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Abstract 

Samuel Moeller 
RELAXATION IN BOLTED ASSEMBLIES 

2015-2016 
Douglas Cleary, Ph. D.  

Master of Science in Civil Engineering  

 

The purposes of this investigation were to (a) extend previously developed elastic 

spring models for bolt assemblies to include simulating creep loss in the bolt and the 

threads and (b) to present an approach in which appropriate spring stiffness in the model 

are determined rationally.  Previous efforts at modeling tension in bolts have been limited 

in that they were not readily applicable to analyses of realistic bolted connections.  The 

simulated load distributions on the shank and the threads in a single-bolt assembly 

showed good comparison to the gathered experimental data as did the simulated, time 

dependent creep loss in the bolt.  The ultimate goal of this research is to develop a model 

that includes nonlinear behavior that is suitable for investigating realistic multi-bolt 

connections.  
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Chapter 1 

Introduction 

 

1.1 Background 

Bolted connections are one of the most common elements in structural design.  

They consist of threaded fasteners that join various components of a structural system.  

An axial load is applied to the fasteners by torqueing the bolt to an initial pretension.  The 

rotation of the nut effectively shortens the distance between the nut and head, which leads 

to a tensile load in the bolt and a compressive load in the material being bolted.  This load 

is transferred across the threads in the bolt/nut assembly causing displacement in the 

threads.  Past studies investigating the distribution of forces in bolts and bolt threads have 

applied a load at the shank of the bolt to determine the resulting distribution on the 

threads.  A modification of how the load is applied is important to this research and will 

be discussed. 

After the initial pretension has been applied, the connection loses some of its 

tension [9].  Understanding the relaxation that occurs in bolted assemblies plays an 

important role in the future of connection design.  At the moment, relaxation is not 

understood on the level needed to properly account for it in the design of connections.  It 

is typically accounted for through the use of conservative design practices which lower 

the capacity of the connection.  The capacity is lowered to a point conservatively below 

that of the actual force loss that can be expected from relaxation.  While this has been 

effective, the continued study of this behavior is necessary to design more precise and 

more advanced connections.  
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1.2 Study Objectives 

The objectives of this research are listed as follows: 

- Review published research on load distribution and relaxation in bolted 

assemblies.  

- Develop a rational method for calculating the load distribution on the threads 

of a bolted connection using linear elastic springs.  

- Extend the linear method for determining the load distribution by 

incorporating thread yielding to capture behavior at higher bolt tension loads.  

- Use experimental data to calibrate the nonlinear model. 

- Develop a model that simulates relaxation load loss using linear elastic 

springs and viscous dashpots. 

- Compare previous research to the objectives of the research in this paper 

identify differences, and propose directions for additional research. 

1.3 Thesis Organization 

This thesis is organized into six chapters.  In Chapter 1, background information, 

the objectives of this study, and the organization of this report are presented.  Chapter 2 

consists of a comprehensive review of literature published on the topic.  In Chapter 3 the 

experimental work that produced the data needed to calibrate the simulation is described.  

Chapter 4 describes the models for determining the load distribution in the bolt threads 

from an initial pretension assuming elastic behavior and non-linear behavior.  In Chapter 

4 the model that simulates relaxation in a bolted assembly is also discussed.  In Chapter 5 

comparisons between model and experimental results are made.  Finally, Chapter 6 
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provides a summary of the research and the conclusions drawn.  Recommendations for 

future studies are also made in this chapter. 
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Chapter 2 

Review of Literature 

 

2.1 Early Studies 

The determination of the load distribution on threads is important in 

understanding the behavior of a bolted connection.  For the better part of the last century 

there have been many studies dedicated to the load distribution on threads using a variety 

of experimental, analytical, and numerical approaches.  Goodier [1] references the works 

of Jaquet and Den Hartog, who presented solutions to the location of the load 

concentration on a connection and how that would affect an evenly distributed load on 

the threads.  Jaquet and Den Hartog observed a large concentration of load at the base of 

the nut which causes the threads to yield at lower loads than the bolt, modifying the 

distribution [1].  The first method for determining the distribution of load along the 

threads of a bolt was to observe axial and radial thread displacements as the connection 

was loaded with a mirror extensometer on the outside of a nut.  The thread displacements 

were then used to determine the average axial stress over the wall thickness of the nut at 

any cross-section.  Once the average axial stress is known, the load distribution can be 

found [1].  Bolts that carried only a single turn of thread at the free end, middle, and base 

of the nut were used to produce an artificial concentration of load which showed that 

there is not a uniform distribution [1]. 

Hetenyi [2] used a photoelastic “stress freezing” method to determine the stress 

distribution in bolted connections.  This process involved the use of connections made of 

BakeliteTM due to its photoelastic properties.  Under loaded conditions the model was 
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annealed to very high temperatures and cooled back to room temperature.  This “froze” 

the elastic stresses and deformations experienced upon loading, and, by taking a 

photoelastic picture of the bolt model, a qualitative distribution of stresses could be 

produced [2].  Results showed that the stress concentration was highest at the end of the 

nut closest to the clamped surface, and that most of the load is transmitted between the 

first engaged thread and the nut.  These conclusions compared well with those of 

Hetenyi’s predecessors. 

Sopwith [3] was the first to present theoretical work that included radial 

expansion which he ultimately compared with the experimental studies of [1].  Using an 

analytical solid mechanics approach, the distribution of load along threads throughout the 

bolt assembly was determined [3].  Sopwith’s analytical results agreed well with the 

previously published experimental results [1, 2].  Various degrees of thread yielding were 

considered and the effect of these variations on the distribution of load along the nut was 

discussed.  Sopwith graphically describes the load distribution on the threads for the 

various extents of yielding.  This theoretical method included both a compression and 

tension case and concluded that the distribution of load to the threads was not uniform 

due to strains in the bolt and nut under load, but as yielding progresses, the load 

distribution along the threads becomes more uniform [3]. 

2.2 Elastic Spring Models 

Miller et al. [4], Curti and Raffa [5], and Wang and Marshek [6] have all 

developed elastic spring models to model bolt-nut assemblies.  Miller et al. [4] and Curti 

and Raffa [5] developed models for both the tension (turnbuckle) and compression (nut 

and bolt) cases.  Miller et al. [4] described the load distribution using second order finite 
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difference equations and verified the mathematics by comparing the solution to a finite 

element analysis and the experimental results of Sopwith [3] and Hetenyi [2].  Curti and 

Raffa [5] used a linear elastic one dimensional model of a joint to investigate the load 

distribution on threads of a bolted connection.  These authors concluded that a linear 

elastic spring model is an effective way to model the load distribution across the threads 

of a bolt.  Wang and Marshek [6] extended the spring model presented by Miller, et al. 

[4] to allow for the yielding of individual threads.  For this model, the yield strength of 

each thread was determined from a mechanics-based model for the deformation of the 

threads and a Tresca model for yield.  Additional spring-based models have been 

developed where the stiffness of various components of an assembly are combined.  For 

example, Fukuoka and Takaki [7] considered separate stiffness values for the springs 

representing clamping interfaces, engaged threads, exposed threads, bolt body, bolt head, 

and fastened plate. 

2.3 Experimental Studies of Bolt Tension Loss  

Chesson and Munse [8] perform experimental studies on bolted assemblies which 

significantly differ from all the previous authors. The majority of their study focuses on 

whether washers can be eliminated from a high-strength bolted assembly without 

sacrificing the integrity of the connection. However, within this study they perform a 

series of relaxation tests on A325 bolts to determine how much tension is lost in a bolted 

connection over time. Strain readings were taken periodically after tightening and these 

tests lasted 5 minutes or from 3 to 90 days. It was found that one minutes after tensioning 

the load dropped between 2-11 percent with an average of 5 percent. The assemblies 

undergoing longer term tests saw an additional 5% losses relative the load remaining 
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after 1 minute and the 90% of the total losses still occurred within the first day. These 

losses they believe can be attributed to elastic recovery or potentially creep and yielding. 

Reuther, D. et al. [9] further addresses the time dependent aspect to the load in a 

threaded connection. Various tensioning methods, bolt diameters, and lengths were used 

in the experimental procedure and the objective was to determine what variables have the 

largest effect on the relaxation in a bolted assembly. The experimental results conclude 

that the hardware of a bolted connection has little to no influence on the relaxation of the 

bolt. The relaxation observed in the bolt over time can be attributed to the diameter and 

the initial pre-tensioning of the bolt with a linear relationship found between the 

pretension force and percent losses. 

Yang and DeWolf [10] performed studies which addressed losses in galvanized 

coated structural connections. The objective was to come up with a mathematical model 

which would predict the relaxation of the clamping force. It was observed that losses 

were greater when the galvanized coating was thicker due to a decrease in slip resistance 

between the bolt and the clamped surface. The losses ranged between 10-20% for various 

coating thicknesses and it was found that 90% of the losses occurred in the first week of 

the test. The experimental data was then used to develop the analytical model which 

depicts the bolt as a single spring. The reduction in the tensile force is attributed to elastic 

losses after tightening and creep losses in the galvanized coating layer and steel 

relaxation in the bolt.  

As a result of stricter standards in building codes for overall energy consumption 

in buildings, Oostdyk [11] conducted research on the losses that occur at the transfer of 

loads in connections with thermal barriers. Connection configurations consisted of 
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typical, bolted steel-to-steel plates, steel plates bolted with a thermal break plate 

sandwiched in the middle, and a similar configuration with a thermal plate and thermal 

washers. It was concluded that the thermal break plate connection with regular washers 

saw lower losses than the typical all steel connections while the utilization of the thermal 

washers increased the losses significantly. Larger diameter washers did, however, 

decrease the overall observed losses.  

2.4 Finite Element Studies  

Maruyama [12] used the finite element method in conjunction with the point-

matching method to determine the stress concentration of a threaded connection. In the 

computations for the FEM a modulus of elasticity of E = 21,000 kg/mm2 is used with 

Poisson’s ratio as ν = 0.3. These material properties are common in standard spring steel. 

Grades SCM 3 and S45C steel were used to fabricate the bolt and nut for the copper-

electroplating method, respectively. The value for the stress concentration factor obtained 

from the finite element method agreed well with that obtained experimentally through the 

copper-electroplating method. However, he concludes that due to many stress 

concentration points and, for the reason of element divisions, it is difficult to model a 

structure with a complicated form such as a screw thread using the finite element method. 

Tanaka [13] develops a fundamental method for the finite element analysis of 

bolt-nut connections. His goal is to create a more practical method than Maruyama’s 

FEM – point matching method. He compares his two-dimensional FEM to a simple one-

dimensional spring model because the implementation of the point-matching method on a 

structure with many contact surfaces, such as a threaded connection, is inefficient. He 

used a modulus of elasticity of E=21,200 kgf/mm2 with a Poisson’s ratio of ν = 0.3 in his 
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bolt-nut models. As was the case with Maruyama’s bolt-nut assembly, these properties 

are common in spring steel. The load distribution obtained from the spring model agreed 

relatively well with that obtained from the finite element analysis of the connection. 

Varadi and Joanovics [14] developed a non-linear finite element model with 

contact elements to evaluate the contact state of a bolt-nut-washer-compressed shear joint 

system.  The non-linear axisymmetric model with contact elements is suitable to analyze 

the bolted joint having parts with different strength properties, to find the plastic zones, to 

obtain the load distributions among threads in contact, to determine the real preload 

diagram of the bolted joint system. 

2.5 Research Significance 

Extending the previously developed elastic spring models for bolt assemblies to 

include load loss from relaxation in the bolt and the threads, while presenting a rational 

approach to determine appropriate spring and dashpot stiffnesses is part of what 

distinguishes this study from past research.  The ultimate goal is to lay the groundwork 

for a model that includes nonlinear time-dependent behavior that is suitable for 

investigating realistic multi-bolt connections.  Previous efforts at modeling tension in 

bolts have been limited in that they were not readily applicable to analyses of realistic 

bolted connections.  On one hand, analytical and finite element analyses that have 

incorporated nonlinearity due to material behavior and contact are likely too complex to 

incorporate into models of realistic bolted connections that can be used for a sensitivity 

study for developing design procedures.  On the other hand, spring models that use an 

FEA-based formulation, while simple enough to incorporate into a model of a realistic 

connection, do not incorporate nonlinear behavior observed at bolt tensions approaching 
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the strength of the bolt.  Spring-based models also do not incorporate time dependent 

behaviors observed at typical values of pretensioning, both of which are usually seen in 

practice in structural assemblies.  In this work, data from experiments on single thread 

bolt-nut assemblies is used to calibrate full thread, linear and nonlinear spring-based 

models, which predict the load distribution for assemblies with various clamp lengths.  

The simulation results of the full thread model agree with experimental observations for 

both 3/4 in.  and 7/8 in. bolts.  In both cases, the model predicts that threads are yielding 

at loads lower than the minimum pretension specified by the AISC code [16], justifying 

the need to capture nonlinear behavior.  The linear spring model is then extended to 

capture time-dependent losses of bolt tension.  The model presented in this thesis will 

allow researchers to move forward toward the modeling of the relaxation of bolted 

connections using nonlinear, time dependent conditions. 
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Chapter 3 

Experimental Procedure 
 

Tests were conducted on ASTM A325 7/8 in. and 3/4 in. steel bolts that were 3.5 

in. long to record the force the bolt experiences due to an applied rotation and at what 

force the threads will yield.  Figure 1 is an illustration of the test setup with key 

components and dimensions labeled.  Table 1 summarizes the key parameters for both the 

7/8 in. and 3/4 in. diameter bolt configurations.  The nominal area of the threaded portion 

of a Unified National Coarse (UNC) bolt, At, is given by [16] and expressed with 

customary units in Equation 1. 

