s particular interest for that student.

These topics are freated with a three-pronged approach--historical, recreational, and
practical. It is the anthor's contenton, supported by research, that this approach, alomg
with B choice of topics, will assist ia developing and enhancing the mathematics potential

of the student to the highest possible extent.



MINJ-ABSTRACT
Daniel I. Kraft, A Course in Mathemarics Appreciation, 1993, I. Sooy, Mathematics
Education.
The purpose of this study is to create a mini-course in mathematics appreciation for
11th or 12th grade studenis who are concurrently enrolled in trigon;:-metry or calculus.
The topics in this course are treated with a three-pronged approach—historiczl,
recreational, and practical--which, according to tesearch, will assist in developing and

eohancing the mathematics potential of the student.
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CHAPTER 1
Intraduction to Thesis
Introdugction

In a typical high school course of study, there exists a core curriculnm for sach subject
malter area. In the field of English, studenis typically follow a sequence consisting of
English I, IL, and NT; in the field of science, gmdents are offered ﬁicﬂc:r gy, chemistry, and
physics; and in the Geld of foreign language, students take tiee years of a selected
language. In addition ro the core curricnlum, many shadents are offered the Qpportuty 1o
select supplemental conrses in various disciplinss that enhance the .:v,mdant’s understanding
of the subject matter and offer an aesthetic approach that does not exist in the maipstream
curriculum, For example, courses in English Literature, astmnﬂm}'; or French ¢lvilization
afford the interested student an opporiunity to study topics in a sclected area for the sheer
enjoyment of the subject. Unfortunately, a high school student is l‘larﬁl}' afforded the
opportumity for aesthetic pursuit in the ficld of mathematics.

Backzround,

In the field of mathematics, the courses which normally constimte the high school
core curriculum are algebra 1 and T, geometry, tigonometry, and iI:alculus. In theze
courses, designed to prepare college-bound students for careers in mal;h&matics, srisnes,
and other related fields, topics are cnconntered that develop skills fﬂquiIEd for successful
mastery of higher mathematics. Rarely in the standaed high school curriculum do students
encourter comrses that concentrate solely op the historical development, mathewmarical

derivation. or assthetic treatmeni of these topics.



Statement of Problem

The purpose of this study is to create a minf-course in mathematics appreciation at the
sepiar high school level.
Significance of the Problem

Because of the dine constraints mposed by the scope and sequence of the
aforementioned core courses in mathematics, the student is not afforded the opporfunity to
study ancillary topics such as pi, the golden ratio, magic squares or Pythagorean trples in
great detail. A course in mathematics appreciation would enable the student to pursue many
of the historical and culreral agpects of mathematics associated with these topics. While the
sore conrges in mathematics provide the student with what counld be called "vertical
develapment”, & course in mathematics appreciation would provide the stident with the
opportunity for “horizonatal development.” An example of rhe impcértance assigned to the
philosophy behind such a corse can be found in the description of {he mahematics
eurricilum at Holy Family College in Philadelphia, which states: *“T'o help mstill an
appraciation of the natural origin and evolutionary growth of the basic mathematical
ideas."1

And in the book, Nwmber; The Language of Science, Tobias Dantzig supports this
philosophy by stating that “ . . . our school curriculs, by stipping mathemarics of its
cultural content and leaving a bare skeleton of technicalities, have repelled many a fine
mind.”2

Therelore, the pucpose of this study is to create a mathematics clective mtended for
{lange shurents Whe wish to gain an appreciation of concepts not tharoughly developed in
the typical mathematics core curriculum.
Limitations of the Study

The marhematics appreciation course should be offered & an élﬁzﬂti*-"e to students in the

11th and 12¢h grade concuwrently emolled in trigonometry or calculus. The mathcmatics



appreciation course is not intended to replace the mathematics core COUTses, bt rather to
enhance topics which are given only an ephemeral treatment in these conrses.
Procedures

The topics that will be addressed in the mathematics appreciation course will include:
numeration systems, congruence, Diophantine equations, Fibonacct sequences, the golden
section, imaginary numbers, the exponential function, pi, perfect numbers, the shapes of
numbers, cryptology, mystic arrays, and root extraction. These tUpiE:s appear frequenty in
books on namber theory and seem. o be held in high regard by the authors. For example,
in his boak, The Mathemarical Traveler, Calvin C. Clawson states, “Then we will fiee our
imaginations and discover the strange transcendental numbers, such as T— numbers so
peculiar that we cannot even write them down.”™

Each of these topics in the mini-course will be treated with a three-pronged approach.
First, an historical background of each topic will be offered in order to enable the reader to
prasp the deeper significance of the subject. The purpose of the historical approach is, as
Kenneth H. Rosen states in his book dealing with number theory, “to emphasize that
nusnber theory has an old and rich, history as well as a modern vitality."+ Secondly,
mathematizal derivations or sugpested activities dealing with the topic will be presented,
many with a recreational approach. This approach is supported by Martin Gardner, who
has written a book designed to stimulate popular interest in mathematics. In his book,
Mathematical Puzzles and Diversions, CGrardner states that “ . . . popular interest in
recreational mathemarics has continued to increase.™ Third, one or more practical

applications of the topic will be suggested so that the student may discover ifs relevancies.



MNoptes
1 Holy Family College, Catalog, 1894-96, 32,

2 Tobias Dantzig, Number: The I.angnage of Science (New York: The
MacMillan Company, 1954, viil.

3 Calvin C. Clawson, The Mathamatical Trayeler (New York: Plenm Press,
19943, 3.

4 ¥enneth H. Rosen, Elementary Number Theory (New York: Addigon-Wesley

Publishing Company, 1988), vi.

5 Martin (Gardner, Mathernatical Puzzles and Diversions (New York: Simen
and Schuster, 1981), 9.



CHAPTER 2
Review of Related Literature
Ingoduction

Research shows that a three-pronged approach (historical, recreational, and practical]
to the teaching of mathematics has a great deal of merit. The various components of this
approach bave been supported by: authors of books dealing with asserted topics of
mathematics; the Commission on Standards for School Mathematics; members of the
educational community; and coniributors to the anmual yearbook publications of the
National Council of Teachers of Mathematics (NCTM. It is also the author's contention
that the utilization of this approach in a mathematics appreciation course wil assist in
develgping and enhancing the mathematics potential of the student to the highest possible
extent.

Review of the Literature

The review of the literature suggests that there is an interest n the relationship between
understanding the history of cerzin mathemarical concepts and the purposes that these
concepts serve. The review also implies that a knowledge of these historical topics can
further enhance the student's interest in the sdy of mathematics.

Mathemarics does not exist in isolation. Historically, mathematics has influenced
many fields and in turn has been influenced by many developments. It is research into
these developments that contributes to the creation of a curriculum based on historical
mathematical concepts. Myron Rosskopf offers that events in history, ranging from the

settlement of the New World to the Industrial Revolution, have contributed to the



development of curricula which sometimes emphasize education and at other times push it
into the backeground.1

In 1962 the Natonal Couneil of Teachers of Mathematics deemed the study of the
history of mathematies important 2nough to create a yearbook, o the use of the history of
mathematics in the teaching of mathematics, The anthors proposed that the curriculum
should include topics of significant valne for all grade levels and that i showld enconrage,
“the teacher or the sudent to do further reading or study in the same or related topics.™?
They further expressed “hope that this will increase the interest of the students in
mathematics and their eppreciation for the cultural aspecis of the su;bject.”ﬁ

One of the dangers of teaching mathematics in isolation was e:;:pressad by Jacques
Rarzun (Teacker in Americs) whe states, “I have more than an impression—It #mounts to a
cerlainty--that alsebra is made repellent by the unwillingness or inability of teachers to
explain why. . . . There i8 no sense of history behind the tcaching, fsa the fzeling is given
that the whole system dropped down ready-made from the lcies, to be used only by born
jugglers.™ :

Anather reason for 2 teacher to adopt the tistorical approach is that situations are
created which afford the students the opportunity for discovering the relationship between
the concrete and the abstract on their own. A sufficiently conczers and detailed tracing of
the history of the development of a generalized idea is one of the best ways to [each an
appreciation of the nature and role of ganeralization and absiraction.™

The pancl of the NCTM cations that a proper belance berween the aistorical approach
and the modem curriculum should be maintained. “The important thing is neither 1 trow
our all that is old nor to add whatever is new but to develop and pass on to our sradents
new syntheses of old ideas and systems as well as to ntrodnee new concepts and syslems
that are appropriate. Insight into the developmeant (history) of idea:s can serve Lo Iiprove

hoth the curtculum maker’ s cholees and the teacher s power (o commuricats insights and



stimulate interest.”6 Tom Kieren appears to agree when he observes that although current
society learns from the past, it does not necessarily do new things with the same topics, but
it certainly does things in a different way. The process has been an evolution which has
taught people to value the past.”

In 1986, the Boasd of Directors of NCTM established the Conmission on Stapdards
for School Mathematics. The Standards is a document designed to establish a framework
for schaal mathernatics and to defexmine what the mathematics cuirieutum should include in
terms of emphasis and priodty. Through this documnent, the NCTM panel has encouraged
educators “to focus attention on the need for student awzreness of the interaction between
mathemarics and the historical situations froga which it has developed and the inepact that
interaction has on our culture and our lives.”$ This panel also advoc.:ates mathematics as a
conceniration which can contribute to the better understanding of many other disciplines
and content areas. The contributors believe that this method of approaching mathematics
will “enhance the students’ self-concepts as well as their attitades toward, and interest in,
mathematics.” 18

The standards of the NCTM call for three key fiems to be examined ir all grade levels
of mathematics: “communicaiing, connecting, and valuing mathematics. History allows us
to study all three.”11 It is 2 way to hummanize the smdy of numbers. It allows students to
see relevancy and therefore, perhaps, to become interested in the study of mathematics and
to want to investigate further. The excilement created car only enrich the study of

mathematics. 12
As important as it is to consider the past when developing a regimen for the present, it
ig also necessary to contemplate the future. Robert $wain, in his article Modern

Mathernatics and School Arithmetie, exhorts the educator to take a serious look at what the

future of mathematics may held and to plan accordingly. He sees possible attention being



civen to such topics as Diophantine problems and modular arithmetic. He hopes that
students will thinl of mathematics as a funetional tool, a3 well as an end in irssif 13

‘When one is considering the creation of a high school mathematics curmculum, it 15
necessary to keep in mind the values which the different areas of mathematics possess.
Thege vamas may Includs, bt not be limited to, the vse of mathematics in the foture, the
merits of mathematics in other fields, and mathematics for its own salce. Cain, Carry, and
Lamb guggest that each high school mmst select those goals, Valuﬁ; and prioritics that are
valid for itself. They believe that mathematics for its own salke would target approximately
the top 10 percent of the student population. These are the students who would benefit the
mogt front expansion inta such an area of marhematics. 14

The needs of these students must be addressed. The recreational approach could prove
to be an effective way to meet these needs. “Teaching so that students understand the
‘whys,"” raching for meming and understanding, teaching so that children see and
appreciate the nature, tole, and fascination of mathematics, te:achjng so that students know
that men are still creating mathematics and that they o may have the thelll of diseovery and
invenrion--these are ohjectives etermally challenging, ever elusive.”13

In the core cumriculum, the student is often faced with a great déal of tedium in an
atternpt to.master the curriculum. In the proposed mini-course in niathe-matics appreciation,
the student wonlkd he affarded the opporhmity to experience the recreational approach. Jan
Molos writes in The Edncation Digast that students #re not able tq maturs in mathematics
sulficiently if they have a steady diet of ondy rote leaming of immmbers. They lack a varietal
approach which wonld rend to stimulate them to go further in their mathematics study.
They need to experience their own sirategies and discoveries, both the sucoosses and the
Tailures. "They never experience the acsthetic high of Inventiog l:hcalﬂrﬁ:ms or get to axplam
and defend the problem-solving strategies. Simply put, they neithér do nor experience

much mathematics.”16



The study off the: history of warhengatics aud the development of differcnt muber
systems assist in illustrating the rzlationship between mathematics and the practical world.
There are thase who draw a connection between mathematics and the worlds of music, art,
end seience. 17 I mathematics is an art, some appreciation of this fact, and of the relation
of mathematics to the world of physical reality, can be as much a part of the liberal
education of a doctor, lawver, or average intellizent citizen a3 s some appreciarion of the
humanities.”18

The relationship batween mathematics and the real world should enable the student to

appreciate the value of mathemadcs. In her review of Street Mathematies and Sehool

Marhematics, Wendy 1.. Millroy states that there has long been a fascination with the
relationship hetween the mathematics learned in the schools and that which is used ourside
the confines of the sehoal 19

Others have felt strongly about the relationship between mathematics and the real
world. In his review of an 1811 marhematics texthook, Frank 1. Swetz points out the
ermphasis on the practical applications of mathematics. The text stresses the importance in
the society of the day of doing arithmetic and solving problems, 20

The penel of the NCTM cautions that the connections between the shdy of
mathematics and the applications to the practical world are not always obvious nor always
expected. Itis the reacher’s tagk to assist the smdent in determining these connections. 21

‘Therefore, currieninm davelopment and revision can be a very difficult task. Koeno
Grravemeijer suggests that “compiling a curmiculum is comparable to solving a jigsaw
puzzle, akin (o taking pieces of history to lorm a coberent whols in, the present, with
passihly a new perspective."22 Once the philosophy of the curricilum has been

determined, the next task is 1o determing which taples shoald be included for study.
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CIIAPTER 3
Procedures

Intreduction

The selection of the fallowing topics for the mathematics appreciation course is a result
af their inclusior in numerous books on number theory and other b?‘ﬂnches of mathematics.
Additonal testimony to the importanee of these topics i provided hy numerous articles
written by the mathematical community and found in publications such as those wrifien by
the National Council of Teachers of Mathematics. The student ¢nrofled in the mathematics
approciation course will be afforded the opportunity to view each of rhe selected topics
through historical, recreational, and practical lensce.
Procedure

The: following topics have been sclected for inelugion in the mathematics appreciation
course along with the rationale [or their selection.

Numeration Systems

The first topic in the mathematics appreciation course will involve various systems of
numeration. Working In different numeration systems involves the uge of inductive
reasoning and those psychological abilities that are common to creative thinkers.1 Working
with differant numeration systems, or number bases, will afford the student the opportunity
1o see how a numeral acts in a different number system. By working with various
nurmber hases, a student can gain insight into the value of the decimal system.2

The sindent will be shown the following techniques: converting decimal numbers nto

a diffarent numeration system; converting nezobers of varions number systems into the
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decimal system; performing addition, subtraction, muliplication, and division in
numeration systems other than the decimal svstem; dnd solving an dnecdote wiitten in a
different number ysten.

{.ongruence

“Although congruences form a vital tool In the theory of integers, Ganss recognized
their ntility, also, in showing certain polynomial equations to have no rational roots.™
Clongruence is often applied to happenings of a recurring nature, such as the recording of
time.4 The student will be made aware that madular marhematics 15 encounterad
everywhere in daily life from clocks to calendars.

