
Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Open Educational Resources 

7-24-2018 

Computer Organization with MIPS Computer Organization with MIPS 

Seth D. Bergmann 
Rowan University 

Follow this and additional works at: https://rdw.rowan.edu/oer 

 Part of the Computer Sciences Commons 

DOI: 10.31986/issn.2689-0690_rdw.oer.1008 

Let us know how access to this document benefits you - share your thoughts on our feedback 

form. 

Recommended Citation Recommended Citation 
Bergmann, Seth D., "Computer Organization with MIPS" (2018). Open Educational Resources. 9. 
https://rdw.rowan.edu/oer/9 

This Book is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion in 
Open Educational Resources by an authorized administrator of Rowan Digital Works. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/oer
https://rdw.rowan.edu/oer?utm_source=rdw.rowan.edu%2Foer%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Foer%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/oer/9
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/oer/9
https://rdw.rowan.edu/oer/9?utm_source=rdw.rowan.edu%2Foer%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages


Computer Organization with MIPS

Seth D. Bergmann

June 2, 2023



2



Preface

This book is intended to be used for a first course in computer organization,
or computer architecture. It assumes that all digital components can be con-
structed from fundamental logic gates.

The book begins with number representation schemes and assembly language
for the MIPS architecture, including assembler directives, pseudo-operations,
and floating point instructions. It then describes the machine language instruc-
tion formats, and shows the student how to translate an assembly language
program to machine langauge.

This is followed by a chapter which describes how to construct an assembler
for MIPS. This chapter may be omitted without loss of continuity.

There is then an introduction to boolean algebra and digital logic, followed
by a design of the MIPS datapath. This is followed by a description of the
memory hierarchy, including cache memory, RAM, and virtual memory.

The book concludes with brief descriptions of some alternative architectures.

Each section concludes with a list of exercises (solutions are available to
instructors who have adopted this text in a course).

This book is an open source book. This means that not only is the pdf
version available (to potential students and teachers) for free download, but
that the original (LaTeX) source files are also available (to potential authors
and contributors). Based on the model of open source software, open source for
textbooks is a relatively new paradigm in which many authors and contributors
can cooperate to produce a high quality product, for no compensation. For
details on the rationale of this new paradigm, and citations for other open
source textbooks, see the journal Publishing Research Quarterly, Vol. 30, No.
1, March 2014. The source materials and pdf files of this book are licensed with
the Creative Commons NonCommercial license, which means that they may be
freely used, copied, or modified, but not for financial gain.

The source files for this book are available at rdw.rowan.edu (search for
Bergmann) and at cs.rowan.edu/∼bergmann/books

i



ii PREFACE

Secondary Authors

Contributors

Technical Consultant

Joshua Grochowski, Rowan University



Contents

Preface i

1 Computers and Computer Programs 1
1.1 Hardware Components . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Central Processing Unit . . . . . . . . . . . . . . . . . . . 2
1.1.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Peripheral Devices . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Machine Language . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Assembly Language . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Number Systems 9
2.1 Base Two - Binary . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Binary Arithmetic . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Base 8 - Octal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Base 16 - Hexadecimal . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Hexadecimal Values in the MIPS Architecture . . . . . . 16
2.3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Twos Complement Representation . . . . . . . . . . . . . . . . . 17
2.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Powers of Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Arithmetic With Powers of Two . . . . . . . . . . . . . . 23
2.5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Assembly Language for MIPS 25
3.1 Registers and Register Names . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Assembly Language Statements . . . . . . . . . . . . . . . . . . . 26

3.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . 27

iii



iv CONTENTS

3.3.1 Add Instruction . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Subtract Instruction . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Examples of Add and Subtract Instructions . . . . . . . . 29
3.3.4 Set If Less Than . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Logical Operations . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 MIPS Logical Instructions . . . . . . . . . . . . . . . . . . 34
3.4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Shift Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.1 Logical Shift Instructions . . . . . . . . . . . . . . . . . . 39
3.5.2 Arithmetic Shift Instructions . . . . . . . . . . . . . . . . 40
3.5.3 Common Applications of Shift Instrucrtions . . . . . . . . 42
3.5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Immediate Instructions . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.1 Add, Load, Move, and PsuedoOps . . . . . . . . . . . . . 44
3.6.2 Logical Immediate Instructions . . . . . . . . . . . . . . . 46
3.6.3 Load Upper Immediate . . . . . . . . . . . . . . . . . . . 48
3.6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Memory Reference Instructions . . . . . . . . . . . . . . . . . . . 50
3.7.1 Symbolic Memory Addresses . . . . . . . . . . . . . . . . 51
3.7.2 Non-symbolic Load and Store . . . . . . . . . . . . . . . . 56
3.7.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Transfer of Control . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.8.1 Conditional Transfer of Control: Branch . . . . . . . . . . 62
3.8.2 Unconditional Transfer of Control: Jump . . . . . . . . . 63
3.8.3 Selection Structures . . . . . . . . . . . . . . . . . . . . . 63
3.8.4 Iteration Structures - Loops . . . . . . . . . . . . . . . . . 66
3.8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.9 Memory Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.9.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.10 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.10.1 Function Calls - jal and jr . . . . . . . . . . . . . . . . . . 77
3.10.2 Function Parameters . . . . . . . . . . . . . . . . . . . . . 83
3.10.3 Register Conventions and the Call Stack . . . . . . . . . . 84
3.10.4 Recursive Functions . . . . . . . . . . . . . . . . . . . . . 94
3.10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.11 Strings and String Functions . . . . . . . . . . . . . . . . . . . . 98
3.11.1 Initializing Memory with Strings . . . . . . . . . . . . . . 98
3.11.2 Byte Instructions - lbu and sb . . . . . . . . . . . . . . . 99
3.11.3 String Processing . . . . . . . . . . . . . . . . . . . . . . . 100
3.11.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.12 Multiplication of Whole Numbers . . . . . . . . . . . . . . . . . . 105
3.12.1 Multiplication with Software . . . . . . . . . . . . . . . . 105
3.12.2 Multiplication with a MIPS Instruction . . . . . . . . . . 107
3.12.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



CONTENTS v

3.13 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.13.1 Division Implemented in Software . . . . . . . . . . . . . 114
3.13.2 Division with a MIPS Instruction . . . . . . . . . . . . . . 118
3.13.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.14 Floating Point Instructions . . . . . . . . . . . . . . . . . . . . . 121
3.14.1 Floating Point Registers . . . . . . . . . . . . . . . . . . . 122
3.14.2 Floating Point Instructions . . . . . . . . . . . . . . . . . 122
3.14.3 Floating Point Data in Memory . . . . . . . . . . . . . . . 124
3.14.4 Loading and Storing Floating Point Registers . . . . . . . 125
3.14.5 Floating Point Comparisons . . . . . . . . . . . . . . . . . 125
3.14.6 Type conversions . . . . . . . . . . . . . . . . . . . . . . . 131
3.14.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.15 Input, Output, and Other System Calls With MARS . . . . . . . 138
3.15.1 Normal Program Termination . . . . . . . . . . . . . . . . 139
3.15.2 Input with syscall . . . . . . . . . . . . . . . . . . . . . . 140
3.15.3 Output with syscall . . . . . . . . . . . . . . . . . . . . . 140
3.15.4 Example for Input and Output . . . . . . . . . . . . . . . 141
3.15.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4 Machine Language for MIPS 144
4.1 Instruction Formats . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.1.1 Introduction to the Instruction Formats . . . . . . . . . . 146
4.1.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.2 Showing Binary Fields . . . . . . . . . . . . . . . . . . . . . . . . 148
4.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3 Pseudo Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.3.1 Load Immediate . . . . . . . . . . . . . . . . . . . . . . . 150
4.3.2 Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.3.3 Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.3.4 Load Address . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.3.5 Other Pseudo Operations . . . . . . . . . . . . . . . . . . 152
4.3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.4 R Format Instructions . . . . . . . . . . . . . . . . . . . . . . . . 153
4.4.1 Add and Subtract Instructions . . . . . . . . . . . . . . . 153
4.4.2 Logical Instructions . . . . . . . . . . . . . . . . . . . . . 155
4.4.3 Shift Instructions . . . . . . . . . . . . . . . . . . . . . . . 157
4.4.4 Multiply and Divide Instructions . . . . . . . . . . . . . . 158
4.4.5 Jump Register . . . . . . . . . . . . . . . . . . . . . . . . 158
4.4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.5 I Format Instructions . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.5.1 Immediate instructions using constants . . . . . . . . . . 160
4.5.2 Memory Reference Instructions . . . . . . . . . . . . . . . 161
4.5.3 Memory Reference - Symbolic . . . . . . . . . . . . . . . . 162
4.5.4 Conditional Branches . . . . . . . . . . . . . . . . . . . . 166
4.5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.6 J Format Instructions . . . . . . . . . . . . . . . . . . . . . . . . 172



vi CONTENTS

4.6.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.7 Floating Point Data Representation . . . . . . . . . . . . . . . . 175

4.7.1 Fixed Point in Binary . . . . . . . . . . . . . . . . . . . . 175
4.7.2 IEEE 754 Floating Point Data Representation . . . . . . 177
4.7.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.8 Floating Point Instructions . . . . . . . . . . . . . . . . . . . . . 179
4.8.1 MIPS Arithmetic Floating Point Instruction Formats . . . 180
4.8.2 Floating Point Memory Reference Instruction Formats . . 181
4.8.3 Floating Point Conditional Branch Instruction Formats . 182
4.8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5 A MIPS Assembler 185
5.1 Version 1 - R Format Instructions Only . . . . . . . . . . . . . . 186

5.1.1 Version 1a - No Symbolic Registers . . . . . . . . . . . . . 186
5.1.2 Version 1b - Allow Symbolic Registers . . . . . . . . . . . 203
5.1.3 Include Directives . . . . . . . . . . . . . . . . . . . . . . 208
5.1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.2 Version 2 - Include I and J Format Instructions . . . . . . . . . . 209
5.2.1 Version 2a - I and J Format Instructions . . . . . . . . . . 210
5.2.2 Version 2b - Explicit Memory Addresses . . . . . . . . . . 210
5.2.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5.3 Version 3 - More Pseudo Operations . . . . . . . . . . . . . . . . 212

6 Boolean Algebra and Digital Logic 213
6.1 Notation for Boolean Functions . . . . . . . . . . . . . . . . . . . 213

6.1.1 Boolean Expressions . . . . . . . . . . . . . . . . . . . . . 214
6.1.2 Minimizing Boolean Expressions . . . . . . . . . . . . . . 215
6.1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.2 Basic Logic Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.2.1 AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.2.2 OR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.2.3 Inverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.2.4 Composition of Logic Gates . . . . . . . . . . . . . . . . . 225
6.2.5 Sum of Products Logic Diagrams . . . . . . . . . . . . . . 226
6.2.6 Wires and Buses . . . . . . . . . . . . . . . . . . . . . . . 226
6.2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

6.3 Combinational Logic Circuits and Components . . . . . . . . . . 230
6.3.1 Sign Extend . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.3.2 Decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.3.3 Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.3.4 Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.3.5 Binary Adders . . . . . . . . . . . . . . . . . . . . . . . . 239
6.3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.4 Sequential Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 245
6.4.1 SR Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.4.2 D Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . 247



CONTENTS vii

6.4.3 JK Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . 248
6.4.4 Block Diagrams and Function Tables for Flip-Flops . . . 249
6.4.5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
6.4.6 State Machines . . . . . . . . . . . . . . . . . . . . . . . . 251
6.4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

6.5 An Arithmetic and Logic Unit - ALU . . . . . . . . . . . . . . . 255
6.5.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

6.6 Construction of the ALU . . . . . . . . . . . . . . . . . . . . . . 257
6.6.1 ALU function AND: 0000 . . . . . . . . . . . . . . . . . . 257
6.6.2 ALU function OR: 0001 . . . . . . . . . . . . . . . . . . . 258
6.6.3 ALU function Add: 0010 . . . . . . . . . . . . . . . . . . 258
6.6.4 ALU function Subtract: 0110 . . . . . . . . . . . . . . . . 258
6.6.5 ALU function NOR: 1100 . . . . . . . . . . . . . . . . . . 260
6.6.6 ALU: Putting it all together . . . . . . . . . . . . . . . . . 260
6.6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

7 MIPS Datapath 264
7.1 Storage Components . . . . . . . . . . . . . . . . . . . . . . . . . 264

7.1.1 The Register File . . . . . . . . . . . . . . . . . . . . . . . 264
7.1.2 Data Memory and Instruction Memory . . . . . . . . . . 265
7.1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

7.2 Design of the Datapath . . . . . . . . . . . . . . . . . . . . . . . 269
7.2.1 Register File and ALU . . . . . . . . . . . . . . . . . . . . 271
7.2.2 Instruction Memory, Instruction Register, and Register File271
7.2.3 Instruction Register, Register File, and Data Memory, for Load/Store272
7.2.4 Program Counter, Instruction Memory, and Transfer of Control273
7.2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

7.3 The Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
7.3.1 Control Unit Output to Data Memory R/W . . . . . . . 281
7.3.2 Control Unit Output to Register File R/W . . . . . . . . 282
7.3.3 Control Unit Output to ALU Operation Select - 4 bits . . 282
7.3.4 Control Unit Output to Multiplexers . . . . . . . . . . . . 283
7.3.5 Logic for the Control Unit . . . . . . . . . . . . . . . . . . 285
7.3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

8 The Memory Hierarchy 294
8.1 Introduction to the Memory Hierarchy . . . . . . . . . . . . . . . 294

8.1.1 Memory Technologies . . . . . . . . . . . . . . . . . . . . 295
8.1.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

8.2 Cache Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
8.2.1 Direct-mapped Cache . . . . . . . . . . . . . . . . . . . . 297
8.2.2 Associative Cache . . . . . . . . . . . . . . . . . . . . . . 300
8.2.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

8.3 Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
8.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

8.4 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310



viii CONTENTS

8.4.1 Data Locality Versus Instruction Locality . . . . . . . . . 310

8.4.2 Temporal Locality Versus Spatial Locality . . . . . . . . . 311

8.4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

9 Alternative Architectures 315

9.1 Instruction Set Architectures . . . . . . . . . . . . . . . . . . . . 315

9.1.1 Zero-address Architecture . . . . . . . . . . . . . . . . . . 316

9.1.2 One-address Architecture . . . . . . . . . . . . . . . . . . 316

9.1.3 Two-address Architecture . . . . . . . . . . . . . . . . . . 317

9.1.4 Three-address Architecture . . . . . . . . . . . . . . . . . 318

9.1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

9.2 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 318

9.2.1 Direct Addressing . . . . . . . . . . . . . . . . . . . . . . 319
9.2.2 Indirect Addressing . . . . . . . . . . . . . . . . . . . . . 319

9.2.3 Base Register and Displacement Addressing . . . . . . . . 320

9.2.4 Base Register, Index Register, and Displacement Addressing320

9.2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

9.3 ARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

9.3.1 Registers and instruction formats . . . . . . . . . . . . . . 324

9.3.2 Conditional branch instructions - CB format . . . . . . . 327

9.3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

9.4 Intel Pentium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

9.4.1 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . 334

9.4.2 The Mov Instruction and Addressing Modes . . . . . . . . 334

9.4.3 Arithmetic Instructions . . . . . . . . . . . . . . . . . . . 336

9.4.4 Logical Instructions . . . . . . . . . . . . . . . . . . . . . 339

9.4.5 Shift/Rotate Instructions . . . . . . . . . . . . . . . . . . 341

9.4.6 Transfer of Control Instructions and Condition Code Flags 343

9.5 Example program . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Glossary 348

Appendix: MARS 357

.1 Downloading MARS to Your Computer . . . . . . . . . . . . . . 357

.2 Edit Source Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

.3 Assemble Source Files . . . . . . . . . . . . . . . . . . . . . . . . 358

.4 Execute Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Appendix: MIPS Instruction Set 360

.5 Core Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

.6 Floating Point Instructions . . . . . . . . . . . . . . . . . . . . . 367

.6.1 Floating Point Conditional Branch . . . . . . . . . . . . . 368

Appendix: Pseudo Operations Supported by MARS 369



CONTENTS ix

Appendix: ASCII Character Set 372



x CONTENTS



Chapter 1

Computers and Computer
Programs

In driver education classes students are taught not only how to drive and the
rules of the road, but they are also taught some fundamentals of the inner
workings of the car - the four cycle engine, the distributor, the electrical system,
etc. Strictly speaking it is not necessary to know these things in order to drive
the car, but they are generally considered important enough for every driver to
have a rudimentary understanding. When something fails, a mechanic may not
be immediately available, and the driver who has some knowledge of what is
under the hood will be better prepared to deal with the problem than the driver
who is clueless.

Some computer scientists work with computer hardware (often in conjunc-
tion with software), but many work exclusively with software. Like automobile
drivers they will be better prepared to deal with failures if they have some
knowledge of what is ‘under the hood’. In addition software developers who are
hardware-savvy can produce more efficient software than those who are not.

For these reasons most computer science curricula include at least one hard-
ware course. This book includes topics such as CPU design, datapath, the
memory hierarchy, and assembly language. All of these are essential to a broad
understanding of computer organization and design. A discussion of the impor-
tance of this subject to software professionals can be found in the Kode Vicious
column by George Neville-Neil, in the March/April 2021 issue of ACM Queue.

As a prototypical example of a computer, we use the MIPS 1 architecture.
This architecture is complex enough that it is used in some real devices, yet it
is simple enough to be understood and programmed by novices.

The computer is but one example of a digital device. By this we mean that
at its most fundamental level it stores and works with binary values - zeros
and ones. There is no other value in a digital device; all other information

1Microprocessor without Interlocked Pipeline Stages. MIPS has been used primarily in
embedded systems, routers, game consoles, etc.

1



2 CHAPTER 1. COMPUTERS AND COMPUTER PROGRAMS

(numbers, keyboard characters, sound, images) are made up of sequences of
zeros and ones, i.e. binary values. This is true of all digital devices - computers,
tablets, phones, cameras, music players, game consoles, and electronic devices
embedded in appliances, automobiles, medical equipment, etc. Each binary
value is called a bit (binary digit).

1.1 Hardware Components

Here we provide a simplified description of the hardware components of a typical
general purpose computer, such as those which are called ‘desktop’ or ‘laptop’
computers. These are not tablet systems, nor smart phones, which have a
somewhat different design. Most of the components described here reside in the
system unit which is the box housing the desktop or laptop computer.

1.1.1 Central Processing Unit

The Central Processing Unit (CPU) is probably the most important part of the
computer. This is where computations take place, and this is where decisions
are made concerning the sequence in which computations are made. The CPU
consists of registers (described below), an arithmetic logic unit (ALU) capable
of arithmetic and logical operations, a control unit, and other components which
are connected with buses and wires.

Registers

The CPU registers are storage elements with fast access time. The time to
access the contents of a value in the computer’s memory can be over 1000
times slower than the time to access a CPU register. A register consists of a
fixed number of bits, usually 32 or 64. In the MIPS architecture which we will
be studying there are 32 bits in a register, and there are 32 general purpose
registers. These registers can store intermediate results from arithmetic and
logical computations, for which the operands must also be stored in registers.
They can also be used to move information from one location in memory to
another, and to store memory addresses (see the section on memory below).

In this book we will be diagramming registers as shown in Fig 1.1 Each
register is designated by a unique number: 0..31 and stores 32 bits. To save
space on the page only the first 8 of 32 general registers are shown. In the
MIPS architecture register 0 will always contain all zeros. The other registers
in Fig 1.1 contain randomly selected values with no particular intent or purpose.
We will be using these diagrams to explain the various operations which the CPU
is capable of performing, by showing the contents of registers before and after
the operation is performed.



1.1. HARDWARE COMPONENTS 3

00000000000000000000000000000000

11011000010101010100010101010100

00010101000111101010101010010101

11010000011100010010101010101010

00000000000000001111111111111111

11111111111111110000000000000000

00000000000000000000000000000001

00000000000000000000000000000000

0

1

2

3

4

5

6

7

Figure 1.1: Possible values for 8 of the 32 CPU registers in the MIPS architecture

Program Counter

The 32 general purpose registers described above may be referred to as pro-
grammable registers, i.e. the values which they contain can be explicitly altered
at the programmer’s discretion. There are other registers in the CPU which are
necessary for the correct sequence of operations to take place. One such reg-
ister is called the program counter register (PC). It contains the location (i.e.
memory address) of the next instruction to be executed.

Datapath

The datapath is the name which we give to the components in the CPU which
enable data to move between memory and the registers. The datapath also
contains hardware which can execute fundamental arithmetic and logical oper-
ations. The following components are included in the datapath: the registers,
the memory, the arithmetic/logic unit (ALU), the PC, the control unit, and the
connections necessary for these components to work together.

1.1.2 Memory

Closely associated with the CPU is the memory, also known as main memory
or random access memory (RAM). The memory stores data which is needed
for CPU operations. For example, if a program is working with an array of
numbers, those numbers would be stored in memory, where the CPU would
have immediate access to them. The instructions making up a program, coded
in binary, are also stored in memory. Each memory location has a unique
address, much like the houses on a street have unique, sequential, addresses.
When the CPU needs to access a particular memory value, it uses the address
of that value to access it.

The bits (binary digits) of memory are normally viewed in groups of 8 bits.
Each 8-bit group is called a byte. In the MIPS architecture which we study in
this book, each byte of memory has a unique address; we say the memory is
byte addressable. Recalling that registers are 32 bits, every 4 bytes constitute
a full word of memory; we say that the word size for the MIPS architecture is 4
bytes, or 32 bits. This means that calculations and memory access are normally



4 CHAPTER 1. COMPUTERS AND COMPUTER PROGRAMS

... 00000000 00000000 00000000 00000000 11011000 01010101 01000101 01010100 ...

4024 4028

Figure 1.2: A portion of the MIPS memory, showing word addresses

done with 32-bit values. Fig 1.2 is a diagram of the MIPS memory structure.
This diagram shows only two words of memory, each with its own address. The
32 bits in each word are shown with a space between bytes to show the 4 bytes
in a word (in an actual memory there is no such space). Since there are 4 bytes
in a word, and the memory is byte addressable, the word addresses increase by
4 (from 4024 to 4028 in this example).

1.1.3 Peripheral Devices

Peripheral Storage Devices

The memory described in the previous section is said to be volatile. This means
that when power is switched off, all values in memory are lost. The term
volatile is taken from chemistry in which a volatile liquid is one which evaporates
readily and seemingly disappears. You may have experienced a loss of data when
entering text into a word processor and there was a loss of electrical power to
the computer. If the document was not saved, it would be lost because it is
stored in memory.

This is but one reason for the need for peripheral devices such as disks or flash
storage systems. These devices are capable of retaining data when power is shut
off. Disks can be either magnetic or optical. The fixed disk (non-removable) in
your computer’s system unit is typically a magnetic disk. In addition to data
files it stores all the system and application software which is needed by your
computer. Optical disks are removable; examples of optical disk formats are CD,
CD-ROM, DVD, etc. Data written to optical disks are typically not removed,
whereas data on magnetic disks are commonly over-written or removed.

Another important device for permanent storage is flash memory, also
known as a USB stick, a USB drive, thumb drive, etc. Here the word ‘drive’ is
a misnomer because there are no moving parts in flash memory; it is a semicon-
ductor material which is not volatile. Most mobile devices such as tablets and
phones contain a substantial amount of (non-removable) flash memory.

Peripheral Devices for Input and Output

The terms input and output are to be understood from the memory’s perspec-
tive. Output occurs when information is transferred from memory, out to an
external device. Input occurs when information is transferred in to memory,
from an external device.

A printer is an example of a device which is primarily an output device.
Information is sent from the computer’s memory to the printer, presumably in
a form which is familiar to the user.



1.1. HARDWARE COMPONENTS 5

SystemUnit

CPU Memory
Non-volatile

Storage

Display Keyboard Mouse USB

Figure 1.3: Diagram of a computer, with peripheral devices

A monitor (or display) is also an output device. Information is constantly
being sent from memory to the monitor. In most computers a section of memory
is set aside specifically for this purpose, in which case the monitor is said to be
memory mapped.

The keyboard and mouse are input devices. When the user types a key,
moves the mouse, or presses a mouse button, signals are sent into the computer’s
memory, and the operating program is capable of responding appropriately.

Input and output can also take place through a wireless adapter and/or an
ethernet port. This is useful for communication with other computers and the
internet.

Fig 1.3 shows a block diagram of the components that we have described.
Note that the arrows show the direction in which information flows. Data from
memory flow out to the display, while data from the keyboard and mouse flow
into memory. Data can flow in both directions between memory and a USB
device. This gives rise to the terminology, input and output devices. The words
‘input’ and ‘output’ describe the direction of data flow, from the memory’s
perspective. The display, is an output device, the keyboard and mouse are
input devices, and the USB port is used for both input and output.2

The non-volatile storage is typically a fixed disk, i.e. a magnetic rotating
disk, which is non-removable. As flash memory3 technology improves, it may
replace the fixed disk as the non-volatile storage. It is not visible to the user
since it is in the system unit.4

2Technically, the display is used for both input and output, because the display can send
status signals into memory.

3Flash memory is described in chapter 8
4In many systems the display is also incorporated into the system unit.



6 CHAPTER 1. COMPUTERS AND COMPUTER PROGRAMS

1.2 Machine Language

The CPU is capable of executing only the most basic and fundamental opera-
tions such as the addition of two values, the subtraction of two values, compari-
son of two values, etc. Furthermore these operations must be properly encoded
in binary in order for the CPU to ‘understand’ their meaning. Such an opera-
tion is called an instruction. The instruction generally consists of a an operation
code (for add, subtract, compare, etc) and locations of the operands (typically
registers). An instruction which refers to a memory location would have to
specify the address as a binary number. A sequence of binary-coded instruc-
tions in memory is called a program. The CPU executes the instructions of a
program sequentially in the order in which they are stored in memory, unless
it encounters an instruction which specifically orders it to alter that sequence.
This language of binary coded instructions is usually called machine language;
it is the only language which the CPU understands.

1.3 Assembly Language

Programming a computer in a binary machine language has, historically, been
done; however it is obviously a tedious and error-prone way to proceed. For
this reason we have developed a language called assembly language in which
the operations are represented by plain text such as add and sub, and memory
locations may be referenced with symbolic names, such as salary instead of a
binary memory addresses. Since the CPU is not capable of executing assembly
language programs, they must first be translated into machine language; this
is done by software known as an assembler. We will be using an assembler
developed at Missouri State University known as MARS 5. In chapter 5 we will
attempt to develop our own assembler.

1.4 Operating System

Computers are generally distributed with certain software built-in, known as the
operating system. This software manages the resources available to programs
as they are executed by the CPU. The functionality of the operating system
includes:

• Manage access to the CPU when several programs are executing simulta-
neously (this is almost always the case)

• Manage access to peripheral devices such as disk, printer, keyboard, etc.

• Allow the user to manage permanent data files (create, remove, edit)

• Use non-volatile storage to expand the addressable memory, known as
virtual memory (chapter 8)

5MIPS Assembler and Runtime Simulator



1.5. PROGRAMMING LANGUAGES 7

Some examples of modern operating systems include:

• Windows (proprietary, licensed by Microsoft)

• MacOS (proprietary, licensed by Apple)

• Linux (open source)

• Android (open source)

• iOS (proprietary, licensed by Apple)

1.5 Programming Languages

The assembly language instructions correspond, for the most part, with machine
language operations. In assembly language it is not possible to specify many
operations in a single statement, such as a ∗ 32 + b ∗ 8. For this feature (and
many others) we rely on high-level or programming languages. Examples of
programming languages are Java, C++, Visual Basic, and Python. Programs
written in these languages must also be translated to machine language in order
to be executed; this is done by a software translator known as a compiler.
Compilers are not covered in this book, but a free introductory textbook on
compiler design can be found at cs.rowan.edu/~bergmann/books.

1.6 Exercises

1. What is a computer program?

2. (a) What does CPU stand for?

(b) What are the two primary purposes of the CPU?

3. In the CPU where are intermediate results of calculations stored?

4. In the MIPS archtitecture:

(a) How many registers are there?

(b) What is the size (in bits) of each register?

5. What is the purpose of the Program Counter (PC) register?

6. In the MIPS architecture:

(a) How many bits are in a byte?

(b) How many bytes are in a word?

(c) How many bits are in a word?

7. (a) If the address of a particular byte in memory is 4321, what is the
address of the next byte?



8 CHAPTER 1. COMPUTERS AND COMPUTER PROGRAMS

(b) If the address of a particular word in memory is 70324, what is the
address of the next word?

8. Which of the following are volatile storage?

(a) Main memory

(b) Flash memory

(c) Magnetic disk

(d) Optical disk

9. Many game consoles utilize a joystick to control the game. Is the joystick
considered an input or output device?

10. Match the words with the correct descriptions:

1. Assembly Language (a) May contain many operations in a single statement.

2. Machine Language (b) Utilizes plain text to name instructions, such as

’add’ and ’sub’.

3. Programming Language (c) Primitive instructions are encoded in binary.

11. Use wikipedia to find out what is meant by open source versus proprietary
software. What are their relative advantages and disadvantages?



Chapter 2

Number Systems

In chapter 1 we introduced the notion of binary numbers. Here we generalize the
notion and look at more convenient ways of describing large binary numbers. We
also show how some operations on binary values can be simplified or facilitated.

All of these number systems are based on the same positional system.1

Fig 2.1 shows the decimal number 19,403. For decimal numbers the base is
10.2 All of the number systems described here use the same principle, with dif-
ferent bases. We will examine the bases 2,8, and 16. Some areas of Computer
Science use other bases, such as 64.

2.1 Base Two - Binary

Whereas in a base ten (decimal) number each digit represents a power of 10, in
base two each digit represents a power of 2, as shown in Fig 2.2 which depicts
the base two representation of 19. 19 = 1 ·16 + 0 ·8 + 0 ·4 + 1 ·2+1 ·1 = 100112.
If you add the positional values for which there is a 1 in the binary number, the

1Generally attributed to the Hindu and Arab cultures of the ninth century AD
2Probably because we have 10 fingers

3

100 = 1

0

101 = 10

4

102 = 100

9

103 = 1, 000

1

104 = 10, 000

Figure 2.1: The decimal representation of 19,403 (19,403 = 10,000 + 9,000 +
400 + 0 + 3)

9



10 CHAPTER 2. NUMBER SYSTEMS

1

20 = 1

1

21 = 2

0

22 = 4

0

23 = 8

1

24 = 16

Figure 2.2: The binary representation of 19 (19 = 16 + 2 + 1)

1012 = 5
01012 = 5
101012 = 21
100002 = 16
11112 = 15
1000000000002 = 4096
1000000000012 = 4097
111111111112 = 4095

Figure 2.3: Some examples of binary numbers (base 2)

sum is the value of the binary number. Other examples of binary numbers are
shown in Fig 2.3.

2.1.1 Binary Arithmetic

Binary arithmetic is easy to learn; it is just like decimal arithmetic, but the only
numerals permitted are 0 and 1. Simply remember that 12 + 12 = 102 and that
12 + 12 + 12 = 112. An example showing the addition of two 8-bit numbers is
shown in Fig 2.4.

Note that in any column where the result is 102, the 0 is written and the
1 is a carry into the next column. In any column where the result is 112, the

1 1 1

0 0 1 0 1 0 1 1 = 43 0 0 1 0 1 0 1 1 = 43

+ 0 0 0 0 1 1 1 0 = 14 + 0 0 0 0 1 1 1 0 = 14

----------------------- ---------------------

0 0 1 1 1 0 0 1 = 57 0 0 1 1 1 0 0 1 = 57

(a) (b)

Figure 2.4: (a) Addition of 43 + 14 in binary using 8-bit values and (b) The
same operation showing carry bits



2.1. BASE TWO - BINARY 11

0 1 0 0 0 1 1 0 = 70

- 0 0 0 0 1 1 0 1 = 13

-----------------------

0 0 1 1 1 0 0 1 = 57

Figure 2.5: Subtraction of 70 - 13 in binary using 8-bit values

0 1 1 10 0 10
0 6 1 6 0 6 0 6 0 1 6 1 6 0 = 70

- 0 0 0 0 1 1 0 1 = 13
0 0 1 1 1 0 0 1 = 57

Figure 2.6: Subtraction of 70 - 13 in binary using 8-bit values and showing a
borrow from the neighboring column

(low-order) 1 is written and the (high-order) 1 is a carry into the next column.
Subtraction is similar to addition. When attempting to subtract 02 − 12 we

will need to borrow a 1 from the its (high-order) neighbor. If that neighbor is a
0, it will become 1 by borrowing from its neighbor, and so on. An example of
a binary subtraction is shown in Fig 2.5 in which we subtract 70 - 13. Fig 2.6
shows the same operation, with the borrow digits at the top. In our example we
are subtracting a small number from a larger number, ensuring that we get a
positive result. If we were to subtract a large number from a smaller number, the
result would be negative. This implies that we need a way to represent negative
numbers, which is described in the section on Twos Complement Representation.

2.1.2 Exercises

1. Show each of the following numbers as an 8-bit binary value: 15, 3, 0, 64,
63, 127

2. Show the following numbers in binary using only as many bits as are
needed: 15, 3, 0, 128, 255, 256

3. Show the following binary numbers in decimal: 0101, 0111, 0111111,
01010101, 0100000

4. Show how to do the following operations in binary, using 8-bit words (show
the carry bits for additions as shown in Fig 2.4(b) and the borrows for
subtractions as shown in Fig 2.6): 12+3, 64+64, 64+63, 63+63, 12-4,
17-3, 128-127

5. Read parts (a) and (b) aloud so that they make sense.

(a) There are 10 kinds of people in the world: those who know binary
and those who do not.



12 CHAPTER 2. NUMBER SYSTEMS

7

80 = 1

3

81 = 8

0

82 = 64

1

83 = 512

Figure 2.7: The octal representation of 543 (543 = 512 + 24 + 7)

238 = 19
2058 = 69
10008 = 512
30128 = 1546
10018 = 513
7778 = 511

Figure 2.8: Some examples of octal numbers (base 8)

(b) There are 10 kinds of people in the world: those who know base 3,
those who do not know base 3, and those who do not know what I’m
talking about.

(c) Make up a statement similar to the ones in parts (a) and (b) above,
using a base in the range [4..9].

6. Show how to count from 0 to 31 using only the fingers on one hand (try
not to offend anyone when you get to 4).

2.2 Base 8 - Octal

We wish to explore other number bases, primarily because they can be used as
a shorthand for binary numbers. In this section we look at base 8, or octal,
numbers.

In base 8 the numerals are 0..7, and each position represents a power of 8,
as shown in Fig 2.7. We multiply the numeral in each position with the number
represented by the position and add the results. 543 = 1·512+0·64+3·8+7·1 =
10378.

Other examples of octal numbers are shown in Fig 2.8 in which numbers
shown without subscripts are assumed to be base ten.

Why are we concerned with base 8? The best reason is that it provides
us with a shorthand for binary numbers. Each octal digit represents 3 binary
digits, as shown in Fig 2.9.

This means that we have a convenient way to represent long strings of bits
- simply group them into groups of 3 bits, and represent each 3-bit group with
an octal digit, as shown in Fig 2.10. Notice the last line in Fig 2.10 in which



2.2. BASE 8 - OCTAL 13

octal binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Figure 2.9: Each octal digit represents 3 bits

binary groups of 3 octal
010101 010 101 258

11101l001 111 011 001 7318

111111111111 111 111 111 111 77778

1011101011000111 1 011 101 011 000 111 1353078

Figure 2.10: Each octal digit represents 3 bits

the number of bits provided is 16 (not a multiple of 3). This means we have
one bit ‘left over’. It must be the left-most bit, not the right-most bit, in order
that the octal result represents the same number as the given binary value.

Conversely, we have a more common situation: we are given the octal repre-
sentation of an n-bit field. If n is not a multiple of 3, the high order octal digit
does not represent 3 bits. For example, if we are describing a 10-bit field in octal
as 12348, then the 10-bit field is 1 010 011 100 = 1010011100. The high order
(leftmost) octal digit represents just one bit. Another example, if describing
a 5-bit field as 328, the 5-bit field must be 11 010 = 11010. In this case the
high order octal digit represents just 2 bits. It will be important to remember
this when dealing with the MIPS architecture in which the word size is 32 bits
(not a multiple of 3), and many of the field widths in MIPS instructions are not
multiples of 3.

2.2.1 Exercises

1. Show each of the following decimal numbers in base 8, using only as many
octal digits as are necessary: 7, 9, 23, 100, 511, 512

2. Show each of the following octal numbers in decimal (base 10): 128, 328,
778, 7778, 10008, 10108

3. Show each of the following binary values in base 8, using only as many octal
digits as are necessary: 1112, 1102, 1000000002, 1000000012, 1111111112,
101010112, 11111112

Hint: There is no need to convert to decimal.



14 CHAPTER 2. NUMBER SYSTEMS

hexadecimal binary decimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
a 1010 10
b 1011 11
c 1100 12
d 1101 13
e 1110 14
f 1111 15

Figure 2.11: Base 16: Each hexadecimal digit represents 4 bits. The 16 hex
numerals have values ranging from 0 to 15.

4. Show each of the following octal values in binary (base 2): 108, 378, 738,
2348, 71508

Hint: There is no need to convert to decimal.

5. An 8-bit field is storing the value 101010112. Show the 8-bit field in octal,
using no more digits than are necessary.

6. What is the largest (decimal) value that can be represented with 4 octal
digits?

2.3 Base 16 - Hexadecimal

In this section we look at base 16, or hexadecimal, numbers which are more
useful and more commonly used than octal numbers as a shorthand for binary.

Recall that in base two there are only two numerals: 0 and 1. In base
8 there are 8 numerals: 0,1,2,3,4,5,6,7. In base 10 there are 10 numerals:
0,1,2,3,4,5,6,7,8,9. This implies that in base 16 we will need 16 numerals, though
the character set provides only 10 numeric characters; we will have to supple-
ment these numeric characters with 6 more characters to represent the decimal
values 10, 11, 12, 13, 14, 15. We use the first 6 letters of the alphabet for this
purpose, as shown in Fig 2.11.

Fig 2.12 shows how the decimal number 541 can be represented in hexadec-
imal. 541 = 2 · 162 + 1 · 161 + 3 = 21316.

Other examples of hexadecimal numbers are shown in Fig 2.13.



2.3. BASE 16 - HEXADECIMAL 15

3

160 = 1

1

161 = 16

2

162 = 256

Figure 2.12: The hexadecimal (base 16) representation of 541 (541 = 512 + 16
+ 3)

a316 = 10 · 16 + 3 = 163
20d16 = 2 · 162 + 0 · 16 + 13 = 512 + 0 + 13 = 525
100016 = 1 · 163 + 0 · 162 + 0 · 16 + 0 = 4096
301216 = 3 · 163 + 0 · 162 + 1 · 16 + 2 = 12288 + 16 + 2 = 12306
100116 = 1 · 163 + 0 · 162 + 0 · 16 + 1 = 4097
fff16 = 15 · 162 + 15 · 16 + 15 = 4095

Figure 2.13: Some examples of hexadecimal numbers (base 16)

Note that each hexadecimal digit represents 4 bits, thus providing a some-
what more efficient representation for long bit strings. Fig 2.14 shows some
examples of bit strings which can be represented much more easily in hexadec-
imal. Note in the last line of Fig 2.14 that the number of bits (19) is not a
multiple of 4. We have 3 bits left over. As in the case with octal numbers, these
left over bits must be the high order (leftmost) bits, in order for the number
represented by the hex digits to be equal to the number represented by the given
binary digits.

We will often show hexadecimal values with a subscript of ’x’ instead of 16
to indicate base 16. 321x = 32116 = 801. When using the MARS software,
there are no subscripts, so base 16 constants will be designated with a prefix of
’0x’. 0x321 = 32116 = 801. The student may often see numbers written without
any base indicated. These are usually intended to be base 10, but at times the
base is evident from the context. For example, the 6-bit opcode is 101001 is
obviously binary, and the result in register 2 is 4a56bf0f is obviously base 16.

binary groups of 4 hexadecimal
01010111 0101 0111 5716

1110101l0001 1110 1011 0001 eb116

1111111111111111 1111 1111 1111 1111 ffff16

1011011101011001111 101 1011 1010 1100 1111 5bacf16

Figure 2.14: Each hexadecimal digit represents 4 bits



16 CHAPTER 2. NUMBER SYSTEMS

2.3.1 Hexadecimal Values in the MIPS Architecture

In the MIPS architecture which we are examining, the word size is 32 bits,
but often words are broken into groups of bits called fields. When we describe
the contents of a word (whether it be a register or a word in memory) we will
generally use hexadecimal as a shorthand for the actual binary digits in a word.

For example, a word could contain the 32 bits
10010110111100011010001100011000
However it is easier to describe this word in hexadecimal than in binary, and
it is easier for someone to grasp this word in hexadecimal than in binary. Can
you look at the 32 bit word above and memorize it? We will now convert it to
hexadecimal, first by grouping the 32 bits into fields of 4 bits:

1001 0110 1111 0001 1010 0011 0001 1000
It is then easy to convert each 4-bit field to a hexadecimal digit:

96f1a318
You will probably have more success memorizing the word in this form.

In later chapters we will be examining the fields in a MIPS instruction. In
some instructions the bits are grouped in fields of size 6,5,5,5,5,6. Thus an
instruction, in binary, could be:

101001 10001 00000 11111 01000 000111

To describe each field separately we would need two hex digits for each field,
whether it represents 5 or 6 bits (for a 6-bit field, the high order hex digit
represents two bits, and for a 5-bit field the high order digit represents just one
bit):

29 11 00 1f 08 07

To describe the entire word in hexadecimal, we need to regroup the 32 bits
into fields of 4 bits each:
1010.01 10.001 0.0000.1111.1 010.00 00.0111
1010 0110 0010 0000 1111 1010 0000 0111

This can now be shown in hexadecimal by substituting the correct hex digit
for each group of 4 bits:

a620 fa07

2.3.2 Exercises

1. Show the following decimal values in hexadecimal (base 16): 13, 25, 170,
4095, 4096

2. Show the following hexadecimal values in decimal (base 10): 1216, 2016,
2e16, ff16, 10016, abc16, fff16, 100016

3. Convert the following hexadecimal values to binary: 9216, b916, 2bf16,
fff16, 100016, ffff16

Hint: Do not convert to decimal. Do not multiply.



2.4. TWOS COMPLEMENT REPRESENTATION 17

4. Convert the following binary values to hexadecimal: 101100012, 111111012,
0001001111102, 1111111111112, 111111111112, 11111111112

1111111112

Hint: Do not convert to decimal.

5. A 15-bit field is storing the value 1011111011111002. Show this field in
hexadecimal, using no more digits than necessary.

6. What is the largest value (in decimal) which can be represented with 4
hexadecimal digits?

7. A MIPS register contains the value 0xab3c401f. Show the 32 bits stored
in that register.

8. A MIPS instruction with 6 fields (in hexadecimal) is 13 13 0f 1d 03 3a.

(a) Show that instruction in binary (32 bits).

(b) Show that instruction as a full word, using 8 hexadecimal digits.

2.4 Twos Complement Representation

We have seen that it is possible to represent non-negative whole numbers in
binary (base 2), but we have not said anything about representing negative
whole numbers. Recall that there are no minus signs (’-’) in the computer’s
memory - only zeros and ones.

Number binary
+7 0111
+6 0110
+5 0101
+4 0100
+3 0011
+2 0010
+1 0001
0 0000
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

Figure 2.15: Twos
complement repre-
sentation of positive
and negative whole
numbers, for a 4-bit
word

Over the years various schemes have been used to rep-
resent negative whole numbers. At the present time al-
most every computer architecture uses a representation
scheme called twos complement representation. With this
scheme it becomes possible to add and subtract whole
numbers without worrying about whether they are posi-
tive or negative; we always get the correct result.

To describe twos complement in an easy to understand
way, we will work with a 4-bit word instead of a 32-bit
word, but the same concepts will apply to a 32-bit word.
Fig 2.15 shows the positive and negative values assigned
to a 4-bit word. Note that:

• Zero is neither positive nor negative

• The largest positive value is 0111 = +7

• The smallest negative value is 1000 = -8

• There are more negative numbers than positive

• Every negative number begins with a 1 in the high-
order (leftmost) bit



18 CHAPTER 2. NUMBER SYSTEMS

• All ones represents -1 (for any word size).

It should be clear why the positive numbers are as
shown in Fig 2.15, but the negative numbers may require
some explanation. Think back to the days when a car’s

odometer3 was mechanically connected to the wheels, so that when the car backs
up, the number on the odometer decreases. Now imagine that a brand new car,
with an odometer reading of 000000 backs up 1 mile. What would you see on
the odometer? Most likely 999999, which is equivalent to -1. For this reason -1
is represented in twos complement by all 1’s.

Now try adding -1 to some other value, in binary (discard the bit carried
out from the high order position):

0110 = +6

+ 1111 = -1

-----------

0101 = +5

Students often ask, given a binary value, how do you know whether it is
intended to be twos complement representation? For example, does the binary
value 1100 represent 12 or -4? The answer is that given no other information
about this binary value, it is impossible to know what it is supposed to represent.
If you are told that it is two’s complement representation, then you know it
represents -4. But if you are told that it is unsigned, then you know it represents
12. You will see this concept again when we look at the instructions in the
MIPS architecture. There are two add instructions, one of which is called add

unsigned. The first add instruction assumes twos complement representation,
and the add unsigned instruction assumes all values are non-negative.

How can we negate a value in twos complement representation? Here are
three fairly easy algorithms for negating (or complementing) a number in binary:

• Subtract from 0. 0 - x = -x

• 1. Change all zeros to ones, and change all ones to zeros (this is called
the ones complement).

2. Add 1

• Scan the bits from right to left.

1. As you scan, copy the low-order zeros

2. Copy the first 1 digit

3. Complement all remaining digits

As an example, we wish to negate (i.e. complement) the 4-bit binary value
0100 = +4. Using the first algorithm, we subtract from 0:

3An odometer measures a car’s mileage; don’t confuse it with a speedometer



2.4. TWOS COMPLEMENT REPRESENTATION 19

0000 = 0

- 0100 = +4

-----------

1100 = -4

When attempting to borrow from the high-order bit, we assume there is an
extra 1 at the high-order end of the number, if needed.

If we negate that result, we should obtain the value we started with (- -x =
x).

0000 = 0

- 1100 = -4

-----------

0100 = +4

We will now negate the same value, +4 = 0100, using the second algorithm.
First, form the ones complement:
1011
Next, add 1:

101l

+ 0001 = +1

-----------

1100 = -4

Using the same algorithm to negate that result, we should obtain +4 = 0100.
First, form the ones complement of 1100, to obtain 0011. Then add 1:

0011

+ 0001 = +1

-----------

0100 = +4

We will now negate the same value, +4 = 0100, using the third algorithm.
Scanning from right to left we copy the low-order zeros:

0100

00

We then copy the first 1 digit:

0100

100

Finally we complement the remaining digits:

0100

1100 = -4

Using the same algorithm to negate that result, we should obtain +4 = 0100.
Scanning from right to left we copy the low-order zeros:



20 CHAPTER 2. NUMBER SYSTEMS

1100

00

We then copy the first 1 digit:

1100

100

Finally we complement the remaining digits:

1100

0100 = +4

In summary, we have seen that negative as well as positive numbers can be
represented using the twos complement representation. This scheme allows for
easy implemenation of addition and subtraction, and it is used by virually every
chip maker in the world.

2.4.1 Exercises

1. Show the following numbers using 8-bit twos complement representation:
+6, -1, -2, -6, +22, -15, +127, -127, -128

2. (a) What are the largest and smallest numbers which can be represented
using 8-bit twos complement representation?

(b) What are the largest and smallest numbers which can be represented
using an n-bit twos complement representation?

3. Show each of the following in twos complement representation, using only
as many bits as are necessary: 15, 23, -15, -23, 2, 1, 0, -1, -2, 511, 512,
-512

Hint: A twos complement number is negative if and only if the high order
bit is 1.

4. Show the decimal value of each of the following assuming (a) unsigned (b)
twos complement representation:

01112

11112

01012

10102

0112

112

111111112

111111102

110101012

102

12

012



2.5. POWERS OF TWO 21

5. Use any of the three algorithms given to negate each of the following,
showing the solution in binary (binary numbers are twos complement rep-
resentation).

+75
-76
+15
11112

010002

100012

11112

6. A java int is a 32-bit whole number in twos complement representation.
The class variable Integer.MAX VALUE is the largest possible int, and
the class variable Integer.MIN VALUE is the smallest possible int.

(a) What is Integer.MAX VALUE + Integer.MIN VALUE?

(b) What is Integer.MIN VALUE - Integer.MAX VALUE?

(c) What is Integer.MAX VALUE + Integer.MAX VALUE?

(d) What is Integer.MIN VALUE + Integer.MIN VALUE?

Hint: See Fig 2.15. Use a java compiler to check your solutions if you are
not sure.

2.5 Powers of Two

Computers are binary machines; consequently it is important that we be familiar
with the powers of two. These numbers will also be cropping up in other areas of
computer science, such as analysis of algorithms. In this section we will see how
to find any power of 2 up to 249; moreover we will be able to do this mentally,
without help from pencil, paper, nor digital device. We will also see some easy
ways of doing arithmetic with powers of two. Fig 2.16 shows the powers of two
up to 210 = 1024. Students should memorize these numbers; this will make it
easy to do important calculations mentally.

Next we introduce some standard notation for large powers of two.4

210 = 1024 = 1K
1K is the same as 1024; in this book 1K always represents 1024, and never 1000.
1K is simply a number and could be used to specify a quantity of memory (1K
bytes or 1K words or 1K bits) as well as anything else (1K rabbits). Using this
notation we have larger powers of two:
211 = 2 · 210 = 2K
212 = 4 · 210 = 4K

4We observe the convention that capital letters are used for powers of 2, and lower case
letters for powers of ten. Thus 1K = 210 = 1024 but 1k = 103 = 1000.



22 CHAPTER 2. NUMBER SYSTEMS

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024

Figure 2.16: The powers of two

213 = 8 · 210 = 8K
219 = 512 · 210 = 512K

We have standard notation for larger powers of two.
220 = 210 · 210 = 1024 · 1K = 1M
Some examples are:

221 = 2 · 220 = 2M
222 = 4 · 220 = 4M
223 = 8 · 220 = 8M
229 = 512 · 220 = 512M

n 2n

3 8
13 8K
17 128K
21 2M
25 32M
32 4G
38 256G
40 1T
49 512T

Figure 2.17:
Examples of
large powers
of 2

And yet larger powers of two:
230 = 210 · 220 = 1024 · 1M = 1G
Some examples are:

231 = 2 · 230 = 2G
232 = 4 · 230 = 4G
233 = 8 · 230 = 8G
239 = 512 · 230 = 512G

Using the notation, 240 = 210 · 230 = 1024 · 1G = 1T
we can now easily describe any power of 2 up to 249

A few examples are shown in Fig 2.17. How are these
values obtained? The letter - K,M,G, or T - is determined
by the the first digit in the exponent of 2. 1=K 2=M 3=G
4=T. The number before the letter is two raised to the power
of the second digit. 20 = 1 21 = 2 22 = 4 23 = 8
(these are shown in Fig 2.16, and you’ve memorized them).

The next time you are at a party with friends you can
impress people by announcing that you know all the powers of two, up to 249!



2.5. POWERS OF TWO 23

2.5.1 Arithmetic With Powers of Two

You may recall the following properties of exponents from your math classes:

• xy · xz = xy+z

• xy/xz = xy−z

• xyz

= xy·z

These properties will make arithmetic with powers of two much easier:

• 22 · 23 = 22+3 = 25 = 32

• 29/23 = 29−3 = 26 = 64

• 22
3

= 22·3 = 26 = 64

• 1K · 4K = 210 · 212 = 210+12 = 222 = 4M

• 64K · 32K = 216 · 215 = 216+15 = 231 = 2G

• 8G/32K = 233/215 = 233−15 = 218 = 256K

• 2K4 = (211)4 = 211·4 = 244 = 16T

We will be working extensively with powers of two in chapter 8 and will find it
much easier using what we have learned here.

2.5.2 Exercises

1. Complete the following table, using the KMGT notation introduced in
this section:



24 CHAPTER 2. NUMBER SYSTEMS

n 2n

3
7
11
15
20
24
36
48

16
512
8K

128K
1M
64M
4G
32G
32T
512T

2. Evaluate each of the following:

(a) 4K * 32K

(b) 16M * 16M

(c) 32M * 64G / 2T

(d) 16T * 32G * 128M / 4T / 8T

(e) (32K)3

Hint: See the identities in this section, and use powers of two.

3. Use the definitions provided in this section.

(a) If there are 128K protozoa in a liter of pond water, and there are 4M
liters of water in the pond, how many protozoa are in the pond?

(b) If a ROM (read-only memory) consists of 4G bits, and there are 8
hits in a byte, how many bytes are in the ROM?



Chapter 3

Assembly Language for
MIPS

In chapter 1 we described the fundamental components of a computer, including
the CPU. We also described the notion of a program as a sequence of binary
coded instructions stored in the computer’s memory. We also introduced the
notion of assembly language, in which we can use mnemonics and symbolic
names rather than binary codes. Software known as an assembler is then needed
to translate programs written in assembly language into equivalent machine
language programs. In this chapter we deal exclusively with assembly language
for a particular CPU known as MIPS.

3.1 Registers and Register Names

In the MIPS architecture there are 32 general registers, each of which stores a
32-bit full word. In order to perform an instruction, each operand must be in
one of these registers (possibly the same register); the result of the instruction
is placed in one of these registers (possibly the same register as an operand).
Almost every instruction in the MIPS architecture will involve one or more
registers.

In assembly language these registers can be referred to by their (numeric)
addresses (in decimal), preceded by a dollar sign: $0 .. $31. Examples of register
numbers are $5, $0, $30. Many of these registers have predefined purposes
which must be observed, and others have predefined purposes which should be
observed. The registers have names according to these predefined purposes,
and these names are shown in Fig 3.1. At the present time we will be using
only a few of these registers, and can safely ignore the others. We should note,
however, that register $0, $zero, must always contain the value 0. It is a mistake
to attempt to store any other value in register $0.

25



26 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

number name usage
$0 $zero 0
$1 $at assembler temp

$2-$3 $v0-$v1 function return values
$4-$7 $a0-$a3 function arguments
$8-$15 $t0-$t7 temp
$16-$23 $s0-$s7 saved temp
$24-$25 $t8-$t9 temp
$26-$27 $k0-$k1 OS Kernel

$28 $gp global pointer
$29 $sp stack pointer
$30 $fp frame pointer
$31 $ra function return address

Figure 3.1: MIPS Register Names and Usages

[label:] mnemonic operand, operand, operand [# comment]

[label:] mnemonic operand, operand [# comment]

[label:] mnemonic operand [# comment]

Figure 3.2: Format of an Assembly Language Statement (optional fields are
shown in brackets)

3.1.1 Exercises

1. Briefly describe the purpose of each of the following general registers

(a) $a2

(b) $v1

(c) $ra

(d) $29

2. How many bits are in a general register? How many bytes?

3. If a binary number is to select a general register by specifying its number,
how many bits, in general, would be needed?

3.2 Assembly Language Statements

An assembly language statement takes the form shown in Fig 3.2. The square
brackets indicate that the label and the comment are optional. The components
of a statement are:



3.3. ARITHMETIC INSTRUCTIONS 27

• The optional label will be discussed in the section on branches and jumps
(transfer of control)

• The mnemonic is the operation to be performed; examples are add (for
addition) and sub (for subtraction). The word ‘mnemonic’ means ‘to re-
member’; mnemonics are easier to remember than their machine language
equivalents (binary operation codes).

• There may be 0, 1, 2, or 3 operands separated by commas. At this point
the operands will simply be general registers. Later in this chapter we will
cover symbolic memory references as operands.

• The operands may be followed by an optional comment. Comments begin
with a # and extend to the end of the line. There are no multi-line com-
ments. Comments are strictly for the programmers use and are ignored by
the assembler. Comments are especially important in assembly language,
which is typically more difficult to read and understand than a high level
language. Comments may also appear on a line with no statements, but
must always begin with a # character.

An example of an assembly language statement with three operands is:

add $t0, $t1, $zero # this is a statement

In the example above the mnemonic is add, and the three operands are $t0,
$t1, and $zero. That statement has a comment, but no label.

3.2.1 Exercises

1. A comment

(a) must begin with what character?

(b) has what use in a statement?

(c) is always required: true or false.

(d) is terminated with what character?

2. How many operands may an assembly language statement have?

3. What is a mnemonic?

3.3 Arithmetic Instructions

In this section we introduce some of the arithmetic1 instructions available in the
MIPS architecture. At this point we restrict our attention to instructions which
are in the Register format, otherwise known as R format. Other formats will
be covered in the sections on Immediate instructions and Jump instructions.

1pronounced a-rith-me’-tic



28 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

(a)

[label:] add $rd, $rs, $rt [# comment]

(b)

Reg[$rd]← Reg[$rs] + Reg[$rt]

(c)

add $s0, $t3, $a0

(d)

add $t0, $t0, $t0 # $t0 = $t0 + $t0

Figure 3.3: Add Statement: (a) Format (b) Meaning (c) Example, which puts
the sum of registers $t3 and $a0 into register $s0. (d) Example which doubles
the value stored in register $t0.

3.3.1 Add Instruction

The add instruction is a fundamental instruction in every CPU. It’s purpose is
to perform addition of 32-bit full word values (in general registers), placing the
result also in a general register. A carry out of the high order bit is ignored (as
in Java), so one may think of the operands as twos complement values (we’ll
have more to say about this in the section on overflow).

The add instruction is described in Fig 3.3 which shows:

• (a) The general format of an add statement. It must have three operands,
all of which must be general registers. It may have an optional label and
an optional comment.

• (b) The meaning of the add statement. The first operand is the destination
register ($rd) and specifies which register is to receive the result of the
addition. The second and third operands ($rs and $rt) are the registers
which contain the values to be added. The notation Reg[$reg] means to
select the general register with name reg.

• (c) An example of an add statement which adds the values stored in reg-
isters $t3 and $a0, and puts the sum into register $s0.

• (d) An example of an add statement which adds the value stored in register
$t0 to itself, putting the sum back into register $t0, effectively doubling
the value in register $t0. This example shows that the operand registers
need not be different registers.



3.3. ARITHMETIC INSTRUCTIONS 29

(a)

[label:] sub $rd, $rs, $rt [# comment]

(b)

Reg[$rd]← Reg[$rs]−Reg[$rt]

(c)

sub $s0, $t3, $a0

(d)

sub $t0, $t0, $t0 # $t0 = $t0 - $t0

Figure 3.4: Subtract Statement: (a) Format (b) Meaning (c) Example, which
puts the value of register $a0 subtracted from register $t3 into register $s0. (d)
Example which puts the value 0 into register $t0
.

3.3.2 Subtract Instruction

The sub (subtract) instruction is very similar to the add instruction. It must
specify three general registers as operands; the first operand specified is the
destination register. This instruction will subtract the value in the $rt register
from the value in the $rs register and place the result in the $rd register as
described in Fig 3.4.

How does this instruction work if the $rt register value is larger than the the
$rs register? Think twos complement! The sub instruction works by negating
the third operand and adding it to the second operand:

a - b = a + -b

3.3.3 Examples of Add and Subtract Instructions

In our first example we will perform the following simple calculation: 5 + 17

- 30. This will require two assembly language statements: an add instruction
and a sub instruction. We will assume that register $a0 contains the value
5, register $a1 contains 17, and register $a2 contains 30 (in the section on
immediate instructions we will see how to put a constant value into a register).
Our objective is to put the final result (which should be -8) into register $v0.
Fig 3.5 is a diagram showing the relevant register contents (in hexadecimal)
before and after each instruction. Note that the contents of register $v0 is
shown as question marks. This is our way of saying any of the following:

• We do not know what value is in register $v0.

• We do not care what value is in register $v0.



30 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

$a0 = 00 00 00 05

$a1 = 00 00 00 11

$a2 = 00 00 00 1e

$v0 = ?? ?? ?? ??

add $v0, $a0, $a1
$v0 = 00 00 00 16

sub $v0, $v0, $a2
$v0 = ff ff ff f8

Figure 3.5: Example to calculate 5 + 17 - 30, leaving the result in register $v0.
The contents of the relevant registers are shown in hexadecimal before and after
each instruction is executed.

• Register $v0 contains garbage.

• It is ok to store a new value in register $v0; the current value is not needed.

We do not assume that register $v0 contains 0. The add instruction will
overwrite any value that is in register $v0, so its initial contents is irrelevant
here.

In Fig 3.5 the add instruction will add the contents of register $a0 (5) to
the contents of register $a1 (17) and store the result (22) in register $v0. The
sub instruction will subtract the contents of register $a2 (30) from the value in
register $v0 (22) and store the result (-8) in register $v0.

3.3.4 Set If Less Than

Here2 we discuss an instruction which will not have any apparent utility; its
usefulness will become evident in chapter 4. The instruction is set if less than,
and the mnemonic is slt. It is an R format instruction which compares two
registers, the $rs and $rt registers. It stores a 1 in the $rd register if the value
of the $rs register is strictly less than the value of the $rt register. Otherwise it
stores a 0 in the $rd register. This instruction is described
more formally in Fig 3.6.

Note that the comparison is an arithmetic comparison, meaning that the
operands are assumed to be twos complement representation; negative numbers
are smaller than positive numbers.3 We will discuss this instruction further in
connection with conditional branching in chapter 4.

As an example, we show a trace of the following sequence of instructions in
Fig 3.7:4

2This section may be omitted without loss of continuity, but it should be covered before
chapter 4

3There is another instruction, sltu, which performs an unsigned comparison.
4the li instruction loads a constant value into a register



3.3. ARITHMETIC INSTRUCTIONS 31

(a)

[label:] slt $rd, $rs, $rt [# comment]

(b)

Reg[$rd]← 1 if Reg[$rs] < Reg[$rt]
Reg[$rd]← 0 if Reg[$rs] ≥ Reg[$rt]

(c)

slt $s0, $t3, $a0

Figure 3.6: Set If Less Than Statement: (a) Format (b) Meaning (c) Example,
which stores 1 in register $s0 if register $t3 is less than register $a0, and which
clears register $s0 if register $t3 is not less than register $a0

li $t0, 5

li $t1, -7

slt $t2, $t0, $t1 # compare $t0 with $t1

slt $t3, $t1, $t0 # compare $t1 with $t0

slt $t4, $t0, $t0 # compare $0 with itself

3.3.5 Exercises

1. Show a diagram similar to Fig 3.5 for the following sequence of instruc-
tions:

add $s3, $a0, $a1

sub $s2, $t0, $t0

sub $v0, $s3, $a0

Assume that register $a0 initially contains +37 and that register $a1 con-
tains -12. All other registers contain garbage.

2. Show a sequence of add and/or sub instructions which can be used to
multiply the contents of register $t0 by 5. Use register $t1 for temporary
storage, if helpful.

3. Show a sequence of add and/or sub instructions which can be used to
multiply the contents of register $t0 by 8 (this can be done with only
three instructions, and no other temporary register is needed).

4. Show a sequence of instructions which will put a 1 in register $v0 if the
value in register $a0 is negative; otherwise it should clear register $v0.



32 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

$t0 = ?? ?? ?? ??

$t1 = ?? ?? ?? ??

$t2 = ?? ?? ?? ??

$t3 = ?? ?? ?? ??

li $t0,5

$t0 = 00 00 00 05

li $t1,-7

$t1 = ff ff ff f9

slt $t2,$t0,$t1

$t2 = 00 00 00 00

slt $t3,$t1,$t0

$t3 = 00 00 00 01

Figure 3.7: Trace of a program which uses slt to compare register values.

5. Show a program trace, similar to Fig 3.7, for the following sequence of
instructions:

li $t0, -13

slt $v0, $0, $t0

slt $v1, $t0, $v0

3.4 Logical Instructions

Logical operations are the fundamental building blocks of computers. Complex
arithmetic operations are all implemented using logical operations. In this sec-
tion we discuss some of the common logical operations and their inclusion in
the MIPS architecture. As in the previous section we will be looking at Register
(R) format instructions only; other logical instruction formats will be covered
later in this chapter.

3.4.1 Logical Operations

Logical operations are operations for which each operand must have one of the
values: true or false. The result of a logical operation must also be true or
false. These values and operations are often called Boolean5.

The primary logical operations are AND, OR, NOT, and EXCLUSIVE OR.
We define each of these separately:

5Named for the British mathematician George Boole



3.4. LOGICAL INSTRUCTIONS 33

x y x AND y x OR y x XOR y NOT x
x ∧ y x ∨ y x⊕ y ∼ x

false false false false false true
false true false true true true
true false false true true false
true true true true false false

Figure 3.8: Definition of 4 logical operations

• The AND operation results in true only if both operands are true. We
use the notation ∧ for the AND operator (many logic textbooks use the ·
symbol).

• The OR operation results in false only if both operands are false. This
operation is sometimes called INCLUSIVE OR, to distinguish it from
EXCLUSIVE OR. We use the notation ∨ for the OR operator (many
logic textbooks use the + symbol).

• The EXCLUSIVE OR operation (XOR) results in true only if the two
operands are different. It is called ’exclusive’ because it is similar to
INCLUSIVE OR but excludes the case where both operands are true from
those having a true result. We use the notation ⊕ for the EXCLUSIVE
OR operator.

• The NOT operation has only one operand (i.e. it is a unary operation).
Its result is the complement of its operand. We use the notation ∼ for
the NOT operator (many logic textbooks use x′ or x to designate NOT
x). For example, ∼ true is false and ∼ false is true .

These definitions are summarized in Fig 3.8.6 In common English usage, we
often use ’or’ to mean EXCLUSIVE OR: “Tonight I will go to the movies OR
do my homework”, implying that both will not occur. To express the meaning
of INCLUSIVE OR, we sometimes use a slash as in: “For spring break I am
going to Clearwater and/or Ft Lauderdale”, meaning that both destinations are
a possibility.

Having defined some fundamental logical operations, we can now form ex-
pressions using these operations. An example of a logical expression is:
true∧ (false∨ true). This expression evaluates to true because the subexpres-
sion in parentheses evaluates to true, and we are left with true∧ true, which is
true. Examples of other expressions are shown in Fig 3.9 in which parentheses
are used to specify the order in which the operations are applied.

A logical (or boolean) identity is an expression which may involve logical
variables which is always true, regardless of the values of the variables. Some
examples of identities are shown in Fig 3.10.

6The not instruction is actually a pseudo-op which uses a NOR operation, which will be
covered in chapter 4



34 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

Logical expression Value
true ∨ (true ∧ false) true
false ∨ (true ∧ false) false
(false ∨ true)⊕ (true ∧ true) false
∼ ((false ∨ true)⊕ (true ∧ true)) true

Figure 3.9: Examples of logical expressions

x ∨ false = x x ∧ true = x x ∨ true = true
x ∧ false = false x∨ ∼ x = true x∧ ∼ x = false
x⊕ false = x x⊕ true =∼ x x⊕ x = false
x⊕ ∼ x = true (x ⊕ y)⊕ z = x⊕ (y ⊕ z) y ⊕ x⊕ y = x
∼ (x ∧ y) = (∼ x) ∨ (∼ y) ∼ (x ∨ y) = (∼ x) ∧ (∼ y) x⊕ y = y ⊕ x

Figure 3.10: Some logical identities

The first two identities in the last row of the table are known as deMorgan’s
Laws. The identity y⊕x⊕y = x is used extensively in private key cryptography.

Each of these identities can be proven with a simple truth table, in which
we show that the identity holds for every possible value of the variables. As an
example, Fig 3.11 shows a proof of deMorgan’s first law.

In computer architecture, or logic design, the binary value 0 correspoonds
to false, and 1 corresponds to true. In what follows we will make use of this.

3.4.2 MIPS Logical Instructions

The logical operations described in the preceding section are available as in-
structions in the MIPS architecture. In this section we will be covering only
the Register (R) format instructions. As with the arithmetic instructions, each
instruction has 3 operands the destination ($rd) register, and the two operand
($rs and $rt) registers. Fig 3.12 describes each of the logical instructions.

In these logic instructions (and in logic design in general) a 0 bit always
represents false, and a 1 bit always represents true.

Note that the first three instructions in Fig 3.12 have three operands, but the
not instruction has only two operands: the destination register and the source
register. All three of these operations are bitwise logical operations, which
means that each implies 32 logical operations, one for each bit in a register.

x y ∼ (x ∧ y) (∼ x) ∨ (∼ y)
false false true true
false true true true
true false true true
true true false false

Figure 3.11: A truth table comprising a proof of deMorgan’s first law



3.4. LOGICAL INSTRUCTIONS 35

Mnemonic Format Meaning
and and $rd, $rs, $rt Reg[$rd]← Reg[$rs] ∧Reg[$rt]
or or $rd, $rs, $rt Reg[$rd]← Reg[$rs] ∨Reg[$rt]
xor xor $rd, $rs, $rt Reg[$rd]← Reg[$rs]⊕Reg[$rt]
not not $rd, $rs Reg[$rd]←∼ Reg[$rs]

Figure 3.12: Four Logical instructions in the MIPS Architecture

$a0 = 00 00 00 05

$a1 = 00 00 00 0c

$v0 = ?? ?? ?? ??

and $v0,$a0,$a1

$v0 = 00 00 00 04

or $v0,$a0,$a1

$v0 = 00 00 00 0d

xor $v0,$a0,$a1

$v0 = 00 00 00 09

not $v0,$a0

$v0 = ff ff ff fa

Figure 3.13: Examples of Logical Instructions

Thus, for example, the and instruction will perform the logical AND operation
on corresponding bits of the operand registers, comprising a total of 32 AND
operations, with 32 results.

Some examples of logical instructions are shown in Fig 3.13, in which the
contents of registers are shown before and after an instruction is executed.

To understand Fig 3.13, we must view the values in binary. The and instruc-
tion will perform the logical AND operation on all 32 bits of those two registers,
putting the result into register $v0, as shown below (recalling that 0 represents
false, and 1 represents true):

0000 0000 0000 0000 0000 0000 0000 0101 = 0x00000005

AND 0000 0000 0000 0000 0000 0000 0000 1100 = 0x0000000c

----------------------------------------------------

0000 0000 0000 0000 0000 0000 0000 0100 = 0x00000004

The logical OR, XOR, and NOT operations from Fig 3.13 are shown below:



36 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

0000 0000 0000 0000 0000 0000 0000 0101 = 0x00000005

OR 0000 0000 0000 0000 0000 0000 0000 1100 = 0x0000000c

----------------------------------------------------

0000 0000 0000 0000 0000 0000 0000 1101 = 0x0000000d

0000 0000 0000 0000 0000 0000 0000 0101 = 0x00000005

XOR 0000 0000 0000 0000 0000 0000 0000 1100 = 0x0000000c

----------------------------------------------------

0000 0000 0000 0000 0000 0000 0000 1001 = 0x00000009

NOT 0000 0000 0000 0000 0000 0000 0000 0101 = 0x00000005

----------------------------------------------------

1111 1111 1111 1111 1111 1111 1111 1010 = 0xfffffffa

Masks

We conclude this section with some useful examples of logical instructions. The
first such example is called a mask. A masks can be used to change or sense
individual bits of a register, while leaving other bits unchanged (or unsensed).