 

 A୲ = 0. 785(d − 0. 9743p)ଶ (1) 

     

 

 

Figure 1. Configuration for Experiments 

d 

washer 

washer 

plate 

head 

nut clamped surface 

clamped surface 

Lc Ls 
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Table 1 

Bolt Dimensions 

Parameter Description 
3/4 in.  

diameter 
7/8 in.  

diameter 
L Bolt Length, in 3.5 3.5 
Lc Clamp Length, in 2.035 1.948 
Ls Unthreaded length of the bolt, in 1.998 1.880 
d Diameter of the bolt, in 0.75 0.825 
p Pitch of the threads, in 0.10 0.11 
A Area of unthreaded portion of bolt, in2 0.4418 0.6013 
At Nominal area of threaded portion of bolt, in2 0.3343 0.4628 

 

 

Bolts were placed in a bolt tension calibrator with a washer on either face of the 

load plate.  Once in the bolt tension calibrator, the bolt was pre-tensioned to 5 kips.  A 

mark was then made on the bolt tension calibrator to indicate the orientation of a marked 

edge of the nut (used as a zero mark).  The bolts were tensioned until the twist-tension 

relation showed noticeable nonlinear behavior or failure, stopping to make marks on the 

bolt tension calibrator once certain predetermined tensions were reached.  Once the 

testing was completed, the angle of rotation was measured using the marks made on the 

bolt tension calibrator.  Because a 5 kip load was taken as the starting point, and therefore 

the 0 angle, the graphs made from the raw angle data were shifted to make 0 kips the 0 

angle.  This was done by finding the slope (m) and y-intercept (b) of the linear portion of 

the graph.  Then (b/m) was added to every x-value on the graph making the x- and y-

intercepts of the linear portion of the graph coincide with the origin. This approach is 

thought to avoid initial nonlinearities in the twist-tension relationship, which are felt to be 

inconsistent and can lead to an inaccurate set of data. 
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For some tests, threads were removed from the nuts before they were put on the 

bolt.  These tests allowed calibration of the spring model parameters.  The resulting test 

matrix is shown in Table 2.  The 7/8 in. diameter unmodified nut has 7 complete rings of 

threads and the 3/4 in. unmodified nut has 6 complete rings of threads.  Because the nuts 

with fewer threads remaining failed at lower tensioning force than nuts with more threads 

remaining, the angle measurements were taken at smaller tensioning intervals, e.g., the 

nuts with 1 thread remaining failed near 15 kips, so measurements were taken at every 1 

kip interval; while the nuts with all threads remaining yielded near 50 kip, so 

measurements were taken at 5 kip intervals.  This ensured that there were sufficient data 

to observe trends for each test. 

 

Table 2  

Test Matrix 

Number of Tests Number of Threads 
Remaining 3/4 in.  

Number of Threads Remaining 
7/8 in.  

4 1 1 
4 2 2 
4 4 4 
4 6 (All) 7 (All) 

 

 

The angle measurements were obtained directly during the tests, as well as from 

photographs taken during the tests which were then analyzed using a commercial 

software package with an angle measurement feature.  The two measurements were 

averaged to reduced variability.  However, the difference between the physical and 

virtual measurements was less than 0.122 radians (7 degrees) in all cases. 
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Figure 2 illustrates the relationship between force and rotation for 3/4 in. bolts 

with (a) one thread remaining (b) 2 threads remaining (c) 4 threads remaining (d) all 

threads remaining.  A straight line was fitted to the linear region of each curve to find the 

linear elastic stiffness.  

 

a.  b.   

c.  d.   

Figure 2. Bolt Rotation – 3/4 in. (a.) 1 (b.) 2 (c.) 4 & (d.) All Threads Remaining 

The averages of the linear stiffness, m, and ultimate force, Fu, of the 3/4 in. nuts 

with 1 thread remaining, 2 threads remaining, 4 threads remaining, and all of the threads 

remaining are displayed in Table 3.  The force was increased in 5 kip intervals for the 
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nuts with all threads remaining and 4 threads remaining, 2 kip intervals for nuts with 2 

threads remaining, and 1 kip intervals for nuts with 1 thread remaining.  The ultimate 

force is the maximum recorded force applied to the bolt in the last increment prior to 

failure of the bolt. 

 

Table 3 

Average Results for Tests on 3/4 in. Bolts 

Number of Threads 
Remaining 

m, lbs/radian Fu, lbs 

1 7963.775 12750 
2 11468.9 20250 
4 14610.75 38000 
6 14678.5 37750 

 

 

Figure 3 illustrates the relationship between force and rotation for 7/8 in. bolts 

with (a) one thread remaining (b) 2 threads remaining (c) 4 threads remaining (d) all 

threads remaining.  A straight line was fitted to the linear region of each curve to find the 

linear elastic stiffness. 
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a.  b.   

c.  d.   

Figure 3. Bolt Rotation – 7/8 in. (a.) 1 (b.) 2 (c.) 4 & (d.) All Threads Remaining 
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force is the maximum recorded force applied to the bolt in the last increment prior to 

failure of the bolt. 

 

Table 4 

Average Results for Tests on 7/8 in. Bolts 

Number of Threads 
Remaining 

m, lbs/radian Fu, lbs 

1 7966.075 11500 
2 15738.75 23000 
4 19295.5 45000 
7 19529.5 57500 
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Chapter 4 

Numerical Methodology 

 

4.1 Numerical Model 

Following the configuration of springs used by Tanaka et al. [13], Miller et al. 

[4], Curti and Raffa [5], Wang and Marshek [6], and Fukuoka and Takaki [7], a model is 

developed that is based on a simple configuration of springs representing the stiffness of 

the threads, bolt shank and the regions between the threads in both the nut and bolt.  A 

FEA-based formulation similar to that used by Tanaka, et al. [13] is used to develop 

appropriate finite element global stiffness matrices.  Following Wang and Marshek [6] 

and Fukuoka and Takaki [7] nonlinear behavior of the assembly is captured by allowing 

yielding of springs that represent each thread.  The result is a model that extends those of 

Tanaka et al. [13], Miller et al. [4], and Curti and Raffa [5] with the addition of capturing 

the flexibility of the bolt shank and the nonlinear aspects of thread deformation. 

First, the linear elastic aspect of the model is discussed, then the nonlinear 

behavior.  Finally, time dependent behavior is addressed. 

4.2 Linear Elastic Behavior 

The linear elastic model is based upon a series of springs connected to nodes and 

solved as a matrix structural analysis problem, which can be thought of as a specialized 

finite element formulation.  The configuration of the model is shown in Figure 4, and is 

similar to the configurations used by Tanaka et al. [13], Miller et al. [4], and Curti and 

Raffa [5].  The configuration shown represents an assembly with three threads engaged, 

but the model is general for arbitrary integer, n, of threads engaged.  There is a node at 
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each clamped surface.  There are 2 nodes corresponding to each thread: one on the bolt 

and one on the nut.   

Each thread can be thought of as a small cantilever which deflects like any other 

member under loaded conditions.  As such, the deflection is determined by Hooke’s Law, 

represented in Equation 2. 

 

 F = kx (2) 

  

Where, x is the deflection, F is the applied force, and k is the thread stiffness, a property 

specific to the type of nut and bolt, and related to both material properties and geometric 

configuration. 

In this model, displacements are constrained to occur only in the direction of the 

axis of the bolt.  For a model with n threads, there are 2n+2 degrees of freedom.  Of 

these, 2 are specified displacements (s), and 2n are free displacements (f).  The 

numbering of these nodes is summarized in Table 5.  The connectivity between nodes is 

as shown in Figure 4, with the stiffness between nodes denoted by k1 through k4.  The 

parameter α determines where on the thread the load transfer occurs for the thread closest 

to the clamped surface.  It is the reciprocal of the fraction of the pitch between load 

transfer and the clamped plate.  These stiffnesses are summarized in Table 6.  For these 

tables, threads are numbered such that 1 is furthest from the clamped surface, and n is 

closest to the clamped surface. 
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Table 5 

Node Numbering for Model 

Nodes Description 

1, 3, …, 2i-1, …, 2n-1 Center line of bolt at ith thread.  

2, 4, …, 2i, …, 2n On the nut, corresponding to ith thread.  

2n+1 Center line of the bolt at the head.  

2n+2 Boundary between nut and clamped plate.  
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   LC 

                 p 

 

Figure 4. Schematic of Spring Model  
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The total force in the bolt is determined by calculating the stiffness in the shank 

multiplied by the change in distance between nodes 2n-1 and 2n+1 which, theoretically 

has an equal and opposite value to the sum of the load distributions on the threads.  The 

stiffness of the shank is determined as a function of its length. This approach to 

calculating the shank stiffness differs from previous studies, where the shank length was 

not considered.  Another key difference between this model and earlier approaches is 

how the load is applied to the bolt.  Instead of applying a force at the first node of the 

threads a rotation is applied to the bolt head causing an initial pretension on the shank 

which is then transferred throughout the bolt. 

 

Table 6 
   
Linear Elastic Stiffness’s Between Nodes  

Stiffness Connected Nodes Description 

k1 2i-1 and 2i-3 Stiffness of bolt between thread i and i-1.  

k2 2i and 2i-1 Stiffness of thread i.  

k3 2i and 2i-2 Stiffness of nut between thread i and i-1.  

αk3 2n and 2n+2 Stiffness of nut between nth thread and clamped plate.  

k4 2n-1 and 2n+1 Stiffness of bolt along effective clamped length.  

 

 

The values for k1 and k4 are assumed to be predicted from a straightforward solid 

mechanics approach, and are therefore known a priori.  The stiffness of the bolt between 

successive threads is given by 

 
kଵ =

A୲E
p

 
(3) 
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where At is the effective cross sectional area of the threaded portion of the bolt, E is the 

elastic modulus of the bolt, and p is the thread pitch.  The stiffness of the bolt along the 

clamped length is given by 

 

 kସ =
1

1
αkଵ

+
Lୱ + d

3ൗ
AE +

Lୡ − Lୱ
A୲E

 (4) 

 

where A is the area of the unthreaded portion of the bolt, Ls is the length of the 

unthreaded portion of the bolt and Lc is the clamp length.  The dimension d/3 is added to 

the length of the shank, Ls, to approximate the effects of deformation of the bolt head.  

This quantity lies somewhere between the overall length of the bolt and the grip length.  

It is usually estimated as the grip length plus one half the thickness of the head and one 

half the thickness of the nut [15].  The αk1 term captures the axial length required to 

effectively engage the first thread.  The other two element stiffness’s, k2 and k3, 

correspond to the stiffness of a single row of threads and the corresponding stiffness’s of 

the nut along the length of one row of threads respectively.  These values are not 

determined from a simple solid mechanics approach.  Instead, they are determined from 

the experimental results presented in Chapter 3.  The process for determining these values 

is described in the following sections. 

The resulting equation for equilibrium is written in partitioned form in equation 5. 

The appropriate submatrices, [Kff], [Kfs] and [Kss] are given in equations 6, 7, and 8 

respectively.  Note that the submatrix [Ksf] can be determined from [Kfs] from symmetry. 
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Note that node numbering is such that the global stiffness matrix is readily 

partitioned into Kff, Kfs, Ksf, and Kss.  The resulting relationship for load and 

displacements is given by Equation 5.  

 

 ൜
F
Fୱ

ൠ = 
K Kୱ
Kୱ Kୱୱ

൨ ൜
U
Uୱ

ൠ (5) 
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Equation 6 shows submatrix K .   

 

  1 2 3 4 … 2n-2 2n-1 2n 

 1 k1+k2 -k2 -k1        

 2 -k2 k2+k3 0 -k3   0    

 3 -k1 0 2k1+k2 -k2 -k1      

K = 4   -k3 -k2 k2+2k3 0 ⋱     

 ⋮    -k1 0 ⋱ ⋱ -k1   

 2n-2  0   ⋱ ⋱ k2+2k3 0 -k3 

  2n-1      -k1 0 
k1+k2 

+k4 
-k2 

 2n           -k3 -k2 
k2+ 

(1+α)k3 

 

(6) 
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Equation 7 shows submatrix Kୱ .  Note that Kୱ =  Kୱ
. 

 

 

 

2n+1 2n+2 

 1    

 2    

 3    

Kୱ = 4 0   

 ⋮    

 2n-2     

  2n-1 -k4   

 2n 0 -αk3 

 

(7) 
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Equation 8 shows submatrix Kୱୱ .   