One of the epplications of congmences is the technique of caﬂﬁng Out pizes. Casring
ont nines is & useful method for checking addition and multiplication aed can lend aceuracy
to a student’s performance.S This property of the mmber nine has been known since
apcient rimes and its discovery led to new questions and inguiries.t Williamn B, Watherbee
pastulates that the Romans were probably the first to use this process, followed by the
Arabs, and eventually the Hindus in their worl with astronomy. Tt was taught early in
America's higtory, disappsaring during the nineteenth century, only to relarn at the
beginning of the twentieta century.? Philip Davis writes that “it remains today as a source
of amusernent, the basis of many number ticks involving large numbers, and a fine
intraduction to a part of mimber theory lknown as the Theory of Residues,™s

Other techniques will include: solving linear congroences; applying the Chinese
Remainder Theorerm; finding remainders of large nurchers; designing a round robin
reurnament; understanding ISBN numbers; and discovering the theories hehind divisibility
T&SES.

Diophariine Equations

1. A. H. Humter and Joseph 5. Madachy, describing Diophantos as the most famous

(Greek marhematician of his day, state that his methods for solving these types of probiems
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“were centuries in advance of the general level of mathematical knowledse of those
days.”? Kenneth H. Rosen also makes a ¢age: for the learning of these equations.
Solving Diophantine equations will enhance the student’s algebrair::' skiils as well a3
reinforce the sindent’s ability to solve systems of aquations. 10

The: student will study both linear and nonlinear Diophantine equations. The use of
congruences, which will bave been studied n the previous section, will facilitate the
solving of linear Iophantine equations.

Nonlinear Diophantine equations will also be solved, and some of thelr applications
will be examined. One such application includes the study of the Py‘thagnrean triples, or
finding solutions o the equation x2 + y2 = 72, James Fey reports that Pythagoras was not
the first person to smcy these triples; he states that the Babyla:ﬁans also used them. 11
Knowledge of their inner workings wasg extremely helpfil in the constroction of
bulldings.1? “These integers have, in modern times, led to many discoveries in number
theory and also to many perplexing problems, some of which still await sobitions, ™13

Other applications of nonlinear Diophantine equations will include integers which can
be expressed as the sum of two squares (x2 + y2 = 2) and the famons Pell equation.

Fibonacei Murmbers

Jerome 5. Meyer attests to the “fascinating features”14 of these mmbers. An
understanding of this series will lead to 2 great comprehension of a certain aspect of
botany—the arrangement of leaves on a stem.15 There ig algo a connection berwesn the
Fibonacci sequence and the golden section as well as with other branches of mathematics,
such as random numbers, primes, and factorization propertics. 16 |

The Ciolden Sacton

This has probably heen known even before the time of the Gﬁ&k&_ The solden

rectangle represents the acstiretic and artistic properties of this ratio,)? The name phi,
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sometimes used to represent the golden section, was selected by an American who chose it
because it represented the first name of the Greek who used the ratio in his sculptire.18

The student will leamn that the gdlden ratio, or golden section, is the only number
which is transformed into its own reciprocal by subtracting the nubar one.1® The student
will also study the occurrence of the golden section among the sides and diagonals of a
regular polygon.

Thes Tmaginary Numbers

The imaginary numbers are vital in their role with complex numbers and finction
theory. “Tmaginaries are useful and essential to the development of mathematics and
developed from the logical extension of certain processes.”?? “The imaginary number, i,
plays a vital part in higher mathematics, physics and, particnlarly, theoretical electricity.™?!
The core curriculum will then be reinforced by the high school student’s exposure to
imaginary numbers in a marthematics appreciation course.

The Exponentizl Function

Using nonalgebraic numbers, work with hyperbolic logarithrmas by such scientists as
Jokn Napier, John Speidell, James Gregory, Newton, and [ eibniz led to the identification
of these numbers.22 T.eaming how to facilitate these compntations may encourage students
in their own searches for ways to utilize these numbers. Edward Kasner and James
Newman allow that “one of the froits of higher edueation is the lluzminating view that a
logarithm is merely a number that is found in 2 table. We shzll have to widen the
curricizhim. 23 “Besides serving as the base for the natural logarithms, the exponential
function, &, is a mumber usefinl everywhere fn mathematics and applied science. No other
mathematical constant, not even ®, is more closely connected with human affairs than e, It
has helped to do one thing better than any number yet discovered. 1t has played an integral
part in helping mathematicians describe and predict what is for man the most important of

all narural phenomena--that of growth,”24
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Pi

Kasner and Newman ask why so much time has beer devoted to pi {r). One reason is
to find a clue to its transcendental nature, while a second “the fact that &, a purely geometric
ratio, could be evolved ont of so many arithmetic relationships--out of infinite series, with
apparently little or no relarion to geornetry--was a never-ending source of wonder and a
never-ending stimuolus to mathematical activity.”25 James K. Bidwell, in an article about
Archimedes, reminds the reader that this great scientist, who dﬂscribed ¢, Wrote
mathematics in a style that is sill very readable today.26 The applications of & are so
nimerous thar one can hardly doubt the value of studying the properties of T in a course on
mathematics appreciation.

Perfect Num

“Perfect numbers are not useful in the construction of borzbs. In fact, they are not
useful at all. They are merely interesting, and their story ig an intefesting one."27 There is
roach that remains to be discovered about the development of perfect numbers. Students
will be encouraged to pursue conjectures not yet proven, such as the search for an odd
perfect number.

Nrmobers with Shape

Fermat used the principles of these numbers with shape in the summation of certain
series. 28 Some of these numbers of shape include triangular numbers, squrare nombers,
and oblong numbers. Like perfect numbers, these nuwmbers of shape contain many
unusual properties which the student will be eneouraged to pursue.

The history of the world changed because of the use of ciphers, or codes. Codes
range from the very simple to the extremely complex and almost iapossible to decode.

Codes can use gither letters or numerals.2® Kenneth H. Rosen mentions the impartance of
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ciphers with respect to number theory.3 By working with ciphers the student will gain
experience with prime numbers and deductive reasoning,

Magic Squares

Thage are prohably of Chinese origin and still have a conneciion with mystcism in
Asian countries. In Durope they were connected o alchemny and astrology. They have
been applied 1o problems in probability and anelysis and most recently in the design of
experiments.3] Agricultural research has benefitied from the application of certain magic
sguares, 48 has atomic research, marketing research, and sociclogy.® “Magic squarcs
brilliandy reveal the iatrinsic harmony end symmetry of numbers; with their curious and
[mystic charm they appear to betray some hidden intelligence that governs the cosoe order
that dominates all existence. They have been compared (o 2 mirror reflecting the symmery
of the universe, the harmonies of pature, the divine norm. It is not surprising that they
have always exercised a great influsnce on thinking people.” “The beavry of magic
squares is they can be used as simple recreations or they can be studied mathematically.
They can find a place in the enjoyment of children as well ag the mathematical inspections
of adults.™™ Students in the mathematics appreciarion conrse will practice both odd and
EVen Magic squares.

Koot Extraction

oot extractions enable the smdent to better visualize binomial expansions. "It is
worthwhile to understand the why and the wherefore of these aperations.23 Tn the
proposed mathernatics course, students will be practicing the solutions to square roots and

cube roots without the vae of a calenlator,
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CHAPTER 4
A Course in Mathematics Appreciation
Introdietion
Mathematics appreciation is an elective course designed for the 11th or 12th grade high
school student who has an interest in mathematics. The student must have successiully
completed courses in algebra I algebra [ and geoxoetry 1o order to enroll in the
marhematics appreciation course. In addition, it is highly recommmended that the student be
concurrent]ly enrolled in a trigonomeiry or calculus course, depending on the student’s
grade level. The mathematics appreciation course is designed o be nine weeks in length.
The Topics
There are thirtean topics, with each topic providing the smadent with severzl days of
mathematical investigation. The classroom teacher is encouraged to assign problems o the
class according to the ability and interest level of the class.

Nurneration Svaterms

Introduction

Various civilizations have used number systems other than the decimal sysiem (base
ten), such as the base sixty system of the Babyloniang or the base twenty system of the
Mayan Indians.! The numbers will be written with subscripts representing the base, so

that 35, will be read as “thirty-five base eight”.

Counring
In the oclal systemn (base eight), only the digits zere through seven are used. Countng
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from one to one-hundred in base eight is done as follows: one, two, . . ., siX, seven, ten,
eleven, . . . , sixteen, seventeen, twenty, twenty-one, . . . , twenty-six, twenty-seven,
thirty, . . ., seventy, seventy-one, . . . , seventy-six, seventy-seven, and finally, one-

bundred. Since there is no eights digit in base eight, the number seven is followed by ten,
and the number seventy-seven is followed by one-hundred. Notice that there are eight (81)
integets from one through ten in base ¢ight, and that there are sixty-four (8%) integers from
one through one-hundred in base eight. .

“If we had twelve fingers instead of ten, we would tend to count objects in gronps of
twelve.™ It could also be argued that a base twelve number system would be better than a
base ten number system, since twelve has more divisors than ten. Sinee twelve digits are
required in base twelve, two additional digits T (called dek) and E {caﬂed el) must be
included. Counting from ¢ne to one-hupdred would be pexformed as follows: one, two,
..., cight, nine, dek, &l, twenty, twenty-one. . . . , twenty-eight, 'twenty-ninc,
wwenty-dek, twenty-el, thirty, . . . , ninety, ninety-one, . . . , ninety-eight, ninety-nine,
ninety-dek, ninety-cl, dekty, dekty-one, . . . , dekty-nine, dekty-dek, dekty-¢l, elty, elty-
one, . .., elty-nine, elty-dek, elry-el, and finally, one-homdrad. Notice that there are a
total of one-hundred and forty-four (122) numbers from one through one-hundred in base
twelve, :

Converting Between Number Bases

A base eight nurmber is converted to a decimal number by 1.1sir11:§,r expanded notation in.
powers of eight.

Problem: Convert 254, to the decimal system.

Solution:

25 =2 x B+ G x8H+ @ x 89
=2x6D+GxN+AExD
=128+40+4
= 17210.

Therefore, 254, = 1724;.
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To convert from decimal (o octal, Iind the highest power of eight which is not greater
than the decimal number, and then divide thar highest power of eight into the decimel
number. The quotient is the first digit of the ocral number. Dvide'the next highest powear
of eight into the remainder. This will yield the next digit of the ocral. Repeat the process
untl eight to the zero power is the last divisor te be used.

Pyroblem: Convari 172, into the base aighr number sygiam.

Solution: Since 8* =512 is larger than 172, & is used for the first division.

172 /64 =2 (remainder 44),
44 /8 =5 (remainder4).
4/1=4 (remainder 0).

Therefore, 172, = 254;.

The ocral system (base eight) is useful because of the ease of conversion between it
and the binary system (base two). The binary system is used by computers since that
system consisis of the digits zero and one, and all numbers can be represented
electronically by switches where one is “on” and zero is “off*.} Counting from one to one-
hundred would be done as {ollows: one, ten, eleven, and one-hundred. Note that there e
two-squared or four numbers from one to coe-hundred in the binary system, Conversions
between basz two numbers and decimal mumbers are accomplished by using the same
methods as outline above.

Problem: Copvert 110015 imio decimal form.

Solation:

11001 =(1x29+ 1 x2+0x 2+ (0x 29+ (1 x20
=(Ixt@)+{(1xZ+0xd+Ox2)+{1x1)
=16+58+0+0+1
=255

Therefore, 11001, = 25,,.

Problem: Convert 25y, into binary form.



24

Selution:
25716=1 (remainder 9};
/8 =1 {ramainder 1),
1/4=0 {remainder 1);
1/2=0 {remainder l};
1/1=1 (remainder ).

Therefore, 25,7 = 11001.,.

Problem: Caonvert 2TE,, into decimal form.

Solution:
STE,=3x 120 +(Tx 1213+ (E x 129
=(3x 14D+ 0x ID+{I1x 1)
=432+ 120 + 11
= 3030
Therefore, 3TE;, = 563,.

Problem: Convert 563, into base twelwve.

Solution:
5263 /144 =3 (remainder 131),

131 /12 ="T (remainder 11},
11/ 1 =% (rcmainder ).

And s8¢, 363, = 3TE .

The hexadecimal (base sixteen) system is in computers becausé of its relationship of
sixteen (two to the fourth power) to the number two. Since the hexadecimal BVELCIN USES
gixreen digir, Zera throngh fifteen, computer rogrammers commdnly nse the letters A,
B,C,D,E, and T as the extra digits.*

Two examples of the cage of eonvergion between the hexadecifnal and binary systems
are hased on the principle that one hexadecimal digit 1s equal to four binary digits.

Problem: Convert 4AE, to binary.

Solution:

4= 0100,

A= 1010,

E=1110.
So, 4AE|; = 10010101110;.

Problem: Convert 11101101110, 10 hexadecimal.
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Sohrtign: Brzak the binary into groups of four stariing at the right.
0ill =7,
0110 =4,
1110 =E.
Thus, 11101101110z = 76K
Simple Operations in (iher Bagses
The mein reason for stadying numeration systems in bases other tham ten i nat to
learn arbitrary numeration systems, but rather to gain ingight into the sructure of the
familiar Hindu-Arabic decimal system.”
Addition in any pumerical system depends on place value as well as face value.

When a sum has two digits. the left digit is “carried” to the next pogidon. An addition rahle

is helpful although the serious student should be ble 1 perform addtion without it.

TABLE 1
Addition i Base Five
n 0 T 7 3 K
0 0 1 2 3 4
1 1 2 3 4 10
2 2 3 4 10 11
3 3 4 10 11 12
4 4 1¢ 11 12 13

Problemi: Add 433 and 2145,
Solution:

Stepl: 433 3+4=12; write 2 and carry 1.
+214
2

1
Step2: 433 l +3+ 1 =105 write O and carry 1.
+214
02

i

Step3: 433 1 +4+2 =125 wrile 12.
+2 {4
1202

Therefore, 433, + 214, = 1202..



26
Subtraction is basically the same in base five as in the decimal system. Sometines
“borrowing™ may he required.

Problem: Subtract 2145 from 1202s.

Soluation:
141
Step1: 1282 12 - 4 = 35 (See addition table).
-214 Borrow | from the 2 leaving 1,
3 borrow 1 from the 1Q leaving 4, and write 3.
141
Step2: 1242 4 - 1 =35 (See addition table). Wrire 3.
-214
33
1
Step3: 1202 11 - 2 =45 (See addition table). Write 4.
214
433

Therefore, 1202 - 21445 = 4335,
Multiplication and division in base five are made easier by the use of a multiplication

table. Multiplication in hase five may require "carrying over”. See Table 2 below showing

hase five multiplication.
TABLE 2
Mulriglication in Base Five
X 0 1 2 3 4
U 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 11 13
3 0 3 11 14 22
4 0 4 13 22 .31

Problem: Multiply 345 times 425

Solution:
1
Step 1: 34 2x4=13s Write 3, canry 1.
x 42
3



27

Step 2: 2x 3+ 1 =12 Write 12.