$a0 = 00 ff ff ff

$a1 = fe dc ba 98

and $a1,$a0,$a1

$a1 = 00 dc ba 98

Figure 3.14: Example
of a mask (in register
$a0), to clear the high
order byte of a register
($a1)

The first example of a mask will use the and in-
struction. Recall from Fig 3.10 that x ∧ 0 = 0 and
that x ∧ 1 = x. Now suppose that we would like to
force the high order byte of a register to all zeros,
leaving the low order 3 bytes unchanged. We would
use a mask of 0x00ffffff. This is shown in Fig 3.14
in which it is assumed that the appropriate mask,
0x00ffffff, has been loaded into register $a0 (we will
see how this can be done in the next section), and
the high order byte of register $a1 is to be set to all
zeros.

We can also use a mask with an or instruction
to set certain bits to 1. In this case we rely on two
identities from Fig 3.10: x ∨ 0 = x and x ∨ 1 = 1.

Fig 3.15 shows an example where a negative number (-53) has been (somehow)
loaded into the low order two bytes of register $a1. In order for this to be a
valid 32-bit negative number, the high order two bytes must be set to all ones,
leaving the low order two bytes unchanged. This can be done with a mask of
0xffff0000 (we assume this value has been loaded into register $a0).

We can also use a mask with an xor instruction to complement certain bits.
In this case we rely on two identities from Fig 3.10: x⊕ 0 = x and x⊕ 1 =∼ x.

Fig 3.16 shows an example in which we are interested in complementing
alternate bits in a register. The value 0xff009876 has (somewhow) been loaded
into register $a1. In binary this is



3.4. LOGICAL INSTRUCTIONS 37

$a0 = ff ff 00 00

$a1 = 00 00 ff cb

or $a1,$a0,$a1

$a1 = ff ff ff cb

Figure 3.15: Example of a mask (in register $a0), to set the high order 2 bytes
of a register ($a1)

$a0 = 55 55 55 55

$a1 = ff 00 98 76

xor $a1,$a0,$a1

$a1 = aa 55 cd 23

Figure 3.16: Example of a mask (in register $a0), to complement alternate bits
in a register ($a1)

1111 1111 0000 0000 1001 1000 0111 0110.
If we complement alternate bits, beginning with the low order bit, we should
get
1010 1010 0101 0101 1100 1101 0010 0011 = 0xaa55cd23

This can be done with a single xor instruction, and is depicted in Fig 3.16.
Since 516 = 01012 we can use a mask of 0x55555555 in register $a0.

3.4.3 Exercises

1. Find the value of each of the following expressions:

(a) (true ∧ false)⊕ (true ∨ false)

(b) (true⊕ false)⊕ (true⊕ false)

(c) (true⊕ false)⊕ ∼ (true⊕ false)

2. Show a proof of deMorgan’s second law.

3. Show a proof of the associativity of XOR: (x⊕ y)⊕ z = x⊕ (y ⊕ z)

4. Show a proof of the identity: y ⊕ x⊕ y = x

(a) Using a truth table.

(b) Using other identities from Fig 3.10.

5. The identity k⊕m⊕k = m can be used to encrypt, and decrypt, a digital
message, m, using a secret key, k. Let a 0 bit represent false and a 1 bit
represent true.



38 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

Bob wishes to send an 8-bit message to Alice so that she and only she
will be able to read it. He will encrypt the message by applying a bitwise
XOR operation with a secret 8-bit key.

(a) Show how Bob can encrypt the message m = 01101100 by applying
the XOR operation with the secret key, k = 11010001. Show the
ciphertext which he sends to Alice.

(b) Show how Alice can decrypt the ciphertext to obtain the original
message, m, using the same secret key, k.

6. Show a diagram similar to Fig 3.13 For the following sequence of instruc-
tions. Assume that register $a0 contains 0x0011abcd and that register
$a1 contains 0xffab0123.

and $v0, $a0, $a0

and $v0, $a0, $a1

or $v0, $a0, $a1

xor $v0, $a0, $a1

not $v0, $a0

7. Show how the contents of $a0 can be copied into $v0 using:

(a) An and instruction

(b) An or instruction

(c) An xor instruction

8. Show an instruction which will put the value -1 into register $v0, using
only one (R format) instruction covered in this section.

9. In each of the following show the value of the mask in hexadecimal, and
the instruction which will accomplish the given task. Assume the bits in a
register are numbered, with the low order bit as bit 0, and the high order
bit as bit 31.

(a) Clear bits 0,1, and 31 of register $t0 using a mask in register $a1.

(b) Set bits 6, 7, 9, 12 of register $a0 using a mask in register $a1.

(c) Complement bits 0,1,2,3,28,29,30,31 of register $t0 using a mask in
register $t1.

10. An iPod control system uses a 32-bit word in register $a0 to determine,
and change, the state of the iPod according to the following table:

bit number state
0 playing
1 paused
2 searching
3 stopped

4..31 [unused]

Only one of these bits should be set at any time.

For example, if bit 2 is set, the iPod is searching.



3.5. SHIFT INSTRUCTIONS 39

1

0 01

0

0

1

1

1

1

0

0

0

0

1

1

?source

target

Figure 3.17: Diagram of a left shift instruction on an 8-bit register

(a) Registers $t0, $t1, $t2, $t3 are to be used as masks to control the 4
states. Show the values of these registers.

(b) Using your response to part (a), show an instruction which will put a
0 into register $v0 if the iPod is not in the searching state, and some
non-zero value into register $v0 if it is in the searching state.

(c) Show instruction(s) which will put the iPod into the stopped state,
regardless of the state it is currently in.

11. Assume that a crypto-system has a secret key in register $s0.

(a) Show an instruction which will encrypt the value in register $a0,
putting the result into register $v0.

(b) Show an instruction which will decrypt the value in register $v0,
putting the result into register $v1.

Hint: A previous exercise in this section described how this can be done.

3.5 Shift Instructions

3.5.1 Logical Shift Instructions

In this section we cover bit shifting which is the process of moving each bit in
a word to its right (or left) neighbor. We will ultimately distinguish between
logical shift operations and arithmetic shift operations (to be discussed in the
next section). With all shift operations there is a source register and a tar-
get register. The target register receives the result, and the source register is
unchanged.

Fig 3.17 shows a diagram of a left shift operation on an 8-bit register. Each
bit value is shifted to the left neighbor in the target register. Note that a zero
is shifted into the low order bit of the target register, and the high order bit of
the source register (shown as a ? in the diagram) does not appear in the target
register. In Fig 3.17 only 1 bit is shifted, but in the MIPS architecture several
bits can be shifted with one instruction.

The mnemonic for a logical left shift instruction is sll. As with all shift
instructions a shiftamount is used to specify the number of bits to be shifted.
The format of the instruction is:

sll $rd, $rt, shamt



40 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

$a0 = 00 00 00 05

$v0 = ?? ?? ?? ??

sll $v0,$a0,1

$v0 = 00 00 00 0a

sll $v0,$a0,24

$v0 = 05 00 00 00

sll $v0,$a0,32

$v0 = 00 00 00 00

Figure 3.18: Example showing three left shift operations; shift 1 bit position,
24 positions, and 32 positions.

1

00 1

0

0

1

1

1

1

0

0

0

0

1

1

? source

target

Figure 3.19: Diagram of a right shift instruction on an 8-bit register

$rd is the destination, or target, register. $rt is the source register, and shamt is
the shiftamount, or number of bits to be shifted. Examples of shift instructions
are shown in Fig 3.18.

A logical right shift goes in the other direction, as shown in Fig 3.19. A zero
is shifted in at the high order bit, and the low order bit of the source register
(shown with a ?) is ignored. The format of a logical right shift instructions is

srl $rd, $rt, shamt

Examples of logical right shift instructions are shown in Fig 3.20, in which we
shift by 1, 8, and 32 bits, respectively.

3.5.2 Arithmetic Shift Instructions

The logical shift instructions which we discussed above operate on unsigned
quantities (the high order bit is not considered a sign bit, and the quantities are
not treated as twos complement). When we are working with twos complement
values, we wish to preserve the sign, particularly when shifting right. For this
reason the architecture provides us with an arithmetic shift when shifting right:
sra. Figure 3.21 depicts this operation on a register containing a non-negative
value (the high order bit is 0).

Figure 3.22 depicts this operation on a register containing a negative value
(the high order bit is 1). In each case the high order bit of the source register
is copied to the high order bit of the target rigister, preserving the sign of the
number.



3.5. SHIFT INSTRUCTIONS 41

$t3 = f3 00 00 05

$v0 = ?? ?? ?? ??

srl $v0,$t3,1

$v0 = 79 80 00 02

srl $v0,$t3,8

$v0 = 00 f3 00 00

srl $v0,$t3,32

$v0 = 00 00 00 00

Figure 3.20: Example showing three right shift instructions; shift 1 bit position,
8 positions, and 32 positions.

0

0 0

0

0

1

1

1

1

0

0

0

0

1

1

? source

target

Figure 3.21: Diagram of an arithmetic right shift instruction on an 8-bit register.
The source register is not negative.

1

1 1

0

0

1

1

1

1

0

0

0

0

1

1

? source

target

Figure 3.22: Diagram of an arithmetic right shift instruction on an 8-bit register.
The source register is negative.



42 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

The format of an arithmetic right shift instruction is:
sra $rd, $rt, shamt

3.5.3 Common Applications of Shift Instrucrtions

Appending zeros at the end of a decimal number is the same as multiplying that
number by a power of 10:

123000 = 123 · 103

Consequently shifting a binary value to the left, shifts in zeros from the right,
and is the same as multiplying the number by a power of 2:

1101 = 13

11010 = 2 * 13 = 26

110100 = 4 * 13 = 52

1101000 = 8 * 13 = 104

We frequently make use of this fact to obtain fast multiplication of a number
by a power of 2. To multiply the number in a register by 2n, shift it left n bit
positions:

sll $t3, $t3, 7 # $t3 = $t3 * 128

By similar reasoning, shifting right performs a division by a power of two
(recall we are working with whole numbers only):

00011010 = 26

00001101 = 26 / 2 = 13

00000110 = 26 / 4 = 6

00000011 = 26 / 8 = 3

The result of the shift provides the quotient only (no remainder). When
shifting right we may wish to use an arithmetic shift to preserve the sign of the
number7:

11110100 = -12

11111010 = -12 / 2 = -6

11111101 = -12 / 4 = -3

3.5.4 Exercises

1. Show a diagram similar to Fig 3.18 for the following sequence of instruc-
tions. Assume that register $t2 initially contains 80a3001f16 and that
register $t3 initially contains ffffff0b16.

7Caution: When shifting a negative number right, we get a valid division by a power of 2
only if no ones are shifted out!



3.6. IMMEDIATE INSTRUCTIONS 43

sll $v0, $t2, 4

sll $v0, $t2, 1

sll $t2, $t2, 3

srl $v0, $t2, 7

sra $v0, $t3, 3

2. In each case, show an instruction which will accomplish the given task:

(a) Multiply the contents of register $a0 by 2, leaving the result in reg-
ister $t0.

(b) Multiply the contents of register $a3 by 128, leaving the result in
register $a3.

(c) Divide the (unsigned) contents of register $a3 by 1024, leaving the
result in register $v0.

3. (a) If register $t0 contains -1, what value is left in that register after the
following instruction has executed?
srl $t0, $t0, 31

Show your solution in hexadecimal.

(b) If register $t0 contains -1, what value is left in that register after the
following instruction has executed?
sll $t0, $t0, 31

Show your solution in hexadecimal.

4. Show a diagram similar to Fig 3.18 for the following sequence of instruc-
tions. Assume that register $a0 initially contains 0000001116 = 17 and
register $a1 initially contains ffffffef16 = -17.

srl $v0, $a0, 3 # divide 17/8, unsigned

sra $v0, $a1, 3 # divide -17/8, signed (?)

5. Does an arithmetic right shift always yield a correct quotient for a division
by a power of 2?

3.6 Immediate Instructions

All of the instructions that we have seen so far are classified as R (Register)
format instructions. These instructions lack the ability to:

• Put a constant value into a register (other than zero)

• Add a constant value to a register

• Perform a logical operation with a constant value

• Transfer a number from RAM into a register

• Transfer a number from a register into RAM

These tasks can be accomplished by Immediate (I) format instructions.



44 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

(a)

[label:] addi $rt, $rs, constant [# comment]

(b)

Reg[$rt]← Reg[$rs] + constant

(c)

addi $s0, $t3, 17 # $s0 = $t3 + 17

(d)

addi $t0, $0, -8 # $t0 = -8

Figure 3.23: Add Immediate Instruction: (a) Format (b) Meaning (c) Example,
which puts the sum of register $t3 and 17 into register $s0. (d) Example which
puts the value -8 in register $t0.

3.6.1 Add, Load, Move, and PsuedoOps

The first immediate instruction we will study is Add Immediate. The mnemonic
is addi, and its purpose is to add a register’s contents to a constant, and store
the result in a destination register. The constant is part of the instruction itself.
The format and meaning of an addi instruction is shown in Fig 3.23. The per-
mitted range of values for the constant, in hexadecimal, is 0x0000..0xffff.
This corresponds to (twos complement) decimal values of -32,768 through
32,767. This range applies not only to the addi instruction, but to all im-
mediate format instructions.

Note that there is no immediate instruction for subtraction, but this is not
a problem, since we can use a negative constant with an addi instruction. For
example, to decrement the value in register $a0 by 3, we could use:

addi $a0, $a0, -3 # decrement reg $a0 by 3

This works because the hardware extends the sign of the immediate field in the
addi instruction to a full 32 bits.

Pseudo operations

Before introducing any more immediate format instructions, we digress briefly
to introduce pseudo operations. Strictly speaking, these are not part of the
MIPS instruction set architecture; however, they are permitted by the assem-
bler, which translates them into actual instructions. A simple example of a
pseudo-op is load immediate, for which the mnemonic is li. The purpose of
li is simply to load a constant value into a register. The word load generally



3.6. IMMEDIATE INSTRUCTIONS 45

(a)

[label:] li $rd, constant [# comment]

(b)

Reg[$rd]← constant

(c)

li $v0, 1023 # $v0 = 1023

(d)

li $t0, -1 # $t0 = -1

(e)

addi $t0, $0, -1 # $t0 = 0 + -1

Figure 3.24: Load Immediate Instruction: (a) Format (b) Meaning (c) Example,
which puts 1023 into register $v0 (d) Example which puts -1 in register $t0 (e)
addi instruction which is equivalent to example (d)

means to move data into a register, overwriting the data previously stored in
the register. The format and meaning of an li pseudo-op is shown in Fig 3.24.

The assembler will translate an li instruction into an equivalent addi in-
struction, which makes use of the fact that register $0 always contains 0, as
shown in part(e) of Fig 3.24.

Another useful pseudo-op is the move instruction, which will copy the con-
tents of one register into another register. The format and meaning of the move

instruction are shown in Fig 3.25. Notice that the target, or destination, for
the move is the first operand, and the source, or origin, is the second operand.
Fig 3.25 also shows that the assembler will translate a move pseudo-op to an
actual MIPS instruction, such as an add instruction.

At this point we are able to write a somewhat meaningful program. Suppose
we wish to do the following calculation, leaving the result in register $v0:

(2456 + 723 - 412) * 64

li $v0, 2456 # $v0 = 2456

addi $v0, $v0, 723 # $v0 = 2456 + 723

addi $v0, $v0, -412 # $v0 = 2456 + 723 - 412

sll $v0, $v0, 6 # $v0 = (2456 + 732 - 412) * 64

Note that these instructions are executed sequentially, beginning with the li

instruction and ending with the sll instruction. Figure 3.26 shows a trace of
the execution of this short program. At this point it would be advisable to run



46 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

(a)

[label:] move $rd, $rs [# comment]

(b)

Reg[$rd]← Reg[$rs]

(c)

move $v0, $a0 # $v0 = $a0

(d)

add $v0, $a0, $0 # $v0 = $a0 + 0

Figure 3.25: Move Instruction: (a) Format (b) Meaning (c) Example, which
copies the value from register $a0 into register $v0 (d) An add instruction which
is equivalent to example (c)

a small program such as this on a real computer. To do that you will need
the software package known as MARS which is available free on the internet.
Instructions on downloading, installing, and using MARS are in the Appendix.

3.6.2 Logical Immediate Instructions

The MIPS architecture also provides us with logical instructions in the Immedi-
ate format. The operations are AND, OR, and XOR; the formats are shown in
Fig 3.27. In all cases these instructions perform a bit-wise operation using the
$rs register and the constant as operands (the constant is limited to 16 bits, but
is zero-extended to a full 32-bit word for purposes of executing the instruction).

Fig 3.28 shows a trace of the execution of the following instructions:

ori $t0, $0, 23 # $t0 = $t0 OR 23

andi $v0, $t0, 42 # $v0 = $t0 AND 42

xori $v1, $t0, 42 # $v1 = $t0 XOR 42

In Fig 3.28, note that 23 = 0000001716 and 42 = 0000002a16.
As a further example, we show below a program to clear the low order 16

bits of register $a0, and complement the high order 16 bits of register $a0.

# Program to clear the low order 16 bits of register $a0

# and complement the high order 16 bits of register $a0.

addi $t0, $0, 0xffff # mask: $t0 = 0x0000 ffff

sll $t0, $t0, 16 # mask: $t0 = 0xffff 0000

and $a0, $a0, $t0 # clear low order 16 bits

xor $a0, $a0, $t0 # complement high order 16 bits



3.6. IMMEDIATE INSTRUCTIONS 47

$v0 = ?? ?? ?? ??

li $v0,2456

$v0 = 00 00 09 98

addi $v0,$v0,723

$v0 = 00 00 0c 6b

addi $v0,$v0,-412

$v0 = 00 00 0a cf

sll $v0,$v0,6

$v0 = 00 02 b3 c0

Figure 3.26: Trace of a program which calculates (2456 + 723 - 412) * 64

= 177,088 = 2b3c016

Mnemonic Format Meaning
andi andi $rt, $rs, constant Reg[$rt]← Reg[$rs] ∧ constant
ori ori $rt, $rs, constant Reg[$rt]← Reg[$rs] ∨ constant
xori xori $rt, $rs, constant Reg[$rt]← Reg[$rs]⊕ constant

Figure 3.27: Three logical immediate instructions in the MIPS Architecture

$t0 = ?? ?? ?? ??

$v0 = ?? ?? ?? ??

$v1 = ?? ?? ?? ??

ori $t0,$0,23

$t0 = 00 00 00 17

andi $v0,$t0,42

$v0 = 00 00 00 02

xori $v1,$t0,42

$v1 = 00 00 00 3d

Figure 3.28: Examples of logical instructions, immediate format



48 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

$a0 = 12 34 56 78

$t0 = ?? ?? ?? ??

addi $t0,$0,0xffff

$t0 = 00 00 ff ff

sll $t0,$t0,16

$t0 = ff ff 00 00

and $a0,$a0,$t0

$a0 = 12 34 00 00

xor $a0,$a0,$t0

$a0 = ed cb 00 00

Figure 3.29: Example to clear the low order 16 bits of register $a0, and com-
plement the high order 16 bits of register $a0.

Assuming that register $a0 initially contains 0x12345678, Fig 3.29 shows a trace
of this program.

3.6.3 Load Upper Immediate

As we will see in chapter 4, there is a significant restriction on the size of
an immediate operand: it must fit in a half word, i.e. 16 bits.8 For two’s
complement representation, the largest value would be 215 − 1 = 32, 767, and
the smallest value would be −215 = −32, 768. For operations which expect an
unsigned immediate value, the largest possible value would be 0xffff = 65,535.

If we wish to load a constant that is not in this range, we must use the lui

(load upper immediate) instruction. This instruction will load a 16-bit value
into the high-order half of a register. It will also clear the low-order half of the
register, as shown in Fig 3.30.

Note that the rs field is not used by this instruction.

As an example, we show a sequence of instructions which will put a large
constant, 65,539 = 0x00010003, into register $t3:

lui $t3, 0x0001 # $t3 = 0x00010000

ori $t3, $t3, 0x0003 # $t3 = 0x00010003

In this example we have used the ori (or immediate) instruction to get the
desired result in register $t3. We will see extensive use of the lui instruction
in chapter 4.

8Some assemblers, such as MARS, will permit a 32-bit operand as a pseudo-operation.



3.6. IMMEDIATE INSTRUCTIONS 49

(a)

[label:] lui $rt, imm [# comment]

(b)

Reg[$rt]16..31 ← imm
Reg[$rt]0..15 ← 0

(c)

lui $s0, 0x3001

Figure 3.30: Load Upper Immediate Statement: (a) Format. The imm field is 16
bits. (b) Meaning (c) Example, which loads the value 3001000016 into register
$s0.

3.6.4 Exercises

1. Show a diagram similar to Fig 3.20 for the following sequence of instruc-
tions:

li $v0, 23

li $a0, 17

addi $v0, $a0, 9

move $v1, $v0

srl $v0, $a0, 3

2. (a) Show a sequence of instructions which will perform the calculation
shown below, leaving the result in register $v0.
(127 + 43) / 8

(b) Show a sequence of instructions which will perform the calculation
shown below, leaving the result in register $v0. Use the t registers,
if necessary, to store intermediate results.
(127 + 59) * 4 + (700 - 659) * 16

3. The valid range of values for a constant in an Immediate instruction is
-32,768..32,767. This is the same as -32K..32K-1. How many bits are used
for the constant in an immediate instruction?

4. Show a trace of the following program:

li $t0, 75

li $t1, 0x23

addi $v0, $t0, 23

ori $v0, $t1, 0xf070



50 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

andi $v1, $t1, 7

xori $v1, $t0, 7

move $a0, $v1

5. Show a program which will clear bits 0, 2, 3, and 31 of register $a0, leaving
the other bits unchanged. Bit 0 is the low order bit of the register. You
may use the t registers for temporary storage if necessary.

6. Show a program which will set bits 10, 11, 12, and 29 of register $a0,
leaving the other bits unchanged. Bit 0 is the low order bit of the register.
You may use the t registers for temporary storage if necessary.

7. Show a single MIPS statement which will complement bits 4, 5, and 7 of
register $a0, leaving the other bits unchanged. Bit 0 is the low order bit
of the register.

8. An iPod control system uses a 32-bit word in register $a0 to determine,
and change, the state of the iPod according to the following table:

bit number state
0 playing
1 paused
2 searching
3 stopped

4..31 [used for other purposes]

The iPod can be in one state only at any time. For example, if bit 2 is
set, the iPod is searching.

(a) Show the statement(s) which can be used to put the iPod into the
stopped state. Do not change bits 4 through 31 of register $a0.

(b) Show the statement(s) which will put 0 into register $v0 if the iPod
is currently in the searching state and some non-zero value into
register $v0 if the iPod is in some other state.

9. Show a sequence of instructions which will load the value 100,000 into
register $t0.

10. Show the contents of register $s1 and $s2, in hexadecimal, after the fol-
lowing instructions have executed:

lui $s1, 25

li $s2, 18

lui $s2, 0xfffb # -5

3.7 Memory Reference Instructions

All the instructions we have dealt with thus far have involved operations on
register contents, and possibly constants in the instructions. No attempt has



3.7. MEMORY REFERENCE INSTRUCTIONS 51

been made to access data in main memory (RAM), yet this is typically where
most data will reside during program execution.

There are two fundamental operations for memory reference:

• Transferring data from a full word in memory into a CPU register. This
is called a load operation.

• Transferring data from a CPU register into a full word of memory. This
is called a store operation.

The instructions which accomplish the load and store operations are, tech-
nically, Immediate format instructions. The reason for this will be more clear
in the section on explicit memory addresses.

3.7.1 Symbolic Memory Addresses

Assembler directives

To include data in our programs we will need a few assembler directives. An
assembler directive does not correspond to any machine language instruction,
but provides the assembler with information which it will need to perform the
translation to machine language.

The assembler directives which we need here are .text and .data:

• .text - This directive tells the assembler that all subsequent statements
are to be translated as instructions. This is the default.

• .data - This directive tells the assembler that all subsequent statements
are to be translated as data, and stored separately in the machine language
program.

Note that directives begin with a decimal point, to distinguish them from in-
structions. There may be several .text and .data directives in a program, but
in the resulting machine language program, all the instructions are stored in one
contiguous area of memory and all the data are stored in a separate contiguous
area of memory.

We will tend to put our instructions first, and data last, though many pro-
grammers use the opposite convention.

In the data area values can be included in the format:

[label:] type value(s) [# comment]

As usual, the comment is optional and is ignored by the assembler. The label
is also optional, but may be used by an instruction to access that particular
data value. The type is a directive which specifies whether the data is a whole
number, a floating point number, a string of characters, etc. To specify a whole
number, the type should be .word; this corresponds to an int in java or C++
.9 The values should be separated with commas.

9C++ does not specify the particular storage used for its data types, and may vary from
one platform to another. Java is a portable language.



52 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

1001000016 00 00 00 07 ff ff ff ff 00 00 00 09 00 00 00 0a
1001001016 00 00 00 ff 00 00 00 0b ?? ?? ?? ?? ?? ?? ?? ??

Figure 3.31: Six full words of data in contiguous memory locations, beginning
at memory address 1001000016

As an example we examine a program which has 6 full word whole numbers
as data values:

.data

x: .word 7

y: .word -1

z: .word 9, 10, 0xff # three words

.word 11 # 11 follows the 0xff in memory

Fig 3.31 shows these values in the computer’s memory after being translated
to machine language. Note that the memory address as well as the memory
values are shown (this kind of diagram is often called a memory dump). The
data memory area begins at address 0x1001000 because this is the location used
by our assembler/simulator, MARS. The address and values are all shown in
hexadecimal. Recall that each full word consists of four bytes, and the memory
is byte adressable. Thus, the second data word is at address 0x10010004, and
the fifth data word is at address 0x10010010. In Fig 3.31 the words at addresses
0x10010018 and 0x1001001c are shown as garbage because our program has not
initialized them. 10

Load and store

Now that we have data in our program we can utilize that data in our calcu-
lations. The relevant instructions are lw (load word), to load a full word from
memory into a register, and sw (store word), to store a register’s value into a
full word of memory. The load word (lw) instruction and store word (sw) in-
structions are depicted in Figures 3.32 and 3.33, respectively. Note that the lw

instruction will ’clobber’ the existing value in the register being loaded, and the
sw instruction will clobber the memory word into which data is being stored.11

The format and meaning of these two instructions is shown in Fig 3.34. Note
that the memory location is specified by a label, which should match the label
of a word in the .data section of the program.

An example of a program which adds two values from memory, and stores
the result into memory is shown below:

.text

lw $t0, x

10In actual practice, MARS will initialize all such data memory to zeros, but we prefer not
to rely on this.

11We use the word clobber to imply that the existing value is overwritten and no longer
available.



3.7. MEMORY REFERENCE INSTRUCTIONS 53

100100016

$reg =

Figure 3.32: The load word (lw) instruction copies a full word from memory
into a register

100100016

$reg =

Figure 3.33: The store word (sw) instruction copies a full word from a register
into memory

lw $t1, y

add $v0, $t1, $t0 # $v0 = x + y

sw $v0, result # result = x + y

.data

x: .word 17

y: .word 3

result: .word 0 # store sum here

When this program executes, the value of x (17 = 1116) is loaded from
memory into register $t0, then the value of y (3) is loaded from memory into
register $t1. The add instruction puts the sum of those values (20 = 1416) into
register $v0, which is then stored into the memory location labeled result. A
trace of the execution of this program is shown in Fig 3.35 in which all data
values are shown in hexadecimal.

Some computer architectures permit arithmetic and/or logical operations
directly on memory locations. However, in the MIPS architecture all operands
must be loaded into registers.

We conclude this section with an example to increment the value in a mem-
ory word, modulo 256. This means that the value will be reset to 0 when
incrementing 255. We do this by using a mask to clear the high order 24 bits.

mnemonic format meaning example
lw lw $rt, label reg[$rt]← memory[label] lw $t3, x
sw sw $rt, label memory[label]← reg[$rt] sw $v0, result

Figure 3.34: Format of the load word (lw) and store word (sw) instructions,
using symbolic memory addresses (i.e. labels)



54 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

1001000016 00 00 00 11 00 00 00 03 00 00 00 00 ?? ?? ?? ??

$t0 = ?? ?? ?? ??

$t1 = ?? ?? ?? ??

$v0 = ?? ?? ?? ??

lw $t0,x

$t0 = 00 00 00 11

lw $t1,y

$t1 = 00 00 00 03

add $v0,$t0,$t1

$v0 = 00 00 00 14

sw $v0,result

1001000016 00 00 00 11 00 00 00 03 00 00 00 14 ?? ?? ?? ??

Figure 3.35: Trace of a program which stores the sum of two values in memory
(x and y) into a third memory location (result)

The program is shown below:

.text

lw $t0, x # mod 256 counter

addi $t0, $t0, 1 # increment by 1

andi $t0, $t0, 0xff # clear high order 24 bits

sw $t0, x # store back to memory

.data

x: .word 33

In this program we load the value of x into register $t0, add 1, and then we use
a mask of 00000000ff16 to clear the high order 24 bits, leaving the low order
8 bits unchanged. We then store the result, 34, back into the memory location
labeled x. Fig 3.36 shows a trace of the execution of this program.

If the value of x had been 255 instead of 33, the result would be 0, as shown
in Fig 3.37. A modulo 256 counter resets to 0 when incrementing 255.

We can also add or subtract a fixed number of bytes to a symbolic address
in assembly language. For example, if we have a label, x, on a data value, the
expression x+12 represents the address 12 bytes (or 3 words) larger; i.e. the
address of data 12 bytes away from x. In the example below, we store the
difference of the two words beginning at start into the location named diff.

.text



3.7. MEMORY REFERENCE INSTRUCTIONS 55

1001000016 00 00 00 21 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

$t0 = ?? ?? ?? ??

lw $t0,x

$t0 = 00 00 00 21

addi $t0,$t0,1

$t0 = 00 00 00 22

andi $t0,$t0,0xff

$t0 = 00 00 00 22

sw $t0, x

1001000016 00 00 00 22 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

Figure 3.36: Trace of a program which increments a memory value, 33, modulo
256

1001000016 00 00 00 ff ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

$t0 = ?? ?? ?? ??

lw $t0,x

$t0 = 00 00 00 ff

addi $t0,$t0,1

$t0 = 00 00 01 00

andi $t0,$t0,0xff

$t0 = 00 00 00 00

sw $t0, x

1001000016 00 00 00 00 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

Figure 3.37: Trace of a program which increments a memory value, 255, modulo
256



56 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

mnemonic format meaning example
lw lw $rt, imm($rs) reg[$rt]← memory[$rs + imm] lw $t3, 20($a0)
sw sw $rt, imm($rs) memory[$rs + imm]← reg[$rt] sw $v0, -12($t3)

Figure 3.38: Format of the load word (lw) and store word (sw) instructions,
using explicit memory addresses

lw $t0, start

lw $t1, start+4 # next word after start

sub $t1, $t0, $t1 # difference

sw $t1, diff

.data

start: .word 23

.word 17

diff: .word 0 # should be 6 when done

3.7.2 Non-symbolic Load and Store

We have seen how the load and store instructions can use labels to refer to
memory locations. However, it is also possible to refer to memory locations
without using labels; instead we use explicit memory addresses, stored in regis-
ters. This form of memory reference, which is known as explicit addressing, will
be essential when we start using arrays of data in memory. It is also important
in understanding machine language.12

The lw and sw instructions are Immediate (I) format instructions. The
format of lw and sw, using explicit memory addresses is shown in Fig 3.38,
in which the immmediate field is shown as imm. The address of the desired
memory word is calculated by adding the immediate value to the contents of
the $rs register. The immediate value is often referred to as a displacement
because it displaces the desired address by a fixed amount (positive or negative)
from the address in the $rs register. In the first example, the memory address
would be 20 bytes (5 words) beyond the address in regster $a0. The second
example shows that the immediate field may be negative; the word of memory
referred to is 12 bytes (3 words) prior to the address in register $t3.

As an example of a memory reference instruction with explicit addressing,
we show below a program which will obtain the memory word whose address is
in register $a0, negate it, and store it back into the succeeding word of memory.
For the moment we ignore how the memory address of the desired word is placed
into register $a0 initially.

.text

lw $t0, 0($a0) # load word whose address is in $a0

sub $t0, $0, $t0 # $t0 = 0 - $t0

12A memory address is called a pointer in C++ or a reference in java.



3.7. MEMORY REFERENCE INSTRUCTIONS 57

1001002016 00 00 00 23 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

$a0 = 10 01 00 20

$t0 = ?? ?? ?? ??

lw $t0,0($a0)

$t0 = 00 00 00 23

sub $t0,$0,$t0

$t0 = ff ff ff dd

sw $t0,4($a0)

1001002016 00 00 00 23 ff ff ff dd ?? ?? ?? ?? ?? ?? ?? ??

Figure 3.39: Trace of a program which stores the negation of the memory word
whose address is in register $a0 in the next adjacent memory location

mnemonic format meaning example
la la $rd, label reg[$rd]← label la $t3, x

Figure 3.40: Format of the load address (la) instruction, with an example

sw $t0, 4($a0) # store into next word of memory

Note that the memory word adjacent to the one whose address is in register $a0
is obtained with a displacement of 4, because there are 4 bytes in a word. If we
assume that memory location 1001002016 contains the value 0000002316 = 35,
and that register $a0 contains 1001002016, then Fig 3.39 shows an execution
trace of this program.

Load Address

In the previous example we assumed that register $a0 contained the desired
memory address. We now show how a memory address can be placed in a
register. This is done with the load address (la) instruction. At this point we
consider only the symbolic form of this instruction (it also has an explicit form,
which is rarely used). The la instruction is actually a pseudo-operation, and in
chapter 4 we will see how it is translated to machine language. The format of
the la instruction is shown in Fig 3.40.

In this figure, compare the meaning of the load address instruction with the
meaning of the load word instruction (in Fig 3.34). Instead of putting the value
of the memory word into the destination register, it puts the address of the
memory word into the destination register.

As an example we show below a program which will copy the value of the
memory word labeled source to the next three adjacent words of memory (which
have no labels).



58 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

1001000016 00 00 00 4b 00 00 00 00 00 00 00 00 00 00 00 00

$t0 = ?? ?? ?? ??

$t1 = ?? ?? ?? ??

la $t0,source

$t0 = 10 01 00 00

lw $t1,0($t0)

$t1 = 00 00 00 4b

sw $t1,4($t0)

1001000016 00 00 00 4b 00 00 00 4b 00 00 00 00 00 00 00 00

sw $t1,8($t0)

1001000016 00 00 00 4b 00 00 00 4b 00 00 00 4b 00 00 00 00

sw $t1,12($t0)

1001000016 00 00 00 4b 00 00 00 4b 00 00 00 4b 00 00 00 4b

Figure 3.41: Trace of a program which copies the memory word labeled source
to the next three adjacent memory words

.text

la $t0, source # address of source

lw $t1, 0($t0) # value of source

sw $t1, 4($t0) # store into source + 4

sw $t1, 8($t0) # store into source + 8

sw $t1, 12($t0) # store into source + 12

.data

source: .word 75

.word 0,0,0

An execution trace of this program is shown in Fig 3.41. Note that when
execution finishes, all four words of memory store the same value (4b16 = 75).13

3.7.3 Exercises

1. Show an execution trace of the following program:

.text

13This program can be done without using the la instruction, by storing into label+4,
label+8, and label+12



3.7. MEMORY REFERENCE INSTRUCTIONS 59

lw $t0, x

lw $t1, y

sub $v0, $t0, $t1 # v0 = x - y

sw $v0, x # store result in x

sw $t0, y

.data

x: .word 0xff

y: .word 127

2. Show an execution trace of the following program:

.text

lw $t0, x

lw $t1, y

xor $v0, $t0, $t1 # v0 = x xor y

sw $v0, x # store result in x

sw $t0, y

.data

x: .word 127

y: .word 0xff

3. Show the contents of register $v0 after the program shown below has
executed:

.text

lw $v0, x

lw $v1, x+8

add $v0, $v1, $v0

.data

foo: .word 100, 50

.word 40

x: .word 12, 13

.word 4, 5

4. Given the data values shown below, write a MIPS program to store the
sum of the values labeled mary, jim, sue into the location labeled result.

.data

mary: .word 17

jim: .word -99

sue: .word 10

result: .word 0



60 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

5. Given the data values shown below, write a MIPS program to store the
sum of the 3 full-word values beginning at the location labeled junk into
the location labeled result (the result should be 23).

.data

junk: .word 17, 23

.word -17, 5

result: .word 0

6. Show an execution trace of the following program (when memory words are
changed, show the address, as well as the new value, both in hexadecimal):

.text

la $t0, first

la $t1, second

la $t2, first+8

lw $v0, 0($t0)

lw $v1, 0($t1)

lw $t3, 8($t0)

sw $t3, 8($t1)

.data

first: .word 7

second: .word 8

.word 9

.word 10

7. What value will be in register $v0 after the program shown below has
executed? What value will be stored in the full word of memory labeled
result?

.text

la $t0, x

addi $t0, $t0, 12

lw $t1, 0($t0)

lw $v0, 0($t0)

la $t2, result

sw $v0, 0($t2)

.data

x: .word 17

.word 1, 2, 3, 4

result: .word 0



3.8. TRANSFER OF CONTROL 61

8. Write a program which will add the 5 contiguous full words of memory
beginning with the word whose address is in register $a0, and leave the sum
in register $v0. (Assume register $a0 has been loaded with the appropriate
address.)

9. Write a program which will compute the number of data values in the
full words labeled array, leaving the result in register $v0. Use the data
section shown below. If the data values are changed, your program should
work without any changes to your code.
Hint: Find the difference between the addresses represented by the start
and end labels, then shift right to divide by 4.

.data

array: .word 12, 3, -9, 0, 0, 55, -44, 0, 99

end: .word 0

3.8 Transfer of Control

The assembly language programs that we have seen thus far execute sequentially
- each instruction is executed, exactly once, in turn beginning with the first
instruction of the program and ending with the last instruction.

There are principally two main reasons that we may wish execution to pro-
ceed in some other way:

• We may wish execution to take one of two possible paths, depending on the
current state of the program (i.e. the values currently stored in registers).
This is called a selection structure and is usually implemented with an if

statement in high level programming languages.

• We may wish an instruction, or group of instructions, to be executed
repeatedly, until some condition is satisfied. This is called an iteration
structure or loop and is usually implemented with a while, for, or do

while statement in high level programming languages.

In assembly language both of these control structures can be implemented
with a transfer of control, which departs from the usual sequential execution of
the statements in a program. There are two kinds of transfer of control:

• A conditional transfer is one in which the transfer may or not take place;
it depends on the current state of the program. A conditional transfer is
implemented in assembly language with a branch instruction.

• An unconditional transfer is one in which the transfer must take place; it
does not depend on the current state of the program. An unconditional
transfer is implemented in assembly language with a jump instruction.



62 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

Program

===============
===============
===============
===============
===============
===============
===============
===============
===============
===============
===============
===============
===============
===============
===============
===============
===============

Figure 3.42: Diagram comparing a selection structure (left) with an iteration
structure (right)

mnemonic format meaning example
beq beq $rs, $rt, label → label if reg[$rs] = reg[$rt] beq $t2, $a0, done
bne bne $rs, $rt, label → label if reg[$rs] 6= reg[$rt] bne $t2, $0, lp
blt blt $rs, $rt, label → label if reg[$rs] < reg[$rt] blt $t2, $t3, less
bgt bgt $rs, $rt, label → label if reg[$rs] > reg[$rt] bgt $t0, $a0, big
ble ble $rs, $rt, label → label if reg[$rs] ≤ reg[$rt] ble $t2, $a0, start
bge bge $rs, $rt, label → label if reg[$rs] ≥ reg[$rt] bge $t0, $0, done

Figure 3.43: Format and meaning of the branch instructions, with examples

In assembly language a selection structure is implemented with a forward
transfer (i.e. branch) to a subsequent (higher memory address) instruction. An
iteration structure, or loop, is implemented with a backward transfer (either
branch or jump) to a previous (lower memory address) instruction. This is
depicted in Fig 3.42. This is a somewhat naive view of selection structures, to
be clarified later in this chapter.

3.8.1 Conditional Transfer of Control: Branch

A conditional transfer of control is one which may or not take place, depending
on the program state (i.e. contents of registers) during execution. In MIPS
assembly language a conditional transfer of control is implemented with a branch
instruction. The branch instructions are summarized in Fig 3.43. Each of these
instructions will compare two registers and branch to the instruction with the
specified label if the specified condition is satisfied. In each case there is a target
for the branch, which must be a valid label on some instruction in the program.

To be accurate, only the beq and bne branch instructions are true MIPS
instructions. The others are pseudo-ops; we will see how these are implemented



3.8. TRANSFER OF CONTROL 63

mnemonic format meaning example
j j label → label j done

Figure 3.44: Format and meaning of the jump instruction, with example

in chapter 4.
Examples of programs with branch instructions will be given in the sections

on Selection Structures and Iteration Structures.

3.8.2 Unconditional Transfer of Control: Jump

An unconditional transfer of control is one which takes place regardless of the
current state of the program; no comparisons are done. In the MIPS archi-
tecture an unconditional transfer of control is implemented with a Jump (j)
statement. The Jump statement is actually a J Format instruction (more on
this in chapter 4). In assembly language it simply requires a label for the target,
i.e. the statement to which control is transferred. The format and meaning of
the Jump statement is shown in Fig 3.44.

3.8.3 Selection Structures

In this section we will describe how to implement selection structures in assem-
bly language. These correspond to if statements in high level programming
languages; there are two types of selection structures with which we are con-
cerned:

• A one-way selection is a selection structure in which a block of statements
is either executed or not executed. A one-way selection corresponds to an
if statement without an else part.

• A two-way selection is a selection structure in which exactly one of two
separate blocks of statements is executed. A two-way selection corresponds
to an if statement with an else part.

One-way selection structures

A one-way selection structure corresponds to an if statement with no else part
in a high level programming language. In assembly language it is implemented
with a (conditional) branch to a subsequent statement, as depicted in Fig 3.45.

In that diagram, and subsequent diagrams, a dashed arrow will represent a
(conditional) branch, and a solid arrow will represent an (unconditional) jump.

An example of a program with a one-way selection is shown below. It will
move the value from either register $a0 or register $a1, which ever is smaller,
into register $v0, and also store it to the memory location labeled result.

.text

move $v0, $a0 # assume $a0 is smaller



64 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

Program

===============
branch to label?

===============
===============
===============
===============
===============
===============
===============
===============
===============
===============
===============
===============

label==========
===============
===============

Figure 3.45: Diagram of a one-way selection structure

blt $a0, $a1, done # If $a0 is smaller, branch to done

# If not, fall thru to next instr

move $v0, $a1 # $a1 is smaller (or equal)

done:

sw $v0, result

.data

result: .word 0

The logic is as follows: We move the value in register $a0 into register $v0,
whether it is the smaller or not. We then compare the registers $a0 and $a1;
if register $a0 is smaller, we do not wish to change register $v0, so we branch
around the second move instruction, to the sw instruction. In this program
we could have put the label done on the same line with the sw instruction;
normally we will put a label on a line by itself, for clarity, with the intention
that it labels the following instruction. An execution trace of this program is
shown in Fig 3.46. In that example, register $a0 initially contains -25, which is
the smaller value, and register $a1 initially contains 3.

Two-way selection structures

A two-way selection structure corresponds to an if statement with an else

part in a high level programming language. Exactly one of two separate blocks
of statements is to be executed, depending on the program state. In assem-
bly language it is implemented with a (conditional) branch instruction and an
(unconditional) jump instruction, as depicted in Fig 3.47.

The conditional branch to the else part is executed when the if condition
is false. This is the case where we wish to execute the else part and not the
if part. In the case where we wish to execute the if part, the branch is not



3.8. TRANSFER OF CONTROL 65

1001000016 00 00 00 00 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

$a0 = ff ff ff e7

$a1 = 00 00 00 03

$v0 = ?? ?? ?? ??

move $v0,$a0

$v0 = ff ff ff e7

sw $v0,result

1001000016 ff ff ff e7 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

Figure 3.46: Trace of a program which loads the smaller of registers $a0 and $a1
into register $v0, and also stores the smaller into the memory location labeled
result

Program

===============
===============

branch to else part?

if part
===============
===============
===============
===============

end if part

jump to end

else part
===============
===============
===============
===============
===============

end else part
===============
===============
===============

Figure 3.47: Diagram of a two-way selection structure



66 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

taken and execution falls through into the if part; at the conclusion of the if

part there is an (unconditional) jump to avoid execution of the else part.
As an example, we wish to code the following java statement in assembly

language:14

if ($a0 > 6)

{ $v0 = 0;

$a1++;

}

else

{ $v0 = $a0;

$a1 = 0;

}

The assembly language version of this statement uses register $t0 for tem-
porary storage:

li $t0, 6

ble $a0, $t0, else # branch if $a0 is NOT greater than 6

li $v0, 0 # $v0 = 0

addi $a1, $a1, 1 # $a1++

j done

else:

move $v0, $a0 # $v0 = $a0

li $a1, 0 # $a1 = 0

done:

We load the constant 6 into the temporary register $t0 because the condi-
tional branch compares the contents of two registers. Note that the condition
$a0 > 6 is implemented with the logical complement: branch if less or equal
(ble).

We show a few execution traces for this program. In both of these register
$a1 initially contains the value 15. Fig 3.48 shows an execution trace in which
register $a0 initially contains 6 (the conditioon is false because $a0 is not strictly
greater than 6). Fig 3.49 shows an execution trace in in which register $a0 is
initially 7 (the condition is true).

3.8.4 Iteration Structures - Loops

Without loops, computers are essentially powerless. Loops permit us to write
short simple programs which can do extensive computations. High level pro-
gramming languages such as Java and C++ use the while (pretest loop) and
do while (posttest loop) statements to implement loops.15 In this section we

14In java examples such as this, the use of registers correspond to java variables declared as
int.

15High level languages also use for statements to implement loops. Every for statement
has an equivalent while statement.



3.8. TRANSFER OF CONTROL 67

$a0 = 00 00 00 06

$a1 = 00 00 00 0f

$v0 = ?? ?? ?? ??

li $t0,6

$t0 = 00 00 00 06

ble $a0,$t0,else

move $v0,$a0

$v0 = 00 00 00 06

li $a1,0

$a1 = 00 00 00 00

Figure 3.48: Trace of a program which implements a two-way selection; only
the else part is executed.

$a0 = 00 00 00 07

$a1 = 00 00 00 0f

$v0 = ?? ?? ?? ??

li $t0,6

$t0 = 00 00 00 06

ble $a0,$t0,else

li $v0,0

$v0 = 00 00 00 00

addi $a1,$a1,1

$a1 = 00 00 00 10

j done

Figure 3.49: Trace of a program which implements a two-way selection; only
the if part is executed.



68 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

Program

===============
===============

branch out of loop?

==== loop body ====
===============
===============
===============
===============

=== end loop body ===

jump to test
===============
===============
===============
===============

Figure 3.50: Diagram of a pretest loop iteration structure

will show how to implement each of these loops in assembly language. In both
cases we refer to the sequence of statements to be repeated as the body of the
loop.

Pretest loops - while statement

A pretest loop is one in which the test for termination occurs before the body
of the loop is executed (even once). This allows for a loop in which the body
is not executed at all (if the termination condition is initially false). A pretest
loop is implemented in many high level languages with a while statement:

while (condition)
Statement // loop body

In assembly language this can be implemented with a (conditional) branch
out of the loop, and an (unconditional) jump back to the termination test as
depicted in Fig 3.50.

As an example of a pretest loop, we have the following program to add the
first 100 whole numbers, leaving the sum in register $v0:

li $t0, 100 # counter

li $v0, 0 # accumulator for sum

lp:

beq $t0, $0, done # test for termination of loop

add $v0, $v0, $t0 # acc = acc + counter

addi $t0, $t0, -1 # counter--

j lp # repeat body of loop

done:



3.8. TRANSFER OF CONTROL 69

In this program register $t0 is used as a counter, initialized to 100, and
decremented by 1 each time the loop repeats. Register $v0 is used as an ac-
cumulator, increasing by the value of the counter each time the loop repeats;
regiser $v0 accumulates the sum of the first 100 whole numbers. Note that this
program is careful to initialize the accumulator, $v0, to 0; it is not advisable to
assume that any register contains any particulare initial value, including 0.

Fig 3.51 shows a partial trace of this program, starting with the value 100
= 6416 in register $t0, and ending with 0 in that register. The final sum, 5050
= 13ba16 is left in register $v0.16

Posttest loops - do while

A posttest loop is one in which the test for termination occurs at the end of the
body of the loop. This implies that the loop body must be executed at least
once, even if the termination condition is initially false. The posttest loop is
implemented in many high level language with the do while statement:

do Statement while (Condition);
Below we show the same example to sum the first 100 whole numbers, this

time using a posttest loop:

li $t0, 100 # counter

li $v0, 0 # accumulator for sum

lp:

add $v0, $v0, $t0 # acc = acc + counter

addi $t0, $t0, -1 # counter--

bne $t0, $0, lp # repeat body of loop?

Note that the body of the loop is the same as for pretest loops, but no
(unconditional) jump is needed in the loop control for this program. When the
bne branch fails, control falls through to the next instruction, terminating the
loop.

Pretest versus posttest loops

How does one know whether to use a pretest or a posttest loop? They are
very similar, and in most cases either will suffice; choose the one which is more
natural for you.

A posttest loop requires fewer statements for loop control, however if there
are cases where the loop body should not be executed at all, you must use
a pretest loop. We generally favor pretest loops, and most of our examples
which require loops will use pretest loops. The most frequent error made by
programmers with regard to loops is an off by one error - a loop which misses

16This sum can be verified using the formula

n∑

i=1

i = n · (n + 1)/2



70 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

$t0 = ?? ?? ?? ??

$v0 = ?? ?? ?? ??

li $t0,100

$t0 = 00 00 00 64

li $v0,0

$v0 = 00 00 00 00

beq $t0,$0,done

add $v0,$v0,$t0

$v0 = 00 00 00 64

addi $t0,$t0,-1

$t0 = 00 00 00 63

j lp

beq $t0,$0,done

add $v0,$v0,$t0

$v0 = 00 00 00 c7

addi $t0,$t0,-1

$t0 = 00 00 00 62

j lp

...

add $v0,$v0,$t0

$v0 = 00 00 13 ba

addi $t0,$t0,-1

$t0 = 00 00 00 00

j lp

beq $t0,$0,done

Figure 3.51: Partial trace of a program which uses a pretest loop to sum the
first 100 whole numbers, leaving the result in $v0



3.8. TRANSFER OF CONTROL 71

the correct number of iterations by just one. Be sure to check this by hand
simulating a simple example.

3.8.5 Exercises

1. Show an execution trace of the following program:

li $t0, 3

li $v0, 1

bgt $t0, $0, positive

li $v0, -1

positive:

2. Show an execution trace of the following program:

li $t0, 3

blt $t0, $0, negative

li $v0, 1

j done

negative:

li $v0, -1

done:

3. Write a program which will implement the following in assembly language:

if ($a0 == 17)

{ $v0 = 0;

$v1 = 3;

}

4. What value will be left in register $v0 after the program shown below has
executed?

li $t0, -7

li $v0, 6

blt $t0, $v0, skip

li $v0, 0

skip:

5. Write a program which will put the larger value (first or second) into
register $v0. Use the following data section. Your program should work
without change if the values in the data section are changed.

.data

first: .word 23

second: .word -23



72 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

6. Write a program which will compare the values in registers $a0, $a1, and
$a2 and put the smallest of the three values into register $v0.

7. Write an assembly language program which is equivalent to the program
shown here:

if ($a0 > $a1)

{ $v0 = 17;

$v1 = 0;

}

else

$v0 = $v1;

8. Show an execution trace of the following program:

.text

lw $t0, x

lw $t1, y

ble $t0, $t1, skip

li $v0, 0

li $v1, 1

j done

skip:

li $v0, 1

li $v1, 0

done:

.data

x: .word 15

y: .word -17

9. Write a program which will determine the sign of a full word in memory
labeled x. If x is negative, $v0 should be -1; if x is positive, $v0 should be
+1; if x is zero, $v0 should be 0.

10. What value will be left in register $v0 after the program shown below has
executed?

.text

li $v0, 3

lw $t0, count

lp:

ble $t0, $0, done

addi $t0, $t0, -1

add $v0, $v0, $v0

j lp



3.9. MEMORY ARRAYS 73

done:

.data

count: .word 4

11. Show an execution trace for the program in the preceding exercise.

12. What value will be left in register $v0 after the program shown below has
executed?

.text

li $v0, 3

lw $t0, count

lp:

addi $t0, $t0, -1

add $v0, $v0, $v0

ble $t0, $0, lp

.data

count: .word 4

13. Show an execution trace for the program in the preceding exercise.

14. Write a program which will find the sum of the whole numbers from 20
through 40, inclusive, leaving the result in register $v0. Use a loop.

15. Write a program which will multiply data values x and y, leaving the
product in register $v0. Assume x is not negative.
Hint: Use repeated addition in a loop. Use x as a counter, and add the
value of y into $v0, used as an accumulator.

16. Write a program which will calculate 2x, where x is a non-negative data
value. It should leave the result in register $v0.
Hint: Use x as a counter, and starting with 1 in $v0, shift left in a loop.

3.9 Memory Arrays

High level programming languages have an important feature known as the
array. An array of 100 double precision floating point values, in java, can be
declared and created as shown below:

double [ ] numbers = new double [100];

Each element of the array can be accessed directly, with an int subscript in
square brackets;

numbers[7] = 14.5;

numbers[3] = numbers[7] + 1.0; // 15.5



74 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

An array is simply a sequence of contiguous (i.e. consecutive) locations in
memory. In assembly language we cannot enforce a type on the values of an
array. I.e. the assembler will permit an array to consist of different data types,
though this is not normally recommended.

We will normally assign a name to an array by naming the first element.
Then other values in the array can be accessed by loading the address of the
first element, and adding a displacement to arrive at the desired array element.

The following program will sum the five values in the array named grades,
leaving the result in register $v0.

.text

li $t0, 5 # counter = 5

la $t1, grades # pointer to array

li $v0, 0 # accumulator = 0

lp:

beq $t0, $0, done # exit loop?

lw $t2, 0($t1) # grades[i]

add $v0, $v0, $t2 # acc = acc + grades[i]

addi $t1, $t1, 4 # pointer = pointer + 4

addi $t0, $t0, -1 # counter--

j lp # repeat loop

done:

.data

grades: .word 25, 63, -45, 0, 12

In this example we use register $t0 as a counter. It is initialized to 5, because
we know the length of the array is 5 words. Each time the loop repeats we
decrement the counter by 1. Register $t1 is initialized with the address of the
first word in the array; we call this a pointer17 to the array. Each time the loop
repeats we increment the pointer by 4 (because there are 4 bytes in a word) to
obtain the address of the next word in the array. Register $t2 is used to load a
word from the array, so that it can be added to the accumulator, register $v0.
A partial execution trace of this program is shown in Fig 3.52.

3.9.1 Exercises

1. The following program should find the sum of the positive values in an
array of whole numbers (the length is 5). Show an execution trace of this
program.

.text

la $t0, numbers # pointer to array

li $t1, 5 # counter

17A pointer in C/C++ is essentially the same as a reference in java - a memory address.
The difference is that you can do arithmetic with a pointer but not with a reference.



3.9. MEMORY ARRAYS 75

1001000016 00 00 00 19 00 00 00 3f ff ff ff d3 00 00 00 00

1001001016 00 00 00 0c ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

$t0 = ?? ?? ?? ??

$t1 = ?? ?? ?? ??

$t2 = ?? ?? ?? ??

$v0 = ?? ?? ?? ??

li $t0,5

$t0 = 00 00 00 05

la $t1,grades

$t1 = 10 01 00 00

li $v0,0

$v0 = 00 00 00 00

beq $t0,$0,done

lw $t2,0($t1)

$t2 = 00 00 00 19

add $v0,$v0,$t2

$v0 = 00 00 00 19

addi $t1,$t1,4

$t1 = 10 01 00 04

addi $t0,$t0,-1

$t0 = 00 00 00 04

j lp

Figure 3.52: Partial trace of a program which sums the values in an array of
five whole numbers, beginning at grades.



76 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

li $v0, 0 # accumulator

loop:

ble $t1, $0, done

lw $t2, 0($t0)

ble $t2, $0, notPos

add $v0, $v0, $t2

notPos:

addi $t0, $t0, 4 # pointer to next word

addi $t1, $t1, -1 # decrement counter

j loop

done:

.data

numbers: .word -12, 32, 0, -3, 4

2. Modify the example in this section so that it will find the sum of the values
in an array of any length. Assume the array is followed by a label: end.

.data

array: .word 25, 63, -45, 0, 12, -25, 66, 99

end: .word 0 # Marks the end of the array.

3. Write a program which will scan the values in an array named array and
leave the smallest value in register $v0. Assume the length of the array is
not 0. Assume the end of the array is marked by the label end as in the
preceding exercise.
Hint: Use the first value in the array as a temporary result, then replace
it if you find a value which is smaller.

.data

array: .word 25, 63, -45, 0, 12, -25, 66, 99

end: .word 0 # Marks the end of the array.

4. Write a program to determine if the values in an array are in ascending
order. If so, leave 1 in register $v0. If not, leave 0 in register $v0. Assume
the length of the array is not 0. Assume the end of the array is marked
by the label end as in the preceding exercise.

.data

array: .word -25, 63, 450, 450, 512

end: .word 0 # Marks the end of the array.

5. Write a program which will find the vector sum of two arrays having the
same length, leaving the sum in an array named result. It should add
corresponding elements of the two arrays, producing an array of the same
length as the result.



3.10. FUNCTIONS 77

.data

array1: .word 16, 17, 0 -2, 4, 5

end1: .word 0

array2: .word 0, 3, 5, 2, -7, 16

end2: .word 0

result .word 0

3.10 Functions

In mathematics a function is a mapping from a set of values, called the domain,
to a set of values, called the range. Functions may have 0 or more arguments
(also known as parameters). The arguments may be thought of as the input(s)
to the function, which produces a single range value as its result. Examples of
mathematical functions are:

• f(x) = sin(x) · cos(x)

• g(x, y, z) = x2 + y · z − 4 + f(0.5)

• exp(x) = 1 + x + x2/2 + x3/6 + x4/24

High level programming languages provide for sub-programs in one form or
another. In C/C++ these are called functions, and in Java they are called
methods.18 We will use the term ‘function’ here. We note that an assembly
language function may have up to four parameters which are considered input
to the function, and an assembly language function, unlike a mathematical
function or a java method, may have as many as two explicit return values
which may be thought of as the output of the function (though it may also have
side effects).

3.10.1 Function Calls - jal and jr

Two additional instructions will be needed to implement function calls in as-
sembly language. The jump and link, jal instruction is used to call, or invoke,
a function. When executed, the jal instruction will do two things:

1. It will load the address of the next instruction into the $ra register. This
is the return address, or the address to which the function should return
control when it terminates.

2. It will perform an (unconditional) jump to the specified label, which should
label the beginning of the function being called.

The format and meaning of the jal instruction is shown in Fig 3.53.

18Some languages use the term procedure for a function which has no explicit return value,
and some use the general term sub or subprogram.



78 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

mnemonic format meaning example
jal jal label $ra← address of next instr

→ label jal myFunction

Figure 3.53: Format and meaning of the jump and link instruction, with example

mnemonic format meaning example
jr jr $reg → reg[$reg] jr $ra

Figure 3.54: Format and meaning of the jump register instruction, with example

The other instruction needed to implement functions involves a return to the
calling function. The instruction is jump register, or jr. This instruction will
perform an (unconditional) jump to the instruction whose address is in a given
register, normally the $ra register. Assuming that the function was called with
a jal instruction, this will effectively return control to the instruction following
the function call. The format and meaning of the jr instruction is shown in
Fig 3.54.

Fig 3.55 depicts the flow of control when a function is called (arrow to
function), and when it returns to the calling function (arrow back to main).

As an example of a function and function call, we use the following program
which includes a function to rearrange two contiguous words of memory so that
the smaller is first. For example if the two words are 12 and 3, they would be
swapped, to be 3 and 12. However if the two words were -9 and 3, they would
not be swapped since -9 is smaller than 3. We will name this function order2,
and it will assume that the address of the first word is in register $a0. The
function, along with a main program,19 is shown in Fig. 3.56.

We note a few important points in regard to this example:

• The function is clearly delineated with comments, showing the beginning
and end, as well as the purpose of the function.

• The part shown as the main program is included simply to test the func-
tion. It contains the call to the function (jal order2). It is given the
name main, though this label is not used, except for documentation.

• The instruction addi $a0, $a0, 0 has no effect. It is included simply
so that we can run the main program to completion by stepping through
the statements one at a time, using MARS (we have not yet learned how
to terminate a program normally).

• When the main program calls the order2 function, the jal instruction
puts the address of the next instruction (addi $a0, $a0, 0) into reg-
ister $ra.

19The main program is used simply to test the function for correctness. It is not part of
the function. Software which exists only for testing purposes is often called a driver.



3.10. FUNCTIONS 79

Program

=== start main ======
===============
===============

jal function

==== resume main ====
===============
===============
===============

==== end main ====
=== start function ===
===============
===============
===============

jr $ra

=== end function ===

Figure 3.55: Diagram of a function call and return

• Since the order2 function is expecting the address of the memory words
to be swapped in register $a0, it is the responsibilty of the main program
to ensure that this is the case. This is done with a la instruction. This
is known as a precondition; the function will work correctly only if the
precondition is satisfied.

• This function has no explicit result. However, it does have side effects: it
may change data in memory.

If you run the above program using MARS, you should single-step one instruc-
tion at a time and stop at the addi instruction in the main program. If you run
it at full speed, control will fall through into the function after the last line of
the main program, which is not desired. We will find a way to improve on this
below.

We emphasize the importance of separating the function itself from the code
that is used to test it - the main program. This testing code is often called a
Driver ; it serves no other purpose. Once we are sure the function is working
correctly it can be extracted and used in other programs, where needed.

Terminating a program with the MARS simulator

At this point we are single-stepping through a program to verify its correctness.
We might wish to run it at full speed, and view the final results; but we will
need a way of terminating the program when it is finished. To do this, we make
use of a system call. The system call provided by MARS is syscall. This is not
a MIPS instruction, but is a special call to the MARS system. There are several



80 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

######################### Begin main program

.text

main:

la $a0, words

jal order2

addi $a0, $a0, 0 # no effect

.data

words: .word 17, 3

######################### End main program

######################### Begin order2 function

.text

### Arrange two contiguous words of memory in ascending order.

### Pre: Register $a0 contains the address of the first word.

### Post: Register $a0 is unchanged

### Register $a0 points to the two contiguous words, which

## are in order

### Author: sdb

order2:

lw $t0, 0($a0) # load first word

lw $t1, 4($a0) # load second word

ble $t0, $t1, done # already in ascending order?

sw $t0, 4($a0) # store first word

sw $t1, 0($a0) # store second word

done:

jr $ra # return to calling function

######################### End order2 function

Figure 3.56: A function which will arrange two contiguous words of memory in
ascending order



3.10. FUNCTIONS 81

uses of syscall, which we shall examine later in this chapter. A syscall uses
the contents of register $v0 to determine the desired action. To terminate the
program, $v0 should contain 10. An example is shown below, in which we add
two values from memory and store the result back to memory:

.text

lw $t0, first

lw $t1, second

add $t0, $t0, $t1

sw $t0, result

li $v0, 10 # return code for syscall

syscall # terminate the program

.data

first: .word 5

second: .word 9

result: .word 0

Note that this program will terminate with no error messages when finished;
this is a much better way to terminate a program.

We could also make this change in the driver for our order2 function in
Fig. 3.56. However there is a potential problem with our order2 function,
which we examine next.

Ordering three contiguous words

Suppose we wish to write a function which will place three contiguous words of
memory in ascending order. We could do this in three steps, using our order2

function as follows:

1. Swap the first and second words, if necessary.

2. Swap the second and third words, if necessary.

3. Swap the first and second words, if necessary.

Here is the program:

.text

main:

la $a2, words

jal order3 # invoke order3

li $v0, 10

syscall # terminate

.data

words: .word 9, 0, -12

.text



82 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

######################### Begin order3 function

### Place 3 (signed) memory words in ascending order

### Pre: Address of first word is in register $a0

### Post: Register $a0 is unchanged

### Author: sdb

order3:

jal order2 # Arrange first and second words

addi $a0, $a0, 4 # address of second word

jal order2 # Arrange second and third words

addi $a0, $a0, -4 # address of first word

jal order2 # Arrange first and second words

jr $ra # return to main program

######################### End order3 function

######################### Begin order2 function

(Not shown here)

######################### End order2 function

Here is the problem: when the order3 program is called, the return address
to the main program is in the $ra register. This address is then clobbered by the
jal order2 instruction in order3. The order2 function will work correctly, and
return correctly to the order3 function all three times that it is called. However,
when order3 attempts to return to the main program, it will fail because the
return address in the $ra register has been clobbered by the jal order2

instruction. This will cause the jr $ra instruction to jump to itself - an
infinite loop! This is clearly not what is desired.

To rectify this problem in the order3 function, we will make a copy of the
$ra register contents in another register, then move it back to $ra when ready
to return to the main program. This modified order3 function is shown below:

######################### Begin order3 function

### Place 3 (signed) memory words in ascending order

### Pre: Address of first word is in register $a0

### Post: Register $a0 is unchanged

### Author: sdb

order3:

move $t2, $ra # copy return address

jal order2 # Arrange first and second words

addi $a0, $a0, 4 # address of second word

jal order2 # Arrange second and third words

addi $a0, $a0, -4 # address of first word

jal order2 # Arrange first and second words

move $ra, $t2 # return address

jr $ra # return to main program

######################### End order3 function



3.10. FUNCTIONS 83

######################### Begin order2 function

(Not shown)

######################### End order2 function

Note that we could have avoided moving the return address back to $ra by
changing the last instruction to jr $t2, but for reasons made clear later, this
is not a good practice. Also, we were careful not to use registers $t0 nor $t1 for
this purpose, because they would be clobbered by the lw instructions in order2.

What would happen if the order2 function was later modified to use $t2 for
some other purpose? What would happen if the order2 function was modified
to call some other function? When working as a member of a team, how can
your functions call the functions of other team members without conflicting
usages of registers? These questions will be resolved in the section on register
conventions.

3.10.2 Function Parameters

Methods and functions in high level programming languages allow for optional
parameters. An example of a java method declaration with three parameters in
the signature is:

int myMethod (int x, float y, char z)

This means that the method, when called, must be provided three values -
an int, a float and a char. In a MIPS assembly language program we can use
registers to pass parameter information to a function. Though we could use any
registers for this purpose, we suggest using only the registers $a0, $a1, $a2, and
$a3.20 This is called a register convention, and is discussed further below.

Does this mean that a function is limited to only four parameters? No, one
of these registers could contain the memory address of several contiguous words
of memory constituting an unlimited number of additional parameters. This is
what we did above in the order3 function.

API for functions

You may be familiar with the concept of an API, which stands for Application
Program Interface. An API provides all the information needed to make use of
a software module, such as a function. Some high level languages, such as Java,
provide the capability of generating readable web pages, with links, from the
API.21

For our purposes the API in an assembly language function will consist
of several comments which serve to delineate the function, and will contain
information such as the following;

• Name of the function

20The ’a’ stands for argument, which is essentially the same as a parameter.
21A multi-line comment beginning with /** is a javadoc comment, and is used to construct

an API for java interfaces, classes and methods.



84 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

• Author, date, etc.

• Overall purpose of the function

• Preconditions: Conditions which must be satisfied in order for this func-
tion to work correctly.

– Registers containing parameters, and their intended purpose (think
of this as the input to the function)

• Postconditions: The effects that the function has on the state of the pro-
gram

– Explicit values returned (in the $v0 and/or $v1 registers, for example)

– Side effects: memory locations which are affected, registers which are
changed, output produced, etc.

• Revision history, or version number

With a well-written API, other programmers will be able to call your func-
tion without having to read through the detailed statements in the function.
Everyhing they need to know should be in the API. This is extremely impor-
tant when using assembly language because it can be extemely difficult to gain
a full understanding of a program simply by reading the constituent statements.

3.10.3 Register Conventions and the Call Stack

We now return to some of the questions raised in the preceding section. When
developing larger programs consisting of many functions, it will be extremely
difficult to avoid conflicts in register usage. For example, a function may incor-
rectly clobber a register value which is needed by some other function. Conse-
quently register values which must be preserved across function calls need to be
saved (somewhere) in memory when a function is called, and reloaded before
the function teminates.

Moreover, the problem of clobbering return addresses was raised in the pre-
vious section. When a function is called, the return address is loaded into the
$ra register. If that function then calls some other function, the $ra register
is clobbered, so it would have to be saved and reloaded as described above.
Where in memory should it be saved? This problem becomes worse if the called
function calls another function, which in turn calls another function, .... And
suppose that a function calls itself? 22

These problems become even more serious in an environment where several
people are working as a team on one software project. They must come to some
agreement as to how function calls will work. In cases where registers need to be
saved across a function call, the programmers need to decide which is responsible
for saving register values - the calling function or the called functions. The MIPS

22A function which calls itself is said to be recursive. This is possible if the register conven-
tions are followed correctly.



3.10. FUNCTIONS 85

architecture defines such an agreement, which we call register conventions, some
of which we have seen already. We define these below:

• Function parameters should be in registers $a0 .. $a3.

• Functions should return explicit result(s) in registers $v0 and/or $v1.

• If any of the registers $s0 .. $s723 are changed in a function, that function
should reload their original values before returning to the calling function.
Their values should be saved on the callstack (to be defined below). The
$s registers correspond to local variables in a java method or C/C++
function.

• If any of the registers $t0 .. $t924 need to be preserved when a func-
tion is called, it is the responsibility of the calling function to save them,
preferably on the call stack in memory.

• The return address (i.e. the $ra register) must be saved on the call stack
in memory.

• The $sp register (stack pointer) is used to access the call stack in memory.

• The $at register (assembler temporary) is reserved for use by the assem-
bler, and must not be used by the assembly language programmer.

• The $fp (frame pointer) and $gp (global pointer) are used by compilers to
implement function calls. We will not be concerned with them here.

• The $k0 and $k1 registers are reserved for use by the kernel (i.e. operating
system), and must not be used by the assembly language programmer.

In general, functions should not expect parameters ($a registers) to be preserved
when a function terminates.25 If a function wishes to use a parameter as a
result or side effect, this must be explicit in the API. These conventions are
summarized in Fig 3.57.

Stacks

Finally we address the question: Where in memory should the $ra register and
other registers be saved? In order for function calls to work in a general way
(no matter how deeply function calls may be nested) and to handle recursive
function calls, we will need a software stack. A stack is a last-in first-out (LIFO)
structure. When extracting an item from a stack, it must be the most recent
item that was added to the stack. The process of adding an item to a stack
is usually called a push operation, the process of determining the last item
added is called a peek operation, and the process of removing an item is called
a pop operation. Fig 3.58 depicts these operations on a stack, which is shown
vertically, with the last item added on the top.