 

 

(8) 

 

In practice, tension is applied to a bolt by turning the nut.  The resulting 

movement of the nut along the axis of the bolt reduces the pre-strained length of the bolt 

that spans the grip length.  Rather than shortening the grip length, tightening is simulated 

by displacing the node at the head of the bolt by a distance 

 

 
uଶ୬ାଵ =  

−pθ
2π

 
(9) 

 

where, p is the pitch of the thread and θ is the rotation of the nut from the zero-force 

rotation, measured in radians.  Note that the model assumes linear behavior starting 

immediately from some baseline zero rotation.  This is not the actual behavior observed 

in practice, rather a linear region is observed after a small, initial rotation causing slight 

nonlinearity [6].  The second displacement-specified node, 2n+2, is assumed to have zero 

displacement, resulting in a specified displacement vector which can be written as 

 

 

 

2n+1 2n+2 

Kୱୱ = 2n+1 k4 0 

 2n+2 0 αk3 
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{Uୱ} = ቄ

uଶ୬ାଵ
uଶ୬ାଶ

ቅ = ൝
−pθ
2π
0

ൡ 
(10) 

 

As there are no external forces applied, i. e. , {Ff} = 0, Equation 5 may be re-

written to solve for the vector of free displacements 

 

 {U} = ሾKሿିଵ(−ሾKୱሿ{Uୱ}) (11) 

 

Once the free displacements are solved for, the load transferred by the ith thread 

(numbered with 1 as the furthest from the clamped surface and n as the closest to the 

clamped surface), Fi, is given by 

 

 F୧ =  kଶ(uଶ୧ − uଶ୧ିଵ) (12) 

 

The force in the bolt is given by 

 

 F୬ାଵ = kସ(uଶ୬ିଵ − uଶ୬ାଵ) (13) 
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4. 2. 1 Calibration of independent parameters. The model has four independent 

parameters k2, k3, α, and β.  The results are relatively insensitive to α, which has been 

taken to be 1.0 for the analyses discussed in this thesis.  The values for the linear elastic 

spring constants k2 and k3 may be established by considering the experimentally 

observed behavior of a bolt with a single thread.  This case is considered in the schematic 

of Figure 6 that has only the degrees of freedom 2n-1 =1, 2n+1=3, and 2n+2=4.  Note 

that the second degree of freedom has been removed, and the resulting stiffness is the 

equivalent stiffness of the two adjacent springs in series.  Using the same spring stiffness 

coefficients as previously determined, we can relate the experimentally observed force in 

the bolt to 

 

  Fୠ୭୪୲ = kସ(uଵ − uଷ) = kସUୠ (14) 

 

Where Ub represents the elongation of the shank of the bolt up to the 

beginning of the thread.  Node 4 is fixed and therefore the displacement of node 

1 is simply the change in position caused by combined thread and nut 

deformation, denoted Ut+n.  

 

 U୲ା୬ = uଵ (15) 

 

Because k4 is in parallel with k2 and αk3, which are in series, the force in 

the bolt can be redefined based on the equilibrium of the model.  
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−Fୠ୭୪୲ =

1
1

kଶ
+

1
αkଷ

U୲ା୬ 
(16) 

 

From Equation 10, the displacement of node 3 is related to the rotation of 

the nut by 

 

 
uଷ = uଶ୬ାଵ =

−pθ
ߨ2

  
(17) 

 

Now that the variables in Equation 14 have been defined based on the model, they 

can be entered into the equation which can then be rearranged so that k2 and αk3 are 

defined explicitly.  First, Equations 15 and 17 are substituted into Equation 14, resulting 

in 

 
 Fୠ୭୪୲ = kସu୲ା୬ +  kସ

pθ
ߨ2

 
(18) 

 

Substituting Equation 16 into Equation 18 results in 

 

 
−

1
1

kଶ
+

1
αkଷ

U୲ା୬ = kସU୲ା୬ +  kସ
pθ
ߨ2

 
(19) 

 

Rearranging Equation 19 results in 

 

 

−
1

kସ
=

ቀ
pθ
ቁߨ2 ൬

1
kଶ

+
1

αkଷ
൰

U୲ା୬
+  ൬

1
kଶ

+
1

αkଷ
൰ 

(20) 
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Substituting Equation 16 back into Equation 20 and rearranging, the result gives 

 

 pθ
Fୠ୭୪୲ ߨ2

−
1

kସ
=  ൬

1
kଶ

+
1

αkଷ
൰ 

(21) 

 

or in terms of the force-twist relationship 

 

 p
ߨ2

dθ
dFୠ୭୪୲

−
1

kସ
= ൬

1
kଶ

+
1

αkଷ
൰ 

(22) 

 

where 
ୢ

ୢౘౢ౪
 is the torque-twist flexibility in a bolt assembly with one thread, as 

determined by laboratory experiments, so that only the right hand side of the 

equation has unknown values.  Finally, the right hand side of Equation 22 can 

be split so that the individual k2 and αkଷ values can be found.  This results in 

the development of a parameter, β, which is arbitrary at this point. 

 

 1
kଶ

= β ൬
p

2π
dθ

dFୠ୭୪୲
−

1
kସ

൰ 
(23) 

 

and 

 1
αkଷ

= (1 − β) ൬
p

2π
dθ

dFୠ୭୪୲
−

1
kସ

൰ 
(24) 
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For any given pair of α and β the model predicts a load distribution on the threads 

of the bolt-nut assembly and the force in the bolt along the clamped length.  In the case 

where the rotation of the nut, θ, is equal to 1 radian, the predicted force in the bolt is 

equivalent to the stiffness of the bolted assembly.  Units for stiffness of the bolted 

assembly are kips per radians.  For the case of a bolt with a single thread, this numerical 

stiffness value equals the experimentally determined value regardless of the value of β.  

However, the value of  will affect predictions for bolts with additional threads.  

Therefore, experimentally observed stiffnesses for fully threaded assemblies can be used 

to determine the appropriate value of β.  This was accomplished by performing multiple 

iterations where β started at the arbitrarily chosen value of 0.85 and stepped through at 

intervals of 0.001 until the resulting numerical stiffness was equal to the experimental 

value for bolted assemblies with full threads intact to a ±0.002 kip/radian tolerance.  

Through this process, it was found that for a 3/4 in. diameter A325 bolt, β was equal to 0. 

872, and for a 7/8 in. diameter A325 bolt, β was equal to 0.933.  The k2 and k3 values for 

a 3/4 in. diameter bolt were 634.4 kips/radians and 2161 kips/radians respectively.  The 

k2 and k3 values for a 7/8 in.  diameter bolt were 523.9 kips/radians and 3768 kips/radians 

respectively.  

 

4.3 Non-Linear Behavior 

Non-Linear analyses are carried out using an incremental approach.  The matrix 

equation that corresponds to the differential of Equation 5 is  
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൜
dF
dFୱ

ൠ = 
K୲ Kୱ୲
Kୱ୲ Kୱୱ୲

൨ ൜
dU
dUୱ

ൠ 
(25) 

  

Where the subscript t on the submatrices identifies them as tangential stiffnesses.  The 

stiffness matrices originate as the linear elastic stiffness matrices.  Incremental values of 

{dUୱ} are applied, and resulting incremental values of {dU} are calculated.  After each 

step, member forces in the spring are evaluated.  If a spring representing a thread is found 

to have surpassed yield load, only the fraction of the load increment prior to yielding is 

applied.  Then, the tangential stiffness matrix is assessed a penalty corresponding to 95% 

of the linear elastic stiffness of the spring.  New load increments are then applied until the 

next thread yields. 

The incremental displacement vector {dUୱ} can be written in terms of an 

incremental twist of the nut, dθ, as 

 
{dUୱ} = ൜

duଶ୬ାଵ
duଶ୬ାଶ

ൠ = ൝
−pdθ

2π
0

ൡ 
(26) 

 

As there are no external forces applied, i.e., {Ff}=0, Equation 25 may be re-

written to solve for the vector of incremental free displacements 

 {dU} = ൣK୲൧
ିଵ

൫−ൣKୱ୲൧{dUୱ}൯ (27) 

 

Once the free displacements are solved for, the load transferred by the ith thread 

(numbered with 1 as the furthest from the clamped surface and n as the closest to the 

clamped surface), Fi, is given by 
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 F୧ = F୧బ
+  dF୧ = F୧బ

+  kସ(duଶ୧ −  duଶ୧ିଵ) (28) 

 

The force in the bolt is given by 

 

 F୬ାଵ = F୬ାଵబ
+  dF୬ାଵ =  F୬ାଵబ

+  kସ(duଶ୬ାଵ −  duଶ୬ିଵ) (29) 

 

At the end of each step, the loads on individual threads are compared to the 

specified yield loads.  If one or more threads are found to have yielded, the incremental 

݀θ is reduced such that the load increment results in a single thread exactly reaching 

yield strength.  The tangential stiffness is then changed using a penalty approach, and 

additional increments are then applied with the new tangential stiffness matrix until the 

next thread yields. 
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Figure 5. Schematic Model for Single Thread Assembly 

 

1 

3 

k2 

k4 

k3 
4 



36 
 

4.4 Time-Dependent Behavior 

 The model is similar to the linear and nonlinear, non-time dependent model in that 

it is based on a series of springs connected to nodes and solved as a matrix structural 

analysis problem.  The difference between the static model and the time dependent model 

is that the time-dependent model incorporates a spring and dashpot in parallel, 

alternatively called a Kelvin [17], Kelvin-Voight [17], or Voight [17] model, between the 

free node on the bolt thread and a newly defined slave node.  A schematic of the Kelvin 

model is shown in Figure 6.   

 

 

Figure 6. Schematic of Kelvin Model 
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 In order to simulate the behavior of the Kelvin model a compressive force is 

applied to both ends. The spring is not compressed at all at first, so all of the load is 

carried by the dashpot.  This initial load causes the dashpot to move.  As the dashpot 

compresses, the spring also compresses and begins the carry some of the load as well as 

the dashpot.  This reduces the rate of compression.  Eventually, the spring has 

compresses sufficiently to carry all of the applied load, and the dashpot carries no load.  

At this point, the Kelvin model has reached a steady state, and will not compress any 

further, 

 The complete configuration of the time dependent model is shown in Figure 7.  

Each individual thread circumference is represented by a single Kelvin model in addition 

to the spring stiffness that was included in both the linear and nonlinear models presented 

previously.  The numbering of the nodes is summarized in Table 7.  The connectivity 

between the nodes is also shown in Figure 7, with the stiffnesses between nodes denoted 

by k1 through k4.  

 The Kelvin model allows the loss over time to be simulated.  The dashpot 

introduces the dimension of time into the model.  A dashpot behaves as a dampener and 

the rate of its compression is governed by a newly introduced variable.  This variable has 

the units of kip-seconds per inch and relates the rate of compression of the dashpot, in 

units for distance per time, to the applied force.  The spring that is parallel to the dashpot 

causes the force in the spring-dashpot mechanism to transfer to the spring as the dashpot 

compresses.  This allows the dashpot to compress only a finite distance and as a result the 

force loss per time increment gradually slows under constant displacements.  The spring 

in parallel with the dashpot is the object that holds the force that is loss in each time 
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increment.  The entire spring-dashpot mechanism is used to reduce the force that is 

exerted on the springs that represent the stiffness of the point of contact between the bolt 

and nut threads.  The result of this behavior is the simulation of relaxation in the bolt over 

a specified time period.  The stiffnesses and dashpot constant are summarized in Table 7.  

For these tables, threads are numbered such that 1 is furthest from the clamped surface, n 

is closest to the clamped surface.  

 

Table 7 

Node Numbering for Model 

Nodes Description 

(1)f … (2i-1)f … (2n-1)f  Center line of bolt at ith thread.  

2f … 2if … 2nf 

(2n+2+i)d 

On the nut, corresponding to ith thread.  

At thread POC, corresponding to ith thread 

(2n+1)s Center line of the bolt at the head.  

(2n+2)s Boundary between nut and clamped plate.  

 

 

The vector of slave node displacements, {Uୢ}, is written as, 

 

 {Uୢ} =  ሾDሿ{U} +  {s} (30) 

 

where [D] is the position matrix, {U} are the free dislacements, and {s} is a vector that 

describes the compression in the dashpots.  The position matrix [D] identifies the free 
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nodes of the bolt threads that the displacements of the slave nodes are tied to, and takes 

the form  

 

 

  D =  

ۏ
ێ
ێ
ێ
ۍ
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 ⋱ 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 ے0

ۑ
ۑ
ۑ
ې

 

(31) 
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Figure 7. Bolt-Nut Assembly Schematic for Time Dependent Behavior 
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Table 8 

Linear Elastic Constants Between Nodes 

Stiffness Connected Nodes Description 

k1 (2i-1)f and (2i-3)f Stiffness of bolt between threads i and i-1.  

k2 2if and (2i-1)f Stiffness of thread i.  

k3 2if and (2i-2)f Stiffness of nut between threads i and i-1.  

αk3 2nf and (2n+2)s Stiffness of nut between nth thread and clamped plate.  

k4 

k5 

c1 

(2n-1)f and (2n+1)s 

(2n+2 + i)d and (2i-1)f 

(2n+2 + i)d and (2i-1)f 

Stiffness of bolt along effective clamped length.  

Stiffness of resistance to relaxation force 

Rate of relaxation constant at thread POC 
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 The values of k1 through k4 and α were defined in a previous section.  The value 

of k5, like k2 and k3, was not determined through a solid mechanics approach, but rather 

from experimental data.  This stiffness corresponds to the resistance to relaxation the 

bolt will display over time while c1, which was also determined from experimental data, 

represents the rate at which that relaxation will occur. 

The partitioned equilibrium equation is given by Equation 32.  

 

 

൝
F
Fୱ
Fୢ

ൡ =  
K Kୱ Kୢ
Kୱ Kୱୱ Kୱୢ
Kୢ Kୢୱ Kୢୢ

൩ ൝
U
Uୱ
Uୢ

ൡ  +  
C Cୱ Cୢ
Cୱ Cୱୱ Cୱୢ
Cୢ Cୢୱ Cୢୢ

൩ ቐ
Uሶ 
Uሶ ୱ
Uሶ ୢ

ቑ 

(32) 

 

The resulting stiffness submatrices are presented in Equations 33 through 38.  