]
U
ko

e
[ v

4 X4 =31, Write 1, carry 2.

R ~ O SV

Step 3:

et
da

J—
L

Step 4: 4% 3+ 3 =305 Write 30.

b g = el

=
| v =

[P

—N

— b3
L8]

Step 5: Add.

B
)
By

el =
(Y] —
[FY]

3
3 3

Therefore: 34: x 42:=3133,.
Problem: Divide 42325 by 3.

Solution: The reasoning in base five is the same as in base ten.
1

Step 1t 3 divides into 4 onee.
Multiply and divide. | .0
—
Step 2:  Bring d the 2 | =
fep 2: ring down the 2. z|l 42302
3 divides inro 12 twice. 3
Multiply and subtract. T 3
11
1
1 2 2
Step 3: Bring down the 3. 3]4232
3 divides into 13 twice. s _

Multiply and subtract.

—L -
-4 ha

—_ i
-l L]

I\Jl
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Step 4: [ring down the 2.
3 divides inio 22 four times.
Multiply and subtract.

|
@ A=
N[
Wil
Wk

o -
o o= M

R R

=

Q

Since the remainder is zero: 4232 /35 = 1214,

A Base Four Story®

An aceantric mathematician, when he died, left a stack of unpublished papers. When
his friends were sorting thern, they came across the followng statement:

*T graduated from college when I was 44 years old, A year later, T, a 100-year-oid
man, married a 34-year-old young girl, Sinee the diffarence in our ages was only 11 years,
we had many comunan interests and hopes. A few vears later we had a family of 10
children, I had a collepe job, and my salary was $1300 a momth. One-tenih of my salary
went for the support of my parents. However, the balance of $1,120 was more than
sufficient for us o live on comforiably.”

How eccentric was the mathemadcian? The student is encovraged to rewrite the
puzzler before reading the explanation balow,

Note thar when 1 wag added to 44, the result was 100. Since 44 is the highest two-
digit numher, the eccentric mathematician must have been using a base [Ive numneraticn
syster. The base five numbers can therelore be converted 1 baga ten numbers as follows:

445 24?251']'4?{50:24]0'

100; =1x5%+0x5 +0x50=25,,

s =3I A5 +4 x50 =19,

115 =1 x50+ 1% 3=y,

105 =1x3"+0x3%=35,
1300; =1 x5 +3x5324+0a5 +0x 5% =200,
(1/10)s =101 2 5' +0x 3% = 1/5,
1120 =1x 5% 4 1x 530 + 2% 50 1 0% 5 = 160y,
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I graduated from college when | was 24 years old. A year later, T, 2 25-year-old
man, married a 19 year old young girl. Since the difference in our ages was only 6 years,
we had many common interests and hopes. A few vears later we had 2 family of 5
children, I'had 4 ¢college job, and my salary was $200 a month. Coe-fifth of my salary
went for the suppart of my parents. However, the balance of $160 was more than
sufficient for us to live on comfortably.”

The student is encouraged to write an unusuzl anecdote in a numeration systern other
than base five or hase tan.

A Bage Two Trck!

Flace nine small snvelopass and 55,11 in chanze on a table. Distribuic the meney in
the envelopes and then annoince that you can hand aver any sum of money up 10 $5.71
without counting the maney. Som=one names $3.46 and yon hand that person certain
envelopes. The person counts the money and finds that

! envelope contains  $2.56,
1 envelope contains  §0.64,
I envelope containg  $0.16,
! envelope contains  $0.08,
! envelope contains  $0.02.

Taotal S3.46.

Again, the student is encouraged to soive this anecdote before .rcading om.

The problem 1s easily solved using (he base (wo numeration svsiem. Recognize that
T+2+4+84 10432 +64 + 128 + 256 =511 and that each of these powers of twa
correspoids to a dollar amonunt digtribtred ameng the nipe envelgpes. Arrenge the
envelopes in the following order.

st 2nd 3rd 4th Sih 6ih 7ih. Bth bl
2.56 1.28 .64 0.32 0.16 0.08 (.04 (.02 0.01

To choose which group of envelopes contains exacily 53,46, simply convert 346
mentally from the d=ctmal system to the hinary system using the methods previousty

discussed. Since, 346y = 101, 011, 010,, choose those envelopes which correspond to



30

the ones in the birary number. Thus, the performer of the trick chooses envelopes 1, 3, 5,
6, and 8 whose sum is equal to $3.46.

Conclusion

Numeration systems have been examined from an historical point of view by
recognizing the different number systems used by different cultures such as the
Babylonians. The anecdotes given above allow the student to apply various number
systemns in & recreational way. Finally, converting from one base to another and
performing simple operations in bases other than base ten, affords the student the
opportunity to make practical use of the place value system inherent in all of the numeration
systems investigated in this chapter thereby increasing the student’s understanding of the
bage ten number system.
Congruence

Introduction

The special langnage of congruences is extremely useful in number theory. The
language of congruences was introduced by Karl Friedrich Gauss in 1801, when he was
twenty-four years old.®

Congruences often arise in everyday life. For example, clocks work on modulo 12 or
24 when measuring hours and modulo 60 when measuring minutes and seconds.
Calendars work on module 7 when measuring weeks and modulo 12 when measuring
months.’

A set of integers can be divided into m different sets called congruence classes modulo

m if all the members of a particular class produce the same remainder when divided by m.

Thus, 7 = 12 {mod 5), which reads seven is congruent to twelve m modulo five, means
that 7 and 12 are in the same congmence class modulo 5 since both yield a rerainder of 2

when divided by 5.
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The five congruence classes module 5 are given by:

-0=-5=0=5=10=... (mod 3)
O=4=1=6=11=... (mod 5)
= f=-3=2=7=12=... (mod3)
.. J=-2=3=8=13=...{mod 3)
. -63—134595145,,,{m0ﬂ5)

Il

Problem: Is 23 =48 (mod 537

Solution: Dividing both 22 and 48 by 3 yields a remainder of 3.

Therefore, 23 = 48 (mod 3).

Problem: Add (9 + 13) (mod 3).

Solution: First add & + 13 to get 22. But 22/5 leaves a remainder of 2.

Therefore, @ + 13 = 2 {mod 3).

Problem: Multply (8 x 7} {med 5).

Solution: Multiply 8 x 7 to get 56. But 56/5 leaves a remainder of 1.

Therefore, 8 x 7 = 1 {maod 5).

The following three theorems on congruence will be stated without proof. The
proots, which can be found in most books on number theory, should be attempted by the

student. These theorems will prove vatuable in the remainder of the congmence section.

If a, b, ¢, k, and m are integers such that k > 0 and m > 0, then:
Theorem 1: If a = b (mod m) and ¢ = d {mod m), then, (& + ¢) = (b + d) (mod m).
Theorem 2: If a =b (mod m) and ¢ =d (mod m), then, (a x ¢} = (b x d) (mod m).

Theorem 3: If 2=1% (mod m), then a* =b* (med m).

Linear Conpruences

A congruence of the form ax = b (med m) is called a linear congruence in one

variable.!! Asking bow many of the m congruence classes are solutions to a inear equation
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18 the same 28 asking bow many incongruent soluiions there are in modulo m. Also, the

greatest commaon divisor of & and b is written {3, b). Leta, b, and m be integers with

m >0 and (a, m}=d. Then, if d { b, then ax =b {mod m) has no solutions. Andifdlh,
then ax = b (mod m) has exact!y d incongiment solitiong modulo m. Below @ four
examples which illustrate various methods nsed in solving linear congrnencies.

Problem: Solve the eguartion 5x =4 (mod 9).

Solotion: Note thar (5, 9) = 1 30 that there is a unique solution modulo 8. The
equation is solved by multiplying both sides of the equation by E, the
multiplcative inverse (nod o) of . Thos, a x a will be equal to 1, and
the equatinn will be solved. In this case, the inverse of 5 is 2 since
2x5=1(mod %). Moliplying both sides of the equation by 2 vields,

Sx=4 (mod 9),
(2HIx) = (2)4) (nod 9).

Therefore, x = & {mod 2}.

Problem: 5Solve the equation 36x = 8 (mod 102).
Solution: Note that (36, 102) =6 F 8.

Therefare, there is no solutdon {modI02),

Problem: Solve the equation 6x = 15 (mod 21).

Solution: Note that {6, 21) =3 115, Thng there are 3 solutions. The process is

simplified by reducing 6x = 15 (mod 21) to the form 2x = 5 (inod 7). The
particular solution is then found by multiplying both sides of the equation
by the inverse of 2 module 7. Thuos,

22 =5 {mod 1),

(4)(2x) = (4)(5) (mod 7),
x=20=6 (mod 7).
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The general solution is found by listing all possible solutions in moedulo class 21. Thus,

Xx=06+7Twhere T=0,1, and 2.
Therefore, all solutions are x = 6, 13, and 20 (mod 21).

Problem: Solve the equation 25x = 15 {mod 29).

Solution: Note that (25, 29) = | indicating that there is exactly one solutiorn.
However, 1t 15 difficulr to find the inverse of 25 (mod 29) by wrial and
error. Fortunately, the division algocithi will simplify the task. Dividing
29 by 25 vields a remainder of 4. Then, using the division algorithm
yields, 4= 29 - 1(25). Dividing 23 by 4 yields a remaimder of 1.
Therefore, by the division algorithm, 1 = 23 - 6(4).

Thus, 1=25-6(4},
1=25-06[(29 - 1 (25)],
1=7{(25}- 6 (29).

But, 1 =7(25) - 6(29),
1 =7(25) - 6(0) (mod 29),
1 =7(25) (mod 29).

Thus, 7 ig the mverse of 25 modulo 29.

Hence, 23x =13 (mod 29},
{7)(25x) = {713} {mod 297,
1% =105 (mmod 29).

Therefore, x = 18 (mod 29).

The smudent should create, and then solve, several linear congruences.

The Chinese Remainder Theorem (Simultaneous Congruences)

The Chinese Remainder Theorem deals with simultaneous linear congruences in one
variable, with different moduli. Such systems arose in ancient Chinese puzzles.!! The

method for solving such puzzles is given in the following theorem.:



Theorem 4 Let my, m,, . . ., m, be pairwise relatively prime positive integers.

Then the system of congruence

x=g, {mod m,),
%= a, (mod m.),

K= (r;md m.),
has a unigue solution modulo M = m;m....m,.
Problem: Find the smallest nnmber that leaves # remainder of 2 when
divided by 3, a remainder nf 3 when divided by 7, and a cemainder of 4
when divided by 11.
Solution: The system of congruences which represents the puzzle is:
x =2 (mod5), x =3 (mod 7, and x =4 (mod 11).
M = (i) (m){m;) = (3)(7}(11) = 385.
The technique is to find:
2 (mod 3) = (N(N{11) (mod 3) = (11711} (mod 5) = 77(mod 5);
3 (mod 7} = (THS)(11) (mod 7) = (4}3)(11) (mod 7) = 220{mod 7);
4 (mod 11) = (M(E)(7) (mod 1131 = (23D (mod 11) = 7O(mod 11).
Thus, x =77+ 220+ 70=7367 + 385 T.

Therefore, if T =0, then, ¥ = 367 (mod 385).
Problem: Tind a multiple of 11 that leaves a remainder of | when divided by 2, 3,
5, and 7. |

Solation: The system of congruences which represents the puzzle is:

x=1{mod 2),x=1(mod 3), x=1 (mad 3), x= 1 {mod 7), and
i=0{mod I1).

M = (m,)(m,)(ma)(mg)(mg) = HEENNH) = 2310,



The technique is to find:

1 {mod 2) = (MENEI D med 2) = (1N HI N med 2) =
1155 (mod 2);

1 {mod 3) = (N(2H5)(711)mod 3) = (2N 1 1 mod 3) =
1540 {mod 3);

1 {mod 5) = (H2)BENNH N mad 5) = (32311 {med 5) =
1386 (mod 5);

L (mod 7) = (PUZYE)E)(L1 ) mod 7) = (12)EFHEN ) (moed 7) =
330 (mod 7);

0 (mod 11).

Since, x = 1155 + 1540 «+ 1386 - 330 + 0= 4411 + 23107,

Therefore, if T =-1, then, x = 2101 (mod 2310).

The stdent should try the following problem: Five men and a monkey are
shipwrecked on an island. The men have collected a pile of coconuts which they plan to
divide equally among themselves the next morning. Not trusting the other men, one of the
group wakes up during the night and divides the edeonurs intg five equal parls with one left
over, which he gives to the monkey. Tle then hides his portion of the pile. Turing the
night, each of the other four men does exactly the same thing by dividing the pile they find
into fve equal parts, leaving one coconut for the monkey and hiding his poriion. In the
morning, the men gather and split the remaining pile of coconuts, leaving one for the
monkey. What is the minimum number of coconuts that the men conld have cotlected for
their original pile?'?

Remainders of Large Mumbers

Prablem: Find the remainder when 21 iz divided by 25.

Solotion: Iiis seen that 2'° = 1024 = -1 (mod 25).

Then, 2102 — (21(}0)(22)
= (210)1004)
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= (-1}'%(4)mod 215)
= (13{4mod 25}
=4 {mod 257.

Thns, the remainder is equal to 4,

Problem: Find the remainder when 415 ig divided by 7.

Solution: Iiis easily seen that 41 = -1 (mnd 7).

Therefare, 41%% = (-1)% (mod 7)
={-1) {mod 7)
=6 (mod 7).
Thus, the remainder s equal o 6.

ISBMN MNuimbers

An ISBN is a len-digit number; the ISBN number for one of the references in this
study is 0-673-38820-8.1° The first digit, in thig case {), dentifies the book as having becn
published in an English-speaking country. The next digits. 673, identify the publisher,
while 38829 identify the particular book. The final digit, &, 15 the checle digit. To find the
check digit, start at the left of the ISBN numhber and multiply the digits hy 10,9, 8, . . .,
4, 3, and 2, respectively, and then add these products. In this example, 10(0) + 2(6) +
87) + 7(3) + 6(3) + 5(8) + 4(8) + 3(2) + 29) = 245, The check digir is the smallest digir
that must be added to the result, 245, so that the final sum is congruent to 0 module 11. In
thig case. 245 &+ 8 =253 =0 {maod 11). If the required check nnmber ig 10, the lefter X is
used instead of ten.

When the order for 2 book is received, the ISBIN is entered into a computer, and the
check number is evaluated. 1f this result does not match the check number on the order,
then the order will not be processed.

The student showld verify the ISBN f1om an agsortment of available books.
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Round-Robin Toumnaments

Caongruences ¢an be used in order (o schedule rovnd-robin tournamenis, where N
different teams play every other ream exactly once. The method ahonr to be deseribed was
developed by 1. E. Freund.™

Note that if N 1s odd, then not all teams can play every round. In that case, a dumuny
team is added to make N evan. A tea that is scheduled ro play the duprany eam is then,
said to have drawn a bye.