23The ’s’ stands for saved
24The ’t’ stands for temporary
25This is known as call by reference.



86 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

registers purpose responsible for saving
$a0..$a3 function parameters [see API]
$v0..$v1 function result [see API]
$s0..$s7 temporary results called function
$t0..$t9 temporary results calling function
$ra return address called function
$sp stack pointer
$at assembler temporary [do not use]

Figure 3.57: MIPS register conventions

a
b

c

a
b

pop a
b
d

push(d)

Figure 3.58: Diagram of a stack containing the values a,b,c, showing the effects
of a pop operation followed by a push(d) operation

MIPS stack

We will implement a software stack using the $sp register. This register contains
the memory address of the top value on the stack. When we wish to push a
value onto the stack we will first decrement the $sp register, then store the value
to be pushed at the address specified by the $sp register. Thus if we wish to
push the value of the $ra register, we would use the following two instructions

addi $sp, $sp, -4 # decrement stack pointer

sw $ra, 0($sp) # push $ra onto stack

To peek at the top value on the stack (i.e. put its value into a register), simply
use the $sp register to access that memory location:

lw $ra, 0($sp) # peek

To pop a value off the stack, simply increment the $sp register:
addi $sp, $sp, 4 # pop

Note that we decrement the stack pointer when doing a push operation, and
we increment the stack pointer when doing a pop operation. This means that the
stack grows toward a lower memory address, which may seem counter-intuitive.

Using the stack for function calls

We have seen how to push the $ra register onto the memory stack when a
function is called. According to the MIPS register conventions, we must also
save the $s registers. These must be pushed onto the stack, because in general
we do not know whether the function call is (indirectly) recursive. Each $s
register which is modified somewhere in a function must be pushed onto the
stack when the function is entered, and loaded from the stack when the function



3.10. FUNCTIONS 87

################# Begin function

### API

### This function modifies registers $s2, $s5, and $s7

### Author: sdb

name: addi $sp, $sp, -16 # pushing 4 regs

sw $ra, 0($sp) # return address

sw $s2, 4($sp) # push 3 s regs

sw $s5, 8($sp)

sw $s7, 12($sp)

...

done: # return to calling function

lw $s7, 12($sp) # pop 3 s regs

lw $s5, 8($sp)

lw $s2, 4($sp)

lw $ra, 0($sp) # pop return address

addi $sp, $sp, 16 # original stack pointer

jr $ra # return to calling function

################# End function

Figure 3.59: A function which modifies registers $s2, $s5, and $s7 needs to push
them on the stack on entry to the function, and pop them from the stack when
exiting the function

terminates. The $s registers are pushed onto the stack the same way the $ra
register is pushed - by using the stack pointer register, $sp.

For example, if a function modifies the $s2, $s5, and $s7 registers then it
would push them, along with the $ra register onto the stack when the function
is entered as shown in Fig 3.59. It would also pop them from the stack when
the function is to return to the calling function.

In Fig 3.59 note that we need to decrement the $sp register by 16 instead of
by 4 because we are pushing 4 registers onto the stack instead of 1, and there
are 4 bytes in a word. As usual, the stack grows toward low-address memory.

For a more complete example, we return to our order2 function, which
arranges two contiguous words of memory in ascending order. However, this
time we will use registers $s0 and $s1 instead of $t0 and $t1 for temporary
storage. The example is shown in Fig 3.60.

It may seem that this version of order2 is unnecessariy complicated by the
fact that we are using $s registers. However, in more complex software systems,
it will be essential that we use the $s registers, especially if our functions are
(potentially) recursive.

We now rewrite our order3 function so that it also agrees with the MIPS
register conventions:



88 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

######################### Begin order2 function

### Arrange two contiguous words of memory in ascending order.

### Pre: Register $a0 contains the address of the first word.

### Post: Register $a0 is unchanged

### Author: sdb

# This version uses $s registers which must be pushed

# onto the stack.

.text

order2:

addi $sp, $sp, -12 # pushing 3 regs

sw $ra, 0($sp) # return address

sw $s0, 4($sp) # push 2 s regs

sw $s1, 8($sp)

lw $s0, 0($a0) # load first word

lw $s1, 4($a0) # load second word

ble $s0, $s1, done # already in ascending order?

sw $s0, 4($a0) # store first word

sw $s1, 0($a0) # store second word

done:

lw $s1, 8($sp) # pop 2 s regs

lw $s0, 4($sp)

lw $ra, 0($sp) # pop return address

addi $sp, $sp, 12

jr $ra # return to calling function

######################### End order2 function

Figure 3.60: A function which will arrange two contiguous words of memory in
ascending order. The $s registers and return address are saved on the runtime
stack.



3.10. FUNCTIONS 89

######################### Begin order3 function

### Place 3 (signed) memory words in ascending order

### Pre: Address of first word is in register $a0

### Post: Register $a0 is unchanged

### Author: sdb

order3:

addi $sp, $sp, -4

sw $ra, 0($sp) # push return address on stack

jal order2 # Arrange first and second words

addi $a0, $a0, 4 # address of second word

jal order2 # Arrange second and third words

addi $a0, $a0, -4 # address of first word

jal order2 # Arrange first and second words

lw $ra, 0($sp) # pop return address from stack

addi $sp, $sp, 4

jr $ra # return to main program

######################### End order3 function

Name conflicts

At this point we have been using labels in our program text sections, without
regard to the possibility of duplicate labels. The assembler will not permit
duplicate labels; all labels in a source file must be unique.

Consider writing a program in which we wish to find the range of an array;
i.e., we want to find the difference between the largest and smallest values in
an array. We will do this with two separate functions, one to find the smallest
and one to find the largest, then subtract to get the range. The two functions
to find the smallest and largest values are shown below:

##################### Begin smallest function

### Return the smallest value of an array in register $v0

### Pre: Register $a0 points to first word in the array

### Pre: Register $a1 points to word after the last word in the array

### Pre: Length of the array is at least 1

### Post: Registers $a0, and $a1 are unchanged

.text

smallest:

addi $sp, $sp, -12

sw $ra, 0($sp) # push return address on stack

sw $s0, 4($sp) # save s registers on stack

sw $s1, 8($sp)

move $s0, $a0 # ptr to array

lw $v0, 0($s0) # smallest seen so far



90 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

lp:

ble $a1, $s0, done

lw $s1, 0($s0)

bge $s1, $v0, ok

move $v0, $s1 # new candidate for smallest

ok:

addi $s0, $s0, 4

j lp

done:

lw $s1, 8($sp) # pop s registers

lw $s0, 4($sp)

lw $ra, 0($sp) # pop return address

addi $sp, $sp, 12

jr $ra

##################### End smallest function

##################### Begin largest function

### Return the largest value of an array in register $v0

### Pre: Register $a0 points to first word in the array

### Pre: Register $a1 points to word after the last word in the array

### Pre: Length of the array is at least 1

### Post: Registers $a0, and $a1 are unchanged

.text

largest:

addi $sp, $sp, -12

sw $ra, 0($sp) # push return address on stack

sw $s0, 4($sp) # save s registers on stack

sw $s1, 8($sp)

move $s0, $a0 # ptr to array

lw $v0, 0($s0) # largest seen so far

lp:

ble $a1, $s0, done

lw $s1, 0($s0)

ble $s1, $v0, ok

move $v0, $s1 # new candidate for largest

ok:

addi $s0, $s0, 4

j lp

done:

lw $s1, 8($sp) # pop s registers

lw $s0, 4($sp)

lw $ra, 0($sp) # pop return address

addi $sp, $sp, 12

jr $ra

##################### End largest function



3.10. FUNCTIONS 91

Each of the functions shown above is fine, independently.26 However there
is a problem when we include them both in the same source file: there are
name conflicts. The assembler will tell us that the labels lp, ok, and done are
duplicated; each is defined more than once. The assembler will not allow us to
run this program until these errors are corrected.

We could solve this problem by changing each duplicated label to something
else; for example, the lp label in the function largest could be changed to
lp2, in which case the jump instruction would be changed to j lp2.
But suppose we had several functions, each with a lp label; we would have to
carefully distinguish them in some way. We propose a more systematic solution
to the problem of name conflicts. Each label in a function will have the function’s
name appended to it (beginning with an underscore character). Thus in function
smallest we would have the label lp smallest, and in the function largest

we would have the label lp largest. If we do this consistently with all labels
in all functions, and all function names are distinct, we should never have to
worry about name conflicts. A revised version of the smallest function which
eliminates the possibility of name conflicts is shown below.

##################### Begin smallest function

### Return the smallest value of an array in register $v0

### Pre: Register $a0 points to first word in the array

### Pre: Register $a1 points to word after the last word in the array

### Pre: Length of the array is at least 1

### Post: Registers $a0, and $a1 are unchanged

.text

smallest:

addi $sp, $sp, -12

sw $ra, 0($sp) # push return address on stack

sw $s0, 4($sp) # save s registers on stack

sw $s1, 8($sp)

move $s0, $a0 # ptr to array

lw $v0, 0($s0) # smallest seen so far

lp_smallest:

ble $a1, $s0, done_smallest

lw $s1, 0($s0)

bge $s1, $v0, ok_smallest:

move $v0, $s1 # new candidate for smallest

ok_smallest:

addi $s0, $s0, 4

j lp_smallest:

done_smallest:

lw $s1, 8($sp) # pop s registers

lw $s0, 4($sp)

26Note that these two functions could have been easily written as a single function with two
results. However, we wish to make a point in regard to name conflicts.



92 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

lw $ra, 0($sp) # pop return address

addi $sp, $sp, 12

jr $ra

##################### End smallest function

Similar changes made to the largest function, though not strictly necessary,
would be consistent with our new convention on labels. Our goal is to be able to
copy a tested and trusted function, and paste it into any source file which may
have a need for it. We should not have to make any changes to the function.27

Local data for functions

Thus far all of our functions have been able to use registers for temporary
storage. Suppose a function has a need for so much temporary storage that
memory, rather than registers, must be used. We would like this memory area
to be considered ’local’ to the function. It is needed by the function, and is not
needed elsewhere. MARS will permit multiple .data sections and .text sections
in one source file.

As an example, consider a function which will count the number of positive,
negative, even, and odd values in an array of unlimited length. We call this a
distribution. This function will use local data which we call a buffer.

###################### Begin distr function

### Find the distribution of positive, negative, even, odd, and zero

### values in an array of unlimited length.

### Pre: Register $a0 points to first word of the array

### Pre: Register $a1 points to the word following the last word of the array

### Return, in register $v0, the address of a buffer in which:

### Word contains

### 0 number of even positive values

### 1 number of even negative values

### 2 number of odd positive values

### 3 number of odd negative values

### 4 number of zero values

### Author: sdb

.text

distr:

addi $sp, $sp, -12

sw $ra, 0($sp) # push return address on stack

sw $s0, 4($sp) # save s registers on stack

sw $s1, 8($sp) # save s registers on stack

lp_distr:

27We will see later in Chapter 5 that MARS provides an .include directive which eliminates
the need for copying and pasting, thus eliminating the problem of duplicated code in multiple
source files.



3.10. FUNCTIONS 93

ble $a1, $a0, done_distr # reached end of array?

lw $s1, 0($a0) # array element

addi $a0, $a0, 4

blt $s1, $0, neg_distr

bgt $s1, $0, pos_distr

li $a2, 16 # increment zero ctr

jal incr

j lp_distr

neg_distr:

andi $s1, $s1, 1 # test low order bit

beq $s1, $0, negEven_distr

li $a2, 12 # increment neg odd ctr

jal incr

j lp_distr

negEven_distr:

li $a2, 4 # increment neg even ctr

jal incr

j lp_distr

pos_distr:

andi $s1, $s1, 1 # test low order bit

beq $s1, $0, posEven_distr

li $a2, 8 # increment pos odd ctr

jal incr

j lp_distr

posEven_distr:

li $a2, 0 # increment pos even ctr

jal incr

j lp_distr

done_distr:

la $v0, buffer_distr # return ptr to buffer

lw $s1, 8($sp) # pop s register

lw $s0, 4($sp) # pop s register

lw $ra, 0($sp) # pop return address

addi $sp, $sp, 12

jr $ra # return

.data # local data

buffer_distr:

.word 0,0,0,0,0 # counters

##################### End distr function

###################### Begin incr function

### Increment one of the words in the buffer of function distr

### Pre: Register $a2 holds displacement from start of buffer

.text

incr:



94 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

addi $sp, $sp, -12

sw $ra, 0($sp)

sw $s0, 4($sp)

sw $s1, 8($sp)

la $s0, buffer_distr

add $s0, $s0, $a2 # add displacement

lw $s1, 0($s0)

addi $s1, $s1, 1

sw $s1, 0($s0)

lw $s1, 8($sp)

lw $s0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

####################### End incr function

Note that the local data is called buffer distr because it is in the function
distr (to distinguish it from local buffers in other functions). Also, it might
have been a good idea to name our called function incr distr instead of incr,
to indicate that it is used as a ‘local’ function by the distr function, and to
distinguish it from other functions which may have a similar purpose.

3.10.4 Recursive Functions

A recursive function is a function which calls itself. In order for this to work,
the function must satisfy two properties:

• There must be a base case which does not involve a recursive call.

• When the function calls itself, the input to the function (usually contained
in the parameters) must be reduced in some way.

If these two properties are satisfied, we will avoid ‘infinite recursion’ and it
should work as intended. In many cases a recursive function call can be replaced
by a loop, but not always. There are some tasks which cannot be completed
with loops; they require recursive calls (which in turn require the use of a stack).
Note that it is possible for a function to be indirectly recursive. If function A
calls function B, and function B calls function A, both function A and function
B are (indirectly) recursive. Thus it is not always evident at first glance whether
a function is recursive, and that is one reason that we should save registers on
the stack.

As an example we choose the fibonacci sequence, a well known sequence of
numbers which is found in various natural phenomena. The sequence is:

1 1 2 3 5 8 13 ...



3.10. FUNCTIONS 95

Note that after the first two numbers, each number in the sequence is the
sum of the previous two numbers, so the next number after 13 would be 8 + 13
= 21.

We can state this more formally with a recursive definition of the fibonacci
sequence, where fib(n) is the nth number in the sequence:

fib(n) = 1 if n < 3
fib(n) = fib(n− 1) + fib(n− 2) if n > 2
We will now use this definition to implement the fib function with a recursive

call. Note that the first part of the definition is the base case (does not involve
a call to fib). The second part involves two calls to fib, but the input is reduced
for each of those recursive calls. The function is shown in Fig 3.61.

Note that we are using $s registers here to store the values of n-1 and n-2.
These are values which need to be pushed onto the stack, just as local variables
in a recursive java method are pushed onto the runtime stack.

Fig 3.61 shows a rather inefficient way to find the nth Fibonacci number.
For example, to find fib(5) we add fib(4) + fib(3). To find fib(4) we add fib(3) +
fib(2); thus in finding fib(5) there are at least two separate calls to fib(3). This
function can be programmed much more efficiently with a loop. We chose to
use recursion merely to demonstrate the correct usage of the stack and recursive
functions.

3.10.5 Exercises

1. The function shown below is supposed to return the sum of three contigu-
ous words of memory. Modify the function (including its API) so that it
correctly observes the MIPS register conventions. It should use registers
$s0 and $s1 for temporary storage.

################### Begin function example

### Find the sum of the three numbers stored in memory

### at the address in register $t0.

### Return the sum in register $t1.

### Author:

.text

example:

lw $s0, 0($t0)

lw $s1, 4($t0)

add $t1, $s0, $s1

lw $s0, 8($t0)

add $t1, $t1, $s0

#################### End function example

2. Write and test a MIPS function named reverse3 to reverse the order of 3
contiguous words in memory. It can expect that the address of the first
word is in register $a0. Be sure to include an appropriate API. To test
your solution you will need a main program which calls reverse3.



96 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

######################## Begin function fib

## Find the nth number in the fibonnaci sequence

## Pre: n is in $a0

## Return nth fibonnaci number in $v0

.text

fib:

addi $sp, $sp, -16

sw $ra, 0($sp)

sw $s0, 4($sp)

sw $s1, 8($sp)

sw $s2, 12($sp)

li $s0, 2 # check for base case

bgt $a0, $s0, rec_fib # if not, go to recursive case

li $v0, 1 # result is 1

j done_fib # return to calling function

rec_fib:

addi $a0, $a0, -1 # n-1 for recursive case

addi $s1, $a0, -1 # n-2

jal fib

move $s2, $v0 # fib(n-1)

move $a0, $s1 # n-2

jal fib

add $v0, $v0, $s2 # fib(n-1) + fib(n-2)

done_fib:

lw $ra, 0($sp) # load saved regs

lw $s0, 4($sp)

lw $s1, 8($sp)

lw $s2, 12($sp)

addi $sp, $sp, 16

jr $ra # return to calling function

######################## End function fib

Figure 3.61: Function to find the nth number in the Fibonacci sequence



3.10. FUNCTIONS 97

3. The function named ’sum’, shown below, is supposed to return the sum of
its two arguments, registers $a0 and $a1 in register $v0. What is wrong
with this function?

.text

sum:

addi $sp, $sp, -4

sw $ra, 0($sp) # push return address

add $v0, $a0, $a1

lw $ra, 0($sp) # pop return address

addi $sp, $sp, 4

jr $ra # return

4. Write the following java method as a MIPS function:

/** @return first parameter plus second parameter multiplied

* by 16

*/

int meth (int x, int y)

{ return x + y * 16; }

5. Write and test a MIPS function, named reverseArray, to place the words
of an array in reverse order. For example, if the array is 43, -12, 5, 6
then when the function terminates, the array should be 6, 5, -12, 43. The
arguments to the function should be the start address of the array, in
register $a0, and the ending address (the address of the word after the
last word in the array) in register $a1. Use at least one $s register for
temporary storage. Don’t forget to include the API and observe MIPS
register conventions.

6. (a) Write and test a MIPS function named addrSmallest which will re-
turn the address of the smallest word in a memory array. The ar-
guments to the function should be the start address of the array, in
register $a0, and the address of the word following the last word in
the array in register $a1. The address of the smallest should be re-
turned in register $v0. You may assume the length of the array is at
least 1.

(b) Write and test a MIPS function named ’sort’ to sort the words of
a memory array in ascending order. Use the following algorithm
(known as Selection Sort):

• For each position in the array, find the address of the smallest
value beginning at that position. (Call your addrSmallest func-
tion from part (a))

• Swap the word at that position with the smallest.



98 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

7. (a) Write and test a function named ’pal’ which will determine whether
a memory array is a palindrome: It reads the same backwards as it
does forward. Each of the following arrays is a palindrome:

4, 9, -3, -3, 9 4

2, 0, 2

17

Return a one in register $v0 only if the array is a palindrome, and
zero if it is not a palindrome. Your function should use a loop. The
arguments to the function should be the start address of the array,
in register $a0, and the ending address in register $a1.

(b) Repeat part (a) but your function should use a recursive call rather
than a loop. Name the function palRecursive.

Hints:

• Base case: The length of the array is less than two. It must be
a palindrome, so put 1 into register $v0 and return.

• Base case: Compare the first and last words of the array. If they
are not equal, the array could not be a palindrome, so put zero
into register $v0 and return.

• Recursive case: Determine whether the rest of the array is a
palindrome by calling palRecursive with different arguments.

3.11 Strings and String Functions

All the examples we have dealt with thus far involved calculations with whole
numbers. Here we will see how non-numeric information can be represented and
manipulated. To represent non-numeric information, such as the characters on
the keyboard, we use a numeric code in which each character is represented by
an 8-bit code (i.e. one byte). This code is called ASCII.28 For example, the code
for the character ’k’ is 011010112 = 6b16 = 107. The full range of ASCII codes
is shown in the appendices; many of these characters are not on your keyboard
(and many are not viewable as characters on a typical display).

A string is simply an array of characters. I.e. the characters of a string are
in contiguous memory locations, with one character per byte (i.e. 4 characters
per word). Each byte has a unique memory address. The address of the first
character in the string is the string’s address.

3.11.1 Initializing Memory with Strings

In assembly language there are two directives which allow us to store a string
in memory:

28This code is actually a subcode of a much larger and more general code called Unicode,
which is a 16-bit code, and includes foreign alphabets.



3.11. STRINGS AND STRING FUNCTIONS 99

• The .ascii directive allows one to initialize the data memory with the
characters of a string:

.data

name: .ascii "harry"

• The .asciiz directive is the same as the .ascii directive but the string
is terminated with a null byte. This null byte is a character whose code is
0. (Not the character ’0’, but the binary value 0, which is 000000002):

.data

name: .asciiz "harry"

These two definitions may look alike, but the first occupies 5 bytes of mem-
ory, and the second occupies 6 bytes, because of the null byte at the end. One of
the issues to be addressed when working with strings is the need to determine
when we have reached the end of a string. Some high level languages, such
as Java, store a numeric length, along with the characters of a string. Other
languages, such as C store a null byte at the end of the string (and calculate the
length if needed). The MIPS directive .asciiz is in agreement with C strings -
terminated by a null byte. With the .asciiz directive, the null byte serves as
a sentinel, or terminating character.

In what follows, we will generally use the .asciiz form and rely on the null
byte to terminate the string. When processing the characters of a string, the
logic will be very similar to the logic we used when processing the elements of
an array, with two main distinctions:

• Since each element of the string consists of one byte rather than one word,
we will increment the address register by 1 instead of 4, to advance to the
next character of a string.

• We will normally wish to load a single character into a register; thus the
lw and sw instructions are not what we want. Instead we will use byte
instructions, introduced in the next section.

3.11.2 Byte Instructions - lbu and sb

To load a single byte into the low order 8 bits of a register, we will use the
lbu instruction (load byte unsigned).29 This instruction copies one byte from
memory into the low order byte of the register. It also zeros out the high order
24 bits (3 bytes) of the register.

To store a byte from a register into memory, we use the sb instruction (store
byte), which will copy the low order 8 bits of the register to the specified memory
location.

29There is also a lb (load byte) instruction which extends the sign bit of the byte being
loaded through the high order 24 bits of the register; this will not normally be used when
working with strings.



100 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

mnemonic format meaning example
lbu lbu $rt, label reg[$rt]31:8 ← 0 reg[$rt]7:0 ← mem[label] lbu $t3, x

lbu $rt, d($rs) reg[$rt]31:8 ← 0 reg[$rt]7:0 ← mem[$rs + d] lbu $t3, 0($a0)
sb sb $rt, label mem[label]← reg[$rt]7:0 sb $t3, x

sb $rt, d($rs) mem[$rs + d]← reg[$rt]7:0 sb $t3, 0($a0)

Figure 3.62: Format of the load byte unsigned (lbu) and store byte (sb) instruc-
tions, using symbolic memory addresses (i.e. labels), and explicit addressessing

Both the lbu and the sb instructions may be given in either symbolic or
explicit format, as shown in Fig 3.62. In that figure, note that we use subscripts
to designate specific bit locations within a register - 0 is the position of the low
order bit and 31 is the position of the high order bit.30

3.11.3 String Processing

We now have everything we need to process strings. Recall that a string is
simply an array of characters (terminated with a null byte). Suppose we are
given the memory address of the first character in a string, and we wish to find
the number of characters, i.e. the length, of the string. All we need to do is
use a loop to move from each character to the next, checking for the null byte,
and increment a counter in the loop. The null byte is not considered part of
the string, and should not be included in the length. A function named strlen

which does this is shown in Fig 3.63.

In that function the first thing that is done in the loop is to check for
termination (i.e. have we loaded the null byte?). This means that we could
even process a string of length 0, in which the very first, and only, character is
the null byte.

If you are using MARS to inspect data memory which contains strings, a
word of caution is in order. The characters of a string are stored in reverse order
within each word, though their addresses are in sequential order. For example,
the string "Good Morning" will store "dooG" in the first word, "roM " in the
second word, "gnin" in the third word, and the null byte in the low order byte
of the fourth word, as shown in Fig 3.64. The address of the "G" is 1001000016

and the address of the "M" is 1001000516.

We conclude this section with one more example of a string function - a
function which will compare two strings. When comparing two strings, str1 and
str2, this function will produce a result as follows:

• Return some negative number if str1 < str2. Intuitively, str1 is smaller
than str2 if str1 precedes str2 alphabetically.

• Return 0 if str1 = str2.

30People have not always agreed on this bit numbering convention. See the well known
article on this in IEEE Computer, Oct 1981, by Danny Cohen.



3.11. STRINGS AND STRING FUNCTIONS 101

######################## Begin function strlen

## Return the length of a string in $v0.

## Pre: The string is terminated with a null byte, which

## is not included in the character count.

## Address of the string is in register $a0.

## Post: $a0 points to the null byte terminating the string

## Author: sdb

.text

strlen:

addi $sp, $sp, -8

sw $ra, 0($sp) # push return address

sw $s0, 4($sp)

li $v0,0 # counter

lp_strlen:

lbu $s0, 0($a0) # next char of string

beq $s0, $0, done_strlen # end of string?

addi $v0, $v0, 1 # increment counter

addi $a0, $a0, 1 # address of next char

j lp_strlen

done_strlen:

lw $ra, 0($sp)

lw $s0, 4($sp)

addi $sp, $sp, 8

jr $ra # return

######################## End function strlen

Figure 3.63: Function to find the length of a string. Address of the string is in
register $a0.

(a)

1001000016 64 6f 6f 47 72 6f 4d 20 67 6e 69 6e ?? ?? ?? 00

(b)

1001000016 d o o G r o M g n i n ?? ?? ??

Figure 3.64: Diagram of the characters of the string “Good Morning” in data
memory, showing the hex codes (a), and the characters(b)



102 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

• Return some positive number if str1 > str2. Intuitively, str1 is greater
than str2 if str1 follows str2 alphabetically.

When comparing strings, we are not comparing the lengths of the strings. Some
examples of string comparisons are:

"batter" < "cat"

"zoo" > "zonk"

"john" < "johnson"

"foo" = "foo"

Note that if a string is a prefix of the string with which it is being compared,
the prefix is smaller.

The logic we use to compare two strings is to compare corresponding charac-
ters of the two strings, beginning at the left end. If the characters are different,
we know which string is smaller. If the characters are equal, we advance to
the next position and repeat until we reach the end of one (or both) of the
strings. When comparing two characters, we will load each into a register and
compare the two registers; hence, we are actually comparing the ASCII codes
of the characters. The function strcmp is shown in Fig 3.65.

In the strcmp function note that if we determine that the two characters are
equal, and one of them is the null byte (zero), then both characters are the null
byte, and the two strings must be equal. At this point register $v0 must be 0,
which is the desired result when the two strings are equal.

3.11.4 Exercises

1. Write the API for the function shown below. In the API describe the
purpose of the function, its parameters, precondiitions, if any, explicit
result(s) if any, and side effects, or post conditions, if any. Give the
function an appropriate name.

############### Begin function foo

### Put API here

.text

foo:

addi $sp, $sp, -8

sw $ra, 0($sp)

sw $s0, 4($sp)

lp_foo:

lbu $s0, 0($a0)

beq $s0, $0, done_foo

sb $a1, 0($a0)

addi $a0, $a0, 1

j lp_foo

done_foo:



3.11. STRINGS AND STRING FUNCTIONS 103

######################## Begin function strcmp

# Compare two strings.

# Pre: $a0 contains address of first source string, str1

# $a1 contains address of second source string, str2

# Each string is terminated with a null byte.

# Post: $a0 and $a1 are undetermined

# Return in $v0:

# Any negative number if str1 precedes str2

# Any positive number if sr2 precedes str1

# Zero if equal

# Author: sdb

strcmp:

addi $sp, $sp, -12 # push return address

sw $ra, 0($sp)

sw $s0, 4($sp)

sw $s1, 8($sp)

lp_strcmp:

lbu $s0, 0($a0) # load byte from str1

lbu $s1, 0($a1) # load byte from str2

sub $v0, $s0, $s1 # v0 = t0 - t1

bne $v0, $0, done_strcmp # different chars, finished

# The two chars are equal

beq $s0, $0, done_strcmp # end of str1 ?

# Advance to next byte of each string

addi $a0, $a0, 1 # Go to next char of str1

addi $a1, $a1, 1 # Go to next char of str2

j lp_strCmp # repeat the loop

done_strcmp:

lw $s1, 8($sp)

lw $s0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra # return

######################## End function strcmp

Figure 3.65: Function to compare two strings. A negative result means the first
string is smaller. A positive result means the second string is smaller.



104 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

lw $s0, 4(sp)

lw $ra, 0($sp)

addi $sp, sp, 8

jr $ra

############### End function foo

2. Write and test a function named toUpper which will convert all the al-
phabetic characters in a given string to upper case. Any uppercase char-
acters or non-alphabetic characters should be unchanged. For example,
the string “fooBaR!@” should be changed to “FOOBAR!@”. Assume that
register $a0 points to the string, and that it is terminated by a null byte.

Hint: In Appendix .6.1 compare the binary ascii codes of lower case al-
phabetic characters with the binary ascii codes of the corresponding upper
case characters.

3. Write and test a function named isNumeric which will determine whether
a string consists entirely of numeric characters, i.e. the characters ’0’..’9’.
Your function should return a 1 in register $v0 if this is so; otherwise it
should return a 0 in register $v0. Assume that register $a0 points to the
string, and that it is terminated by a null byte. The string of length 0 is
not a numeric string.

4. (a) Write and test a function named toInt which will convert a given
string of numeric characters to a binary full word (i.e. an int), which
is returned in register $v0. Assume that register $a0 points to the
string, and that it is terminated by a null byte. Assume the given
string is a valid positive int, and that its length is not 0.

Hint: 10x = 8x + x + x

(b) Modify your solution to part (a) to allow for negative numbers. The
given string could begin with a ’-’ character.

5. Write and test a function which will extract a substring from a given
string. Use the API shown below:

############### Begin function substr

### Return the string which is a substring of a given string.

### Pre: Register $a0 points to the given string, which is

### null-terminated.

### Pre: Register $a1 contains the starting position of the substring

### (First position is 0)

### Pre: Register $a2 is the length of the substring.

### Pre: Register $a3 is the address of a memory buffer for the result,

### which should be a null-terminated substring.

### Author:

6. Write and test a function which will concatenate two strings to produce a
string result. For example, if the strings ”Holy” and ”Cow” are concate-
nated, the result would be ”HolyCow”.



3.12. MULTIPLICATION OF WHOLE NUMBERS 105

############### Begin function concat

### Return the string which is the concatenation of two

### given strings.

### Pre: Register $a0 points to the first string.

### Pre: Register $a1 points to the second string.

### Pre: Both of the given strings are terminated by a null byte.

### Pre: Register $a2 points to a memory buffer for the result,

## which should be a null-terminated string.

### Author:

Either, or both, of the given strings could have a length of 0.

3.12 Multiplication of Whole Numbers

In this section we will examine several ways of multiplying whole numbers in
assembly language. Initially, we will assume there is no MIPS instruction for
multiplication, and we will implement multiplication with software. Later we
will expose the MIPS multiply instruction.

3.12.1 Multiplication with Software

Perhaps the easiest way to multiply two whole numbers is to use repeated ad-
dition: 5*7 = 7 + 7 + 7 + 7 + 7 = 35. In general, to multiply x*y we will use
a loop. In the loop body we will add the operand y to an accumulator, which
has been initialized to zero. The operand x will be used to control the loop. A
function to accomplish this is shown in Fig 3.66.

There are better ways (i.e. faster ways) to multiply whole numbers, as we
have implied in preceding sections. Recall that shifting the binary digits of a
register to the left is the same as multiplying by a power of 2. By using the
shift instruction, in conjunction with an add instruction, we can speed up the
multiplication considerably. For example, note that
200 ∗ x = 128 ∗ x + 64 ∗ x + 8 ∗ x = 27x + 26x + 23x.

1 0 1 = 5
x 1 0 1 1 = 11

1 0 1 1
1 0 1 1

0 0 0 0
+ 1 0 1 1

1 1 0 1 1 1 = 55

Figure 3.67: Multiplication - the multi-
plier is 11 = 10112 and the multiplicand
is 5 = 1012.

Instead of performing 200 add
instructions, we need to perform
3 shift instructions and 2 add in-
structions, which is a huge improve-
ment in efficiency. This implies that
we can use a repeated shift-and-
add algorithm for fast multiplica-
tion. This shift-and-add algorithm
corresponds to the way we learned
to multiply decimal numbers in el-
ementary school.31 A binary ver-
sion of multiplication is shown in

31Is this still taught in elementary schools?



106 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

.text

######################## Begin multLoop function

### Multiply two whole numbers using repeated addition

### Pre: The values to be multiplied are in registers

### $a0 and $a1

### Pre: $a0 is not negative

### Return product in $v0

multLoop:

addi $sp, $sp, -4

sw $ra, 0($sp)

li $v0, 0 # Accumulator for product

lp_multLoop:

ble $a0, $0, done_multLoop

add $v0, $v0, $a1

addi $a0, $a0, -1 # Decrement loop counter

j lp_multLoop # Repeat the loop

done_multLoop:

lw $ra, 0($sp) # return to calling function

addi $sp, $sp, 4

jr $ra

########################## End function multLoop

Figure 3.66: Function to multiply two whole numbers, using repeated addition



3.12. MULTIPLICATION OF WHOLE NUMBERS 107

Fig 3.67 in which the multiplier is
11 = 10112 and the multiplicand is 5 = 1012, producing a product of
55 = 1101112. Note in Fig 3.67 that the multiplicand, 1101, is shown verti-
cally at the right, to show which rows include the multiplier, 1012, and which
rows include 0. Each row is shifted one bit to the left (these are called partial
products).

To generalize, we describe the shift-and-add algorithm below (the first operand
is called the multiplier and the second operand is called the multiplicand):

1. Initialize an accumulator to zero.

2. If the multiplier is zero, terminate with the product in the accumulator.

3. If the multiplier is odd, add the multiplicand to the accumulator.

4. Shift the multiplicand 1 bit to the left.

5. Shift the multiplier 1 bit to the right.

6. Repeat from step 2 above.

Fig 3.68 depicts this algorithm for multiplication of 5 * 6. The algorithm is
implemented in Fig 3.69.

3.12.2 Multiplication with a MIPS Instruction

Now that we have some understanding of the process of multiplication, we turn
our attention to a MIPS instruction which can multiply 32-bit whole numbers.
In the preceding section we made the tacet assumption that the product would
fit in a register ($v0). Suppose we were to multiply two 4-bit numbers: 9 =
10012 · 8 = 10002 produces a product of 72 = 10010002, which clearly does not
fit in 4 bits. In general, when multiplying an n-bit number by an m-bit number,
we should allow for the result to occupy m+n bits. Thus, if we are multiplying
whole numbers in 32-bit general registers, we should allow for a 64-bit result.

The MIPS architecture accommodates this requirement by providing a pair
of 32-bit registers with the names Hi and Lo. The Hi register is used to store the
high order 32 bits of a product, and the Lo register is used to store the low order
32 bits of a product. These registers are separate from the general registers in
the CPU and are normally used only for multiplication and division.

In addition to the multiply instruction itself, there are also instructions which
provide access to the Hi and Lo registers.

The instruction mnemonic for multiply is mult, and it is an R format in-
struction which multiplies the whole numbers in two general registers (assumed
to be twos complement32), placing the result in the Hi,Lo register pair, as
shown in Fig 3.70. This figure also shows the format of the instructions which
permit access to the Hi,Lo register pair - Move from Hi (mfhi) and Move from
Lo (mflo).

32There is another instruction which presumes the values are unsigned - multu



108 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

1. Accumulator = 0
2. Multiplier is not 0
3. Multiplier is odd, Accumulator = Accumulator + Multiplicand
= 0 + 110 = 110
4. Shift Multiplicand left
Multiplicand = 1100
5. Shift Multiplier right
Multiplier = 10
2. Multiplier is not 0
3. Multiplier is even
4. Shift Multiplicand left
Multiplicand = 11000
5. Shift Multiplier right
Multiplier = 1
2. Multiplier is not 0
3. Multiplier is odd, Accumulator = Accumulator + Multiplicand
= 110 + 11000 = 11110
4. Shift Multiplicand left
Multiplicand = 11000
5. Shift Multiplier right
Multiplier = 0
6. Terminate, result is Accumulator = 11110 = 30

Figure 3.68: Multiplication of 5 * 6 using a shift-and-add algorithm. The Mul-
tiplier is 5 = 1012, and the Multiplicand is 6 = 1102.



3.12. MULTIPLICATION OF WHOLE NUMBERS 109

######################## Begin mult function

### Multiply two whole numbers using

### a shift-and-add algorithm

### Pre: The values to be multiplied are in registers

### $a0 and $a1

### Pre: $a0 is not negative

### Return product in $v0

mult:

addi $sp, $sp, -4

sw $ra, 0($sp)

li $v0, 0 # Accumulator for product

lp_mult:

ble $a0, $0, done_mult

andi $t0, $a0, 1 # Test low order bit

beq $t0, $0, even_mult

add $v0, $v0, $a1 # Add in multiplicand

even_mult:

sll $a1, $a1, 1 # Shift multiplicand

srl $a0, $a0, 1 # Shift multiplier

j lp_mult # Repeat the loop

done_mult:

lw $ra, 0($sp) # return to calling function

addi $sp, $sp, 4

jr $ra

########################## End function mult

Figure 3.69: Function to multiply two whole numbers using a shift-and-add
algorithm.



110 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

(a)

[label:] mult $rs, $rt [# comment]

[label:] mfhi $rd [# comment]

[label:] mflo $rd [# comment]

(b)

{Hi, Lo} ← Reg[$rs] ·Reg[$rt]
Reg[$rd]← Hi
Reg[$rd]← Lo

(c)

mult $t3, $a0

mfhi $v1

mflo $v0 # ($v1,$v0) = $t3 * $a0

Figure 3.70: Multiply Statement: (a) Format of Multiply, Move from Hi, and
Move from Lo (b) Meaning of Multiply, Move from Hi and Move from Lo (c)
Example, which puts the product of registers $t3 and $a0 into the register pair
$v1, $v0.

We now provide an example of a function which uses a multiply instruction.
The problem is to find the volume of a cube, with a given edge length. The
volume is simply edge * edge * edge, so two multiply instructions will be needed.
The function is careful to stipulate a precondition in the API - the edge length
cannot exceed 32, 768 = 800016. If the edge length exceeds this value, the result
of the second multiplication will not fit in the Hi,Lo register pair. The function
is shown in Fig 3.71.

3.12.3 Exercises

1. (a) Use pencil and paper to multiply in binary 101112 · 1102.

(b) Use pencil and paper to multiply in binary 10112 · 110112.

2. You wish to use one of the algorithms given to multiply 4023 (given in
register $a0) times 201 (given in register $a1). How many times will the
loop repeat if using:

(a) The repeated addition algorithm given in Fig 3.66

(b) The shift and add algorithm given in Fig 3.69

3. Show a trace (similar to Fig 3.46) of the mult function given in Fig 3.69
when the value in register $a0 is 25, and the value in register $a1 is 13.



3.12. MULTIPLICATION OF WHOLE NUMBERS 111

.text

##################### Begin function volume

### Find the volume of a cube

### Edge length is in $a0

### Pre: Edge length must not exceed 0x8000

### (32,768)

### Post: Volume is returned in register pair ($v1,$v0)

volume:

addi $sp, $sp, -8

sw $ra, 0($sp)

sw $s0, 4($sp)

mult $a0, $a0 # product should fit in lo

mflo $s0 # edge * edge

mult $a0, $s0 # edge * edge * edge

mflo $v0

mfhi $v1

lw $s0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

###################### End function volume

Figure 3.71: Function to find the volume of a cube



112 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

4. Write a MIPS function named ‘block’ to find the volume and surface area
of a right rectangular prism (i.e. a cube for which the angles are all 90,
but the edges may have different lengths). The API is shown below:

################## Begin function block

### Find the volume and surface area of a right rectangular prism

### The three edge lengths, length, width, and height are given

### in registers $a0, $a1, and $a2, respectively.

### The volume should be returned in register $v0.

### The surface area should be returned in register $v1

### Pre: The results will be small enough to fit in general

### registers.

### Author:

.text

block:

Use the MIPS mult instruction for multiplication.

5. Write a MIPS function named scalarMult to multiply a given array of
whole numbers (i.e. a vector) by a given whole number (i.e. a scalar),
leaving the result in a separate memory area. The API is shown below:

################ Begin function scalarMult

### Multiply a vector by a scalar.

### Register $a0 contains the scalar

### Register $a1 contains the address of the vector in memory

### Register $a2 contains the length of the given vector

### Register $a3 contains the address of the result in memory

### Author:

.text

scalarMult:

Use the MIPS mult instruction for multiplication.

6. Write a MIPS function named ‘dot’ to find the dot product of two vectors.
The dot product is the vector which contains the products of corresponding
values from the two given vectors. The API is shown below:

################ Begin function dot

### Multiply two vectors, forming the dot product

### Register $a0 contains the address of the first vector

### Register $a1 contains the address of the second vector

### Register $a2 contains the length of both vectors

### Register $a3 contains the address of the result in memory

### Pre: The two given vectors have the same length

### Author:

.text

dot:



3.13. DIVISION 113

Use the MIPS mult instruction for multiplication.

7. Write a MIPS function named ‘matrixMult’ to find the matrix product
of two matrices. The matrix product of two matrices, A and B, can be
calculated if the number of columns in A equals the number of rows in B
(call that number max). The value at row r and column c of the result
matrix is computed as

max∑

i=0

A[r, i] · B[i, c]

The API is shown below:

################ Begin function matrixMult

### Find the matrix product of two matrices

### Register $a0 contains the address of the first matrix, A,

### stored in row-major order

### Register $a1 contains the address of the second matrix, B,

### stored in row-major order

### Register $a2 contains the memory address of three memory

### words storing the following:

### - The number of columns in matrix A, which is equal to

### the number of rows in matrix B

### - The number of rows in matrix A

### - The number of columnss in matrix B

### - Address for result matrix.

### Rows = rows in A.

### Cols = cols in B.

### Author:

.text

matrixMult:

Use the MIPS mult instruction for multiplication.
Hint: Program this problem in a high level language, such as Java or
C++, then translate your program to MIPS assembly language.

3.13 Division

In this section we consider the division of whole numbers. Division is interesting
in that there are actually two results for division of integers - a quotient and a
remainder, both of which are also whole numbers. For example 39 divided by 5
produces a quotient of 7 and a remainder of 4. The remainder is often called a
‘modulus’, or simply ‘mod’. Many high level languages provide an operator for
mod (usually the % symbol). Thus in a language such as Java or C++, 39/5 is
7 but 39%5 is 4.33

33Be careful when using the % operator with negative numbers; high level languages do not
agree on the results



114 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

.text

######################## Begin divLoop function

### Perform division using repeated subtraction

### The dividend is in register $a0

### The divisor is in register $a1

### The quotient is left in $v0

### The remainder is left in $v1

### Pre: The divisor is positive

### The dividend is not negative

### Post: Both $a0 and $a1 are unchanged

### Author: sdb

divLoop:

addi $sp, $sp, -4

sw $ra, 0($sp)

li $v0, 0 # Counter for quotient

move $v1, $a0 # Dividend

lp_divLoop:

blt $v1, $a1, done_divLoop

sub $v1, $v1, $a1

addi $v0, $v0, 1 # Decrement loop counter

j lp_divLoop # Repeat the loop

done_divLoop:

lw $ra, 0($sp) # return to calling function

addi $sp, $sp, 4

jr $ra

########################## End function divLoop

Figure 3.72: Function to divide whole numbers, using repeated subtraction

3.13.1 Division Implemented in Software

Just as multiplication can be implemented with repeated addition, division can
be implemented with repeated subtraction. For example, to divide 39 by 7, we
count the number of times that we can subtract 7 from 39, before it becomes
negative; this is the quotient. The result of the final subtraction is the remain-
der. The two results can be produced with one loop. Fig 3.72 shows a MIPS
function which performs the division operation using repeated subtraction.

There are better ways (i.e. faster ways) to divide whole numbers, Just as
we used a shift and add algorithm for multiplication, we can use a shift and
subtract algorithm for division, which is significantly faster.

Our division algorithm will treat registers $v1 (the remainder) and $a0 (the
dividend) as a register pair. We will need to shift the register pair one bit to
the left, which means that the high order bit of $a0 is to be shifted into the low
order bit of $v1, as shown in Fig 3.73.



3.13. DIVISION 115

0$a0$v1

Figure 3.73: Diagram of a left shift on a pair of registers, $v1 and $a0

To implement this shift in a register pair, we can use three instructions (the
left register is $v1, and the right register is $a0):

1. Shift the left register left
sll $v1, $v1, 1

2. Determine whether the high order bit of the right register is a 1
bge $a0, $0, notNeg

3. If not, add 1 to the left register
addi $v1, $v1, 1

4. Shift the right register left
notNeg:

sll $a0, $a0, 1

Our shift and subtract algorithm for division is shown below:

1. Iniitalize the quotient and remainder to 0

2. Shift the quotient left.

3. Treating the remainder (left) and the divisor (right) as a register pair,
shift left.

4. If the remainder is greater than or equal to the divisor,

(a) Subtract the divisor from the remainder, leaving the result in the
remainder.

(b) Increment the quotient

5. Repeat from 2, once for each bit in the word (i.e. 32 times).

This algorithm is implemented in Fig 3.74.

As an example, we show the division 27/5 for 8-bit registers in Fig 3.75.
The resulting quotient is 5, and the remainder is 2. In this example the step
number from the algorithm given above is shown at the right (the shifting of a
zero quotient is not shown in this example).



116 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

.text

######################## Begin div function

### Perform division using shift and suubtract algorithm

### The dividend is in register $a0

### The divisor is in register $a1

### The quotient is left in $v0

### The remainder is left in $v1

### Pre: The divisor is positive

### Pre The dividend is not negative

### Author: sdb

div:

addi $sp, $sp, -4

sw $ra, 0($sp)

li $v0, 0 # quotient

li $v1, 0 # remainder

li $t0, 32 # loop counter

lp_div:

beq $t0, $0, done_div

sll $v0, $v0, 1 # shift quotient

sll $v1, $v1, 1 # shift remainder,dividend

bge $a0, $0, notNeg_div

addi $v1, $v1, 1

notNeg_div:

sll $a0, $a0, 1 # shift dividend

blt $v1, $a1, noSubtr_div # subtract?

sub $v1, $v1, $a1

addi $v0, $v0, 1

noSubtr_div:

addi $t0, $t0, -1

j lp_div # Repeat the loop

done_div:

lw $ra, 0($sp) # return to calling function

addi $sp, $sp, 4

jr $ra

########################## End function div

Figure 3.74: Function to divide whole numbers, using shift and subtract algo-
rithm



3.13. DIVISION 117

quotient remainder dividend divisor step

-------- -------- -------- ------- ----

00000000 00000000 00011011 00000101

3 shift remainder,dividend

00000000 00110110

3 shift remainder,dividend

00000000 01101100

3 shift remainder,dividend

00000000 01101100

3 shift remainder,dividend

00000000 11011000

3 shift remainder,dividend

00000001 10110000

3 shift remainder,dividend

00000001 10110000

3 shift remainder,dividend

00000011 01100000

3 shift remainder,dividend

00000110 11000000

4(a) subtract divisor from remainder

00000001

4(b) increment quotient

00000001

2 shift quotient

00000010

3 shift remainder,dividend

00000011 10000000

2 shift quotient

00000100

3 shift remainder,dividend

00000111 00000000

4(a) subtract divisor from remainder

00000010

4(b) increment quotient

00000101

Figure 3.75: Division 27/5, yielding a quotient of 5 and a remainder of 2, using
8-bit registers



118 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

(a)

[label:] div $rs, $rt [# comment]

[label:] mfhi $rd [# comment - Remainder]

[label:] mflo $rd [# comment - Quotient]

(b)

Hi← Reg[$rs]%Reg[$rt]
Lo← Reg[$rs]/Reg[$rt]
Reg[$rd]← Hi
Reg[$rd]← Lo

(c)

div $t3, $a0

mfhi $v0 # $v0 = $t3 % $a0

mflo $v1 # $v1 = $t3 / $a0

Figure 3.76: Divide Statement: (a) Format of Divide, Move from Hi, and Move
from Lo (b) Meaning of Divide, Move from Hi and Move from Lo (c) Example,
which divides using register $t3 as the dividend and register $a0 as the divisor,
leaving the quotient in register $v1 and the remainder in register $v0.

3.13.2 Division with a MIPS Instruction

Now that we understand how division works, we will examine the MIPS in-
struction which divides whole numbers. Like the multiply instruction, it is an
R format instruction. The dividend is the first operand, and the divisor is the
second operand. The quotient is stored in the LO register, and the remainder
is stored in the HI register (see the section on multiplication for an explanation
of the LO and HI registers). The format, meaning, and example of the division
instruction are shown in Fig 3.76.

This divide instruction assumes the operands are signed (i.e. twos comple-
ment representation). The quotient is negative if either operand is negative, and
the quotient is positive when the operands are both positive or both negative.34

There is also a divide instruction which assumes the operands and results are
unsigned: (divu).

We conclude this section with an example of a function which makes use
of division of whole numbers. In this example we wish to develop a function
which will convert a whole number of seconds to an equivalent number of hours,
minutes, and seconds. For example, if the input to the function is 4713 seconds,
the result should be three numbers representing 1 hour, 18 minutes, 33 seconds.

Our function will accomplish this using a few divide instructions.

34The sign of the remainder is a bit more complicated, and is not standard across platforms,
and over time; we will not address it here.



3.13. DIVISION 119

1. Divide the given number by 60. The remainder is the the number of
seconds in the result, and the quotient will be the total minutes remaining.
For example, 4713 % 60 is 33, so the number of seconds is 33. And 4713
/ 60 is 78. Save this for the next step.

2. The quotient from the previous step is then divided by 60. The remainder
is the number of minutes, and the quotient is the number of hours. For
example, the number of minutes from the previous step is 78. Divide 78
/ 60. The remainder, 18 is the number of minutes, and the quotient, 1, is
the number of hours.

This algorithm is implemented in a MIPS function in Fig 3.77. The number
of seconds is provided in register $a0. Register $a1 contains the memory address
for three full words - the number of hours, minutes, and seconds, in that order.

3.13.3 Exercises

1. Using pencil and paper, perform the following division operations:

(a) 29 / 3 = ?
29 % 3 = ?

(b) 290 / 17 = ?
290 % 17 = ?

(c) 4098 / 256 = ?
4098 % 256 = ?

2. You wish to use one of the algorithms given to divide 4023 by 21. How
many times will the loop repeat if using:

(a) The repeated subtraction algorithm given in Fig 3.72

(b) The shift and subtract algorithm given in Fig 3.74

3. Show a trace (similar to Fig 3.46) of the div function given in Fig 3.74 when
the dividend (in register $a0) is 4023 and the divisor (given in register $a1)
is 210.

4. Write a function which will take a distance measurement, given in inches,
and produce the same distance in yards, feet, and inches. For example, if
the given distance is 86 inches, the result should be 2 yards, 1 foot, and 2
inches. The API is shown below:

### Author:

### Convert given number of inches to inches, feet, and yards

### Example: 122 inches => 3 yards, 1 foot, 2 inches

### Register $a0 contains the given number of inches

### Register $a1 points to memory area for results:



120 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

.text

######################## Begin hms function

### Convert a whole number of seconds to

### hours, minutes, and seconds.

### 3701 seconds => 1 hour 1 minute, 41 seconds

### Total seconds is provided in $a0

### Register $a1 points to a memory area for

### three results: hours, minutes, seconds

### Pre: All values are non-negative.

### Author: sdb

hms:

addi $sp, $sp, -12

sw $ra, 0($sp)

sw $s0, 4($sp)

sw $s1, 8($sp)

li $s0, 60

div $a0, $s0

mfhi $s1

sw $s1, 8($a1) # seconds

mflo $a0 # total minutes

div $a0, $s0

mfhi $s1

sw $s1, 4($a1) # minutes

mflo $s1

sw $s1, 0($a1) # hours

lw $s1, 8($sp) # return to calling function

lw $s0, 4($sp) # return to calling function

lw $ra, 0($sp) # return to calling function

addi $sp, $sp, 12

jr $ra

########################## End function hms

Figure 3.77: Function to convert total number of seconds to hours, minutes,
and seconds



3.14. FLOATING POINT INSTRUCTIONS 121

### Number of yards

### Number of feet

### Number of inches

5. Write a MIPS function named scalarDiv to divide a given array of whole
numbers (i.e. a vector) by a given whole number (i.e. a scalar), leaving
the quotients in a separate memory area. The API is shown below:

################ Begin function scalarDiv

### Divide a vector by a scalar.

### Register $a0 contains the scalar

### Register $a1 contains the address of the vector in memory

### Register $a2 contains the length of the given vector

### Register $a3 contains the address of the result in memory

Use the MIPS div instruction for division. Disregard the remainders.

6. Write a MIPS function named ‘dotDiv’ to find the dot quotient of two
vectors. The dot quotient is the vector which contains the quotients of
corresponding elements. For example, if the two vectors are A = (5, 0, 7)
and B = (3, 3, 2), then the quotient vector is (1, 0, 3). The API is shown
below:

################ Begin function dotDiv

### Form the dot quotient of two vectors

### Register $a0 contains the address of the dividend vector

### Register $a1 contains the address of the divisor vector

### Register $a2 contains the length of the two vectors

### Register $a3 contains the address of the result in memory

### Pre: The two given vectors have the same length

Use the MIPS div instruction for division. Disregard the remainders.

3.14 Floating Point Instructions

Thus far we have dealt exclusively with whole numbers. The arithmetic instruc-
tions that we have used all assume that the operands are 32-bit integers, stored
in general-purpose registers (these integers correspond to the int data type in
Java).

MIPS also allows for computations using non-integers, as well as integers
which are too big to fit in a 32-bit register. This data type is called floating
point. MIPS allows for two floating point types, a 32-bit type and a 64-bit type,
corresponding to the types float and double in Java. The 64-bit type, double
precision, is exactly like the 32-bit type, single precision, except that it allows
for greater accuracy and larger magnitudes. Hence, we will focus our attention
on the 32-bit single precision format.

Some examples of floating point values are:



122 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

• 2.075

• -3.0

• 6.02 · 1023

• 0.000001

To enter the third example as a MIPS data value, we would write it as
6.02e23, which is the same way it would be written in a high-level program-
ming language. Before we go on, we should emphasize that most floating point
data values are merely approximations, i.e. they do not represent the intended
value exactly, and precision is limited.35 We will explore this in more depth in
chapter 4.

3.14.1 Floating Point Registers

The MIPS architecture has an additional set of 32 registers, each of which is 32
bits, which are dedicated specifically for storing floating point values. These reg-
isters are located in a separate part of the MIPS architecture called coprocessor

1. The names of these registers are $f0, $f1, $f2, ... $f31. The double precision
instructions make use of these registers as even-odd neighboring pairs to obtain
16 64-bit registers. For example, a double precision add instruction could add
the 64-bit quantity in registers ($f6, $f7) to the 64-bit quantity in registers ($f2,
$f3). But it could not refer to the register pair ($f9, $f10) since that is not an
even-odd pair.

The single precision floating point instructions may refer to any of the 32
floating point registers. In our examples, however, we will refer to even num-
bered registers. This would allow for a fairly simple revision that would work
with double precision instructions instead if more accuracy is desired.

3.14.2 Floating Point Instructions

In this section we expose some MIPS instructions which perform floating point
calculations. These instructions are all similar in that they operate on two
operand registers, placing the result in a target register (which could be the
same as one of the operand registers).

Since we are dealing with single precision floating point here, the instructions
will have a .s suffix. To use the corresponding double precision instruction, use
a .d suffix. For example, to add the contents of two floating point registers
we use the add.s instruction, but to add the contents of two double precision
floating point register pairs we would use the add.d instruction.

The basic four floating point arithmetic instructions are shown in Fig 3.78.
For all four of these instructions, the first operand is the target register,

i.e. the register which is to receive the result of the calculation. For subtrac-
tion and division, be careful to place the operands in the correct order, since

35To see this, print the sum 0.1 + 0.1 + 0.1 or print 1.0e20+1.0 in a Java program.



3.14. FLOATING POINT INSTRUCTIONS 123

(a)

[label:] add.s $fd, $fs, $ft [# comment]

[label:] sub.s $fd, $fs, $ft [# comment]

[label:] mul.s $fd, $fs, $ft [# comment]

[label:] div.s $fd, $fs, $ft [# comment]

(b)

FpReg[$fd]← FpReg[$fs] + FpReg[$ft]
FpReg[$fd]← FpReg[$fs]− FpReg[$ft]
FpReg[$fd]← FpReg[$fs] · FpReg[$ft]
FpReg[$fd]← FpReg[$fs]/FpReg[$ft]

(c)

add.s $f2, $f3, $f6

(d)

sub.s $f2, $f2, $f6

(e)

mul.s $f2, $f2, $f2

(f)

div.s $f22, $f22, $f0

Figure 3.78: Single Precision Floating Point Instructions: (a) Format of arith-
metic instructions; (b) Meaning of each instruction from part (a); (c) Example,
which adds the values in floating point registers $f3 and $f6, plaicng the result
in floating point register $f2; (d) Example which decreases the value in float-
ing point register $f2 by the value in floating point register $f6; (e) Example,
which squares floating point register $f2; (f) Example, which divides the value
in floating point register $f22 by the value in floating point register $f0, leaving
the result in floating point register $f22



124 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

(a)

[label:] mov.s $rd, $rs [# comment]

(b)

FpReg[$rd]← FpReg[$rs]

(c)

mov.s $f2, $f4

Figure 3.79: Floating Point Move Instruction: (a) Format of move instruction;
(b) Meaning of move instruction; (c) Example, which copies the floating point
value from floating point register $f4 into floating point register $f2.

these operations are not commutative. A few comments on these floating point
instructions:

• There is no floating point register which always contains the value zero,
as there is with the general registers.

• The programmer may wish to put the value 0.0 into a floating point reg-
ister, by subtracting a register from itself:
sub.s $f2, $f4, $f4 # Put zero into reg $f2

However, because of the inexact nature of floating point representations,
this should be avoided. Instead load a zero constant from memory.

• The programmer may wish to put the value 1.0 into a floating point reg-
ister, by dividing a register by itself:
div.s $f2, $f4, $f4 # Put 1.0 into reg $f2

However, because of the inexact nature of floating point representations,
this should be avoided. Instead load a 1.0 constant from memory.

• For division there is only one result, the quotient (unlike the fixed point
division instruction which produces two results).

To transfer the contents of one floating point register into another float-
ing point register, there is a floating point move instruction. It is mov.s (or
mov.d for double precision). The format and definition of a floating point move
instruction is shown in Fig 3.79.

3.14.3 Floating Point Data in Memory

We have seen earlier how to initialize memory with data values, using the .data
assembler directive. There are directives which provide the capability of initial-
izing memory with floating point values. The .float directive initializes a full



3.14. FLOATING POINT INSTRUCTIONS 125

word of memory to a particular single precision value, and the .double directive
initializes two consecutive full words of memory to a particular double precision
value:

pi: .float 3.141592653

pi: .double 3.14159265358979324

An array (i.e. a vector of single precision floating point values) can be
initialized:

numbers: .float 2.3, 0.00001, 45, 6.02e23

The last value in the array named numbers is Avogadro’s number, which is
6.02 · 1023.

3.14.4 Loading and Storing Floating Point Registers

As with the general registers, we also have the capability of loading a floating
point register from memory, and storing a value from a floating point register
into memory. These instructions are called lwc1 and swc1, respectively36.
These instructions are both I format instructions (for the same reason that the
lw and sw instructions are I format - they reference memory locations). Fig 3.80
shows the format and meaning of these instructions, as well as a few examples.

Fig 3.81 shows an example of a function which will compute the area and
circumference of a circle. This function uses what we call local data, i.e. it has
its own data section which stores an approximation to the value of π. Thus this
function can be pasted into any program where it may be needed and called
using the instruction: jal circle.

3.14.5 Floating Point Comparisons

In the section on transfer of control we discussed conditional branches. We
will certainly have a need for conditional branches when using floating point
arithmetic. Hence, we will need to be able to compare the values in floating
point registers, and we will need to be able to branch conditionally on the result
of the comparison.

For floating point comparisons this will be a two-step process:

1. Compare floating point registers, specifying the desired comparison (equal-
ity, less, less or equal). This step will set a 1-bit condition code to 1 or 0,
depending on whether the comparison is true or false, respectively.

2. Branch to another instruction. This step will use the condition code, set
in the previous step, to determine whether the branch should take place.

The comparison instructions are c.eq.s, for compare floats for equality,
c.lt.s for compare floats for strictly less than, and c.le.s for compare floats
for less than or equal. These instructions are defined in Fig 3.82.

36The c1 stands for coprocessor 1



126 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

(a)

[label:] lwc1 $rt, symbol [# comment] symbolic address

[label:] lwc1 $rt, imm($rs) [# comment] explicit address

[label:] swc1 $rt, symbol [# comment] symbolic address

[label:] swc1 $rt, imm($rs) [# comment] explicit address

(b)

FpReg[$rt]←Memory[symbol]
FpReg[$rt]←Memory[imm + Reg[$rs]]
Memory[symbol]← FpReg[$rt]
Memory[imm + Reg[$rs]]← FpReg[$rt]

(c)

lwc1 $f0, pi

(d)

lwc1 $f4, 4($t4)

(e)

swc1 $f4, result

(f)

swc1 $f2, 16($s4)

Figure 3.80: Single Precision Floating Point Memory Reference Instructions:
(a) Format of single precision load and store instructions, using symbolic and
explicit memory addresses; (b) Meaning of each instruction from part (a); (c)
Example which loads floating point register $f0 with the value of pi, from mem-
ory; (d) Example which loads floating point register $f4 from the memory lo-
cation 1 word beyond the address in general register $t4; (e) Example, which
stores floating point register $f4 into the memory location named result; (f)
Example which stores floating point register $f2 into the memory location which
is 4 words beyond the address in general register $s4



3.14. FLOATING POINT INSTRUCTIONS 127

.text

################## Begin circle function ##########

# Find the area and circumference of a circle having

# a given radius.

# Pre:

# Register $a0 contains the memory address of the circle’s

# radius (single precision)

# Register $a1 contains the memory address for the two

# floating point results:

# - area = pi*r*r

# - circumference = 2*pi*r

# Post: Registers $a0 and $a1 are unchanged

# Author sdb

circle:

addi $sp, $sp, -4

sw $ra, 0($sp)

lwc1 $f0, pi_circle # PI

lwc1 $f2, 0($a0) # radius

mul.s $f4, $f0, $f2 # PI * r

mul.s $f6, $f4, $f2 # PI * r * r = area

swc1 $f6, 0($a1) # Store area in memory

add.s $f8, $f4, $f4 # PI * r + PI * r = 2*PI*r

# = circumference

swc1 $f8, 4($a1) # store circumference in memory

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra # return

.data # data local to this function

pi_circle: .float 3.1415926

###################### End circle function ##########

Figure 3.81: Function to compute the area and circumference of a circle having
a given radius



128 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

(a)

[label:] c.eq.s $fs, $ft [# comment]

[label:] c.lt.s $fs, $ft [# comment]

[label:] c.le.s $fs, $ft [# comment]

(b)

if FpReg[$fs] = FpReg[$ft], cc← 1 else cc← 0
if FpReg[$fs] < FpReg[$ft], cc← 1 else cc← 0
if FpReg[$fs] ≤ FpReg[$ft], cc← 1 else cc← 0

(c)

c.eq.s $f4, $f6

(d)

c.lt.s $f14, $f12

(e)

c.le.s $f22, $f16

Figure 3.82: Single Precision Floating Point Comparison Instructions: (a) For-
mat of comparison instructions; (b) Meaning of each instruction from part (a)
in which cc is the 1-bit condition code; (c) Example which compares floating
point registers $f4 and $f6 for equality; (d) Example which determines whether
floating point register $f14 is strictly less than floating point register $f12; (e)
Example which determines whether floating point register $f22 is less than or
equal to floating point register $f16



3.14. FLOATING POINT INSTRUCTIONS 129

(a)

[label:] bc1t symbol [# comment]

[label:] bc1f symbol [# comment]

(b)

if cc = true, branch to instruction of symbol
if cc = false, branch to instruction of symbol

(c)

bc1t lp

(d)

bc1f done

Figure 3.83: Single Precision Floating Point Branch Instructions: (a) Format
of conditional branch instructions; (b) Meaning of each branch instruction from
part (a) in which cc is the 1-bit condition code; (c) Example which branches to
lp only if the condition code is 1 (d) Example which branches to done only if
the condition code is 0

Note the .s suffix indicates that these comparison instructions operate on
single precision values. For double precision comparisons the suffix would be
.d, and the 64-bit values being compared would be in even-odd register pairs.

The branch instructions are bc1t, for branch on floating point true and
bc1f, for branch on floating point false.37 These instructions are defined in
Fig 3.83.

For example, to branch to the instruction labeled lp only if the value in
floating point register $f4 is smaller than the value in floating point register $f2,
we would use the instructions

c.lt.s $f4, $f2 # set condition code

bc1t lp # branch if condition code is true

To demonstrate the usage of these conditional branch instructions, we show
an example of a function which will find the largest of three given floating point
values in Fig 3.84.

At this point we have shown only three types of comparison: compare for
equality, compare for strictly less, and compare for less or equal. The student
may be wondering about other kinds of comparisons which may be useful. They
can all be implemented using the three existing comparisons. They are described
below:

37As previously noted, the c1 is for coprocessor 1.



130 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

.text

##################### Begin function largestOf3

### Author: sdb

### Find the largest of three given floats

### Register $a0 points to three consecutive floats in memory

### Register $a1 points to memory word where largest is to be stored

largestOf3:

addi $sp, $sp, -4

sw $ra, 0($sp)

lwc1 $f0, 0($a0) # first float

lwc1 $f2, 4($a0) # second float

c.le.s $f2, $f0

bc1t float2Larger_largestOf3

mov.s $f0, $f2

float2Larger_largestOf3: # f0 is largest of first two floats

lwc1 $f2, 8($a0) # third float

c.le.s $f2, $f0 # compare with larger of first two

bc1t float3Larger_largestOf3

mov.s $f0, $f2

float3Larger_largestOf3:

swc1 $f0, 0($a1) # store largest

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

###################### End function largestOf3

Figure 3.84: Function to find the largest of three given floating point values



3.14. FLOATING POINT INSTRUCTIONS 131

1. Compare for strictly greater than

Here we can use the logical identity: x > y ≡ y < x

For example, to branch to lp only if $f2 is strictly greater than $f4, we
need only to reverse the operands, and test for stricly less than:

c.lt.s $f4, $f2 # Is $f2 > $f4 ?

bc1t lp # branch if true

2. Compare for greater than or equal to

Here we can use the logical identity: x ≥ y ≡ !x < y

For example, to branch to done only if $f2 is greater than or equal to $f4,
we need only to test for strictly less than (branch if false):

c.lt.s $f2, $f4 # Is $f2 >= $f4 ?

bc1f done # branch if false

3. Compare for not equal to

Here we can use the logical identity: x 6= y ≡ !x = y

For example, to branch to next only if $f2 is not equal to $f4, we need
only to test for equality, and branch if false:

c.eq.s $f2, $f4 # Is $f2 != $f4 ?

bc1f next # branch if false

As one final example for this section, we show a function which searches an
array of floats for a particular target, with a given error tolerance. The reason
for the error tolerance is that floats do not have perfect precision. Thus, for
example, if searching for the target 17.01, we may wish to specify a tolerance
of 0.000001 so that any value in the array which is sufficiently close to 17.01
qualifies as matching the target. Figures 3.85 and 3.86 show this sequential
search function.

In order to determine whether a value from the array is sufficiently close to
the target, we compute the absolute value of the difference between the value
and the target, and compare with the tolerance, epsilon.
|value− target| < epsilon
For absolute value we use a local function which puts the absolute value of

floating point register $f6 into floating point register $f6.

3.14.6 Type conversions

Until now we have been dealing with operations that involve either whole num-
bers (fixed point) or floating point. But there are many applications in which
we will have a need to convert values from one type to another. High level
progamming languages do this in a variety of ways:

• Assignment to a variable:



132 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

##################### Begin function seqSearch

### Author: sdb

### Search a vector of floats for the first occurrence of a given

### target, to within a given tolerance.

### $a0 contains the memory address of the vector of floats to be searched

### $a1 contains the length of the vector

### $a2 points to the target in memory

### $a3 points to the tolerance for comparisons

### Return the array position of the target in $v0,

### or -1 if not found.

.text

seqSearch:

addi $sp, $sp, -8

sw $ra, 0($sp)

sw $s0, 4($sp)

lwc1 $f0, 0($a3) # tolerance

lwc1 $f2, 0($a2) # target

li $v0, -1 # code for not found

li $s0, 0 # loop counter

lp_seqSearch:

beq $s0, $a1, done_seqSearch

lwc1 $f4, 0($a0) # value from vector

sub.s $f6, $f2, $f4 # target - value

jal abs_seqSearch # $f6 is absolute value of difference

c.lt.s $f6, $f0

bc1t hit_seqSearch

addi $a0, $a0, 4 # next word of vector

addi $s0, $s0, 1 # increnent loop counter

j lp_seqSearch

hit_seqSearch:

move $v0, $s0

done_seqSearch:

lw $s0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

###################### End function seqSearch

Figure 3.85: Function to search a given array of floats for a given target, to
within a given tolerance. It calls an absolute value function - Fig 3.86



3.14. FLOATING POINT INSTRUCTIONS 133

###################### Begin local function abs_seqSearch

### Author: sdb

### Return absolute value of $f6 in $f6

### Post: Clobbers $f8

.text

abs_seqSearch:

addi $sp, $sp, -4

sw $ra, 0($sp)

lwc1 $f8, zero_abs_seqSearch # 0.0

c.lt.s $f8, $f6 # f6 is positive?

bc1t done_abs_seqSearch

sub.s $f6, $f8, $f6 # if not, f6 = 0 - f6

done_abs_seqSearch:

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

.data

zero_abs_seqSearch: .float 0.0

###################### End function abs_seqSearch

Figure 3.86: Function to find the absolute value of a float, called by the sequen-
tial search function in Fig 3.85



134 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

.data

x: .word 23

result: .float 0

.text

lwc1 $f0, x ## $f0 <- 23

cvt.s.w $f2, $f0 ## $f2 <- 23.0

swc1 $f2, result

Figure 3.87: Conversion of an integer to floating point

float f = 3.0;

int i;

i = f; // convert 3.0 to an int

• A cast:

float f = 3.0;

int i;

i = (int) f; // convert 3.0 to an int

Conversion of an int to float can normally done with a simple assignment:
float f = 3; // convert int to float

The MIPS architecture provides an instruction for all conversions: cvt. Here
we cover the usage of the cvt instruction for conversions between integer (word)
and single precision (float) data types, though it is also possible to convert to
and from double precision as well.