Note that node numbering is such that the global stiffness matrix is readily partitioned 

into Kff, Kfs, Ksf, Kss, Kfd, Kdf, Ksd, Kds, and Kdd.  A similar matrix, C, is defined for the 

dashpot constant.  It is partitioned in a similar manner into Cff, Cfs, Csf, Css, Cfd, Cdf, Csd, 

Cds, and Cdd and is given by Equation 39. It should also be noted that the partitioned 

submatrices Ksd and Kds in Equation 37 are zero matrices.  The partitioned submatrices 

Cfs, Csf, Css, Csd, and Cds in Equation 39 are also all zero matrices. 
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Equation 33 shows submatrix K.  

 

  1 2 3 4 … 2n-2 2n-1 2n 

 
1 

k1 + 
k5 

0 -k1  

 
2 0 

k2 + 
k3 

0 -k3  

 
3 -k1 0 

2k1 +  
k5 

0 ⋱ 0 

K = 4  -k3 0 
k2 + 
2k3 

0 ⋱  

 
⋮  ⋱ 0 ⋱ ⋱ ⋱  

 
2n-2 0 ⋱ ⋱ 

k2 + 
2k3 

0 -k3 

 
2n-1  ⋱ 0 

k1 + k4 

+ k5 
0 

 
2n  -k3 0 

k2+ 
(1+α)k3 

 

(33) 
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Equation 34 shows submatrix Kୱ .  Note that Kୱ =  Kୱ
. 

 

  2n+1 2n+2 

 
1 

0 

 
2 

 
3 

Kୱ = 4 

 
⋮ 

 
2n-2 

 
2n-1 -k4   

 
2n 0 -αk3 

 

(34) 
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Equation 35 shows submatrix Kୢ. It should be noted that Kୢ =  Kୢ
.  

 

 

  2n+2+1 2n+2+i 2n+2+n 

 1 -k5 

  

0 

 2 -k2 

 3 

0 

⋱ 

Kୢ = 4 ⋱ 

 ⋮ ⋱ ⋱ 

 2n-2 ⋱ 0 

 2n-1 

  

-k5 

 2n -k2 

 

(35) 
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Equation 36 shows submatrix Kୱୱ.  

  2n+1 2n+2 

Kୱୱ = 2n+1 k4 0 

 2n+2 0 αk3 

 

(36) 

Equation 37 shows submatrix Kୱୢ. It should be noted that Kୢୱ =  Kୱୢ
.  

  2n+2+1 2n+2+i 2n+2+n 

Kୱୢ = 2n+1 

0 

 2n+2 

 

(37) 

Equation 38 shows submatrix Kୢୢ.  

  2n+2+1 2n+2+i 2n+2+n 

 2n+2+1 k5+k2 0 

Kୢୢ = 2n+2+i   ⋱   

 2n+2+n 0 k5+k2 

 

(38) 
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 1 2 3 4 … 2n-2 2n-1 2n 2n+1 2n+2 2n+2+1 2n+2+i 2n+2+n 

1 c1   

0 

-c1 

  

0 

2   0   0 

3    c1 0 

0 

⋱ 

4   0   0 

⋮   ⋱   ⋱   

2n-2 0 0   0   

2n-1     c1   

  

-c1 

2n     0 0 

2n+1 

0 0 0 

2n+2 

2n+2+1 -c1 0 0 

0 

c1 0 

2n+2+i   ⋱ 0 ⋱ 0     ⋱   

2n+2+n 0     -c1 0 0 c1 

  

(39) 

 

In practice, in the same application as in the linear elastic case, tension is applied 

to a bolt by turning the nut.  This reduces the pre-strained length of the bolt that spans the 

grip length.  Rather than shortening the gripped length, tightening is simulated in the 

model by displacing the node at the head of the bolt by a distance 
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u(ଶ୬ାଵ)ೞ

=  
−pθ
2π

 
(40) 

 

where, p is the pitch of the thread and θ is the rotation of the nut from the zero force 

position, measured in radians.  Note that the model assumes linear behavior starting 

immediately from some baseline zero rotation.  This is not the actual behavior observed 

in practice, rather a linear region is observed after a small, initial rotation.  The second 

displacement-specified node, 2n+2, is assumed to have zero displacement, resulting in a 

specified displacement vector which can be written as 

 

 
{Uୱ} = ቄ

u(ଶ୬ାଵ)ೞ
u(ଶ୬ାଶ)ೞ

ቅ = ൝
−pθ
2π
0

ൡ 
(41) 

 

As there are no external forces applied, i.e., {Ff} = 0, Equation 32 may be re-

written to solve for the vector of free displacements.  In the case of time dependent 

behavior, solving for the vector of free displacements is not as straightforward as it is 

with the static simulation.  From Equation 32, and noting that [Cfs] = [0], Ff can be 

equated to 

 

{0} = {F} =  ሾKሿ{U} +  ሾKୱሿ{Uୱ} + ሾKୢሿ{Uୢ} +  ሾCሿ൛Uሶ ൟ + ሾCୢሿ൛Uሶ ୢൟ (42) 

 Likewise, there are no forces applied at the slave nodes, so {Fd} = {0}, and noting 

that [Kds] and [Cds] are zero matrices, Equation 32, can be re-written to solve for the 

velocity vector of the slave nodes. 
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{0} = {Fୢ} =  ሾKୢሿ{U} +  ሾKୢୢሿ{Uୢ} +  ሾCୢሿ൛Uሶ ൟ +  ሾCୢୢሿ൛Uሶ ୢൟ (43) 

 

Enforcing {Fd} to {0}, and considering Equation 32 results in 

 

{0} =  ሾKୢሿ{U} + ሾKୢୢሿൣሾDሿ{U} + {s}൧ +  ሾCୢሿ൛Uሶ ൟ + ሾCୢୢሿ൛Uሶ ୢൟ (44) 

 

We can now solve for ൛Uሶ ୢൟ 

 

൛Uሶ ୢൟ =  −ሾCୢୢሿିଵൣሾKୢሿ + ሾKୢୢሿሾDଵሿ൧{U} − ሾCୢୢሿିଵሾKୢୢሿ{s} − ሾCୢୢሿିଵሾCୢሿ൛Uሶ ൟ (45) 

 

Equation 30 and 45 can now be substituted into Equation 42 to solve for the vector of 

free displacements.  As Equation 45 is simplified it can be seen that  

 

{0} = ൣሾKሿ + ሾKୢሿሾDሿ൧{U} + ሾKୢሿ{s} + ሾKୱሿ{Uୱ} + ሾCሿ൛Uሶ ൟ

− ሾCୢሿሾCୢୢሿିଵൣሾKୢሿ + ሾKୢୢሿሾDሿ൧{U} − ሾCୢሿሾCୢୢሿିଵሾKୢୢሿ{s}

− ሾCୢሿሾCୢୢሿିଵሾCୢሿ൛Uሶ ൟ 

(46) 

 

We find that 

 ሾCሿ − ൣሾCୢሿሾCୢୢሿିଵሾCୢሿ൧ = 0 (47)1 

 

                                                           
1 See Appendix A. 
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Based on the results of the matrix algebra in Equation 47, we can further simplify 

Equation 46 to 

 

0 = ቂሾKሿ + ሾKୢሿሾDሿ − ሾCୢሿሾCୢୢሿିଵൣሾKୢሿ + ሾKୢୢሿሾDሿ൧ቃ {U}

+ ൣሾKୢሿ − ሾCୢሿሾCୢୢሿିଵሾKୢୢሿ൧{s} + ሾKୱሿ{Uୱ} 

(48) 

 

Solving for {U} gives us the vector of free displacements as defined by 

 

{U} = ቂሾKሿ + ሾKୢሿሾDሿ

− ሾCୢሿሾCୢୢሿିଵൣሾKୢሿ + ሾKୢୢሿሾDሿ൧ቃ
ିଵ

 ቂൣሾCୢሿሾCୢୢሿିଵሾKୢୢሿ

− ሾKୢሿ൧{s} − ሾKୱሿ{Uୱ}ቃ 

 

(49) 

Once the free displacements are found, the load transfer by the ith thread (numbered with 

1 as the furthest from the clamped surface and n as the closest to the clamped surface), Fi, 

is given by 

 F୧ =  kଶ൫uଶ୧ − uଶ୧ିଵ − s୧,୲୭୲ୟ୪൯ (50) 

 

By subtracting the total displacement in the dashpot from the free displacements as time 

increases a loss in force will begin to occur.  The force in the bolt is given by 

 

 F୬ାଵ = kସ(uଶ୬ାଵ − uଶ୬ିଵ − s୬) (51) 
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4. 4. 1 Simulation of losses over time. Now that the free displacements as a 

function of the governing time dependent parameters, k5 and c1, are known, a way to 

simulate the occurring losses must be determined.  To do this we use 

 

 ൛Uሶ ୢൟ =  ሾDሿ൛Uሶ ൟ +  {sሶ} (52) 

 

where ൛Uሶ ୢൟ represents the rate at which the slave nodes are moving which is simulated by 

{sሶ} which is a vector describing the rate at which each dashpot compresses.  This rate, 

{sሶ}, must be solved for to obtain an initial velocity of the slave nodes when time is equal 

to 0.  From this point the simulation steps through using time intervals from {sሶ} which is 

recalculated after each step.  Based on the mechanics of the dashpot, the rate {sሶ} will 

decrease over time until it reaches a point in time where the individual threads are no 

longer is losing force.  Therefore, the bolt will have reached a steady state loading 

condition.  To implement this behavior, Equation 52 is substituted into Equation 43 to 

obtain, 

{0} =  ሾKୢሿ{U} + ሾKୢୢሿ{Uୢ} +  ሾCୢሿ൛Uሶ ൟ + ሾCୢୢሿሾDሿ൛Uሶ ൟ +  ሾCୢୢሿ{sሶ} (53) 

 

Upon observation, 

 ሾCୢሿ൛Uሶ ൟ + ሾCୢୢሿሾDሿ൛Uሶ ൟ = 0  (54)2 

 

simplifying the equation to 

                                                           
2 See Appendix B. 
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 {0} =  ሾKୢሿ{U} + ሾKୢୢሿ{Uୢ} + ሾCୢୢሿ{sሶ}  (55) 

 

The dashpot compression rate can be solved and Equation 30 can be inserted into 

Equation 55 thus giving, 

 

 {sሶ} =  ሾCୢୢሿିଵ ቂ ሾKୢሿ{U} + ሾKୢୢሿൣሾDሿ{U} + {s} ൧ቃ  (56) 

 

The simulation then steps through time increments to simulate the relaxation behavior 

until compression is no longer being lost in the bolt.  A correctly calibrated simulation 

should produce output that fits well with experimentally observed data. 
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4. 4. 2 Calibration of independent parameters. The model has two previously 

undetermined, independent parameters which relate to the mechanical properties of the 

bolt, k5 and c1.  These two parameters govern how much loss occurs over time.  During 

elastic behavior these parameters govern the model as follows.  It can be assumed that 

when time is equal to 0, the vector of free displacements, {U}, is the same as under non-

time dependent conditions.  To simulate this condition, the model starts when {s} = 0.  

Since no time has passed {s} must be zero because {s} is defined as the displacement in 

the dashpot.  We are left with the initial free displacements found from the non-time 

dependent, linear elastic model.  However, it is not possible to calibrate when time is 

equal to zero because regardless of the values of k5 and c1, the initial displacements of the 

threads will remain the same.  This is to be expected of the model. 

What is known is the {sሶ} vector, which can allow the model to step through any length 

of time increment using any values for k5 and c1.  It is also important to understand that, 

while k5 and c1 are independent of the previously determined stiffnesses, they are also 

independent of each other.  This creates a practical calibration process.  First, k5 can be 

calibrated until the losses that occur in the simulation compare well to those determined 

experimentally.  Once the desired losses are found, c1 can be calibrated until those losses 

occur over the length of time that was observed experimentally. 

Upon observation of Equation 56 it is apparent that the rate of compression in the 

dashpot will not change based on the applied force of the initial pretension.  To simulate 

this observed behavior it is necessary to implement a threshold method within the 

simulation that controls the rate based on the pretension.   
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The trend line of the plotted experimental data is best represented as linear.  Figure 8 

below displays this data [18]. 

 

 

Figure 8. Experimental Relaxation Data [9] 

 

Using the equation of the trend line, the value at which no losses occur was determined.  

This pretension was the threshold and all simulated losses for any given bolt could be 

scaled linearly based on this limit to achieve the correct behavior within the model.  It has 

previously been determined experimentally relaxation is governed primarily by the initial 

pretension.  Variations in hardware and bolt type had little effect on the amount of 

observed losses for a single bolt size [9].  The experimental work done of time dependent 

losses focused on a 7/8 inch diameter bolt. Therefore, the use of a single threshold value 

is sufficient within the model as there was insufficient relaxation data from a 3/4 inch 
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diameter bolt to make a reasonable comparison between the simulation and what was 

observed experimentally.  