Label the N teams with the integers 1, 2, 3, ..., N-1, and N. Pairings in the kih

roimd are scheduled in the following way, Team 1 15 pajred wit) team j, where 1# N, j#
N,i#],andi+j=k(mod M - 1). This will schadule all teams in round & except for team

M anel the one ream 1 for which 2i = & (mod N - 13, These two teams will then be matched

with each other in round k, thus completing the pairings.
For exanple, for N =3, the pairings ae Llsted in Table 3 helow.

TABLE 3

Pairings for a Five-Team Round Robin Toumament

Team | 1 2 3 4 3
Round
1 5 4 bye. 2 1
2 bye 3 4 3 2
3 2 1 3 hy= 3
“ 3 bye I 3 7
5 4 3 2 i bye

The stadent showld set up a round-robin tournament scedule for 6, 7, 5. 9, and 10

learns.
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Casting Out Nines

There is one property of the number nine, known since antiquity, that does not depend
upon its relationstip with other numbers. This is the fact that nine, divided into any power
of ten, always leaves a remamnder of one. In the days when computations were performed
on counting boards, hine was commonly used as a check. This ancient computational
check was called casting out nines. An understanding of casting out nines requires a
knowledge of the concepts of congruence and digital roots.

The digital root of a number is the single integer reached by continued summation of
the digits of the number.!9 (Given the number 789, the digital root is found by the
following process: the sum of the digits of 789 is 24; the sum of the digits of 24 is 6; thus
the digital root of 789 is 6.

Note that if the digit "2" is not inclnded in the digital roat process, the digital root can
still be found. Ignoring the "9" digit in 789, the sum of the digits of 78 is 15; the sum of
the digits of 15 is 6; thus the same digital root is reached.

In a different example, consider the number 34567, Following the same process, the
surn of the digits of 345067 18 23 and the sum of the digits of 25 is 7, which is the digital
root.

Nate, however, that the sum of 3 and 6 is 9, and that the sum 4 and 5 is alsp @,
Striking out the digirs that sum to 9 (34367} leaves 7 which, ag jusf seen, is the digital root
of 34547.

A question the student may ask is, "Can the digital root always be found by striking
out either the nines digit(s) and/or those digits which sum to nine, aod then performing
continued summation on the remaining digits, thereby stmplifying the calculations?”

The answer is ves, because if there are n such combinations Df nine as previously

described, and if the remaining digits sum to k, then:
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Sn+k=(10-11n+k
=10n-In+k

=n-n+i{mod 10)
= k (mod10),

and therefore, the nines can be “cagted our™.

Andothar way 0 cast mrr pines is to snbtract 9 repeatedly from a number until 2 new
whole number l2ss than 9 is left. Since division is repeated subtracton, to cast ool nss
from a number in this way means to divide the number by 9, and behold the remainder.

w18

The remainder is called the "excess of nines”.

"Why is finding the digital root of 4 nmmber equivalent ro finding rhe excess of

nineg?" This quastion is answered by noting that if n is any natural oumber, then 10" =1

(mod 9). This can be proven by making use of Theorem 2

10 =1 (mod ¥} since 10/9 yields a remainder of 1;

10! =1 (mod 9 since 10=10';

107 =1 (mod %) by the multiplication property;

10° =1 (med 9 by repeated use of the mnitiplicarion property.

For example, the number 526 has a digital root of 4. The excess of nines of 526

should alse be equal to 4. Using the fact that 1070 = 1 (o 9), the excess of aines can be

found in the following way:
3x100=5x10f=5x1 {mod 9) =5 (mod 93;

2x 10=2x10'=2x1 (mod 9) =2 (mod 9,
6x 1=6x10"=6x 1 (mod 9)=4 (mod 9).

Thersfore, 500 + 20 + 6= (5 + 2 - &) (moad 9 = 4 (mod 9) which is the desired

result.’®

Cagring ot mines is often useful in checling addition problems. The reason this
works is easy to demonsirate by making use of Theorem 1.

Ler a, b, and ¢ he namiral numbers, and et g, b, and ¢’ ba their respective
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remainders, modnlo 8. Since a=2a'(mod 9),b=b" {med 9, and ¢ = &' (mod 23, then by
the additive property, fa+h=¢, thena' +b' = ¢

The following addition proter iastrares an example of :hecl:;ing addition by casting

out nines.
A= 509 a' =2 (mod 9)
+ h=2%73 + D=3(mod®
o m 842 ¢'=5(mod NV

Casting out nines is also usefnl in checking rultiplication problems. This is also easy
to demonsirate by making wse of Theorem 2. |

Let 2, b, and ¢ be natural numbers, and let 2', b, and ¢ be thedr respecrive
remainders, modulo 9. Since a =a' (mod 9), b=b" (mod 9), and ¢ =¢' (mod 3}, then by
the multiplicative property, ifax b =c,thena'x b' = ¢'3!

The following multiplicaticn problem illustrates an example of checking multiplication

by casting out nines.

a= 246 a'=3 {mod 9)
xh= 33 x b =8{modd
c=13028 ¢'= 0 (mod 9) Y

In all numeration systems, checking is accomplished by casting our the highest digit in
{he system. Casting out sevens would be required in an octel numeration system, while
casring out ls would be required in @ bage Twelve numeration system.

Check the following acdition problem n base 5 by casting out Tonrs:

a= 434, a'=3 (mod 4)
+« b= 313. +h' =2 fmod 4)
c=1301; ¢'=1 (mod 4) v

Casting out nines can lead to a better understanding of the decimal number systenu.
Therefore, the student is enconraged to check addition and multiplication problems
whenever the oppormunity arises. Subtraction and division cam be similarly checked by

reversing the process.
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Divisihility Tests™
Congruences can be used to devise divisibility tests for various integers based an their
expansions with respect o different bases. Let the number n = (8. . . . ;3. Then the

decimal expansion of o becomes n = 4,108 + a,, 105 4+ 4+ 2,101 + a,10%
The first test to be developed is for divisibility by 2. Since 10" =0 (mad 2), it fallows

that 10° =0 (mod 23, 107 =0 (mod 2), .. ., 10¥ =0 (mod 2), [or all pesilive integers k.

Then, o= a0 A 100 & A, 1O 4 a1 4 ay 108
= a0) + g, (00 + ...+ a0y + 8y (0) + ap(1)
= f, (mad 2).
Therefore, the digits ay, 4, - - . , Az, and a; ace "unimportant” when considering

divisibility by two, since these digits are eliminated by their respeciive powers ol el
Haowever, a, is "nnprotected” by its respsctive power of ten since 107 is not zera in modula

two. Conseguently, only the lasi digit needs to be tested to determmine i o is divisible by 2,
Next, consider divisibility by 4. Sinee 10F =0 (mad 4), it foliows that 10%=0

(mod 4, 107 =8 (mod 4), . . ., 108=0 {mod 4), for &l positive integers k. Then,

n=al0"+a, 10" +. .. +a,10° +a,10" + a,10¢
=a,.00) + 2,00 + . L+ a{0) + 24 10) + 8,(1)
= Ay (Mad 4},

Therefore, the digits &, 8., . .., &, 2nd &, are "unimporizant” when considering
divisibility by four, since tese digits ue eliminated by thelr respective powers of ten.
However, a, and &, are "unprotected” by their respective pewers of ten since 10! and 10°
ars not zaro in modulo four. Hanee, only the 1ast two digits nead to be tested ro deterniine if
n is divisible by 4.

In general, considar diviathility by 2. Since 108 =Q (mod 21 and 104=0 (mod 22), it

follows thar 100 = O (mod 2 for all positve integers . Sincel( =0 (inod 243, it follows
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that 10*! =0 (mod 20), 104 =0 (mod 1), .., , 108 =0 (mod 2), for all positive integers
kand j. Then,

nagl0 . L al0 e an10M 4+ 0,107 + 2,107 4+ 2,10
=a,(0) + ...+ a(0) + 2,10 + ...+ a,(100) + ay(10) + a5(1}
=& ... 883 (mod 2).

Therefore, the digits 2,, a,.,. . . . B, Are "unimpoitant” when congidering
divisibility by 2, since these digits are eliminated by thefr respective powers of ten.
However, B Aoge - A By and a, are "unprotected” by their respective powers of ten
since 1007, 1002, .. ., 104, 108, and 107 are not zero in modulo 21, Accordingly, only the
last j digits need to be tested in order to detarmine if n is divisible by 2.

Forexarpple, et o= 13357248, Then, 2 1 n (2 divides n without remainder) since
218 4 nsmeed |43, 81nsince 8 248, 161 n since 161 7248, but 32 F n gines

32 ¥ B7248.

The next test to be developed is for divisibility by powers of 3. Since 10=0 (mod 5),
then divisibility tests for 5 are analogous to those for powers of 2. Check the lasr j digits in
order te detenmine the divisibility of n by 5.

For example, let n = 214365875, Then, 3 lnsince 515,25 Insince 25175, 125 1n
since 1251875, but 525 F n since 625 § 5875.

‘The mext divisibility test to be developed is for powers of 3. Since 10 =1 (mod 3),

then it follows that 10% = 1 (mod 3). Therafore,

n = (@3 - - - Jdghg
=g 105+ a, ,10%'+ ... +a,10%+ 3, 10" + 3,10

=a. +a,+...+a +a (nod 3).
This indicates that the n is divisible by 3 if the sum of the digits of n is divisible by 3. The
student should develop a similar divisibility test for & showing that 9 divides nif 9 divides

the sum of the digica of .
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For example, let n = 347127, The sum of the digitsofnis 3+4+7 + 1 +2+7=

24, Thus, 3 I nsines 3124, bt 9 # nosines 9 1 24,

The test for divisibility by 11 is found by observing that sinee 10=-1 (mod 11), then

0= (AAyy ... 88,
= ﬂklﬂk + Elk_i 1'0}:7' +...+ 3.2102 + 3.1101 + 3010(]

=af-1¥+a 1+, .. +a,-a +a (med 11).
This gshows that 11 13 divisible by 11 if, the integer formed by alternately adding and
subtracting the digits of o, is divisible by 11.
For example, let n = 24371853, Then alternately adding and subtracting the digits of
nyields?-4+3-74+1-8+5-3=-11 which is divisible by 11.

Finally. a test for the divisibility of 7, 11, and 13 can be developed simultaneously.

First, note that 7 x 11 x 13 = 1001 and that 109 = 100 =1 (mad 1001). Therefore,

n=1(0,a.;...&3h
=a 105+ g, ,10%1 4. .. + 410" + 3,108
= a, + 102, + 100a, + 1000(a. + 10a, + 100a,) +
1000%(a, + 10a, + 100a.) + . . .

= (g + 10a; + 100az) - (a3 + 104, + 100485) +
(ag + 103, +100a,) - . . (mod 1001)

= {Aziufl) 0 - (Astytadyg + (Agrfighyp - - - . (mod 1001).

This indicates that & is congruent modnlo 1001 if, the mieger formed by alrernately
adding and subiractng swecessive blocks of three starting with the units digit, is divisible
by 1001. Sinee 7, 11, zgad 13 are divisors of 1001, the check of their divisibility involves
sitemately adding and subtracting successive blocks of three in order to determine if the
result is divisible by 7, 11, or 13.

For example, let n = 59358208, The alternating sum and difference of the blocks of
three is equal to 208 - 338 + 59 = -91. Thus, 7 Insince 71-91, 13 insince 13 1-91, but
1l ¥nsince 11 § -91.

Tsing the methods described above, te student should now be able to derive the

divisibility rules for 6, 2,10, and 12,



Conclugion

Consruences have heen used since Ganss intodneed ther around the beginning of the
nineteenth century. The anecdotes give the smdent practice in applylng congmences.
Congruences have many applications in everyday life as well as in number theory. The
stugeqt should attempt to master the inticacies of congruence and try o discover their inter-
relationships with the real world.

Diophantine Equations

Tntroduction

Diophantus was not the first mathematician (o solve indetermjjate problems, but he
was the firar to malke an extensive study of the types of problems and equations that ae
associated with hig name.=

Diophantus, the most famous Greek mathermatician of his day, was knowa to have
resided in Alexandria about 230 A.D. Many of the boois and treatises which he had left
for furure generations of mathematicians have been lost. However, several books from his
Arithmetics series, have been preserved.”

What little is known about the life of Diophantus comes from, an epigram found in 2
collection called the Greek Anthology © "Diophantus passed one-sixth of his life in
childhood, one-twelfth in youth, and ona-seventh as a bachelor. Five vears after os
marriage was bom 2 son who died four years before his father, at half his farhet's age.” If

¥ was the age at which Diophanius died, then the equation becomes

I I D B
K= X 12x+7x+ +2x+;

and Diophantus must have died at the age of 84.%
Dicphantine equations may be divided into lingar and nonlinear categories. In this
course, general solutions will be fonnd which will inchude all particular solutons of an

initial set of conditions.
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[Linear Diophaniine Equaijons™
The three (heorems below, given withouot proof, will be hﬁlpfl.il in sofving linear
Diophantine equations. |
Theorem 5. Bor integers 4 and b, with b > ), there exist nnique 'Lﬁ:ltegers q and r such that
a=hg+r, where 0 £r<h. In this equation, known as the Division
Theorein, the Integers ¢ and r are called the guotient apd remainder in the

division of aby b.

Theorem 6. For non-zero integers 4 and b, there exist integers x iﬂmd y such that ax + by
=1(a, b), the areatest common divisor of a and b. This is the famous
Evclidean Algorithm.

Theoreo 7. If a, b, and ¢ are integers, then ax + by = c represents a linear Diophantine
equation. Letd =(z,b). Tfd I ¢, then ax + by = ¢ has no mtearal
soludons. If d | ¢, then ax + by = ¢ bag infindtely many integral solutions.
IF (xg, ¥g) 1$ & particular solution of ax + by +c. and if n is an integer, then
all solutions can be expressed as (%, + [b/d] n, ¥ + [a4d] n).

A series of examples may be helpfal in understanding how these Theorems can be
used to solve various Diophantme equations along with their practié:al applications.

Problem: Solve Zx + 5y = 113,

Selution: By Theorem 5, the Diophentine has integral snluﬁnns since (2, 5) =1

which divides 113%.

2
2[5
4
1
Using Theorem 3, the above division probleimn ean be wriften as

1=5-2.2 (1)
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Muldplying borh sides of (1) by 113 and shuffling the terms yields
2[-226] + 5[113] = 115. (2)
Adding +10n and -10n to (2) in 4 clever way yields
2[-226 + 3n] + 5[113 - 2n] = 113. {(3)
Now, from (2). x =-226 and v = 1 13 is a particular solution of the
Diophantine equation; and from (3), the general soluton 1§ X = -220 + 5n

and v = 113 - 2n. If only positive integral sohutions are desired, then

226+ =0 and 113 -2n=0,
Sn>228 and 2n< 113,
=452 and n < 56.5,
n=46 ancl n = 56.