Conversion from integer to float

To convert an integer (word) to float, we use the instruction cvt.s.w in which
the w represents ‘word’ (i.e. integer) and the s represents ‘single’ precision
floating point. An example which converts the integer 23 to floating point 23.0
is shown in Fig 3.87.

Conversion from float to integer

Conversion from float to integer is complicated by the fact that there could be
loss of precision. For example, if we were to convert the float 23.65 to integer
we would lose the digits after the decimal point. We will first solve this by
obtaining the floor of the float as an integer. If x is a float, then floor(x) is
the largest integer which is less than or equal to x. For example,

• floor(23.99) = 23

• floor(23.49) = 23



3.14. FLOATING POINT INSTRUCTIONS 135

.data

x: .float 23.65

result: .word 0

.text

lwc1 $f0, x ## $f0 <- 23.65

cvt.w.s $f2, $f0 ## $f2 <- 23

swc1 $f2, result

Figure 3.88: Conversion of a float to integer

• floor(23.0) = 23

To convert a float to integer (i.e. word), we use the instruction cvt.w.s in
which the w represents ‘word’ (i.e. integer) and the s represents ‘single’ precision
floating point. An example which converts the float 23.65 to integer is shown
in Fig 3.88.

Conversion from float to integer, rounded

The conversion from float to integer shown above produces the floor of the result;
i.e. the decimal places are truncated. In many applications, when converting
from float to integer, we wish a result which is rounded to the nearest integer.
For example, when converting 4.49 to integer the rounded result would be 4,
but when converting 2.78 to integer the rounded result would be 3.38 To do
this we merely add 0.5 to the float before converting because floor(x+0.5)

produces the integer which is nearest x. Fig 3.89 shows how this is done in
MIPS assembly language.

3.14.7 Exercises

1. Test the function which finds the area and circumference of a circle (Fig 3.81)
using the MARS simulator. Write a Driver (i.e. a main program which
calls the circle function), and check the results in memory.

2. Test the function which finds the largest of three floats (Fig 3.84) using
the MARS simulator. Write a Driver (i.e. a main program which calls the
largestOf3 function), and check the result in memory.

3. Test the sequential search function (Fig 3.85) using the MARS simulator.
Write a Driver (i.e. a main program which calls the seqSearch function),
and check the result in memory. Be sure to test the case where the target
is not found in the array, and the case where there is more than one
occurrence of the target in the array.

38When the decimal place is 5, as in 7.5, for example, we take the position that the result
should be rounded up, to 8.



136 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

.data

x: .float 23.65

half: .float 0.5

result: .word 0

.text

lwc1 $f0, x ## $f0 <- 23.65

lwc1 $f2, half ## $f2 <- 0.5

add.s $f0, $f0, $f2 ## $f0 <-- 24.15

cvt.w.s $f2, $f0 ## $f2 <- 24

swc1 $f2, result

Figure 3.89: Conversion of a float, 23.65, to integer. The result is rounded to
the nearest integer, 24.

4. Show a trace (similar to Fig 3.52) of the largestOf3 function when the three
floats are 2.0, 5.5, and -9.9. Show the contents of floating point registers
in decimal. Do not show memory contents (we have not yet discussed how
floating point values are represented).

5. Write and test a function which will return the volume and surface area
of a sphere having a given radius. Store an approximation of pi as local
data in your function. The API is shown below:

##################### Begin function sphere

### Author:

### Find the volume and surface area of a sphere

### Register $a0 points to radius, in memory

### Register $a1 points to the volume and surface area in

### consecutive memory locations.

###

### Volume = 4/3 pi r*r*r

### Area = 4 pi r*r

Hint: Volume = Area * r / 3

6. Write and test a function named maxFloat which will return the largest
value in an array of floats. Assume the array is not empty, i.e. the length
is at least 1. Be sure to test the case where all the values are negative.
The API is shown below.

##################### Begin function maxFloat

### Author:

### Find the largest value in an array of floats

### $a0 contains the memory address of the vector of floats to be searched

### $a1 contains the length of the vector



3.14. FLOATING POINT INSTRUCTIONS 137

### $a2 points to the memory location for the result

### Pre: The array is not empty.

Hint: Assume the first value is the largest; then use a loop to scan the
rest of the array. Each time you find a value larger than the largest you’ve
seen so far, save it in a floating point register.

7. The exponential function, exp(x) = ex where e is approximately 2.7181818284590
is the inverse of the natural log function, ln(x). This function can be com-
puted as an infinite sum of terms (this is called a Taylor series):
exp(x) = 1 + x2/2! + x3/3! + x4/4! + ...
Define a MIPS function named exp to evaluate the exponential function
for a given value of x, and a given tolerance value, epsilon, such that the
result is within epsilon of the correct result. The API is shown below:

###################### Begin function exp ##############

# Author:

# $a0 contains address of x in memory (float)

# Desired precision is in the next word (epsilon)

# $a1 contains the address of the result

# Pre: x is not negative

Hints:

• Each term, t, can be calculated from the previous term by multiplying
by x and dividing by a counter, n:
t = t ∗ x/n

• Terminate the loop when a term’s value is smaller than epsilon.

8. Write and test a binary search function to search a sorted array of floats
for a given target, within a given tolerance.
The API is shown below:

##################### Begin function binSearch

### Author:

### Search a sorted array of floats for a given target, within

### a given tolerance

### $a0 contains the memory address of the vector of floats to be searched

### $a1 contains the length of the vector

### $a2 points to the target in memory

### $a3 points to the tolerance in memory

### Post: $v0 contains the position of the target, or -1 if not found

### Pre: The array is sorted in ascending order.

Hint: Find the midpoint of the array, and compare it with the target. If
equal (within the tolerance), terminate. If the value of the midpoint is
less than the target, you know the target must be after the midpoint if



138 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

it is in the array; repeat using the position after the midpoint as the left
end. If the value of the midpoint is greater than the target, you know the
target must be before the midpoint if it is in the array; repeat using the
position before the midpoint as the right end. If the position of the left
end exceeds the position of the right end, the target is not found.

9. Write and test a function named average which will find the average of an
array of floats.

(a) The result should be a float.

############# Begin function average

## Pre: Register $a0 points to an array of whole numbers in memory

## Register $a1 points to the next word after the array.

## Post: The average value of the given array is in register $f0

(b) The result should be rounded to the nearest int

############# Begin function average

## Pre: Register $a0 points to an array of whole numbers in memory

## Register $a1 points to the next word after the array.

## Post: The rounded average is in register $v0ed to the rray.

10. Write and test a function named round which will round a float to the
nearest hundred, million, thousandth, etc. The first argument is the float
to be rounded, and the second number describes the kind of rounding
desired. Examples:

round(13189,100) = 13200

round(13189,1000) = 13000

round(13189,10) = 13190

round(13189,10) = 13190

round(17.0653,0.01) = 17.07

round(17.0653,0.1) = 17.1

round(17.0653,0.001) = 17.065

################# Begin function round

## Pre: $a0 points to the float to be rounded

## $a1 points to a float describing the desired precision

## Post: $a2 points to the rounded result (a float)

3.15 Input, Output, and Other System Calls With
MARS

The MARS assembler/simulator provides for input (reading information from
an external source, such as the keyboard), output (writing information to an
external destination, such as the monitor), and other useful system calls. We



3.15. INPUT, OUTPUT, AND OTHER SYSTEM CALLS WITH MARS 139

$v0 function Args / Resdult
1 print int $a0 = integer to be printed
2 print float $f12 = float to be printed
4 print string $a0 = address of string
5 read int $v0 gets input from stdin
6 read float $f0 gets input from stdin
8 read string $a0 = address of string, $a1 = max length
10 terminate

Figure 3.90: Various uses of the syscall instruction

emphasize that these system calls are specific to MARS and may not apply with
other MIPS simulators (such as SPIM).39

All MARS system calls are invoked with the syscall instruction. The
particular function to be performed is specified by the value in register $v0.
Fig 3.90 shows some of the options available for a system call. For a complete
list of options, see the MARS web site.

3.15.1 Normal Program Termination

To terminate a program which has completed execution successfully, we need
only load the value 10 into register $v0 before issuing the syscall instruction,
as shown below:

li $v0, 10

syscall # normal termination

This means that if register $v0 contains the final result of a calculation, it
must be copied to another register, or saved in memory, before terminating (the
return code of 10 will clobber the result in register $v0).40

As an example, we show below a main function which calls the string com-
parison function shown in Fig 3.65. The main function stores the result in
memory before terminating execution.

### Test the string comparison function

main:

la $a0, str1

la $a1, str2

jal strcmp # call function

sw $v0, result # save function result

li $v0, 10 # code for normal termination

syscall # terminate program

39This section may be omitted without loss of continuity
40This seems to contradict the MIPS register convention that register $v0 should be used

to return function results.



140 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

.data

str1: .asciiz "Good Morning"

str2: .asciiz "Good morning"

3.15.2 Input with syscall

With the syscall instruction it is possible to read an int, a float, or a string
from the standard input stream (i.e. the keyboard).

To read an int from the keyboard, load the value 5 into register $v0 before
executing the syscall instruction. Execution will then pause, waiting for the
user to enter a whole number on the keyboard and press the Enter key. The
whole number entered will be placed in register $v0, as shown below:

li $v0, 5 # code for input of an int

syscall

# entered value is now in $v0

To read a string load the value 8 into register $v0. Also load a the address
of a memory buffer for the input string into register $a0, and load a maximum
length for the input into register $a1 before executing the syscall instruction.
Execution will then pause, waiting for the user to enter any string of characters
on the keyboard and press the Enter key. The string entered will be stored in
the memory buffer, as shown below:

la $a0, buffer # storage space for the string

li $a1, 1000 # max length of string

li $v0, 8 # code for input of a string

syscall

# string is now in the buffer

.data

buffer: .space 1001 # reserve 1001 bytes of memory

The .space directive reserves 1001 bytes (one extra byte for the null termi-
nating character) of memory for the buffer.

To read a floating point value from the keyboard, load the value 6 into
register $v0 before executing the syscall instruction. The value entered at the
keyboard will stored in floating point register $f0:

.li $v0, 6 # code for input of a float

syscall

# entered float is now in $f0

3.15.3 Output with syscall

With the syscall instruction it is possible to put out an int, a float, or a string
to the standard output stream (i.e. the monitor) as indicated in Fig 3.90.



3.15. INPUT, OUTPUT, AND OTHER SYSTEM CALLS WITH MARS 141

To display an int on the monitor, load the value 1 into register $v0, and
load the value to be displayed into register $a0, before executing the syscall

instruction, as shown below:

# we wish to display the int in register $t3

move $a0, $t3 # move into register $a0

li $v0, 1 # code to put out an int

syscall

# value of $t3 is displayed on monitor

To display a floating point value on the monitor, load the value 2 into register
$v0, and load the value to be displayed into register $f12, before executing the
syscall instruction, as shown below:

# we wish to display the float in register $f0

move $f12, $f0 # move into float register $f12

li $v0, 1 # code to put out a float

syscall

# value of $f0 is displayed on monitor

To display a (null terminted) string on the monitor, load the address of the
string into register $a0, and load the value 4 into register $v0. Then when the
instruction is executed, the string will be displayed on the monitor (in MARS’
message window):

# we wish to display the message

la $a0, message # address of message to be displayed

li $v0, 4 # code to put out a string

syscall # message is written out

.data

message: .asciiz "Good morning"

3.15.4 Example for Input and Output

We conclude this section with an example of a program that does several kinds
of input and output. This program will prompt the user for several strings and
then display the average length of those strings.

The program is shown in Fig 3.91 and needs a few remarks:.

• The user MUST be prompted for input. Otherwise, when an input syscall
is executed, the program will pause, and the user will not know that he/she
is expected to type something on the keyboard.

• This program uses the strlen function from Fig 3.63 to find the length
of a string.

• Computation of the sum of the string lengths, and the loop counter are
done with ints (i.e. general registers). Avoid floating point arithmetic if
possible.



142 CHAPTER 3. ASSEMBLY LANGUAGE FOR MIPS

• To convert the sum of the lengths (register $s1) to floating point, we use
the cvt.s.w instruction. It expects a fixed point argument in its second
operand, and produces the corresponding floating point value in its first
operand.

• Likewise for the number of strings (register $s2).

We conclude this section by emphasizing that this is not a typical assembly
language program. Programs designed to be used directly by the end user
are typically coded in a high level language, such as Java or C++. Even for
applications which are CPU intensive, today’s compilers are so advanced that
there is not a signicant loss in efficiency. Assembly language, if used at all,
is generally used for low level operating system functions, device drivers, and
embedded systems.

3.15.5 Exercises

1. Write a program to calculate 10! and display the result on the monitor
(i.e. MARS’ message window).

2. Write a program to obtain the radius of a circle from the user’s keyboard.
It should then display the area and circumference of the circle on the
monitor (i.e. MARS’ message window).

3. Write a program to input a string from the keyboard, eliminate all spaces
from the string, and write the resulting string out to the monitor (MARS’
message window).

4. Write a program to write 10 random ints in the range [0..1000] to the
monitor. Use a code of 42 in register $v0, and specify the upper bound
on the range with register $a1, with a syscall instruction. Register $a0
is a seed, or starting point, for the random number generator.

5. Write a program to play military ‘taps’ using the MIDI interface. See the
syscall description on the MARS web site.



3.15. INPUT, OUTPUT, AND OTHER SYSTEM CALLS WITH MARS 143

# Program to display the average length of several strings

# entered on the keyboard

.text

avgLength:

la $a0, prompt1_avgLength # Prompt for

li $v0, 4 # number of strings.

syscall

li $v0, 5 # Read an int,

syscall # number of strings.

ble $v0, $0, abend_avgLength # Must be positive

move $s0, $v0 # loop counter

move $s2, $v0 # save count

li $s1, 0 # sum

lp_avgLength:

ble $s0, $0, done_avgLength

la $a0, prompt2_avgLength # Prompt for a

li $v0, 4 # string.

syscall

la $a0, buffer_avgLength

li $a1, 1000 # max length

li $v0, 8 # code to read a string

syscall

jal strlen # find its length

addi $v0, $v0, -1 # exclude newline

add $s1, $s1, $v0 # accumulate sum

addi $s0, $s0, -1

j lp_avgLength

done_avgLength:

sw $s1, word_avgLength

lwc1 $f4, word_avgLength

cvt.s.w $f0, $f4 # sum to floating pt

sw $s2, word_avgLength

lwc1 $f4, word_avgLength

cvt.s.w $f2, $f4 # count to floating pt

div.s $f12, $f0, $f2 # find average

la $a0, outMsg_avgLength

li $v0, 4

syscall

li $v0, 2 # code to print float

syscall

abend_avgLength:

li $v0, 10 # code to terminate

syscall

.data

prompt1_avgLength: .asciiz "How many strings do you wish to enter? "

prompt2_avgLength: .asciiz "Enter a string\n"

outMsg_avgLength: .asciiz "The average length is: "

word_avgLength: .float 0

buffer_avgLength: .space 1002

Figure 3.91: Program to display the average length of several strings entered at
the keyboard



Chapter 4

Machine Language for
MIPS

In chapter 3 we described the fundamental MIPS instruction set at the assembly
language level. Programs written in this form are not directly executable by the
CPU. They must first be translated to machine language. In machine language:

• There is a binary operation code for each MIPS instruction.

• An instruction is coded into a single 32-bit word, in one of three different
formats.

• Symbolic addresses are replaced by binary memory addresses.

• Some assembly language instructions, known as pseudo-operations, must
be converted to one or more MIPS instructions.

This translation is done by software known as an assembler.
In this chapter we will describe the details of machine language and see how

to translate, manually, from assembly language to machine language.

4.1 Instruction Formats

In the MIPS architecture there are three instruction formats: Register Format
(R), Immediate Format (I), and Jump Format (J).

R format instructions are generally used for operations with two operand
registers and a target register, such as the add and or instructions. R format
is also used for shift instructions. The R format is described in Fig 4.1. The
function code is actually part of the operation code. For example, both the add

and or instructions have an opcode of 0. These instructions are distinguished
by the function code, 20x for add and 25x for or.

Caveat: In an assembly language statement the register operands are:
$rd, $rs, $rt

144



4.1. INSTRUCTION FORMATS 145

R Format

opcode
31 26

rs
25 21

rt
20 16

rd
15 11

shamt
10 6

funct
5 0

field name bit positions purpose
opcode 31..26 operation code

rs 25..21 left operand
rt 20..16 right operand
rd 15..11 destination

shamt 10..6 shift amount
funct 5..0 function code

Figure 4.1: Register Format (R) is used for instructions such as add, or, and
srl. The diagram shows the bit positions for each field. A description of each
field is shown in the table.

but in machine language they are
$rs, $rt, $rd

The $rd register comes last!

I format instructions are generally used for instructions which have an im-
mediate operand (i.e. a constant), such as addi or andi. I format is also used
for memory reference instructions and conditional branch instructions. The I
format is described in Fig 4.2. Notice that instead of the rd, shift amount, and
function code fields we have an immediate field. The immediate field is used
for:

• The right operand for arithmetic and logical operations for which the right
operand is a constant.

• Memory address displacement for memory reference instructions.

• Relative branch address for conditional branch instructions.

We will elaborate further on this format in the sections which follow.

Caveat: In an assembly language statement the operands are:
$rt, $rs, imm

but in machine language they are
$rs, $rt, imm

The $rs and $rt registers are reversed!



146 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

I Format

opcode
31 26

rs
25 21

rt
20 16

immediate
15 0

field name bit positions purpose
opcode 31..26 operation code

rs 25..21 left operand (or memory address)
rt 20..16 destination (or right operand)

immediate 15..0 right operand (or displacement)

Figure 4.2: Immediate Format (I) is used for immediate instructions such as
andi, compare instructions such as beq, and memory reference instructions
such as lw. The diagram shows the bit positions for each field. A description of
each field is shown in the table.

J format instructions are used for j (jump) and jal (jump and link) in-
structions. This is the simplest instruction format - it consists of only two fields,
the operation code and the jump address. The format is shown in Fig 4.3.

4.1.1 Introduction to the Instruction Formats

It is important to understand the relationship between the size of a field in an
instruction, and the number of different values which can be stored in that field.
In a 1-bit field there can be only two values: 0 or 1. In a 2-bit field there can be
four values: 0, 1, 2, or 3. In general an n-bit field can store 2n different values.

The opcode field in the instruction formats is always 6 bits in length. This
means we can have 26 = 64 different instructions. R format instructions allow
for an expanded opcode through the use of the function field, which is an addi-
tional 6 bits, allowing for an additional 64 instructions for each of the R format
instructions.

The register fields, rs, rt, and rd are always 5 bits in length, allowing for
25 = 32 different values; hence these fields can specify any one of the 32 registers,
which are numbered 0 through 31.1

In designing an instruction set architecture, the widths of the fields in an
instruction has an impact on the overal design of the CPU.2 For example, since

1The correspondence between these register numbers and the register names was presented
in Fig 3.1.

2Conversely, the design of the CPU has an impact on the fields widths in an instruction.



4.1. INSTRUCTION FORMATS 147

J Format

opcode
31 26

address
25 0

field name bit positions purpose
opcode 31..26 operation code

address e 25..0 jump address

Figure 4.3: Jump Format (J) is used for unconditional jump instructions, such
as j and jal. The diagram shows the bit positions for each field. A description
of each field is shown in the table.

the width of the register fields in a MIPS instruction is always 5 bits, the CPU
cannot have more than 32 general registers.3

4.1.2 Exercises

1. Explain why the shamt field in an R format shift instruction is 5 bits in
length.

2. A constant may be specified in the immediate field of an I format instruc-
tion. Assuming the constant represents an integer in twos complement
representation,

(a) What is the maximum value of the constant in an addi machine
language instruction?

(b) What is the minimum value of the constant in an addi machine
language instruction?

3. You are given a MIPS instruction in binary:

001101 11001 00000 01010 00111 001111

(a) What is the value, in binary, of the opcode field?

(b) Assuming this is an R format instruction,

i. What is the value, in binary or decimal, of the rs field?

ii. What is the name of the register specified in the rd field?

3Conversely, since the CPU has 32 general registers, the register fields in an instruction
need not be more than 5 bits.



148 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

op
11 9

left
8 6

right
5 3

dest
2 0

Figure 4.4: Instruction format for a hypothetical machine. The fields left,
right, and dest specify registers.

iii. If this is a shift instruction, how many bit positions s are to be
shifted?

(c) Assuming this is an I format instruction,

i. What is the name of the register specified by the rt field?

ii. What is the value, in decimal or hexadecimal, of the immediate
field?

iii. Is the immediate field positive, negative, or zero?

(d) Assuming this is a J format instruction, what is the value, in hex-
adecimal, of the address field?

4. A hypothetical architecture has:

• 64 general registers

• 16 different instructions

• Instructions which have two operands, both of which are registers.

Show a diagram, similar to Fig 4.1 of a possible instruction format for this
machine.

5. An instruction format for a hypothetical machine is given in Fig 4.4.

(a) How many different instructions (i.e. different opcodes) could this
machine have?

(b) How many general registers could this machine have? Assume the
left, right, and destination fields specify register numbers.

4.2 Showing Binary Fields

In what follows we will often have a need to expose a machine language instruc-
tion in its raw form. While we could do this in binary (as in the exercises in
the previous section) it may be more palatable to show the various fields of an
instruction in hexadecimal.

This will be somewhat complicated by the fact that a hex digit represents
4 bits, but fields need not be a multiple of 4 bits. As we have seen, some fields
are 5 bits and some are 6 bits in length. Hence we need to agree on how these
are to be displayed in hexadecimal.



4.2. SHOWING BINARY FIELDS 149

The convention which is normally followed for a field with a length not a
multiple of 4, is to work from right to left (low order bit to high order bit),
grouping the bits into groups of four. The remaining bits at the high order end
can still be represented by a hex digit which may not correspond to four bits.

As an example we take binary value 01001011010. In groups of four, we
have 010 0101 1010 which is 25a in hexadecimal. Note that the 2 represents
only 3 bits, whereas each of the other hex digit represents 4 bits.

Another example: starting with the 9 bit value 111111111 we have
1 1111 1111 which is 1ff in hex.

We also will be interested in the opposite transformation: given an instruc-
tion in hexadecimal, find the values of the fields (in hex or decimal). For exam-
ple, if we have the 32-bit instruction given in hexadeximal as ba0af863 which
can be written binary as:
1011 1010 0000 1010 1111 1000 1100 0011. If this is an R format instruc-
tion we can regroup the fields as:

101110 10000 01010 11111 00011 000011

opcode rs rt rd shamt funct

We have decoded the instruction as:

• opcode = 2ex = 46

• rs = 10x = 16

• rt = 0ax = 10

• rd = 1fx = 31

• shamt = 03x = 3

• funct = 03x = 3

4.2.1 Exercises

1. Show each of the following binary fields in hexadecimal. Do not convert
to decimal; rather, group the bits into groups of 4 bits.

(a) 10111

(b) 101010101010110

(c) 110000110110

2. Show each of the following hex values, with an associated field size, in
binary. Do not convert to decimal; rather, treat each hex digit as repre-
senting 4 or fewer bits.

(a) 3fb Field size = 10 bits

(b) 3fb Field size = 11 bits



150 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

(c) 009c Field size = 13 bits

3. Given the hexadecimal instruction, 4f3cffab. (This is a hypothetical
instruction, i.e. it is not a true MIPS instruction.)

(a) Assume this is an R format instruction.

i. Show the value of the opcode field in hexadecimal.

ii. Show the name of the register specified by the rs field.

iii. Show the name of the register specified by the rt field.

iv. Show the name of the register specified by the rd field.

v. Show the shift amount in decimal.

vi. Show the value of the function field in hexadecimal.

(b) Assume this is an I format instruction.

i. Show the value of the opcode field in hexadecimal.

ii. Show the name of the register specified by the rs field.

iii. Show the name of the register specified by the rt field.

iv. Show the value of the immediate field as four hexadecimal digits.

v. Show the value of the immediate field in decimal (It might be
negative).

(c) Assume this is a J format instruction.

i. Show the value of the opcode field in hexadecimal.

ii. Show the value of the jump address in hexadecimal.

4.3 Pseudo Operations

In chapter 3 we discussed a few assembly language operations which do not
correspond to any machine language instructions. These operations are called
pseudo-operations, or pseudo-ops. When the assembler encounters a pseudo-
op, it translates it to one or more actual machine instructions which serve an
identical function. These pseudo-ops are provided simply for the convenience
of the programmer, and are not essential to the MIPS architecture. We will
discuss a few of them here, and others in a later section.

4.3.1 Load Immediate

The purpose of the li (load immediate) instruction is to store a particular
value into a register. However, there is no machine language instruction for li.
Instead the assembler will substitue a different instruction which does the same
thing, such as addi with a second operand of register $0.4

For example, if you use the following instruction:
li $t0, 3 # put 3 into $t0

4MARS actually uses addiu which we have not discussed; it avoids the possibility of an
overflow exception.



4.3. PSEUDO OPERATIONS 151

the assembler will substitute:
addi $t0, $0, 3

It has the same result - register $t0 will be loaded with the value 3.

4.3.2 Move

The move operation in assembly language has no corresponding instruction in
machine language; it is a pseudo-op. The assembler will replace each move

operation with an equivalent add instruction, in which one of the operands is
register $0.5

For example, if you use the following instruction:
move $t0, $t3 # move $t3 into $t0

the assembler will substitute:
add $t0, $0, $t3

It accomplishes the desired result - the value in register $t3 will be stored into
register $t0.

As with all pseudo-ops, move was not included in the MIPS architecture
because it is not essential - but the assembler provides it as a convenience for
the programmer.

4.3.3 Not

The logical not operation introduced in chapter 3 is actually a pseudo-op. The
assembler translates the not operation to a machine language nor instruction
in which one of the operands is register $0. The logical identity applied here is:
∼ x =∼ (x ∨ 0).

For example, if the assembly language statement is:
not $v0, $a0 # $v0 = complement of $a0

then the assembler will translate it to:
nor $v0, $a0, $0

This accomplishes the desired result.

4.3.4 Load Address

The la (load address) operation discussed in chapter 3 is actually a pseudo-op.
The purpose of the la operation is to load a memory address into a register.
When the operand is given explicitly, the assembler could translate it to an addi

instruction using the displacement as the immediate operand.6

For example, if the assembly language statement is:
la $t0, 19($t1) # address in $t1 with offset 19

then the assembler could translate this to:
addi $t0, $t1, 19

5MARS actually uses addu which we have not discussed; it avoids the possibility of an
overflow exception.

6MARS would actually translate this to an ori instruction followed by an add instruction.



152 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

The la operation is used more typically with a symbolic memory address;
this will be covered below in the section on symbolic memory references.

4.3.5 Other Pseudo Operations

MARS provides many more pseudo-ops, not discussed here. Many of them
involve relaxed requirements on operands. For example, an add instruction can
be given an immediate operand!

add $t0, $t1, 100 # $t0 = $t1 + 100

The assembler translates it to:
addi $t0, $t1, 100

Even more impressive, is the capability of using large constants in an im-
mediate operation. As we have seen, the length of the immediate field is 16
bits, which would allow for a maximum positive value of 215 − 1 = 32, 767.
The MARS assembler will allow larger constant values, as long as they fit in 32
bits. It will do this by translating an immediate operation to a lui (load upper
immediate) operation followed by an ori (or immediate) operation followed by
an add operation.

As an example, we choose the constant value 65,539 which is 10003 in hex-
adecimal; it clearly will not fit in 16 bits. Nevertheless, MARS will permit it to
be used as an immediate operand, as shown below:

addi $t0, $t1, 65539 # $t0 = $t1 + 65,539

The MARS assembler will translate this statement to the following three state-
ments:

lui $at, 0x0001 # $at = 0x0001 0000

ori $at, $at, 0x0003 # $at = 0x0001 0003

add $t0, $t1, $at # $t0 = $t1 + 0x0001 0003

We note the following about this translation:

• This example makes use of the $at (assembler temporary) register which
is register 1. This register is normally reserved for use by the assembler.
The programmer who attempts to use this register for temporary storage
is asking for trouble.

• The three instructions which achieve the desired result are:

1. The constant value, 0x00010003, is split into two halves. The high
order half, 0x0001, is put into the high order half of register $at by
the lui instruction.

2. The low order half of the constant, 0x0003, is placed in the low order
half of the $at register, without disturbing the high order half of that
register. This is done with the ori instruction. The $at register is
now storing the full constant, 0x00010003.

3. The addition can now be done with an add instruction, using the $at
register as an operand.



4.4. R FORMAT INSTRUCTIONS 153

We have presented only some of the pseudo-ops provided by MARS. For a
complete list see the Help menu provided with your MARS software.

4.3.6 Exercises

1. The following assembly language statements all use pseudo operations.
Show equivalent statements from the MIPS instruction set. Use the $at
register if temporary storage is needed.

(a) li $v1, -23

(b) move $s3, $t8

(c) not $t1, $t0

(d) la $t4, 12($a0)

(e) ori $t1, $t1, 65537

2. The move pseudo-op is normally translated into an add instruction. Show
another way to implement the move psuedo-op, without using any form of
an add instruction. Use the example:

move $s3, $t8

4.4 R Format Instructions

In this section we expose several R format instructions in machine language.
These instructions typically have two operand registers ($rs and $rt) and a
destination register ($rd). The shift instructions are also included here.

4.4.1 Add and Subtract Instructions

The add and subtract instructions use the rs and rt fields to specify the left
and right operands, respectively. The rd field is used to specify the destination
register for the result. Both add and subtract make use of the expanded opcodes
(i.e. the function code). They ignore the shift amount (shamt). Both of these
instructions have an opcode of 0, but are distinguished by the function code:
20x for add, and 22x for subtract. These instructions are summarized in Fig 4.5.

Note that the order of the fields is different in machine language, as compared
with assembly language. In assembly language we coded the destination register
first, followed by the two operand registers.
add $rd, $rs, $rt # $rd = $rs + $rt

However, the $rd register is placed last in machine language, as shown in an
earlier section.

Taking the two examples from Fig 4.5, we can now construct the 32-bit
instruction, in three steps.

Starting with the first example:
add $a1, $v1, $0



154 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

function ignored
Instruction opcode code fields Example

add $rd, $rs, $rt 00x 20x shamt add $a1, $v1, $0

$rs $rt $rd

03 00 05

sub $rd, $rs, $rt 00x 22x shamt sub $t0, $t1, $t2

$rs $rt $rd

09 0a 08

Figure 4.5: Machine language for add and subtract instructions

1. Show the fields in binary:

000000

opcode
31 26

00011

rs
25 21

00000

rt
20 16

00101

rd
15 11

?????

shamt
10 6

100000

funct
5 0

Here we show the shamt field with question marks. The add instruction
ignores this field, so it really doesn’t matter what value is in that field.
This is sometimes called a don’t-care value.

2. Group the bits into groups of 4, as shown below.

0000 0000 0110 0000 0010 1??? ??10 0000

3. Convert to hexadecimal to get a more concise version of the machine
language instruction. In doing so, we will assume all the don’t-care values
are zeros.

00 60 28 20

The second example from Fig 4.5 is:
sub $t0, $t1, $t2

1. Show the fields in binary:

000000

opcode
31 26

01001

rs
25 21

01010

rt
20 16

01000

rd
15 11

?????

shamt
10 6

100010

funct
5 0

Again we show the shamt field as a don’t care (i.e. question marks) because
the sub instruction ignores this field.

2. Group the bits into groups of 4, as shown below.

0000 0001 0010 1010 0100 0??? ??10 0010



4.4. R FORMAT INSTRUCTIONS 155

function ignored
Instruction opcode code fields Example

and $rd, $rs, $rt 00x 24x shamt and $a1, $v1, $0

$rs $rt $rd

03 00 05

or $rd, $rs, $rt 00x 25x shamt or $t0, $t1, $t2

$rs $rt $rd

09 0a 08

xor $rd, $rs, $rt 00x 26x shamt xor $at, $ra, $a0

$rs $rt $rd

1f 10 01

nor $rd, $rs, $rt 00x 27x shamt nor $t0, $t1, $t2

$rs $rt $rd

09 0a 08

Figure 4.6: Machine language for the logical instructions and, or, xor, nor

3. Convert to hexadecimal to get a more concise version of the machine
language instruction. In doing so, we will assume all the don’t-care values
are zeros.

01 2a 40 22

The student should verify both of these results by assembling the source state-
ments with MARS to view the corresponding machine language instructions in
hexadecimal.

4.4.2 Logical Instructions

In this section we discuss the logical instructions And, Or, Nor, and Exclusive
Or, in machine language. Except for a different function code, they are identical
to the add and sub instructions.

The Nor instruction is logically a composition of two operations, Or and
Not. The name of this instruction, Nor, is derived from Not Or :
x Nor y = ∼ (x ∨ y)
It is an R format instruction, as in the example below:
nor $a0, $t0, $t1 # $a0 = $t0 nor $t1

These logical instructions are shown in Fig 4.6. We will take the xor example,
and translate to machine language using the same three steps that were used in
the previous section:
xor $at, $ra, $a0

1. Show the fields in binary:



156 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

000000

opcode
31 26

11111

rs
25 21

00100

rt
20 16

00001

rd
15 11

?????

shamt
10 6

100110

funct
5 0

Again we show the shamt field as a don’t care (i.e. question marks) because
the logical R format instructions ignore this field.

2. Group the bits into groups of 4, as shown below.

0000 0011 1110 0100 0000 1??? ??10 0110

3. Convert to hexadecimal to get a more concise version of the machine
language instruction. In doing so, we will assume all the don’t-care values
are zeros.

03 e4 08 26

The unary Not operation was covered in chapter 3 but it is actually a pseudo-
operation making use of the identity:
∼ x = x Nor 0
The assembler will translate a Not statement into a Nor instruction in machine
language; the second operand will be register $0. As an example, we take:
not $v1, $t9 # $v1 = ~ $t9

For this example there will be an additional step to translate the not statement
to an equivalent nor statement.

1. Translate to an equivalent nor statement:
nor $v1, $t9, $0 # ~ $t9 = $t9 nor 0

2. Show the fields in binary:

000000

opcode
31 26

11001

rs
25 21

00000

rt
20 16

00011

rd
15 11

?????

shamt
10 6

100111

funct
5 0

3. Group the bits into groups of 4, as shown below.

0000 0011 0010 0000 0001 1??? ??10 0111

4. Convert to hexadecimal to get a more concise version of the machine
language instruction. In doing so, we will assume all the don’t-care values
are zeros.

03 20 18 27



4.4. R FORMAT INSTRUCTIONS 157

function ignored
Instruction opcode code fields Example
srl $rd, $rt, shamt 00x 02x rs srl $a1, $v1, 17

shift right logical $rt $rd shamt

03 05 11

sll $rd, $rt, shamt 00x 00x rs sll $t0, $t0, 12

shift left logical $rt $rd shamt

08 08 0c

sra $rd, $rt, shamt 00x 03x rs sra $sp, $s0, 2

shift right arithmetic $rt $rd shamt

10 1d 02

Figure 4.7: Machine language for shift instructions

4.4.3 Shift Instructions

In this section we discuss the left and right shift instructions which were in-
troduced in chapter 3. There are two logical shift instructions: sll (shift left
logical) and srl (shift right logical). There is one arithmetic shift instruction,
which preserves the sign of the number by propagating the high order bit: sra

(shift right arithmetic).

Fig 4.7 shows the shift instructions. Since they are all R format instructions,
they are similar to the previous instructions in this section. Note, however, that
unlike the arithmetic and logical instructions, the shift instructions make use of
the shamt field (number of bits to be shifted) and ignore the $rs field.

We take the sra example from that figure to translate to machine language:
sra $sp, $s0, 2

1. Show the fields in binary:

000000

opcode
31 26

?????

rs
25 21

10000

rt
20 16

11101

rd
15 11

00010

shamt
10 6

000011

funct
5 0

2. Group the bits into groups of 4 as shown below.

0000 00?? ???1 0000 1110 1000 1000 0011

3. Convert to hexadecimal to get a more concise version of the machine
language instruction. In doing so, we will assume all the don’t-care values
are zeros.

00 10 e8 83



158 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

function ignored
Instruction opcode code fields Example

mult $rs, $rt 00x 18x $rd mult $t0, $t1

shamt $rs $rt

08 09

div $rs, $rt 00x 1ax $rd div $a0, $a3

shamt $rs $rt

04 07

Figure 4.8: Machine language for multiply and divide instructions

4.4.4 Multiply and Divide Instructions

To conclude the section on R format instructions we consider the multiply and
divide instructions. Since these instructions both put their results into the lo

and hi registers, they ignore the $rd field, in addition to ignoring the shamt

field. Fig 4.8 shows the machine language formats for multiply and divide.
As an example we take the divide instruction from that figure, and translate

to machine language:
div $a0, $a3

1. Show the fields in binary:

000000

opcode
31 26

00100

rs
25 21

00111

rt
20 16

?????

rd
15 11

?????

shamt
10 6

011010

funct
5 0

2. Group the bits into groups of 4 as shown below.

0000 0000 1000 0111 ???? ???? ??01 1010

3. Convert to hexadecimal to get a more concise version of the machine
language instruction. In doing so, we will assume all the don’t-care values
are zeros.

00 87 00 1a

4.4.5 Jump Register

The jr (Jump Register) instruction discussed in chapter 3 is an R format in-
struction. It has one operand, the register containing the memory address of
the instruction to be executed next, in the rs field. The rt, rd, shamt fields
are ignored, as shown in Fig 4.9

The example in Fig 4.9 is jr $ra which we now translate to machine
language in three steps:



4.4. R FORMAT INSTRUCTIONS 159

function ignored
Instruction opcode code fields Example

jr $rs 00x 08x rt jr $ra

rd $rs

shamt 31

Figure 4.9: Machine language for jr (Jump Register) instruction

1. Show the fields in binary:

000000

opcode
31 26

11111

rs
25 21

?????

rt
20 16

?????

rd
15 11

?????

shamt
10 6

001000

funct
5 0

2. Group the bits into groups of 4 as shown below.

0000 0011 111? ???? ???? ???? ??00 1000

3. Convert to hexadecimal to get a more concise version of the machine
language instruction. In doing so, we will assume all the don’t-care values
are zeros.

03 e0 00 08

This concludes our discussion of the R format instructions in machine lan-
guage. Note that there are other R format instructions in the MIPS instruction
set, but they will be described either in subsequent chapters or in the appendix.
Also, there is an R format instruction, Set if Less Than which will be discussed
in connection with conditional branch instructions in a subsequent section.

4.4.6 Exercises

1. Translate the following assembly language statements to machine language
instructions. In each case, show your solution in hexadecimal.

(a) add $v0, $t0, $t1

(b) or $ra, $v0, $s1

(c) not $t3, $a3

(d) sll $v1, $a0, 25

(e) mult $a1, $s7

(f) jr $a3

2. Translate each of the following machine language instructions to an equiv-
alent assembly language statement. Note that some of the information
provided should be ignored.



160 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

(a) 00 0a 4c c2

(b) 00 85 11 20

(c) 00 a8 20 27

(d) 00 e2 ff 18

4.5 I Format Instructions

The I format (immediate) instructions have many varied uses:

• Instructions which use a constant as an operand

• Memory reference instructions

• Conditional branch instructions

These instructions may ignore one or more fields in the I format, which we will
point out.

4.5.1 Immediate instructions using constants

In chapter 3 we discussed several operations which involve a constant operand
as part of the instruction. These included:

• addi (add immediate)

• Logical operations

– andi (and immediate)

– ori (or immediate)

– xori (exclusive or immediate)

– lui (load upper immediate)

These will all be translated to machine language the same way. Fig 4.10
shows the machine language formats for these instructions. Note that although
the destination operand, register rt, is first in assembly language, it is not first
in machine language.

As an example we use the following:
xori $a1, $a3, 1000

As in the previous section, we will use three steps to translate this assembly
language statement to machine language.

1. We show the opcode and register fields in binary, but we find it easier to
show the immediate field in hex:

001110

opcode
31 26

00111

rs
25 21

00101

rt
20 16

03e8

immediate
15 0



4.5. I FORMAT INSTRUCTIONS 161

ignored
Instruction opcode fields Example
addi $rt, $rs, imm 08x addi $a1, $v1, 27

$rs $rt imm

03 05 001b

andi $rt, $rs, imm 0cx andi $t0, $t1, -3

$rs $rt imm

09 08 fffd

ori $rt, $rs, imm 0dx ori $t0, $0, 0

$rs $rt imm

00 08 0000

xori $rt, $rs, imm 0ex xori $a3, $a1, 1000

$rs $rt imm

05 07 03e8

lui $rt, imm 0fx $rs lui $a3, 0x1001

$rt imm

07 1001

Figure 4.10: Machine language formats for instructions which use the immediate
field for a constant operand

2. Group the binary fields into groups of 4:
0011 1000 1110 0101 03e8

3. Convert the binary fields to hexadecimal:
38 e5 03 e8

4.5.2 Memory Reference Instructions

Memory reference instructions enable the CPU to store information in main
memory and retrieve information from main memory; these instructions are
vital to software development. In the MIPS architecture the memory reference
instructions are I (immediate) format instructions.

The two memory reference instructions which were discussed in chapter 3
were lw (load word) and sw (store word). In this section we cover assembly
language statements with an explicit (i.e. non-symbolic) memory address.

For both the lw and the sw instructions, the rs operand is assumed to
contain a memory address, and the immediate field is assumed to be an offset
to, or displacement from, that address. The immediate field is twos complement
representation, and consequently could be negative.

Fig 4.11 shows the format for both memory reference instructions. We take
the second instruction from Fig 4.11 for an example of translation to machine
language:

sw $t0, -24($a1)

Again, we have a three step process:



162 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

ignored
Instruction opcode fields Example

lw $rt, imm($rs) 23x lw $a1, 12($a0)

$rs $rt imm

04 05 000c

sw $rt, imm($rs) 2bx sw $t0, -24($a1)

$rs $rt imm

05 08 ffe8

Figure 4.11: Machine language formats for memory reference instructions with
explicit addressing

1. We show the opcode and register fields in binary, but we find it easier to
show the immediate field in hex:

101011

opcode
31 26

00101

rs
25 21

01000

rt
20 16

ffe8

immediate
15 0

2. Group the binary fields into groups of 4:
1010 1100 1010 1000 ffe8

3. Convert the binary fields to hexadecimal:
ac a8 ff e8

4.5.3 Memory Reference - Symbolic

Memory reference instructions often make use of symbolic addresses. A lw or
sw instruction can refer to a label on a word in the data section. In this section
we will see how such a memory reference can be translated to machine language.

First, we must understand what the assembler does with the values in the
data section. These are the values which come after a .data directive. There
can be several such directives in a program, but all the data values are placed in
one memory area. The MARS assembler places all data in memory sequentially,
beginning at memory address 0x10010000.

For example, the following statements:

.data

salary: .word 300

neg: .word -1

name: .asciiz "harry"

negByte: .byte -1

zero: .word 0, 12



4.5. I FORMAT INSTRUCTIONS 163

would cause the assembler to initialize memory as shown below:

1001000016 00 00 01 2c ff ff ff ff 72 72 61 68 00 ff 00 79

1001001016 00 00 00 00 00 00 00 0c

The labels in the data section have values corresponding to their memory
addresses:

salary = 0x10010000

neg = 0x10010004

name = 0x10010008

negByte = 0x1001000e

zero = 0x10010010

We make a few observations on this memory diagram:

• The memory area begins at address 0x10010000.

• The characters of the string ”harry” appear to be reversed in a memory
word. The ascii codes, in hexadecimal are: ’h’ = 68, ’a’ = 61, ’r’ = 72, ’y’
= 79. Thus the byte addresses begin with the low order byte on the right:
0x10010007, 0x10010006, 0x10010005, 0x10010004, in that order.

• A data value declared with the .word directive is a twos complement inte-
ger aligned on a full word boundary. This means that its hex address must
end with a 0, 4, 8, or c. Thus the variable zero does not begin immediately
after negByte; it begins at the next full word boundary, 0x10010010.

• The .byte directive is similar to .word, except it allocates a one-byte
integer, rather than a full word.

We can now explain memory references with symbolic addresses. Since
the assembler placed the data values in a specific memory area, beginning at
0x10010000, and the assembler knows the address represented by each label,
the assembler is able to calculate on offset from the start of the memory area
to any given label’s address.

For example, the label name corresponds to address 0x10010008. Therefore
its offset from the start of the memory area is 8 bytes.

Load word and store word

The assembler will convert a memory reference (lw or sw) with symbolic ad-
dresses to two machine language instructions:

1. A lui (load upper immediate) instruction to load the high order half word
of the address into the $at (assembler temporary) register.



164 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

2. A lw (or sw) instruction, addressing the memory location explicitly using
the address in the $at register, with an offset which brings the effective
address to the desired location.

If we were to refer to the data labeled by name, for example, the offset would
be 0x0008. If we have 0x1001 in the high order 16 bits of register $at, then the
data can be accessed at the explicit address:

0x0008($at)

The effective address will be 8 + 0x10010000 = 0x10010008, which is the
memory address represented by the label name.

For another example, we will translate the instruction
lw $a3, zero

to hexadecimal machine language. We do this in three steps:

1. Convert the lw statement to two statements:
lui $at, 0x1001

lw $a3, 16($at)

2. Translate each statement to hexadecimal machine language in three steps.
First the lui statement:

(a) Here we show all fields in binary:

001111

opcode
31 26

?????

rs
25 21

00001

rt
20 16

0001 0000 0000 0001

immediate
15 0

(b) Group the binary fields into groups of 4, treating don’t cares as zeros:
0011 1100 0000 0001 0001 0000 0000 0001

(c) Convert the binary fields to hexadecimal:
3c 01 10 01

3. For the lw statement, we use the same three steps:

(a) First we show all fields in binary:

100011

opcode
31 26

00001

rs
25 21

00111

rt
20 16

0000 0000 0001 0000

immediate
15 0

(b) Group the binary fields into groups of 4:
1000 1100 0010 0111 0000 0000 0001 0000



4.5. I FORMAT INSTRUCTIONS 165

(c) Convert the binary fields to hexadecimal:
8c 27 00 10

Thus the assembly language statement
lw $a3, zero

will be translated to the two machine language instructions:

3c011001

8c270010

Load address

Recall from chapter 3 that the load address instruction (it is actually a pseudo
op) is used to put the memory address of a data value into a register. This
instruction is most often used with a symbolic address. Using the same data
values given above, we translate the following instruction to machine language.

la $a3, negByte # $t0 = address of negByte

We do this in three steps:

1. Convert the la statement to two statements:
lui $at, 0x1001

ori $a3, $at, 0x000e

2. Translate each statement to hexadecimal machine language in three steps.
First the lui statement:

(a) Here we show all fields in binary:

001111

opcode
31 26

?????

rs
25 21

00001

rt
20 16

0001 0000 0000 0001

immediate
15 0

(b) Group the binary fields into groups of 4, treating don’t cares as zeros:
0011 1100 0000 0001 0001 0000 0000 0001

(c) Convert the binary fields to hexadecimal:
3c 01 10 01

3. For the ori statement, we use the same three steps:

(a) First we show all fields in binary:

001101

opcode
31 26

00001

rs
25 21

00111

rt
20 16

0000 0000 0000 1110

immediate
15 0



166 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

(b) Group the binary fields into groups of 4:
0011 0100 0010 0111 0000 0000 0000 1110

(c) Convert the binary fields to hexadecimal:
34 27 00 0e

Thus the assembly language statement
la $a3, negByte

will be translated to the two machine language instructions:

3c011001

3427000e

4.5.4 Conditional Branches

In chapter 3 we learned of six conditional branch instructions:

• beq - branch if equal

• bne - branch if not equal

• blt - branch if less than

• ble - branch if less than or equal to

• bgt - branch if greater than

• bge - branch if greater than or equal to

The operands always consist of two registers, and a label on some other state-
ment in the program, which is the destination for the branch. In each case the
branch statement would compare the values in two registers, and transfer con-
trol to the statement with the given label if the comparison is true; otherwise,
control would ‘fall through’ to the next statement.

Only the first two of these branch instructions beq and bne are actually
MIPS instructions. The other four are pseudo-ops! The four pseudo-ops can all
be implemented using a combination of the slt (Set if Less Than) instruction
and either beq or bne.

We’ll begin by discussing the actual instructions first, then we’ll handle
the pseudo-ops. The branch statements always branch to a location which is
some number of instructions before or after the instruction following the branch
instruction. This is what we call a branch to a relative address.

Since all instructions are full words, they will always be located on full word
boudaries, i.e. the address of every instruction will end with 002. This means
that the field storing relative branch address can drop the last two bits! In other
words, the branch instruction will store the number of words rather than the
number of bytes in the immediate field. Also, for reasons to be explained in
chapter 7, the branch is relative to the instruction after the branch instruction.

For example, if there is a branch instruction at memory address 0x00400030,
then a branch to relative address +3 would branch to the instruction which is



4.5. I FORMAT INSTRUCTIONS 167

ignored
Instruction opcode fields Example

beq $rs, $rt, imm 04x a: beq $t0, $t1, forward

$rs $rt imm

$t0 $t1 0003

bne $rs, $rt, imm 05x b: bne $t3, $t2, start

$rs $rt imm

$t3 $t2 fff8

Figure 4.12: Machine language formats for actual MIPS branch instructions

3 instructions after the instruction after the branch instruction. This would
be a branch to the instruction at address 0x00400040. A branch instruction at
address 0x0040030 with a relative branch address of -4 would be a branch to
the instruction which is 3 instructions prior to the branch instruction; it would
be at address 0x0400024.

The branch instructions are I (immediate) format instructions. The two
registers being compared are in the rs and rt fields of the instruction. The
relative address is a twos complement value in the immediate field of the branch
instruction. The branch instructions are described more formally in Fig 4.12.

The labels shown in Fig 4.12 are taken from the following example:

.text

start: # Beginning of text area

li $t0, 0

li $t1, 1

a: beq $t0, $t1, forward # forward branch

li $t2, 2

li $t3, 3

li $t4, 4

forward:

li $t5, 5

b: bne $t3, $t2, start # backward branch

li $t6, 6

Note in Fig 4.12. that branch (beq)to forward is three instructions after the
li $t2, 2 instruction. Also the branch (bne)to start is eight instructions prior
to the li $t6, 6 instruction.

Translating the bne instruction to machine language, we use the same three
steps used previously:
b: bne $t3, $t2, start

1. We show the opcode and register fields in binary, but we find it easier to
show the immediate field in hex (-8 = 0xfff8):



168 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

function ignored
Instruction opcode code fields Example

slt $rd, $rs, $rt 00x 2ax shamt slt $v0, $a1, $a0

$rs $rt $rd

05 04 02

Figure 4.13: Machine language for the ‘set if less than’ instruction

000101

opcode
31 26

0101l

rs
25 21

01010

rt
20 16

fff8

immediate
15 0

2. Group the binary fields into groups of 4:
0001 0101 0110 1010 fff8

3. Convert the binary fields to hexadecimal:
15 6a ff f8

Set if less than

Before discussing the four pseudo-ops, we must return to an R format instruction
- slt (Set if Less Than), first covered in chapter 3. Its purpose is to compare
two registers; if the first is less than the second, it will put 1 into the destination
register, otherwise it will put 0 into the destination register. The format of the
slt instruction is shown in Fig 4.13.

We now translate the example in Fig 4.13 below in three steps:
slt $v0, $a1, $a0

1. Show the fields in binary:

000000

opcode
31 26

00101

rs
25 21

00100

rt
20 16

00010

rd
15 11

?????

shamt
10 6

101010

funct
5 0

2. Group the bits into groups of four, assuming don’t cares are zeros, as
shown below.

0000 0000 1010 0100 0001 0??? ??10 1010

3. Show the instruction in hexadecimal:
00 a4 10 2a



4.5. I FORMAT INSTRUCTIONS 169

Next we discuss the implementation of the four pseudo-ops separately (in
each case, the registers being compared are called $rs and $rt; the destination
for the branch is called dest):

• blt $rs, $rt, dest # branch if less than

1. Compare the two registers using slt, storing the result in the $at
register:

slt $at, $rs, $rt # $rs < $rt ?

2. Branch if the result is 1:
bne $at, $0, dest # branch if not 0

• ble $rs, $rt, dest # branch if less than or equal

Here we make use of the identities: a ≤ b =∼ a > b and a > b = b < a.

1. Compare the two registers using slt but reverse the operands, stor-
ing the result in the $at register:

slt $at, $rt, $rs # $rt < $rs ?

2. Branch if the result is not 1:
beq $at, $0, dest # branch if 0

• bgt $rs, $rt, dest # branch if greater than

Here we make use of the identity a > b = b < a.

1. Compare the two registers using slt but reverse the operands, stor-
ing the result in the $at register:

slt $at, $rt, $rs # $rt < $rs ?

2. Branch if the result is 1:
bne $at, $0, dest # branch if not 0

• bge $rs, $rt, dest # branch if greater than or equal

Here we make use of the identity a ≥ b =∼ a < b.

1. Compare the two registers using slt but reverse the operands, stor-
ing the result in the $at register:

slt $at, $rs, $rt # $rs < $rt ?

2. Branch if the result is not 1:
beq $at, $0, dest # branch if 0

Fig 4.14 summarizes the implementation of the four branch pseudo-ops.

Before taking an example, we must be very careful when counting the in-
structions before or after a branch; some of the statements might be psuedo-ops
which expand to two or more MIPS instructions!

We take the following example to translate a branch pseudo-op to machine
language:



170 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

Instruction slt branch
blt rs, rt, dest slt $at, rs, rt bne $at, $0, dest

ble rs, rt, dest slt $at, rt, rs beq $at, $0, dest

bgt rs, rt, dest slt $at, rt, rs bne $at, $0, dest

bge rs, rt, dest slt $at, rs, rt beq $at, $0, dest

Figure 4.14: Implementation of the four branch pseudo-ops

bgt $a0, $t0, done # branch to done if $a0 > $t0

li $t0, 0

lw $t1, x # two instructions!

done:

sub $t3, $t4, $t5

Here we will translate only the branch instruction to machine language:
bgt $a0, $t0, done

First we expand the branch pseudo-op to two instructions:

slt $at, $t0, $a0

bne $at, $0, 3 # branch forward 3 instructions

Next we translate each instruction to machine language in three steps. The slt

(R format) instruction is translated below:

1. We show the fields in binary, with don’t cares shown as question marks.

000000

opcode
31 26

01000

rs
25 21

00100

rt
20 16

00001

rd
15 11

?????

shamt
10 6

101010

funct
5 0

2. Group the binary fields into groups of 4, assuming don’t cares are zeros:
0000 0001 0000 0100 0000 1000 0010 1010

3. Convert the binary fields to hexadecimal:
01 04 08 2a

Next we translate the bne instruction:

1. We show the opcode and register fields in binary, but we find it easier to
show the immediate field in hex:

000101

opcode
31 26

0000l

rs
25 21

00000

rt
20 16

0003

immediate
15 0



4.5. I FORMAT INSTRUCTIONS 171

2. Group the binary fields into groups of 4:
0001 0100 0010 0000

3. Convert the binary fields to hexadecimal:
14 20 00 03

The two machine language instructions resulting from the conditional branch
are:

0104082a

14200003

A final word of caution is in order here. When branching across another
branch instruction, and calculating the relative address, be careful. If branching
across a beq or bne, count it as one instruction. But if branching across any of
the four branch pseudo-ops, count it as two instructions.

4.5.5 Exercises

In these exercises assume the text begins at location 0x00400000.

1. Translate each of the following instructions to machine language:

(a) xori $v0, $a3, 0xffff

(b) addi $ra, $ra, -8

(c) lw $s0, 4($sp)

2. Given the program shown below:

.text

start:

lw $a0, parm

addi $t0, $t0, 64

ble $t0, $s0, done

sw $t0, x

bne $t0, $t1, start

bgt $a0, $a1, start

done:

.data

x: .word 7

parm: .word 3

(a) Show a diagram of the data in memory, with hexadecimal address(es).

(b) Translate the lw instruction to hexadecimal machine language.

(c) Translate the addi instruction to hexadecimal machine language.

(d) Translate the ble instruction to hexadecimal machine language.

(e) Translate the sw instruction to hexadecimal machine language.



172 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

Instruction opcode Example
j dest 02x j foo

address

0x0010007
jal dest 03x jal foo

address

0x0010007

Figure 4.15: Machine language for j (Jump) and jal (Jump And Link) instruc-
tions. In the example foo labels the instruction at location 0x0040001c

(f) Translate the bne instruction to hexadecimal machine language.

(g) Translate the bgt instruction to hexadecimal machine language.

3. Given the following hexadecimal machine language program, translate it
to assembly language (there could be many correct solutions):7

38 e2 ff ff

23 ff ff f8

3c 01 10 01

8c 30 00 04

4.6 J Format Instructions

As discussed in chapter 3 the jump instructions are used for unconditional trans-
fer of control. The MIPS architecture has two such instructions, j (Jump) and
jal (Jump And Link)8 which are described in Fig 4.15

The J format has two fields:

• opcode - 6 bits

• jump address - 26 bits

The jump address is an absolute address, unlike the address in a branch instruc-
tion, which is a relative address. Since the memory is byte addressable, and all
instructions are one word (4 bytes) in length, the low order two bits in an in-
struction address will always be 00. For this reason the address in the address
field omits the two low order bits. For example, if a jump to the instruction at
memory location 0x0040204c is desired, the address field should store the 26 bit
value 0x0100813. There are two ways to arrive at this:

• 1. Divide by 4:
0x0040204c / 4 = 0x00100813

7Translating from machine language to assembly language is called disassembling or reverse

engineering ; hackers and security analysts often do it.
8The jr (Jump Register) instruction is R format, and was discussed earlier in this chapter.



4.6. J FORMAT INSTRUCTIONS 173

2. Take the low order 26 bits (the first hex digit represents two bits):
0x0100813

• 1. Write out the bits of the full address:
0000 0000 0100 0000 0010 0000 0100 1100

2. Shift right, two bits:
0000 0000 0001 0000 0000 1000 0001 0011

3. Take the low order 26 bits:
00 0001 0000 0000 1000 0001 0011

4. Write in hex (the first hex digit represents 2 bits):
0x0100813

We are now ready to translate a jump instruction to machine language. Here
is the example, beginning at memory location 0x00400000:

start:

j done

li $t0, 3

add $t0, $t1, $t4

done:

jr $ra

We wish to translate the j done statement to machine language. This can
be done in four steps:

1. Find the 26-bit jump address:
done labels the instruction at location 0x0040000c. Dividing by 4 and
taking the low order 26 bits we get 0100003.

2. Show the fields in binary:

000010

opcode
31 26

00000100000000000000000011

address
25 0

3. Group the bits into groups of 4:

0000 1000 0001 0000 0000 0000 0000 0011

4. Convert to hexadecimal to get a more concise version of the machine
language instruction.

08 10 00 03



174 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

4.6.1 Exercises

1. Given the program shown below, translate the j lp statement to ma-
chine language. Assume the starting location is 0x00400000.

start:

add $t0, $a0, $0

sub $t1, $a1, $a2

lp:

bne $t0, $0, done

addi $t0, $t0, -1

xori $t3, $t3, 0xffff

j lp

done:

2. Given the program shown below, translate the jal fn statement to
machine language. Assume the starting location is 0x00400000.

start:

jal fn # call the function

bne $t0, $0, done

addi $t0, $t0, -1

done:

jr $ra

fn:

addi $t3, $t3, 5

jr $ra

3. Translate the program shown below to machine language. Assume the
starting location is 0x00400000.

start:

li $t3, 7

li $t4, 12

lp:

bne $t3, $t4, done

jal function

addi $t3, $t3, 1

j lp

done:

jr $ra

function:

addi $sp, $sp, 4

mult $a0, $a1

mflo $t0

jr $ra



4.7. FLOATING POINT DATA REPRESENTATION 175

1 2 . 0 5 3

101 100 10−1 10−2 10−3

Figure 4.16: Decimal representation of the number 12.053

4.7 Floating Point Data Representation

In this section and the following section we will examine floating point data
representation and the floating point instructions at the machine language level.
In order to have a good understanding of the floating point instructions, we will
first need to have a good understanding of floating point data representation.
Once we have accomplished this, we then move on to examine the floating point
instructions in machine language.

In chapter 3 we learned of floating point instructions, but we did not look at
the floating point data in any detail. In our programs we may have had a data
value such as:
pi .float 3.14159

In stepping through a program with MARS the reader may have looked at these
floating point values in the Data Memory, as represented in hexadecimal. At
the time they seemed to bear no resemblance to the values they represent.9 In
this section we will take a careful look at the details of floating point data.

4.7.1 Fixed Point in Binary

The first step is to understand what we call fixed point representation for rational
numbers. In base 10 this would be a number such as 3.14159, but here we are
working in base 2.

Fig 4.16 shows in the form of a diagram the meaning of the value 12.053 in
which the position of each digit represents a power of 10. The positions after
the decimal point represent negative powers of 10, as shown below:

• 101 = 10

• 100 = 1

• 10−1 = 0.1

• 10−2 = 0.01

• 10−3 = 0.001

9MARS has no option to show Data Memory in decimal. The user must view floating point
register contents in coprocessor 1.



176 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

1/16=0.0625
=0.00012

3/16=0.1875
=0.00112

1/8=0.125
=0.0012

5/16=0.5625
=0.01012

7/16=0.4375
=0.01112

3/8=0.375
=0.0112

1/4=0.25=0.012

9/16=0.5625
=0.10012

11/16=0.4375
=0.10112

5/8=0.625
=0.1012

7/8=0.875
=0.111

3/4=0.75=0.112

1/2=0.5=0.12

Figure 4.17: Diagram of fractions using binary fixed point representation

Consequently 12.053 = 10 * 1 + 1*2 + 0.1*0 + 0.01*5 + 0.001*3. Any rational
number can be represented with a repeating pattern of decimal digits.

The table below shows the same concept, in base two.

power of 2 in base 10 in base 2
22 4 1002

21 2 102

20 1 12

2−1 1/2 = 0.5 0.12

2−2 1/4 = 0.25 0.012

2−3 1/8 = 0.125 0.0012

Now that we understand the meaning of places after the binary point, we
can produce the binary fixed point representation for a rational number. For
example, 3/4 = 0.5+0.25 = 0.75 = 0.112 and 3/8 = 1/4+1/8 = 0.375 = 0.0112

A diagram of some binary fixed point numbers is shown in Fig 4.17.

In that diagram we show only values which can be represented with perfect
precision. However, as with decimal numbers, there will be some rational num-
bers for which we do not have an exact representation. For example, 1/3 is not
exactly equal to 0.333333, and no matter how many decimal places we write, it
will never be perfectly accurate.10

In base two, 1/3 could be approximated as follows:

1/3 ≈ 1/4 + 1/16 + 1/64 = 0.0101012

Interestingly there are numbers, such as one tenth, which can be represented
exactly in decimal, but not in binary. This is why we can get apparently strange
results when doing calculations with numbers which are not integers. For ex-
ample, try the following in Java or C++:

if (0.1 + 0.1 + 0.1 == 0.3) ...

10As noted above a repeating sequence of digits can imply a correct representation.



4.7. FLOATING POINT DATA REPRESENTATION 177

Just as any rational number can be represented with repeating decimal digits,
any rational number can be represented in binary with a repeating bit sequence.

4.7.2 IEEE 754 Floating Point Data Representation

Over the years various different floating point representations have been used.
In recent years most architectures, including MIPS have settled on a standard
known as IEEE11 754, which is the one described here.

Before describing this format, we take a look at the exponent notation used in
most high level languages. Avogadro’s number, in chemistry, is approximately
6.02 × 1023. In most high level programming languages it can be written as
6.02e23. There are other, equivalent, ways of writing this number:
6.02e23 = 60.2e22 = 602.0e21 = 0.602e24

There is more than one representation for the same number, but one of them
can be chosen as a preferable representation, or normal form of the number. We
choose the 6.02e23 as the normal form, and in general, we require the normal
form to show one non-zero digit before the decimal point.12.

Note that the exponent can also be negative:
0.0402 = 4.02e-2 = 40.2e-3 = 0.402e-1 = 0.0402e0

Again, we choose the representation with one non-zero digit before the decimal
point, 4.02e-2 as the normal form representation. If we remove the decimal
point from these representations, the part before the e is called the mantissa
and the part after the e is called the exponent. In this example the digits of the
mantissa are 402 and the exponent is -2.

An IEEE 754 (single precision) floating point number is a 32-bit format. It
consists of three parts:

• Sign (1 bit): This is the sign of the number (not to be confused with the
sign of the exponent). 0 represents positive, 1 represents negative.

• Exponent (8 bits): This is an exponent of 2, in excess-127 notation. The
value used for the exponent is the amount by which this (unsigned) field
exceeds 127. For example, if this field is 10000011 = 131, then the expo-
nent is 4, and if this field is 01111000 = 120, then the exponent is -7.

• Fraction (23 bits): The fraction is taken from the normalized mantissa;
imagine a binary point with a single bit, always 1, before the binary point,
and the exponent is adjusted accordingly. Since the high order bit of the
mantissa is always 1, it is not stored as part the fraction!

The number 0.0 is handled as a special case: 0x00000000
A few examples should help to clarify floating point data representation. Our

first example is 5.25 which will be converted to floating point in eight steps:

1. The number is positive so the sign field is 0.

11Institute of Electrical and Electronic Engineers
12we’ll need a special representation for 0.0, such as 0.0e0



178 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

2. Write the absolute value of the number as a fixed-point binary number.
5.25 = 101.012

3. Normalize, so there is a single 1 in front of the binary point.
101.01 = 1.0101× 22

4. The exponent is 2, which is 129 = 10000001 in excess-127 notation

10000001

exp
30 23

5. The mantissa is 1.01012

Obtain the 23-bit fraction by dropping the high order 1 :

01010000000000000000000

fraction
22 0

6. Assemble the three fields in order:

0

sign
00

10000001

exp
30 23

01010000000000000000000

fraction
22 0

7. Group in groups of 4:
0100 0000 1010 1000 0000 0000 0000 000

8. Write in hex, for clarity:
40 a8 00 00

Fig 4.18 shows a few other examples of floating point numbers in IEEE 754
format, specifically 0.375 and -27.0. As you read the table in Fig 4.18, each of
the three examples is in a single row of the table, with the final result labeled
as ‘hex result’.

4.7.3 Exercises

1. Show each of the following decimal numbers in binary fixed point notation.
If the number cannot be represented precisely, show enough binary places
to indicate a repeating sequence of bits after the binary point.

(a) 4 3

4

(b) 13/16

(c) 7.0

(d) 0.1

(e) 13.6



4.8. FLOATING POINT INSTRUCTIONS 179

Number 5.25 fraction 6 101010000000000000000000
sign 0 binary result 0 10000001 01010000000000000000000
normalized 101.012 = 1.0101× 22 group by 4 0100 0000 1010 1000 0000 0000 0000 0000
exponent 127 + 2 = 129 = 100000012 hex result 40a80000
Number 0.375 fraction 6 110000000000000000000000
sign 0 binary result 0 01111101 10000000000000000000000
normalized 0.0112 = 1.1× 2−2 group by 4 0011 1110 1100 0000 0000 0000 0000 0000
exponent 127− 2 = 125 = 011111012 hex result 3ec00000
Number -27.0 fraction 6 110110000000000000000000
sign 1 binary result 1 10000011 10110000000000000000000
normalized 11011.02 = 1.10112 × 24 group by 4 1100 0001 1101 1000 0000 0000 0000 0000
exponent 127 + 4 = 131 = 100000112 hex result c1d80000

Figure 4.18: Examples of IEEE 754 single precision floating point data: 5.25,
0.375, -27.0

2. Show each of the following numbers in IEEE 754 single precision floating
point format. Show your final result in hexadecimal,

(a) 17.0

(b) 13.375

(c) 0.15625

(d) -5.0

(e) 0.0

(f) 3.6

3. (a) Run the following Java or C++ code, and explain why it appears to
behave in an undesirable way:

for (double x = 0.0; x!=1.0; x = x + 0.1)

System.out.println ("x is " + x); // If using Java

cout << "x is " << x << ’\n’; // If using C++

(b) Show a better way to code the following statement:
if (x == 3.1) x = 0.0;

4.8 Floating Point Instructions

We now turn our attention to the machine language instructions which work
with floating point data. The implementation of these instructions is rather
complex. In the early years of computing all floating point arithmetic was done
with software; when the floating point algorithms had reached a good level of
efficiency and accuracy, and the hardware technology had improved, the floating
point instructions were implemented in hardware (circa 1983).



180 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

Instruction opcode (6) fmt (5) funct (6)
add.s $fd, $fs, $ft 11 10 00
sub.s $fd, $fs, $ft 11 10 01
mul.s $fd, $fs, $ft 11 10 02
div.s $fd, $fs, $ft 11 10 03

Figure 4.19: Machine language for floating point instructions (all values are in
hexadecimal)

4.8.1 MIPS Arithmetic Floating Point Instruction For-
mats

There are two floating point instruction formats in the MIPS architectrure: FR
(Floating point Register format) and FI (Floating point Immediate format).
Most floating point instructions are FR format. FI is used only for conditional
branches.

The FR format is shown below:

opcode
31 26

fmt
25 21

ft
20 16

fs
15 11

fd
10 6

funct
5 0

Note that the three register operands are in reverse order, as compared with
assembly language. For example, in the instruction
sub.s $f2, $f4, $f6

the three register operands are fd = $f2, fs = $f4, and ft = $f6. In machine
language the three register operands are ft = $f6, fs = $f4, and fd = $f2. Also
note that there is an expanding opcode with the fields opcode, fmt, and funct

all serving to identify the instruction.
The machine language format for add, subtract, multiply, and divide are

shown in Fig 4.19. The instructions are similar, but differ only in the funct
field.

As an example, we take the same floating point instruction:
sub.s $f2, $f4, $f6

and convert it to machine language in five steps:

1. The opcode, fmt field, and funct field are taken from Fig 4.19.
opcode = 1116

fmt = 1016

funct = 0116

010001

opcode
31 26

10000

fmt
25 21

ft
20 16

fs
15 11

fd
10 6

000001

funct
5 0

2. The register operands are



4.8. FLOATING POINT INSTRUCTIONS 181

ignored
Instruction opcode fields Example

lwc1 $rt, imm($rs) 0x31 lwc1 $f2, 12($a0)

$rs $rt imm

$a0 $f2 000c

swc1 $rt, imm($rs) 0x39 swc1 $f4, -24($a1)

$rs $rt imm

$a1 $f4 ffe8

Figure 4.20: Machine language formats for memory reference instructions for
floating point data (single precision)

ft = $f6, fs = $f4, and fd = $f2.

opcode
31 26

fmt
25 21

00110

ft
20 16

00100

fs
15 11

00010

fd
10 6

funct
5 0

3. We now have the complete instruction in binary

010001

opcode
31 26

10000

fmt
25 21

00110

ft
20 16

00100

fs
15 11

00010

fd
10 6

000001

funct
5 0

4. Grouping in groups of 4 bits, we have:
0100 0110 0000 0110 0010 0000 1000 0001

5. And finally, we show the instruction in hexadecimal
46062081

4.8.2 Floating Point Memory Reference Instruction For-
mats

The load and store instructions for floating point data actually use the I format
(not the FI format), as covered previously. These are the lwc1 (Load Word
Coprocessor 1) and swc1 (Store Word Coprocessor 1) instructions. They are
analogous to the lw and sw instructions, and are summarised in Fig 4.20.