Upon observation of Equation 56, which gives the rate of compression in the dashpot, the 

equation can be viewed as the inverse of the slave-node, damping coefficient sub-matrix 

multiplied by a force vector.  The threshold must be subtracted from that force at every 

time step to scale the relaxation at varying pretensions.  At the end of every time step the 

model does a check to make sure that negative values of load distribution on the threads 

are excluded from the total force in the bolt.  Implementing this behavior resulted in 

larger losses as the pretension was increased.  Once the correct behavior was obtained, k5 

and c1 were calibrated separately until the correct losses occurred over the correct period 

of time.   
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Chapter 5 

Numerical Results and Discussion 

 

5.1 Linear Elastic Model 

Using the calibrated k2 and k3 values for the 3/4 in. diameter and 7/8 in. diameter bolts 

(based on single-thread tests), the remaining stiffness values were found using the 

numeric simulation for elastic bolt behavior.  The simulation was run multiple times for 

each diameter bolt to find numerical stiffness values representative of any given number 

of engaged threads for that size.  The output is depicted in Figures 8 and 9 for the 3/4 in. 

and 7/8 in. bolts, respectively, and is plotted against the experimentally determined 

stiffness values.  The fit for both diameter bolts is good with the 3/4 in. bolt matching 

especially well. It should be noted that the dashed lines in Figures 9 and 10 represent the 

stiffnesses using values of beta ±0.02 from the calibrated values. The upper line is +0.02 

beta and the lower line is -0.02 beta for both Figures 9 and 10. 
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Figure 9. Experimental vs. Numerical Stiffnesses – 3/4 in. Bolt 

 

 

Figure 10. Experimental vs. Numerical Stiffnesses – 7/8 in. Bolt  

 

5.2 Non-Linear Model 

After running the simulation using the calibrated k2 and k3 values as an elastic analysis, 

the simulation was then ran using the same k2 and k3 values as an analysis of elastic-
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plastic behavior.  The experimentally determined values for single thread yield in 3/4 in. 

and 7/8 in. diameter bolts were 11 kip and 10 kip, respectively.  Using these values in 

conjunction with the calibrated spring stiffnesses, the simulation method described in 

Section 4.4.1 was implemented.  The output is depicted in Figures 11 and 12 for the 3/4 

in. and 7/8 in. bolts, respectively, and is plotted against the experimentally recorded force 

versus rotation values.  The large points along the simulation line represent when, in the 

simulation, the threads yielded.  Again, the fit is good for both bolt diameters.  However, 

as was also the case with elastic behavior, the 3/4 in. diameter bolt plot has a better fit. 

 

 

Figure 11.  Non-Linear Behavior - 3/4 in. Bolt  
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Figure 12.  Non-Linear Behavior – 7/8 in. Bolt 

 

Many previous studies have determined the load distribution on the threads in a linear 

elastic bolt model.  As observed by Sopwith [3], accounting for nonlinear behavior in the 

threads results in a more uniform distribution of load across the length of the thread.  The 

load distribution on the threads as predicted by the nonlinear model as the load is 

increased is shown in Figures 13 and 14 for the 3/4 in. and 7/8 in. bolts, respectively.  In 

both plots, it is apparent at what force a thread yields.  Once a thread yields the remaining 

threads take most of the increasing load until another thread yields and this behavior 

continues until the entire bolt yields. 
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Figure 13.  Thread Load Distribution – 3/4 in. Bolt 

 

 

Figure 14.  Thread Load Distribution – 7/8 in. Bolt 
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Comparisons can be made between Figure 14 to Miller, Figure 7 [4], which shows the 

percent of the total load on each thread for a one inch diameter steel bolt. The figure plots 

photoelastic [2], theoretical [3], and spring model results [4]. When comparing this data 

which has been reproduced in Figure 15, the percent of the total load on each thread is 

similar. Based on these observations, it can be concluded that the calibration process of 

the independent variables in the model was accurate.  

 

 

Figure 15. Thread Load Distribution Comparison 
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5.3 Time Dependent Model 

Using the calibrated k5 and c1 values, the simulation was run using the same pretension 

values based on the trend observed during testing.  The results at each initial pretension 

were then plotted against the experimental data plotted in Figure 16 for 7/8” diameter 

bolts. 

 

 

Figure 16. Experimental vs. Simulated Losses - 7/8 in. Bolt 

 

The comparison between the experimental and simulated losses is good.  The increasing 

simulated losses follow a curved trend as a result of the implemented threshold to scale 
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experimental losses could begin to exhibit the same trend as the simulation. Due to the 

range of pretensions used in this study additional testing would be required.  
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Chapter 6 

Conclusions & Recommendations 

 

This research focused on the relaxation in bolted assemblies.  In order to effectively 

simulate this behavior models were developed to simulate the relaxation in the bolts.  

Results of these models predict the load distribution on the threads under elastic and 

plastic conditions.  Models such as these have been developed in previous research.  The 

spring model this research focused on differs from previous works because it used a 

pretension based on an initial rotation to determine the load on each thread.  The length 

of the bolt shank was also used to develop a corresponding stiffness.  In this scenario the 

force in the bolt was then a function of the initial rotation and the subsequent 

displacement in the shank from its original length based on that rotation.  The capability 

to simulate displacement in the bolt shank was significant because the model could then 

be extended to incorporate the element of time where displacements would vary based on 

the time increment.  This was the plastic deformations that created the losses which 

occurred in the bolt.  

6.1 Summary of Findings 

The findings from the analysis described in this thesis are summarized below.  

6. 1. 1 Linear elastic behavior. The load distribution on the threads of bolted-

assemblies under linear elastic conditions has been extensively researched in the past.  

However, for the purposes of studying time-dependent behavior it has proved necessary 

to the calibration of the independent parameters used to determine the stiffnesses that are 

specific to the material and geometric properties of the bolts used in the study.  The 
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values of the k2 and k3 stiffnesses were functions of the dimensionless parameter, β.  This 

value was determined by incrementing its value and comparing the simulated stiffness to 

that found based on experimental data.  The results of this incremental approach found β 

to be 0.872 for the ¾ inch dimeter bolt and 0.933 for the 7/8 inch diameter bolt.  Using 

these β values, the actual spring stiffnesses, k2 and k3, could be found.  These stiffnesses, 

as well as k1 and k4, which were known a priori through a solid-mechanics approach, are 

summarized in the following table.  

 

Table 9 

Stiffnesses of ASTM A325 Bolts 

 
3/4" Diameter A325 Bolt 

Stiffness 
(kips/radians) 

7/8" Diameter A325 Bolt 
Stiffness 

(kips/radians) 
k1 9,694. 4 12,200 

k2 635. 62 520. 77 

k3 2,165. 1 3,626. 0 

k4 5,147. 4 7,163. 4 

 

 

The values were verified after the results of the simulated load distribution on the threads 

compared well with the experimentally determined distribution.  These stiffness values 

were then used in the other models covered in this paper; the non-linear model and the 

time dependent model.  
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6. 1. 2 Non-linear behavior. Using the determined stiffness values a non-linear 

analysis was run to determine how much incorporating thread yielding behavior lead to a 

better comparison to the experimental results.  The results of this simulation showed that 

thread yielding allows for a better comparison which could lead to better development of 

a non-linear, time-dependent model. 

6. 1. 3 Time dependent behavior. The same thread stiffnesses were used in the 

linear elastic time dependent model.  This model was extended to include the simulation 

of the observed relaxation behavior.  Two additional independent parameters were 

calibrated as well, k5 and c1.  These were modelled in parallel to add the additional time 

dimension to the model.  The values for k5 and c1 were 714 kips/inch and 60,000 kip-

hours/inch.  Once calibrated, the simulation results compared well with the 

experimentally determined losses, though slightly higher.  

6.2 Conclusions 

Each model compared well with the experimental results once the independent 

parameters were calibrated.  The difference between the losses of the linear elastic, time – 

dependent simulation and the experimental values could be attributed to not accounting 

for plastic behavior in the time-dependent model.  The decrease in thread stiffness due to 

yielding could lessen the difference in the results. 

6.3 Recommendations 

The results and conclusions of this thesis can most immediately be extended into the 

development of a relaxation simulation that incorporates elastic-plastic behavior to 

determine whether this leads to a better comparison with the experimental results. 

Relaxation testing using a wider variety of bolt diameters and lengths is recommended to 
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further determine the accuracy of the simulation. Expanding the model to be applied to 

any type of bolt would require more tests to determine potential variables to incorporate 

as the diameter and lengths change.  Additional testing at higher pretensions is also 

recommended. This would enable a determination of whether experimental losses will 

continue to exhibit a linear trend or whether they will start to follow the curve resulting 

from the simulated output. Additionally the results of this thesis can be used as an 

additional comparison resource for future finite element models of the same A325 high-

strength bolt assemblies. The greater the amount of available data will lead to a better 

understanding of the relaxation behavior. 

 

 

 

 

 

 

 

 

 
 

 

 



68 
 

References 
 

[1] Goodier, J., “The Distribution of Load in the Threads of Screws,” Journal of 
Applied Mechanics, pp. 10-16, 1940. 

 
[2] Hetenyi, M., “The Distribution of Stress in Threaded Connections,” Experimental 

Stress Analysis:  Proceedings of the Society for Experimental Stress Analysis, pp. 
147-156, 1943. 
 

[3] Sopwith, D., “The Distribution of Load in Screw Threads,” Proceedings of the 
Institute of Mechanical Engineers, Vol. 159, pp. 373-383, 1948.  
 

[4] Miller, D., Marshek, K., Naji, M., “Determination of Load Distribution in a 
Threaded Connection,” Mechanism and Machine Theory, Vol. 18, No. 6, pp. 421-
430, 1983. 
 

[5] Curti, G., Raffa, F., “A Simplified Study on the Load Distribution on Threads of 
Compression and Tension Nuts,” Wire, Vol. 38, Issue 3, pp. 334-338, 1988. 
 

[6] Wang W., Marshek, K., “Determination of Load Distribution in a Threaded 
Connector with Yielding Threads,” Mech. Mach. Theory, Vol. 31, No., pp. 29-
244, 1996. 
 

[7] Fukuoka, T., Takaki, T., “Evaluation of the Tightening Process of Bolted Joint 
with Elastic Angle Control Method,” Analysis of Bolted Joints, Vol. 478, pp. 11-
18, 2004. 
 

[8] E. Chesson, W. Munse, Studies of the Behavior of High-Strength Bolts and 
Bolted Joints, Bulletin 469, pp.1-34, 1965. 
 

[9] D. Reuther, Baker, I., Yetka, A., D. Cleary, W. Riddell,. Relaxation of ASTM 
A325 Bolted Assemblies, Journal of Structural Engineering, 2014. 
 

[10] Yang J., DeWolf J., Mathematical Model for Relaxation in High-Strength Bolted 
Connections, Journal of Structural Engineering, pp. 803-809, 1999. 
 

[11] Oostdyk, Matthew et al., Time dependent behavior of a FRR thermal break pad 
under compressive loads, Structure , Volume 2, 44 – 49, 2014. 
 

[12] Maruyama, K., “Stress Analysis of a Bolt-Nut Joint by the Finite Element Method 
and Copper-Electroplating Method,” Bul. JSME, Vol. 17, No. 106, pp. 442-450, 
1974. 

 
[13] Tanaka M., Miyazawa, H., Asaba, E., Hongo K., “Application of the Finite 

Element Method to Bolt-nut Joints – Fundamental Studies on Analysis of Bolt-nut 
Joints,” Bulletin of the JSME, Vol. 24, No. 192, pp. 1064-1071, 1981. 



69 
 

 
[14] Joanovics, L., Varadi, K., “Nonlinear Finite Element Analysis of the Contact, 

Strain, and Stress States of a Bolt-Nut-Washer-Compressed Sheet Joint System,” 
Periodica Polytechnica Ser. Mech. Eng, Vol. 39, No. 2, pp. 151-162, 1995. 

 
[15] ASTM E797 / E797M-15, Standard Practice for Measuring Thickness by Manual 

Ultrasonic Pulse-Echo Contact Method, ASTM International, West 
Conshohocken, PA, 2015, www.astm.org 
 

[16] Research Council on Structural Connections. (2009). Specification for structural 
joints using high-strength bolts, American Institute of Steel Construction. 

[17] Shames, Irving H. Engineering Mechanics: Statics and Dynamics: Instructor's 
Manual. Englewood Cliffs, N.J: Prentice-Hall, 1980. Print. 

