Rowan University

Rowan Digital Works

College of Humanities and Social Sciences Faculty Scholarship

College of Humanities & Social Sciences

3-29-2023

Firearm Availability and Police Shootings: A City-Level Analysis of Fatal and Injurious Shootings in California and Florida

John Shjarback Rowan University, shjarback@rowan.edu

Follow this and additional works at: https://rdw.rowan.edu/chss_facpub

Part of the Criminal Law Commons

Recommended Citation

Shjarback, John, "Firearm Availability and Police Shootings: A City-Level Analysis of Fatal and Injurious Shootings in California and Florida" (2023). College of Humanities and Social Sciences Faculty Scholarship. 13.

https://rdw.rowan.edu/chss_facpub/13

This Poster is brought to you for free and open access by the College of Humanities & Social Sciences at Rowan Digital Works. It has been accepted for inclusion in College of Humanities and Social Sciences Faculty Scholarship by an authorized administrator of Rowan Digital Works.

Firearm Availability and Police Shootings: A City-Level Analysis of Fatal and Injurious Shootings in California and Florida

John Shjarback, Ph.D. Department of Law and Justice Studies

Do rates of guns lost/stolen as well as licensed gun dealers influence police shootings of citizens?

Introduction

Presence of a weapon (firearm) = one of the strongest, most consistent correlates of police shootings of citizens

-Individual- and encounter/situational-levels

Ecological (state-by-state comparison)

Rates of fatal police shootings **higher** in states with:

- -greater household firearms ownership (Hemenway et al., 2018; Nagin, 2020)
- -relaxed laws regulating guns, such as permitless concealed carry for citizens (Doucette et al., in press)

Rates of fatal police shootings **lower** in states with:

-laws aimed at strengthening background checks, promoting safe storage, and reducing gun trafficking (Kivisto et al., 2018)

Gaps in Prior Literature

- 1) Vast majority of studies focus exclusively on *fatal* police shootings of citizens
- -fatalities represent a subset of deadly force: "any physical force that is capable and likely to kill"
- 2) Studies that use states or counties as the unit of analysis suffer from "ecological fallacy"
- -more opportunity to conceal variation across geographic space that is less visible at larger levels of aggregation
- 3) Studies on the topic have relied on a wide variety of measures of firearm access and availability (usually proxy measures; e.g., proportion of suicides committed with a gun)
- -no study has used separate measures to differentiate between legal access to guns versus illicit weapons through secondary markets

Data & Measures

253 jurisdictions in California and Florida (city = unit of analysis)

<u>DVs</u>: pooled rates of fatal and injurious police shootings of citizens per 100k -California: URSUS (2016-2021)

- -Florida: Tampa Bay Times' "Why Cops Shoot" database (2009-2014)
- IVs: 1) Rates of guns reported lost and stolen to police per 1,000 residents -The Trace's "Missing Pieces" (2010-2015)
 - 2) Rates of federally-licensed gun stores (ATF) per 100k residents

<u>Controls</u>: concentrated disadvantage, gun homicide rate, percentage Black population, percentage Hispanic population, dummy variable for state

8/10 highest rates of police shootings in Florida (r = .32; p < .001) 10/10 highest rates of guns stores in Florida

Variables	Mean (SD)	Range	
Dependent Variables		-	
Citizens Shot Rate	5.08 (5.07)	0 - 41.92	
Shooting Incidents Rate	4.93 (4.81)	0 - 38.11	
Independent Variables			
Guns Lost or Stolen Rate	0.39 (0.33)	0.04 - 2.03	
Gun Store Rate	6.37 (11.21)	0 - 89.47	
(Sub-Sample of Jurisdictions with Gun Stores)			
FFL1 Per 100k	8.61 (10.44)	0 - 79.65	
FFL 2 Per 100k	1.38 (3.37)	0 - 28.58	
Big Box Stores Per 100k	1.00 (1.28)	0 - 10.64	
Controls			
Concentrated Disadvantage	0(1)	-2.80 - 2.71	
Gun Homicide Rate	1.08 (0.91)	0 - 3.71	
Percent Black	8.87 (11.83)	0 - 76.54	
Percent Hispanic	33.28 (22.89)	3.02 - 98.28	
State	.23 ()	0 - 1	

Analytical Plan & Findings

Series of OLS regression models (DVs = log transformed)
-Full sample followed by sub-sample of jurisdictions with gun stores

FFL1 (local gun dealers), FFL2 (pawnshops), Big Box (Walmart, Bass Pro, & Cabela's)

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
	Citizens Shot	Citizens Shot	Citizens Shot	Shooting	Shooting	Shooting
	Rate	Rate	Rate	Incident Rate	Incident Rate	Incident Rate
Variable	b (SE) [β]	b (SE) [β]	b (SE) [β]	b (SE) [β]	b (SE) [β]	b (SE) [β]
Guns Lost or Stolen Rate	.21 (.14) [.09]		.21 (.14) [.08]	.17 (.14) [.07]		.16(.13)[.07]
Gun Stores Rate		.01* (.01) [.19]	.01* (.01) [.17]		.01* (.01) [.19]	.01*(.01)[.18]
Concentrated Disadvantage	.42*** (.07) [.50]	.40***(.07)[.47]	.36***(.07)[.43]	.44***(.07)[.53]	.41***(.07)[.49]	.37***(.07)[.45]
Gun Homicide Rate	.19** (.07) [.21]	.18**(.07) [.19]	.17* (.07) [.18]	.19**(.07)[.21]	.17* (.07) [.19]	.17*(.07)[.18]
Percent Black	01**(.00)[21]	01 (.01)[12]	00 (.01)[14]	01**(.00)[20]	01(.01) [11]	01(.01)[13]
Percent Hispanic	00 (.00) [11]	00 (.00)[05]	00 (.00)[03]	00 (.00) [13]	00(.00) [07]	00(.00)[05]
State	.38** (.13) [.20]	.15 (.15) [.08]	.24 (.15) [.12]	.32* (.13) [.17]	.10 (.15) [.05]	.18 (.14) [.09]
F-test	26.94***	28.53***	24.88***	26.38***	28.91***	24.59***
R-squared	.36	.38	.38	.35	.38	.37
N	233	242	233	233	242	233

Table 4 – Multivariate Analyses (Sub-Sample of Jurisdictions with Gun Stores) Model 4 Model 5 Model 6 Shooting Shooting Shooting Incident Rate Incident Rate Incident Rate b (SE) [β] b (SE) [β] .32* (.14) [.16] .18 (.14) [.09] FFL 2 Rate .10* (.04) [.17] Big Box Store Rate Gun Homicide Rate Percent Black Percent Hispanic .03 (.13) [.02]

Note: Entries include unstandardized coefficients (b) and standardized coefficients (β) in brackets with standard errors (SE) in

Conclusion

Rates of citizens shot by police are heightened in jurisdictions with higher rates of licensed gun stores; less evidence of connection with illicit firearms availability

*Audit licensed dealers (only 12-40% audited by ATF)

+p < .10; *p < .05; **p < .01; ***p < .001 (two-tailed test).

+p < .10; *p < .05; **p < .01; ***p < .001 (two-tailed test)