As an example, we translate the following instruction to machine language
in three steps:
swc1 $f12, 8($a0)

1. Show the fields in binary:



182 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

Instruction opcode (6) fmt (5) funct (6) fd (5)
c.eq.s $fs, $ft 11 10 32 ignored
c.lt.s $fs, $ft 11 10 3c ignored
c.le.s $fs, $ft 11 10 3e ignored

Figure 4.21: Machine language for floating point comparison instructions, in
FR format (all values are in hexadecimal)

111001

opcode
31 26

00100

rs
25 21

01100

rt
20 16

0000000000001000

immediate
15 0

2. Group the bits into groups of 4, as shown below.

1110 0100 1000 1100 0000 0000 0000 1000

3. Show the instruction in hexadecimal:
e4 8c 00 08

The lwc1 and swc1 instructions work with symbolic addresses in exactly the
same way as the lw and sw instructions described previously.

4.8.3 Floating Point Conditional Branch Instruction For-
mats

As we saw in chapter 3, conditional branching is significantly different when
comparing floating point values. There is a separate instruction format, FI, for
a floating point conditional branch.

Floating point comparison instructions

But first we will cover the comparison instructions. c.eq.s, c.lt.s, and
c.le.s. These are all FR format instructions, and are shown in Fig 4.21. Note
that these three instructions differ only in the function field. Also note that the
registers are in reverse order in machine language: the $ft register precedes the
$fs register.

As an example, we translate the following instruction to machine language
in three steps:
c.lt.s $f4, $f2

1. Show the fields in binary:

010001

opcode
31 26

10000

fmt
25 21

00010

ft
20 16

00100

fs
15 11

?????

fd
10 6

111100

funct
5 0

The fd field is a don’t care.



4.8. FLOATING POINT INSTRUCTIONS 183

Instruction opcode fmt ft immediate Example
bc1t 0x11 0x08 0x01 0x0018 bc1t 24

Relative branch +24
bc1f 0x11 0x08 0x00 0xffe0 bc1f -32

Relative branch -32

Figure 4.22: Machine language formats for floating point conditional branch
instructions

2. Group the bits into groups of 4, as shown below.

0100 0110 0000 0010 0010 0??? ??11 1100

3. Show the result in hexadecimal, assuming the don’t cares are zeros.
46 02 20 3c

Floating point conditional branch instructions

The floating point conditional branch uses the FI format:

opcode
31 26

fmt
25 21

ft
20 16

immediate
15 0

These instructions make use of the floating point condition code, set by a
floating point compare instruction, as discussed in chapter 3. Fig 4.22 shows
the field values for these instructions in machine language. Note that they differ
only in the ft field.

As an example, we translate the conditional branch instruction, taken from
the code segment shown below, to machine language in five steps:

lp:

add.s $f2, $f4, $f2

mul.s $f6, $f8, $f2

c.lt.s $f6, $f2

bc1f lp

1. Find the immediate field. The lp label is 4 instructions prior to the
branch, so the immediate field is -4 = 0xfffc.

2. Find the other fields (see Fig 4.22).
opcode = 010001
fmt = 01000
ft = 00000

3. Show the instruction in binary (we show the immediate field in hex)



184 CHAPTER 4. MACHINE LANGUAGE FOR MIPS

010001

opcode
31 26

01000

fmt
25 21

00000

ft
20 16

fffc

immediate
15 0

4. Group the binary values in groups of 4 bits:
0100 0101 0000 0000 ff fc

5. Show the result in hex: 45 00 ff fc

4.8.4 Exercises

1. Given the following code:

.text

c.le.s $f6, $f2

bc1t done

sub.s $f12, $f16, $f2

lwc1 $f6, y

sw $t0, x

div.s $f0, $f28, $f2

done:

swc1 $f0, y

.data

x: .float 3.45

y: .float 0

(a) Translate the sub.s instruction to machine language

(b) Translate the div.s instruction to machine language

(c) Translate the lwc1 instruction to machine language

(d) Translate the swc1 instruction to machine language

(e) Translate the c.le.s instruction to machine language

(f) Translate the bc1t instruction to machine language



Chapter 5

A MIPS Assembler

In chapter 4 we have described the purpose of an assembler: to translate an
assembly language program to machine language instructions, and we learned
to perform this translation manually for the MIPS architecture. In this chapter
we will program the assembler, from the ground up. We intend to use MIPS
assembly language to implement our assembler. It may seem problematic to
implement an assembler using the assembly language that we are implementing,
but in fact this is often done in a process known as bootstrapping - we construct
a small version of the assembler, perhaps in machine language, then construct
pregressively larger versions using the assembler already constructed.1

Intitially the input to our assembler will be a series of strings in memory,
such as

"add $2, $3, $4"

"sub $12, $2, $3"

The output will be the binary instructions in memory (shown here in hexadec-
imal):
0064102016

0043602216

In a later stage we may wish to read the input from a source file.
Why are we building an assembler, when we already have a perfectly good

one (i.e. MARS)? Our motivation here is educational. By building an assembler
we will have a better understanding of its workings and of the MIPS architecture
in general.

Our plan is to build the assembler incrementally, in a series of stages, or
versions. We begin with a fairly simple version, with only a few useful features.
Each version will add one or more features to our assembler - a rough outline is
shown below:

1. R format instructions only

1Here we will not be bootstrapping our assembler, as we will be using the MARS assem-
bler/simulator to develop and test it.

185



186 CHAPTER 5. A MIPS ASSEMBLER

(a) No symbolic registers

(b) Include symbolic registers

2. Include I format instructions

(a) Load, store (explicit addresses)

(b) Allow symbolic addresses

(c) Branch instructions

3. Include J format instructions

Working on each version of the assembler, we plan to build low-level sup-
porting functions first, then work our way up to higher-level functions which
make use of the lower-level functions. As we do this, we should test each func-
tion with its own specially designed driver. In most cases we will not show the
driver in order to conserve space in the text.

To avoid name conflicts we will append the name of the function to the name
of each label, as described in chapter 3.

In what follows we will use the word statement to refer to one line of assembly
language (which could be a pseudo-op), and we will use the word instruction to
refer to a full-word machine language instruction. One statement could result
in one or more instructions.

5.1 Version 1 - R Format Instructions Only

In this section we will implement R format instructions, implementing a few
common arithmetic and logical instructions (it should be clear how to include
other R format instructions).

5.1.1 Version 1a - No Symbolic Registers

We begin by allowing assembly language statements with explicit register num-
bers, but no register names. Instead of

add $v0, $v1, $t0

we require the register numbers:
add $2, $3, $8

skipCommaWhite

Note that in an assembly language statement the mnemonic is separated from
the operands by one or more spaces and/or tab characters (we call this white
space2 because that is what it looks like when printed on white paper). Note also
that the operands are separated from each other by commas and possibly white
space. The MARS assembler does not require the use of commas, i.e. white

2For our purposes here we exclude newline characters from white space.



5.1. VERSION 1 - R FORMAT INSTRUCTIONS ONLY 187

space can be used interchangeably with commas, and we will take the same
approach. Thus the above statement could conceivably (but not advisably) be
written as:

add,$2 $3,, , $8

Thus the first, lowest-level function, will be a function which scans a string
from a given starting point until it finds a character which is neither white
space nor comma (i.e. neither space nor tab nor comma). We call this function
skipCommaWhite.

This function is shown in Fig 5.1. Note that the API for this function
specifies that register $a0 points to a character in a statement (the start point
for the scan). The post conditions are (1) register $a0 points to the first non-
white, non-comma character found and (2) register $v0 is unchanged. The
skipCommaWhite function uses local data to store the space, tab, and comma
characters, which are loaded into registers $t1, $t2, and $t3, respectively. In
the body of the loop it checks a character from the given string for one of these
delimiters, terminating if not found. In order to satisfy the post condition, it
decrements the pointer in $a0 when finished. This function does not need to
save any registers because it does not use any s registers, and it does not call
any functions (which would clobber the $ra register).

As we develop our assembler incrementally, it is important that we test each
function as it is developed. For this purpose we should develop a driver for each
function that we develop.3 The sole purpose of the driver is to test a specific
function. A driver for the skipCommaWhite function is shown in Fig 5.2.

To run the driver, we could copy and paste the skipCommaWhite function
into the file containing the driver. However, that would give us two identical
copies of skipCommaWhite. This is not a good idea - if we ever need to make a
change to this function, we would need to make the change in each copy. For
this reason, duplicated code should be avoided whenever possible.

The MARS assembler provides a way of avoiding duplicated code; it is the
include directive. The operand is a file name, and the code from that file
is included as the assembler processes the current source file. The include

directive is after the syscall termination statement in Fig 5.2.

strcmp

We next turn our attention to the mnemonic in a statement. As noted in
chapter 3 the mnemonic represents the operation to be performed. For example
in the statement

add $2, $3, $8

the mnemonic is add. As our assembler encounters a mnemonic in a statement,
we will need to determine which operation it represents. To do this we will use
a table of valid mnemonics, and compare against the entries in the table. In
chapter 3 we devloped a function to compare strings, strcmp, but unfortunately
it assumed the strings were terminated with null bytes. We will have to modify

3In most cases we leave the driver as an exercise.



188 CHAPTER 5. A MIPS ASSEMBLER

################### skipCommaWhite function begin ####################

# Pre: $a0 points to a char in a statement

# Post: $a0 contains address of first non-white and non-comma byte encountered

# $vo is unchanged

### local data

.data

space_skipCommaWhite: .asciiz " "

tab_skipCommaWhite: .asciiz "\t"

comma_skipCommaWhite: .asciiz ","

.text

skipCommaWhite:

lbu $t1, space_skipCommaWhite

lbu $t2, tab_skipCommaWhite

lbu $t3, comma_skipCommaWhite

lp_skipCommaWhite:

lbu $t0, 0($a0) # load byte from input string

addi $a0, $a0, 1

beq $t0, $t1, lp_skipCommaWhite # check for space

beq $t0, $t2, lp_skipCommaWhite # check for tab

beq $t0, $t3, lp_skipCommaWhite # check for comma

done_skipCommaWhite:

addi $a0, $a0, -1

jr $ra

######################## skipCommaWhite function end ##################

Figure 5.1: Function to scan past white space and commas in a statement



5.1. VERSION 1 - R FORMAT INSTRUCTIONS ONLY 189

# Test a function which reads past white space in a string

## Local data

.data

input: .asciiz " , , abc "

.word -1

result: .byte 0

.text

main:

la $a0, input # address of first byte in string

jal skipCommaWhite

lbu $t0, 0($a0) # should be non-white char

sb $t0, result # should be ’a’

li $v0, 10 # terminate the test

syscall

.include "skipCommaWhite.asm"

Figure 5.2: Driver to test the skipCommaWhite function

that function to use it here, because the strings we are comparing could be
terminated with white space or commas.

The modified version of strcmp is shown in Fig 5.3. Note that we load
the space and tab characters into registers $t2 and $t3, respectively. Then,
in the loop, we load a character from the first string into register $t0 and
the corresponding character from the second string into register $t1. After
subtracting these characters, we know that if the result is not zero, the strings
could not be equal, and we terminate the function. If we reach the end of both
strings on the same iteration of the loop, then we know the strings are equal.

The driver for strcmp should test several cases:

• The strings are equal, with identical terminating characters

• The strings are equal, with different terminating characters

• The strings are not equal

• The strings are not equal, but one string is a prefix of the other string,
e.g. “add” and “addi”

memonic

In the mnemonic function, the assembler scans the mnemonic in the state-
ment, locates that mnemonic in a table of mnemonics, and starts to con-



190 CHAPTER 5. A MIPS ASSEMBLER

################### strCmp function begin ####################

# Pre: $a0 contains address of first source string

# $a1 contains address of second source string

# both strings terminated with a space or tab char!

#

# Post: Return in v0:

# Zero if equal

#### local data

.data

space_strCmp: .asciiz " "

tab_strCmp: .asciiz " "

.text

strcmp:

lb $t2, space_strCmp

lb $t3, tab_strCmp

lp_strCmp:

lb $t0, 0($a0) # load byte from src1

lb $t1, 0($a1) # load byte from src2

sub $v0, $t0, $t1 # v0 = t0 - t1

bne $v0, $0, unequal_strCmp

beq $t0, $t2, done_strCmp # space or tab?

beq $t0, $t3, done_strCmp

# Advance to next byte of each string

addi $a0, $a0, 1 # Go to next of src1

addi $a1, $a1, 1 # Go to next byte of src2

j lp_strCmp # repeat the loop

unequal_strCmp:

beq $t0, $t2, white0_strCmp

beq $t0, $t3, white0_strCmp

j done_strCmp

white0_strCmp:

beq $t1, $t2, white1_strCmp

beq $t1, $t3, white1_strCmp

j done_strCmp

white1_strCmp:

move $v0, $0 # Strings are equal

done_strCmp:

jr $ra # return

######################## strCmp function end ##################

Figure 5.3: Function to compare strings for equality. The strings are terminated
by white space or a comma



5.1. VERSION 1 - R FORMAT INSTRUCTIONS ONLY 191

struct the machine language instruction. Once the mnemonic is recognized,
we know the machine language opcode and function code. The name of the
table is ops mnemonic, and each entry consists of a 7-character string (for the
mnemonic) and a full word for the instruction, with an opcode and function
code. For example, the first entry is "add ". It is directly followed by the
hexadecimal word 0x00000020, which is a machine language add instruction
(opcode=0, function code=20). The table contains a few mnemonics which are
not R format instructions; they will be used in the next version of the assembler,
and they will be tested after we include I format instructions in the next version
of the assembler.

The mnemonic function is shown in Figs 5.4 and 5.5 The API specifies that
register $a0 contains the memory address of the statement, and register $a1
contains the memory address for the resulting machine language instruction. At
this point (version 1) labels are not permitted in a statement, so the mnemonic

function calls skipCommaWhite to arrive at the mnemonic. It then enters a loop
in which it compares the mnemonic in the statement with the mnemonics in the
table. If it finds the desired mnemonic, it fills in the instruction from the table.
If it finds the statement end it sets a return code of 0. If it does not find the
mnemonic in the table, it sets a negative return code, indicating an error has
occurred.

The mnemonic function makes use of several s registers, which must be
saved to (and reloaded from) the runtime stack, in additon to the $ra register.
Also this function includes the strcmp function because strcmp is called from
mnemonic. However, mnemonic also calls skipCommaWhite.

At this point we have the makings of a machine language instruction, with
an opcode and function code. All that needs to be done is fill in the three
register operands.

parseInt and isNumeric

In order to fill in the register operands, we will need to scan the register numbers
in the statement, remembering that they are numeric characters, and convert
each of them to a 5-bit binary field in the instruction. For example, in the
statement

add $3, $31, $21

the three operands (in binary) are
00011, 11111, and 10101. This is called parsing a number. To perform this
task we use a low-level function named parseInt, which is shown in Fig 5.6.

The parseInt function uses a loop to take a numeric character, subtract
the code for the character ’0’, and multiply by 10. For example, if the string is
”21”, it sees the ’2’ first. Subtracting, ’2’ - ’0’ we get a binary 2. This is then
multiplied by 10, to produce 20, and we are ready for the next character on the
next iteration of the loop.

The parseInt function expects the numeric string to be terminated by some
non-numeric character. We use a separate function, isNumeric for this purpose.
This function is shown in Fig 5.7.



192 CHAPTER 5. A MIPS ASSEMBLER

###################### mnemonic function begin ##########################

# Pre:

# Register $a0 contains address of assemb stmt.

# Register $a1 contains address of instruction.

# Mnemonic ’end ’ indicates end of source program text

# Other parts of instruction have not yet been filled in.

#

# Post:

# Instruction opcode and function code are initialized.

# Return register $v0=0 => no error, instruction initialized

# $v0 > 0 => end of program

# $v0 < 0 => mnemonic not found in table.

# Register $a0 will contain address of first non-white char after mnemonic

# $a1 is unchanged

###### local data for mnemonic

.data

ops_mnemonic:

.asciiz "add " # mnemonic

.word 0x00000020 # opCode, function.

.asciiz "sub "

.word 0x00000022

.asciiz "and "

.word 0x00000024

.asciiz "or "

.word 0x00000025

.asciiz "slt "

.word 0x0000002a

.asciiz "beq "

.word 0x10000000 # opCode = 4 (shift left 2 bits)

.asciiz "bne "

.word 0x14000000 # opCode = 5

.asciiz "j "

.word 0x08000000 # opCode = 2

.asciiz "end "

.word -1

opsEnd_mnemonic:

.text

mnemonic:

addi $sp, $sp, -20

sw $s0, 0($sp)

sw $s1, 4($sp)

sw $s2, 8($sp)

sw $s3, 12($sp)

sw $ra, 16($sp)

move $s3, $a1 # address of instruction

Figure 5.4: Function to search a table for a mnemonic from the assembly lan-
guage statement, and initialize the machine language instruction with an opcode
and a function code (continued in Fig 5.5)



5.1. VERSION 1 - R FORMAT INSTRUCTIONS ONLY 193

move $s3, $a1 # address of instruction

la $s1, opsEnd_mnemonic # end of mnemonic data below

jal skipCommaWhite

move $s0, $a0 # address of mnemonic

la $a1, ops_mnemonic # address of ops data below

move $s2, $a1 # address of ops data below

lp_mnemonic:

bge $a1, $s1, error_mnemonic

move $a0, $s0 # address of mnemonic

jal strcmp

addi $s2, $s2, 12 # next op

move $a1, $s2

bne $v0, $0 lp_mnemonic

# Found the mnemonic, or end

lw $t0, -4($s2) # instruction

addi $t1, $0, -1 # -1 => end of program

beq $t0, $t1, end_mnemonic

sw $t0, 0($s3) # found the mnemonic

jal skipCommaWhite

move $v0, $0

j done_mnemonic

end_mnemonic:

addi $v0, $0, 1 # end of program

j done_mnemonic

error_mnemonic:

addi $v0, $0, -1

done_mnemonic:

move $a1, $s3

lw $ra, 16($sp)

lw $s3, 12($sp)

lw $s2, 8($sp)

lw $s1, 4($sp)

lw $s0, 0($sp)

addi $sp, $sp, 20

jr $ra

.text

##################### mnemonic function end #######################

.include "strcmp.asm"

Figure 5.5: Function to search a table for a mnemonic from the assembly lan-
guage statement, and initialize the machine language instruction with an opcode
and a function code (continued from Fig 5.4)



194 CHAPTER 5. A MIPS ASSEMBLER

################################ function parseInt #######

# Pre: address of numeric string is in $a0

# its length is not 0.

# string is terminated by a non-numeric char.

# Post: $v0 contains the resulting int

# $a0 points to next char after the numerics.

## Local data

.data

zero_parseInt: .asciiz "0"

ten_parseInt: .word 10

.text

parseInt:

addi $sp, $sp, -16

sw $ra, 0($sp) # push return address onto stack

sw $s0, 4($sp)

sw $s1, 8($sp)

sw $s2, 12($sp)

li $s0, 0 # accumulate result

lw $s1, ten_parseInt # a1 = 10

lbu $s2, zero_parseInt

lp_parseInt:

lbu $a1, 0($a0) # load byte from nums

jal isNumeric

beq $v0, $zero, done_parseInt

mult $s0, $s1 #result = result * 10

mflo $s0

sub $t1, $a1, $s2 # t1 = byte - ’0’

add $s0, $s0, $t1 # result = result + int value of char

addi $a0, $a0, 1 # next char

j lp_parseInt # repeat the loop

done_parseInt:

move $v0, $s0

lw $ra, 0($sp) # pop return address from stack

lw $ra, 0($sp) # push return address onto stack

lw $s0, 4($sp)

lw $s1, 8($sp)

lw $s2, 12($sp)

addi $sp, $sp, 16

jr $ra

####################### end function parseInt #############

.include "isNumeric.asm"

Figure 5.6: Function to parse a numeric string, producing a 5-bit binary field



5.1. VERSION 1 - R FORMAT INSTRUCTIONS ONLY 195

###################### Function isNumeric

# Function to test for numeric char

# Pre: $a1 contains the char in low order byte

# Post: $v0 = 1 if numeric, else $v0 = 0

## Local data

.data

zero_isNumeric: .asciiz "0"

nine_isNumeric: .asciiz "9"

###################################### End isNumeric function

.text

isNumeric:

addi $sp, $sp, -4

sw $ra, 0($sp)

li $v0, 0

lbu $t0, zero_isNumeric

blt $a1, $t0, done_isNumeric # too small

lbu $t0, nine_isNumeric

bgt $a1, $t0, done_isNumeric # too big

li $v0, 1 # char is numeric

done_isNumeric:

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

###################################### End isNumeric function

.text

Figure 5.7: Function to determine whether a given character is numeric, ’0’..’9’



196 CHAPTER 5. A MIPS ASSEMBLER

###################### reg function begin ##########################

# Pre:

# Register $a0 contains address of reg number in assemb stmt.

# Register number is one or two decimal digits.

#

# Post:

# Return register number in $v0

# $v0<0 => error

# $a0 points to char after last digit of register number

reg:

addi $sp, $sp, -4

sw $ra, 0($sp)

jal parseInt

li $t0, 32

blt $v0, $t0, done_reg # check for valid reg number

li $v0, -1

done_reg:

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

###################### reg function end ##########################

.include "parseInt.s"

Figure 5.8: Function to scan a register number in a statement, and obtain its
binary value

reg

We are now ready to process a register number in a statement. The function reg,
shown in Fig 5.8, will accept the address of the register number in a statement,
and return the register number, in binary, in register $v0. Thus, if the statement
is

add $31, $20, $20

and register $a0 points to the ’3’ then the binary value, 31, will be returned in
register $v0.

operand

We next consider a function to process a register operand in an R format state-
ment. The operand could be any of the three operands: RD, RS, or RT. One of
the inputs to the function will determine which of the three operands is being
processed. The operand function will convert the register number to binary,
and place it in the correct field of the instruction.



5.1. VERSION 1 - R FORMAT INSTRUCTIONS ONLY 197

This function is shown in Figs 5.9 and 5.10, in which the API specifies a
code in register $a2 to specify which operand is being processed. This code is
actually a shift amount, to place the operand in the correct field of the machine
language instruction. For example, if we are processing the RT register, then
$a2 will contain 16. This is used to shift the register number 16 bits left, which
is where it is to be placed in the instruction. To do this we use a variable
shift instruction, sllv, in which the third operand is a register containing the
number of bits to be shifted. Once it has been shifted it can be ORed into the
instruction.

operandRD, operandRS, lineEnd, and operandRT

We now turn our attention to the functions which place a register operand into
the instruction. There are three such functions, one for each of the operands,
RD, RS, and RT. Since the RT operand comes last in the statement, we will
also need function to check for the end of a line - lineEnd.

The operandRD function is shown in Fig 5.11. It calls the operand function,
with the shift amount, 11, in register $a2, which will place the operand into bits
11..15 of the instruction. It then calls the function skipCommaWhite to move to
the next operand in the statement.

The operandRS function is similar to the operandRD function; the only dif-
ference is that it uses a shift amount of 21 rather than 11, in order to place the
operand into bits 21..25 of the instruction.

The operandRT function is similar to the two previous functions, but after
processing the RT operand, the assembler should scan to the end of the line,
in preparation for the next statement (we are assuming at this point that there
are no comments to be scanned). Thus instead of calling the skipCommaWhite

function we call the function lineEnd, shown in Fig 5.13, which scans to the
start of the next line. The operandRT function is shown in Fig 5.12. If the
assembly language program is a sequence of strings in memory, each statement
is terminated by a null byte. However, if the program is a sequence of lines in a
text file, each line is terminated by a newline character. Our lineEnd function
will handle either of these cases.

asm

Finally, we have all the tools we need to process an assembly language statement,
and produce the machine language instruction (for a limited subset of the MIPS
architecture). We call this function asm, for assembler.

The asm function is shown in Fig 5.14. This function is fairly short; all the
real work is done in other functions which are called by this function, specifically:

1. Call the mnemonic function to process the mnemonic

2. Call the operandRD function to process the RD operand

3. Call the operandRS function to process the RS operand



198 CHAPTER 5. A MIPS ASSEMBLER

###################### operand function begin ##########################

# Pre:

# Register $a0 contains address of $regNumber in assemb stmt.

# Register $a1 contains address of instruction.

# Register $a2 contains shift amount, to place register address in instr

# rs: shamt = 21

# rt: shamt = 16

# rd: shamt = 11

#

# Post:

# Return register $v0=address of syntax error

# $v0=0 => no error

# rd, rs, or rt register entered in instruction

# Register $a0 will contain address of first non-white char after reg

# $a1 is unchanged

### local data

.data

dollar_operand: .asciiz "$"

.text

operand:

addi $sp, $sp, -12

sw $s0, 0($sp)

sw $s1, 4($sp)

sw $ra, 8($sp)

lbu $t0, dollar_operand # ’$’

lbu $t1, 0($a0) # address of ’$’ in statement

bne $t0, $t1, error_operand

Figure 5.9: Function to place an operand (i.e. register number) into the machine
language instruction (continued in Fig 5.10)



5.1. VERSION 1 - R FORMAT INSTRUCTIONS ONLY 199

move $s0, $a1 # address of instruction

move $s1, $a2 # shift amount

addi $a0, $a0, 1 # address of reg number

jal reg # get reg number

blt $v0, $0, error_operand

sllv $v0, $v0, $s1 # shift to appropriate field

lw $t0, 0($s0) # instruction

or $t0, $t0, $v0 # rd into instruction

sw $t0, 0($s0) # save instruction

jal skipCommaWhite

move $v0, $0

j done_operand

error_operand:

move $v0, $a0

done_operand:

move $a1, $s0

lw $s0, 0($sp)

lw $s1, 4($sp)

lw $ra, 8($sp)

addi $sp, $sp, 12

jr $ra

.text

########## operand function end ########################################

.include "reg.s"

.include "skipCommaWhite.s"

Figure 5.10: Function to place an operand (i.e. register number) into the ma-
chine language instruction (continued from Fig 5.9)



200 CHAPTER 5. A MIPS ASSEMBLER

###################### operandRD function begin ##########################

# Pre:

# Register $a0 contains address of $rd reg in assemb stmt.

# Register $a1 contains address of instruction.

#

# Post:

# Return register $v0=address of syntax error

# $v0=0 => no error

# RD register entered in instruction

# Register $a0 will contain address of first non-white char after reg

# $a1 is unchanged

operandRD:

addi $sp, $sp, -4

sw $ra, 0($sp)

move $s0, $a1

li $a2, 11 # shift amount for rd

jal operand

bne $v0, $0, error_operandRD

jal skipCommaWhite

beq $v0, $0, done_operandRD

error_operandRD:

move $v0, $a0

done_operandRD:

move $a1, $s0

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

########## operandRD function end ########################################

.include "operand.asm"

Figure 5.11: Function to place the RD operand (i.e. register number) into the
machine language instruction



5.1. VERSION 1 - R FORMAT INSTRUCTIONS ONLY 201

###################### operandRT function begin ##########################

# Pre:

# Register $a0 contains address of $rt reg in assemb stmt.

# Register $a1 contains address of instruction.

#

# Post:

# Return register $v0=0 => no error

# RT register entered in instruction

# Register $a0 will contain address of next statement

operandRT:

addi $sp, $sp, -8

sw $s0, 0($sp)

sw $ra, 4($sp)

move $s0, $a1

addi $a2, $0, 16 # shift amount for rt

jal operand

bne $v0, $0, error_operandRT

jal lineEnd # scan to next statement

j done_operandRT

error_operandRT:

move $v0, $a0

done_operandRT:

move $a1, $s0

lw $s0, 0($sp)

lw $ra, 4($sp)

addi $sp, $sp, 8

jr $ra

########## operandRT function end ########################################

.include "lineEnd.s"

Figure 5.12: Function to place the RT operand (i.e. register number) into the
machine language instruction and scan to the beginning of the next statement



202 CHAPTER 5. A MIPS ASSEMBLER

################### lineEnd function begin ####################

# Pre: $a0 contains address of current position in the statement

# after all operands have been scanned. Remainder of

# stmt should be white space

# Each stmt ends with null byte or newline char

# Post: $a0 contains address of first byte in next statement

# v0 is neg => error, non whitespace encountered before end

# v0 is 0 => ok, proceed to next stmt

.data

newline_lineEnd: .ascii "\n"

.text

lineEnd:

addi $sp, $sp, -4

sw $ra, 0($sp)

jal skipCommaWhite

li $v0, 0

lbu $t0, 0($a0) # load byte from input string

beq $t0, $zero, done_lineEnd # null byte, end of stms

lbu $t1, newline_lineEnd

beq $t0, $t1, done_lineEnd # newline character, end of stmt

li $v0, -1 # error, some nonwhite char after operands

done_lineEnd:

addi $a0, $a0, 1

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

######################## lineEnd function end ##################

.text

Figure 5.13: Function to scan to the end of a line, to the start of the next
statement in the assembly language program



5.1. VERSION 1 - R FORMAT INSTRUCTIONS ONLY 203

4. Call the operandRT function to process the RT operand

The program repeats the above sequence once for each statement in the assembly
language program.

We also show a driver for the asm function; this will tell us whether our as-
sembler is working correctly. The driver is shown in Fig 5.15. In the driver there
are four statements after the syscall statement which terminates the program.
Since there are no labels on those four statements, they can never be reached
during execution. Nevertheless they will be useful. They are the same four
statements which we have placed in memory at the label input asmDriver. We
can then compare the machine language instructions produced by our assembler
with the instructions produced by MARS, at the end of the driver.

At this point we emphasize the fact that the assembler function, asm, is
relatively short and simple, because it simply calls other functions, none of
which is excessively long or complex. This exposes a few important principles
of software engineering:

• Use many small and simple components (functions in this case) as opposed
to a few large and complex components.

• Design the low-level components appropriately so as to simplify the im-
plementation of higher-level components.

• Be sure that the interfaces4 are appropriate, and are clearly documented
in the API for each component.

5.1.2 Version 1b - Allow Symbolic Registers

In what we have done thus far, we are restricting the assembly language state-
mens to use register numbers, such as $1, $8, $31, only. Register names, such
as $at, $t0, and $ra have not been allowed. In version 1b of the assembler we
accommodate the register names, i.e. symbolic registers, and translate them
into the appropriate register numbers.

To accommodate register names, we will need to search a table of register
names for the name provided in the statement. This is best done in the reg

function, shown in Figs 5.16 and 5.17, in which the table shows all 32 register
names, in order. When searching the table in a loop, the loop counter will
give us the appropriate register number. Note that the reg function still needs
to accommodate register numbers; to do this it calls isNumeric to determine
whether the character after the dollar sign is a numeric character.

We can now modify the driver shown in Fig 5.15 to include register names
in a statement, for example:

add $v0, $v1, $a0

4By interface here we mean the pre and post conditions for a function.



204 CHAPTER 5. A MIPS ASSEMBLER

###################### asm function begin ##########################

# Translate lines of assembly language to machine code.

# Version 1a. (See Driver for specs)

# Pre: $a0 contains the memory address of the first line of asm code

# Last asm statement followed by -1.

# $a1 contains memory address for output.

# Post: $v0<0 => syntax error

# $a0 will contain address of error

asm:

addi $sp, $sp, -4

sw $ra, 0($sp)

lp_asm:

jal mnemonic

bne $v0, $0, done_asm # end of source program

jal operandRD

bne $v0, 0, done_asm

jal operandRS

bne $v0, 0, done_asm

jal operandRT

bne $v0, 0, done_asm

addi $a1, $a1, 4 # next instruction

blt $v0, $0, done_asm # error

beq $v0, $0, lp_asm

done_asm:

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

##################### asm function end #######################

.include "mnemonic.asm"

.include "operandRD.asm"

.include "operandRS.asm"

.include "operandRT.asm"

Figure 5.14: Function to scan an assembly language program and create the
corresponding machine language program (version 1a)



5.1. VERSION 1 - R FORMAT INSTRUCTIONS ONLY 205

# testing assembler

# version 1a: R format instructions only (no shift)

# No symbolic memory addresses

# No symbolic register addresses

# ’end’ mnemonic terminates input

# Limited error checking

# No comments nor Pseudo-ops

.data

input_asmDriver:

.asciiz " add $2,$3,$4 "

.asciiz " sub $12, $2, $3"

.asciiz " and $9, $10,$11"

.asciiz " or $21, $22, $23 "

.asciiz " end "

output_asmDriver:

.word 0, 0, 0, 0

returnCode: .word -1

.text

main:

la $a0, input_asmDriver

la $a1, output_asmDriver

jal asm

sw $v0, returnCode

li $v0, 10

syscall

add $2,$3,$4

sub $12, $2, $3

and $9, $10, $11

or $21, $22, $23

.include "asm.s"

Figure 5.15: Driver to test the asm function (version 1a)



206 CHAPTER 5. A MIPS ASSEMBLER

###################### reg function begin ##########################

# Pre:

# Modified for version 1b. Permit symbolic registers.

# Register $a0 contains address of reg number or reg name in assemb stmt.

#

# Post:

# Return register number in $v0

# $v0<0 => error

# $a0 points to char after last char of register number or name

# $a1 points to instr being written out

.data

.word -1

regNames_reg: .asciiz "zero "

.asciiz "at "

.asciiz "v0 "

.asciiz "v1 "

.asciiz "a0 "

.asciiz "a1 "

.asciiz "a2 "

.asciiz "a3 "

.asciiz "t0 "

.asciiz "t1 "

.asciiz "t2 "

.asciiz "t3 "

.asciiz "t4 "

.asciiz "t5 "

.asciiz "t6 "

.asciiz "t7 "

.asciiz "s0 "

.asciiz "s1 "

.asciiz "s2 "

.asciiz "s3 "

.asciiz "s4 "

.asciiz "s5 "

.asciiz "s6 "

.asciiz "s7 "

.asciiz "t8 "

.asciiz "t9 "

.asciiz "k0 "

.asciiz "k1 "

.asciiz "gp "

.asciiz "sp "

.asciiz "fp "

.asciiz "ra "

regNamesEnd_reg: .word -1

.asciiz ""

Figure 5.16: Function to scan a register name or number in a statement, and
obtain its binary value (continued in Fig 5.17)



5.1. VERSION 1 - R FORMAT INSTRUCTIONS ONLY 207

.text

reg:

addi $sp, $sp, -20

sw $ra, 0($sp)

sw $s0, 4($sp)

sw $s1, 8($sp)

sw $s2, 12($sp)

sw $s3, 16($sp)

move $s3, $a1 # copy of pointer to instr

lbu $a1, 0($a0) # first char of reg num or name

jal isNumeric

bne $v0, $zero, num_reg

# reg is specified by a name

la $a1, regNames_reg # First word in table

move $s0, $a1 # First word in table

la $s1, regNamesEnd_reg

move $s2, $a0

lp_reg:

bge $s0, $s1, error_reg # end of table?

jal strcmp # Reg name found in table?

beq $v0, $zero, foundName_reg

addi $s0, $s0, 8 # Next row of table

move $a1, $s0

move $a0, $s2

j lp_reg

error_reg:

li $v0, -1 # error code

j done_reg

foundName_reg:

la $t0, regNames_reg

sub $v0, $s0, $t0 # bytes into the table

srl $v0, $v0, 3 # 8 bytes per row

j done_reg

num_reg:

jal parseInt

li $t0, 31

bgt $v0, $t0, error_reg # reg number should be 0..31

done_reg:

move $a1, $s3 # reload address of instr

lw $ra, 0($sp)

lw $s0, 4($sp)

lw $s1, 8($sp)

lw $s2, 12($sp)

lw $s3, 16($sp)

addi $sp, $sp, 20

jr $ra

###################### reg function end ##########################

.include "parseInt.asm"

Figure 5.17: Function to scan a register name or number in a statement, and
obtain its binary value (continued from Fig 5.16)



208 CHAPTER 5. A MIPS ASSEMBLER

asm

mnemonic opRD opRS opRT

strcmp operand lineEnd

skipCommaWhite reg

parseInt

isNumeric

Figure 5.18: Call graph for version 1a of the assembler. Solid arrows represent
a function call, with an .include directive. Dashed arrows represent function
calls with no .include directive. operandRD, operandRS, and operandRT have
been abbreviated to save space.

5.1.3 Include Directives

Most of the functions we have seen have used .include directives at the bottom
to include source code from other files, typically for functions which are being
called. As we mentioned earlier, we need to be careful not to include the same
source file twice - this will give us multiply defined symbols, i.e. the same
symbol defined twice. For example, the operandRS function calls the operand

function; however, it would be a mistake for the operandRS function to include
the operand function. The operand function has already been included by the
operandRD function and if we include the operand function twice, we will get
error messages: multiply defined symbols, i.e. duplicate definitions of the same
symbol.

Fig 5.18 is a diagram showing which functions are called by other functions
and have a .include directive for the called function (solid arrows). It also
shows function calls for which the called function is not included, to avoid
multiply defined symbols (dashed arrows). This diagram makes it clear that
each source file is included exactly once. There is exactly one solid arrow leading
to each function.

This diagram is especially useful when writing drivers for the various func-
tions - it tells you when to include, and when not to include, the source file for
a function called from the driver.



5.2. VERSION 2 - INCLUDE I AND J FORMAT INSTRUCTIONS 209

5.1.4 Exercises

1. Write a driver for each of the following functions:

(a) strcmp

(b) mnemonic

(c) isNumeric

(d) parseInt

(e) reg (version 1a)

(f) reg (version 1b)

(g) operand

(h) operandRD

(i) operandRS

(j) operandRT

(k) lineEnd

2. Extend the driver for the assembler (Fig 5.15) to include at least three
other statements. Compare your results with the program produced by
the MARS assembler.

3. Extend the mnemonic table (Fig 5.4) to include the operations xor, mult,
div, mflo, and mfhi,

4. Improve the lineEnd function to allow comments at the end of a state-
ment.

5. Include the shift instructions sll and srl in your mnemonic table. You
will need to implement changes to mnemonic , asm , operandRT , and
lineEnd . Also write a function, shamt to process the shift amount in-
stead of the RS register.
Hint: This is tricky because the shift amount replaces the RS operand in
the instruction, so the second operand in the statement is the RT register.

6. How would the call graph shown in Fig 5.18 be changed for version 1b of
the assembler (i.e. register names are permitted)?

5.2 Version 2 - Include I and J Format Instruc-
tions

In this section we develop version 2 of our assembler. In this version we will
introduce I and J format instructions; we will also introduce some simple pseudo
operations, such as move and li.

All the code for this version is shown in appendix ??.



210 CHAPTER 5. A MIPS ASSEMBLER

5.2.1 Version 2a - I and J Format Instructions

In this section we will introduce the following instructions in our assembler:

1. Simple I (immediate) format instructions, such as addi, andi, and ori

(but no memory reference instructions, nor branch instructions)

2. J (jump) format instructions, such as j and jal

3. Conditional branch instructions - beq and bne.

Most of the changes will be in our mnemonic function, which determines the
instruction op code. We now include a one byte value in the table of instruction
mnemonics to tell us whether the instruction is R, I, or J format. We use this
as the return code for the mnemonic function.

We then make use of this return code in the asm function. If the statement
is I format, it will process the $rt and $rs fields. Then instead of a $rd field (and
shamt and function code fields) it will process the immediate field and store it
directly in the low order 16 bits of the instruction. In doing so, the asm function
will call the parseInt function to convert the immediate field from ascii to a
binary 16-bit value. We used the parseInt function in version 1 to convert a
register number to a binary value. Now we must update this function to accept
negative numbers as well as positive. To do so, we merely check for a minus
sign (’-’) at the beginning. If so, we negate the returned result.

This version of our assembler is shown in Appendix ??

5.2.2 Version 2b - Explicit Memory Addresses

In this version of our assembler we implement memory reference instructions
with explicit addressing only. We also implement a few simple (one-to-one)
pseudo operations, such as move and li.

Because we are now handling pseudo operations, we will now make our
assembler a two-pass assembler. This means it will scan through the source file
twice. On the first pass it will convert all pseudo-ops to actual instructions.
Then the second pass will translate to machine code.

The first pass will also be useful when we introduce symbolic instruction
addresses for branching and jumping. A forward branch or jump will need to
know the instruction memory address of the target. We can build a table of
these symbols on the first pass, and generate the machine code on the second
pass.

Load and store with explicit addresses

We are working with two instructions which reference memory: lw (load word)
and sw (store word). In this version of our assembler we permit explicit (i.e.
non-symbolic) memory addresses only.

Thus we permit instructions such as:



5.2. VERSION 2 - INCLUDE I AND J FORMAT INSTRUCTIONS 211

pseudo op Example Equivalent

move move $t0,$s3 add $t0, $0, $s3
li li $a0, -17 addi $a0, $0, -17

Figure 5.19: Two simple pseudo operations, and their equivalent instructions

lw $t0, 0($sp)

sw $s3, -12($a0)

These are I (immediate) format instructions, in which the $rt register is the
register being loaded or stored, and the effective memory address is the sum of
the $rs register and the immediate field. To handle these changes we will need
to work with the second pass of our assembler which we now call asmPass2.
This function will call a function which determines the operation code, which
we now call mnemonic2. It will determine the instruction type and return values
as shown below:

• $v0 = 0: R format

• $v0 = 1: I format, not memory ref

• $v0 = 2: I format, memory ref

• $v0 = 3: J format

If the instruction is a memory reference instruction, we handle the $rt reg-
ister as in previous versions. Then we come to the explict address: imm($rs)

We handle this in a function called explicitAdd. In this function we process
the immediate field, with a call to the parseInt function (which now handles
negative values), and store the low order 16 bits into the instruction. Then we
process the register in parentheses, with a call to the reg function.

One-to-one pseudo operations

In this version we also introduce some simple pseudo operations: those which
correspond to a single machine language instruction, such as li and move. Each
of these pseudo operations can be replaced by one actual instruction, as shown
in Fig 5.19.5

In each of these instructions, all we need to do is substitute an instruction,
add for move and addi for li , then insert $0 as the $rt register. This is done in
the first pass of the assembler, function asmPass1, which writes the statements
to a memory buffer called ’basic’. The second pass then reads the statements
from the basic buffer.

5MARS actually uses addu and addiu, which are the unsigned versions of add and addi.
We suspect this is done to avoid setting an overflow flag in the CPU.



212 CHAPTER 5. A MIPS ASSEMBLER

5.2.3 Exercises

1. Include a clear pseudo operation in version 2b of the assembler. It will
have just one operand, the register to be cleared. For example, the state-
ment clear $t0 will put the value 0 into register $t0.
Hint: Use an add or addi instruction to clear the operand.

2. Does the assembler permit white space in the middle of an explicit ad-
dress? For example, is the following handled correctly?

lw $t0, 12 ( $a0 ) If not, make the necessary modifica-
tions to version 2b of the assembler.

3.

5.3 Version 3 - More Pseudo Operations



Chapter 6

Boolean Algebra and
Digital Logic

This chapter begins our discussion of digital hardware. We start with some basic
theory of boolean algebra. We will then show how boolean functions may be
realized using some elementary building blocks - logic gates. We then use these
to build more complex components, which are then used to build more complex
components, and so on. Our goal is to build a small central processing unit, or
CPU. At this point the student should be able to understand the execution of
a machine language program. Various technologies are used to build the logic
gates, but this text will treat the gates as atomic components; i.e. we will work
from the gate level and up.

In what follows, a true value is represented by a binary 1, and a false value
is represented by a binary 0, which is consistent with chapter 3.

6.1 Notation for Boolean Functions

At this point we introduce a more convenient notation for boolean functions.
In previous chapters we used the operations AND, OR, and NOT. As we work
with more complex boolean functions this notation becomes cumbersome, so we
adopt a notation which is taken from algebra: A plus is used for OR, a raised
dot is used for AND (the dot is sometimes omitted), and a quote mark is used
for NOT:

x AND y = x · y = xy

x OR y = x + y

NOT x = x’

The x’ is read “x prime”.1 The reader is cautioned not to confuse these
operations with their arithmetic counterparts - addition and multiplication.

1Some textbooks use x instead of x’, and it is read “x bar” or “not x”.

213



214 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

x y xy + x term
0 0 0
0 1 0
1 0 1 xy’
1 1 1 xy

Figure 6.1: Table representation of the boolean function xy + x.

Hopefully the context of boolean functions will always make it clear that we
are working with booleans and not with numbers.

In an expression involving more than one operation, the order of operations
is important. Parentheses may be used to specify the order of operaions. If
parentheses are omitted, the NOT operation takes precedence over the AND
operation:

x · y′ = x · (y′)
The AND operation takes precedence over the OR operation, consistent with

algebra:
x + y · z = x + (y · z)
Thus we could write more complex expressions such as the one below:
x + yz′ + x′z
which is equivalent to:
(x + (y · (z′))) + ((x′) · z)
The Exclusive OR operation is designated by a ⊕ symbol. Its precedence

level is the same as the +. When an expression contains two or more operations
of the same precedence, the leftmost operation is performed first. For example:

x + y ⊕ z + w = ((x + y)⊕ z) + w

6.1.1 Boolean Expressions

A boolean function may be specified by an expression, as we did previously, or
it may be specified with a table. For example, the boolean function xy + x
is shown in Fig 6.1, and the boolean function xy + x’yz’ is shown in Fig 6.2.
For now, the reader may ignore the last column, labeled term, in these tables.
Note that a function with two variables results in a table with 4 rows, a boolean
function with three variables results in a table with 8 rows, and, in general, a
boolean function with n variables results in a table with 2n rows. This table is
called a truth table.

Any boolean function can be implemented with an appropriate combination
of logic gates.

Canonical Forms

The student may have noticed that in Fig 6.1 the entries in the column for x
are the same as the entries in the column for xy+x. Thus we have the identity,
for any variables, x and y:
xy + x = x



6.1. NOTATION FOR BOOLEAN FUNCTIONS 215

x y z xy + x’yz’ term
0 0 0 0
0 0 1 0
0 1 0 1 x’yz’
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1 xyz’
1 1 1 1 xyz

Figure 6.2: Table representation of the boolean function xy + x’yz’.

It should now be clear that there is more than one expression for a given
boolean function. There are many areas of computer science where there exist
multiple representations for an entity. For example, in chapter 4 we saw multiple
representations (mantissa and exponent) of a floating point number. In such
situations we often wish to designate exactly one of those representations as
preferred over the others. This is known as a canonical form or a normal form.

For any boolean expression we have a canonical form which is known as a
sum of products or disjunctive normal form2. The sum of products normal form
can be obtained from a truth table as follows (here we assume the variables are
x, y, and z):

1. In each row of the truth table which has a 1 for the function’s value,
include a term involving an AND of all inputs, but for those inputs which
have a 0 value in that row, negate the variable. For example, in the row
for 0 1 0, the term would be x’yz’. These terms are shown in the last
column of Figs 6.1 and 6.2.

2. Form the OR of all the above terms.

For the function of Fig 6.1 the sum of products normal form would be
xy’ + xy. For the function of Fig 6.2 the sum of products normal form would
be x’yz’ + xyz’ + xyz.

6.1.2 Minimizing Boolean Expressions

In the previous section we saw that there may be several different boolean
expressions for the same boolean function. In this section we explore this idea
further.

Consider the boolean function given by the expression:
x’yz’ + xyz’ + xyz
If we were to implement this function in assembly language (or to construct
hardware to implement it), we would need to perform six AND operationss,

2There is also a product of sums, or conjunctive normal form, which we do not discuss
here.



216 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

Name Identity Dual identity
Identity x + 0 = x x · 1 = x
Negation x + x′ = 1 x · x′ = 0
Idempotent x + x = x x · x = x
Constant x + 1 = 1 x · 0 = 0
Involution x′′ = x
Commutative x + y = y + x x · y = y · x
Associative x + (y + z) = (x + y) + z x · (y · z) = (x · y) · z
Distributive x(y + z) = xy + xz x + yz = (x + y)(x + z)
DeMorgan (x + y)′ = x′y′ (xy)′ = x′ + y′

Absorption x + xy = x x(x + y) = x
Absorption x + x’y = x + y x(x′ + y) = xy
Consensus xy + x’z + yz = xy + x’z (x+y)(x’+z)(y+z) = (x+y)(x’+z)

Figure 6.3: Boolean algebraic identites

two OR operations, and two NOT operations. However since we know that the
expression represents the same function as xy + x’yz’ we can implement the
function with only three AND operations, one OR operation, and three NOT
operations.

As we will see later, minimizing a boolean expression leads to reduced hard-
ware requirements, and consequently reduced production costs. For that reason
we will be interested in finding ways of finding a minimal expression for a boolean
function.

Boolean identities

One way to minimize a boolean expression is by applying various identities,
such as x + xy = x. This identity, and many more, are shown in Fig 6.33. For
each identity, there is a corresponding dual identity, shown in the last column.
The dual is obtained by changing all AND operations to ORs, changing all OR
operations to ANDs, changing all 1’s to 0’s, and changing all 0’s to 1’s. Note
in particular that, unlike arithmetic algebra, the OR operation distributes over
the AND operation: x + yz = (x+y)(x+z).

As an example we take the boolean expression x’yz + x’yz’ + xyz’ and we
attempt to find an equivalent expression which is, in some sense, minimal. Below
we show each step in the derivation, with the algebraic identity as justification:

1. x’yz + x’yz’ + xyz’ Given

2. x’(yz + yz’) + xyz’ Distributive

3. x’y(z+z’) + xyz’ Distributive

4. x’y(1) + xyz’ Negation

3In some cases the raised dot representing an AND operation has been omitted.



6.1. NOTATION FOR BOOLEAN FUNCTIONS 217

yz
00

yz
01

yz
11

yz
10

x=0

x=1

Figure 6.4: An empty three variable K-map

5. x’y + xyz’ Identity

6. yx’ + yxz’ Commutative

7. y(x’ + xz’) Distributive

8. y(x’ + z’) Absorption

As far as we know there are no algorithms which can be applied to minimize a
boolean expression using the given identities; we must rely on our own ingenuity.

Karnaugh maps with three variables

One common method for minimizing boolean expressions is known as the Kar-
naugh Map, or K-map, introduced by Maurice Kaurnagh in 1953 as a two-
dimensional table.

We begin by looking at boolean functions with three variables. The table
conssistes of two rows and four columns; for example, if the names of the vari-
ables are x, y, and z. then the (empty for now) map is shown in Fig 6.4. Note
that the sequence of values for the columns are not what you might expect.4

We should now be able to fill in the cells of the K-map. Fig 6.5 shows the
completed map for the boolean function x’y’z’ + x’yz + x’yz’ + xy’z’. Note that
a 1 is placed in the map corresponding to each term. If a variable is negated in
the expression, it’s position in the map corresponds to a 0 value. For example,
the term xy’z’ is the term for which x=1, y=0, and z=0, so we place a 1 in row
1, column 00.

After we have filled in a 1 for each term in the expression, we need to group
them in rectangular boxes. Two adjacent 1’s will be grouped in a 1x2 block, or
in a 2x1 block, and 4 adjacent 1’s may be grouped in a 1x4 block or a 2x2 block.
In our example we have a 1x2 block and a 2x1 block, as shown in Fig 6.6.

Each block of 1’s in the K-map will correspond to a term in the minimized
expression. In a block of 1’s look at the variable(s) which correspond to equal
values. Retain only those variables in a term of the boolean expression. Negate

4The sequence {00, 01, 11, 10} is known as a Gray Code sequence, in which exactly one
bit is changed from one value to the next.



218 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

1 0 1 1

yz
00

yz
01

yz
11

yz
10

1 0 0 0

x=0

x=1

Figure 6.5: A K-map for the boolean expression x’y’z’ + x’yz + x’yz’ + xy’z’

1 0 1 1

yz
00

yz
01

yz
11

yz
10

1 0 0 0

x=0

x=1

Figure 6.6: A K-map for the boolean expression x’y’z’ + x’yz + x’yz’ + xy’z’.
Two groups of two are identified. The minimized expression is y’z’ + x’y.

the variables for which the value is zero. For example, in Fig 6.6 there is a
vertical group in the column for y=0, z=0. This means we will have the term
y’z’ in our result. There is also a horizontal group in the row for x=0 and the
columns for which y=1. This means that we will have the term x’y in our result.
Thus, our minimized expression is y’z’ + x’y.

Next we attempt to minimize the boolean expression x’y’z’ + x’yz’. There
are only two 1’s in the map, but they are actually adjacent, because the groups
may wrap around from end to end, as shown in Fig 6.7. Thus the resulting term
will have x=0 and z=0, producing x’z’ as the minimal expression.

We can also have a 2x2 block of 1’s in a K-map, and the blocks may overlap
with other blocks to produce a minimal expression. Our example, shown in
Fig 6.8, is the function x’yz + x’yz’ + xy’z + xyz + xyz’. In this case we have
a 2x2 block (y) and a 1x2 block (xz) which overlap, yielding the minimized
expression y + xz.

Karnaugh maps with four variables

Karnaugh maps can be extended to handle four variables; we will have four rows
instead of two, as shown in the empty map in Fig 6.9. The variables are w,x,y,
and z. The row labels for w and x follow the Gray code sequence {00,01,11,10},
consistent with the column labels for y and z.



6.1. NOTATION FOR BOOLEAN FUNCTIONS 219

1 0 0 1

yz
00

yz
01

yz
11

yz
10

0 0 0 0

x=0

x=1

Figure 6.7: A K-map for the boolean expression x’y’z’ + x’yz’. The group wraps
around from end to end. The minimized expression is x’z’.

0 0 1 1

yz
00

yz
01

yz
11

yz
10

0 1 1 1

x=0

x=1

Figure 6.8: A K-map for the boolean expression x’yz + x’yz’ + xy’z + xyz +
xyz’. The 2x2 block overlaps the 1x2 block. The minimized expression is y +
xz.

yz
00

yz
01

yz
11

yz
10

wx=00

wx=01

wx=11

wx=10

Figure 6.9: An empty K-map with four variables



220 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

0 1 0 0

0 0 1 1

yz
00

yz
01

yz
11

yz
10

wx=00

wx=01

0 0 1 1

1 0 0 1

wx=11

wx=10

Figure 6.10: A K-map for the boolean expression w’x’y’z + w’xyz + w’xyz’ +
wxyz + wxyz’ + wx’y’z’ + wx’yz’. A 1x2 group and a 2x2 group are identified.
The minimized expression is xy + wx’z’ + w’x’y’z

The technique for minimizing a boolean function with four variables is very
much like the technique used for three variables. However, with four variables
we can now have 4x1 blocks, 2x4 blocks, and 4x2 blocks. We use the same rules
for blocking the 1’s and determining the terms of the minimized expression.
Note that blocks can overlap, as with three variable maps, and that blocks can
now wrap around vertically as well as horizontally.

As an example, we take the boolean function of four variables given by
w’x’y’z + w’xyz + w’xyz’ + wxyz + wxyz’ + wx’y’z’ + wx’yz’. The K-map
is shown in Fig 6.10. Note that we have a 2x2 group (the term is xy) and a
1x2 group, wrapping around horizontally (the term is wx’z’). There is also a 1
which is not adjacent to any others, corresponding to the term w’x’y’z. That
term will have to appear in the final result, which is xy + wx’z’ + w’x’y’z.

Don’t cares

Up to this point all boolean expressions have been completely specified (the
truth tables show a 0 or 1 for every possible row). There are often situations
in which the problem does not require a complete specification, i.e. for some
inputs we do not care what the output is. In many applications certain inputs
are not expected, or disallowed, making the corresponding output irrelevant. In
this case we call the output a don’t care - it may be either a 0 or a 1. When
minimizing the boolean expression, it is possible to improve the minimization
by making use of don’t cares.

For example, consider the truth table in Fig 6.11. The don’t care outputs
are shown as question marks. A canonical sum of products expression for this
boolean function is x’y’z + xyz’. Looking at the K-map in Fig 6.12, at first



6.1. NOTATION FOR BOOLEAN FUNCTIONS 221

x y z f(x,y,z)
0 0 0 ?
0 0 1 1
0 1 0 1
0 1 1 ?
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 ?

Figure 6.11: Truth table defining a boolean function with 3 don’t cares (shown
as question marks)

? 1 ? 1

yz
00

yz
01

yz
11

yz
10

0 0 ? 0

x=0

x=1

Figure 6.12: A K-map for the boolean function whose truth table is given in
Fig 6.11 (question marks are don’t cares)

glance it appears that it cannot be simplified. But if we assume that the two
don’t cares in the top row are 1’s and the other don’t care is a 0, then we have
a group of 4 1’s in the top row, as shown in Fig 6.12, and this boolean function
simplifies to f(x,y,z) = x’.

6.1.3 Exercises

1. Show a truth table corresponding to each of the following boolean expres-
sions:

(a) x + yz’

(b) xy + x’yz’ + yz

(c) x (y’ + xz)

2. Show the disjunctive normal form (sum of products) expression for the
boolean function corresponding to each of the following expressions:

(a) x + yz’

(b) xy + x’yz’ + yz

(c) x (y’ + xz)



222 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

Hint: Form a truth table first; there will be one term for each 1 in the
truth table.

3. Show how to minimize each of the following boolean expressions using the
identities given in Fig 6.3. Justify each step in your derivation by naming
the identity which is used.

(a) x’y’z + x’yz + x’yz’ + xyz’

(b) x’y’z + x’yz + xy’z + xyz

(c) x’y’z’ + x’y’z + x’yz + xy’z’ + xy’z + xyz

4. Minimize each of the following boolean expressions using a K-map (some
may have more than one correct solution):

(a) x’y’z + x’yz + x’yz’ + xyz’

(b) x’y’z + x’yz + xy’z + xyz

(c) x’y’z’ + x’y’z + x’yz + xy’z’ + xy’z + xyz

(d) x’y’z’ + x’y’z + x’yz + xyz + xyz’

(e) w’x’y’z’ + w’x’y’z + w’xy’z’ + w’xy’z + wxy’z’ + wxy’z

(f) w’x’yz + w’xy’z + w’xyz + w’xyz’ + wxy’z + wxyz + wx’y’z + wx’yz

(g) w’xy’z + w’xyz + w’x’y’z + w’x’yz + wxy’z + wxyz + wx’y’z +
wx’yz

5. Minimize each of the following boolean functions, in which question marks
represent don’t cares in the result. In each case show the result as a
minimal sum of products expression.

(a)

x y z f(x,y,z)
0 0 0 1
0 0 1 ?
0 1 0 0
0 1 1 1
1 0 0 ?
1 0 1 1
1 1 0 0
1 1 1 0



6.2. BASIC LOGIC GATES 223

(b)

x y z f(x,y,z)
0 0 0 0
0 0 1 ?
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 ?
1 1 0 1
1 1 1 1

(c)

w x y z f(w,x,y,z)
0 0 0 0 0
0 0 0 1 ?
0 0 1 0 ?
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 ?
1 0 1 0 0
1 0 1 1 1
1 1 0 0 ?
1 1 0 1 1
1 1 1 0 0
1 1 1 1 ?

6.2 Basic Logic Gates

The basic logic gates described in this section will be considered the fundamen-
tal, or atomic components from which all other digital components are created.
Subsequent sections describe how these logic gates can be used to build increas-
ingly sophisticated digital components.

6.2.1 AND Gates

The AND gate, shown in Fig 6.13, performs the logical AND operation, as
described in chapter 3. Each input to the AND gate may have the value 0 or
1, and never anything else; think of an input (or output) line as a single bit of
information. The output of the AND gate will be 1 only if both inputs are 1.

AND gates may have more than two inputs; the AND gate in Fig 6.14 has
three inputs. In this case the output is 1 only if all three inputs are 1. In
general, an AND gate may have any number of inputs (though we will try not



224 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

x

y

x · y

Figure 6.13: A simple AND gate with two inputs, x and y

x

y

z

x · y · z

Figure 6.14: A simple AND gate with three inputs, x, y, and z

to use more than five inputs, to avoid cluttering our circuit diagrams). There
is no problem with several inputs because the AND operation is associative:

(x · y) · z = x · (y · z)
Thus the parentheses are not needed, and an AND gate may have any num-

ber of inputs.

6.2.2 OR Gates

The OR gate, shown in Fig 6.15, performs the logical OR operation, as described
in chapter 3. The output of an OR gate is 0 only if all inputs are 0. In all other
respects OR gates are exactly like AND gates. An OR gate with three inputs
is shown in Fig 6.15.

When drawing circuit diagrams be sure that your AND gates have a straight
base, and that your OR gates have a curved base. Also, your AND gates should
have a rounded tip, and your OR gates should have a sharp tip.

6.2.3 Inverters

An inverter performs the NOT operation. Thus, an inverter has one input, and
the output is the logical complement of the input:

• if the input is a 0, the output is a 1

• if the input is a 1, the output is a 0

An inverter is shown in Fig 6.16. Since the NOT operation is a unary operation
(i.e. it has only one operand), the inverter must have just one input. Note that

x

y

z

x + y + z

Figure 6.15: A simple OR gate with three inputs, x, y, and z



6.2. BASIC LOGIC GATES 225

x
x’

Figure 6.16: An Inverter, with input x

x

y

z

xy + yz

Figure 6.17: An implemenation of the boolean function xy+yz using logic gates

the inverter symbol consists of a small triangle with a small circle, or ‘bubble’ on
the tip. As we will see below, the bubble will usually signify a NOT operation.

6.2.4 Composition of Logic Gates

The logic gates described above can be composed (as with functional composi-
tion) to obtain logic circuits with output corresponding to a boolean function.
To do this we simply connect the output of one gate to an input of another
gate. As an example Fig 6.17 shows the diagram which implements the boolean
function xy + yz.

Fig 6.18 shows the implementation of a slightly more complex function:

(x + y) · (y ⊕ z) · z′

This implementation makes use of an Exclusive OR gate which is similar to an
OR gate, but has a double arc at the base.

x

y

z

(x + y) · (y ⊕ z) · z′

Figure 6.18: An implemenation of the boolean function (x+y) · (y⊕z) ·z′ using
logic gates



226 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

xy′zw′ + y′x + wx′

x y z w

Figure 6.19: A sum of products logic diagram for the expression xy′zw′ + y′x +
wx′

6.2.5 Sum of Products Logic Diagrams

As our logic diagrams become larger, they will tend to become more difficult
to read; they will be essentially a tangled morass of wires and gates. To alle-
viate this problem, we recommend using a more methodical approach. If the
boolean expression we wish to implement can be expressed as a (not necessar-
ily canonical) sum of products, we suggest organizing the diagram as shown in
Fig 6.19.

In this diagram we show the inputs at the top, and we include an inverter for
each input, though the inverter for the variable z is not needed in this example.
Each term in the expression then corresponds to the inputs to an AND gate,
and the outputs of the AND gates form the input to an OR gate. With this
kind of diagram, large boolean expressions can be implemented with a clean,
readable diagram.

6.2.6 Wires and Buses

Connecting wires

When drawing logic diagrams it is often inevitable that wires will cross over
other wires. We need to be able to distinguish connected wires from crossed
wires which are not connected. To do this we will mark the crosspoint with a
dark dot to indicate that the wires are actually connected, as shown in Fig 6.19.

However, when connecting wires, we must be careful to avoid contradictions.



6.2. BASIC LOGIC GATES 227

x

y

???
x

???

Figure 6.20: Contradictions: incorrect connections of wires

Source
Component

Target
Component

(a)

Source
Component

Target
Component

(4)

(b)

Figure 6.21: Two components connected by four wires, (a) The wires are shown
explicitly, and (b) The wires are shown as a bus of width 4

This occurs when a variable, or gate output, is connected to another variable,
or gate output, as shown in Fig 6.20.

Buses

In digital logic diagrams we will often need to send several bits from one com-
ponent to another, all at the same time. We will need several parallel wires to
do this; this is called a bus. The width of a bus is the number of wires which
make up the bus. Fig 6.21 shows two components, a source and a target con-
nected by 4 wires. For convenience we can use the diagram in part (b) instead
of the diagram in part (a). Note that the width of the bus is always shown in
parentheses.

Splitting and joining of buses

The wires of a bus can be split into two or more separate buses, as shown in
Fig 6.22. The wires of two or more buses can be joined into a single bus, as
shown in Fig 6.23.



228 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

(32)

[0..7]

[8..31]

Figure 6.22: A 32-bit bus is split into an 8-bit bus and a 24-bit bus

[0..7]

[8..15]

(16)

Figure 6.23: Two 8-bit buses are joined to form a 16-bit bus

We should note how the buses are split or joined. We note which are the
low-order bits and which are the high-order bits by specifying bit locations in
square brackets. This is done in both Fig 6.22 and Fig 6.23.

6.2.7 Exercises

1. Show a logic diagram corresponding to each of the following boolean ex-
pressions (do not attempt to minimize the expressions):

(a) xy + z’

(b) (x+y’+z)(x’+y)z

(c) xy ⊕ y’z’

(d) x(x+yz)

2. Show a logic diagram using only AND gates, OR gates, and Inverters, to
implement the Exclusive OR operation.
Hint: Build a truth table first.

3. (a) Assume you have no OR gates. Show how the function x+y can be
implemented using only AND gates and Inverters.

(b) Assume you have no AND gates. Show how the function xy can be
implemented using only OR gates and Inverters.

Hint: Use the DeMorgan identities from Fig 6.3

4. Show a sum of products logic diagram for each of the boolean expressions
shown below (do not attempt to simplify the expressions):

(a) xy + y’z



6.2. BASIC LOGIC GATES 229

(b) xy’z + xy + x’yz’

(c) w’x’y’z’ + wx + yz

5. Show a boolean expression corresponding to each of the following logic
diagrams:

(a)

?

x y z

(b)

?

x y z



230 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

(c)

?

w x y z

6. Show a Karnaugh map for each of the logic diagrams in the previous
exercise, and show a simplified expression, if possible.

6.3 Combinational Logic Circuits and Compo-
nents

We have seen how the fundamental digital building blocks, logic gates, can be
used to implement any boolean function. We now explore the construction of
more complex tools from these building blocks. These tools are called digital
components and will be used to construct the CPU of a computer.

Each component which we will build will consist of:

• A name for the component

• A definition of its inputs

• A definition of its outputs

Once we understand how the component is constructed, and how its outputs
are determined from its inputs, we can then represent the component as a plain
box, showing simply its name, inputs, and outputs. In this way we can use it
in a logic diagram without cluttering the diagram with the inner workings of
our component. This process, known as abstraction, is also used in software
development. A clearly defined and appropriate interface replaces the need to
expose the inner workings of a component.



6.3. COMBINATIONAL LOGIC CIRCUITS AND COMPONENTS 231

0 0
1 1
2 2
3 3

4
5
6
7

Figure 6.24: A sign-extend component for which the input is a 4-bit bus, and
the output is an 8-bit bus, preserving the sign of the number

Sign Extend
16 to 32

(16) (32)

Figure 6.25: Block diagram of a 16-bit to 32-bit sign extend component

6.3.1 Sign Extend

Perhaps the simplest component that we may wish to use is called sign extend. It
simply propagates the sign bit on a bus to yield a bus with more bits, preserving
the sign of the number. For example, if we have a 4-bit bus as input to a sign
extend which puts out an 8-bit bus, then the following example shows that the
sign is preserved, whether it be positive, negative, or zero:

Number Input bus Output bus

6 0110 0000 0110

-6 1010 1111 1010

This can be accomplished easily by connecting the high order bit of the input
bus to all the extended bits in the output bus, as shown in Fig 6.24.

A block diagram for a sign extend component is shown in Fig 6.25.

6.3.2 Decoders

A component which selects one of several output lines, based on the binary
value of its input, is called a decoder. A decoder with n input lines will have
2n output lines. For example, a decoder with 3 inputs will have 8 outputs; this
would be known as a 3x8 decoder.

If the 8 outputs of a 3x8 decoder are labeled D0 through D7, then an input
value of i will result in a value of 1 on output Di and a value of 0 on all other
outputs. For example, if the inputs to a 3x8 decoder are 1012 = 5, then the
outputs will be 001000002 in which D5 is 1 (here we show the low order bit, D0

at the right).
Fig 6.26 shows the 3x8 decoder function as a truth table. The inputs are

labeled I, and the outputs are labeled D. Fig 6.27 shows the logic diagram which
implements that function. Think of the inputs to a decoder as selectors, because
they act to select one output line.



232 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

I2 I1 I0 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

Figure 6.26: Truth table defining a 3x8 decoder

Now that we understand how to build a decoder of any size, we can present
a more abstract view of a decoder, showing only the name, inputs, and outputs.
This is called a block diagram of a decoder and is shown in Fig 6.28, which
shows a 3x8 decoder. For simplicity we show the three input lines as a bus of
width 3, and the eight output lines as a bus of width 8.

How can a decoder perform a useful task? Consider a traffic signal with
four lights: red, yellow, green, and left-turn arrow. Assume we have a mod-4
counter, i.e. a counter which repeatedly puts out the values 00, 01, 10, 11, 00,
01, 10, 11, ... on two output lines (mod-4 counters will be covered in the section
on sequential circuits, below). We can then use a 2x4 decoder to send a 1 or
0 signal to each light, so that only one light is on at any one time. The logic
diagram is shown in Fig 6.29.

6.3.3 Encoders

We now turn our attention to a component which performs the inverse function
of the decoder; an encoder is a device with 2n inputs and n outputs. Normally
only one of the inputs will have a value of 1, and the others will all have a value
of 0. If the ith input is a 1, then the binary value of i will be on the output lines.
For example, for an 8x3 encoder, if the inputs are 00010000 (i.e. I4 is 1), then
the output will be 1002 = 4. Fig 6.30 shows a truth table for an 8x3 encoder.
encoder.5

How can we build a 4x2 encoder using our basic logic gates? We take the
first four rows of Fig 6.30, and form a K-map for each of the two outputs in
which unexpected input combinations are shown as don’t cares, as shown in
Figures 6.31 and 6.32. In those figures, the inputs which we had previously
been calling w,x,y,z are now I3, I2, I1, I0, respectively. The resulting minimized
expressions are

E1 = I3 + I2

E0 = I3 + I1

5This is only a partial truth table; we are not showing all the rows because we assume that
exactly one of the input bits is 1.



6.3. COMBINATIONAL LOGIC CIRCUITS AND COMPONENTS 233

I2 I1 I0

D0

D1

D2

D3

D4

D5

D6

D7

Figure 6.27: Logic diagram for a 3x8 decoder



234 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

Decoder
3x8

2

1

0

7
6
5
4
3
2
1
0

Decoder
3x8

(3) (8)

Figure 6.28: Block diagrams of a 3x8 decoder; left diagram shows the inputs
and outputs as separate lines; right diagram shows the inputs and outpus as
busses.

Decoder
2x4

Traffic

(2)

D0 = Red

D1 = Yellow

D2 = Green

D3 = Arrow

Figure 6.29: Traffic signal control using a 2x4 decoder. The inputs come from a
mod-4 counter, the outputs go to the four lights on a traffic signal - Red, Yellow,
Green, Left-turn arrow

I7 I6 I5 I4 I3 I2 I1 I0 E2 E1 E0

0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

Figure 6.30: Truth table defining an 8x3 encoder; the inputs are labeled I, and
the outputs are labeled E



6.3. COMBINATIONAL LOGIC CIRCUITS AND COMPONENTS 235

0 ? ? 0

1 ? ? ?

yz
00

yz
01

yz
11

yz
10

wx=00

wx=01

? ? ? ?