 
 
 

 
 
 
 
 
 

 

 



70 
 

 

 
 
  
 

ሾDሿ =

ۏ
ێ
ێ
ێ
ۍ

1 0 0 ⋯ 0
0 1 0
⋮ ⋱

0 1 0 ے
ۑ
ۑ
ۑ
ې

 

 
 
 

ሾCሿ =

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
Cଵ 0 ⋯ 0
0 0
⋮ Cଵ 0

⋱
0

0
0 Cଵے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 
 
 
 

ሾCୢሿ =

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
−Cଵ 0 ⋯ 0

0 0
⋮ −Cଵ

0
⋱

−Cଵ

0 0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 
 
 
 

ሾCୢሿ =

ۏ
ێ
ێ
ێ
ۍ
−Cଵ 0 0 ⋯ 0

0 −Cଵ 0
⋮ ⋱

0 −Cଵ 0 ے
ۑ
ۑ
ۑ
ې

 

 
 
 
 
 
 
 
 
 

D୧୨ = 1 if j = 2i − 1 
 = 0 otherwise 
 
 
 
 
 
 
 

C = Cଵ if i = 2k − 1 
 For k = 1 .. n 

= 0 otherwise 
 
 
 
 
 
 
 
 
 

Cୢౠ
= −Cଵ if i = 2j − 1 

 = 0 otherwise 
 

 
 
 
 
 
 
 

Cୢౠ
= −Cଵ if j = 2i − 1 

   = 0 otherwise 
 

 
 
 

Appendix A 
 

Proof – Show that ሾ۱܌ሿሾ۱܌܌ሿିሾ۱܌ሿ = ሾ۱ሿ 
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Cୢୢ
ିଵ

୧୨ =  
1

Cଵ
  if i = j 

   
0 otherwise 
 

Consider ሾCୢୢሿିଵሾCୢሿ 
 
 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1
Cଵ

1
Cଵ

⋱
1

Cଵے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ۍ
−Cଵ 0 ⋯ 0

0 0 −Cଵ

⋮ ⋱
0 −Cଵ 0 ے

ۑ
ۑ
ې
 

 
 

ሾCୢୢሿିଵሾCୢሿ୧୨ =   Cୢୢ
ିଵ

୧୪ ∙ Cୢౢౠ

୬

୪ୀଵ

 

 
The multiplication term 
 
 Cୢୢ

ିଵ
୧୪ ∙ Cୢౢౠ

=  −1 if i = l and j = 2l − 1 

 = 0 otherwise 
 

ሾCୢୢሿିଵሾCୢሿ୧୨ =  −1 if j = 2i − 1 
= 0 otherwise 
  
 
 

ۏ
ێ
ێ
ێ
ۍ
−1 0 0 ⋯ 0
0 −1 0
⋮ ⋱

0 −1 0 ے
ۑ
ۑ
ۑ
ې
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Consider ሾCୢሿሾCୢୢሿିଵሾCୢሿ୧୨ 
 
 

 =  Cୢ୧୫ ∙ Cୢୢ
ିଵ ∙ Cୢౣౠ

୬

୫ୀଵ
 

 
 
Cୢ୧୫ ∙ Cୢୢ

ିଵ ∙ Cୢౣౠ
=  Cଵ if  i = 2m − 1 

and j = 2m-1 
 

= 0 otherwise 
  
Therefore 
 

 Cୢ୧୫ ∙ Cୢୢ
ିଵ ∙ Cୢౣౠ

୬

୫ୀଵ

= 1 if i = j 

   and i, j are odd 
   (or i = j = 2m-1 for m = 1,2,….n) 
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Appendix B 
 

Proof – Show that ሾ۱܌ሿ + ሾ۱܌܌ሿሾ۲ሿ =  

Note that:  Cୢౠ
=  −cଵ if i =  2j − 1 

=      0 otherwise 
 

Cୢୢౠ
=  cଵ  if  i =  j 

 =     0 otherwise  
 

D୧୨    =  1  if  i =  2j − 1 
 =     0 otherwise 
 

Now  ሾCୢୢሿሾDሿ୧୨ =  ∑ Cୢୢ୧୩ ∙ଶ୬
୩ୀଵ D୩୨ 

 
The terms will be zero unless both Cୢୢ୧୩ and D୩୨ are non-zero. 
 
This only occurs when i = k and k = 2j – 1. So if i = 2j-1, Cୢୢ୧୩D୩୨ =  +cଵ  
 
Which is the opposite of Cୢౠ

. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 % NEW NOTE 9/30/15
2
3 %{ This file was really just used for calibrating beta for both diameter bolts. 
4 %Thats what the while loop accomplished. Using the experimentally determined stiffnesses it 

loops
5 %the value of beta until a certain percent difference (a) was achieved. I ran this for 

different
6 %numbers of engaged threads for both both sizes. Those plots are in the paper. The first 

part is 
7 %is material properties, constants, bolt dimensions and defining the matrices. Uf and Fm 
8 %find the displacements then the forces.
9 %}

10
11 disp(' ')
12 %
13 prompt = 'Press 1 for 7/8" diameter and 2 for 3/4" diameter: ';
14 %
15 result = input(prompt);
16
17 if (result == 1)
18 n = 7;
19 d = 7/8.0;
20 pitch = 0.11;
21 slope = 7.966;
22 lclamp = 1.96;
23 shank = 1.88;
24 % Full thread (7) experimental stiffness value for 7/8"
25 stiffness=19.5295;
26 else
27 n = 6;
28 d = 3/4.0 ;
29 pitch = 0.10;
30 slope = 7.963775;
31 lclamp = 2.07;
32 shank = 2.00;
33 % Full thread (6) experimental stiffness value for 3/4"
34 stiffness = 14.6785;
35 end
36
37
38 %
39 E = 29000;
40 pi= 3.14159265359;
41 alpha = 2.00;
42 ashank = pi*d^2/4.0;
43 athread = 0.785*(d-0.9743*pitch)^2;
44 anut = pi*((d+0.25)^2-d^2)/4.0;
45 %
46 k1 = athread*E/pitch;
47 k4 = 1/(1/(alpha*k1)+shank/(ashank*E)+(lclamp-shank+d/3)/(athread*E));
48 c = (pitch)/(slope*2*pi)-(1/k4);
49 %
50 maxbeta = 1.0;
51 theta = 1.00;
52 beta = 0.85;
53 basedbeta = maxbeta/1000;
54 loading = 1.0;
55
56 while (loading == 1.0)
57 k2 = 1/(beta*c);
58 k3 = 1/(alpha*(1-beta)*c);
59 %
60 freedof = 2*n;
61 fixeddof = 2;
62 dof = 2*n+2;
63 %
64 Kff = zeros(freedof,freedof);
65 Kfs = zeros(freedof,fixeddof);
66 Kss = zeros(fixeddof,fixeddof);

1 % NEW NOTE 9/30/15
2
3 %{ This file was really just used for calibrating beta for both diameter bolts. 
4 %Thats what the while loop accomplished. Using the experimentally determined stiffnesses it 

loops
5 %the value of beta until a certain percent difference (a) was achieved. I ran this for 

different
6 %numbers of engaged threads for both both sizes. Those plots are in the paper. The first 

part is 
7 %is material properties, constants, bolt dimensions and defining the matrices. Uf and Fm 
8 %find the displacements then the forces.
9 %}

10
11 disp(' ')
12 %
13 prompt = 'Press 1 for 7/8" diameter and 2 for 3/4" diameter: ';
14 %
15 result = input(prompt);
16
17 if (result == 1)
18 n = 7;
19 d = 7/8.0;
20 pitch = 0.11;
21 slope = 7.966;
22 lclamp = 1.96;
23 shank = 1.88;
24 % Full thread (7) experimental stiffness value for 7/8"
25 stiffness=19.5295;
26 else
27 n = 6;
28 d = 3/4.0 ;
29 pitch = 0.10;
30 slope = 7.963775;
31 lclamp = 2.07;
32 shank = 2.00;
33 % Full thread (6) experimental stiffness value for 3/4"
34 stiffness = 14.6785;
35 end
36
37
38 %
39 E = 29000;
40 pi= 3.14159265359;
41 alpha = 2.00;
42 ashank = pi*d^2/4.0;
43 athread = 0.785*(d-0.9743*pitch)^2;
44 anut = pi*((d+0.25)^2-d^2)/4.0;
45 %
46 k1 = athread*E/pitch;
47 k4 = 1/(1/(alpha*k1)+shank/(ashank*E)+(lclamp-shank+d/3)/(athread*E));
48 c = (pitch)/(slope*2*pi)-(1/k4);
49 %
50 maxbeta = 1.0;
51 theta = 1.00;
52 beta = 0.85;
53 basedbeta = maxbeta/1000;
54 loading = 1.0;
55
56 while (loading == 1.0)
57 k2 = 1/(beta*c);
58 k3 = 1/(alpha*(1-beta)*c);
59 %
60 freedof = 2*n;
61 fixeddof = 2;
62 dof = 2*n+2;
63 %
64 Kff = zeros(freedof,freedof);
65 Kfs = zeros(freedof,fixeddof);
66 Kss = zeros(fixeddof,fixeddof);
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Appendix C 

Simulation Code 
1 % NEW NOTE 9/30/15
2
3 %{ This file was really just used for calibrating beta for both diameter bolts. 
4 %Thats what the while loop accomplished. Using the experimentally determined stiffnesses it 

loops
5 %the value of beta until a certain percent difference (a) was achieved. I ran this for 

different
6 %numbers of engaged threads for both both sizes. Those plots are in the paper. The first 

part is 
7 %is material properties, constants, bolt dimensions and defining the matrices. Uf and Fm 
8 %find the displacements then the forces.
9 %}

10
11 disp(' ')
12 %
13 prompt = 'Press 1 for 7/8" diameter and 2 for 3/4" diameter: ';
14 %
15 result = input(prompt);
16
17 if (result == 1)
18 n = 7;
19 d = 7/8.0;
20 pitch = 0.11;
21 slope = 7.966;
22 lclamp = 1.96;
23 shank = 1.88;
24 % Full thread (7) experimental stiffness value for 7/8"
25 stiffness=19.5295;
26 else
27 n = 6;
28 d = 3/4.0 ;
29 pitch = 0.10;
30 slope = 7.963775;
31 lclamp = 2.07;
32 shank = 2.00;
33 % Full thread (6) experimental stiffness value for 3/4"
34 stiffness = 14.6785;
35 end
36
37
38 %
39 E = 29000;
40 pi= 3.14159265359;
41 alpha = 2.00;
42 ashank = pi*d^2/4.0;
43 athread = 0.785*(d-0.9743*pitch)^2;
44 anut = pi*((d+0.25)^2-d^2)/4.0;
45 %
46 k1 = athread*E/pitch;
47 k4 = 1/(1/(alpha*k1)+shank/(ashank*E)+(lclamp-shank+d/3)/(athread*E));
48 c = (pitch)/(slope*2*pi)-(1/k4);
49 %
50 maxbeta = 1.0;
51 theta = 1.00;
52 beta = 0.85;
53 basedbeta = maxbeta/1000;
54 loading = 1.0;
55
56 while (loading == 1.0)
57 k2 = 1/(beta*c);
58 k3 = 1/(alpha*(1-beta)*c);
59 %
60 freedof = 2*n;
61 fixeddof = 2;
62 dof = 2*n+2;
63 %
64 Kff = zeros(freedof,freedof);
65 Kfs = zeros(freedof,fixeddof);
66 Kss = zeros(fixeddof,fixeddof);



67 %
68 [Kff] = freefreeK(k1,k2,k3,k4,alpha,freedof);
69 [Kfs] = FreeFixedK(k1,k2,k3,k4,alpha,freedof,fixeddof);
70 [Kss] = FixedFixedK(k1,k2,k3,k4,alpha,freedof,fixeddof);
71 %
72 % Set Free forces
73 %
74 Ff=zeros(freedof,1);
75 %
76 % Displace node
77 %
78 Us = [pitch*theta/(2*pi);0.0];
79
80 [Uf]=freedisplacements(Kff,Kfs,Us);
81
82 [Fm]=memberforces(Uf,Us,n,k1,k2,k3,k4,alpha);
83 %
84 % Check percent difference b/t experimental stiffness value and numerical value.
85 %
86 a = abs((Fm(n+1)-stiffness)/((Fm(n+1)+stiffness)/2));
87 %
88 % If the difference is less than 0.002 use that value for beta. If not do it again.
89 % Beta will increase by 0.001.
90 %
91 if (d == 7/8.0)
92 b = 0.0021;
93 else
94 b = 0.002;
95 end
96 %
97 if (a < b)
98 Kff;
99 Uf;

100 a;
101 loading = -1.0;
102 beta;
103 ThreadLoadDist = Fm(1:n);
104 BoltForce = Fm(n+1);
105
106 else
107 beta += basedbeta;
108 end
109
110
111 end
112 %{
113 theta = 3.11
114
115 Us = [pitch*theta/(2*pi);0.0];
116
117 [Uf]=freedisplacements(Kff,Kfs,Us);
118
119 F1=[Fm]=memberforces(Uf,Us,n,k1,k2,k3,k4,alpha)
120
121
122 %}
123 ForceVector = [];
124 Ufvector = [];
125
126
127
128 theta = 0.125;
129 basedtheta=0.125;
130
131
132 while theta~=4.00
133
134
135 Us = [pitch*theta/(2*pi);0.0];
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136
137 [Uf]=freedisplacements(Kff,Kfs,Us);
138
139 F1=[Fm]=memberforces(Uf,Us,n,k1,k2,k3,k4,alpha);
140
141 ForceVector = [ForceVector; F1];
142 Ufvector = [Ufvector;Uf(2*n-1)];
143
144 theta +=basedtheta;
145
146 end
147
148 % Outputs to text file for easy plotting in excel
149 A = transpose(ForceVector(:,n+1));
150 B = transpose(Ufvector);
151
152 fileID = fopen('InitialPretension.txt','w');
153 fprintf(fileID,'%6.2f\r\n',A);
154 fclose(fileID);
155
156 fileID = fopen('UfDisplacement.txt','w');
157 fprintf(fileID,'%6.5f\r\n',B);
158 fclose(fileID);
159
160 fprintf('\r\n')
161 fprintf('Done')
162
163
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1 function [Kff] = freefreeK(k1,k2,k3,k4,alpha,freedof);
2 %
3 % reads in the four values of element stiffness, and assembles Kff to 
4 % correct size, based on freedof
5 %
6 Kff = zeros(freedof,freedof);
7 for i = 1:2:(freedof-3);
8 Kff(i,i)=Kff(i,i)+k2+k1;
9 Kff(i,i+1)=Kff(i,i+1)-k2;