Therefore: 46 < n < 56, and the solutions become (4, 21), (&, 18}, (14, 17},

(19, 15), (24, 13), (29, 11), (34, 9), (38, 7), (14, 5), (19, 3}, (54, 1)

Problem: Solve 2x 4 6y =117

Solution:

Problem:

Salution:

This Diophantine equation has no soludon since (2, §) - 2 does not divide
117.

Solve 666x + 1414y = 500,

The Diophantine has integral solutions since (666 1414) = 2 which
divides 800,

2 3 8
6661414 g2 [666 10[82
1332 656 a0
g2 10 2
From Thecrem 3,
2=82-58-10,
10 =666 - § -82,

82 = 1414 - 2 -064,

Then,
2=82-8(6606-8 -82)
=65 -82 -8 -656
= 63{1414 - 2 -666) - 8 -665
= 065 -1414 - 138 -000.
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So,
665(-138) + 1414(65)=2.
6GG{-95200) + 1414(26000) = BOD is the particular solution.
GOO(-35200 + 1414 n) - 141420000 - 666 n) = 300 15 the general solution.

If only positive integral solutions are desired, then

»55200 + 14140 =0 and 26000 - 6660 > (),
1414 n > 55200 and 666n < 25000,
1= 3904 and 7 < 39.04,
n=40 and =39,

Therefore: x and y cannot both be positive. However, there are infinitely many
selutions where % and ¥ are opposite in sign.
Problem: A postal worker has only 14-cent and 2[-cent stanips for sale. What
combinations of these stamps will total $3.507
Solution:
14x + 21y = 350;
(14, 21y = 71330,
2x 43y = 30;
2(10) + 3010y = 50;
(10 + 3n) + 3{10 - 2Zn) = 30Q.

10+3n=4Q and 10-2nx10,:

In=-10 and 2n < 10,
n>-3.33 apd ne s,
n=-3 and n=s.

Therefore; -3 <n < 5, end the selutions become (1, 16), {4, 143, (7, 12), (10, 10},
(13, 8), (16, &), (19, 43, (22, 2), and (25, D).

Peoblem: Which eombinations of pennies, dimes, and qua:té,rs have a valug of 99¢7

Solution: The Diophantine that can be used to solve the given conditions is P + 10D
+250 =99, Let W=P+ 101 Then, W+ 250 = 9. Tn particular,
1{-1) + 25(4) = 99. In general, i(-1 + 25m) + 25(4 - m) =99. So,
W=-1+25mand Q=4 -m Im=0,then W =-1; thus P+ 101} =-1.
By inspection, 1(9) + 10(-1} = -1 and 1(-225m) + 10{25m) = +25m. So
1(9 -225m) + 10{25m - 1) = -1 + 25m. In general, 1{9-225m + 10n) +
10¢23m - 1 -ny = -1 + 25 m. Therefore, P=9-225m + 10n, D =25m -



I-n,and Q =4 - m. Requiting positive values,

9-225m+ 10n=0 29m -1 -n={)
10n > 275m -9 o= 25m-1
n=225m-40.%

4-m=0,
m=4
O=m=4.

Sothat, 205m - 0.9 < n < 25m-1 and 0Zm=4,
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II'm =0, then n=-1 which gives nagative values for P and . ¥ m=1,

then 22<ns24, Ifm=2,then 45=<n=49 Ifm=73, than

67=n<74. Ifm=4,then 30=n =99,

The solutons are given below in Table 4,

TABLE 4
Solutions to P+ 10D+ 250 =99

m T T N) 0
1 22 4 2z 3
T 23 T4 7 3
T 24 74 0 3
2 43 Y 4 2
2 40 14 3 2
2 47 29 2 2
2 4g 3 1 2
2 40 44 0 2
3 &7 4 7 1
3 6 14 0 1
3 69 24 5 1
3 70 34 4 1
] 71 44 3 1
3 72 a4 2. 1
5 73 64 1 1
3 74 74 0 1
1 o0 ] 9 0
4 a1 10 8 B
4 Gl 29 7 0
3 03 37 a 0
4 04 37 5 0
7 95 50 3 0
7 0% o9 3 0
7 07 70 p D
g 0% RO 1 0
) 00 o0 0 0
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Naonlinear Diophantine Equations

The generation of all possible Pythagorean triples ¢an be achieved through the nse of
nonlinear Diophantine equations.” Consider the Pythagorean equation x* + y° = 2%, where
the greatest common factor of X, y, and z is equal to one. Letx +z=m,and z-x=mn,
where m and n are integers. Then,

A=0m-n)2, v* =1m, and z = (m + ni2.
In order ta satisfy y* = mn, lat m = p°, and n = rg*, where r, p, and q are integers.

Then,
X =r(@*- ¢*}2,y =pqr, and z = r(p? + ¢*Y/2.

Since the greatest common factor of X, v, and z is equal to one, then r must be egual to
one. Also, ¥, ¥, and z can be multiplied by two without affecting the validity of x* +y? =

22 Thus, , ,
x=p'-q’y=2pq. and z=p* + ',

and so the entire family of Pythagorean triples can be generated by assigning integral values
o pand q.* Table 5 shows a partial listing of the Pythagorean {tiples that can be obtained

noting that p # q (otherwise x would equal zerg), and that p > q (otherwise, x would be

negative).
TABLE 5
A Parvial List of Pythagorean Triples
P q A Y Z
2 i 3 4 3
3 1 ] b 10
3 Z 3 12 13
4 1 15 3 17
4 2 12 16 20
4 3 7 24 25
3 1 24 10 26
3 2 21 20 29
3 3 16 30 34
3 4 9 40 41
o 1 35 12 37
0 2 32 24 4
(& 3 27 36 45
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It is apparent that when p and ¢ are not relatively prime, or when p and g differ by an
even number, then the Pythagorean triple thus generated is a multiple of some previous
one. This redundancy can be eliminated by requiring that x, y, and z have a greatest
common factor of one. When (x, y,z) =1, then x* + Yy = 2% is cajled a primitive
Pythagorean triple.” To generate a primitive Pythagorean triple, some additional
restrictions must be placed npon p and . In order to verify the resirictions, some
Theorerms must be stated and proven.

Theorem 8: The square of an even number is congrent to zerg modualo 4,

Proof: Let n =2k be any cven number. Then, n% = 4k*=0 {mod 4).

Theorem 9: The square of an odd number is congrment to one maodule 4.

Proof: Letn=2k + 1 be any odd number. Then n2=4k:’+4:4k+ 1=0+0+1
(mod 4} =1 (mod 4},

Corollary 1: The square of any number is congruent to 0 or, | modulo 4.

Proof: Sioce oumbers are either odd or even, this follows frc:!m Theorems 1 and 2.

Theorem 10 If x and ¥ are hoth even, then the Pythagoraan triple x2 + y2 = z2

cannot be primitive.

Proof: Let x = 2k and y = 2j. Then x* = 4k” and v* = 4% Thus, x* + y* = 22 =4k* +
4% = 4(12 + j*). Andso,z=2 m But %, y, atid z have a common
factor of 2. Therefore, the Pythagorean triple cannot be primitive.

Theorem 11: If x and y are both odd, then the Pythagorean triple x* + v* = z* cannot

exist.

Proof: Letx=2k+landy=2j+ 1. Then, *=4k* +4dk + l and y* =4+ 4j + 1.
Thus, x* + V=22 =45 + dk+ 1 +4§* +4j+ (=4 +k+F +j)+2=
0 +Z(mod 4) =2 (mod 4). But by Corollary 1, no nﬁmbe:r squared can be

congruent 0 2 modnle 4. Therefore, the Pyvthagorean triple cannot exist.
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Corollary 2: If the Pythagorean iriple x* + ¥* = z* is primitive, then x and ¥ must

have opposite parity.

Proof: If x and y are both even, then by Theorem 3, the Pythagorean triple is not
primitive. If x and y are both odd, then Theorem 4 states that the
Pythagorean triple cannot exist. Therefore. x and v must opposite parity.

The restrictions on p and ¢, the generators of the Pythagorean triple x% + 3* = 2°, can
now be verifred.

Theorem 12: If {p, q) # 1, then x* + y* = z? i3 not primitive.

Proof: Assurne that (p, q) = d where d is an integer greater tham cone. Let p=dk and
q = dj. Then p? = d*%? and q° = d%?. Now, 38 =p? - q° = d%? - 432 =
d?(k° - i), v* = 2pq = 2{dk)dj) = d* (2kj), and 22 = p* + @ =& + d¥* =

QK2+ ). Andso, x=d K —i°,y=d 42k, and z = d VK + 2.
Therefore, (X, v, z) = d, and thus x* + v’ = 2% is not primitive.

Corollary 3: If p and g are both even, then x* + v* = 2° is not primitive.

Proof: If p and q are even, then by Theorem 3, d = 2, and therefore x2 + y* =22 is
not primitive.

Theorem 13: If p and g are both odd, then x* + y* = 2° is not primitive.

Proof: Letp=2k+1andq=2j+ 1. Then, p*=4k*+4k + l and g* = 4j* + 4} + 1.

Now, l=p*- =4k + 4k + 1 -4 -4j- 1 =4 + k- -1 =0 (mod 2).

Therefore, x s even. But, y* =2pg =0 (Inod 2). So, v is even. But by
Corollary 2, x and v must have opposite parity. Therefore, p and g cannot
both be odd. So, in order for x2 +¥* = 2* to be primitive, generators p and g
must have a greatest common factor of one and opposite parity. Thus, a

partial list of primitive Pythagorean triples can be generated.
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TABLE 6

A Partiat Listing of Primitive Pyvthagorean Triples

P q X i z
2 ] 3 3 5
3 2 5 1z 13
7 3 7 24 25
7 T 15 3 17
5 3 9 a0 N
3 3 21 20 20
8 3 11 &0 61
g I 35 iz 37
7 g € 84 85
7 3 33 % 65
7 2 33 38 53
g 7 15 ) 113
g 3 59 80 3
8 3 55 43 7
g : &3 6 &5
5 8 17 144 143
9 3 &5 72z 97
g 2 77 36 85

The preceding problem dealt with ponlinear Diophanting equations of the form
x*+y* = z*. Another problem to be considered is to find pairs of integers x and ¥ such hat
%% 4 v2 =z, In other words, what integers can be expressed as the sum of two squares?
Far exarnple, the integer 29 can be wrilten as 2° + 5%, but the integer 19 cannot be written

as the sum of two squares. A look at the first twenty positive integers reveals:

1=0%+ 1% 11 is not the sum of two squares,

2=1*417 12 is not the sum of two squares,

3 is not the sum of two squares, 12 =32 4+ 27,

4="0% 4 (7, 14 is not the sum of twa squares,

5=1°%+ 2% 15 is not the sum of two squares,

6 is not the sum of two squares, 16 = 4% + (P,

7 is not the sum of twa squares, 17 = 42 + 1%,

B=224 2% 18 = 3%+ 3%,

Q=732 19 is not the sum of two squares,
10=73"+ 12 20 =22+ 42,

It is not difficult to recognize numbers which cannot be written as the sum of two

squares. Recall that the square of an even integer is congruent to O modulo 4, while the
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square of an odd integer is congruent to 1 modulo 4. Therefore, the sum of the squares of
two gven integers must be congruent to O + 0= 0 (mod 4}; the sum of the squares of two
integers of opposite parity is congruent to 0+ 1 = 1 (mod 4); or the sum of the squares of

twa odd integers is congrent to [ + [ = 2 (mod 4). So, an integer of the form 4k + 3,
which is 3 (mod 4), cannot be exprassed as the sum of two squares. This includes
numbers such as 3, 7, 11. 15, or 19.

However, even integers, or integers of the form 4k + 1, may or may not be able to be
expressed as the sum of two squares. To determine if z can be expressed as the sum of
two squares, it is necessary to factor z into its prime factors. Note that these factors must
include powers of the integer 2, or powers of integers having the form 4k + 1 or 4k +3. Tt
is important to know which of these primes can be expressed as the sui of twao sguares. ™

It is easy to see that 2 can be expressed as the sum of rvo squares since 2= 17 4 12
MNext to be considered are prmes of the form 4ic + 1. Fermat stated, and Euler proved a
century later, that every prime number of the form 4k + 1 can be expressed as the sum of
two primes. Finally, as proven earlier, primes of the form 4k + 3 cannot be expressed as
the sum of two squares.

These three results can be applied (o a composite mmmber with the help of Theorem 14.

Theorem 14: If integers m and n can each be expressed as the sum of two squares,

then their product, m-n, can be expressed as the sum ¢f two squares.

Proof: Letm =a*+b* and n=c?+d% Then, mn=(a’+b) (2 +d) =a'c* +b*

d® + a2 g2 + b? ¢? = a2¢? + 2abed + b? &% +a? d&F - 2abed + BF ¢ = (ac + bd)® +
{ad - bc)?. Therefore, m-n can be expressed as the sum of two squares.

Theorem 6 accounts for combinations of primes which can be expressed as the sum

of two primes. Theorems 7 and 8 will deal with combinations of primes which canror be

expressed as the sum of two primes.
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Theorem 13: If an integer contains a prime factor of the form 4k + 3, then in order
for the integer to be written as the sum of two squares, this prime

factor most oceur an even oumber of tines.,

Proof: (4k + 3} = [(dk + 3)°)" = (16 k* + 24k + 9 = [1(mod 4)]". Since 1
{mod 4) is a perfect square, it ¢can be expressed as the sum of two squares,
itseH and zero. Therefors, [1{mod 4)]° can be expressed as the sum of two
squares since Theoram 6 can be applied n Gmes.
Theorem 16: If an integer contains a prime factor of the form 4k + 3 an odd mimber
of times, then the integer cannot be expressed as the sum of two

squares.

Proof: (4k +3) "= (dk + 3 4k + 3)! = 1-3 (mod 4) = 3 {mod 4).
Therefore, (4k + 3)™ ! cannot be expressed as the suumn of two squares.

The preceding results may be summarized as follows: An integer cam be eXpressed as

the sum of two squares if its prime factors do net contain an odd pumber of any primes of

the form 4% ‘+ 3.

Problem: Show that 130 can he written as the sum of twa squares.

Solation: 130 =2 x 5 x 13. All prime factors are either 2, or powers of the form
Ak + 1. In additon, since 130 =2 (mod 4}, both squares must be odd.

Therefore: 130 = 112 + 3%

Problem: Show that 72 can be written as the sum of two squares.

Solution: 72 =2° x 3%. All prime factors are either powers of 2, or powers of the
form 4k + 3 to an even pewer. In addition, since 72 =0 {mod 4), both

squares must be even.

Therefore: 72 = 6% + 62,
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Problem: Show that 84 can be written as the sum of two squares.

Selution: 84 =2%x3 x 7. All prime factors are either 2, or odd powers of the form

4k + 3.

Therefore: 84 cannot be expressed as the sum of two squares.