1 ? ? ?

wx=11

wx=10

E1 = w + x = I3 + I2

Figure 6.31: A K-map for the high order output bit, E1 of a 4x2 encoder.
Unexpected input combinations are shown as don’t cares (question marks). The
inputs wxyz = I3I2I1I0.

Note that the input I0 is not used! Fig 6.33 shows the logic diagram for a
4x2 encoder.

We could also have 2x1, 8x3, 16x4 encoders, etc. As an example of an appli-
cation which could use an encoder, consider a building with a motion detector
in each room. We wish to put out an alert signal if motion is detected in any
room. The alert signal should indicate the room number in which motion is
detected.6 If the building has 32 rooms, we could use a 32x5 encoder, with
an input coming from a motion detector in each room (0=no motion detected,
1=motion detected). Our output would then be the room number (in binary)
of the room in which motion is detected.

A block diagram for an 8x3 encoder is shown in Fig 6.34.

6.3.4 Multiplexers

There are many applications in which we wish to select one of several input lines
(or buses), and pass it on to the output. This kind of selector is generally called
a multiplexer.7 Thus in addition to the data inputs, the multiplexer will require
control inputs which determine which of the input lines are put on the output
lines. For example, a multiplexer with 8 data inputs will have one output line
and 3 control lines to select one of the 8 data inputs. This would be called an
8x1 multiplexer. In an 8x1 multiplexer, if the three control bits are 101 (i.e. 5),
then the value of the fifth input data line is copied to the output data line.

6We assume that motion may be detected in no more than one room at a time.
7Also spelled multiplexor



236 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

0 ? ? 1

0 ? ? ?

yz
00

yz
01

yz
11

yz
10

wx=00

wx=01

? ? ? ?

1 ? ? ?

wx=11

wx=10

E0 = w + y = I3 + I1

Figure 6.32: A K-map for the low order output bit, E0 of a 4x2 encoder. Un-
expected input combinations are shown as don’t cares (question marks). The
inputs wxyz = I3I2I1I0.

I0

I1

I2

I3

E0 = I1 + I3

E1 = I2 + I3

Figure 6.33: A logic diagram implementing a 4x2 encoder

Encoder
8x3

(8) (3)

Figure 6.34: Block diagram of an 8x3 encoder



6.3. COMBINATIONAL LOGIC CIRCUITS AND COMPONENTS 237

I7 I6 I5 I4 I3 I2 I1 I0 S2 S1 S0 M
0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

Figure 6.35: Truth table defining an 8x32 multiplexer. Each of the eight data
inputs, I, is a 32-bit bus, and the output,M, is a 32-bit bus.

S I1 I0 M
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Figure 6.36: Truth table defining a 2x1 multiplexer.

As with other components, the inputs and outputs may be buses. A multi-
plexer with 16 data inputs, each of which is a 32-bit bus, will have one output
bus (also 32 bits) and 4 control bits to select one of the 16 data input busses.
This would be called a 16x32 multiplexer. A truth table for an 8x32 multiplexer
is shown in Fig 6.35.

In general, a multiplexer8 with k control bits, and n-bit data buses would be
called a 2k x n multiplexer.9

How can we design a simple multiplexer, using basic logic gates? To build a
2x1 multiplexer, working from the truth table in Fig 6.36 we form the K-map
shown in Fig 6.37.

This will then give us the sum of products expression:
M = S′I0 + SI1

The logic diagram is shown in Fig 6.38

Block diagrams of an 8x1 multiplexer and a 4x16 multiplexer are shown in
Fig 6.39.

As an example of an application which could use a multiplexer, consider a

8Terminology for multiplexers in the literature is not consistent. What we call an 8x4
multiplexer, others might call a quad 8-input multiplexer.

9For those who understand logarithms, an mxn multiplexer would have log2(m) control
lines.



238 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

0 1 1 0

yz
00

yz
01

yz
11

yz
10

0 0 1 1

x=0

x=1

Figure 6.37: K-map used to build a 2x1 multiplexer, derived from the truth
table in Fig 6.36

M

S I1 I0

Figure 6.38: Logic diagram for a 2x1 multiplexer

Mux
8x1

7
6
5
4
3
2
1
0 S2 S1 S0

Mux
4x16

3

2

1

0 S1 S0

(16)

(16)

(16)

(16)

(16)

Figure 6.39: Block diagrams of an 8x1 multiplexer (3 control inputs), left, and
a 4x16 multiplexer (2 control inputs), right



6.3. COMBINATIONAL LOGIC CIRCUITS AND COMPONENTS 239

Mux
8x1

7
6
5
4
3
2
1
0 S2 S1 S0

channel 7

channel 6

channel 5

channel 4

channel 3

channel 2

channel 1

channel 0

Channel 3

0 1 1

Figure 6.40: Application of a multiplexer: A digital radio or TV channel selector.
Channel 3 is selected by the user.

radio or TV which needs to select one of several digital channels to be put out
to the user. Each data input to the multiplexer would be the digital signal for
a particular channel, and the control inputs would be used to select one of the
channels, which is than sent to the output data line. A possible diagram is
shown in Fig 6.40, in which the user has selected channel 3.

6.3.5 Binary Adders

Thus far we have basic logic gates and digital components that can be con-
structed using those gates. However, our goal is to design the hardware that
can implement the MIPS instruction set. Thus, we will need to be able to per-
form arithmetic operations, such as add, subtract, multiply, divide, in addition
to the logical operations. In this section we discuss how an adder can be built
using basic logic gates. The other arithmetic operations can be derived from an
adder: if we have a negate operation, we can implement subtraction by adding
a negated operand.
a− b = a + (−b)
Multiplication and subtraction can then be implemented as repeated addition
and subtraction.10

When adding binary values, we have the possiblity of a carry bit (1) when
the sum in any column exceeds 1, as shown in Fig 6.41 where we add 11 + 14.
Thus we will need to allow for the fact that the hardware needed to process any
one column in that addition will need three inputs: the x value, the y value,
and the carry from the previous column.

To build an adder, we suggest a two-step process:
1. Design a Half Adder which will take two bits as input and produce as output
a sum bit and a carry bit.
2. Design a Full Adder which will take three bits as input and produce as output

10As we saw in chapter 3, multiplication can be implemented with a repeated shift-and-add;
division and remainder can be implemented with a repeated shift-and-subtract.



240 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

carries 1 1 1
x = 11 0 1 0 1 1
y = 14 0 1 1 1 0

sum = 25 1 1 0 0 1

Figure 6.41: Addition of binary numbers: 11 + 14 = 25

x y S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Figure 6.42: Truth table defining the sum and carry outputs of a half adder

a sum bit and a carry bit. The full adder can be implemented using two half
adders.

To design the half addder we refer to the truth table in Fig 6.42 which
shows two outputs, a sum (S) and a carry (C). From the truth table we obtain
boolean expressions for the outputs:
S = x′y + xy′ = x⊕ y
C = xy

Using these expressions for the output we can build the logic diagram for
a half adder; it is shown in Fig 6.43, and a block diagram for a half adder is
shown in Fig 6.44

We now turn our attention to the full adder; it will have three inputs: x, y,
and the carry from the previous stage. It will have two outputs: sum and carry
to the next stage. The truth table for a full adder is shown in Fig 6.45 which
shows the two outputs, a sum (S) and a carry (C). In this figure we distinguish
between the two carries. cin, or carry-in, is the carry from the previous column.
Cout, or carry-out, is the carry out to the next coliumn. In general the carry-out
from column i is the carry-in to column i+1, working from right to left.

At this point we could find minimal boolean expressions for the two outputs
and construct the logic diagram. But there is an easier way: we propose using

x

y

S = x⊕ y

C = x · y

Figure 6.43: A logic diagram implementing a half adder. S is the sum, and C is
the carry.



6.3. COMBINATIONAL LOGIC CIRCUITS AND COMPONENTS 241

Half Adder
2x2

x

y

S

C

Figure 6.44: Block diagram for a Half Adder. S is the one-bit sum, x+y, and C
is the carry.

x y cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 6.45: Truth table defining the sum and carry outputs of a full adder



242 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

Half Adder
2x2

x

y

S

C

Half Adder
2x2

x

y

S

C

x

y

cin

S

cout

Figure 6.46: Logic diagram for a full adder, using two half adders

Full Adder
3x2

x

y

cin

S

Cout

Figure 6.47: Block diagram for a Full Adder. S is the one-bit sum, x + y + cin,
and Cout is the carry-out.

two half adders to construct the full adder.

The first half adder simply adds x and y. The S output of the first half adder
forms the x input to the second half adder. The second input to the second half
adder is cin. The S output of the second half adder is the S output of the full
adder. The two C outputs of the half adders are input to an OR gate, which
produces the full adder’s C output. This is all shown with block diagrams in
Fig 6.46.

We can now show a block diagram for our full adder in Fig 6.47. It is
important to point out that to add two numbers, we would need several full
adders, one for each bit position. Thus to add two 32-bit values we would need
32 full adders, in which the carry-out of each stage is the carry-in to the next
stage.

In the chapters which follow we will need to use special-purpose adders,
apart from the ALU described in this chapter. We define such an adder at this



6.3. COMBINATIONAL LOGIC CIRCUITS AND COMPONENTS 243

FA
3x2

S

Cout

x

y

Cin

x0

y0

0

s0

FA
3x2

S

Cout

x

y

Cin

x1 y1

s1

FA
3x2

S

Cout

x

y

Cin

x2 y2

s2

FA
3x2

S

Cout

x

y

Cin

x3 y3

s3

cout

Figure 6.48: Design of a 4-bit adder to find the sum x+y, using four full adders

ADD

A

B

(32)

(32)

(32)
A+B

Figure 6.49: Block diagram of a 32-bit adder

point. It will have two input busses (the values being added) and one output
bus (the sum). The adder will consist of n Full Adders, each of which is as
shown in Fig 6.47, where n is the size of the busses. For example, an adder
which adds two 16-bit numbers, producing a 16-bit result would be called a
16-bt adder. A 4-bit adder is shown in Fig 6.48.11 In this adder the S output
of the ith full adder is the ith bit of the adder’s output bus. The Cout output
of the ith full adder is the cin to the i + 1st full adder. The carry-in to stage 0
is set to the constant 0. The carry out from the high order bit can be used to
detect overflow. Overflow is a condition indicating that the result will not fit in
the number of bits being used. Overflow can be detected if the carry-out from
the last stage is different from the carry-in to the last stage.

A block diagram of a 32-bit adder is shown in Fig 6.49.12

11We have placed the inputs in each full adder on the right, and the outputs on the left,
because binary numbers are normally written with the low-order bit at the right.

12Historically, the block diagram for an adder has been a wedge shape, for reasons unknown
to the author.



244 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

6.3.6 Exercises

1. In each case show the 8-bit output of a 3x8 decoder if the inputs are as
shown below (the low order bit is at the right end):

(a) 000

(b) 011

(c) 110

2. In each case show the 3-bit output of an 8x3 encoder for the inputs given
below

(a) 00000010

(b) 00100000

(c) 10000000

3. (a) Show the logic diagram for an 8x3 encoder using only AND gates,
OR gates, and inverters.
Hint: You will not be able to use kMaps because there are too many
inputs. Instead write a boolean expression for each of the three out-
puts.

(b) What would be the output of your 8x3 encoder if the input were
00101000 ? (This is not a valid input, but your encoder would still
produce an 3-bit output)

4. Show a block diagram for each of the following:

(a) A 4x1 multiplexer

(b) A 4x4 multiplexer

(c) An 8x32 multiplexer

5. Show a logic diagram for a 4x1 multiplexer.

6. What is the output of a 4x8 multiplexer if the inputs are I3 = 01010000,
I2 = 01011110, I1 = 00101101, I0 = 01010000, and the control input is
10?

7. In each case show the output of a full adder if the input is:

(a) 011

(b) 101

(c) 110

8. How many full adders are needed to implement the MIPS add instruction?

9. Construct a full adder using only basic logic gates (i.e. do not use a half
adder). Try to minimize your design.



6.4. SEQUENTIAL CIRCUITS 245

1

0 time

Figure 6.50: Clock signal

(a) Show a Kmap for each of the two outputs. Work from the truth table
in Fig 6.45.

(b) Draw the logic diagram, or two separate logic diagrams for the two
outputs. The Kmaps give you a minimal sum-of-products for the
function. Perhaps using XOR gates provides a cheaper solution.

6.4 Sequential Circuits

Up to this point we have been working entirely with combinational circuits.
Combinational circuits:

• Have no memory, or storage, capability

• Outputs change as soon as an input changes

• Cannot be used to implement CPU registers.

With sequential circuits components can maintain state, thus storing some
representation of the inputs that it has received over some period of time. Gen-
erally, the components in a sequential circuit need to be synchronized in such a
way that they all update their states at the same time. This is done with a clock
signal. A clock signal is a 1-bit signal that varies periodically, and consistently,
between 0 and 1. A diagram of a clock signal is shown in Fig 6.50 in which the
vertical axis shows the value of the clock signal (0 or 1), and the horizontal axis
is time.

The period of a clock signal is the time it takes to undergo a complete tran-
sition from 0 to 1 and back to 0. This is called a cycle. The frequency of a clock
signal is the number of complete periods in a unit of time. Frequency is usually
expressed with the unit cycles per second, or Hertz.13 Period and frequency
are multiplicative inverses of each other:
frequency = 1 / period
period = 1 / frequency

If the clock signal for a particular CPU has a period of 1 nanosecond (1ns) =
10−9 sec, then its frequency would be 1/10−9sec = 109 cycles per second =
109Hertz = 1 GigaHertz (1GHz)

13Named after the German Physicist Heinrich Hertz, who proved the existence of electro-
magnetic waves (light) in the late 19th century



246 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

Q’

Q

S

R

Figure 6.51: SR Latch: Does not change state when S=R=0.

In this section we introduce a component known as a flip-flop, which is ca-
pable of storing 1 bit of information, for use at a later time, even if an input
changes. Thus we will find that flip-flops will be useful in implementing CPU
registers (each bit of the register requires one flip-flop). As with other compo-
nents, flip-flops will be constructed from basic logic gates.

6.4.1 SR Flip-Flops

Our first example of a flip-flop is known as an SR flip-flop, because the two
inputs are Set and Reset. To begin we construct a one-bit storage device known
as an SR Latch. Though it has some undesirable characteristics, it will lead us
to the design of an SR flip-flop. A diagram of an SR latch is shown in Fig 6.51.

This is our first example of a combinational circuit with feedback. The output
of the top NOR gate is used as the first input to the bottom NOR gate, and the
output of the bottom NOR gate is used as the second input to the top NOR
gate. This will require some careful thinking to analyze.

With a NOR gate, if one of the inputs is a 1, we know the output must be
a 0, regardless of the value of the other input. Algebraically, (1+x)’ = 0. This
leads to the table shown below:

S R Q’ Q State
1 0 0 ? ? Unchanged
2 0 1 1 0 Reset (0)
3 1 0 0 1 Set (1)
4 1 1 0 0 Unknown

The Q output of the SR latch represents the state of the latch, and Q’
represents the complement of the state. We explain rows 2, 3, 4, and 1 in this
table:

• Row 2: State = Reset(0), S=0, R=1. Because R is 1, the the output of
the bottom NOR gate must be (1+x)’ = 0, thus Q is 0. The bottom input
to the top NOR gate is 0, thus the output of the top NOR gate is (0+0)’
= 1, and thus Q’ is 1.



6.4. SEQUENTIAL CIRCUITS 247

Q’

Q

S

R

clock

Figure 6.52: SR Flip-flop: Can change state only when clock=1

• Row 3: State = Set(1), S=1, R=0. Because S is 1, the output of the top
NOR gate must be (1+x)’ = 0, thus Q’ is 0. The top input to the bottom
NOR gate is 0, thus the output of the bottom NOR gate is (0+0)’ = 1,
and thus Q is 1.

• Row 4: State = Unknown, S=1, R=1. Because S and R are both 1, the
outputs of both NOR gates must be 0. Thus, Q=0 and Q’=0, which is a
contradiction because Q’ is supposed to be the complement of Q.

• Row 1: State = Unchanged, S=0, R=0. Here the current state of the
flip-flop depends on its previous state. If the previous state had been Set
(Q=1,Q’=0), then the current state would still be Set (Q=1, Q’=0). If the
previous state had been Reset (Q=0,Q’=1), then the current state would
still be Reset (Q=0, Q’=1).

To make effective use of the SR latch, the user must be careful not to set both
inputs at 1.

We will extend the design of the SR latch to arrive at the design of a clocked
SR flip-flop. This is done by adding two AND gates and a clock input, as shown
in Fig 6.52.

The clock input insures that the flip-flop can change state only when the
clock signal is 1. When the clock signal is 0, both inputs to the NOR gates
are 0, and as we showed above the latch maintains its current state. This will
make the SR flip-flop useful in digital circuits in which all components need to
be synchronized (i.e. change state at the same time).

6.4.2 D Flip-Flops

Above we pointed out that the inputs to the SR flip-flop should not both be
1, because that yields an unknown state. The D flip-flop is similar to the SR
flip-flop; however, it ensures that the S and R inputs are complements of each
other. The D flip-flop is shown in Fig 6.53. As with the SR flip-flop, the clock
input serves to synchronize the change of state with other devices. Aside from
the clock input, there is only one input, D, and its complement is formed with



248 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

Q’

Q

D

clock

Figure 6.53: D Flip-flop: D input determines the state

Q’

Q

J

K

clock

Figure 6.54: JK Flip-flop: Can be complemented

an inverter. The D input determines the state of the flip-flop, as shown in the
table, below:

D Q’ Q State
1 0 1 0 Reset (0)
2 1 0 1 Set (1)

6.4.3 JK Flip-Flops

JK flip-flops are similar to SR flip-flops, with the addition of feedback from the
NOR gates to the AND gates, as shown in Fig 6.54. Because of the feedback,
the behavior of this flip-flop will clearly depend on the current state. In the
table below, Qn represents the current value of the Q output (which represents
the state of the flip-flop), and Qn+1 represents the state of the flip-flop when
the clock signal returns to 1, i.e. when the state is permitted to change.

The behavior of a JK flip-flop is analyzed using the table below:



6.4. SEQUENTIAL CIRCUITS 249

J K Qn Qn+1

1 0 0 0 0
2 0 0 1 1
3 0 1 0 0
4 0 1 1 0
5 1 0 0 1
6 1 0 1 1
7 1 1 0 1
8 1 1 1 0

Referring to Fig 6.54, when the output of both AND gates are 0, the inputs
to both NOR gates are 0, and the state of the flip-flop is unchanged. This is
the case in rows 1, 2, 3, and 6 of the table. In row 4 the output of the top AND
gate is 0, and the output of the bottom AND gate is 1; thus we essentially have
inputs of S=0 and R=1 to the embedded latch (the two NOR gates). The state
is changed to 0 (Q=0). In rows 5 and 7 the output of the top AND gate is 1, and
the output of the bottom AND gate is 0; thus we essentially have inputs of S=1
and R=0 to the embedded latch (the two NOR gates). The state is changed to
1 (Q=1). In row 8 the output of the top AND gate is 0, and the output of the
bottom AND gate is 1; thus we essentially have inputs of S=0 and R=1 to the
embedded latch (the two NOR gates). The state is changed to 0 (Q=0).

The important feature of JK flip-flops, as compared with the other flip-flops
we’ve seen, is that it has a toggle feature: when J and K are both 1, the state of
the flip-flop is complemented. This is like a toggle light control which is simply
a button that turns the light off if it is on, and on if it is off.

6.4.4 Block Diagrams and Function Tables for Flip-Flops

In this section we introduce block diagrams for SR, D, andJK flip-flops. We
also summarize the behavior of these flip-flops with function tables.

As with combinational circuit components, the block diagrams hide the de-
tails of a component, and show the input(s), the output(s), and a name to
identify the component. The function tables show the exact input-output rela-
tion of the component, i.e. how the input affects the output.

The block diagram and function table of the SR, D, and JK flip-flops are
shown in Fig 6.55, Fig 6.56, and Fig 6.57, respectively.

6.4.5 Registers

We have seen that a flip-flop is merely a 1-bit storage device. Thus, several
flip-flops can be used to implement a CPU register. For example, a 32-bit
register would consist of 32 flip-flops, one flip-flop for each bit of the register.
We choose to use D flip-flops for this purpose. However, to ensure that the
register’s state changes only at the appropriate times (for example, during a
store word instruction) we will use a load signal to tell the flip-flops that they
should change state according to the D input. To do this all we need is an AND



250 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

R

S Q
clock S R State (Q)

0 0 No change
0 1 Reset (0)
1 0 Set (1)
1 1 Undefined

Figure 6.55: SR Flip-flop: Block diagram and function table

D Q
clock

D State (Q)
0 Reset (0)
1 Set (1)

Figure 6.56: D Flip-flop: Block diagram and function table

K

J Q
clock J K State (Q)

0 0 No change
0 1 Reset (0)
1 0 Set (1)
1 1 Complement

Figure 6.57: JK Flip-flop: Block diagram and function table



6.4. SEQUENTIAL CIRCUITS 251

D Q

Data In

Load
clock

Figure 6.58: A 1-bit register, with a load signal

gate, taking as inputs the clock signal and the load signal. The output of the
AND gate will then be the clock input to the D flip-flop, as shown in Fig 6.58

We can use four of these devices to build a 4-bit register with a load signal.
It is shown in Fig 6.59. In this diagram the signal ik is the kth bit of the input
bus to the register, and the signal regk is the kth bit of the register’s stored
value.

6.4.6 State Machines

Using one or more flip-flops we can build machines that are said to be in a
particular state at any time. For example, a machine with two flip-flops can
have one of four possible states: 00, 01, 10, 11. A machine with n flip-flops can
have at most 2n states. Such machines are called state machines.14

State machines can be represented with graphs, also known as state dia-
grams. In such a graph, each state is a node and is represented by a circle; the
name of the state, if it has one, would be inside the circle. At any given time the
machine is said to be in one of its states, also known as the current state. When
an input is provided to the machine, it can change to a different state; this is
called a transition. A transition is shown in the graph by a directed arrow from
one state to another (or back to the same) state. The arrow is labeled by the
input causing the transition to take place (0 or 1).

An example of a state machine is shown in Fig 6.60. The machine is rep-
resented as a state graph, or state diagram. We note the following about this
state machine:

• This state machine has two states, labeled even and odd.

• When the machine is in the even state and the input is a 1, the machine
makes a transition to the odd state. When the machine is in the odd state
and the input is a 1, the machine makes a transition to the even state.

14The reader may be familiar with theoretical finite state machines, abreviated FSM, or
deterministic finite automata, abbreviated DFA.



252 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

Load
clock

D Qi0 reg0

D Qi1 reg1

D Qi2 reg2

D Qi3 reg3

Figure 6.59: A 4-bit register, with a load signal



6.4. SEQUENTIAL CIRCUITS 253

even❦

odd♥❦
1

1

0

0

Figure 6.60: An example of a state machine: a parity checker

Inputs
States 0 1
even even odd
odd odd even

Figure 6.61: Transition table for the parity checker

• When the machine is in the even state, it has seen an even number of 1’s.
When the machine is in the odd. state, it has seen an odd number of 1’s.
Such a machine is known as a parity checker.

• The unlabeled arrow pointing to the even state indicates that the even

state is the start state. Every state machine should have exactly one start
state. Before reading any input symbols, the machine is in the start state.

• The double circle on the odd state indicates that it is an accepting state.15

A state machine may have zero or more accepting states.

State graphs are most useful when designing and analyzing state machines.
To construct the state machine using flip-flops, it will be helpful to represent the
machine as a table. In a state table, the columns are labeled by input symbols,
and the rows are labeled by states. A state, s, in row r and column c indicates
that if the machine is in state r and the input is c, then the machine makes a
transition to state s.

The parity checker of Fig 6.60 is shown in table form, also known as a
transition table, in Fig 6.61.

We are now ready to build the parity checker logic circuit. We know that we
will not need more than one flip-flop because the machine has only two states.
Let 0 represent the even state, and let 1 represent the odd state. We will use a
D flip-flop; the Q output of the flip-flop represents the state of the machine. To

15If viewed as a terminating state, an accepting state provides the machine with the capa-
bility of defining a language as the set of strings which cause the machine to end up in an
accepting state after the entire string has been read. The machine of Fig 6.60 will accept any
string of 0’s and 1’s which has odd parity. This kind of machine is known as a Moore machine:
the output is associated with the state; state machines which produce an explicit output on
each transition are known as Mealy machines.



254 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

D Qin

Figure 6.62: Parity checker, using a D flip-flop

build the logic circuit we first show a truth table relating the input, the current
state of the machine, and the next state of the machine. This will show us what
logic gates are needed in a feedback loop from the output of the flip-flop.

i Q D = next State
0 0 0
0 1 1
1 0 1
1 1 0

In this truth table i represents the input symbol, Q represents the current
state, and D represents the next state. We can write a boolean expression for D:

D = i⊕Q

Using what we have developed above, we can now build the logic circuit for
our parity checker. It is shown in Fig 6.62.16

6.4.7 Exercises

1. Implement the parity checker of Fig 6.60. using a JK flip-flop and no other
logic gates.

2. Design a state machine to control a traffic signal. The state machine has
outputs which enable the lights on the traffic signal: Red, Yellow, Green,
and Left Turn Arrow. The sequence of states for the traffic signal are
Green and Left Turn, Green, Yellow, Red. Each time a ’clock’ signal is
applied, the machine goes to the next state.

3. Design a state machine which will calculate n % 3 (i.e. n mod 3) for any
unsigned binary number n provided as the input. Examples:

n n % 3 n n % 3
0000 = 0 00 = 0 0110 = 6 00 = 0
0001 = 1 01 = 1 0111 = 7 01 = 1
0010 = 2 10 = 2 1110 = 14 10 = 2
0011 = 3 00 = 0 1000000 = 64 01 = 1
0100 = 4 01 = 1 1010110 = 86 10 = 2
0101 = 5 10 = 2 1111111 = 127 01 = 1

16We have chosen to use a D flip-flp because it generalizes well to more complex state
machines. The parity checker can also be implemented with a JK flip-flop.



6.5. AN ARITHMETIC AND LOGIC UNIT - ALU 255

On each clock signal, the machine reads one bit of the number, high order
bit first. The flip-flop outputs represent the binary value of n % 3.

(a) Draw the state diagram.

(b) Derive the state table from the state diagram.

(c) Make the state assignments for two flip-flops; show the truth table
relating the current state, current input, and next state.

(d) Derive the equations for the feedback loops to the flip-flop inputs.

(e) Draw the logic diagram using gates and flip-flops.

Hints:

• This machine will need 4 states; the machine will never return to
the start state after reading the first input symbol. The other states
represent the three possible results: 0=00, 1=01, and 2=10.

• After reading several bits of a binary number, if the next bit is a 0,
the number is doubled.

• After reading several bits of a binary number, if the next bit is a 1,
the number is doubled, plus 1.

6.5 An Arithmetic and Logic Unit - ALU

We now turn our attention to a hardware component which will be needed to
execute the arithmetic MIPS instructions add, addi, and sub for addition and
subtraction. This same component will also execute the logical instructions,
such as andi, and, or, ori, and nor. Because this component executes both
arithmetic and logical operations, it is called an arithmetic and logic unit, or
ALU.

We will design our ALU so that it performs six different functions, as shown
in Fig 6.63. It will have two data inputs, each of which is a 32-bit bus. It will
have a data output bus, which also has 32 bits, and a Z output (1 bit). The
ALU will also need control inputs to determine its function. We use 4 control
inputs, even though we have only 6 different operations (this allows for future
expansion of our ALU).

The Z output is 1 when the data output is all 0’s. It tells us whether an
operation resulted in zero. For example, if the A data input is 0000000123 and
the B data input is 00000000009, and the control input is 0010 (meaning ’add’),
then the data output bus will be the sum of the two inputs: 0000012c. The Z
output will be 0, indicating that the result is not zero.

Note that in Fig 6.63 the function selected with Operation Select = 2 =
00102, the function is addition; here the plus symbol does not represent logical
OR. Also, for Operation Select = 7 = 01112, the Data Out is unspecified.
This function puts a 1 on the Z output if A < B (with a two’s complement



256 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

Operation Data Z
Select Out Out
0000 A AND B 1 if A AND B is all 0’s
0001 A OR B 1 if A OR B is all 0’s
0010 A + B 1 if A + B is all 0’s
0110 A - B 1 if A - B is all 0’s
0111 [unspecified] 1 if A < B
1100 A NOR B 1 if A NOR B is all 0’s

Figure 6.63: Function table for the MIPS ALU. Each of the inputs, A and B, is
a 32-bit bus. Z is a 1-bit output, indicating a zero result

ALU

A

B

Z

(32)

(32)

(32)

Operation
Select

Figure 6.64: Block diagram of an ALU for the MIPS processor

comparison); otherwise it puts a 0 on the Z ouput. This function will be used
to implement the MIPS instruction slt (set if less than).

A block diagram for our ALU is shown in Fig 6.64. Unlike other components
the ALU is not rectangular. Most people use this shape because this component
is fundamentally important to the CPU design, and the shape serves to remind
us that it is basically operating on two busses to produce data on an output
bus.

6.5.1 Exercises

1. Assume the A and B inputs to the 32-bit ALU defined in Fig 6.63 are:
A = 0102030416

B = f0f100ff16

Show the 32-bit output (in hex) and the 1-bit Z output for each of the
following operation select inputs (show unspecified outputs as question
marks):



6.6. CONSTRUCTION OF THE ALU 257

Ai

Bi

ANDi = Ai ·Bi

Figure 6.65: Implementation of the AND function for stage i of the ALU. Op-
eration select is 0000 (raised dot indicates logical AND)

(a) Operation select = 00002

(b) Operation select = 00012

(c) Operation select = 00102

(d) Operation select = 01102

(e) Operation select = 01112

(f) Operation select = 11002

(g) Operation select = 11112

2. Show a block diagram of an 16-bit ALU which has a maximum of 8 dif-
ferent functions that it can perform.

6.6 Construction of the ALU

In this section we get into the construction of a specific ALU - the one defined
in Fig 6.63. This ALU will have 4 select inputs, though it has only 6 distinct
functions. In our logic diagrams we show the gates needed to implement only
one stage (i.e. 1 bit) of this 32-bit ALU. So, for example, the inputs to stage 3
will be A3 and B3, each of which is a single bit. We will also have a carry-in
input to each stage shown as cin. The carry-in to stage 0 will be the constant
0. We will also have a carry-out output from each stage, shown as cout. The
carry-out from stage i is connected to the carry-in of stage i+1.

Each stage will produce an output bit for each of the 6 functions. These 6
outputs are fed into a 16x1 multiplexer, which chooses one of its inputs based
on the four operation select inputs. For the Z output the 32 output bits from
the 32 stages are used as input to an OR gate which is then negated.

We show the implementation of each of the ALU functions separately, then
combine them all into a single logic diagram.

6.6.1 ALU function AND: 0000

The implementation of the ALU AND function is simple. In each stage of the
ALU we simply feed the A and B inputs into an AND gate, and ignore the cin

input, as shown in Fig 6.65.



258 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

Ai

Bi

ORi = Ai + Bi

Figure 6.66: Implementation of the OR function for stage i of the ALU. Oper-
ation select is 0001 ( + indicates logical OR)

Full Adder
3x2

x

y

cin

S

cout

Ai

Bi

ci

Si

ci+1

Figure 6.67: Implementation of the twos complement addition function for stage
i of the ALU. Operation select is 0010. cout is connected to cin for stage i+1.

6.6.2 ALU function OR: 0001

The implementation of the ALU OR function is also simple. In each stage of
the ALU we simply feed the A and B inputs into an OR gate, and ignore the
cin input, as shown in Fig 6.66.

6.6.3 ALU function Add: 0010

To add two numbers, whether considered unsigned or twos complement repre-
sentation, the ALU function code is 0010. In each stage of the ALU we feed
the A, B, and carry inputs into a Full Adder. For stage i, the carry-in is the
carry-out of stage i-1, and the carry-out is the carry-in of stage i+1. For the
very first stage, stage 0, the low order bit, the carry-in will be fixed at 0. The
carry-out of the last stage, stage 31, the high order bit is the carry-out of the
alu.17

In addition to the Sum output, which is the ALU output for add, it produces
a cout output which is to be connected to the cin input of the next stage. This
function is shown in Fig 6.67.

6.6.4 ALU function Subtract: 0110

To subtract the B input from the A input, we are assuming twos complement
representation,18 and the ALU function code is 0110. In order to implement

17This can be useful when checking for an overflow condition, which exists when the carry-in
to the high order bit is different from the carry-out of the high order bit.

18If assuming unsigned representation, one would have to make sure that the B input is
smaller than the A input.



6.6. CONSTRUCTION OF THE ALU 259

Full Adder
3x2

x

y

cin

S

cout

A0

B0

1

D0

c1

Figure 6.68: Implementation of the twos complement subtract function for stage
0 of the ALU. Operation select is 0110. cin is the constant 1, and cout is
connected to cin for stage 1.

Full Adder
3x2

x

y

cin

S

cout

Ai

Bi

ci

Di

ci+1

Figure 6.69: Implementation of the twos complement subtract function for stage
i, where i > 0, of the ALU. Operation select is 0110. cin is the carry-in, ci, which
is the carry-out of the previous stage. cout is ci+1 and is the carry-in for the
next stage

subtraction, we utilize addition. Note that:
A - B = A + (-B)

-B = B’ + 1 two’s complement
Thus,
A - B = A + B’ + 1

We complement the B input in each stage of the ALU. We choose to add in the
1 at the very first stage, since that stage will have no carry-in. In what follows
the resulting difference is labeled D, i.e. D = A - B and we are implementing a
32-bit ALU:
Di = Ai + B′

i for i=1..31
D0 = A0 + B′

0 + 1 for the low order bit

This means that the low order stage of the 32-bit ALU will be slightly
different from the other 31 stages. Fig 6.68 shows the subtract operation for the
low order stage of the ALU (i.e. stage 0) in which the carry-in to the full adder
is 1 rather than 0. Fig 6.69 shows the subtract operation for all other stages
of the ALU. In both of these figures we complement the B input to produce a
subtraction rather than an addition.



260 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

ORi

NORi

Figure 6.70: Implementation of the NOR function for stage i of the ALU. ORi

represents the output of the OR operation shown in Fig 6.66. Operation select
is 1100.

6.6.5 ALU function NOR: 1100

The ALU NOR function stands for Not OR, i.e. form the logical OR of the two
operands, and negate the result. The ALU function code is 1100.
x NOR y = (x + y)’
We can do this easily by taking the output of the ALU OR function and feeding
it into an inverter.

In Fig 6.70 the input ORi represents the ith bit of the output for the OR
operation (operation select 0001).

6.6.6 ALU: Putting it all together

We have shown how each function of the ALU can be implemented separately.
All that remains is to combine all these logic diagrams into one logic diagram.
In doing so, we will need logic to form the Z output of the ALU as specified in
Fig 6.63. This includes setting the Z output for the less than operation (ALU
operation code 0111).

The output for each function will form an input to a multiplexer which
selects one of the inputs, based on the given ALU function code, as described
in Fig 6.63. In Fig 6.71 we do not repeat all the logic shown in the preceding
figures, but it should be understood that the outputs are as summarized below:

ALU Function Operation Name in See Fig
Select logic diagram
0000 And AND Fig 6.65
0001 Or OR Fig 6.66
0010 Add S Fig 6.67
0110 Subtract D Fig 6.69
1100 Nor NOR Fig 6.70

For example, the output labeled Di in Fig 6.69 (the ith bit of the result of a
subtraction) is connected to the ith bit of input 6 to the MUX in Fig 6.71.

Fig 6.71 is our first attempt at the ALU design. It handles all of the ALU
operations except for the comparison operation (select code 7 = 01112).

In addition to the data output, the ALU also has a 1-bit Z output. This
output is 0 only when the data output bus is all zeros (see Fig 6.63). To
accomplish this we need to OR all the output data bits, and complement the
result:



6.6. CONSTRUCTION OF THE ALU 261

Mux
16x32

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 S3 S2 S1 S0

NOR

D

S

OR

AND

ALU Output
(32)

Z

Operation
Select

(4)

Figure 6.71: Using a multiplexer to select the desired output for the ALU. Each
data input is a bus, and all data buses are 32 bits.



262 CHAPTER 6. BOOLEAN ALGEBRA AND DIGITAL LOGIC

Z = (Out31 + Out30 + Out29 + ...Out0)′

as shown in Fig 6.71. This logic diagram shows a bus input to an OR gate. The
intention is that the 32 bits of the bus form the 32 inputs to the OR gate. The
output, when negated, will be 1 only if all 32 inputs are zeros.19

We now wish to complete the ALU by implementing the comparison oper-
ation. When the select code is 7 (01112), the data output bus is ignored, and
the Z output should be a 1 only if A - B is negative, as described in Fig 6.63.
This operation will be essential in implementing the MIPS slt (set if less than)
instruction.

A - B will be negative if and only if the high order bit of the D (difference)
input to the multiplexer is a 1 (two’s complement representation). Thus for
the Z output we wish to select either the Z output as shown in Fig 6.71 or the
high order bit of the D input to the multiplexer (D31), as determined by the
operation select (it is either 7, or it is not 7). To do this we will use a 2x1
multiplexer to choose either the output of the OR gate in Fig 6.71 or the high
order bit of D. The select input to the 2x1 multiplexer is taken from the 4-bit
operation select to the ALU (checking for 0111) with an AND gate. The result
is shown in the final design of our ALU in Fig 6.72.

We make one final remark on the construction of the ALU. Note that if the
operation select signal is 0001, for example, the ALU output is A OR B. But
all the other ALU functions, shown in Fig 6.65 through Fig 6.70, are producing
results at the same time. Then the multiplexer shown in Fig 6.71 selects the
desired input to be sent to the output. This exposes a sharp distinction between
hardware and software. If the ALU were to be implemented with software, it
might be done with conditionals, i.e. if statements or a switch statement, to
determine which computation is to be performed. Hardware is typically parallel,
and software is typically sequential.20

6.6.7 Exercises

1. If an OR gate can have a maximum of 5 input lines, how many OR gates
would be needed to generate the Z output in Fig 6.71?

2. How many Full Adders are needed in the implementation of the ALU?

3. Show how our ALU could produce the one’s complement of the 32-bit
word on the A input. Do not make any changes to the ALU designed
in this section; instead show the appropriate operation select bits, and a
possible value for the B input to the ALU.

4. Show how to modify the design of the ALU so as to include an XOR
operation. Assume the operation select is 10112.

19There is generally a limit on the number of inputs to a single logic gate. In this case,
several OR gates would be needed, with their outputs all fed into a single OR gate.

20With the development of computers with several cores, software is starting to become
increasingly parallel, but much remains to be done to make effective use of multiple cores in
a personal computer.



6.6. CONSTRUCTION OF THE ALU 263

Mux
16x32

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 S3 S2 S1 S0

NOR

D

S

OR

AND

ALU
Output

(32)

Operation
Select

Mux
2x1

1

0
S0

Z

D31

Figure 6.72: Completed implementation of the ALU, showing Z output for the
case where Operation Select = 7 (A < B).



Chapter 7

MIPS Datapath

This chapter shows how digital components can be used to implement the MIPS
instruction set. When the student has completed this chapter, it should be clear
how software can be implemented and executed by hardware.

The name commonly given to the components, storage elements, and connec-
tions which accomplish this is the datapath. We first introduce the components
which will be needed, and then show how they are connected to implement (a
subset of) the MIPS instruction set.

7.1 Storage Components

In this section we take a look at the storage components in the MIPS datapath.
This includes the register file, data memory, and the instruction memory. These
storage components have a few things in common:

• They each store a sequence of 32-bit words.

• By providing an appropriate address, one of those 32-bit words can be
extracted.

• They have control signals which, for example, can determine whether a
word is to be written into the storage unit.

• They have at least one output bus.

• They have at least one input bus.

7.1.1 The Register File

The phrase register file is perhaps a misnomer because the word ‘file’ is usually
associated with permanent storage, such as disk or flash storage. The MIPS
register file consists of 32 registers, each of which is a full word (i.e. 32 bits).
This is high-speed, but volatile,1 storage used by the CPU to execute MIPS

1Volatile storage requires power to operate, and all data is lost when power is lost.

264



7.1. STORAGE COMPONENTS 265

Register File
32x32

Data
in

A sel

B sel

Write
Sel

A
out

B
out

R/W

(32)

(5)

(5)

(5)

(32)

(32)

Figure 7.1: Register File for MIPS consists of 32 32-bit registers.

instructions. Each register has a unique address (or register number) in the
range 0..31. Since there are 32 registers, the register addresses will be 5 bits in
length. For example, the address 101112 specifies register number 23. A block
diagram for the register file is shown in Fig 7.1.

The control signal to the register file labeled R/W determines whether a
Read or Write operation is to take place. When the R/W control signal is 1,
the operation is Read, and when the R/W is 0, the operation is Write.2

The register file has two output busses, A and B. The register values which
are placed on those busses are determined by the A Select and B Select inputs,
respectively. For example, when the value of R/W is 1, signifying a Read
operation, and A Select is 011012 = 13, and B Select is 000002 = 0, then the
contents of register 13 is placed on the A output bus, and the contents of register
03 is placed on the B output bus. In this case the Data In and Write Select
busses are ignored.

As another example, when the R/W is 0, signifying a Write operation, and
Write Select is 011112 = 15, the value on the Data In line is copied into Register
15. In this case the A Select, B Select busses are ignored.4

The table in Fig 7.2 shows examples of several other operations that are
possible with the register file.

7.1.2 Data Memory and Instruction Memory

Since the Data Memory and Instruction Memory are similar in design, we cover
both of them in this section. The Data Memory is used to store data which can
be used as operands for the MIPS load and store instructions. The Instruction

2We follow the convention that the bar over the W in R/W serves as a reminder that the
W operation is asserted with a 0 value.

3Recall that in the MIPS architecture register 0 always stores the value 0.
4Conceivably, the A Select and B Select inputs could select outputs for the A Out and B

Out busses, respectively, even when R/W is 0, but that is beyond the scope of our current
discussion.



266 CHAPTER 7. MIPS DATAPATH

R/W A select B select Write select Operation
1 00111 10010 Aout← Reg[7], Bout← Reg[18]
1 11111 00010 Aout← Reg[31], Bout← Reg[2]
0 01111 Reg[15]← DataIn
0 00011 Reg[3]← DataIn

Figure 7.2: Examples of operations on the register file

Data
Memory

1Gx32

Address
in

Data
in

Data
out

R/W

(32)

(32)

(32)

Figure 7.3: Data Memory unit for MIPS consists of 1G 32-bit words.

Memory is where the program instructions are stored. Each of these storage
units consists of 1G x 32-bit words, where 1G = 230.5

Each of these storage units has a 32-bit data input bus and a 32-bit output
bus. Each also needs a 32-bit address input bus to select a word from the
memory. The Data Memory also needs a R/W control signal. A block diagram
of the Data Memory unit is shown in Fig 7.3. When the R/W control signal is
0, the word on the Data In bus is copied into the Data Memory at the address
specified on the Address bus. The existing word at that address is clobbered
(i.e. it is over-written). When the R/W control signal is 1, the word at the
address specified on the Address bus is copied onto the Data Out bus.

The Instruction Memory differs from the Data Memory in that the Instruc-
tion Memory cannot be changed during program execution, i.e. a MIPS program
cannot modify itself. Thus there is no Instruction In bus for the Instruction
Memory. Also the Instruction Memory is always used in conjunction with two
dedicated CPU registers, the Program Counter register (PC) and the Instruc-
tion Register (IR). A block diagram for the Instruction Memory, with its two
dedicated registers is shown in Fig 7.4.

The PC register always stores the address of the next instruction to be
executed; thus, it serves as an Address input to the Instruction Memory. Each
time an instruction is executed by the CPU, the PC must be incremented by
4 to move to the next instruction in the program. When a branch or jump

5Recall that since a memory address is stored in a 32-bit word, the memory is byte ad-

dressable, and there are 4 bytes in a word we will have an address space of 230 words.



7.1. STORAGE COMPONENTS 267

PC

Instruction Memory
1Gx32

Address
In

Instruction
Out

IR
(32) (32)

Figure 7.4: Instruction Memory unit for MIPS consists of 1G 32-bit instructions.

instruction is executed, the PC register is modified to store the target address
for the branch or jump.

The IR stores the instruction currently being executed. Depending on the
format of the instruction being executed, we imagine the bits of the IR being
grouped into fields corresponding to the instruction fields. For example, if the
instruction is an R format instruction, the fields of the IR are:

• bits 0-5: Function code

• bits 6-10: Shift amount

• bits 11-15: RD register

• bits 16-20: RT register

• bits 21-25: RS register

• bits 26-31: Op code

However, if the instruction is an I format instruction, the fields of the IR
would be:

• bits 0-15: Immediate

• bits 16-20: RT register

• bits 21-25: RS register

• bits 26-31: Op code

And if the instruction is a J format instruction the fields of the IR would be:

• bits 0-25: Jump Address

• bits 26-31: Op code

Thus there will need to be busses connected to the IR for all of these fields,
as shown in Fig 7.5. When we discuss the control unit in the MIPS datapath,
we will show how these busses are selected, depending on the operation code of
the instruction being executed.



268 CHAPTER 7. MIPS DATAPATH

IR

J I R

op

rs

rt

rd

shamt

funct

(6)

(5)

(5)

(5)

(5)

(6)

immediate
(16)

jump address
(26)

Figure 7.5: Instruction Register, showing the fields for the three instruction
formats: J, I, and R.

7.1.3 Exercises

1. In an architecture with 16 registers in the register file, each of which is 8
bits:

(a) What is the width of the Data In bus to the Register File?

(b) What is the width of the A out and B out busses from the Register
File?

(c) What is the width of the A sel and B sel busses to the Register File?

(d) What is the width of the Write sel bus to the Register File?

(e) What is the width of the R/W signal to the Register File?

2. Draw a block diagram of the Register File described in the previous prob-
lem.

3. Assume that in the Register File described in Fig 7.1 each register has
been initialized with its own address. Thus, register 0 contains 0, register
1 contains 1, register 2 contains 2, ... register 31 contains 31. Complete
the table shown below by showing the register or bus which is changed
(e.g. reg[8] = 00003212x):



7.2. DESIGN OF THE DATAPATH 269

R/W = 0 R/W = 1
DataIn= 00004c3fx

A Sel = 00112

B Sel = 01012

Write Sel = 00012

4. Refer to the Data Memory in Fig 7.3. Show the input signals and busses
which are needed to:

(a) Put the value of the word at location 04c00124x onto the Data Out
bus.

(b) Change the word at location 4c001008x to ffffffffx.

(c) Clear the word at location 4c001000x.

5. Show a block diagram for a byte addressable 16Gx64-bit Data Memory.

6. Refer to the Instruction Register (IR) which is loaded from the Instruction
Memory (Figures 7.4 and 7.5). Show the values of the fields for each of
the following 32-bit instructions. (Hint: The number of fields will depend
on the instruction type.)

(a) 03c42320x

(b) 2d004501x

(c) 0c000048x

7.2 Design of the Datapath

In this section we design the core component of the MIPS processor, which is
called the datapath. We will make use of the components defined in the previous
sections, as well as some of the logic devices described in chapter 6. Rather
than presenting the entire datapath at once, we proceed in smaller increments,
showing various portions of the datapath before putting it all together.

It is often desirable to synchronize the operation of several components in a
combinational circuit. This is done with a clock signal. A clock signal is simply
a (1-bit) control line which varies periodically between 0 and 1, as shown in
Fig 7.6. The clock is then generally used as an input to an AND gate or an
OR gate, for which the output goes into the component, as shown in Fig 7.7.
In this way the component does not ‘see’ the input signal until the clock signal
goes to 1. If all component inputs are connected in this way, all components
generate their outputs at the same time, i.e. synchronously. For example, in
Fig 7.7 we are using the clock signal to disable writing into the Register File
until the clock signal rises to a 1. Since the Register File write operation takes
place when R/W is 0, we must first negate the clock signal, then OR it with the
input r/w signal. Thus the Register File is written only when the input r/w is
0 and the clock is 1. In this way all components which utilize the clock signal
can be synchronized to be updated simultaneously.



270 CHAPTER 7. MIPS DATAPATH

1

0 time

Figure 7.6: Clock signal

Register File
32x32

Data
in

A sel

B sel

Write
Sel

A

B

R/W

clock

r/w

(32)

(5)

(5)

(5)

(32)

(32)

Figure 7.7: A clock signal is used to synchronize the effects of all components
in the datapath

The period of the clock signal determines the speed of the processor. For
example, a clock which goes through one complete cycle in 0.001 second has a
frequency of 1000 cycles per second, or 1000 Herz = 1 KHz. A clock speed for
a typical processor would be on the order of 109 cycles per second = 1 GHz.

In implementing the datapath, we could use more than one clock cycle to
execute a single instruction. For example, an add instruction could load the
ALU inputs from the register file during one clock cycle, and store the result
back into the register file during the next clock cycle. This would be called a
two-cycle data path. Alternatively it is possible to implement the register file
in such a way that this instruction could be completed in one clock cycle, even
if the destination register is the same as one of the operand registers. In this
case we would have a one-cycle datapath (for which the clock speed would have
to be slower to avoid clobbering an operand register before the result has been
computed by the ALU). To simplify the exposition of the datapath we will be
using a one-cycle design.



7.2. DESIGN OF THE DATAPATH 271

Register File
32x32

Data
in

A sel

B sel

Write
Sel

A

B

R/W

ALU

A

B

Z

(32)

Figure 7.8: Connecting the Register File with the ALU in the datapath

7.2.1 Register File and ALU

We are now ready to begin development of the datapath, in a piecemeal fashion.
We begin by showing how the Register File and the ALU are connected, in order
to implement an R format instruction such as add. Fig 7.8 shows that the A
and B output busses of the Register File form the two input busses to the
ALU. Then the output of the ALU leads back into the Register File so that the
operation result can be stored back into a register. Note that much is not shown
in this diagram, including the A and B select inputs and the R/W input to the
Register File; also, the operation select input bus to the ALU is not shown. We
will discuss these later.

7.2.2 Instruction Memory, Instruction Register, and Reg-
ister File

We now turn our attention to the Instruction Memory, the Instruction Register,
and the Register File. These three components are connected as shown in
Fig 7.9. The output bus from the Instruction Memory is connected directly to
the Instruction Register. This register stores the instruction which is currently
executing. Fields of the Instruction Register are connected to the appropriate
inputs of the Register File:

• The 5-bit rs field of the Instruction Register is connected to the A select

input to the Register File. This is needed for all R format, all I format
instructions, and for the jr (jump register) instruction.

• The 5-bit rt field of the Instruction Register is connected to the B select

input to the Register File. This is needed for all R format and I format
instructions.

• The 5-bit rd field of the Instruction Register is connected to the Write

select input to the Register File. This is needed for R format instructions
only.



272 CHAPTER 7. MIPS DATAPATH

Instr Mem
1Gx32

Address
in

Instr
Out

IR
R

Reg File
32x32

Data
in

A sel

B sel

Write
Sel

A

B

R/W

(32)

rs(5)

rt(5)

rd(5)

Figure 7.9: Connecting the Instruction Memory, Instruction Register and the
Register File in the datapath, for an R format instruction, such as add

For example, if an add instruction is loaded into the Instruction Register,
the rs and rt fields would specify which registers are to be added; their values
would be placed on the A and B output busses of the Register File. Also, the rd

field would specify which register is to store the result; thus it forms the write

select input to the Register File.

7.2.3 Instruction Register, Register File, and Data Mem-
ory, for Load/Store

We now examine that part of the datapath which is responsible for load and store
instructions, such as lw and sw. Recall from chapter 3 that these instructions
copy a 32-bit word from Data Memory into a register, and copy a 32-bit word
from a register into Data Memory, respectively. In chapter 4 we saw that in
both cases the memory address was computed as the sum of the rs register and
the 16-bit immediate field of the instruction. In the datapath we use the ALU to
do this addition; the output of the ALU is connected to the Address In input
of the Data Memory, as shown in Fig 7.10.

In the case of the lw instruction, the selected word from the Data Memory
must be sent to the Register File; thus the Data Out output of the Data Memory
must be connected to the Data In input to the Register File. Also the rt field
specifies the register to be loaded, so it must be connected to the Write Sel

input of the Register Files.
In the case of the sw instruction, the selected register from the Register

File must be sent to the Data Memory; thus the rt field of the instruction is
connected to the B Sel input of the Register File. The B output of the Register
File bypasses the ALU and is connected to the Data In input to the Data
Memory.

Note that the ALU is a 32-bit ALU and is expecting both inputs to be 32
bits; however, in Fig 7.10 the immediate field is only 16 bits. Thus we need a



7.2. DESIGN OF THE DATAPATH 273

IR

I

Reg File
32x32

Data
in

A sel

B sel

Write
Sel

A

B

R/W

ALU

A

B

Z
Data Mem

1Gx32
Addr

In

Data
In

Data
Out

R/WSE

rs(5)

rt(5)

imm(16) (32)

(32)

(32)

(32)

Figure 7.10: Connecting the Instruction Register, the Register File, the ALU,
and the Data Memory in the datapath, for load/store instructions

sign-extend component (SE) to extend it to a full 32-bit bus, while preserving
the sign.

Also note in Fig 7.10 that the rt field of the instruction is connected to both
the B Select input and the Write Select input of the Register File. This
is not a contradiction. A contradiction occurs when one target input is loaded
from to different source outputs (as described in chapter 6). However, we should
keep this in mind as we assemble the complete datapath, because there will be
contradictions, which we will need to resolve.

7.2.4 Program Counter, Instruction Memory, and Trans-
fer of Control

In this section we describe the function of the Program Counter (PC) register.
This special purpose register stores the address (in the Instruction Memory)
of the next instruction to be executed (as described above in the section on
Instruction Memory and Data Memory). As each instruction is executed, the PC
must be updated to contain the address of the next instruction to be executed.
There are three possible ways that this happens:

• Normal flow of control is that instructions are executed sequentially, in
the order in which they are stored in the Instruction Memory. I.e., the
next instruction to be executed is the one which follows immediately in
the Instruction Memory. In this case the datapath should increment the
PC by 4 (since there are 4 bytes in an instruction, and the Instruction
Memory is byte addressable). We will use a dedicated 32-bit adder, for
which the A input is the constant 4, for this purpose. This aspect of the
datapath is shown in Fig 7.11



274 CHAPTER 7. MIPS DATAPATH

ADD

A

B

ADD

A

B

PC
(32)

Instr Mem
1Gx32

Address
in

Instr
Out

IR

J I R

(32)

4

(32)

Figure 7.11: Connecting the PC, Instruction Memory, and Instruction Register
for sequential transfer of control. A dedicated 32-bit adder is used to increment
the PC by 4 (the second adder is not needed here).



7.2. DESIGN OF THE DATAPATH 275

ADD

A

B

ADD

A

B

PC
(32)

Instr Mem
1Gx32

Address
in

Instr
Out

IR

J I R

(32)

4

(32)

Figure 7.12: Connecting the PC, Instruction Memory, and Instruction Register
for unconditional Jump instructions. The jump address is copied into the PC.
(The dedicated adders are not used here)

• With an unconditional transfer of control, for a jump instruction (such as
j or jal) we will need to alter the PC. The 26-bit address field, extended
to a full 32 bits, is copied into the PC. The target of the jump is an
absolute address. This aspect of the datapath is shown in Fig 7.12 (the
26-bit jump address would have to be padded with 6 0-bits to form a full
32 bit input to the PC).

• With a conditional transfer of control, a branch instruction such as (beq

or bne) will need to alter the PC, but in this case the branch is to a relative
address; thus we must add the current value of the PC to the immediate
field, storing the result back into the PC. We will use another dedicated
32-bit adder for this purpose. This aspect of the datapath is shown in
Fig 7.13. The 16-bit immediate field is a relative branch address, and it



276 CHAPTER 7. MIPS DATAPATH

may be negative to allow for branching to a prior instruction. The adder
is a 32-bit adder, and the immediate field is only 16 bits, thus the need
to send the bus through a sign extend (SE) to produce a full 32-bit word,
preserving the sign.

The three options described above are combined into a single diagram show-
ing the connection of the PC, Instruction Memory, and Instruction Regster (IR)
in Fig 7.14. Note that when we combine all this logic into a single diagram,
we produce contradictions, as described in chapter 6. These are points in the
datapath where two or more sources come together, and are circled in Fig 7.14.

It is critical that we resolve these contradictions; each contradiction can be
resolved with a multiplexer. Recall from chapter 6 that a multplexer (or MUX)
with n select inputs can select one of 2n input busses to be copied to a single
output bus. In Fig 7.14 each contradiction can be resolved with a 2x32 MUX
(i.e. a MUX with two 32-bit inputs, one 32-bit output, and a single select input).
This is shown in Fig 7.15. In this diagram we label the two MUXes MUX BC
(for BC instructions) and MUX J (for J or JAL instructions); in what follows
we will need to refer to them individually.

Note that there is nothing connected to the select input for either of these
multiplexers. They will both have to come from the Control Unit, to be de-
scribed below.

7.2.5 Exercises

1. The speed of a CPU is determined by a clock signal.

(a) For a 20 MHz clock (1MHz = 106Hz): How many clock cycles are
there in 3.7 seconds?

(b) What is the speed of a clock which issues 6,750 pulses every second?

2. The diagram in Fig 7.8 is designed to execute which of the following MIPS
instructions?

(a) add

(b) lw

(c) or

(d) bc

(e) j

3. (a) What are the names (and widths, in bits) of the unlabeled fields in
the IR shown in Fig 7.9?

(b) Briefly explain why they are not relevant in this diagram?

4. (a) In Fig 7.10 which of the ALU operations should be selected? Refer
to Fig 6.63.



7.2. DESIGN OF THE DATAPATH 277

ADD

A

B

ADD

A

B

PC
(32)

Instr Mem
1Gx32

Address
in

Instr
Out

IR

J I R

SE

4

(32)

Figure 7.13: Connecting the PC, Instruction Memory, and Instruction Register
for conditional branch instructions. A dedicated 32-bit adder is used to incre-
ment or decrement the PC by the relative branch address (the other adder is
not used here).



278 CHAPTER 7. MIPS DATAPATH

ADD

A

B

ADD

A

B

PC
(32)

Instr Mem
1Gx32

Address
in

Instr
Out

IR

J I R

(32)

4

(32)

Figure 7.14: Connecting the PC, Instruction Memory, and Instruction Register.
Dedicated 32-bit adders are used for transfer of control. Contradictions are
circled.



7.2. DESIGN OF THE DATAPATH 279

MUX BC
2x1

1

0
0

S0

ADD

A

B

ADD

A

B

MUX J
2x1

1

0
0

S0
PC
(32)

Instr Mem
1Gx32

Address
in

Instr
Out

IR

J I R

(32)

4

(32)

(32)

Figure 7.15: Connecting the PC, Instruction Memory, and Instruction Register.
Dedicated 32-bit adders are used for transfer of control. Contradictions have
been resolved with multiplexers.



280 CHAPTER 7. MIPS DATAPATH

(b) In Fig 7.10 there is an SE component. If the input to SE is 812ax,
what is the output?

5. In Fig 7.10 there is a R/W signal to the Register File and to the Data
Memory.

(a) What should be the value of each of those signals if an add instruction
is being executed?

(b) What should be the value of each of those signals if a beq instruction
is being executed?

(c) What should be the value of each of those signals if a lw instruction
is being executed?

(d) What should be the value of each of those signals if a sw instruction
is being executed?

6. In Fig 7.12 the jump address field is only 26 bits, but the PC is 32 bits.
Show a better version of this diagram to rectify this problem. (See the
section on busses in chapter 6)

7. In Fig 7.10 explain briefly why the Sign Extend SE component is needed
for conditional branches.

8. In Fig 7.16 Component 1 has one output, and Component 2 has two
outputs. Identify the contradiction(s), if any, resolve using multiplexer(s)
and redraw the diagram, if necessary. (See Fig 7.14 and Fig 7.15)

7.3 The Control Unit

As mentioned, there are a few critical missing signals in the datapath, as we
have described it thus far. Specifically, there need to be:

• R/W signals for the Data Memory and the Instruction Memory.

• Control signals for the ALU

• Select signals for the multiplexers introduced so far.

The datapath logic for the production of these signals is called the control
unit. Since these signals depend on the instruction being executed, the control
unit will take as input the op field6 of the instruction; i.e. the operation code.
In cases where several different R format instructions share the same op code,
the control unit will also examine the funct field of the instruction. Using these
inputs the control unit will produce the necessary select and control signals for
the datapath. We examine these output signals below for a subset of the MIPS
instruction set. Specifically, we will handle the following:

6This was called the opcode field in chapter 4.



7.3. THE CONTROL UNIT 281

Comp 1

Comp 2

Comp 3

Comp 4

Comp 5

Figure 7.16: Exercise to identify and resolve contradiction(s), if any

• Load and store (lw and sw)

• R format instructions: add, sub, and, or. (we provide framework for the
slt instruction and leave its completion as an exercise)

• Conditional branch: beq, bne

• Unconditional jump: j

7.3.1 Control Unit Output to Data Memory R/W

The Data Memory is written by a Store Word (sw) instruction. All other in-
structions should not write to the Data Memory. Thus the output should be
0 only when the opcode is 2bx = 10 10112. For all other opcodes, the output
should be 1, to ensure that the Data Memory is not written. This signal from
the control unit is called DW.
DW = (op5 op′

4 op3 op′

2 op1 op0)’ in which op represents the 6-bit opcode field
of the instruction. This can be done with a single AND gate with 5 inputs, and
three inverters.



282 CHAPTER 7. MIPS DATAPATH

7.3.2 Control Unit Output to Register File R/W

The Register File is written by most R format instructions, such as add and sub.
Also, the the Load Word (lw) instruction will need to write to the Register File.
We might be tempted to set this output to 07 for any R format instruction,
but that would not be correct if we were to expand our subset of instructions.
The jr instruction is R format, and there are multiply and divide instructions
which are R format, none of which should write to the Register File. For our
subset, we will set this output to 0 when the opcode is 23x = 1000112 (lw) or
the opcode is 0 and the function code is 20x = 10 00002 (add), 22x = 10 00102

(sub), 24x = 10 01002 (and), 25x = 10 01012 (or), or 2ax = 10 10102 (slt), and
set the output to 1 in all other cases. We call this output from the control unit
RegW. Thus for our subset
RegW’ = op5 op′

4 op′

3 op′

2 op1 op0 +
op′

5 op′

4 op′

3 op′

2 op′

1 op′

0 (f5 f ′

4 f ′

3 f ′

2 f ′

1 f ′

0 +
f5 f ′

4 f ′

3 f ′

2 f1 f ′

0 +
f5 f ′

4 f ′

3 f2 f ′

1 f ′

0 +
f5 f ′

4 f ′

3 f2 f ′

1 f0 +
f5 f ′

4 f3 f ′

2 f1 f ′

0 )
in which op represents the 6-bit opcode field of the instruction and f represents
the 6-bit function code field of the instruction. This can be done with seven
AND gates, five OR gates, and a multitude of inverters.

7.3.3 Control Unit Output to ALU Operation Select - 4
bits

Our control unit must also tell the ALU which operation is to be performed, the
result of which is to be put onto the ALU output bus. The control unit will have
4 output bits for this purpose. There is an ALU operation for each R format
instruction in our subset. The ALU is also used for the I format instructions lw

and sw; the ALU is used to form an absolute address to the Data Memory as
the sum of the rs register and the immediate field. For these instructions, the
ALU must perform an add operation. are shown below:

Instruction Op code Function code ALU Operation Code
add 0 20x = 10 00002 00102

sub 0 22x = 10 00102 01102

and 0 24x = 10 01002 00002

or 0 25x = 10 01012 00012

slt 0 2ax = 10 10102 01112

lw 23x = 10 00112 00102

sw 2bx = 10 10112 00102

In the above table we see that the high order bit (bit 3) of the ALU operation

7Recall that 0 asserts a Write operation for the R/W input.



7.3. THE CONTROL UNIT 283

code is always 0.
ALU3 = 0
Bit 2 is 1 for the sub and slt instructions only:
ALU2 = op′

5 op′

4 op′

3 op′

2 op′

1 op′

0

( f5 f ′

4 f ′

3 f ′

2 f1 f ′

0 + f5 f ′

4 f3 f ′

2 f1 f ′

0 )

For bit 1 of the ALU, it is 0 only for the add, sub, and slt instructions:
ALU1 = op′

5 op′

4 op′

3 op′

2 op′

1 op′

0

( f5 f ′

4 f ′

3 f ′

2 f ′

1 f ′

0 + f5 f ′

4 f ′

3 f ′

2 f1 f ′

0 + f5 f ′

4 f3 f ′

2 f1 f ′

0 )’
Finally, bit 0 of the output to ALU operation select is 1 for the or and slt

instructions only.
ALU0 = op′

5 op′

4 op′

3 op′

2 op′

1 op′

0

( f5 f ′

4 f ′

3 f2 f ′

1 f0 + f5 f ′

4 f3 f ′

2 f1 f ′

0 )
We have shown boolean expressions for each of the four output lines from the

control unit to the ALU operation select. The logic diagram can be constructed
from these four expressions.

7.3.4 Control Unit Output to Multiplexers

At this point we have two multiplexers in our datapath, as shown in Fig 7.15,
and each needs a 1-bit control signal from the control unit.

Control signal to MUX BC

The multiplexer MUX BC takes input from two busses:

• Input bus 0 - the dedicated adder which adds 4 to the current PC value.

• Input bus 1 - the dedicated adder which adds the immediate field to the
current PC value (for conditional branch to a relative address).

The control signal to this MUX should be 1 when a conditional branch is
executing, and 0 for all other instructions except for an unconditional jump
instruction. For a jump instruction we don’t care about the output of the MUX
BC; it is ignored. The conditional branch instructions are beq and bne.8

However, for these instructions the branch is conditional ; the branch should
take place only if the registers being compared are equal (for beq) or unequal
(for bne). This comparison can be accomplished by instructing the ALU to
do a subtract operation, and testing the Z output (for a zero result from the
subtraction). If the ALU output is zero and the instruction being executed is
beq, then the control signal to MUX BC should be a 1. If the ALU output is
not zero, and the instruction being executed is bne, then the control signal to
MUX BC should also be a 1; otherwise it should be a 0.

The select input to the MUX BC can thus be written as:
MUXBC = BEQ Z + BNE Z’
where

8Other conditional branches, such as ble and bgt are actually pseudo-ops and are not in
the MIPS instruction set (see chapter 3).



284 CHAPTER 7. MIPS DATAPATH

ALU

A

B

Z

MUX BC
2x1

1

0

0

S0

BEQ

BNE

To MuxJ

From Adder(immediate)

From Adder(PC+4)

From Reg File(rs)

From Reg
File(rt)

Op Select
(Subtract=0110)

Figure 7.17: Generating the Select input for the BC Multiplexer, from the ALU
Z output and the control unit. Signals from control unit are dashed arrows.

• BEQ is a signal from the Control Unit that the instruction being executed
is beq

• BNE is a signal from the Control Unit that the instruction being executed
is bne

• Z is the Z output signal from the ALU indicating that the output of the
ALU is 0.

This means we will need two AND gates,an Inverter, and an OR gate in our
datapath, forming the input to the MUX BC multiplexer. The select input to
the BC multiplexer is shown in Fig 7.17.

We can now write the boolean expressions for the Control Unit outputs
described above. The op codes for the conditional branch instruction are be =
04x = 00 01002 and bne = 05x = 00 01012.

BEQ = op′

5 op′

4 op′

3 op2 op′

1 op′

0

BNE = op′

5 op′

4 op′

3 op2 op′

1 op0

Control signal to MUX J

We consider the MUX J multiplexer next. It will also require a 1-bit signal from
the control unit. It decides whether the PC should be loaded with the jump
address from an unconditional jump (input 0), or loaded from the MUX BC
output (input 1). The control unit will generate a signal, J=0, if the instruction



7.3. THE CONTROL UNIT 285

being executed is an unconditional jump. Thus, all that is needed is to use that
as the select signal to MUX J, as shown in Fig 7.18.

Data In to Register File

Another contradiction which needs to be resolved is at the Data In to the Reg-
ister File. By comparing Fig 7.8 (for R format instructrions) and Fig 7.10 (for
the lw instruction), we see two busses leading in to the Data In input for the
Register File. This contradiction must be resolved with another multiplexer.
We call it MUX RF, and it is shown in Fig 7.19.

IR to Write Select

In comparing Fig 7.9 with Fig 7.10 we see anothe contradiction which needs
to be resolved. This is at the Write Select input to the Register File, which
determines which register is to receive the result of the operation. For an R
format instruction, such as add, the Write Select should come from the rd
field of the IR. For the I format instruction lw (load word) the Write Select
comes from the rs field of the IR. Thus a multiplexer is needed to resolve this
contradiction as shown in Fig 7.20. The control unit will select the rs field only
if the instruction is lw. Otherwise it will select the rd field.

B Input to the ALU

Before showing the detailed logic of the control unit, there is one more con-
tradiction which needs to be resolved. In the case of an R format instruction,
the B input to the ALU is taken from the rs register (through the B output of
the Register File), as shown in Figs 7.8 and 7.9. However, for load and store
instructions (lw and sw), the B input to the ALU is taken from the immediate
field of the instruction so the effective address can be computed as the sum of
the rs register and the immediate field, as shown in Fig 7.10. This contradiction
needs to be resolved with yet another multplexer. We call this multiplexer MUX

ALU, and its inputs are the B output of the Register File and the immediate
field of the instruction.9 The output of the multiplexer forms the B input to the
ALU. The select signal for this multiplexer is called ALU B, and it comes from
the control unit as shown in Fig 7.21.

7.3.5 Logic for the Control Unit

In the preceding sections we have seen the need for several control signals from
the control unit. The inputs to the control unit are the operation code (op) and
function code (func) fields from the Instruction Register (IR). These determine
the instruction being executed. All that remains is to show how the control unit
outputs are computed from its inputs. We summarize the contol unit outputs
below:

9The immediate field needs to extended to a full 32 bits, with a sign extend to preserve
the sign of the value.



286 CHAPTER 7. MIPS DATAPATH

MUX BC
2x1

1

0
0

S0

ADD

A

B

ADD

A

B

MUX J
2x1

1

0
0

S0
PC
(32)

Instr Mem
1Gx32

Address
in

Instr
Out

IR

J I R

(32)

4

(32)

(32)
See

Fig 7.17

J

Figure 7.18: Select signal to the MUX J multiplexer is the signal labeled J, from
the control unit.