10 Kff(i+1,i)=Kff(i+1,i)-k2;
11 Kff(i,i+2)=Kff(i,i+2)-k1;
12 Kff(i+2,i)=Kff(i+2,i)-k1;
13 Kff(i+1,i+1)=Kff(i+1,i+1)+k2;
14 Kff(i+2,i+2)=Kff(i+2,i+2)+k1;
15 end
16 for j = 2:2:(freedof-2);
17 Kff(j,j)=Kff(j,j)+k3;
18 Kff(j+2,j+2)=Kff(j+2,j+2)+k3;
19 Kff(j,j+2)=Kff(j,j+2)-k3;
20 Kff(j+2,j)=Kff(j+2,j)-k3;
21 end
22 if freedof > 1
23 n=freedof;
24 Kff(n-1,n-1)=Kff(n-1,n-1)+k2+k4;
25 Kff(n-1,n)=Kff(n-1,n)-k2;
26 Kff(n,n-1)=Kff(n,n-1)-k2;
27 Kff(n,n)=Kff(n,n)+k2;
28 end
29 Kff(n,n)=Kff(n,n)+alpha*k3;
30 Kff;
31
32
33
34
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1 function [Kfs] = FreeFixedK(k1,k2,k3,k4,alpha,freedof,fixeddof);
2 %
3 % reads in the four values of element stiffness, and assembles Kfs to
4 % correct size, based on freedof and fixeddof
5 %
6 Kfs = zeros(freedof,fixeddof);
7 Kfs(freedof-1,1)= Kfs(freedof-1,1)-k4;
8 Kfs(freedof,2)= Kfs(freedof,2)-alpha*k3;
9 Kfs;
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1 function [Uf]=freedisplacements(Kff,Kfs,Us)
2 % solves for free degree of freedom displacements
3 %
4
5 Kff;
6
7 Kffinverse=Kff^-1;
8 Uf = -1*Kfs*Us;
9 Uf=Kffinverse*Uf;

10
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1 function [Kss] = FixedFixedK(k1,k2,k3,k4,alpha,freedof,fixeddof);
2 %
3 % reads in the four values of element stiffness, and assembles Kss to
4 % correct size, based on fixeddof
5 %
6 Kss = zeros(fixeddof,fixeddof);
7 Kss(1,1)=Kss(1,1)+k4;
8 Kss(2,2)=Kss(2,2)+alpha*k3;
9

10
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1 function [Fm]=memberforces(Uf,Us,n,k1,k2,k3,k4,alpha);
2 % takes displacement vector and determines member forces.
3 %
4 % n = number of threads engaged
5 %
6 % member #   description   dof1        dof2
7 %   1        1st thread    Us(1)       Uf(2n-1)
8 %   2        2nd thread    Uf(2n-2)    Uf(2n-3)
9 %   i        ith thread    Uf(2n+2-2i) Uf(2n+1-2i)

10 %   n        nth thread    Uf(1)       Uf(2)
11 %   n+1      bolt          Us(2)       Uf(2n-1)
12 Fm(n+1) = k4*(Us(1)-Uf(2*n-1));
13 for i = 1:n;
14 Fm(i)=k2*(Uf(2*n+2-2*i)-Uf(2*n+1-2*i));
15 end
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1 % ElasticBolt
2 %
3 % Elastic analyses of nut and bolt with n threads engaged.
4 %
5 %-----------------------------------------------------------
6 % Input Variables
7 %-----------------------------------------------------------
8 % n = number of threads that are engaged
9 % pitch = length of 1 full revolution of thread

10 % d = bolt diameter (inches)
11 % shank = length of shank (inches)
12 % lclamp = clamp length of assembly
13 %
14 %-----------------------------------------------------------
15 % Calculated Geometry Variables
16 %-----------------------------------------------------------
17 % athread = nominal area of threaded region
18 % ashank = area of shank region
19 %
20 %-----------------------------------------------------------
21 % Stiffness Variables
22 %-----------------------------------------------------------
23 % k1 = stiffness of one thread worth of bolt
24 % k2 = stiffness of interaction between one ring of threads
25 % k3 = stiffness of one thread worth of nut
26 % k4 = stiffness of clamped length of bolt 
27 % [Kff] = stiffness of free dof
28 % [Kss] = stiffness of fixed dof
29 % [Kfs] = stiffness on free-fixed interaction
30 %
31 %-----------------------------------------------------------
32 % Displacement Variables
33 %-----------------------------------------------------------
34 % [Uf] = displacements of free nodes
35 % [Us] = displacements of specified nodes
36 %
37 %-----------------------------------------------------------
38 % Load Variables
39 %-----------------------------------------------------------
40 % [Pf] = external loads on free nodes
41 % [Ps] = resultant loads on specified nodes
42 %
43 %-----------------------------------------------------------
44 % Matrix Related Variables
45 %-----------------------------------------------------------
46 % dof = number of degrees of freedom (2*n+1)
47 % freedof = number of free degrees of freedom (2n-1)
48 % fixeddof = number of fixed degrees of freedom (2)
49 %
50 %-----------------------------------------------------------
51 % Other Variables
52 %-----------------------------------------------------------
53 % theta = twist of the nut past snug (radians)
54 %
55 %-----------------------------------------------------------
56
57 disp(' ')
58 %
59 prompt = 'Press 1 for 7/8" diameter and 2 for 3/4" diameter: ';
60 %
61 result = input(prompt);
62
63 if (result == 1)
64 n = 7;
65 d = 7/8.0;
66 pitch = 0.11;
67 slope = 7.966;
68 lclamp = 1.95;
69 shank = 1.88;
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70 beta = 0.933
71 fy=-10.0;
72
73 else
74 n = 6;
75 d = 3/4.0 ;
76 pitch = 0.10;
77 slope = 7.963775;
78 lclamp = 2.07;
79 shank = 2.00;
80 beta = 0.872
81 fy=-11.0;
82 end
83
84 tolerance= 0.001;
85 E = 29000;
86 pi= 3.14159265359;
87 %
88 factor = 0.95;
89 alpha = 2.0;
90 ashank = pi*d^2/4.0;
91 athread = 0.785*(d-0.9743*pitch)^2;
92 anut = pi*((d+0.25)^2-d^2)/4.0;
93 %
94 freedof = 2*n;
95 fixeddof = 2;
96 dof = 2*n+2;
97 %
98 k1 = athread*E/pitch
99 k4 = 1/(1/(alpha*k1)+shank/(ashank*E)+(lclamp-shank+d/3)/(athread*E))

100 c = (pitch)/(slope*2*pi)-(1/k4);
101 %k2 = 1/(beta*c)
102 % = 1/(alpha*(1-beta)*c)
103
104
105
106 % k2 = 635.62
107 % k3 = 2165.1
108 k2 = 520.77
109 k3 = 3626.0
110 %
111 Kff = zeros(freedof,freedof);
112 Kfs = zeros(freedof,fixeddof);
113 Kss = zeros(fixeddof,fixeddof);
114 Us=[0.0;0.0];
115 Fm=zeros(1,n+1);
116 Uf=zeros(2*n,1);
117 %
118 [Kff]=freefreeK(k1,k2,k3,k4,alpha,freedof);
119 [Kfs] = FreeFixedK(k1,k2,k3,k4,alpha,freedof,fixeddof);
120 [Kss] = FixedFixedK(k1,k2,k3,k4,alpha,freedof,fixeddof);
121 %
122 % Set Free forces
123 %
124 Ff=zeros(freedof,1);
125 %
126 % Displace node
127 %
128 maxtheta = 4.000;
129 loading = 1.0;
130 basedtheta = maxtheta/14.5;
131 theta = 0;
132 Yieldedmember = 0;
133 Yield = zeros(1,n);
134 k = 0;
135
136 % NEW NOTE 9/30/15
137
138 %{ This loop is the only major difference from the elastic code. It just adjusts the 
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stiffness
139 values for the yielded thread (the yield value was experimentally found. 10k for 7/8" & 11k 

for
140 3/4". The adjustment is based on a percent reduction of the original stiffness. The 

corresponding
141 subroutines are checkyield and EPmemberforces.
142 %}
143
144 while (loading==1)
145 if (theta+basedtheta>maxtheta)
146 dtheta = maxtheta-theta;
147 else
148 dtheta=basedtheta;
149 end
150 dUs = [pitch*dtheta/(2*pi);0.0];
151 [dUf]=freedisplacements(Kff,Kfs,dUs);
152 [dFm]=memberforces(dUf,dUs,n,k1,k2,k3,k4,alpha);
153 [fraction,Yieldedmember]=checkyield(Fm,dFm,Yield,fy,n);
154 [dFm]=EPmemberforces(dUf,dUs,n,k1,k2,k3,k4,alpha,Yield,fraction);
155 Yieldedmember;
156 if (Yieldedmember>0)
157 Yield(Yieldedmember)=Yield(Yieldedmember)+1;
158 % change Kff here
159

Kff(2*n-2*Yieldedmember+1,2*n-2*Yieldedmember+1)=Kff(2*n-2*Yieldedmember+1,2*n-2*Yieldedmembe
r+1)-factor*k2;

160
Kff(2*n-2*Yieldedmember+2,2*n-2*Yieldedmember+2)=Kff(2*n-2*Yieldedmember+2,2*n-2*Yieldedmembe
r+2)-factor*k2;

161
Kff(2*n-2*Yieldedmember+1,2*n-2*Yieldedmember+2)=Kff(2*n-2*Yieldedmember+1,2*n-2*Yieldedmembe
r+2)+factor*k2;

162
Kff(2*n-2*Yieldedmember+2,2*n-2*Yieldedmember+1)=Kff(2*n-2*Yieldedmember+2,2*n-2*Yieldedmembe
r+1)+factor*k2;

163 end
164 Fm=Fm+fraction*dFm
165 Uf=Uf+fraction*dUf;
166 theta = theta+fraction*dtheta
167 %
168 fileID = fopen('output.txt','w');
169 fprintf(fileID,'%0.3f\r\n',Fm);
170 fclose(fileID);
171 %
172 if (theta>maxtheta-tolerance)
173 loading = -1.0
174 end
175 k = k+1
176 results(k,1) = theta;
177 results(k,2)=Fm(n+1);
178 results(k,3)=Yieldedmember;
179 end
180 %
181 %-----------------------------------------------------------
182 %-----------------------------------------------------------
183 %
184 %
185
186
187
188
189
190
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1 function [Fm]=EPmemberforces(Uf,Us,n,k1,k2,k3,k4,alpha,Yield,fraction);
2 % takes displacement vector and determines member forces.
3 %
4 % n = number of threads engaged
5 %
6 % member #   description   dof1        dof2
7 %   1        1st thread    Us(1)       Uf(2n-1)
8 %   2        2nd thread    Uf(2n-2)    Uf(2n-3)
9 %   i        ith thread    Uf(2n+2-2i) Uf(2n+1-2i)

10 %   n        nth thread    Uf(1)       Uf(2)
11 %   n+1      bolt          Us(2)       Uf(2n-1)
12 Fm(n+1) = k4*(Us(1)-Uf(2*n-1));
13 for i = 1:n;
14 if (Yield(i)==0)
15 Fm(i)=k2*(Uf(2*n+2-2*i)-Uf(2*n+1-2*i));
16 else
17 Fm(i)=(1-fraction)*k2*(Uf(2*n+2-2*i)-Uf(2*n+1-2*i));
18 end
19 end
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1 function [Cdd] = slaveslaveC(c1,depdof);
2 %
3 % reads in the five values of element stiffness, and assembles Kfs to
4 % correct size, based on depdof
5 %
6 Cdd = zeros(depdof,depdof);
7 for i = 1:depdof;
8 Cdd(i,i)=Cdd(i,i)+c1;
9 end

10 Cdd;
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1 function [Cdf] = slavefreeC(c1,freedof,depdof);
2 %
3 % reads in the value of dampening constant, and assembles Cff to 
4 % correct size, based on freedof and depdof
5 %
6 Cdf = zeros(depdof,freedof);
7
8 Cdf(1,1) = Cdf(1,1)-c1;
9

10
11 n=1;
12 m=1;
13 while n~=depdof && m~=freedof;
14 n+=1;
15 m+=2;
16 Cdf(n,m) = Cdf(n,m)-c1;
17
18 end

87



1 function [Cfd] = freeslaveC(c1,freedof,depdof);
2 %
3 % reads in the five values of element stiffness, and assembles Kfs to
4 % correct size, based on depdof and freedof
5 %
6
7
8
9 Cfd = zeros(freedof,depdof);

10
11 Cfd(1,1) = Cfd(1,1)-c1;
12
13
14 n=1;
15 m=1;
16 while n~=freedof && m~=depdof
17 n+=2;
18 m+=1;
19 Cfd(n,m) = Cfd(n,m)-c1;
20
21 end
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1 function [Cff] = freefreeC(c1,freedof);
2 %
3 % reads in the value of dampening constant, and assembles Cff to 
4 % correct size, based on freedof
5 %
6 Cff = zeros(freedof,freedof);
7
8 for i = 1:2:(freedof-3);
9 Cff(i,i)=Cff(i,i)+c1;

10 end
11
12 if freedof > 1
13 n=freedof;
14 Cff(n-1,n-1)=Cff(n-1,n-1)+c1;
15 end
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1 function [D1] = matrixD1(freedof,depdof);
2
3 D1 = zeros(depdof,freedof);
4
5 D1(1,1) = D1(1,1)+1;
6
7
8 n=1;
9 m=1;

10 while n~=depdof && m~=freedof;
11 n+=1;
12 m+=2;
13 D1(n,m) = D1(n,m)+1;
14 end
15
16
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1 function [Uf]=freedisplacements(Kff,Kfs,Kfd,Kdf,Us,D1,D2,s,c1,k1,k2,k5,Cfd,Cff,Cdd,Kdd)
2 % solves for free degree of freedom displacements in time dependent simulation 
3 %
4
5
6
7
8 inverse=[Kff + (Kfd*D1) - (Cfd*((Cdd)^-1))*(Kdf+(Kdd*D1))]^-1;
9 Uf = ((((Cfd*((Cdd)^-1))*Kdd)-Kfd)*s)-(Kfs*Us);