The student shonld consider the sum of the squares of the nmmbers from one to cne-
bundred.

Finally, no introduction o Diophantine equations woirld be complete without mention
of the Pell equation. The Pell equation is a particular types of Diophantine equation named
for the mathematician who first focused on it.?!

The simplest form of the Pell equation is x* - 2y* = 1. This equation has an infioite
oumber of solutions. Some of the successive pairs of x and v valnes are:

X 1 3 17 a9 571 Bte.
y 0 2 12 70 408 ete.

Notice the following relationship between the respective values of x and y beginning
with the third set of solutions:

17=63-1, 99=6-17-3, 577=699-17, e,
12=62-0, 70=612-2, 408=670-12, eic.

Note that x = 3 is the value of x in the first non-zero solution. Note alsothat 3x2=10,
Next, look at the equation x* - 3y? = 1. Some of the suceessive values of x and ¥
pairs are:

X 1 2 7 28 n7 efc.
v { 1 4 15 56 etc.

Norice the following relationship between the respective vaiues of x and v beginning
with the third set of selutions:

T7=432-1, 26=47-2, 97=426-7, et
4=41-0, 15=44-1, 56=415-4, et

Note that x = 2 is the value of x in the first non-zero solution. Note also that 2 x 2 =4.

At first glance, the next equation would appear to be x* - 4y* = 1. However, since 4
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is a perfect square, this equation conld be written as (x + 2y)(x - 2y)= I. Thisleads o a
svstem of simultaneous equations:

X+2y=1

x-2y=1
which has only the solution (1,0}, and hence no non-zerg selutions. Similarly, equations
such as x* - 9y*=1,x*- 16y*= 1, ..., x* - Ay*= 1, where A is a perfect square, will not
be considered here.

S0, the next equation to be eongidered is x* - 532 = 1, which bag the following

successive pairs of solutions:

X | o 161 2489 ete.
v 0 4 72 1202 ete.

Notice the following relationship between the respective values of x and y beginning
with the third set of solutions:

16

1=1882-1, 2489=18-161-9, eic.
Ti=

8-4-0, 1202=18-72-4, et

1

1

Note that x = 9 is the value of x in the first non-zero solution. Nofe also that 9 x 2 = 18,
In general, the Pell equation x* - Ay? = 1, where A is not 2 perfect aquare, yields

succassive pairs of integral solutions, after the first non-zero pair, of the form:

Xy = 28%y 1 - Ko
Y= 23-}'&4 - Yo

where X = 2 is the value of x in the first non-zero solution.

This general solution enables the student to find successive pzurs of solutions once the
non-zero soluden has been found. Most textbooks give a far more ;c:omplex and impractical
method of finding these solutions. 1t is nsally quicker, and far more practical, to find the
Tirst non-zero solution by trial and error, and then to follow the method ontlined here. It is
a sound method, and 1s almost always mere practical.

The most general form of the Pell equation is x2 - Ay? =B where A is a positive

integer other than a perfect square, and B is a positive or negative integer. There will not
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always be integral solutions for all values of A and B. In fact, for B = -1, thers will only
be integral values for A =2, 5, 10, 13, 17, etc. And for A =3, there will only be integral
values for B = 1,-2, -3, 4, 6, -8, etc. The technique for selving the most general form of
the Pell equation is outlined below.

Assume that x2 - Ay® = B has integral solutions over certain values of A and B. Let
(a, h) be the first non-zero solution of x* - Ay* =B, and let (c, d) be any integral solution
of ¥ - Av® = 1. Then, x* - Ay? = (2 - AbH(c* - Ad®)y = a’c® + A® -Aadd? - Abici =
aZel +£ 2Aabed + A%Ad? - (Aa*d® + 2Agabed + Ab%G?) = (ac + Abd)* - A(ad + he)h

Therefore, x = ac £ Abd and ¥ = ad +be. By substituting, for ¢ and d, any pair of
values which satisfies ¢ - Ad? = 1, solutions to the original equation x* - Ay? =B can be
obtained.

For example, in the equation x? - 3y = -11, the smallest integral ron-zero solution, by
trial and error, is (1, 2). Then, x = +(¢ £ 6d) and v = +(d + Zc) whers ¢ and d are integers
which satisfy ¢*-3d*= 1.

Some values of ¥ and y generated by successive values of ¢ and d are:

c 1 2 2 7 i 26 25 ele,
d 0] i 1 4 4 15 15 elc.
X 1 4 2 17 31 &l 116 aIc.
v 2 3 V) 14 18 37 87 ele,

It is possible that not all integral solutions can be found using the procedure outlined
above. In this case, the procedure must be slightly modified. For example, try to find all
integral solutions of X - 2y* = 119 for values of x less than 200.

By trial and error, the smallest non-zero solution is (11, 1). Then, x = +{11c + 2d)
and y = £{m = 11d) where ¢* - 2d* = 1. The solutions are: |

x 11 29 37 163
¥ 1 19 25 115

Bur there may he other solutions. If there are other selutions, they would be found

between the smallest and next smallest solutions found in the first tabulation. Therefore,
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the procedure 18 to check for ¥ values betwean 1 and 19, This can e dome guickly with the
reanlt that x = 1% and y = 5. This generates a new series of solutons where x =2{13c +
10d) amd ¥ = *(5¢ =13d) where ¢2 - 2d2 =1,

The additional sghitiang hecome:

X 13 09 59 101
y 3 11 41 ' 7

The search for a third Family need not be iniriared as a result of a useful mle which
states that if B is the product of n prime numbers, then there will bi, at most, 2r-1 families
of integral solutions. In this exampls, since 1 19 =7 x 17, then n = 2 and, therefore, there
are 2 such [amilies which, in this case, have already heen identified.

Conclusion |

Thus ends the discussion of Diophantine equations. Such aqﬁatic»ns arige in borh
practical and recreaional problems. Only a small part of the entice :ﬁeld of Diophantine
gquations Das Deen diseusged here. Tt is hoped rhar the sdent will have been given some

insight into the vast field of Xophantine eguations.

Addirional Topics

‘The Fibonacel Sequence

Number sequences have long provided mathematicians with t!luught—piﬁvﬂkjng
problems and intercsting applications to the eal world. One particnlar sequence, the
Fibouacel saquence, is especially interesting and powerful i iis Iﬂﬁ.ﬂlﬁm&ﬁﬂﬂl
applications.’® The Fibonacei sequence i3 produced by starting with 1 and addmg the
previons two numbers in the sequence m arder to praduce the nexi number in the sequencs:
1,1,2, 3,5, 8, 13,21, .... The Fibonzeci sequence can be represented by a recursive
formula. If Fy, represents the nth Fibonseel number, then ¥ = F+ Pz fornz 3.

The Fibonacci sequence was given as a solution by Leonarde.of Pisa (Fihonacei) to a

famous problem which shall be repamed the "amoeba problem”. A haby amoeba, called
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"a" wkes 4 day o manire into an adult, called "A".32 As an adult, it asexually reproduces
to produce a baby amoehn, and, at the same time it continues o live. After 2 day, the baby
hecomeas an adult while the original adult reproduces again. This continuing process is

illustrated below.

IIGURE |
Family "Tree" of a Single Baby Amoeba

The smdznt can comtinue the diagram through several more generations. In doing 50,
notice that the number of amoebae present on successive days form a Fibopacel sequence.
Tor example, there is one amocba present on day ong, followed by one again on day twa.
Then there are two on day three, followed by, three, five, eight, thirtezn, and so on. The
sequence could be continued indefinitely beczuse the Fibonacei sequence 1s an wfinite
SEgUEncE.

Fibonacci nummbers appear in many probabiliry problems related to the binomial
theorem. The shident shonid recall Pascal’s triangle which is used in order to simplify
binomial expansions. Here, a different applicarion of Pascal’s ll.‘i-':l.l::lglﬁ can be used. Notice
how the Fibonacci sequence can be derived by sunming the diagonals in Pascal's mriangle

as illustrared in figure 2 on the following page.



The Fibonacci Sequence from the Diagonals of Pascal's Triangle

Problem: If a coin is flipped N times, how many unique seqnences of heads and

Solution:

etc.

FIGURE 2

row?

TAEBLE 7

tails are possible provided that the coin cannot come up heads twice in a

Sequences of Heads and Tails without Consecutive Heads

Number Sequences Total
of Flips
1 1H}, {T} p
2 {HT}, {TH}, {TT} 3
3 (HTHL. {HTT], {THT}, {TTH]}, {TTT} >
4 {HTHT}, (HTTH}, {HTTT}, {THTH], 8
{THTT}. {TTHT}, {TTTH}, {TITTT}

Note that the total aumber of outcomes is always 2 Fibonacel mumber.

60
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In nature, Fibonacei numbers have been found to be associated with natural spirals in
objects such as pine cones, daisy blossoms, and pineapples. In the daisy blossom, far
example, there are two sets of spirals. The clockwise set containg 21 spivals, while the
counterclockwise set contains 34 spirals. Both are Fibonacci numbers.
In addition, Fibonacci numbers are found in patterns of the leaves and branches of
many different spacies of trees. This phenomenon i5 called phyllotazis where the

arrangement of leaves arcund a stem can be expressed as a fraction:

nmnber of complete trns .
number of leaves per cycle

For example, the cherry and oak have a phyllotaxis of 2/5, while the beech has a
phyllotaxis of 1/3. Other examples are pear, 3/8, and the willow, 5/13.%*

There are many excellent references dealing with Fibonacci sequences. Some of these
include, Fun with Mathematics by Jerome Mever, Mathematical D¥versions by J. A. H.
Funter and Joseph Madachy, and Mathematical Ideas by Charles D. Miller, Vern E.
Heeren, and E. John Homsby, Jr. The student should consult thess and many other books
for maore applications of the Fibonacci sequence, which include their retationship with the
golden ratio, exarmined in the following section.

The Golden Section

The Paprus of Ahmes, inscribed hundreds of years before the rise of ancient Greek
cnlture, containg a detailed account of the udlding of the Great Pyramid of Gizeh. The
account refers to a "sacred ratio" of the slant edge length to the distance from the base edge
to the ground center which was equal to 1.618. This ratio is the Golden Section of the
ancient Greeks.”

IT a line segrnent 18 partitioned o that the larger part is the mean proportion between
the shorier part and the entire segment, then the ratio of the larger part to the smaller part is

called the golden section. Referring to Figure 3 on the following page, if the larger part of
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the line segment is called "x" and the lesser part of the line segment is called "y", then

X+y = X.
Xy
| X LY
| ] |
FIGURE 3

A Line Segment Partitionad into a Graater and Lesser Part
Thus, X2 -xy - y2 =0, and therefore x = 1 +33 = 1.618 ... is the golden section,
v 2
Another approach that leads to the golden section can be seen from the regular

pentagon in Figure 4 below. 8

FIGURE 4

A Reguiar Pentagon
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In regular pentagon ABCDE, of side s, diagonals AC anc BE intersect at F, with CF =

x and AF =y. Since A ABC is isosceles with 2 ABC = 108°, then £ BCA =36° Also,

A ABF is isosceles, and so, £ CBF = 108° - 36° = 72° and £ CFB = 180° - 72° - 36° = 72°,

Hence, CF = CB, and therefore, x =s. If an altitnde is drawn from B 1o AFC, then ir can

be easily shown that x +y = 25 cos 36. Similarly, drawing an altitude from T to AB,
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s(4cos” 36 = 1)
2 cos 36

yieldsy = Then, x = But, since x = s, then

5
2008367
4 cos? 36 - 1 =2 cos 36 or 4 cos? 36 - 2 cos 36 - 1 =0 with positive solution:

cos 36 = %(1+ NEDY

Then.x = sandy = ﬁ, and so, % = %[I-WE), the golden section.

Problem: Prove, that in Figure 5 below, AC: AB=AC: AN=AN:
NC =AM : MN = 0D : DF = the golden section.
Solution: This is to be left as an exercise for the student.

A

s

FIGURE 3
A, Star within a Pentagon
Ar this point, two curtous aspects of the golden section may be noted. First, it is easy
to see with a calculator that the golden ratio ¢can be transformed into its reciprocal merely by
subtracting 1 from it, vielding 0.618 . . .. Secondly, if the height of one's body is divided
by the height of one’s navel, a number very close to 1.618 is obtained.
A final method presented here to discover the golden section comes from dividing the

nth term of a Fibonacci sequence by the (n - 1)th termn and observing the result. Asn
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increases to infinity, the ratio obtained converges to the golden section. A look at the first

twelve such ratios are shown in Table § below.?®

TABLE 8

The First Twelve Ratios for Suceessive Fibonacci Numbers to Four Decimal Places

1/1 = 1.0000 21/13=1.0154
2/1 = 2.0000 34/21 = 1.6190
3/2 =1.5000 3534 = 1.617%
3/3 = 1.6667 89/35 = 1.6182
85 = 1.6000 144/89 = 1.6180
13/8 = 1.6250 233/144 = 1.6181

Many Renaissance mathematicians became intrigued with the golden section. H. 5.
M. Coxeter quotes Kepler as follows: "Geometry has two greal treasures: one is the
theorem of Pythagoras; the other, the division of a line into extreme and mean ratio. The
first we may compare 1o 2 measure of gold; the second we may name a precious jewel."*

Further study of the golden section should be pursued by the student. Some of the
possible areas of investigation include inscribed decagons, golden rectangles (rectangles
with sides in golden ratio), icosahedrons, dodecahedrons, and logarithmic spirals. Some
references include: Der goldene Schniit by Adolf Zeising; Nature's Harmonic Unitv by

Samuel Colman; The Curves of Life by Sir Theodore Cook; Mathematicat Puzzies and

Diversions by Martin Gardner; Mathematical Diversions by J. A. H. Hunter and Joseph S.
Madachy; and Mathematical Tdeas by Charles D. Miller, Vern E. Heeren, and E. John
Hornsby, Jr.
The Imaginary Number i

An imaginary number is a precise mathematical idea. It forced itself into aigebra in
much the same way as did the negative numbers. Raphasl Bombelli of Bologna saw that
equations of the form x2 +a=90, where a is any positive number, could not be solved

without the aid of imaginaries.*
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Thus,i =+/—1, and therefore, i2=-1,i%=-,i%=+1,i5=1,... and the process
keepsrecycling. A murnber of the form a + bi is called a complex munber and is o mixre
of areal and an imaginary number.

A most fascinating discovery was that every number has o ath roots.*! The number
64, for example, has 2 square roots, 3 cube roots, 4 fourth roots, and so on. Many people
may know that the sguare roots of 64 are +8 and -8. But perhaps tess people know thart the
cube roots of 64 are 4, -2 + 21 v3, and -2 - 2i V3. Thus, the concepr of complex numbers
is mtroduced. The general form for finding the nth roots of x is given by :

x!n = x 1M feos 2dkemin + i sin 2km/n) withk=0,1,2,...,n- 1.

The student should attempt to find the fourth and fifth roots of 32 vsing this formula.