7.3. THE CONTROL UNIT 287

Reg File
32x32

Data
in

A sel

B sel

Write
Sel

A

B

R/W

ALU

A

B

Z Data
Mem

1Gx32

Addr
In

Data
In

Data
Out

R/W

MUX RF
2x1

1

0
0

S0

From IR
Immediate

(32)

(32)

(32)

RF

Figure 7.19: Using a multiplexer to resolve the contradiction at the Data In to
the Register File. The RF signal is produced by the control unit.

IR

I R

MUX WS
2x1

1

0 S0

Reg File
32x32

Data
in

A sel

B sel

Write
Sel

A

B

R/W

rs(5)

rt(5)

rd(5)

WS

Figure 7.20: Using a muiltplexer to resolve the contradiction at the Write Select
input to the Register File. The WS signal is produced by the control unit.



288 CHAPTER 7. MIPS DATAPATH

IR

I

Reg File
32x32

Data
in

A sel

B sel

Write
Sel

A

B

R/W

MUX ALU
2x1

1

0
0

S0

ALU

A

B

Z

rs(5)

rt(5)

imm(16)

(32)

To Reg File
and Data Mem

Addr In

ALU B

Figure 7.21: Using a multiplexer to resolve the contradiction on the B input to
the ALU. The ALU B signal is produced by the control unit.

• RegW: R/W signal to the Register File. 1=Read, 0=Write.

• DW: R/W signal to the Data Memory. 1=Read, 0=Write.

• ALUB: Select signal to the ALU B multiplexer. 1=select B register, 0=se-
lect immediate field.

• RF: Select signal to the MUX RF multiplexer. 1=select Data Memory
out, 0=select ALU out.

• WS: Select signal to the MUX WS multiplexer. 1=select rd field, 0=select
rt field.

• J: Select signal to the MUX J multiplexer. 1=select MUX BC out, 0=se-
lect jump address from IR.

• BEQ: Used by the MUX BC multiplexer. 1=current instruction is a be

instruction, 0=current instruction is not a be instruction.

• BNE: Used by the MUX BC multiplexer. 1=current instruction is a bne

instruction, 0=current instruction is not a bne instruction.

• ALUOP: ALU Operation Select (4 bits). See Fig 6.63.

We finally have all the information we need to build the control unit. We
do this by examining each instruction in our subset, and deciding what each
output of the control unit should be for that instruction. This is shown as a
table in Fig 7.22. The value for RF for the slt instruction is left as an exercise.



7.3. THE CONTROL UNIT 289

Instruction RegW DW ALUB RF WS J BEQ BNE ALU OP
and 0 1 1 0 0 1 0 0 0000
or 0 1 1 0 0 1 0 0 0001

add 0 1 1 0 0 1 0 0 0010
sub 0 1 1 0 0 1 0 0 0110
nor 0 1 1 0 0 1 0 0 1100
slt 0 1 1 0 1 0 0 0111
lw 0 1 0 1 1 1 0 0 0010
sw 1 0 0 ? ? 1 0 0 0010
beq 1 1 1 ? ? 1 1 0 0110
bne 1 1 1 ? ? 1 0 1 0110

j 1 1 ? ? ? 0 ? ? ????

Figure 7.22: Table showing the outputs of the control unit for each instruction.
Don’t cares are indicated by question marks.

Note that some of the entries in the table are question marks. These repre-
sent don’t care values. These values could be either 0 or 1; it doesn’t matter.
This gives us more flexibility and can simplify the logic for the control unit. As
an example, for a store word (sw) instruction, the RF signal is a don’t care.
This signal determines whether the Register File is loaded from the ALU out-
put or from the Data Memory. But for a store word instruction, the Register
File is not written, hence it does not matter what comes out of the MUX RF
multiplexer. In general, whenever the RegW signal is 1 (the Register File is not
written), the RF signal to MUX RF will be a don’t care.

We now take one instruction, the and instruction and explain each control
unit output for that instruction.

• RegW must be 0 because the result of the and instruction needs to be
written to the Register File.

• DW must be 1 because the and instruction should not write to the Data
Memory.

• ALUB must be 1 so that the B input to the ALU is taken from the B output
of the Register File, rather than the immediate field of the instruction.

• RF must be 0 because the output of the ALU must be written back to the
Register File.

• WS must be 0 because the rd field of the instruction specifies the register
to be written.

• J must be 1 because and is not a jump instruction.

• BEQ must be 0 because and is not a beq instruction.

• BNE must be 0 because and is not a bne instruction.



290 CHAPTER 7. MIPS DATAPATH

• ALUOP must be 0000 because that is the ALU operation code for logical
AND.

To build the control unit we should first write a boolean expression for
each output, using the instruction op code and function code (for R format
instructions). For example, the table in Fig 7.22 shows that the RegW signal
should be 1 when the instruction is any one of the following:

• sw (op code = 2bx = 10 10112),

• beq (op code = 04x = 00 01002),

• bne (op code = 05x = 00 01012),

• j (op code = 02x = 00 00102).

Thus the boolean expression for the RegW output signal is

RegW = op5 op′

4 op3 op′

2 op1 op0 +
op′

5 op′

4 op′

3 op2 op′

1 op′

0 +
op′

5 op′

4 op′

3 op2 op′

1 op0 +
op′

5 op′

4 op′

3 op′

2 op1 op′

0

The student should be able to write the boolean expressions for the other
output signals. The logic diagrams are left as exercises.

This completes our design of the MIPS datapath. The complete diagram is
shown in Fig 7.23 and Fig 7.24.

7.3.6 Exercises

1. The Control Unit output to the Register File R/W input is called RegW,
and is shown above. In that expression op represents the 6-bit opcode
field of the instruction and f represents the 6-bit function code. Rewrite
this expression to accommodate the jump register (jr) instruction and the
jump and link (jal) instruction.

2. The table used to determine the Control Unit output to the ALU operation
select is shown below.

Instruction Op code Function code ALU Operation Code
add 0 20x = 10 00002 00102

sub 0 22x = 10 00102 01102

and 0 24x = 10 01002 00002

or 0 25x = 10 01012 00012

lw 23x = 10 00112 00102

sw 2bx = 10 10112 00102

(a) Include another row in this table for the set if less than (slt) instruc-
tion.



7.3. THE CONTROL UNIT 291

MUX BC
2x1

1

0 S0

ADD

A

B

ADD

A

B

MUX J
2x1

1

0 S0
PC
(32)

Instr Mem
1Gx32

Address
in

Instr
Out

IR

J I R

MUX
WS

Regs
32x32

Data
in

A sel

B sel

Write
Sel

A

B

R/W

MUX ALU
2x1

1

0 S0

(32)

4

(32)

SE

(32)
See

Fig 7.17

J

To
ALU

A

To
Data
Mem

To
ALU

B

rs(5)

rt(5)

From MUX RF

WS

RegW

ALUB

Figure 7.23: Datapath for the MIPS architecture. Signals from the control unit
are shown with dashed arrows (see also Fig 7.24).



292 CHAPTER 7. MIPS DATAPATH

ALU

A

B

Z

Data
Mem

1Gx32

Addr
In

Data
In

Data
Out

R/W

MUX RF
2x1

1

0
0

S0

Control Unit
2x9

op

func

RegW

DW

ALUB

RF

WS

J

BEQ

BNE

ALU OP

(32)

From IR op
(6)

From IR func
(6)

From Regs A

From MUX ALU

From
Regs

B

To Regs
Data In

To Reg File R/W

To MUX ALU

To MUX WS

To MUX J

To Fig 7.17

To Fig 7.17

(4)

)

Figure 7.24: The full datapath (with Fig 7.23) showing the control unit. Control
Unit signals are shown with dashed arrows.



7.3. THE CONTROL UNIT 293

(b) Rewrite the boolean expressions, as needed, for the Control Unit’s
4-bit output to the ALU.

3. Describe in words how the two 2x1 multplexers in Fig 7.15 can be combined
into a single 4x1 multiplexer (with one of its 4 inputs unused).

4. What would be the output of the Control Unit if we were to include the
set if less than (slt) instruction in our subset of MIPS instructions?

(a) Show the value for RF in the row for slt in Fig 7.22.

(b) What other changes would have to be made to the datapath?

5. (a) Show the boolean expression for the DW output of the Control Unit.

(b) Show the boolean expression for the ALUB output of the Control Unit.

(c) Show the boolean expression for the RF output of the Control Unit.

(d) Show the boolean expression for the WS output of the Control Unit.

(e) Show the boolean expression for the J output of the Control Unit.

(f) Show the boolean expression for the BEQ output of the Control Unit.

(g) Show the boolean expression for the BNE output of the Control Unit.

(h) Show the boolean expression for the low order bit of the ALU OP

output of the Control Unit.



Chapter 8

The Memory Hierarchy

8.1 Introduction to the Memory Hierarchy

As we have seen, the instructions and data comprising a MIPS program are
stored in memory. In the MIPS architecture the instruction memory and data
memory are separate components. The runtime performance of a MIPS program
will depend, to a large extent, on the speed of the memory components (i.e. the
time it takes to access the desired word).

The time it takes the CPU to execute one instruction (one clock cycle in a
one-cycle implementation) will typically be much smaller than the time it takes
to access memory. Memory access time is typically on the order of one thousand
times the clock speed! With this simplistic model, one can imagine the CPU
idle for 1000 cycles while a lw or sw instruction is waiting for a response from
the memory.

There are several strategies that are employed to overcome memory latency
(the delay introduced by a memory access). In the case of the instruction
memory, most CPUs are designed to prefetch instructions. Instructions are
loaded into processor registers long before they are needed, instead of loading
them as needed. Thus rather than just one Instruction Register, there is an
array of several Instruction Registers. Several strategies have been developed
for the prefetching of instructions which follow a conditional branch instruction.

This chapter will focus on strategies used to improve latency for the data
memory. The fast (but expensive) memory in the CPU is known as cache
memory. We will investigate strategies that are used to ensure that frequently
accessed words are kept in the cache as much as possible.

The principles of fast access to data memory will also apply to virtual mem-
ory. Virtual memory is the term normally used to describe an expansion of
the RAM using a secondary storage device such as disk or flash memory. Thus
the memory hierarchy consists of (in order from fastest and most expensive to
cheapest and slowest):

294



8.1. INTRODUCTION TO THE MEMORY HIERARCHY 295

Memory Typical Volatile?
Technology Usage

Fastest, Most expensive FPGA CPU Registers Y
SRAM Cache Y
DRAM RAM Y
Flash (removable) Secondary Storage N
Solid State Disk Secondary Storage N
(Flash) or Virtual Memory
Fixed Magnetic Disk Secondary Storage N

or Virtual Memory
Optical Disk Secondary Storage N

Slowest, Cheapest Removable Magnetic Disk Secondary Storage N

Figure 8.1: Table showing the performance parameters of various (primary)
memory and (secondary) storage technologies

1. cache memory

2. RAM

3. virtual memory

8.1.1 Memory Technologies

As mentioned above there are a number of different technologies that are used
to implement data storage. In general, there is a trade-off between access time
and cost for these technologies. Fig 8.1 shows some of the technologies available
today.

A storage device is said to be volatile1 if the stored data is lost when power
is shut off. Permanent storage devices such as disks and flash memory are not
volatile. RAM and cache memories are volatile.

8.1.2 Exercises

1. Given the following types of storage and memory:

• Flash memory

• Fixed Magnetic Disk

• (Removable) Optical Disk

• Static Random Access Memory (SRAM)

• Magnetic Tape

• Dynamic Random Access Memory (DRAM)

1We borrow this term from chemistry, in which a volatile fluid is one which evaporates
quickly.



296 CHAPTER 8. THE MEMORY HIERARCHY

• Removable Magnetic Disk

(a) Order the above from fastest to slowest (access time).

(b) Order the above from cheapest to most expensive (per byte).

(c) Which of the above are volatile (require power to maintain data that
has been stored)?

2. Define the term memory latency.

3. Rewrite the following MIPS program segment with an equivalent program
segment that runs about 1000 times faster.

sub:

lp:

ble $t0,$0, done # finished with loop?

lw $t1, incr # increment

add $t2, $t2, $t1 # $t2 <- $t2 + incr

addi $t0, $t0, -1 # decrement loop counter

j lp # repeat

done:

8.2 Cache Memory

Cache memory is located in the memory hierarchy between the CPU registers
and the main memory (RAM). Cache memory is faster (i.e. access time is lower)
than RAM, but more expensive. Cache memory is slower than CPU registers
but less expensive. The cache memory will maintain copies of data from RAM
in units of fixed size known as blocks. A typical cache memory could consist of
512 (= 29) blocks, each of which stores 128 (= 27) bytes.
29 × 27 = 216 = 64K. Thus, in this example, the cache stores a total of 64K
bytes.

When an instruction such as an lw instruction needs to access a word from
the data memory (RAM), it will first attempt to find a copy of that word in
the cache memory. If it succeeds, this is called a cache hit. If it fails, the cache
memory will obtain a copy of the desired word from RAM; this is called a cache
miss. Since cache memory is faster than RAM, a large proportion of cache hits
will lead to improved performance.

When a sw instruction is executed, to store register contents into a word of
the data memory, if a copy of that word is in cache, it will simply change that
copy (cache hit). If it is not in cache, a copy is made from the appropriate block
in RAM. At some point, the block containing the stored word must be copied
back to RAM; this is handled in various ways, as we shall see below.

We now look at a few examples of cache implementation schemes: Direct-
mapped cache and Associative cache.



8.2. CACHE MEMORY 297

8.2.1 Direct-mapped Cache

In a Direct-mapped cache each block of RAM is mapped to a predetermined
block in cache memory. This mapping is done quickly and automatically simply
by choosing the appropriate bits of a memory address. Since RAM is much
larger than cache, this is a many-to-one mapping of blocks in main memory to
cache blocks. Several blocks of RAM will map to the same cache block, which
stores a copy of the RAM block. Thus, the cache memory will need to store
information indicating the source of the block in RAM.

Each time a word (or byte) of RAM is accessed for a read operation, the
CPU will first check to see if its block is already in the cache memory. If so
it merely obtains its value from the cache, and there is no need to access the
RAM. This is a cache hit. If the accessed word is not in cache, then its block is
copied from RAM into the cache. This is a cache miss.

Each time a word (or bye) of RAM is accessed for a write operation, the
CPU will check to see if its block is already in the cache memory. If so it writes
the new value to the cache. But now the cache block and its corresponing RAM
block are different; the difference can be reconciled in one of two ways:

• Every time a write operation occurs the cache block is copied back to the
corresponding block in RAM, ensuring that the cache block agrees with
its corresponding RAM block.

• The cache stores a dirty bit for each cache block. Initially the dirty bits
are all 0. When a write operation occurs, the dirty bit for the selected
cache block is set to 1. When a different RAM block is copied to cache
(see above) the cache checks the dirty bit. If it is 1, the cache block differs
from its corresponding RAM block, so the cache block is copied to the
corresponding RAM block. Then the new RAM block can be copied to
the cache, and its dirty bit is cleared.

An example of a simple direct-mapped cache

The following simplified example is used to demonstrate a direct-mapped cache
memory. We use a byte-addressable RAM consisting of 256 bytes; hence a
RAM address will require 8 bits (256 = 28). We use a block size of 8 bytes per
block. Thus there will be a total of 32 (256/8 = 28/23 = 28−3 = 25) blocks in
RAM. Our cache memory will store 8 blocks. Our RAM and cache are depicted
in Fig 8.2 in which the cache is shown above the main memory (RAM). Each
small box represents 1 byte, and a block of 8 bytes is shown as a vertical column.

Both diagrams in Fig 8.2 show the 3-bit addresses of a byte within a block
as row labels. The cache diagram shows the 3-bit address of a block in the cache
as column labels. The RAM diagram shows the 5-bit block addresses of selected
blocks (1,3,9,11,17, and 19) as labels below the columns.2

2Due to a lack of space, only the first 23 of 32 columns is shown for the RAM.



298 CHAPTER 8. THE MEMORY HIERARCHY

If you are viewing this page in color, you will see that column 1 in the cache
is yellow, as are columns 1, 9, and 17 in RAM. This shows that these blocks
map directly to block 1 in the cache. In general, since there are 8 blocks in the
cache, block number b in the RAM will map directly to block b mod 8 in the
cache. Also notice that block 3 in the cache is shown in blue, as are blocks 3,
11, and 19 in the RAM, showing that these blocks map directly to block 3 in
the cache.

As mentioned above, the cache needs to write modified blocks back to RAM;
at this point it will need to know which of the 4 possible RAM blocks it is storing.
This information is shown as a 2-bit quantity labeled main block in the cache.
It is also known as a tag.

In this example there was a reference to the byte at address 4bx = 0100 10112.
This byte is shown with a (red) circle in Fig 8.2. We can dissect that address
as follows: 0100 10112 = 01 001 0112

01 block 1 of 4 in the RAM

001 block 1 of cache

011 byte 3 within the block.

In general, a RAM address can be viewed as shown in Fig 8.3. The number
of bytes in a block determines the size of the byte field. The number of blocks
in the cache determines the size of the cache block field. The remaining bits in
a RAM address determine the size of the tag field.

In our example, we are referencing the byte at address 4bx. The correspond-
ing block has been copied from block 9 in RAM into block 1 of the cache. Also
the cache stores the 2-bit main block number (or tag) 01 so that it knows which
of the 4 possible RAM blocks it is currently storing.

We now provide an example to illustrate the behavior of the cache memory.
Recall that when the RAM block being accessed is already in cache, it is called
a cache hit, and when that block is not in the cache it is called a cache miss. In
the table below we show a sequence of RAM addresses being accessed, and the
effect that they have on the cache.

RAM Address tag cache block Effect on cache
9bx = 1001 10112 = 10 011 011 10 011 Cache Miss
2dx = 0010 11012 = 00 101 101 00 101 Cache Miss
efx = 1110 11112 = 11 101 111 11 101 Cache Miss
99x = 1001 10012 = 10 011 001 10 011 Cache Hit
4ax = 0100 10102 = 01 001 010 01 001 Cache Miss
eax = 1110 10102 = 11 101 010 11 101 Cache Hit
2dx = 0010 11012 = 00 101 101 00 101 Cache Miss

Note in the reference to 2dx in the last line of the table that it is a repeat
of the second line. However, the effect is a cache miss because cache block 101
has been clobbered by the reference to efx which is mapped to the same cache
block.



8.2. CACHE MEMORY 299

Cache
(fast)

000

001

010

011

100

101

110

111

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

= 1 byte

= 1 block

Main block
(tag) 0

1
0
0

Main memory
(slow)

000

001

010

011

100

101

110

111

Block
number

0
0
0
0
1

0
0
0
1
1

0
1
0
0
1

0
1
0
1
1

1
0
0
0
1

1
0
0
1
1

Figure 8.2: Diagram of direct-mapped cache memory and main memory (RAM).
Byte at memory address 4bx = 0100 10112 = 01 001 0112 is accessed.

tag (2) cache block (3) byte (3)
RAM block (5) byte (3)

Figure 8.3: Fields of a RAM address for a direct-mapped cache memory, corre-
sponding to Fig 8.2



300 CHAPTER 8. THE MEMORY HIERARCHY

tag (3) cache set (2) byte (3)
RAM block (5) byte (3)

Figure 8.4: Fields of a RAM address for an associative cache memory, corre-
sponding to Fig 8.5

8.2.2 Associative Cache

A more expensive, but potentially faster, implementation of cache memory is
called associative cache. In an associative cache the blocks are grouped into
sets, all of which have the same size. Each block of RAM maps to one of these
sets. When a block needs to be copied from RAM into the cache, any one of the
blocks in the cache set can be replaced by the new block. An associative cache
memory in which there are n blocks in each set is called an n-way associative
cache. A 1-way associative cache (n = 1) is the same as a direct-mapped cache.

The fields of a RAM address, with an associative cache, are similar to those
shown in Fig 8.3. However, instead of a cache block field, we have a set field,
as shown in Fig 8.4. Each RAM block maps to a set of blocks in the cache,
rather than to an individual block.

To see why this scheme is potentially faster than a direct-mapped cache,
consider the case where there are successive references to different RAM blocks,
all of which map to the same cache block. For example, referring to Fig 8.2,
suppose there are references to the following memory locations in the sequence
shown:
88x(= 1000 10002 = 10 001 0002)
4bx(= 0100 10112 = 01 001 0112)
09x(= 0000 10012 = 00 001 0012)
cax(= 1100 10102 = 11 001 0102)
The bytes referenced by these addresses are all in blocks which map to the same
cache block (0012). Thus there will be a cache miss on each reference, which
essentially nullifies the speed advantage provided by a cache memory.

If this had been a 4-way set associative cache, it could potentially store all
4 blocks in cache at the same time, thus converting 3 of the cache misses into
cache hits.

An example of a simple 2-way associative cache

Our example of a 2-way associative cache memory is very similar to our example
of a direct-mapped cache memory. The RAM is the same - 256 bytes, with 8
bytes in a block. The size of the cache memory is also the same, 8 8-byte blocks;
however, in the associative cache we group every two blocks together, as shown
in Fig 8.5. Thus there are now 4 sets in the cache. Note that the set number
is only two bits, as shown in the column headers of the cache. This means that
each block in RAM maps directly to one of the four sets in cache. It could be
stored in either the left or right column of that set.



8.2. CACHE MEMORY 301

In Fig 8.5 there is a reference to the byte at RAM address 4bx = 0100 10112 =
01 001 0112. The byte at this address is shown with a filled circle, and its block
(number 01001) has been copied to one of the two blocks in cache set 01. Let’s
assume it is in the second column of this set, though it could as well be in the
first column (see discussion of block replacement strategies, below). The tag for
this block will be the three high order bits of the block number: 010.

If you are viewing Fig 8.5 in color, you will see that RAM blocks 1, 5, 9,
13, 17, 21, shown in yellow, all map to the same set, set 1, because these block
numbers are all congruent to 1 (mod 4); if these numbers are expressed as 5-bit
binary numbers, take the last two bits to get the set number. Similarly, RAM
blocks 3, 7, 11, 15, 19, shown in blue, all map to the same set in the cache, set
3.

Block replacement algorithms

When a byte is referenced from RAM, if its block is already in cache, then the
associative cache works exactly the same as the direct-mapped cache. However,
if its block is not already in cache, the cache will need to copy the block from
RAM. At this point the cache must decide which of the two blocks in the set is
to be overwritten. This decision is made by a block replacement algorithm. For
optimal performance, we would like it to overwrite the block which will not be
referenced sooner as the program executes. While it is not possible to implement
this optimal strategy, there are at least three different strategies which can be
used to decide which block in a set is to be overwritten. We discuss one of
these strategies here, without going into the details of the implementation, and
mention the other two.

The first such block replacement strategy is called Least Recently Used, or
LRU. In this strategy the cache will overwrite the block in the selected set which
has been referenced least recently in the program’s execution. This strategy will
often increase the probability of cache hits in subsequent memory accesses.

We now take an example to illustrate the LRU block replacement strategy.
We assume the state of the cache is as shown in Fig 8.6. in which a tag is
shown for each cache block. The following table shows how the cache works as
a sequence of bytes are read from the RAM.

RAM Address tag set Effect on cache
4ax = 0100 10102 = 010 01 010 010 01 Cache Hit
18x = 0001 10002 = 000 11 000 000 11 Cache Hit
abx = 1010 11012 = 101 01 101 101 01 Cache Hit
cbx = 1100 10112 = 110 01 011 110 01 Cache miss

Block 11001 replaces block 01001

The final state of the cache is shown in Fig 8.7.
There are at least two other commonly used block replacement strategies for

set-associative cache memories. The first is called First-In First-Out, or FIFO.
In this strategy the block which has been residing in the cache set for the longest



302 CHAPTER 8. THE MEMORY HIERARCHY

Cache
(fast)

000

001

010

011

100

101

110

111

0
0

0
1

1
0

1
1

= 1 byte

= 1 block

Main block
(tag)

1
0
1

0
1
0

Main memory
(slow)

000

001

010

011

100

101

110

111

Block
number

0
0
0
0
1

0
0
0
1
1

0
0
1
0
1

0
0
1
1
1

0
1
0
0
1

0
1
0
1
1

0
1
1
0
1

0
1
1
1
1

1
0
0
0
1

1
0
0
1
1

1
0
1
0
1

Figure 8.5: Diagram of a 2-way associative cache memory and main memory
(RAM). Bytes at RAM addresses 4bx = 0100 10112 = 01 001 0112 and abx =
1010 10112 = 10 101 0112 are accessed, which map to blocks in the same cache
set.



8.2. CACHE MEMORY 303

Cache
(fast)

000

001

010

011

100

101

110

111

0
0

0
1

1
0

1
1

= 1 byte

= 1 block

Main block
(tag)

1
1
1

0
0
1

1
0
1

0
1
0

1
0
1

0
1
1

0
1
0

0
0
0

Figure 8.6: Initial state of the cache for an example of the LRU strategy

Cache
(fast)

000

001

010

011

100

101

110

111

0
0

0
1

1
0

1
1

= 1 byte

= 1 block

Main block
(tag)

1
1
1

0
0
1

1
0
1

1
1
0

1
0
1

0
1
1

0
1
0

0
0
0

Figure 8.7: Final state of the cache for an example of the LRU strategy



304 CHAPTER 8. THE MEMORY HIERARCHY

period of time is the one to be replaced.
Both LRU and FIFO can, in certain situations, degrade to the point that

almost every memory reference causes a cache miss. This situation is known as
thrashing.3 The third block replacement strategy is called Random. A sequence
of random numbers is used to determine the cache block that is to be replaced.
If the sequence is long enough, and sufficiently random, this will effectively
prevent thrashing. Of course none of these strategies will be optimal.

8.2.3 Exercises

1. You are given a byte-addressable RAM with 4K bytes and a direct-mapped
cache memory with 512 bytes. The block size is 32 bytes.
(Hint: Work with exponents of 2)

(a) How many blocks are in the RAM?

(b) How many blocks are in the cache memory?

(c) If a program accesses the byte at location 9c7x, which block of RAM
is copied to the cache? Give the block number as shown in Fig 8.2.

(d) To which block of the cache is it copied? Show the column heading
as shown in Fig 8.2.

(e) What will be the tag value on that cache block?

2. (a) Complete the following table for the cache and RAM shown in Fig 8.2.
Assume the memories are initially clear, so the first reference to any
block is a cache miss.

RAM Address tag cache block Effect on cache
9bx

ddx

9dx

8ex

9fx

08x

f9x

(b) Show the tag value for each cache block which has been affected by
the memory refences in the above table.

(c) Show 3 more memory references, all to different blocks in the RAM,
and all of which result in cache hits.

3. (a) Show a diagram similar to Fig 8.2 for a 16K RAM, and a 32 byte
direct-mapped cache with 4-byte blocks. Your diagram should show
at least the first 24 blocks of the RAM, and the entire cache.

(b) Put a circle on the byte at RAM address 0057x.

3The term ‘thrashing’ is more commonly used at the virtual memory level, but can also be
used at the cache level, with the same meaning.



8.2. CACHE MEMORY 305

(c) Put another circle on the cache byte to which the RAM address 0057x

is mapped.

(d) Show the tag value (in hex) in the cache for the block containing the
circled byte.

4. Given a RAM storing 256M bytes and a 4-way associative cache memory
storing 64K bytes, with a block size of 128 bytes:
Hint: Use exponents of 2.

(a) How many blocks are in the RAM?

(b) How many blocks are in the cache?

(c) How many sets of blocks are in the cache?

(d) Show a diagram of a RAM address, similar to Fig 8.4. In the diagram
show the width, in bits, of each field.

5. Refer to the 2-way associative cache of Fig 8.5 and the table of RAM
memory references shown below.

RAM Address tag set Effect on cache
f2x

18x

a5x

dbx

ebx

d2x

c0x

d7x

1dx

(a) Complete the table, showing which references cause cache hits/misses
in the column for Effect on cache. Assume that an initial refer-
ence to a RAM block always causes a cache miss. Assume an LRU
block replacement strategy is used.

(b) Show the final tag field(s) for each cache set which has been altered.

6. Given a 32K RAM with a 5-way cache storing 40 bytes, in which the block
size is 4 bytes.

(a) How many blocks are in the RAM?

(b) How many sets are in the cache memory?

(c) Show a diagram of the RAM and cache memory similar to Fig 8.5.
Show at least 20 columns in the RAM.

(d) Draw a circle in the RAM for the byte at address 0026x

(e) Draw a circle in the cache memory for the byte to which RAM address
0026x is mapped.

(f) Show the fields in a RAM address as in Fig 8.4, and show the number
of bits in each field.



306 CHAPTER 8. THE MEMORY HIERARCHY

8.3 Virtual Memory

The next level of the memory hierarchy is called virtual memory. Whereas the
purpose of cache memory is to provide faster access to the RAM, the purpose of
virtual memory is to expand the capacity of RAM. A secondary storage device,
such as disk or flash memory, is used to provide an extended address space for
the RAM. For example, if we have a 64K RAM, it can be addressed with a
16-bit address. However, it can be expanded, using 1M byte of disk space, to
achieve a virtual RAM of 1M. This means that 1M byte of disk space would be
reserved for virtual memory, and cannot be used for other purposes. An address
for the virtual RAM would be 20 bits.

Just as the bytes in a cache memory are grouped into blocks, the bytes in a
virtual memory are grouped into pages.4 A page is typically about 8K bytes.

Unlike the cache memory level, virtual memory pages are generally not di-
rectly mapped to pages in the RAM. Virtual memory is more like an associative
cache memory in which there is just one set.

When the processor needs data from the RAM, if the addressed byte is in a
page which is currently residing in RAM, the secondary storage is not accessed
at all. However, if the addressed bye is not in the RAM, the page which contains
it must be copied into the RAM; this is called a page fault. A RAM page is
selected to be copied back to virtual memory so that it can be overwritten with
the desired page from disk. A page-replacement policy (similar to the block-
placement strategies used by associative cache memories) is used to determine
the page. Examples of page-replacement policies are Least Recently Used (LRU)
and First-In First-Out (FIFO).

When the reference to a RAM byte is a write operation, the containing page
would be copied back to the disk swap space. Alternatively, a ’dirty bit’ could
be used to determine whether a RAM page has been written. If the page has
not been altered, there is no need to write it back to the disk.

Fig 8.8 is a diagram of a virtual memory in which there are only 32 pages
of RAM, but 256 pages of swap space on the disk. The total address space of
virtual memory would be 256 pages. If your are viewing Fig 8.8 in color, you
will notice some random collection of pages in virtual memory are shown in
yellow. These are the pages which have a copy in RAM.

The implementation details of virtual memory are described in textbooks on
Operating Systems. Here we provide a brief description of the implementation
of virtual memory. In Fig 8.9 we show a diagram for a small virtual memory
system in which the RAM stores 4 pages and the Disk Swap Space stores 16
pages. Note that 4 different pages from the Disk Swap Space have been copied
into RAM, as shown by the arrows.

The system must maintain a table storing the high order bits of a virtual
memory address for each page in RAM, indicating where it is to be copied back
when it is replaced in RAM by another page. This table is called a page table.

4Since cache memories were generally developed by hardware designers, and virtual mem-
ory was developed by operating systems people, they often use different terminology for the
same concepts.



8.3. VIRTUAL MEMORY 307

Processor

RAM

Disk
Swap
Space

Figure 8.8: Diagram of a virtual memory system. Each small block represents
one page.



308 CHAPTER 8. THE MEMORY HIERARCHY

0 1 2 3

RAM

Disk
Swap
Space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 8.9: Diagram of a small virtual memory system; the page table is shown
in Fig 8.10.

This table is shown in Fig 8.10. It shows that page 2 in RAM, for example, is a
copy of page 12 in virtual memory. When it is to be replaced, the page table is
consulted so the page can be copied back to the correct page in the Disk Swap
Space.

In our example we have a virtual memory system storing 16 pages, and
only 4 pages in RAM. If we assume that each page is 8K bytes (8K = 213), a
virtual memory address would be 17 bits: 4 bits for the page number and 13
bits for the offset within a page. For a virtual memory address of 18158x =
1 1000 0001 0101 10002 = 1100 0 0001 0101 10002 the page number is 12 =
11002 and the byte offset within the page is 0158x = 0 0001 0101 10002.

As with associative cache memories, a virtual memory system will need a
page replacement policy. This algorithm decides which page is replaced when a
page fault occurs. Virtual memory systems typically use a Least Recently Used
(LRU) algorithm, though First-In First-Out (FIFO) and random algorithms are
also used (see the section on cache memories).

Using the page table of Fig 8.10 and assuming the RAM pages were loaded
in order: 0, 1, 2, 3, we show what results from a reference to virtual memory
address 074fcx = 0 0111 0100 1111 11002 = 0011 10100111111002. We see that
it is a reference to virtual page 00112 = 3, which is not currently in RAM. This
is a page fault. If we are using an LRU page replacement algorithm, we will
replace the page at RAM page 0. It is copied back to the disk, and replaced
with page 3 from the disk swap space.

We emphasize that the cost of virtual memory is an increased latency in
memory access. A page fault is the term used when the system must copy a
page from the disk swap space into RAM. Every time there is a page fault there
is a significant delay, because access time to the disk is on the order of one
thousand times the access time to RAM. If an executing program causes many
page faults, the system will spend more time swapping pages of memory than
it will executing the user’s program. This situation is called thrashing.



8.3. VIRTUAL MEMORY 309

Page Table

Disk RAM
5 = 0101 0
1 = 0001 1
12 = 1100 2
6 = 0110 3

Figure 8.10: Page table for the small virtual memory of Fig 8.9

Virtual Page Byte Offset

1100 0 0001 0101 1000

(4) (13)

Figure 8.11: Diagram of a virtual address for a system with 16 pages in virtual
memory, and 8K bytes in each page. Address is 18158x.

8.3.1 Exercises

1. Given a virtual memory system storing 4G bytes, a page size of 64K bytes,
and a RAM storing 16M bytes.
Hint: Work with powers of 2.

(a) How many pages are in the RAM?

(b) How many pages are in the virtual memory?

(c) What is the page number for the virtual memory address 402a0100x?

(d) Show a diagram of the virtual memory address 402a0100x showing
the width, in bits, of each field. (see Fig 8.11).

2. Refer to Fig 8.11. Consider a computer with 128K bytes in virtual memory,
and a page size of 8K bytes. The table below shows a sequence of virtual
memory references. Complete the table showing the virtual memory page
number (in binary and in hex), whether or not a page fault has occurred,
and the RAM page which is referenced. Assume there are 4 pages in the
RAM.



310 CHAPTER 8. THE MEMORY HIERARCHY

VM Address VM page number fault? RAM page
042b8x 0 010 = 2 Y 0
180ccx Y 1
100ffx Y 2
042b8x N 0
19333x N 1
074c4x

0afd0x

05000x

060b3x

00033x

(a) Assume an LRU page replacement algorithm is used. Show the page
table when completed.

(b) Assume a FIFO page replacement algorithm is used. Show the page
table when completed.

8.4 Locality

As we have seen in the preceding sections, cache memory is capable of improving
run-time efficiency, and virtual memory is capable of expanding the memory’s
capacity without a significant degradation of performance. However, both of
these improvements are subject to a condition known as locality. If there are
many references to locations in a small number of different cache blocks (or
virtual memory pages), then there will be few cache misses (or page faults). In
this case we say that the executing program exhibits good locality. If there are
references to memory locations in many widely scattered cache blocks (or in
many different virtual memory pages), performance is degraded, and thrashing
may occur. In this case we say that the executing program exhibits poor locality.

This locality principle applies to both the cache memory level and the virtual
memory level in the memory hierarchy. Hence we will use the phrase memory
unit to mean either cache block or virtual memory page. In place of the phrases
‘block miss’ or ‘page fault’, we use the phrase memory fault.

In what follows we distinguish between the various kinds of locality on dif-
ferent dimensions: Data vs. Instruction, and Temporal vs. Spatial.

8.4.1 Data Locality Versus Instruction Locality

Data locality has to do with memory references for data. In the MIPS architec-
ture, the load word (lw) and store word (sw) instructions refer to the Data
Memory. When successive lw and sw refer to locations in different memory units
(i.e. not near each other in memory), we can expect memory faults, and the
program exhibits poor data locality.



8.4. LOCALITY 311

Instruction locality is affected by transfer of control (i.e. branch or jump
instructions). When a program executes sequentially, it will exhibit good in-
struction locality because successive references to the instruction memory will
generally be to the same memory units. When a program executes branch or
jump instructions to various, widely separated, instructions, the program may
encounter many memory faults when fetching an instruction to the Instruction
Register. This situation is not common, as most loops (even nested loops) tend
to remain fairly local, remaining on just a few memory units. It is conceivable,
however that a switch or branch table in a loop could cause many memory faults,
resulting in poor instruction locality.

In the MIPS architecture the Data Memory and Instruction Memory are
separate. However even on architectures in which instructions and data are
co-located on the same chip, we still make the distinction between data locality
and instruction locality.

As an example of a program segment which contrasts good versus poor data
locality, we run the Java program shown in Fig 8.12. This program runs a simple
loop, accessing successive memory locations in an array of ints. It then enters
another loop in which it accesses random locations in the same array. When
running this program on an iMac (OS X 10.11.3) the first loop executes in
about 1 second, whereas the second loop, which exhibits poor locality, executes
in about 6 seconds for the same number of iterations!5 Without going into the
details of the Java run time environment, the IDE used to compile and run the
program, or the operating system (MacOS X), it is hard to say whether the
performance difference between these two loops occurs at the cache level or at
the virtual memory level. It is clear, however, that the performance is affected
by data locality.

This is one of the most important lessons for software developers; locality
can have a huge impact on running time irrespective of a theoretic run time
analysis or how fast the CPU may be.

8.4.2 Temporal Locality Versus Spatial Locality

Consider a memory with several memory units (i.e. a cache with several blocks,
or a virtual memory with several pages). It is possible for a program to execute
efficiently even if repeated accesses to memory are to different memory units.
For example, the sequence of accesses to the blocks in a large RAM with cache
memory storing 16 blocks might be:
block 12
block 3
block 106
block 33
block 7

If this sequence of memory references occurs in a loop, there will be no cache
misses because only 5 different blocks are being referenced, and the cache stores

5In this program we ensure that the calls to the nextInt method in the Random class do
not skew the timing results in favor of the first loop.



312 CHAPTER 8. THE MEMORY HIERARCHY

import java.util.Random;

public class Locality

{

public static void main()

{ final int MAX = 100000000;

int sum = 0;

int [] nums = new int[MAX];

Random rand = new Random();

System.out.println ("start sequential");

// Good data locality

for (int i=0; i<MAX; i++)

sum = sum + nums[i] + rand.nextInt(MAX);

System.out.println ("start random");

// Poor data locality

for (int i=0; i<MAX; i++)

sum = sum + nums[rand.nextInt(MAX)];

System.out.println ("done");

}

}

Figure 8.12: Java program to contrast good and poor data locality



8.4. LOCALITY 313

16 blocks. This would be an example of good temporal locality, but poor spatial
locality. Temporal locality is good when memory units accessed are accessed
subsequently soon thereafter. In this example the program would exhibit good
locality despite the poor (spatial) data locality.

8.4.3 Exercises

1. Which of the following loops exhibits good spatial locality, and which
exhibits good temporal locality?

(a) int MAX = 10000;

for (int i=0; i<MAX; i++)

sum = sum + nums[i];

(b) int MAX = 10000;

int ctr = 0;

for (int i=0; i<MAX; i++)

{ ctr = (ctr+100) % MAX;

sum = sum + nums[ctr];

}

2. Show an example (or template) of a Java program with poor instruction
locality.

3. In Java, as with most programming languages, the elements of an array
are stored in row-major order. That means the elements are mapped to
the one-dimensional memory by rows, first all the elements in row 0, then
all the elements in row 1, then all the elements in row 2, etc. Consider the
program shown in Fig 8.13. The main method simply uses a nested loop
to store a value in each position of a two dimensional array. It does this
twice, once in row-major order, and once in column-major order.

(a) Which loop will execute faster, or do they run in the same time?

(b) Run this program on a computer to verify your response to part (a).

(c) Explain why one of the loop executes much faster than the other, or
explain why they execute in the same amount of time.

4. Which of the following sorting algorithms would you assume exhibit good
data locality, and which would exhibit poor data locality?

• Selection Sort

• Bubble Sort

• Quick Sort

• Merge Sort



314 CHAPTER 8. THE MEMORY HIERARCHY

public class MatrixLocality

{

public static void main()

{ final int MAX = 10000;

int sum = 0;

int [][] nums = new int[MAX][MAX];

System.out.println ("start row-major order");

for (int row=0; row<MAX; row++)

for (int col=0; col<MAX; col++)

nums[row][col] = row + col;

System.out.println ("start col-major order");

for (int col=0; col<MAX; col++)

for (int row=0; row<MAX; row++)

nums[row][col] = row + col;

System.out.println ("done");

}

}

Figure 8.13: Java program to explore running time for a matrix of ints



Chapter 9

Alternative Architectures

Since the early years of computing, many different designs have been promoted
for the central processing unit of a computer. However, there are some things
which are relatively stable and commonplace. In most computer architectures
today there is a stored program design in which a sequence of instructions is
stored in memory. This design was first proposed by the Princeton mathemati-
cian John Von Neumann in 1945. It has come to be known as the Von Neuman
Architecture and is defined by:

• A processing unit which contains an ALU and registers

• A control unit which contains an instruction register and program counter

• Memory that stores data and instructions1

• External storage (peripheral devices)

• Input and output mechanisms

Virtually every modern processor is based on the Von Neumann architec-
ture. In this chapter we briefly examine some architectural classes, followed by
two specific examples of the Von Neumann architecture: The ARM and Intel
Pentium processors.

9.1 Instruction Set Architectures

When designing a CPU, one must choose from a variety of design decisions
on the format of an instruction. This decision is known as an Instruction Set
Architecture (ISA).

1The data and instructions can be stored in separate memories, as with the MIPS archi-
tecture; or they may be in the same memory, in which case a program is capable of modifying
itself.

315



316 CHAPTER 9. ALTERNATIVE ARCHITECTURES

9.1.1 Zero-address Architecture

A zero address architecture makes use of a hardware stack, typically in (data)
memory. The operands of an operation are always the top two values on the
stack. The result of the operation is pushed onto the stack. The Burroughs
B-Machine processors (circa 1970) utilized this kind of architecture.

The instruction set would need push and pop instructions, to reference mem-
ory.

Push x // load a full word from memory location

// x, and push it onto the stack

Pop x // Remove the full word from the top of

// the stack and store it in memory

// location x.

All arithmetic instructions can produe a result without any operands; they
always operate on the top two values on the stack (popping them from the
stack) and push the result of the operation onto the stack. For example, to
compute a-(b+c):

Push a

Push b

Push c

Add // Pop c, Pop b, Push b+c

Sub // Pop b+c, Pop a, Push a-(b+c)

Alternatively, to compute (a-b)+c:

Push a

Push b

Sub // Pop b, Pop a, Push a-b

Push c

Add // Pop c, Pop a-b, Push (a-b)+c

Note that the value on top of the stack is the right operand of the operation.

9.1.2 One-address Architecture

In a one-address architecture each instruction has one memory address. There is
also a CPU register, known as an accumulator, which serves as the left operand
and the result of an operation. The DEC PDP-8 minicomputer (circa 1970)
was an example of a machine with a one-address architecture.

For example an Add instruction would add the referenced word of memory
to the current value in the accumulator and store the result in the accumulator:

Add x // Acc = Acc + x

To load a memory value in the accumulator, the accumulator could be cleared
before doing an Add:



9.1. INSTRUCTION SET ARCHITECTURES 317

Clr // Acc = 0

Add x // Acc = x

Some one-address machines would also have a negate operation, Neg, to form
the two’s complement of the value in the accumulator. This can be used for
subtraction:
a-b = a + (-b)

To compute the value of the expression a-(b+c):

Clr // Acc = 0

Add b // Load b into Acc

Add c // Acc = b+c

Neg // Acc = -(b+c)

Add a // Acc = a-(b+c)

To compute the value of the expression (a-b)+c:

Clr // Acc = 0

Add b // Load b into Acc

Neg // Acc = -b

Add a // Acc = a-b

Add c // Acc = (a-b)+c

9.1.3 Two-address Architecture

In a two-address architecture each instruction has two operands. These ma-
chines typically had a group of CPU registers which could store operands and
results of operations. The first operand of the instruction would be a register
which stores both the left operand of the operation and the the result of the
operation. The IBM 360/370 series of mainframes (circa 1960-1980) and the
Intel microprocessors are examples of two-address architectures.

For example, an instruction on a two-address architecture could be:

Add r1, r2 // r1 = r1+r2

This machine would also have Load and Store instructions which reference mem-
ory locations:

Load r1, x // r1 = memory[x]

Store r3, y // memory[y] = r3

To compute the value of the expression a-(b+c): 2

Load r1, b // r1 = b

Add r1, c // r1 = b+c

Load r2, a // r2 = a

Sub r2, r1 // r2 = a-(b+c)

2Note that here the second operand could be either a memory location or a register.



318 CHAPTER 9. ALTERNATIVE ARCHITECTURES

To compute the value of the expression (a-b)+c:

Load r1, a // r1 = a

Sub r1, b // r1 = a-b

Add r1, c // r2 = (a-b)+c

9.1.4 Three-address Architecture

In a three-address architecture the result, left operand, and right operand of
the operation are all separate operands of the instruction. The MIPS machine
described in chapters 3 and 4 is an example of a three-address architecture.
The ARM machine described later in this chapter is also an example of a three-
address architecture.

As with the two-address architecture there are several CPU registers which
store operand values and results of operations. For example, to compute the
value of the expression a-(b+c):

Load r1, a

Load r2, b

Load r3, c

Add r3, r2, r3 // r3 = b+c

Sub r3, r1, r3 // r3 = a-(b+c)

For example, to compute the value of the expression (a-b)+c:

Load r1, a

Load r2, b

Load r3, c

Sub r2, r1, r2 // r2 = a-b

Add r3, r2, r3 // r3 = (a-b)+c

9.1.5 Exercises

1. Show how to evaluate the expression x = (a+b+c)-(d-f), where each vari-
able represents a memory location, using

(a) A zero-address architecture

(b) A one-address architecture (assume a Store instruction can store the
accumulater in a given memory location)

(c) A two-address architecture (assume registers r1 and r2 are available)

(d) A three-address architecture (assume registers r1, r2, and r3 are avail-
able)

9.2 Addressing Modes

For those instructions which access memory (such as Load and Store instruc-
tions), there are several ways in which a memory address can be specified.



9.2. ADDRESSING MODES 319

Instruction

op address

Memory

operand

Figure 9.1: Diagram of the direct addressing mode. The instruction stores an
absolute memory address

9.2.1 Direct Addressing

When the absolute address of a memory operand is specified in an instruction,
this is called a direct address mode. In cases where the address field is not
sufficiently long to address all of memory, the address is padded to form a
complete memory address.

An example of direct address mode would be the unconditional jump in-
struction (j) in the MIPS architecture. A statement such as

j exit

is translated by the assembler to a J format instruction in which the memory
address of the jump target is a 26-bit word address. This 26-bit address is
padded on the right (low-order) end with two 0 bits, to form a byte address;
it is also padded on the left (high-order) end with 4 more 0 bits to form a full
32-bit address. A diagram of the direct addressing mode is shown in Fig 9.1 in
which the absolute memory address of the operand is contained in the address

field of the instruction.

9.2.2 Indirect Addressing

When the memory operand of an instruction contains the address of a memory
word and that memory word contains the address of the operand, we have
what is known as indirect addressing. Indirect addressing was often used in
second generation computers (mid 1950 - mid 1960’s). A diagram of the direct
addressing mode is shown in Fig 9.2. In this diagram the address of the fourth
word of memory is in the address field of the instruction. The fourth word of
memory contains the address of the ninth word of memory which is used as the
operand for the instruction.



320 CHAPTER 9. ALTERNATIVE ARCHITECTURES

Instruction

op address

Memory

operand

Figure 9.2: Diagram of the indirect addressing mode. The instruction stores
the address of the memory word which contains the address of the operand

9.2.3 Base Register and Displacement Addressing

In the early 1960’s the use of CPU general registers for memory addressing was
introduced. In this addressing mode, the contents of a general register is added
to an immediate displacement to form the effective address. For example, if
the base register field in the instruction is r4, register r4 contains 0x40203004,
and the displacement field in the instruction is 008, then the effective memory
address would be 0x40203004 + 008 = 0x4020300c. This form of memory
address, known as base-displacement addressing, allowed for relocatable code.
A segment of code could address instructions and data relative to the address
in the base register.3 A diagram of the base-displacement mode is shown in
Fig 9.3. In this diagram the base register is register 3 (the fourth register) and
the displacement, in the disp field of the instruction, is 5 memory words. The
effective address of the operand is thus 5 words after the address in register 3.

9.2.4 Base Register, Index Register, and Displacement
Addressing

In the mid 1960’s, with the advent of the IBM 360 mainframe, an index register
was also included in a memory address. In this addressing mode the contents
of both the base and index registers are added to the displacement to form the
effective memory address:
effective address = (base reg) + (index reg) + displacement

For example, if register r3 contains 0x40203004, register r7 contains 0x00000032,
and the displacement field is 008, then the effective address would be:
0x40203004 + 0x00000032 + 008 = 0x4020303e.
As in base-displacement addressing, the base register allows code to be relocat-

3Relocatable code was essential in the implementation of multiprogrammed operating sys-
tems and virtual memory systems.



9.2. ADDRESSING MODES 321

Instruction

op reg disp

Regs

Memory

operand

Figure 9.3: Diagram of the Base-Displacement addressing mode. The effective
address is the sum of the base register plus a displacement. In this example,
the base register is register 3, and the diplacement is 5 memory words.

able. Index registers are usually used to step through the elements of an array,
by starting with 0 in the index register, and incrementing the index register (by
the size of an array element) each time the next array element is needed. A
diagram of the base-displacement mode is shown in Fig 9.4. In this diagram the
instruction contains fields for a base register, an index register, and a displace-
ment. The base register is register 4. The index register is register 1, which
contains 3, and the displacement is 4 memory words. The effective address of
the operand is thus 3 + 4 = 7 words beyond the address in register 4.

9.2.5 Exercises

1. Show how the six elements of a list of 32-bit contiguous numbers, named
A, can be added, using instructions with each of the following addressing
modes. Assume that we are using a two-address architecture with the
following instructions:



322 CHAPTER 9. ALTERNATIVE ARCHITECTURES

Instruction

op base ndx disp

Regs

Memory

3

operand

Figure 9.4: Diagram of the Base-Index-Displacement addressing mode. The
effective address is the sum of the base register, the index register, and a dis-
placement. In this example, the base register is register 4; the index register is
register 1, which contains 3, and the diplacement is 4 memory words.

Instruction Meaning
add rs,rt reg[rs] = reg[rs] + reg[rt]
sub rs,rt reg[rs] = reg[rs] - reg[rt]
lod rs,addr reg[rs] = memory[addr]
sto rs,addr memory[addr] = reg[rs]
add rs,addr reg[rs] = reg[rs] + memory[addr]
sub rs,addr reg[rs] = reg[rs] - memory[addr]
beq rs,rt,label branch to label if reg[rs]==reg[rt]
blt rs,rt,label branch to label if reg[rs]<reg[rt]
bgt rs,rt,label branch to label if reg[rs]>reg[rt]
ble rs,rt,label branch to label if reg[rs]≤reg[rt]
bge rs,rt,label branch to label if reg[rs]≥reg[rt]
bne rs,rt,label branch to label if reg[rs]6=reg[rt]

(a) Direct addressing. Assume the values in the array have labels A0,
A1, A2, A3, A4, A5. Assume there is an add instruction with two
operands; the first operand is a register and the second operand is
an absolute memory address.
add reg, address

will add the contents of the register to the memory word at the
specified address, and store the sum back into the register.

(b) Indirect addressing. Assume the addresses of the six numbers are in
contiguous memory locations named A0,A1,A2,A3,A4,A5. Add the
following instructions to the instruction set described above:



9.2. ADDRESSING MODES 323

0000010016 00 00 01 03 00 00 01 08 00 00 01 00 00 00 01 05

0000011016 00 00 01 07 00 00 01 09 00 00 01 01 00 00 01 0c

Figure 9.5: Initial memory contents for exercise on addressing modes

Instruction Meaning
lodI rs,addr reg[rs] = memory[memory[addr]]
stoI rs,addr memory[memory[addr]] = reg[rs]
addI rs,addr reg[rs] = reg[rs] + memory[memory[addr]]
subI rs,addr reg[rs] = reg[rs] - memory[memory[addr]]

(c) Base-Displacement addressing. Add the following instructions to the
instruction set described above:

Instruction Meaning
lod rs,(rt)disp reg[rs] = memory[reg[rt]+disp]
sto rs,(rt)disp memory[reg[rt]+disp] = reg[rs]
add rs,(rt)disp reg[rs] = reg[rs] + memory[reg[rt]+disp]
sub rs,(rt)disp reg[rs] = reh[rs] - memory[reg[rt]+disp]

(d) Base-Index-Displacement addressing. Add the following instructions
to the instruction set described above:

Instruction Meaning
lod rs,(rt,rx)disp reg[rs] = memory[reg[rt] +reg[rx]+disp]
sto rs,(rt,rx)disp memory[reg[rt] +reg[rx]+disp] = reg[rs]
add rs,(rt,rx)disp reg[rs] = reg[rs] + memory[reg[rt]+reg[rx] +disp]
sub rs,(rt,rx)disp reg[rs] = reh[rs] - memory[reg[rt]+reg[rx] +disp]

2. Assume you are given the instruction set from the problem above, and
assume that register r0 always contains 0. Also assume that memory has
been initialized as shown in the memory dump in Fig 9.5. Show the value
stored in register r1 when the label done is reached for each of the following
code segments:

(a) lod r1, 0x100

add r1, 0x104

bne r1, r0, done

sub r1, 0x104

done:

(b) lod r1, 0x100

addI r1, 0x104

bne r1, r0, done

subI r1, 0x104

done:

(c) lod r1, 0x104



324 CHAPTER 9. ALTERNATIVE ARCHITECTURES

add r1, (r1)8

bne r1, r0, done

sub r1, 0x100

done:

(d) lod r1, 0x108

lod r2, (r0,r0)0x110

sub r2, (r0,r0)0x100

lod r1, (r1,r2)8

bne r1, r0, done

sub r1, (r0,r0)0x100

done:

3. A multiprogramming system is one in which several programs, located in
separate areas of memory, are executing at the same time. Explain why ad-
dressing modes with a base register, such as base-displacement addressing
or base-index-displacement addressing, are important in a multiprogram-
ming systemt.

9.3 ARM

ARM (Advanced RISC Machine) was first produced in the early 1980’s by the
British corporation Acorn Computers. RISC is a Reduced Instruction Set Com-
puter. These computers typically have many registers, but just a few instruc-
tions in the instruction set, and have often outperformed computers with many
more instructions.

9.3.1 Registers and instruction formats

The ARM processor has 32 registers; in some versions the registers are 64 bits
and in other versions the registers are 32 bits. In assembly language, the register
names are all X followed by a register number. Register 31 may also be referred
to as XZR and always stores the value 0. The register names and conventions
are shown in Fig 9.6

Most of the instructions in the ARM are identical to MIPS instructions;
however the instruction formats are different, and are described in Fig 9.7.

R Format Instructions

An example of an R format instruction is the ADD instruction. In ARM assembly
language it is:
ADD Xd, Xn, Xm

The intent is that registers Xn and Xm are added, with the result placed in
register Xd:
Xd← Xn + Xm
For example, the instruction below will add the contents of registers X3 and



9.3. ARM 325

Register Register Use Preserved
Name Number Across a call?
X0..X7 0..7 Args/results No

X8 8 Indirect result No
X9..X15 9..15 Temporary No
X16..X17 16..17 Reserved for Linker No

X18 18 Reserved for platform No
X19..X27 19..27 Saved regs Yes
X28(SP) 28 Stack pointer Yes
X29(FP) 29 Frame pointer Yes
X30(LR) 30 Return address Yes

XZR 31 Constant 0

Figure 9.6: Register names and conventions for the ARM processor

R Format

Bits Value
0..4 Rd register
5..9 Rn register

10..15 Shift amount
16..20 Rm
21..31 Opcode

I Format

Bits Value
0..4 Rd register
5..9 Rn register

10..21 Immediate
22..31 Opcode

D Format

Bits Value
0..4 Rd register
5..9 Rn register

10..11 Op
12..20 Dt Address
21..31 Opcode

B Format

Bits Value
0..25 Br Address
26..31 Opcode

CB Format

Bits Value
0..4 Rt register
5..23 Br Address
24..31 Opcode

IW Format

Bits Value
0..4 Rd register
5..20 Immediate
21..31 Opcode

Figure 9.7: Instruction formats for the ARM processor



326 CHAPTER 9. ALTERNATIVE ARCHITECTURES

X9, placing the result in register X12:
ADD X12, X3, X9

The R format instruction for subtraction corresponds exactly to the instruc-
tion for addition. To subtract the X3 register from the X9 register, putting the
result into the X1 register:
SUB X1, X9, X3

There are instructions for multiplication and division. Recall that when mul-
tiplying two n-bit values, the result could require 2n bits. In the ARM archi-
tecture fixed point multplication is handled with a few instructions. Assuming
the registers are 64-bit registers, the MUL instrction can be used to multiply two
registers, storing a 64-bit result in a third register. To multiply the X7 register
by the X8 register, leaving the 64-bit product in the X2 register:
MUL X2, X7, X8

If the result exceeds 64 bits, the above instruction will produce the low order
64 bits. To obtain the high order 64 bits we must use either the SMULH in-
struction (for a signed multiply) or the UMULH instruction (for an unsigned
multiply). If the previous example produces a result which exceeds 64 bits, we
can put the high order 64 bits of the result into register X3 as shown below:
SMULH X3, X7, X8

For division we can obtain the quotient for a fixed point divide using the
SDIV instruction for a signed divide, or the UDIV for an unsigned divide. For
example to divide the X3 register by the X1 register, putting the signed quotient
in the X10 register:
SDIV X10, X3, X1

The ARM processor has no instruction to produce the remainder when x
is divided by y. To obtain the remiander, one would need to use the identity
shown below, where the division is an integer division:
x % y = x - x/y *y

I Format Instructions

An example of an I format instruction is the ADDI (Add Immediate) instruction.
In ARM assembly language it is:
ADDI Xd, Xn, Imm

The intent is that the result of adding the Imm field to the Xn register is placed
in register Xd:
Xd← Xn + Imm
For example, the instruction below will add the contents of register X3 and 260,
placing the result in register X12:
ADDI X12, X3, 260



9.3. ARM 327

D Format Instructions

An example of a D format instruction is the LDUR (LoaD Unscaled Register)
instruction. In ARM assembly language it is:
LDUR Xt, [Xn, #DtAddress]

This is a memory reference instruction; the effective memory address is in regis-
ter Xn, with DtAddress as the offset. The referenced word is loaded into register
Xn.
Xn←Mem[Xn + DtAddress]
For example, the instruction below will load the memory word whose address is
the sum of the X3 register plus 48 into register X8.
LDUR X8, [X3, #48]4

Note that if you are loading a full word from an array, the array index should
be multiplied by 4 to get the DtAddress, since there are 4 bytes in a word, and
the memory is byte addressable. This instruction is said to be unscaled because
the offset is a byte address. There is also a load instruction which scales the
offset by the size of the word being loaded. LDR scales the offset by multiplying
it by 4, to get the effective address of a given position in an array of full words.
There are also STUR and STR instructions to store a register into memory, with
unscaled and scaled offsets, respectively.

B Format Instructions

A B format instruction is used for unconditional branch instructions (these were
called jump instructions in MIPS). In assembly language we would typically have
a label as the target:

B Label // jump to Label

The assembler finds the memory address associated with the Label, and fills
in a 26 bit address for the branch. There is also a BL instruction, Branch and
Link, for function calls. It stores the return address in the X30 register (LR)
and branches to the function. The BR Branch Register instruction is R formant,
and branches to the address in the Rt register. It is used to return to the calling
function.

9.3.2 Conditional branch instructions - CB format

Testing for equality

The CB format is used for conditional branch instructions. The CB instructions
have a 26-bit branch address. The CBZ (conditional branch if zero) instruction
branches to the branch address if the Rt register contains 0, and the CBNZ
(conditional branch if not zero) instruction branches to the branch address if
the Rt register does not contain 0. In assembly language the format would be:
CBZ Xt Label // branch to Label if Xt is 0

An example would be:

4The hash mark, #, is used for an address displacement, and not to begin a comment. To
begin a comment, use //, as in C++ or Java



328 CHAPTER 9. ALTERNATIVE ARCHITECTURES

Mnemonic Instruction Mnemonic Instruction
ADDS Add and set flags ADDIS Add immediate and set flags
ANDS AND and set flags ANDIS AND immediate and set flags
SUBS Subtract and set flags SUBIS Subtract immediate and set flags

Figure 9.8: Instructions which set (or clear) the condition code flags N,Z,V,C

Flag Name Detected in result (Flag=1)
N Negative High order bit = 1
Z Zero All bits are zeros
V Overflow Carry into high order bit 6= carry out of high order bit
C Carry Carry out of or borrow into high order bit

Figure 9.9: Description of the condition code flags N,Z,V,C

CBZ X3, done // branch to done if X3 is 0

The following instruction will branch to lp if register X5 contains a non-zero
value: CBNZ X5, lp // Branch to lp if X5 != 0

These instructions can be used to test for equality (or inequality) of two
registers. Simply precede the conditional branch with a subtract instruction
that sets/clears the flags (explained below), i.e. SUBS or SUBIS. For example,
to branch to done if register X2 is equal to register X7, use the following pair
of instructions (assuming register X9 is available for a temporary result):

SUBS X9, X2, X7 // X9 = X2 - X7

CBZ X9, done // Branch to done if X9 == 0

Another example, branch to lp if register X3 does not contain 35:

SUBIS X9, X2, 35 // X9 = X2 - 35

CBNZ X9, lp // Branch to lp if X9 == 0

Testing for order

There are also conditional branch instructions which test for the relative order of
two registers, i.e. is number in one register smaller or larger than the number in
another register? This kind of condition requires some additional explanation.
The processor has a 4-bit condition code.5 The four bits of the condition code
are labeled N,Z,V,C, and we call them flags. They are set (or cleared) after
certain operations are executed. These operations are shown in Fig 9.8, and
they change the flags as shown in Fig 9.9

The result of the instruction determines which of the four flags are to be set,
and which are to be cleared. For example, if the result is negative, the N flag is
set to 1, but if the result is not negative (zero or positive), the N flag is cleared

5The use of condition codes is typical in processor design; MIPS is unusual in that it does
not use condition codes for conditional branches.



9.3. ARM 329

0101 = +5 1100 = -4

+ 0100 = +4 + 1001 = -7

---------- ----------

1001 = -7 0101 = +5

Figure 9.10: Two examples of overflow when adding 4-bit words, two’s comple-
ment representation

to 0. The Z flag is set to 1, only if all bits of the result are zeros. The V flag
(oVerflow) is set to 1 only when overflow occurs. When the instruction is an
ADD, overflow can occur when the addition of two positive numbers produces a
negative result, or when the additon of two negative produces a positive result.

To explain the overflow condition more clearly, Fig 9.10 shows examples of
overflow when adding 4-bit words (assuming two’s complement represenation).
These principles apply to a 32-bit word, or a word of any size.

When adding positive numbers, or when adding negative numbers, we can
get an incorrect result because the result does not fit into a 4-bit word. This is
called overflow.

Another way to detect the overflow condition is to note that a carry into the
high order bit is different from the carry out of the high order bit. Of course,
overflow can result from a subtract operation as well. In this case, overflow
occurs when the borrow from the sign bit differs from the borrow into the sign
bit.

The C flag is used primarily when the operands are unsigned, and we do not
consider it here.

There are two kinds of conditional branch instructions, both of which are
type CB:

• CBZ and CBNZ (discussed above) are used to branch if a given register
stores 0.

• BC.cond is used to branch if the given condition is true (and should be
preceded by a subtract instruction which sets the flags, such as SUBS or
SUBIS).

Thus, conditional branches on inequalities (<,≥, ...) are also possible. These
conditions are shown in Fig 9.11. Again, these conditional branch instructions
are designed with the intent that they be used after a subtract instruction is
used to set/clear the condition code flags.6

These instructions will need to examine the N and V flags, in addition to
the Z flag. To understand how the flags are used we need to recall that in
two’s complement representation, there are more negative numbers than there
are positive numbers (as described in chapter 2). When testing for > we clearly

6Note that there are now two ways to compare registers for equality: CBZ (after a subtract)
and B.EQ, and two ways to compare registers for inequality: CBNZ (after a subtract) and
B.NE



330 CHAPTER 9. ALTERNATIVE ARCHITECTURES

Comparison Instruction Flags tested
= B.EQ Z = 0
6= B.NE Z 6= 0
< B.LT N 6= V
≤ B.LE (Z=0 & N=V)’
> B.GT (Z=0 & N=V)
≥ B.GE N=V

Figure 9.11: Usage of condition codes for conditional branch on equalities and
inequalities (assuming the conditional branch is preceded by a subtract which
sets/clears the flags)

(A) (B)

0001 = +1 1010 = -6

- 1000 = -8 - 0011 = +3

---------- ----------

1001 = -7 0111 = +7

Figure 9.12: Two examples, A and B, showing why the overflow flag needs to
be used for B.GT conditional branch

need to determine whether the result is positive. I.e. x > y iff x − y > 0.
Thus after doing the subtraction, x > y will be true if the result is not negative
and also not zero (i.e. N=0 and Z=0). However, consider the cases shown in
Fig 9.12, in which we are working with 4-bit words to save space.

In the first case, we wish to test whether +1 is greater than -8. The subtrac-
tion results in a negative number, which would normally indicate a false result;
however we desire a true result because +1 is greater than -8. The disparity
results from overflow on the subtraction.

In the second case, we wish to test whether -6 is greater than +3. The
subtraction results in a positive number, which would normally indicate a true
result; however we desire a false result because -6 is not greater than +3. Again,
the disparity results from overflow on the subtraction.

To determine exactly how the flags should be tested, we use a truth table,
shown in Fig 9.13. Assume we are subtracting x-y to determine whether x > y.
For each possible setting of the three condition code flags, Z,N,V, we show
whether x is greater than y, with a note in the last column referring to our two
cases in Fig 9.12. 7

To derive the boolean expression shown in Fig 9.11, for the B.GT instruction,
we will use the Karnaugh map shown in Fig 9.14.

. In this K-map the Z flag is represnted by x, the N flag is represented by y,
and the V flag is represented by z.

Using what we learned in chapter 6, we can derive a boolean expression from

7The last three cases in Fig 9.13 could be shown as don’t cares because they cannot occur,
but this will not lead to a simpler result.



9.3. ARM 331

Z N V x > y Overflow example
(Fig 9.12)

0 0 0 1
0 0 1 0 B (−6 > 3)
0 1 0 0
0 1 1 1 A (+1 > −8)
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Figure 9.13: Flags tested for a conditional branch if strictly greater (B.GT)
instruction

1 0 1 0

yz
00

yz
01

yz
11

yz
10

0 0 0 0

x=0

x=1

Figure 9.14: A Karnaugh map derived from Fig 9.13 showing how the condition
code flags are used in the B.GT instruction



332 CHAPTER 9. ALTERNATIVE ARCHITECTURES

this K-map (there are no groups of adjacent 1’s):
x′y′z′ + x′yz
which represnets:
Z ′N ′V ′ + Z ′NV
= Z ′(N ′V ′ + NV )
= Z ′(N = V )
which agrees with Fig 9.11 for B.GT.

Testing condition code flags

ARM also provides instructions which can test individual condition code flags.
These instructions are summarized in Fig 9.15. These instructions should be
preceded by an instruction which sets the condition code flags, such as ADDS
(Add and Set flags). The B.MI instruction will branch if the previous instruction
had a negative result, in which case the N flag would be 1. The B.PL instruction
is a slight misnomer. It will branch if the previous instruction had a non-negative
result. Thus it will branch if the result was positive or zero8, in which case the
N flag would be 0. The B.VS instruction will branch if the previous instruction
resulted in overflow, in which case the V flag would be 1. The B.VC instruction
will branch if the previous instruction did not result in overflow, in which case
the V flag would be 0.

As an example, suppose we wish to branch to the label notNeg if the result of
subtracting registers X2 from register X5 results in a 0 or positive value (putting
the result into register X1). We could use the following pair of instructions:

SUBS X1, X5, X1

B.PL error

Another example, suppose we wish to branch to the label error if the addi-
tion of registers X3 and X5 results in overflow (and we don’t mind clobbering
register X3). We could use the following pair of instructions:

ADDS X3, X3, X5

B.VS error

9.3.3 Exercises

1. Show ARM code to perform each of the following calculations (assume all
operations are done on signed quantities):

(a) X4 = X3 + (X2 - X1)

(b) X4 = X2 + Memory[X19 + 32]

(c) (X2,X3) = X5 * X6

2. (a) Show ARM code to jump unconditionally to the label done.

8Zero is neither negative nor positive.



9.4. INTEL PENTIUM 333

Mnemonic Name Meaning Flag tested
B.MI Branch if minus Branch if the previous instruction

had a negative result N=1
B.PL Branch if plus Branch if the previous instruction

had a non-negative result N=0
B.VS Branch if Branch if the previous instruction

overflow set resulted in overflow V=1
B.VC Branch if Branch if the previous instruction

overflow clear did not result in overflow V=0

Figure 9.15: ARM instructions which test an individual condition code flag
(assuming a prior instruction set the flags)

(b) Show ARM code to branch to the label lp only if register X3 is equal
to register X5. Assume register X1 is available for temporary use.

(c) Show ARM code to branch to the label lp only if register X3 is less
than or equal to register X5. Assume register X1 is available for
temporary use.

(d) Show ARM code to branch to the label lp only if register X3 is greater
than register X5. Assume register X1 is available for temporary use.

3. (a) Show ARM code to call a function named FN1.

(b) Show ARM code to return to the calling function.

4. Explain why each of the last three entries in Fig 9.13 can be don’t-cares.

5. Figures 9.11 and 9.14 describe how the condition code flags are used in the
B.GT instruction to branch if the first operand is strictly greater than the
second operand. Show a similar map and the resulting boolean expression
for each of the following instructions (your solution should agree with
Fig 9.11):

(a) B.LE (Branch if less than or equal to)

(b) B.GE (Branch if greaterthan or equal to)

(c) B.LT (Branch if strictly less than)

9.4 Intel Pentium

Since the advent of microcomputers in the late 1970’s, the Intel series of micro-
processor chips has been the industry leader. This series of CPUs includes, in
chronological order, the 8086, 8088, 286, 386, 486, Pentium, Itanium, Core, and
Celeron. Intel is the largest CPU chip manufacturer (by revenue).

The Intel series of CPUs are backward compatible, i.e. software which will
execute on one of the CPUs will also execute on any of its successors. Thus,



334 CHAPTER 9. ALTERNATIVE ARCHITECTURES

Register Usage Low-order 16 bits
EAX Accumulator AX
EDX Data DX
ECX Counter CX
EBX Base Register BX
EBP Base Pointer BP
ESI Source Index SI
EDI Destination Index DI
ESP Stack Pointer SP
CL Shift amount

Figure 9.16: Pentium CPU Registers

for example, a program that runs on a 386 will also run on a Pentium (but
a program on that runs on a Penitum is not assured to run on a 386). The
architectures are all two-address architectures, with the capability of including
memory operands for most instructions.