10 Uf=inverse*Uf;
11
12
13
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1 function [Kdd] = slaveslaveK(k1,k2,k3,k4,k5,alpha,depdof);
2 %
3 % reads in the five values of element stiffness, and assembles Kfs to
4 % correct size, based on depdof
5 %
6 Kdd = zeros(depdof,depdof);
7 for i = 1:depdof;
8 Kdd(i,i)=Kdd(i,i)+k5+k2;
9 end

10 Kdd;
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1 function [Kdf] = slavefreeK(k1,k2,k3,k4,k5,alpha,freedof,depdof);
2 %
3 % reads in the five values of element stiffness, and assembles Kfs to
4 % correct size, based on depdof and freedof
5 %
6 Kdf = zeros(depdof,freedof);
7
8 Kdf(1,1) = Kdf(1,1)-k5;
9 Kdf(1,2) = Kdf(1,2)-k2;

10
11 n=1;
12 m=1;
13 while n~=depdof && m~=freedof;
14 n+=1;
15 m+=2;
16 Kdf(n,m) = Kdf(n,m)-k5;
17
18 end
19
20 i=1;
21 j=2;
22 while i~=depdof && j~=freedof;
23 i+=1;
24 j+=2;
25 Kdf(i,j) = Kdf(i,j)-k2;
26
27 end
28
29 Kdf;
30
31
32
33
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1 function [Kfd] = freeslaveK(k1,k2,k3,k4,k5,alpha,freedof,depdof);
2 %
3 % reads in the five values of element stiffness, and assembles Kfs to
4 % correct size, based on depdof and freedof
5 %
6 Kfd = zeros(freedof,depdof);
7
8 Kfd(1,1) = Kfd(1,1)-k5;
9 Kfd(2,1) = Kfd(2,1)-k2;

10
11 n=1;
12 m=1;
13 while n~=freedof && m~=depdof
14 n+=2;
15 m+=1;
16 Kfd(n,m) = Kfd(n,m)-k5;
17
18 end
19
20 i=2;
21 j=1;
22 while i~=freedof && j~=depdof
23 i+=2;
24 j+=1;
25 Kfd(i,j) = Kfd(i,j)-k2;
26
27 end
28
29 Kfd;
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1 function [Kff] = freefreeK(k1,k2,k3,k4,k5,alpha,freedof);
2 %
3 % reads in the five values of element stiffness, and assembles Kff to 
4 % correct size, based on freedof
5 %
6
7 Kff = zeros(freedof,freedof);
8 for i = 1:2:(freedof-3);
9 Kff(i,i)=Kff(i,i)+k5+k1;

10 Kff(i,i+2)=Kff(i,i+2)-k1;
11 Kff(i+2,i)=Kff(i+2,i)-k1;
12 Kff(i+1,i+1)=Kff(i+1,i+1)+k2;
13 Kff(i+2,i+2)=Kff(i+2,i+2)+k1;
14 end
15 for j = 2:2:(freedof-2);
16 Kff(j,j)=Kff(j,j)+k3;
17 Kff(j+2,j+2)=Kff(j+2,j+2)+k3;
18 Kff(j,j+2)=Kff(j,j+2)-k3;
19 Kff(j+2,j)=Kff(j+2,j)-k3;
20 end
21 if freedof > 1
22 n=freedof;
23 Kff(n-1,n-1)=Kff(n-1,n-1)+k5+k4;
24 Kff(n,n)=Kff(n,n)+k2;
25 end
26 Kff(n,n)=Kff(n,n)+alpha*k3;
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1 function [Kfs] = FreeFixedK(k1,k2,k3,k4,k5,alpha,freedof,fixeddof);
2 %
3 % reads in the four values of element stiffness, and assembles Kfs to
4 % correct size, based on freedof and fixeddof
5 %
6 Kfs = zeros(freedof,fixeddof);
7 Kfs(freedof-1,1)= Kfs(freedof-1,1)-k4;
8 Kfs(freedof,2)= Kfs(freedof,2)-alpha*k3;
9 Kfs;
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1 function [Kss] = FixedFixedK(k1,k2,k3,k4,k5,alpha,freedof,fixeddof);
2 %
3 % reads in the four values of element stiffness, and assembles Kss to
4 % correct size, based on fixeddof
5 %
6 Kss = zeros(fixeddof,fixeddof);
7 Kss(1,1)=Kss(1,1)+k4;
8 Kss(2,2)=Kss(2,2)+alpha*k3;
9

10
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1 function [Fm]=memberforces(Uf,Us,n,k1,k2,k3,k4,s,alpha);
2 % takes displacement vector and determines member forces.
3 %
4 % n = number of threads engaged
5 %
6 % member #   description   dof1        dof2
7 %   1        1st thread    Us(1)       Uf(2n-1)
8 %   2        2nd thread    Uf(2n-2)    Uf(2n-3)
9 %   i        ith thread    Uf(2n+2-2i) Uf(2n+1-2i)

10 %   n        nth thread    Uf(1)       Uf(2)
11 %   n+1      bolt          Us(2)       Uf(2n-1)
12
13 for i = 1:n;
14 Fm(i)=k2*(Uf(2*n+2-2*i)-Uf(2*n+1-2*i)-(flipud(s(i))));
15 end
16
17
18 %Fm(n+1) = k4*(Us(1)-Uf(2*n-1)+(s(n)));
19 Fm(n+1) = -1*sum(Fm(Fm<0));

98



1 function [Th]=threshold(k1,k2,k3,k4,Fthres,n,Kff2,Kfs,pitch,alpha)
2
3
4 A = -1*Kfs(2*n-1,1);
5 X = [Kff2]^-1;
6
7 %Find location of free fixed node displacement for threshold force
8 B=X(2*n-1,2*n-1);
9

10 G = zeros(2,1);
11 G(1,1) = (Fthres/k4);
12
13 F = -1*([A]*[B]*[G])/(([A]*[B])-1);
14 H = F(1,1);
15
16 Us1=zeros(2,1);
17 Us1(1,1)=(Fthres/k4) + H;
18
19 Us1;
20
21 [Uf2]=freedisplacements2(Kff2,Kfs,Us1);
22 [Fm2]=memberforces2(Uf2,Us1,n,k1,k2,k3,k4,alpha);
23
24
25 Th = flipud(transpose(Fm2(1:1:n)))*-1;
26
27
28
29 %Fm(n+1) = k4*(Us(1)-Uf(2*n-1)+(s(n)))

99



1
2 % Code simulating linear-elastic relaxation behavior
3
4 disp(' ')
5 %
6 prompt = 'Press 1 for 7/8" diameter and 2 for 3/4" diameter: ';
7 %
8 result = input(prompt);
9

10 % Inputs for 7/8" bolt
11 if (result == 1)
12 n = 7;
13 d = 7/8.0;
14 pitch = 0.11;
15 slope = 7.966;
16 lclamp = 1.96;
17 shank = 1.88;
18 beta = 0.933;
19 Fthres = 27.469;
20
21 % Inputs for 3/4" bolt
22 else
23 n = 6;
24 d = 3/4.0 ;
25 pitch = 0.10;
26 slope = 7.963775;
27 lclamp = 2.07;
28 shank = 2.00;
29 beta = 0.872;
30 Fthres = 20.604;
31 end
32
33
34 % Material properties, constants, and bolt dimensions
35 E = 29000;
36 pi= 3.14159265359;
37 alpha = 2.00;
38 ashank = pi*d^2/4.0;
39 athread = 0.785*(d-0.9743*pitch)^2;
40 anut = pi*((d+0.25)^2-d^2)/4.0;
41
42 %
43
44 % bolt stiffness, nut stiffness, POC stiffness
45 k1 = athread*E/pitch;
46 k4 = 1/(1/(alpha*k1)+shank/(ashank*E)+(lclamp-shank+d/3)/(athread*E));
47 c = (pitch)/(slope*2*pi)-(1/k4);
48 k2 = 1/(beta*c);
49 k3 = 1/(alpha*(1-beta)*c);
50 %
51 % Resistance stiffness to relaxation (k). dampening coefficient (c)
52 k5=714;
53 c1=60000;
54 % The units for c1 are kip-days per inch
55
56 % Define DOF (free, fixed, slaved)
57 freedof = 2*n;
58 fixeddof = 2;
59 dof = 3*n+2;
60 depdof = dof - freedof -fixeddof;
61 %
62 %
63 % Sets all matrix partitions as zero matrices to then assign values 
64 %
65 Kff = zeros(freedof,freedof);
66 Kff2 = zeros(freedof,freedof);
67 Kfs = zeros(freedof,fixeddof);
68 Kss = zeros(fixeddof,fixeddof);
69 %
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70 %
71 Kfd = zeros(freedof,depdof);
72 Kdf = zeros(depdof,freedof);
73 Kdd = zeros(depdof,depdof);
74 %
75 Cff = zeros(freedof,freedof);
76 Cfd = zeros(freedof,depdof);
77 Cdd = zeros(depdof,depdof);
78 %
79 %
80 %Location matrices (used to call out position of master nodes (Uf)
81 D1 = zeros(depdof,freedof);
82 D2 = zeros(freedof,depdof);
83 %
84 [Kff] = freefreeK(k1,k2,k3,k4,k5,alpha,freedof);
85 [Kff2] = freefreeK2(k1,k2,k3,k4,alpha,freedof);
86 [Kfs] = FreeFixedK(k1,k2,k3,k4,k5,alpha,freedof,fixeddof);
87 [Kss] = FixedFixedK(k1,k2,k3,k4,k5,alpha,freedof,fixeddof);
88 %
89 [Kfd] = freeslaveK(k1,k2,k3,k4,k5,alpha,freedof,depdof);
90 [Kdf] = slavefreeK(k1,k2,k3,k4,k5,alpha,freedof,depdof);
91 [Kdd] = slaveslaveK(k1,k2,k3,k4,k5,alpha,depdof);
92 %
93 [Cff] = freefreeC(c1,freedof);
94 [Cfd] = freeslaveC(c1,freedof,depdof);
95 [Cdd] = slaveslaveC(c1,depdof);
96 %
97 [D1] = matrixD1(freedof,depdof);
98 [D2] = matrixD2(freedof,depdof);
99

100
101 %
102 %
103 %
104 s = zeros(depdof,1);
105 s;
106 % Sets rotation angle (theta) and the resulting displacement (Us)
107 theta=2.87506064316966;
108
109
110 Us = [pitch*theta/(2*pi);0.0];
111 %
112 %
113 %[sdot] = dashpotvelocity(Kdf,Uf,s,Kdd,Cdd,D1);
114
115
116
117 % Outputs to text file for easy plotting in excel
118 ForceVector = [];
119 svector = [];
120
121 %[Uf]=freedisplacements(Kff,Kfs,Kfd,Kdf,Us,D1,D2,s,c1,k1,k2,k5,Cfd,Cff,Cdd,Kdd);
122
123
124 [Uf]=freedisplacements(Kff,Kfs,Kfd,Kdf,Us,D1,D2,s,c1,k1,k2,k5,Cfd,Cff,Cdd,Kdd);
125 F2 = [Fm]= memberforces(Uf,Us,n,k1,k2,k3,k4,s,alpha);
126
127
128 %Fph = [Fm]= memberforces(Uf,Us,n,k1,k2,k3,k4,s,alpha);
129
130 %Fpreten = -1*flipud(transpose(Fph(Fph<0)));
131
132
133 % Loops time steps to simulate relaxation
134 ds = zeros(depdof,1);
135 t=0;
136 while t~=500
137
138 [Uf]=freedisplacements(Kff,Kfs,Kfd,Kdf,Us,D1,D2,s,c1,k1,k2,k5,Cfd,Cff,Cdd,Kdd);
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139 F1 = [Fm]= memberforces(Uf,Us,n,k1,k2,k3,k4,s,alpha);
140
141 [Th]=threshold(k1,k2,k3,k4,Fthres,n,Kff2,Kfs,pitch,alpha);
142
143 Fvel = (Kdf*Uf)+(Kdd*((D1*Uf)+ s));
144
145 %if Fvel - Th < 0
146
147 %   t = 500;
148
149 %else
150
151
152
153 if t < 1
154 pct = F1(n+1);
155 else
156 pct;
157 end
158
159 force = F2(n+1);
160
161
162 svel = (-1*((Cdd)^-1)*(Fvel-(Th)));
163
164 sdot = 1*svel;
165
166 dt = 1;
167 ds = dt*sdot;
168
169 s += ds;
170
171 s=flipud(s);
172 t+=1;
173
174 % end
175
176
177 ForceVector = [ForceVector; F1];
178 svector = [svector;s(depdof)];
179
180
181 pct = ForceVector(t,n+1);
182
183
184 end
185
186
187
188 % Outputs to text file for easy plotting in excel
189 A = transpose(ForceVector(:,depdof+1));
190 B = transpose(svector);
191
192 fileID = fopen('BoltForce.txt','w');
193 fprintf(fileID,'%6.2f\r\n',A);
194 fclose(fileID);
195
196 fileID = fopen('BoltDis.txt','w');
197 fprintf(fileID,'%6.5f\r\n',B);
198 fclose(fileID);
199
200 fprintf('\r\n')
201
202
203 pctloss = (1-((A(:,end))/(A(:,1))))*100;
204
205 if pctloss > 0;
206
207 X = ['The losses are ',num2str(pctloss),'%.'];
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208
209 else
210
211 X = ['The losses are 0%.'];
212
213 end
214
215 disp(X)
216 disp(' ')
217
218 fprintf('Done')
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