Imaginary numbers occur in many other applications in mathematics and physics
including electronics. The student shonld pursne the properties of [ in various
mathemarical and physics references such as the ones listed in the section on 7.

The Exponential Function

In 1614, John Napier issued his Mirifici Logarithmorum Canonis Descriptio, the first
treatise on logarithms.* His invention may have been as important to rathematicians as
Arabic numerals, I logarithms had not been discovered, mathemnatics, asiconomy, and
physics would have been put back a century or more.* Since e and logarithms are closely
related, a ¢lose look at logarithms should reveal something about the nanwe of e.

The two progressions:

Arithmetic—0 1 2 3 4 5§ 6 7 8 ...

Geometric--1 2 4 8 16 32 64 128 256 512...

share the following relationship. If the terms of the arithmetic progression are regarded as
exponents of 2, then the corresponding terms of the geometric progression represent the
powers of 2. Thus, in base 2, each term in the arithmetic progression ig the logarithm of

the corresponding term in the geometric progression.*
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Extensive tables of logarithms have been constructed in base 10 and in base ¢ , the
Napierian or natural base. Like m, the number ¢ is transcendental. The most familiar
infinite series of ¢ is given by:
e=1+ 11+ 12+ 130+ 14+ ...

Thus, the value of ¢ may be asceriained to as much accuracy as desired. To the tenth
decimal place, ¢ =2.7182818285.

The student should try to prove that as n goes to infinity, then (1 -+ T/m)® will produocs
the infinite series of e.

The constant € als0 plays an important role in the derivation of the tables of the sine
and cosine functions with the help of i. Sincee*=1+x +x%2'+x¥31+ . . then
substitoting 18 for x gives

e = 1410+ (021 -0 +...
=1+i0-0%21-16%31+...
since i = -1 and i® = -i.

Noting that every other term contains 7, and remembering that Leonhard Euler, a Swiss

mathematician in the eighteenth century™®, proved that ¢'® = cos 0 +i sin 0, then:

- 63 Bf B? ﬂz 84 Bﬁ
smB:B—?+?~W+...andcosﬁ=1wﬁ+z—~g[—+...

where 8 is roeasured in radians.

Other applications of ¢ can be found in various disciplines of science and mathematics
such as: physics, chemistry, biclogy, calculus, number theory, and economics. Some
applications inclnde: RC serjes circuits, RL series and parallel circuits, half-life, reaction
rates, bacterial growth and decay, cryptology, compound interest, and annuities. The
student should do some research in sorpe of these applications using the references

mentioned following the discussion on .
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Archimedes, who lived i the second sentwry B.C., proved that the value of T was
less than 22/7 and greater than 223/71 by using a regular polvgon of 96 sides. Ptolemy, in
156 A.D., used the value of 3.1410 for T. By the middle of the sixieenth century, the
fraction 335/113 was discovered, giving the valne of  to six decimal places. By the early
seventeenth eentiury, van Cenlen, 4 Genman mathematician, caleulated 7t to more than 20
decimal places and got 3.141592633589793238404. Since the inventon of caleutus and
the discovery of infinite sertes, the value of 7 can be caleulated to any nember of decimal
places desited * An exact expression for w4 is given by the infinite series:

MWa=1-13+15-1U7T+1/9-.. ..

The value of & even occurs in the laws of chance. An expariment thar the student may
wish to {1y is the famous Bulfon experiment. To perform this experimenr, a reedle and a
horizomtal surface ruled by a grid of parallel equidistant lines are needed. The distance &
betvween the lines and the lengih { of the needle must satisfv the relationship 1 £h. Tass the
needle 3¢ that it lamds at rmdom angles with respect to the parallel lines. After eack toss,
note whether the needle intersects with any of rhe parallel lines Let s ba the nomber of

times the needle makes an intersection in 7 throws. Then & can be approximared by nging

the equation ®= 21 x 1. Asnincreases, the value of & is more closely approximated.?’
h m

One of the most fagons problenns in matherzatical history is the "squaring of the

circle". The prohlam is to constmet a sqmare equal m the aea of & given cicle using only =
straichtedge and a compass. The Greeks, and later mathematicians, songht such &
canstroctian but always faled. The German mathematician Lindemann, in 1882, published
a proof that & was a transcendental mmber, and g confirming tar the cizele can never be
saquared.

These and numerous ather allnsinns to the irrational puraber T should be investisated



6

by the smidenr. References are plentiful and inclnds: Mathematics sind the Imagination by
Edward Kasner and James Newman; Mathematics for the Million by Tancelot Hoghen; A_
New Look at Anthmetic by Irving Adler; and Iun with Matbematics by Jerome 5. Meyer.

Perfect Murnbers

Six ig the firgt "perfect” mimhber. The Greeks called it perfect bacanse it i3 the sum of
its proper divisors. The next four perfect numbers are 28, 496, 8128, and 33,530,326.
The student is asked to verily that these five numbers are indeed perfect. It tock more than
twa thonsand years for mathematicians to find the next seven. Then, in 1952, a University
of California professor discoverad the first new perfect number in seventy-five vears and,
in the next few months, he discovered four mere for a totil of seventeen.®

It may be noteworthy that the Pythagoreans hafled ten ag "pm'fect"a but not in the way
that six is. Tt had the special charm that it is the sum of one (the point), two (the line), three
{the plane), and four (the solid).™

There are still many wnanswered questions about parfaet mumbes. It i3 not knawn if
there are infinitely perfest numbers: all known perfect numbers are even; it is not known if
any odd perfect numbers exist; and an even number is perfect if and only if it is of the omm
20127 - 1), where 2° - 1 is called a Mersemme prime assuming thai; n ig prime.®*

The Mersenne primes have always received special attention becanse they are clasely
related to the perfect numbers.* The student should verify that the frst seven Mecsegne
primes are: M, =9, M, =7, M; =31, My = 127, M,; = 4,191, M;jr = 121,071, and M, =
324.287. So, the problem of finding & new even perfect number is essentially the same £3
finding a new Mersenne prime. Thus, since M, is a Mersenne prime, then 2% x M, =28 is
a perfect number, Similarly. since M is 2 Mersenne prime, then 24 x*xM; =498is5a
perfect number,

There are more interesting facts about perfect numbers: all known perfect numbers,
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excepl six, have digital roois of 1; every known perfect number, except six, is the sum of
consecntive odd eubes; and all perfect mumbers are the sun of successive powers of 2.7

If a number is not perfect, then it is either deficient or abundant. A counting number is
deficient if it 1s greater than the sum of iis proper divisors. It is abundant if it is less than
the sum of its proper divisors.™

There is a class of multiperfect numbers in which the sum of the divisors of the
number s a multiple of the number. For example, the sum of the divisors of 120is 1 +2 +
341306+ 810+ 1215 1 20+ 24 1 30+ 40 + a0 = 2405

Not guite as old as perfect numbers, bul guite old are the amicable numbers.” The
counting numbers 2 and b are ammicable, or Tiend]y, i the sum of the praper divisorg of a s
b, and the sum of the proper divisors of b 15 a. The smallest pair of amicable numbers, 220
and 284, was known to the Pythagoreans, but it was not until over coe thovsand years later
that the next pair, 18,416 and 17,296, was discavered.”’

The student may find more information on perfect numbers in the following
references: Mathgmatical Diversions by J. A. H. Hunter and Joseph 5. Madachy; From
Zero to Infinity by Constance Reid;, Mathermatical Ideas by Chardes I, Miller, Vem E.

Heeren, and E. John Hornsby, I, Number--The Leangnage of Science by Tobias Dantzig;
A New Lool at Arithmetic by Trving Adler; and Elemeniary Number Theory by Kenneth
H. Rosen.
The Shapes of Numbers

To the Pythagareans, the important secrets of nature could all he expressed by stmple
relationships among the whole numbers. WNumbers were very real to the Pythagoreans, and
they had very distinctive shapes. The four most inportant shapes were (tiangular, soirare,
cblong, and gnomons.

Triangolar numbers are those munbers that can be firred inra a wiangle. The triangular

numbers are one, three, six, ten, . . . . and are written as follows:
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The nth triangnlar mamber (T) is equal to the sum of the first n integers. For example,
Tom1+2=3:T, =1+2+3 =6 4od in general, T, = n (n+1)/2. Thus, the Gth
triangular number would be: T, = (6)(7)/2=21.

Square mirmbers are thase numbers that czn be fived inte a square. The square

mimbers ars one, four, nine, sixteen, . . . , and are written as follows:

s ds ko
& & & Ha -

) &k SRR

2 & & 1 O

“I'he nth square mumber (5,) is equal to the sui of the frst n odd nregers. For
example, S, =1+3=4; 8 =1+3+5=9; and iu general, Fy, = n®. Thus, the 6th
square number wonld be: 5, = 6% = 36.

Oblong numbers arc those numbers thar can be fitted into an n by n + 1 rectangle. The

oblong numbers are two, $iX, twelve, twenty, . ... and are written as follows:
R X
E e E O e
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The nth oblong number (O,) is equal to the sum of the first n even integers. For
example, G, =2 +4 =6, Oy =2+4+6=12; and in general, U.', =n (n + 1). Thus, the
Gth oblong mnber wonld be: O, = (8)(7) = 42.

The goomons ae 4l of the odd pumbers, and they are written in the shape of a

SNOMOoN OF carpenter's square:
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Variong kinds of numbers can he comhined. For example: a équa:e number 1s
always the sum of successive gnamons; any twa successive iriangular munbers also make
a square number; and any two equal mangular numbers make an oblong number.  The
smdent should verify these facts with diagrams.

There are other families of numbers to be investigated. Expanding in two dinensions,
there are pentagonal, hexagonal, . - numbers. Expanding in rhrez dimensions, there are
rniri-layered rerrahedral, pyramidal, . . . numbers. An excelient book on the subject is
Mathematics for the Million by Lancelot Hogben. The student can develop horl frae-form
and recursive formulas for all of ﬂlESrﬁi nembers wirh shapes.

Cryplology

Inirpducton to Cryptol

Ciphers, ov secret messages, have been sent amaong people since antiguity, While the
need for secret communication has tradifonally occurred in both diplomatic and ulirary
affairs, glecrronic advances have prompted sectecy in areas such as banking and sports.™

The following terms should be defined since they will be used throughtont this
discussion an cryptology. Cryptology is the study of secrecy systems. Flainfext is the
message that will be altered and will be denoted by "P". Cinhertaxy is the altered text and
will be denoted by "C". The key is the transformation to be used.: Enciphering 1s the
proceas of transforming P into C. Deciphering is the process of transforaing C inta P.

The following ciphers represent only & few of the many ciphers in existence. In fact,
the student nay want to design a cipher that ¢an be used among friends. The ciphers will

appear in order of increasing complexity.
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Types of Ciphers

The first type of cipher to be studied is the simple shift cipher.® The enciphering key

is maihematically expressed a5 C =P + k (mod 25). To encipher, gruup the letters of the
piainrext into groups of five. The purpose of this is {0 prevent a paiential codebreaker from
recognizing familar word patterns. Then, write the number equivalents of the plainlext
Mext, 1se the shift transformation to find the number equivalents of the ciphertext. Finally,
transiate the numbers into the ciphertext.

Specifically, if k = 6, then the following relation is shown between the plaintext and
the ciphertext.

000L 0203040308 Q708091011 12 13 14
plaintext: ABCDEFGHIJELMNOP
B

06 070409101112 1314 151617 181% 20
cipheriext: G HITRKLMNOQOPQR ST U

X C
For exatple, encipher the following message using the E‘ansfgrma.ticn C=P+6
{(mad 25).
TIHIS IS A SIMPLE SHIFT CIPHER.
Breaking the plaintext into groups of five letiers aives;
THISI SASIM PLESH IFTCI PHER:
Copverting the plaintext into number equivalents vields

190708 1808 18001805312 1511041807
Q8053190208 150704 17.

Using the transformation C =P + 6 {mod 25) yiclds

2513142414 2406024 14 (8 21171024 13
1411250814 21131023,

Translating into the ciphertext results in

ZNOYO YGYOS VRKYN
OLAIO  VNKX.
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To decipher, use the inverse tansformation P = C - 6 (mod 25), and reverse the above
procedure in order to change the ciphertext back into the plaintext.
Another type of cipher is the cyclic shift cipher! Here, a number called the key, is

repeated in order Lo transform the plaintext into the ciphertext. The mathematical

expression for thia procedure is C =P, + k, (o (Imod 26} where M is the mamber of
digits in the key.
An example of a cyelic shift cipher with the plaintext, a key of 125, and the ciphertext
woild be
THIS IS A CYCLIC SHIFT CIPHER.
1251 25 1 251251 25125 125175
JINT EX B EDINND UNVIHY DRUIGW.

A more general type of cipher is the affine ransfonnation®? which can be expressad

marhematically by C = aP + b (mod 26). It is required that (a,2G) = T 50 that as P runs
through a complete system of residues modulo 26, C also does. Note that when a = 1 and

b =0, a simple shift cipher results. The inverse relaionship would be expressed by

P =g (C-b) {mod 26),

As an example, let 2= 7 and b= 10. Then, the enciphering e:iuation would be

C =7F + 10 (mod 26), and the deciphering equation would be P = 15(C - 10) (mod 26),
since 15 is the inverse of 7 modulo 26. The student showld new construct a table, using
these pararneters, similar to the ong constreted for the simple shift cipher.
Problem: Ifa =7 and b= 10, encipher the plainiext given by :
PLEASE SEND MONEY.
Solution: LIMEKG MGXFOQ EXMW.
Problem If a="7 and b = 10}, decipher the cipheriext given by:
FE XEN XMBMEJ NHM GMYZMN.
Solution: DO NOT REVEAL THIS SECRET.
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Exponential ciphers were invented by Pohlig and Hellman in 1948.% Let(k,p-1)=
1 where k is the enciphering key and p is an odd prime. ‘Then, the énciphering equation is
C =P* (mod p), and the deciphering equation is P = CJ (mod p} where i is the inverse of k
modulo {p - 1).

For example, let p = 2633 and k =29 so that (k, p - 1) = (29, 2632) = 1. Let the
plaintext be THIS IS AN EXAMPLE OF AN EXPONENTIAL CIPHER. Then, the letiers
are converted into their numerieal equivalents in blocks yielding:

1907 0818 (818 Q013 0423
001z 1511 0414 0500 1304
2315 1415 0413 1908 Q019
0814 1302 0815 Q704 1723,
The two digits 23 (corresponding to the letter X) were added to the-end in order to 1ilt out

the message.

Next, convert the plaintext number equivalents into the ciphertext number equivalents
using C = P* (mad 2633), which gives:

2199 1745 1745 1206 2437
2425 1729 1619 0935 0960
1072 1541 1701 1553 0735
2064 1351 1704 1841 1459.

To decipher using i = 29 and p = 2633, the inverse of 29 (mod 2632) is found using

the division algorithm as in the section on congruences. Then j, the inverse of
k (mod 2632), is found to be 2269. Then P = €32 (mod 2633).