An instruction set is said to be orthogonal if all addressing modes are avail-
able across all instruction (or data) types. The Intel processors are not orthog-
onal, which makes them difficult to program.9

In this section we describe some aspects of the Intel Pentium architecture.
We will describe the CPU registers, condition code flags, instruction set, and
addressing modes.

9.4.1 CPU Registers

The CPU registers for the Pentium are 32-bit registers (though instructions can
utilize the low-order 16 bits or low-order 8 bits for backward compatibility).
Subsequent CPUs such as the Celeron use 64-bit registers. The Pentium has 8
such registers, which are named EAX, EBX, ECX, EDX, EBP, ESI,and ESP in
assembly language programs. Fig 9.16 describes the purpose and actual register
number of each.

Here the E stands for ’Extended’ because earlier processors which used 16-bit
registers had the same register names without the E (AX, BX, CX, ...).

9.4.2 The Mov Instruction and Addressing Modes

In the Pentium architecture there are no Load nor Store instructions; instead
there is a mov (short for move) instruction. It is used to transfer data between
a register and memory, or from an immediate field to a register or memory. It
can also be used to transfer data from a register to another register. The uses

9In the mid 1980’s Motorola Corp. introduced a competing series of microprocessors, the
M68000 series, which were orthogonal. These chips were used in Apple Macintosh computers,
whereas the Intel chips were used in IBM compatible computers. Ultimately the Intel chips
were favored, and Apple dropped the Motorola chips from future desktop computers.



9.4. INTEL PENTIUM 335

Instruction Semantics Description
mov r1, r2 Regs[r1]← Regs[r2] Copy from register to register
mov r1, memory Regs[r1]← memory Load register from memory
mov memory, r1 memory ← Regs[r1] Store register to memory
mov r1, imm Regs[r1]← imm Load register from immediate

field of instruction
mov memory, imm memory ← imm Store immediate field of

instruction to memory

Figure 9.17: Uses of the Pentium mov instruction

Base Index Scaling Displacement Effective
Register Register Factor Address
1001f04c 00000000 00000008 00000014 1001f060
1001f04c 0000000d 00000004 00000000 1001f080
1001f04c 0000000d 00000008 00000014 1001f0c8

Figure 9.18: Examples of Pentium effective addresses

of the mov instruction are summarized in Fig 9.17. Note that the immediate
operand can be a full word.

Fig 9.17 does not show how a memory operand is specified. Here we describe
the addressing modes used to form an effetive memory address. The Pentium
architecture uses a variation on the base-index-displacement addressing mode,
described earlier in this chapter. The only difference is that it includes a scaling
factor for the index register. The effective memory address is thus
base + sc * idx + disp

where base is the base register, sc is the scale factor (which must be 1, 2, 4,
or 8), and disp is the displacement. Thus, a mov instruction which references
memory would have two registers and two constants for the memory address
operand. Examples memory addresses are shown in Fig 9.18.

The scaling factoris designed to make array processing efficient. For example,
to step through an array of full words, one would use a scaling factor of 4, since
there are 4 bytes in a word. The index register would contain the index of the
array position being accessed; thus, an value of 3 in the index register would
address position 3 of the array. This design also optimizes matrix multiplication,
which is an important operation in many scientific and simulation applications.

These addressing modes can be expressed in assembly language in many
ways (not all of which are available with all assemblers). A few examples are
shown in Fig 9.19

In assembly language memory is accessed through symbolic addresses as
well, which we will describe later.

In assembly language, the lea instruction, load effective address, can be used
to load the memory address of a symbolic memory location into a register. For
example,



336 CHAPTER 9. ALTERNATIVE ARCHITECTURES

Assembly Effective Description
Language Address
mov EAX, [EBX] EBX EBX is base register

mov EAX, [EBX+16] EBX + 16 EBX is base register
displacement is 16

mov EAX, [EBX+ESI] EBX + ESI EBX is base register
ESI is index register

mov EAX, [EBX+4*ESI+80] EBX + ESI*4 + 80 EBX is base register
ESI is index register
scale factor is 4
displacement is 80

Figure 9.19: Examples of explicit Pentium memory addresses in assembly lan-
guage

lea EBX, myArray

will load the effective address of myArray into the EBX register.

9.4.3 Arithmetic Instructions

In this section we describe the arithmetic instructions of the Pentium instruc-
tion set. These include instructions to add, increment, subtract, decrement,
compare, multiply, and divide integers. We begin with the instructions to add,
subtract, and compare integers. They are summarized in Fig 9.20. For addition
and subtraction the operands may both be registers, or one of the operands
may be in memory. The first operand always stores the result of the operation,
even if it is a memory operand. In assembly language, to calculate result =

(a+b)-(c+d), we could use the following sequence of instructions:

mov EAX,a ; EAX <- a

add EAX,b ; EAX <- a + b

mov result,EAX ; result <- a + b

mov EAX,c ; EAX <- c

add EAX,d ; EAX <- c + d

sub result,EAX ; result <- (a+b) - (c+d)

The increment (inc) and decrement (dec) operations are supplied merely
for convenience; they provide a convenient way to increment or decrement a
register of memory location. For example, a counter could be incremented by
one with the instruction inc counter

Fig 9.20 also shows whether the instructions set the CPU flags (more on this
later).



9.4. INTEL PENTIUM 337

Mnemonic Operand Description Sets
Formats Flags

add reg1, reg2 reg1← reg1 + reg2 Y
reg, memory reg ← reg + memory
memory, reg memory ← memory + reg

inc reg reg + + Y
memory memory + +

sub reg1, reg2 reg1← reg1− reg2 Y
reg, memory reg ← reg −memory
memory, reg memory ← memory + reg

dec reg reg −− Y
memory memory − −

cmp Result is not used
reg1,reg2 reg1 - reg2 Y
reg,memory reg - memory Y
reg, imm reg - imm Y
memory, imm memory - imm Y

Figure 9.20: Pentium add, subtract, and compare instructions

The compare (cmp) instruction is used in connection with the CPU flags and
conditional branching, as described later in this section. It does not change any
of the CPU registers nor memory locations.

There are also multiply and divide instructions for fixed-point integer data.
These require more explanation, but are summarized in Fig 9.21. As noted in
chapter 3, when multiplying two n-bit values, the result will not exceed 2n bits.
Also, when dividing an m-bit value by an n-bit value, the remainder cannot
exceed n bits. Thus, register pairs are often used with multiply and divide
instructions. In the Pentium architecture, the pair of registers (EAX,EDX) is
used for this purpose.

Note that when dividing, it is the programmer’s responsibilty to ensure that
precision is not lost in the quotient.

For example, to calculate a*b/c, where a,b,c are all positive integers, we
could use the following sequence of instructions.

mov EAX,a ; EAX <- a

mul EAX,b ; EAX <- a * b

mov EDX,0 ; EDX <- 0

div EAX,c ; EAX <- a * b / c

; EDX <- a * b % c

This also provides a*b%c in the EDX register as a side benefit; it is not necessary
to do the division twice to get both the quotient and remainder.

The Pentium instruction set also includes multiply and divide instructions
which presume the data are signed (two’s complement) integers. These are the



338 CHAPTER 9. ALTERNATIVE ARCHITECTURES

Mnemonic Operand Description Sets
Formats Flags

mul Unsigned multiplication
EAX,reg (EDX, EAX)← EAX ∗ reg N
EAX,memory (EDX, EAX)← EAX ∗memory N

imul Signed multiplication
reg (EDX, EAX)← EAX ∗ reg Y
memory (EDX, EAX)← EAX ∗memory Y

imul Signed multiplication
Single precision

reg1,reg2 reg1← reg1 ∗ reg2 Y
reg,memory reg1← reg1 ∗memory Y

imul Signed multiplication
Single precision

reg1,reg2,imm reg1← reg2 ∗ imm Y
reg,memory,imm reg ← memory ∗ imm Y

div Unsigned division
EAX,reg EAX ← (EDX, EAX)/reg N

EDX ← (EDX, EAX)%reg
EAX,memory EAX ← (EDX, EAX)/memory N

EDX ← (EDX, EAX)%memory
idiv Signed division

EAX,reg EAX ← (EDX, EAX)/reg N
EDX ← (EDX, EAX)%reg

EAX,memory EAX ← (EDX, EAX)/memory N
EDX ← (EDX, EAX)%memory

Figure 9.21: Pentium multiply and divide instructions



9.4. INTEL PENTIUM 339

imul and idiv instructions. They are similar to the unsigned instructions, with
the inclusion of an immediate operand for multiply. If two (or three) operands
are provided with an imul instruction, it is assumed that the result will fit in a
single (32-bit) register. These instructions are also summarized in Fig 9.21

For example, to calculate result = a/b*17 for signed quantities, we could
use the following instructions:

mov EDX, 0 ; EDX <- 0

mov EAX, a ; EAX <- a

idiv EAX, b ; EAX <- a/b

imul EAX, EAX, 17 ; EAX <- a/b*17

mov result, EAX ; result <- a/b*17

The multiply instructions which do not use the (EDX,EAX) register pair
presume that the results will fit in a single 32-bit register; it is the programmer’s
responsibility to ensure that this is the case.

9.4.4 Logical Instructions

The Pentium instruction set includes all the essential logical instructions, with
a wide variety of addressing modes, including not, and, or, xor. There is
also a test instruction which produces no explicit result, but sets the condition
code flags with a logical and operation. These instructions are summarized in
Fig 9.22

It is clear in Fig 9.22 that the Pentium instruction set is not orthogonal.
These logical instructions are capable of operating on full 32-bit words, or on

8-bit bytes. By inserting the word byte in an assembly language statement, the
programmer can specify the 8-bit operation as opposed to the 32-bit operation.
The logical instructions all set the condition code flags, and all but the test

instruction produce explicit results. Some examples of logical instructions are
shown below:

not EAX ; EAX <- EAx’, one’s complement

not result ; result <- result’, one’s complement

and EAX,EDX ; EAX <- EAX and EDX

or byte EDX,x ; EDX[0..7] <- EDX[0..7] or x

test byte x,17 ; x and 0001 0001

The last instruction above uses the value 17 as an immediate operand, forms
the logical and with the one-byte memory operand x, discards the result, and
sets the condition code flags accordingly. Note that to specify an 8-bit operation
the programmer inserts the word byte into the statement.

As an example we show the instructions which will evaluate the logical ex-
pression, EAX = x and (EAX xor EDX’), where x is a 32-bit word in memory.

not EDX ; EDX <- EDX’

xor EAX,EDX ; EAX <- EAX xor EDX’

and EAX,x ; EAX <- x and (EAX xor EDX’)



340 CHAPTER 9. ALTERNATIVE ARCHITECTURES

Mnemonic Operand Description Sets
Formats Flags

not reg reg ← reg′ Y
byte reg Low order byte of reg
memory memory ← memory′

byte memory Low order byte of memory
and reg1,reg2 reg1← reg1 op reg2 Y
or reg,memory reg ← reg op memory
xor byte reg1,reg2 Low order byte of regs

byte reg,memory Low order byte
memory,reg memory ← memory op reg
byte memory,reg Low order byte
reg,imm reg ← reg op imm
byte reg,imm Low order byte
memory,imm memory ← memory op imm
byte memory,imm Low order byte

test reg1,reg2 reg1 and reg2 Y
byte reg1,reg2 Low order byte of regs
memory,reg memory and reg
byte memory,reg Low order byte
reg,imm reg and imm
byte reg,imm Low order byte
memory,imm memory and imm
byte memory,imm Low order byte

Figure 9.22: Pentium logical instructions



9.4. INTEL PENTIUM 341

Shift
Right

0

31 0

Shift
Left

31 0

0

Rotate
Right

31 0

Rotate
Left

31 0

Figure 9.23: One-bit shift vs. one-bit rotate

9.4.5 Shift/Rotate Instructions

In addition to shift instructions, the Pentium also has rotate instructions. Ro-
tate instructions differ from shift instructions in that the bit which is shifted
from one end is shifted back in at the other end, forming a circular shift. Fig 9.23
shows the difference between a shift and a rotate.

The shift operations shown in Fig 9.23 are known as logical shift instructions
because they operate on unsigned data. There are also arithmetic shift instruc-
tions which preserve the sign of the value being shifted. The rotate instruc-
tions are both logical rotates; they operate on unsigned values. The instruction
mnemonics and operands for shift and rotate are shown in Fig 9.24

The operands for shift and rotate apply to all the instructions shown in
Fig 9.24. They are described in Fig 9.25.

Some examples are shown below:

shl EDX,1 ; shift EDX reg 1 bit left,

; do not preserve the sign



342 CHAPTER 9. ALTERNATIVE ARCHITECTURES

Mnemonic Description Sets
Flags

sal shift arithmetic left ZF, SF
shl shift (logical) left ZF, SF
sar shift arithmetic right ZF, SF
shr shift (logical) right ZF, SF
rol rotate (logical) left OF, CF
ror rotate (logical) right OF, CF

Figure 9.24: Pentium shift and rotate instructions

First Second Description
Operand Operand
reg 1 reg is shifted/rotated 1 bit
memory 1 memory word is shifted/rotated 1 bit
reg CL reg is shifted/rotated;

shift amt in CL reg
memory CL memory word is shifted/rotated;

shift amt in CL reg
reg imm reg is shifted/rotated;

shift amt in imm field
memory imm memory word is shifted/rotated;

shift amt in imm field

Figure 9.25: Operands for the Pentium shift and rotate instructions



9.4. INTEL PENTIUM 343

Flag Name Purpose
OF Overflow 1: Result exceeds range of integers
SF Sign 1: Result is negative
ZF Zero 1: Result is zero
PF Parity 1: Least significant byte of result has an

even number of 1’s
CF Carry 1: Carry out of most significant bit of

result is a 1

Figure 9.26: Pentium condition code flags

sar ECX,CL ; shift ECX reg # of bits in CL reg, preserve sign

rol EAX,3 ; rotate EAX reg left 3 bits,

; do not preserve the sign

9.4.6 Transfer of Control Instructions and Condition Code
Flags

Condition code flags

For conditional flow of control, the Pentium uses several CPU flags, which are in
a 32-bit register called EFLAGS. Not all of these bits are used in the Pentium;
some are reserved for use in future versions. The five bits which are used are
shown in Fig 9.26.

The overflow flag, OF, is set if the result of the preceding instruction exceeds
the capacity of the result. More technically, the OF flag is set if the carry into
the sign bit differs from the carry out of the sign bit.

The sign flag, SF, is set if the result of the preceding instruction is negative.
The SF flag is cleared if the result is not negative, i.e. zero or positive.

The zero flag, ZF is set if the result of the preceding instruction is zero. The
ZF flag is cleared if the result is not zero, i.e. negative or positive.

The parity flag, PF is set if the least significant byte of the result of the
preceding instruction has an even number of 1’s. The PF flag is cleared if the
least significant byte of the result has an odd number of 1’s.

The carry flag, CF is assigned the value carried out of the most significant
bit of the previous instruction.

Transfer of control instructions

In the Pentium architecture all transfer of control instructions are referred to
as ’jump’ instructions, whether they are conditional or unconditional. The
conditional jump instructions make use of one or more condition code flags
(which are set by a preceding instruction). Thus two instructions are typically
needed to make a conditional jump, one instruction to set the flags, and one
instruction to jump. The jump instructions are shown in Fig 9.27.



344 CHAPTER 9. ALTERNATIVE ARCHITECTURES

Mnemonic Description Example(s) Flags

jmp Unconditional jump to dest jmp done
jg Jump to dest if positive sub EAX,0 (SF ⊕ ZF ⊕ SF )′

jg lp
jnle sub EAX,0

jnle lp
jge Jump to dest if not negative sub EAX,EDX (SF ⊕ OF )′

jge lp
jnl sub EAX,EDX

jnl lp
jl Jump to dest if negative sub EAX,EDX SF ⊕OF

jl lp
jnge sub EAX,EDX

jnge lp
jle Jump to dest if neg or 0 sub EAX,EDX (SF ⊕OF ) + ZF

jle lp
jng sub EAX,EDX

jng lp
jns Jump to dest if not neg sub EAX,EDX SF ′

jns lp
jo Jump to dest if overflow sub EAX,EDX OF

jo lp
je Jump to dest if 0 sub EAX,EDX ZF

je lp
jz sub EAX,EDX

jz lp
jne Jump to dest if not 0 sub EAX,EDX ZF ′

jne lp
jnz sub EAX,EDX

jnz lp

Figure 9.27: Pentium transfer of control instructions



9.5. EXAMPLE PROGRAM 345

Each jump instruction jumps to an instruction at a specified memory ad-
dress. This address may be formed in the same way as it is for the mov instruc-
tion (see Fig 9.18). In assembly language this is generally specified symbolically,
giving the label of the instruction to which the jump occurs.

In Fig 9.27 the terminology used assumes that the jump instruction is pre-
ceded by a subtract instruction. Thus, if the subtraction a-b is performed, a
negative result implies that a < b, and consequently a jl instruction will take
the branch in this case. Note that it is possible for the subtraction to result in
overflow, which is considered in the fourth column of Fig 9.27. Derivation of
the Flag settings is left as an exercise.

9.5 Example program

Here we present an example of a Pentium assembly language program. In this
example we count the number of 1’s in the EDX register. The result will be left
in the EAX register.

; Count number of 1’s in EDX reg.

mov ECX,33 ; loop counter

mov EAX,0 ; counter for result

lp:

dec ECX ; ECX--

jz done

mov tmp,EDX ; save EDX

and EDX,1 ; test low order bit

jz noIncr ; if zero, no increment

add EAX,1 ; incremnt counter

noIncr:

mov EDX,tmp ; load saved word

shr EDX,1 ; shift right logical

jmp lp

done:

; finished, result in EAX reg.

9.6 Exercises

1. For each of the following instructions, describe the effect it would have on
a register or memory location. Also, indicate which instructions are not
valid. In each case assume the EAX register contains 17, the EDX register
contains 19, and the memory location loc1 contains -2, and the memory
location loc2 contains -3.

(a) mov EAX,13

(b) mov 13,EAX



346 CHAPTER 9. ALTERNATIVE ARCHITECTURES

(c) mov EAX,EDX

(d) mov EAX,loc1

(e) mov loc1,EAX

(f) mov loc2,loc1

2. The Pentium architecture uses base-index-displacement addressing. To
step through an array of double-words (64-bits each), starting at memory
address 10014cd0H:

(a) What value would be stored in the base register?

(b) What value would initially be stored in the index register?

(c) What would the scaling factor be?

(d) By how much would the index register be incremented on each step?

3. Given the array of the preceding problem, show the instruction which will
increment the value at position 23 in that array. Assume the EBP register
contains 10014cd0H and the ESI register contains 00000017H = 23.

4. Show the pair of instructions which will compute (x-y)+1, where the value
of x is in the EAX register, and the value of y is in the EDX register. Leave
the result in the EAX register.

5. Show the assembly language code which will compute (x-y)*(x/y), where
the value of x is in the EAX register, and the value of y is in the ECX
register. Leave the result in the EAX register. Use a memory location,
tmp, for temporary storage.

6. Show the pair of instructions which will do each of the following (do not
use shift instructions, but assume the EDX register is available for use):

(a) Clear the low order 8 bits of the EAX register

(b) Set the high order 16 bits of the EAX register

(c) Complement bits 8..23 of the EAX register

7. Show a single instruction which will do each of the following:

(a) Shift the contents of the EAX register to the left by 1 bit, preserving
the sign of the number.

(b) Shift the contents of the EDX register to the right by 3 bits. Do not
preserve the sign; assume it is an unsigned value.

(c) Multiply the EBX register by 32, leaving the result in the EBX reg-
ister, assuming it is a signed value. Use a shift instruction.

(d) Divide the EDX register by 8, leaving the result in the EDX register,
assuming it is unsigned. Use a shift instruction.



9.6. EXERCISES 347

(e) Multiply the EBX register by 42, leaving the result in the EBX reg-
ister, assuming it is a signed value. Use three shift instructions, and
two add instructions. Assume the EDX register is available for use.
(In this case use as many as 6 instructions)

(f) Rotate the EAX register to the left by 3 bits, leaving the result in
the EAX register.

8. Show the optimal (in some sense, best) code needed to set the EDX register
to 1 if it is positive, to -1 if it is negative, and leave it at 0 if it is 0. This
is the so-called signum function:

(a) Without using any shift or rotate instructions.

(b) Shift and rotate instructions are permitted.

9. Show how to derive the Flag settings in the first four rows of Fig 9.27.
Assume the jump instruction is preceded by a subtract (or compare) in-
struction.
Hint: Use a 3-variable truth table, and a Karnaugh map, with the vari-
ables SF, OF, and ZF.



Glossary

Accumulator - The CPU register storing operation results in a one address
architecture

Advanced RISC Machine - An architecture designed by the British
coroporation Acorn Computers in the early 1980’s (ARM)

ALU - See Arithmetic and logic unit

AND gate - A logic gate which puts out the logical AND of its inputs

API - See Application Program Interface

Application Program Interface - A description or specification for a
program or function within a program

Arithmetic and logic unit - A digital component which executes several
arithmetic and logical operations

Arithmetic instruction - A machine language instruction which performs
an add, subtract, multiply, divide, or compare operation

Arithmetic shift - A shift operation which preserves the sign of the value

ARM - Advanced RISC Machine

Array - A group of contiguous memory locations with direct access to all
members

Assembler - A program which translates a program written in symbolic
assembly language to an equivalent program in binary machine language

Assembly language - A (low-level) programming language corresponding
to machine language, with symbolic addresses

Associative cache memory - A cache memory in which each block of
RAM maps to a set of blocks in the cache

Base displacement addressing - An addressing mode in which a register
contents plus a fixed displacement form an operand address

Base index displacement addressing - An addressing mode in which
the contents of two registers plus a fixed displacement form an operand address

348



Glossary 349

Binary - Base two number system

Binary adder - A logic component which adds numbers in twos comple-
ment representation

Bit - A binary digit; 0 or 1

Block - A contiguous group of bytes in a cache memory

Boolean - Having the property of a bit in which 0 represents False, and 1
represents True; named after the British logician George Boole

Bootstrapping - The process of developing a translator, such as an as-
sembler or a compiler, by developing it in its own source language

Branch instruction - See Conditional transfer of control

Byte - 8 bits

Cache memory - Fast memory used to speed up access to RAM

Cache miss - A reference to a block of RAM which is not in the cache
memory

Call stack - A last-in first-out (LIFO) data structure used to save infor-
mation needed to implement function calls

Canonical form - See Normal form

Central Processing Unit - That part of a computer which performs
arithmetic operations and makes decisions

CISC - Complex Instruction Set Computer

Clock - A digital component which puts out repeated signals at a discrete
interval

Combinational circuit - A circuit using logic gates in which there are no
feedback loops

Comment - A statement in a program, ignored by the processor, to provide
clarity for a human reader

Complex Instruction Set Computer - An architectue with many in-
structions (CISC)

Component - A logic circuit composed of logic gates and other components
which can be used as a stand-alone function

Conditional code - A CPU register which stores the state of an operation,
which can then be used by a conditional branch instruction

Conditional transfer of control - The process in which a program skips
to another instruction, depending on the state of the machine

Contradiction - The condition of two or more output lines connecting to
the same junction



350 Glossary

Control structure - A programming entity used to affect the sequence of
instructions executed

Control unit - That portion of the datapath for which the input is the
instruction register and which puts out control signals to the other components

Conversion of data types - The process of converting from one data type
to another, such as integer to float or float to integer (see cvt)

CPU - Central Processing Unit

cvt - A MIPS instruction which will perform a data type conversion: integer
to float, or float to integer

D flip-flop - A flip-flop with one input, capable of setting or resetting the
state

Datapath - That portion of the CPU which is responsible for the execution
of programs

Data Locality - The degree to which successive memory references to
instruction operands are located in proximity

Data Memory - A RAM module used to store program data

Decoder - A logic component with n inputs and 2n outputs that puts out
a 1 on the output line corresponding to the binary value of the input lines

Direct addressing - An addressing mode in which the instruction stores
the operand’s absolute memory address

Direct-mapped cache - A cache memory in which each block of RAM is
is mapped directly to a block of the cache

Directive - An assembly language construct which provides information to
the assembler, but which does not result in any machine language code

Dirty bit - A bit in a cache memory which indicates whether a cache block
has been modified and needs to be written back to RAM; A bit in virtual
memory which indicates whether a RAM page has been modified and needs to
be written back to virtual memory

Disjunctive normal form - DNF - A normal form for boolean expressions

Disk - A seconday storage device

DNF - See Disjunctive normal form

Don’t care - A value which is inconsequential

DRAM - Dynamic Random Access Memory (needs to be refreshed period-
ically)

Encoder - A logic component with 2n inputs and n outputs that puts out
the binary value corresponding to the input line which is a 1



Glossary 351

Exclusive OR gate - A logic gate which puts out the logical Exclusive
OR of its inputs

Exponent - That portion of a floating point number which is used to scale
the number by a power of the base (usually either 2 or 16)

Field - A contiguous portion of an instruction or word

Field Programmable Gate Array - A digital component which can be
programmed and reprogrammed to perform any digital function (FPGA)

FIFO - First-in First-out

First-in First-out - An algorithm in which the item to be removed from
a data structure is the first one to be added (FIFO) Used in cache and virtual
memories

Fixed disk - Secondary storage device (non-volatile) which is not remov-
able

Flash memory - Solid state memory (non-volatile)

Flip-flop - A one-bit storage element

Floating point - A numeric data representation allowing for non-integer
values very large values, and values which are very close to 0

Floating point instruction - An instruction which performs an arithmetic
operation on floating point data

Floating point register - A register which stores data in floating point
representation

FPGA - See Field Programmable Gate Array

Fraction - That portion of a floating point number representing the man-
tissa of the number, separately from the exponent

Full adder - A logic component with three inputs that puts out the logical
sum and carry

Function - A group of program statements which may be invoked from
elsewher in a program

Function table - A description of the operating characteristecs of a com-
ponent, such as an ALU or a flip-flop

G - An abbreviation for 230

Half adder - A logic component with two inputs that puts out the logical
sum and carry

Herz - A unit of frequency; one cycle per second

Hexadecimal - Base 16 number system

I format - An instruction format for immediate instructions



352 Glossary

Immediate instruction - An instruction in which one of the operands is
contained in the instruction itself

Indirect addressing - An address mode in which the instruction stores the
memory address of a memory word storing the instruction’s absolute address

Instruction - The basic unit of a machine language program

Instruction format - An assignment of bit fields to an instruction

Instruction Locality - The degree to which successive instructions are
located in proximity

Instruction Memory - A RAM module used to store program instructions

Instruction Register - The CPU register which stores the instruction
being executed (IR)

Instruction Set Architecture - The instruction formats, operations, and
addressing modes included in a computer design.

Intel - Corporation with the market share of microprocessor chips

Inverter - A logic gate which puts out the logical complement of its input

IR - See Instruction register

Iteration structure - A control structure used to repeat a statement or
block of statements

J format - An instruction format for jump instructions

JK flip-flop - A flip-flop which is capable of setting the state, resetting the
state, complementing the state, or leaving the state unchanged

Jump and link instruction - An instruction used to invoke a function

Jump instruction - See Unconditional transfer of control

Jump register instruction - A jump instruction in which the destination
address is in a register

K - An abbreviation for 210

Karnaugh map - A graphical technique used to minimize boolean ex-
pressions

Latch - A storage element used to implement a flip-flop

Latency - Time delay required for a component to respond to a signal

Least Recently Used - A cach block (or virtual memory page) algorithm
which is used to determine which block (or page) is to be replaced in the cache
(or RAM) (LRU)

li instruction - A pseudo-op which is used to load a constant into a regis-
ter.



Glossary 353

Load instruction - An instruction which copies a value from memory into
a CPU register

Locality - The degree to which successive memory references are located
in proximity

Logic gate - A fundamental (atomic in this text) component of digital
circuits

Logical instruction - A machine language instruction which performs an
AND, OR, Exclusive OR, NOT, NOR, NAND operation

Logical shift - A shift operation which does not preserve the sign of the
value

Loop - See Iteration structure

LRU - Least Recently Used

M - An abbreviation for 220

Machine language - A (low-level) programminng language consisting of
binary coded instructions to the CPU

Magnetic disk - Secondary storage device (non-volatile)

MARS - MIPS Assembler and Runtime System; developed at the Univer-
sity of Missouri

Mask - A bit pattern used to select certain bits from a word

Memory - Storage for instructions and data

Memory address - A binary specification of a memory location

Memory hierarchy - An ordered group of memory structures with a
cost/performance trade-off

Memory reference instruction - An instruction used to load or store a
register

MIPS - A RISC architecture; Microporesessor without Interlocked Pipeline
States

Move operation - A pseudo-op which copies the value from one register
to another register

Multiplexer - A logic component whose output is selected from several
inputs

Normal form - A standard representation for values which may have many
equivalent representations

Normalize - To put into normal form

Nybble - 4 bits; half byte

Octal - Base 8 number system



354 Glossary

One address architecture - An architecture with an accumulator register
which stores the results of operations

Operand - The data on which an operation operates

Optical disk - A secondary storage device which uses laser technology
(non-volatile)

OR gate - A logic gate which puts out the logical OR of its inputs

Page - A contiguous group of bytes in a virtual memory

Page fault - A reference to virtual memory which is not in RAM

Parameter - Information passed to (or from) a function from the invoking
function

Parity - The odd vs. even count of the 0 or 1 digits in a string of bits

Parse - To break down, or analyze, a text or number to determine its
meaning or component parts

PC - See Program counter

Pentium - A popular microprocessor of the Intel Corporation, circa 1993

Peripheral devices - Devices used for permanent (non-volatile) storage
or input/output (I/O)

Post-test loop - A loop in which the termination condition is tested after
executing the body of the loop

Pre-test loop - A loop in which the termination condition is tested before
entering the body of the loop

Program Counter - The CPU register which stores the memory address
of the next instruction to be executed (PC)

Programming language - A (high-level) language with control structures
and data structures used to generate a machine language program

PseudoOp - An assembly language operation which has is translated into
two or more machine language instructions

R format - An instruction format for register instructions

RAM - Random Access Memory

Recursive function - A function which invokes itself

Read - A signal specifying that data is to be taken from a component’s
output bus

Reduced Instruction Set Computer - An architecture with a small
instruction set and, typically, a large number of CPU registers (RISC)

Register - Fast, volatile storage in a CPU



Glossary 355

Register convention - An agreement on the usage, or purpose, of various
registers

Register File - A group of registers in the CPU

RISC - Reduced Instruction Set Computer

Rotate instruction - A circular shift instruction

Selection structure - A control structure used to select from one or two
statements to be executed

Sequential circuit - A logic circuit with storage elements, such as flip-
flops.

Shift instruction - An instruction which moves the bits in a register to
the left or to the right

Sign - An indicator as to whether a number is negative, zero or positive

Sign Extend - A digital component which extends the width of a bus,
while propagating the sign bit

Solid state disk - Secondary storage (non-volatile) composed of flash mem-
ory

Spatial locality - The degree to which memory references are located in
proximity with respect to the number of cache blocks (or virtual memory pages)

SRAM - Static Random Access Memory (does not need to be refreshed
periodically)

SR flip-flop (or latch) - A flip-flop (or latch) with two inputs, Set and
Reset

State graph - A graph depicting the states and transitions of a state ma-
chine

State machine - A machine which transition from one internal state to
another, depending on inputs

Statement - The basic unit of an assembly language program, correspond-
ing to one or more machine language instructions

Store instruction - An instruction which copies a register value into mem-
ory

String - A sequence of contiguous memory locations, each of which stores
one character from a given character set

Symbolic memory address - A memory address specified by a name
rather than by a binary number

Syscall - A MARS statement used to call a system function, such as I/O
or program termination

T - An abbreviation for 240



356 Glossary

Tag - The portion of a memory address which stores the block number

Temporal Locality - The degree to which successive memory references
are located in proximity

Thrashing - Excessively frequent cache misses in a cache memory, or ex-
cessively frequent page faults in a virtual memory

Three address architecture - An architecture in which the three memory
addresses are the result, the left operand, and the right operand

Transfer of control - The process in which a program skips to another
instruction non-sequentially

Two address architecture - An architecture in which the result of an
operation is the same register as the left operand

Twos complement representation - A representation for signed binary
integers

Unconditional transfer of control - The process in which a program
skips to another instruction (not dependant on the state of the machine)

Virtual memory - An extension to the RAM using secondary storage

Volatile - Requiring continuous power to retain information

Von Neumann architecture - A classical computer design consisting of
ALU, control unit, memory storing instructions and data, and external storage.

Word - A unit of memory, 32 bits in the MIPS architecture

Write - A signal to a storage component specifying that data on its input
bus is to be stored

Zero address architecture - A stack machine



Appendix: MARS

The MARS (MIPS Assembler and Runtime System) can be used to assemble and
execute MIPS programs; it is written in Java and should run on any computer
which supports Java.

This appendix contains some basic information needed to download and use
the MARS software.

.1 Downloading MARS to Your Computer

Follow the steps below to install MARS on your computer:

1. Go to the web site: http//:courses/missouristate/edu/KenVollmar/MARS

2. Click on the link Download MARS 4.5 software

3. Click on the link Download

4. Click on the link Download MARS

5. Depending on your operating system, and your security settings, you may
need to allow your computer to run this software (go to Settings from the
desktop to allow MARS to execute).

.2 Edit Source Files

When MARS is launched it will open a blank window. To get started, choose
the New item from the File menu. You can now start typing a MIPS assembly
language program, one statement on each line. To start out you could type in
a few simple statements, such as:

li $t0, 23 # Put 23 into register $t0

add $t1, $t0, $t0 # Register $t1 contains 46

Before executing your program, it must be saved to permanent storage; choose
Save or Save As from the File menu. This is called your source file. It is a
plain text file, and could be saved with any file extension. We usually use .asm
or .s as file extensions. It could be saved as temp.asm. You will need to save it

357



358 APPENDIX: MARS

to a folder on some disk such as the main fixed disk for your computer. Each
time you need to make changes to this source file, you can save it with the same
name.

If you terminate MARS and wish to continue later, load this source file from
the place where you had saved it.

.3 Assemble Source Files

To assemble your source file, do one of the following:

• Choose Assemble from the Run menu

• Use Function Key F3

• Click the icon which looks like a screw driver with a wrench.

If you have an incorrect statement in your source file, MARS will show error
message(s) in the bottom window pane (Messages). Correct the errors and try
to assemble again.

Once you have eliminated all syntax errors, when you assemble your source
file, MARS will automatically show the Execute window, which normally con-
sists of four window panes:

• The Text Segment pane shows your source code (or most of it) on the
right. On the left it shows the machine language code (with memory
addresses) which the assembler produced. The Basic column is an in-
termediate form which the assembler uses to translate your source file to
machine language.

• The Registers window pane shows the value of each of 32 general reg-
isters, most of which are initially 0. (This pane should not be showing
coprocessors at this point)

• The Data Segment pane shows the values currently stored in the Data
Memory, all of which should be 0 at this point. The Data Memory ad-
dresses begin at address 0x10010000.

• The Run I/O pane corresponds to the former Messages pane. It shows
error messages, along with any text output produced by your program
when it executes.

.4 Execute Programs

It is now possible to execute your program and view the effects it may have on
registers, memory, and output. To execute your program do one of the following:

• Choose Go from the Run menu



.4. EXECUTE PROGRAMS 359

• Use Function Key F5

• Click the icon which looks like a white triangle inside a green circle.

This will execute your program at full speed, and terminate when it encounters
a terminating system call (or non-valid code at the end). If you used the sample
program (two statements) shown above, you can see that register $t0 has been
loaded with 23 (1716) and that register $t1 has been loaded with 46 (2e16).

To execute your program in such a way that you can see intermediate results
as the program executes, you have a few options:

• Slow down the run speed, using the slider at the top of the window, so that
you can view changes to registers and memory as the program executes.

• Choose Step, click Function Key F7, or click the green circle with a 1
subscript. This will allow you to execute one statement at a time.

• Set breakpoints in your program by selecting one or more Bkpt check
boxes on the left of the Text Segment pane. When running at full speed,
execution will pause at each breakpoint.

By judiciously choosing among these options, you can diagnose difficult prob-
lems. To start over and run again, choose Function Key F12 to Reset, or click
the green circle containing a double white triangle.

If there are semantic (i.e. logical) errors in your program, you will need to
click on the Edit tab of the Text Segment pane (not the Edit menu). This will
take you back to your source file. Make the necessary changes, assemble, and
execute the program again to verify that it is correct.

In general you will be using an Edit/Assemble/Test cycle as you develop
software.



Appendix: MIPS
Instruction Set

This appendix shows selected MIPS instructions. For each instruction we show:

• A brief name of the instruction

• The assembly language mnemonic for the instruction

• The instruction format (i.e. R, I, J, FR, FI)

• The assembly language format

• The machine language format

• The semantics of the instruction (it’s effect on the processor)

360



.5. CORE INSTRUCTIONS 361

.5 Core Instructions

Name
Mne-
monic

For-
mat

Assembly Language
Machine Language

Semantics

Add add R add $rd,$rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt
10 6

20

funct
5 0

$rd← $rs + $rt

Add
Imm

addi I addi $rt,$rs,imm

08

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

imm

immediate
15 0

$rt← $rs + imm

And and R and $rd,$rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt
10 6

24

funct
5 0

$rd← $rs ∧ $rt

And
Imm

andi I andi $rt,$rs,imm

0c

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

imm

immediate
15 0

$rt← $rs ∧ imm



362 APPENDIX: MIPS INSTRUCTION SET

Branch
Equal

beq I beq $rs,$rt,addr

04

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

addr

immediate
15 0

→ (relative)addr if $rs = $rt

Branch
Not Equal

bne I bne $rs,$rt,addr

05

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

addr

immediate
15 0

→ (relative)addr if $rs 6= $rt

Jump j J j address

02

opcode
31 26

(absolute) address

address
25 0

→ address

Jump
and link

jal J jal address

03

opcode
31 26

(absolute) address

address
25 0

$ra← address of next instruction
→ address

Jump
Reg

jr R jr $rs

00

opcode
31 26

$rs

rs
25 21

rt
20 16

rd
15 11

shamt
10 6

08

funct
5 0

→ $rs

Load
Byte

lbu I lbu $rt,displ($rs)

24

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

displ

immediate
15 0

$rt8..31 ← 0, $rt0..7 ←Mem[$rs + imm]0..7

Load
Upper

lui I lui $rt, imm

0f

opcode
31 26

rs
25 21

$rt

rt
20 16

imm

immediate
15 0

$rt0..15 ← 0, $rt16..31 ← imm

Load
Word

lw I lw $rt,displ($rs)

23

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

displ

immediate
15 0

$rt←Mem[$rs + imm]



.5. CORE INSTRUCTIONS 363

Name
Mne-
monic

For-
mat

Assembly Language
Machine Language

Semantics

Nor nor R nor $rd,$rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt
10 6

27

funct
5 0

$rd←∼ ($rs ∨ $rt)

Or or R or $rd,$rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt
10 6

25

funct
5 0

$rd← $rs ∨ $rt

Or
Immediate

ori I ori $rt,$rs,imm

23

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

imm

immediate
15 0

$rt← $rs ∨ imm

Set If
LessThan

slt R slt $rd,$rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt
10 6

2a

funct
5 0

$rd← $rs < $rt?1 : 0

Shift
Left

sll R sll $rd,$rt,shamt

00

opcode
31 26

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt

shamt
10 6

00

funct
5 0

$rd← $rt << shamt

Shift
Right

srl R srl $rd,$rt,shamt

00

opcode
31 26

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt

shamt
10 6

02

funct
5 0

$rd← $rt >>> shamt
Shift
Right
Arith

sra R sra $rd,$rt,shamt

00

opcode
31 26

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt

shamt
10 6

03

funct
5 0

$rd← $rt >> shamt



364 APPENDIX: MIPS INSTRUCTION SET

Shift Left
Variable

sllv R sllv $rd,$rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt
10 6

04

funct
5 0

$rd← $rt << $rs
Shift Right

Arith
Variable

srav R srav $rd,$rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt
10 6

07

funct
5 0

$rd← $rt >> $rs

Shift Right
Logical
Variable

srlv R srlv $rd,$rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt
10 6

06

funct
5 0

$rd← $rt >>> $rs

Store
Byte sb I sb $rt,displ($rs)

28

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

displ

immediate
15 0

Mem[$rs + imm]← $rt0..7

Store
Word

sw I sw $rt,displ($rs)

2b

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

displ

immediate
15 0

Mem[$rs + imm]← $rt

Subtract sub R sub $rd,$rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt
10 6

22

funct
5 0

$rd← $rs− $rt

Excl
Or

xor R xor $rd,$rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

$rd

rd
15 11

shamt
10 6

26

funct
5 0

$rd← $rs⊕ $rt



.5. CORE INSTRUCTIONS 365

Name
Mne-
monic

For-
mat

Assembly Language
Machine Language

Semantics

Excl Or
Immediate

xori I xori $rt,$rs,imm

0e

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

imm

immediate
15 0

$rt← $rs⊕ imm

Multiply mult R mult $rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

rd
15 11

shamt
10 6

18

funct
5 0

(hi, lo)← $rs · $rt

Divide div R div $rs,$rt

00

opcode
31 26

$rs

rs
25 21

$rt

rt
20 16

rd
15 11

shamt
10 6

1a

funct
5 0

hi← $rs%$rt, lo← $rs/$rt

Move
From Hi

mfhi R mfhi $rd

00

opcode
31 26

rs
25 21

rt
20 16

$rd

rd
15 11

shamt
10 6

10

funct
5 0

$rd← hi

Move
From Lo

mflo R mflo $rd

00

opcode
31 26

rs
25 21

rt
20 16

$rd

rd
15 11

shamt
10 6

12

funct
5 0

$rd← lo



366 APPENDIX: MIPS INSTRUCTION SET



.6. FLOATING POINT INSTRUCTIONS 367

.6 Floating Point Instructions

Name
Mne-
monic

For-
mat

Assembly Language
Machine Language

Semantics

Add
Float

add.s FR add.s $fd,$fs,$ft

11

opcode
31 26

10

fmt
25 21

$ft

ft
20 16

$fs

fs
15 11

$fd

fd
10 6

00

funct
5 0

$fd← $fs + $ft

Divide
Float

div.s FR div.s $fd,$fs,$ft

11

opcode
31 26

10

fmt
25 21

$ft

ft
20 16

$fs

fs
15 11

$fd

fd
10 6

03

funct
5 0

$fd← $fs/$ft

Multiply
Float

mul.s FR mul.s $fd,$fs,$ft

11

opcode
31 26

10

fmt
25 21

$ft

ft
20 16

$fs

fs
15 11

$fd

fd
10 6

02

funct
5 0

$fd← $fs · $ft

Subtract
Float

sub.s FR sub.s $fd,$fs,$ft

11

opcode
31 26

10

fmt
25 21

$ft

ft
20 16

$fs

fs
15 11

$fd

fd
10 6

01

funct
5 0

$fd← $fs− $ft

Store
Float

swc1 I swc1 $ft,displ($rs)

39

opcode
31 26

$rs

rs
25 21

$ft

rt
20 16

displ

immediate
15 0

Mem[$rs + displ]← $ft

Load
Float

lwc1 I lwc1 $ft,displ($rs)

31

opcode
31 26

$rs

rs
25 21

$ft

rt
20 16

displ

immediate
15 0

$ft←Mem[$rs + displ]



368 APPENDIX: MIPS INSTRUCTION SET

.6.1 Floating Point Conditional Branch

Name
Mne-
monic

For-
mat

Assembly Language
Machine Language

Semantics

Branch If
FPTrue

bc1t FI bc1t (rel)address

11

opcode
31 26

08

fmt
25 21

01

ft
20 16

address

immediate
15 0

→ (rel)address if FP=1

Branch If
FPFalse

bc1f FI bc1f (rel)address

11

opcode
31 26

08

fmt
25 21

00

ft
20 16

address

immediate
15 0

→ (rel)address if FP=0

Compare
Float EQ

c.eq.s FR c.eq.s $fs,$ft

11

opcode
31 26

10

fmt
25 21

$ft

ft
20 16

$fs

fs
15 11

fd
10 6

32

funct
5 0

FP ← $fs = $ft?1 : 0

Compare
Float LE

c.le.s FR c.le.s $fs,$ft

11

opcode
31 26

10

fmt
25 21

$ft

ft
20 16

$fs

fs
15 11

fd
10 6

3e

funct
5 0

FP ← $fs ≤ $ft?1 : 0

Compare
Float LT

c.lt.s FR c.lt.s $fs,$ft

11

opcode
31 26

10

fmt
25 21

$ft

ft
20 16

$fs

fs
15 11

fd
10 6

3c

funct
5 0

FP ← $fs < $ft?1 : 0



369



370 APPENDIX: PSEUDO OPERATIONS

Appendix: Pseudo
Operations Supported by
MARS

Name Mnemonic Assembly Language Semantics
Absolute abs abs rd,rs $rd← |$rs|
Value
Branch b b label → label
Unconditional
Branch If beqz beqz $rs, label → label if $rs = 0
Equal Zero
Branch If bgt bgt $rs, $rt, address → address(relative) if $rs > $rt
Greater Than
Branch If bge bge $rs, $rt, address → address(relative) if $rs >= $rt
Greater Or Equal
Branch If blt blt $rs, $rt, address → address(relative) if $rs < $rt
Less Than
Branch If ble ble $rs, $rt, address → address(relative) if $rs <= $rt
Less Or Equal
Load li li $rd, imm $rd← imm
Immediate
Divide div div $rd, $rs, $rt $rd← $rs/$rt
Divide div div $rd, $rs, imm $rd← $rs/imm
Immediate
Load la la $rd, label $rd← label’s address
Address
Move move move $rd, $rs $rd← $rs
Multiply mulo mulo $rd, $rs $rd← $rs · $rt
Short
Negate neg neg $rd, $rs $rd← −$rs
Not not not $rd, $rs $rd←∼ $rs
Remainder rem rem $rd, $rs, $rt $rd← $rs mod $rt
Remainder rem rem $rd, $rs, imm $rd← $rs mod imm
Immediate
Rotate rol rol $rd, $rs, $rt $rd← $rs →֒ $rt
Left
Rotate rol rol $rd, $rs, imm $rd← $rs →֒ imm
Left Immediate
Rotate ror ror $rd, $rs, $rt $rd← $rs ←֓ $rt
Right
Rotate ror ror $rd, $rs, imm $rd← $rs →֒ imm
Right Immediate



Name Mnemonic Assembly Language Semantics

Set If seq seq $rd, $rs, $rt $rd← $rs == $rt?1 : 0
Equal
Set If seq seq $rd, $rs, imm $rd← $rs == imm?1 : 0
Equal
Immediate
Set If sge sge $rd, $rs, $rt $rd← $rs ≥ $rt?1 : 0
Greater or Equal
Set If sge sge $rd, $rs, imm $rd← $rs ≥ imm?1 : 0
Greater or Equal
Immediate
Set If sgt sgt $rd, $rs, $rt $rd← $rs > $rt?1 : 0
Greater
Set If sgt sgt $rd, $rs, imm $rd← $rs > imm?1 : 0
Greater
Immediate
Set If sle sle $rd, $rs, $rt $rd← $rs ≤ $rt?1 : 0
Less or Equal
Set If sle sle $rd, $rs, imm $rd← $rs ≤ imm?1 : 0
Less or Equal
Immediate
Set If slt slt $rd, $rs, $rt $rd← $rs < $rt?1 : 0
Less
Set If slt slt $rd, $rs, imm $rd← $rs < imm?1 : 0
Less
Immediate
Set If sne sne $rd, $rs, $rt $rd← $rs 6= $rt?1 : 0
Not Equal
Set If sne sne $rd, $rs, imm $rd← $rs 6= imm?1 : 0
Not Equal
Immediate



Appendix: ASCII
Character Set

Dec Hex Chr Dec Hex Chr Dec Hex Chr Dec Hex Chr
0 0 null 53 35 5 78 4e N 103 67 g
8 8 BS 54 36 6 79 4f O 104 68 h
9 9 HT 55 37 7 80 50 P 105 69 i
10 a LF 56 38 8 81 51 Q 106 6a j
13 d CR 57 39 9 82 52 R 107 6b k
32 20 space 58 3a : 83 53 S 108 6c l
33 21 ! 59 3b ; 84 54 T 109 6d m
34 22 ” 60 3c < 85 55 U 110 6e n
35 23 # 61 3d = 86 56 V 111 6f o
36 24 $ 62 3e > 87 57 W 112 70 p
37 25 % 63 3f ? 88 58 X 113 71 q
38 26 & 64 40 @ 89 59 Y 114 72 r
39 27 ′ 65 41 A 90 5a Z 115 73 s
40 28 ( 66 42 B 91 5b [ 116 74 t
41 29 ) 67 43 C 92 5c \ 117 75 u
42 2a * 68 44 D 93 5d ] 118 76 v
43 2b + 69 45 E 94 5e ^ 119 77 w
44 2c , 70 46 F 95 5f 120 78 x
45 2d - 71 47 G 96 60 ‘ 121 79 y
46 2e . 72 48 H 97 61 a 122 7a z
47 2f / 73 49 I 98 62 b 123 7b {
48 30 0 74 4a J 99 63 c 124 7c |
49 31 1 75 4b K 100 64 d 125 7d }
50 32 2 76 4c L 101 65 e 126 7e ∼
51 33 3 77 4d M 102 66 f 127 7f DEL
52 34 4

372



Bibliography

[1] Barry B. Brey. The Intel Microprocessors. Prentice Hall, 2000.

[2] Danny Cohen. On holy wars and a plea for peace. IEEE Computer,
14(10):48–54, October 1981.

[3] Douglas E. Comer. Essentials of Computer Architecture. Pearson Prentice
Hall, 2005.

[4] M. Morris Mano, Charles R. Kime, and Tom Martin. Logic and Computer
Design Fundamentals. Pearson, 2016.

[5] Karen Miller. An Assembly Language Introduction to Computer Architec-
ture. Oxford Universtiy Press, 1999.

[6] Linda Null and Julia Lobur. The Essentials of Computer Organization and
Architecture. Jones and Bartlett, 2015.

[7] David A. Patterson and John L. Hennessy. Computer Organization and
Design: The Hardware/Software Interface. Morgan Kaufmann, 2014.

[8] David A. Patterson and John L. Hennessy. Computer Organization and De-
sign: The Hardware/Software Interface (ARM Edition). Morgan Kaufmann,
2017.

[9] John F. Wakerly. Digital Design: Principles and Practices. Pearson Prentice
Hall, 2006.

373



Index

.ascii directive, 97

.asciiz directive, 97

.data assembler directive, 50

.double
directive, 123

.float
directive, 123

.include
assembler directive, 202

.text assembler directive, 50

.word directive, 50
$0, 24
$a registers, 82
$at register, 147
$ra register

in function call, 76
$sp register, 84

accepting state, state machine, 247
Add

ALU function, 252
add immediate instruction, 42
add instruction, 27

floating point
machine language, 174

machine language, 148
adddition

floating point, 120
adders, 233
addi instruction, 42

machine language, 155
address

memory, 3
addressing modes, 313

base-displacement, 315
base-index-displacement, 315
indirect, 314

Advanced Risc Machine (ARM), 319
ALU, 2, 254

function table, 254
see Arithmetic and Logic Unit,

ALU function
Add, 252
AND, 251
compare, 256
Nor, 253
OR, 252
Subtract, 252

AND
ALU function, 251

AND gate, 217
and instruction, 33

machine language, 150
AND operation, 32
andi instruction, 45

machine language, 155
API, 82
architecture, 310

one-address, 311
stack, 311
three-address, 313
two-address, 312
Von Neuman, 310
zero-address, 311

arithmetic
binary, 9
with powers of two, 21

Arithmetic and Logic Unit, 249
arithmetic shift instruction, 39
ARM, 319

conditional branch instructions,
instruction formats, 319
registers, 319

arrays, 72

374



INDEX

ASCII, 96
asm

assembler function, 191
assembler, 179
assembler directive

.ascii, 97

.asciiz, 97

.data, 50

.double, 123

.float, 123

.include, 202

.text, 50

.word, 50
assembler directives, 50
assembly language, 6, 24

statement, 25
associative cache, 295

base 16, 13
base 8, 11
base two, 8
base-displacement addressing mode, 315
base-index-displacement addressing mode, 315
bc1f instruction, 127

machine language, 177
bc1t instruction, 127

machine language, 177
beq instruction, 60

machine language, 161
bge instruction, 60

machine language, 163
bgt instruction, 60

machine language, 163
binary adders, 233
binary arithmetic, 9
binary digit, 2
binary numbers, 8
bit, 2
ble instruction, 60

machine language, 163
blt instruction, 60

machine language, 163
bne instruction, 60

machine language, 161
boolean algebra, 207
boolean expressions, 208

canonical form, 208
minimization, 209

boolean functions, 207
precedence, 207

boolean identities, 210
boolean identity, 32
branch instructions, 60

machine language, 161
buses, 221

in logic diagrams, 220
joining, 221
splitting, 221

byte, 3
byte addressable memory, 3
byte instructions, 97

c.eq.s instruction, 123
machine language, 176

c.le.s instruction, 123
machine language, 176

c.lt.s instruction, 123
machine language, 176

cache
associative, 295
direct-mapped, 292

cache dirty bit, 292
cache hit, 291
cache memory, 289, 291
cache miss, 291
call stack, 82
canonical form

of boolean expressions, 208
clock, 239, 264
combinational logic circuits, 224
comment

assembly language, 26
comparison

floating point, 123
set if less than, 29

comparison instructions
floating point

machine language, 176
component

ALU, 249
decoder, 225
digital, 224



376

encoder, 226
full adder, 234
half adder, 234
multiplexer, 230
sign extend, 225

conditional branch
floating point

machine language, 176, 177
machine language, 161

conditional transfer of control, 60
conflicts of names, 87
connecting wires

in logic diagrams, 220
contradiction

in logic diagrams, 221
control unit

datapath, 275
logic, 282

control unit output
ALU, 277
ALU B multiplexer, 281
data memory, 276
multiplexers, 278
register file, 276
RF multiplexer, 279
WS multiplexer, 281

CPU, 2
cycle

datapath, 265
cycle, clock, 239

D flip-flop, 241
block diagram, 243
function table, 243

data locality, 305
data memory

datapath, 260
datapath, 3, 259, 264

control unit, 275
control unit output

ALU, 277
ALU B multiplexer, 281
data memory, 276
multiplexers, 278
register file, 276
RF multiplexer, 279

WS multiplexer, 281
data memory, 260
instruction memory, 260
instruction memory - IR - register
IR, 261
IR - register file data memory connection,
one-cycle, 265
PC - instruction memory connection,
PC register, 261, 268
register file, 259
register file - ALU connection, 266
storage components, 259
transfer of control, 268
two-cycle, 265

decoder
component, 225

DFA, 245
digital logic, 207
digital logic gates, 217
direct-mapped cache, 292
directive, see assembler directive
directives

assembler, 50
dirty bit

cache, 292
virtual memory, 301

disjunctive normal form
canonical form, 209

disk, 4
div instruction, 116
divide instruction

floating point
machine language, 174

division
by a power of 2, 41
floating point, 120
integer, 111
MIPS instruction, 116
repeated subtraction, 112
shift and subtract, 112

division instruction
machine language, 152

divu instruction, 116
don’t cares

boolean function minimization,
driver



INDEX

for assembler, 197

encoder
component, 226

encryption
with exclusive OR, 36

exclusive OR
encryption, 36

EXCLUSIVE OR operation, 32
explicit memory address, 55
exponent

floating point data, 171

FI floating point instruction format, 173
FIFO

cache block replacement, 296
FIFO page replacement

virtual memory, 301
first-in first-out

cache block replacement, 296
fixed disk, 4
fixed point binary, 169
flash memory, 4
flip-flop, 239

block diagram, 243
D, 241
function table, 243
JK, 242
SR, 241

floating point
add, 120
comparison, 123
comparison instructions

machine language, 176
conditional branch

machine language, 176, 177
data, 122, 169
divide, 120
instruction formats, 173
instructions, 119, 120, 173
load and store, 123
memory reference instructions

machine language, 175
multiply, 120
registers, 120
subtract, 120

floating point data, 170
FR floating point instruction format, 173
fraction

floating point data, 171
frequency, clock, 239
FSM, 245
full adder

component, 234
function call, 76
function parameters, 81
functions, 76

API, 82
call stack, 82, 85
local data, 90
recursive, 92
string, 96

G = 230, 21

half adder
component, 234

Hertz, 239
hexadecimal numbers, 13
Hi Register, 105
Hz, 239

I format instructions, 139
machine language, 155

using constants, 155
identities

boolean, 210
identity

logical, 32
IEEE 754 floating point, 170
immediate instruction, 42
indirect addressing mode, 314
input

with MARS, 133, 135
instruction, 180

add, 27
add immediate, 42
and, 33
andi, 45
arithmetic, 26
bc1f, 127
bc1t, 127



378

beq, 60
bge, 60
bgt, 60
ble, 60
blt, 60
bne, 60
branch, 60
byte, 97
c.eq.s, 123
c.le.s, 123
c.lt.s, 123
div, 116
divu, 116
fields, 143
floating point, 119, 120
formats, 139
I format, 139
immediate, 42
J format, 140
jump, 62
la, 146
li, 145
load, 51
load address, 55
load upper immediate, 46
logical, 31
logical immediate, 45
lwc1, 123
memory reference, 49
mfhi, 105
mflo, 105
move, 145
mult, 105
multu, 105
not, 33, 146
or, 33
ori, 45
R format, 139, 148
shift, 38

arithmetic, 39
logical, 38

store, 51
subtract, 28
swc1, 123
syscall, 134
xor, 33

xori, 45
instruction formats

floating point, 173
instruction locality, 305
instruction memory

datapath, 260
instruction prefetch, 289
instruction register

see IR, 261
Instruction Set Architecture, 310
Intel Pentium, 328
inverter

logic gate, 218
IO devices, 4
IR

datapath, 261
ISA, Instruction Set Architecture, 310
isNumeric

assembler function, 185
iteration structures, 65

J format instructions, 140
machine language, 166

j instruction, 62
jal instruction, 76
JK flip-flop, 242

block diagram, 243
function table, 243

joining
of buses, 221

jr instruction, 76
jump instruction, 62

machine language, 166
jump register instruction

machine language, 153

K = 210, 20
Karnaugh map, 211

four variables, 212

la instruction, 56, 146
label

assembly language, 26
latch, 240
latency, memory, 289
lb instruction, 97



INDEX

lbu instruction, 97
least recently used

cache block replacement, 296
li instruction, 145
li pseudo-op, 43
lineEnd

assembler function, 191
Lo Register, 105
load address instruction, 55, 146

machine language, 160
load immediate pseudo-op, 43
load instruction, 51
load operation, 49
load upper immediate instruction, 46
local data for functions, 90
locality, 305

data vs instruction, 305
instruction, 305
spatial, 306
temporal, 306

logic circuits
combinational, 224

logic components, 224
logic diagrams, 220
logic gates, 217

composition, 219
logical identity, 32
logical immediate instructions, 45
Logical instructions, 31
logical instructions, 33

machine language, 150
logical operations, 31
logical shift instruction, 38
loop

post test, 68
pre test, 67

loops, 65
LRU

cache block replacement, 296
LRU page replacement

virtual memory, 301
lui instruction, 46
lw instruction, 51

machine language, 156
lwc1 instruction, 123

machine language, 175

M = 220, 21
machine language, 5, 139
magnetic disk, 4
main memory, 289
mantissa

floating point data, 171
mask, 35
memory, 3

byte addressable, 3
cache, 289, 291
flash, 4
USB, 4
virtual, 289, 301

memory address
non-symbolic, 55
symbolic, 50

memory arrays, 72
memory dump, 50
memory hierarchy, 289
memory latency, 289
memory reference instructions, 49

floating point
machine language, 175

machine language, 156
symbolic

machine language, 157
memory technologies, 290
mfhi instruction, 105
mflo instruction, 105
minimization

of boolean expressions, 209
with Karnaugh map, 211

MIPS, 1
logical instructions, 33

mnemonic
assembler function, 183
assembly language, 26

move instruction, 145
move pseudo-op, 43
mulitiplication

by a power of 2, 41
mult instruction, 105
multiplexer

component, 230
multiplication

floating point, 120



380

integer, 103
MIPS instruction, 105
repeated addition, 103
shift and add, 105

multiplicaton instruction
machine language, 152

multiply instruction
floating point

machine language, 174
multu instruction, 105

name conflicts in assembly language, 87
negation algorithms, twos complement, 17
negative numbers - twos complement, 16
non-symbolic memory address, 55
NOR

ALU function, 253
nor instruction

machine language, 150
not instruction, 33, 146
NOT operation, 32
null byte, 97

octal numbers, 11
one-address architecture, 311
one-cycle

datapath, 265
one-way selection structure, 62
operand

assembler function, 190
assembly language, 26

operandRD
assembler function, 191

operandRS
assembler function, 191

operandRT
assembler function, 191

optical disk, 4
OR

ALU function, 252
OR gate, 218
or instruction, 33

machine language, 150
OR operation, 32
ori instruction, 45

machine language, 155

output
with MARS, 133, 135

page
virtual memory, 301

page fault
virtual memory, 301

page table
virtual memory, 301

parameter
function, 76

parameters, 81
parity checker, 247
parseInt

assembler function, 185
PC register

datapath, 261, 268
PC, see Program Counter, 2
Pentium, 328

addressing modes, 329
arithmetic instructions, 331
branch instructions, 338
condition code flags, 338
jump instructions, 340
logical instructions, 334
mov instruction, 329
registers, 329
rotate instructions, 336
shift instructions, 336

period, clock, 239
Peripheral Devices, 4
post test loop, 68
powers of two, 20
prefetching, of instructions, 289
pretest loop, 67
Program Counter, 2
program counter

see PC register, 261
program termination, 79, 134
programming languages, 6
pseudo operation, 43
pseudo-op, 145

la, 146
li, 145
load immediate, 43
move, 43, 145



INDEX

not, 146

R format instructions, 139, 148
RAM, 289
recursive function, 92
reg

assembler function, 190
register

CPU, 2, 24
implemented with flip-flops, 245
names, 24

register conventions, 82
register file

datapath, 259

sb instruction, 97
selection structure

one-way, 62
two-way, 62, 63

selection structures, 62
sequential circuits, 239
set

in associative cache, 295
set if less than, 29
shift instruction, 38
shift instructions

machine language, 151
sign

floating point data, 171
sign extend

component, 225
skipCommaWhite

assembler function, 180
sll instruction, 38
spatial locality, 306
splitting

of buses, 221
SR flip-flop, 241

block diagram, 243
function table, 243

SR latch, 240
sra instruction, 39
srl instruction, 39
stack, 84

function call, 85
function calls, 82

stack architecture, 311
start state, state machine, 247
state diagram, 245
state graph, 245
state machine, 245

accepting state, 247
parity checker, 247
start state, 247
state table, 247
transition, 245

statement, 180
assembly language, 25

storage components
datapath, 259

storage devices, 4
store instruction, 51
store operation, 49
strcmp

assembler function, 181
strcmp function, 100
string processing, 98
strings, 96
strlen function, 98
strMem function, 98
Subtract

ALU function, 252
subtract immediate, 43
subtract instruction, 28

floating point
machine language, 174

machine language, 148
subtraction

floating pointt, 120
sum of products

canonical form, 209
logic diagrams, 220

sw instruction, 51
machine language, 156

swc1 instruction, 123
machine language, 175

symbolic memory address, 50
syscall, 79
syscall instruction, 134
system calls

with MARS, 133



382

T = 240, 21
tag

cache memory, 293
temporal locality, 306
termination

of program, 134
termination of a program, 79
thrashing

in cache memory, 299
in virtual memory, 303

three-address architecture, 313
transfer of control, 60

conditional, 60
unconditional, 60

transition, state machine, 245
truth table, 208
two-address architecture, 312
two-cycle

datapath, 265
two-way selection structure, 62, 63
twos complement, 16

unconditional transfer of control, 60
unicode, 96
USB memory, 4

virtual memory, 289, 301
page table, 301

volatile memory, 4, 290
Von Neuman, 310

wires
in logic diagrams, 220

word, 3

xor instruction, 33
machine language, 150

xori instruction, 45
machine language, 155

zero-address architecture, 311


	Computer Organization with MIPS
	Recommended Citation

	Preface
	Computers and Computer Programs
	Hardware Components
	Central Processing Unit
	Memory
	Peripheral Devices

	Machine Language
	Assembly Language
	Operating System 
	Programming Languages
	Exercises

	Number Systems
	Base Two - Binary
	Binary Arithmetic
	Exercises

	Base 8 - Octal
	Exercises

	Base 16 - Hexadecimal
	Hexadecimal Values in the MIPS Architecture
	Exercises

	Twos Complement Representation
	Exercises

	Powers of Two
	Arithmetic With Powers of Two
	Exercises


	Assembly Language for MIPS
	Registers and Register Names
	Exercises

	Assembly Language Statements
	Exercises

	Arithmetic Instructions
	Add Instruction
	Subtract Instruction
	Examples of Add and Subtract Instructions
	Set If Less Than
	Exercises

	Logical Instructions
	Logical Operations
	MIPS Logical Instructions
	Exercises

	Shift Instructions
	Logical Shift Instructions
	Arithmetic Shift Instructions
	Common Applications of Shift Instrucrtions
	Exercises

	Immediate Instructions
	Add, Load, Move, and PsuedoOps
	Logical Immediate Instructions
	Load Upper Immediate
	Exercises

	Memory Reference Instructions
	Symbolic Memory Addresses
	Non-symbolic Load and Store
	Exercises

	Transfer of Control
	Conditional Transfer of Control: Branch
	Unconditional Transfer of Control: Jump
	Selection Structures
	Iteration Structures - Loops
	Exercises

	Memory Arrays
	Exercises

	Functions
	Function Calls - jal and jr
	Function Parameters
	Register Conventions and the Call Stack
	Recursive Functions
	Exercises

	Strings and String Functions
	Initializing Memory with Strings
	Byte Instructions - lbu and sb
	String Processing
	Exercises

	Multiplication of Whole Numbers
	Multiplication with Software
	Multiplication with a MIPS Instruction
	Exercises

	Division
	Division Implemented in Software
	Division with a MIPS Instruction
	Exercises

	Floating Point Instructions
	Floating Point Registers
	Floating Point Instructions
	Floating Point Data in Memory
	Loading and Storing Floating Point Registers
	Floating Point Comparisons
	Type conversions
	Exercises

	Input, Output, and Other System Calls With MARS
	Normal Program Termination
	Input with syscall
	Output with syscall
	Example for Input and Output
	Exercises


	Machine Language for MIPS
	Instruction Formats
	Introduction to the Instruction Formats
	Exercises

	Showing Binary Fields
	Exercises

	Pseudo Operations
	Load Immediate
	Move
	Not
	Load Address
	Other Pseudo Operations
	Exercises

	R Format Instructions
	Add and Subtract Instructions
	Logical Instructions
	Shift Instructions
	Multiply and Divide Instructions
	Jump Register
	Exercises

	I Format Instructions
	Immediate instructions using constants
	Memory Reference Instructions
	Memory Reference - Symbolic
	Conditional Branches
	Exercises

	J Format Instructions
	Exercises

	Floating Point Data Representation
	Fixed Point in Binary
	IEEE 754 Floating Point Data Representation
	Exercises

	Floating Point Instructions
	MIPS Arithmetic Floating Point Instruction Formats
	Floating Point Memory Reference Instruction Formats
	Floating Point Conditional Branch Instruction Formats
	Exercises


	A MIPS Assembler
	Version 1 - R Format Instructions Only
	Version 1a - No Symbolic Registers
	Version 1b - Allow Symbolic Registers
	Include Directives
	Exercises

	Version 2 - Include I and J Format Instructions
	Version 2a - I and J Format Instructions
	Version 2b - Explicit Memory Addresses
	Exercises

	Version 3 - More Pseudo Operations

	Boolean Algebra and Digital Logic
	Notation for Boolean Functions
	Boolean Expressions
	Minimizing Boolean Expressions
	Exercises

	Basic Logic Gates
	AND Gates
	OR Gates
	Inverters
	Composition of Logic Gates
	Sum of Products Logic Diagrams
	Wires and Buses
	Exercises

	Combinational Logic Circuits and Components
	Sign Extend
	Decoders
	Encoders
	Multiplexers
	Binary Adders
	Exercises

	Sequential Circuits
	SR Flip-Flops
	D Flip-Flops
	JK Flip-Flops
	Block Diagrams and Function Tables for Flip-Flops
	Registers
	State Machines
	Exercises

	An Arithmetic and Logic Unit - ALU
	Exercises

	Construction of the ALU
	ALU function AND: 0000
	ALU function OR: 0001
	ALU function Add: 0010
	ALU function Subtract: 0110
	ALU function NOR: 1100
	ALU: Putting it all together
	Exercises


	MIPS Datapath
	Storage Components
	The Register File
	Data Memory and Instruction Memory
	Exercises

	Design of the Datapath
	Register File and ALU
	Instruction Memory, Instruction Register, and Register File
	Instruction Register, Register File, and Data Memory, for  Load/Store
	Program Counter, Instruction Memory, and Transfer of Control
	Exercises

	The Control Unit
	Control Unit Output to Data Memory R/W
	Control Unit Output to Register File R/W
	Control Unit Output to ALU Operation Select - 4 bits
	Control Unit Output to Multiplexers
	Logic for the Control Unit
	Exercises


	The Memory Hierarchy
	Introduction to the Memory Hierarchy
	Memory Technologies
	Exercises

	Cache Memory
	Direct-mapped Cache
	Associative Cache
	Exercises

	Virtual Memory
	Exercises

	Locality
	Data Locality Versus Instruction Locality
	Temporal Locality Versus Spatial Locality
	Exercises


	Alternative Architectures
	Instruction Set Architectures
	Zero-address Architecture
	One-address Architecture
	Two-address Architecture
	Three-address Architecture
	Exercises

	Addressing Modes
	Direct Addressing
	Indirect Addressing
	Base Register and Displacement Addressing
	Base Register, Index Register, and Displacement Addressing
	Exercises

	ARM
	Registers and instruction formats
	Conditional branch instructions - CB format
	Exercises

	Intel Pentium
	CPU Registers
	The Mov Instruction and Addressing Modes
	Arithmetic Instructions
	Logical Instructions
	Shift/Rotate Instructions
	Transfer of Control Instructions and Condition Code Flags

	Example program
	Exercises

	Glossary
	Appendix: MARS
	Downloading MARS to Your Computer
	Edit Source Files
	Assemble Source Files
	Execute Programs

	Appendix: MIPS Instruction Set
	Core Instructions
	Floating Point Instructions
	Floating Point Conditional Branch


	Appendix: Pseudo Operations Supported by MARS
	Appendix: ASCII Character Set