Finally, public key cryptology, invented by Rivest, Shamir. and Adleman, mvolves
tramsformations which are made public.®* The key is (k.n) where k is the exponent and n is
the product of two large primes such that (k, §(n)) = 1. The cncipﬁering key can be made
public becanse an unreasonably large amount of computer time would be regnired to find

the deciphering transformation. The Euler function, ©¢n), is defined as the pumber of
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positive intesers not excesding o which are relatively nrime to n. Knowing that
i(p) =p - 1 if p is prime, and that ¢(mn) = ¢{x) ¢(m} if m and n are relagvely prime, i

follows that P = C* (moed n) and C =D’ (mod o), where k and j are inverses modulo ¢(n).

For example, if the two primes are 43 and 59 (these are much smaller than the priones

that would normally be used), and if k=13, then n =43 x 59 = 2537, (13, 42x 58} = |,

and j equals the inverse of 13 (moed ¢(2537)) = 13 (mod 43 x 59} = 2436, After applying
the divizion algorithm, it is found that j = 937.
Using this information, the student should encipher the following plaintext:
PUBLIC KEY CRYFTOLOGY.
The ciphertext becomes:
085 1648 1410 1299
0811 2333 2132 0370
1185 1457 1084,

Two useful references on cryptology are Elementary Nurmber Theory by Kenneth H.
Rosen 2nd Mathematics--Itg Magje and Mvatary by Aaron Baksr. The.se references also
deal with loolcing far patterns in order to break codes.

Mystic Arays

There seems to be no particular point in time when roagic squares were first noted.
According to legend, a tirtle was fouad with a magic square on imlshell many centuries
before the birth of Christ. The Lo Shu 3 x 3 magic square was }uiawu aronnd 1000 B.C.%

A magic square is magic when, the gam, called the magic constant, of all of the rows,
commna, and diagonals is the same. A 3 x 3 magic sguare :.:Dnl;a.i.ﬁs nine differsnt intepers,
the simplest would contain the integers one through wioe. The magie constant of this
simplest of magic squares 1§ found by summing all of the integers jEl.l'u:l then dividing by
thres. Using the formmla for the sum of an arithmetic progression vields, (1+2+ ... +
9)/3 = (100273 = 15.



76
There is only one basic 3 x 3 magic square although eighi patierns can be produced by

making the appropriate rotations and reflections of the bagie partern. The method of
construction of a 3 x 3 magic square, called the de la Loubére method®, proceeds as
follows. Write the digit 1 In the top center ¢ell and continne to write consecutive integers, if
poseible, in a right-upward diagonal parh. When the top row of cells is reached, enter the
aext digit in the hottom row, one column to the right. This is ca.lle:ii the "knight move".
When the right column of cells is reached, enter the next digit in t]lc left column, one row
up (the knight move). Neither of the first two maneuvers is possible if the top right cell is
reached. When this cccurs, write the pext digit to the cell directly below. This is called

"dropping down”. Also, if a cell 18 occupied, then drop down.

8 1 8

3 b 7

FIGURE 6
A3 %3 Magic Squarte

In the above figure, after 1 is entered in the top center row, the dragonal path is
impossible. So 2 is entered using the knight move. Since 2 is in the right ¢oloom, 3 is
placed using the knight move. Now, the diagonal path is bl::u::k_ﬁ:d,i 50 4 i positioned by
dropping down. The diagonal path is opened for 5 and 6, but then 7 must be entered by
dropping down, since the 6 is in the upper right comer. Finally, the 8 and 9 are placed by
nsing the knight moves.

All odd-order magic squares ¢an be comatmeted using the rechnique described above.
The student shemld atrempt o 5 x 5 and a 7 x 7 magic square remembering to follow an

upward-right diagonal path whenever possible.
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Even-order magic squares ave quite a different story. The sum of the rows, columns,
and diagonals is equal to (16)(17)/2/4 = 34. The geperal method of construction is credited
to de la Hire.5
Starting ar the top left cell with the number 1, and working left to right while counting

to 16, place the numbers only in the cells through which the main diagonals pass. This will

give:

[a—

- »
s » B

6
10

=

1
= 16.

= s &

3
Now, pa back to the top row and fill in the missing numibers starting with 16 and
counting backwards. The completed square will look like:
11514 4
12 6 7 ©
g 10 11 5
13 3 216,
There are exactly 880 different 4 x 4 magic squares, ignoring rotations and mirror

images. The earliest recorded fourth-order square, shown below, 1s shown in Difrer's

famous 1514 engraving known as Melancholio.®

16 3 |2 |13

5 |10|11] 8

916 )7 |12

4 1514 1

FIGURE 7
A Diabolic Magic Square
This square belongs to a special ¢lags called diabolic squares of which there are 48 basic
types.® All the rows, columns, and diagonals add up to 34, just as in any ordinary 4 x 4

magic square. However, the four corner squares (16, 13, 4, 1} and the four center squares
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(10, 11, 6, 7) also add up to 34; so do the opposite pairs of squares (3, 2, 15. 14 and 3,
9, &, 12), as well as the slanting aquares (2, 8, 15, 9 and 3, 5, 12, 14). Also, the four
corner blocks (16, 3, 3, 10; 2, 12,11, 8; 9,6, 4, 15; and 7, 12, 14, 1) each sum to 34.
The sum of the nmobers in the first two rows equal the sum of the numbers in the last
two rows. In addition to this, the sum of the squares of these rows 1s also cgual. Thus
16+3+2+13+5+10+11+8=

D+ T7+124+44+ 154+ 14+1 =68
and

168 + 32+ 22+ 1324532+ 10+ 117 + 8 =
O+ &+ T+ 122442+ 157+ 147 + 12 = 748,

Additionally, the sum of the numbers of the alternate rows (first and third, secopd and
fourth) and the sum of the squares of these numbers also add up to 68 and 748,
respeciively.

The: same patterns can be shown for the columms. (ke stdent should eheck thiz.)

Furthermore, the sum of the oumbers in the dingonals equals the sun of the npmbers
not in the diagonals; the same can be said for the sums of the squares and cubes of these

numbers. Thus:

16 +10+7+14+4+6+114+13=
43 4+2+8+12+14+15 1+ 0 =68, and

6100+ P P+ a2+ 6+ 112+ 13 =
52+ 3 422382 5 122 4+ 147 + 157 + 92 =748, and

183+ 1P+ 7+ 12208+ 1131 135 =
S3033 030 4805179 414 + 197 + 97 = 9248,

Note also that the suma of the numbers in the opposite slanting cells, their squares,
and their cubes are equal. Thus:
2r8+9+15=34+5+12+ 14 =734, and
28t =3P+ 574127+ 147 =374, and
27+ 82490 4+ 155 =133 3% 127 4 147 = 4624

Finally, the date of the painting, 1514, can be found in the bottom row of the square.™
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The student is encouraped 1o investigate 6 X 6 and & x 8 magic squares. Information
on the: methods of foﬂnjné these mystic arrays can be found in the following DooKs:
Mathematical Driversions by J. A. IL Hunter and Joseph 5. Madachy, Mathematical

Puzzles and Diversions by Martin Gardoer, and Fia with Marhematics by Jerome 5.

Meyer.

Root Bxtraction

Extracting Square Roots
The operations in finding the square root of a number withour the use of a caloulalor
are based upon principles found in algebra.”! The root is represented by & binomial of the
form a +b with ¢ an integer and & the remainder. The square is of the form a? + 2ab + b2
The inteser ¢ is found by snecessive approximations. To illnstrate, find the square root of
207.936.
4 5 6

A/ 2079 36

16
4 79 80
4 25 3
54 34 83 900
54 36 _6
0 906
1. Divide the number to be sguared into groups of two digits each, from right to left.
2. Find the largest perfect square that is less than or equal to the first grovp (20). Write
that pexfect aquare (16) below the group and iis square root (4} above the group.
3. Subtract the perfect square from the first group, then bring down the next group to
make the first remainder {479).
4. In aseparate memorandum column to the right, double the quoticnt, thins far, and add
one zero (80,

3. Now, estimate the digit (5) that must be added to the memo number (80) g0 that when

the resulting sum (835) is multiplted by that digit (5), the prﬂd@t {425} will be the
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largest possible without exceeding the first remainder {479), Write this digit (5), when
correctly estimarted, as the second digit of the quotient.

6. Write the product just found (425) under the first remainder, subtract, and bring down
the next group of two to form the second remainder. .

7. Repeat steps 4, 5, and 6 until all of the groups are exhausted. If the original number is
not a perfect square, mark the decimal and add as many zeros, in groups of two, as
needed for desired accuracy.

Tn order to see why the algorithm works, recall that the square of a number is of the
form a® + 2ab + b, while the root is of the form a + b, with a being the iniegral part of the
root andb being the remainder. Then, when 4 was written as the first digit of the root, the
impiication was that a = 400. When a® was subtracted from the original number, the
remainder was of the form 2ab + b°, which is treated as b(2a + b). It can now be seen why
a was doubled and added to b, the sum then being rltiplied by b.. (Incidently, the 80
written in the memo is really 800, but the zerc is dropped for convenience.)

Having completed these operations, the new quotient becomes a new a , and then &

new b becomes the next digit of the root, and so on.

Extracting Cube Roois

The operations in finding a cube root are based on similar algebraic principles.’® The
number is of the form a° + 3a2b + 3ab? + b? while the cube root is of the forma + b. To

illustrate, find the cube root of 76,765,623,

4 2 5

/76 765 625
64 4800
12 765 240 529200
10_088 _ 4 6300
2 677 625 5044 25
2 77 625 535525
D
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1. Divide the number to be cubed into groups of three digits each, from right to left.

2. Find the largest perfect cube that is less than or equal to the first group. Write that
perfect cube (64) below the group and its cube root (4} above the group.

3. Subtract the perfect cube from the first group, then bring down the next group to make
the first remainder (12765).

4. In a separate memorandum column to the right, triple the square of the quotient, thus
far, apd add rwo zeros (4800).

5. Now, estimate the digit (2) whose square (4) must be added to the sum of the memo
number (4800) and the product of three rimes the quotient thus far (4} times the digit
(2) with a zero added (240), so that when the resulting sum {5044} is multiplied by
that digit (2), the product (10088) will be the largest possible without exceading the
first remainder (12765). Write this digit (2), when correctly estimated, as the second
digit of the quotient.

6. Write the product just found (10088) under the first remainder, subtract, and bring
down the next group of three to form the second remainder.

7. Repeat steps 4, 5, and 6 until all of the groups are exhansted. If the original number is
ot a perfect cube, mark the decimal and add as many ze108, in groups of three, as
needed for desired accuracy.

In order to see why this algorithm works, the student should recall that the cube of 4
number is of the form a® + 3a%b + 3ab® + b, while the root is of the form a +b, with a
being the integral part of the root and & being the remainder. Then, when 4 was written as
the first digit of the root, the implication was that a = 400. When a® was subtracted from
the original number, the remainder was of the form 3a%b + 3ab? + b%, which is treated as
b(3a2 + 3ab + b?). It can now be seen why 2 was squared, and added to 3ab and b?, the
sum then being multiplied by &. (Incidently, the 4300 written in the memo is really the

number 4,300,000, but the three zeros are dropped for convenience.}
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Having completed these operations, the new quotient becomesanew 4, and then a
new & becomes the next digit of the root. and so on.
It is recomunended thar the shident, using the principles of algebra, develop sn

algarithin for finding fourth roots without a calculator.
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CHAPTER 3
Summary, Conclusions, and Recommendations

Introduction |

A, conrse in marhematics appreciation has been developed nsing historical research
hacause a need was perceived for this type of mathematics elective at the sentor high school
level. High school students are not typically introduced to many of the topics chosen for
this course. In addition, high school students are rarely exposed to mathematical topics
through a combipation of historic, recreational, and practical lenses. Baoth the topics
chosen and the mmltifaceted approach in this study are supported by research.

Also, high school students are not normally afforded the opportunity to stady
mathematics for its own sake. The topics chosen were selected with the hope that they

would lend themselves toward that end. The philosophy which pervades throughout this

study is supported by NCTM in theic Commission on Standards for School Mathematics.

Summmnary of Findinga

The topics chosen for the mathematics appreciation conrse were found in virtually
every mathematics book on mumber theory or recreational problems. In the section on
nurneration systems, smdents are introduced to: converting between varions bages; adding,
subtracting, multiplying, and dividing in various numeration systeins; and two recreational
anecdotes. Variouns applications to congruence are stadied inchiding linear congruence, the
Chinrese Remainder Theorem, remainders of targe numbers, ISBN numbers, designing
round robin tournaments, digital roots, casting out nines, deriving the divisibility rles of
selected numbers, and an anecdoral problem. Diophantine equations are divided into linear

and nonlinear types including applications such as Pythagorean triples, Integers as the sum
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of two squares, and the famous Pell equation. In the study of the Fibonacci sequence, the
student is presented with the concept of recursion as well as the relationship of the
Fibonacei to Pascal's triangle and to nature. The derivation of the golden section is
presented, and its occurrence in geometric shapes and in the Fibonacei sequence is noted.
The properties of imaginary numbers and their application to finding all of the nth roots of &
number are developed. The concept of the exponential function and its representation as 2
power series is examined. Students are encouraged to attemnpt the famous Buffon
experiment dealing with the experimental determination of the value of 7. Perfect numbers
and their relationship with Mersenne primes are studied, along with some curious oddities.
The fact that nu1:nbers have shape can be seen by the smdent as a result of having studied
trianguiar numbers and their many families. Various types of ciphers are examined, and
the student is encouraged t¢ perform further ressarch on enciphering and deciphering.
Algorithms for both odd and even magic squares are shown, and it is recommended that the
student construct some higher order mystic arrays. Finally, the algorithis for square root
extraction and cube root extraction are explained, and the relationship between the
extraction techniques and the binomial expansion is emphasized.

Conclusions

The frequency of occurrence of the topics chosen in this smdy appears to indicate their
value. Tt is the conclusion of the author that these topics will serve to open up a whole new
world of mathematics for the interested high school student. The topics are presented
utilizing an approach to mathematics to which the typical high school student might not
otherwise be exposed. Tt is therefore hoped that the mathematics appreciation course will
serve to enhance the repertoire of the serious high school mathematics student.
Recommendations

Each of the topics covered in this study can be expanded, depending upon the interest

and expertise of the class. In addition, a mathematics appreciation course such as the one
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presented here could serve a3 a second semester complement to a first semester course on
pomber theory at the college level. Also, many of the topics, sueh a3 Fihonacei sequences
and numeration systems cowld prove guite vsefnl to computer science students because of
their applications to computer prograrming. Finally, because there is approximately one
month available to students after having talen their advanced placement cxams, the author
suggests that advanced placement physics teachers could successfully ntilize many of the
lopics presented in this course during this time, as well ag throughout the school year as an

alternative physics laboratory.
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