Development of Novel Dual Inhibitor of Chemokine Receptor 4 and Mcl-1 Against Multiple Myeloma

Kuntal Bhowmick
Rowan University

Kristy K. Patel
Rowan University

Suman Pathi
Rowan University

Subash Jonnalagadda
Rowan University

Tulin Budak-Alpdogan
Rowan University

See next page for additional authors

Follow this and additional works at: https://rdw.rowan.edu/stratford_research_day

Part of the Amino Acids, Peptides, and Proteins Commons, Hematology Commons, Neoplasms Commons, and the Oncology Commons

Let us know how access to this document benefits you - share your thoughts on our feedback form.

Bhowmick, Kuntal; Patel, Kristy K.; Pathi, Suman; Jonnalagadda, Subash; Budak-Alpdogan, Tulin; and Pandey, Manoj K., "Development of Novel Dual Inhibitor of Chemokine Receptor 4 and Mcl-1 Against Multiple Myeloma" (2018). *Stratford Campus Research Day*. 14.
https://rdw.rowan.edu/stratford_research_day/2018/may3/14

This Poster is brought to you for free and open access by the Conferences, Events, and Symposia at Rowan Digital Works. It has been accepted for inclusion in Stratford Campus Research Day by an authorized administrator of Rowan Digital Works.
Multiple myeloma (MM) is a neoplastic plasma-cell disorder. It is characterized by clonal proliferation of malignant plasma cells in the bone marrow (BM) microenvironment, monoclonal protein in blood or urine, and associated organ dysfunction. The treatment options approved by FDA are immune-modulatory agents, proteasome inhibitors, and autologous stem cell transplantation (ASCCT). Unfortunately, MM remains uniformly fatal owing to intrinsic or acquired drug resistance and the median survival time is 3 to 5 years. Thus, there is a great need for novel strategies to combat MM.

The intimate relationship of myeloma cells to BM microenvironment is “hallmark of myeloma.” The homing of MM cells to the BM, mediated by the chemokine stromal cell-derived factor-1α (SDF-1α) and its receptor CXCR4 has important functional sequelae. The BM microenvironment constitutes cells secrete chemokines, cytokines, and growth factors such as interleukin 6 (IL6), vascular endothelial growth factor (VEGF), SDF-1α, and tumor necrosis factor α (TNFα) etc.

These growth factors contribute in activation of several signaling pathways including nuclear factor-kB (NF-kB), phosphatidylinositol 3-kinase (PI3K)/Akt, Ras-Raf-MAPK kinase (MEK)-extracellular signal regulated kinase (ERK), and the Janus kinase 1 (JAK1)-signal transducer and activator of transcription 3 (STAT3). Activation of these pathways has been associated with increased expression of several anti-apoptotic proteins such as Bcl-2, Bcl-xl, Mcl-1, and XIAP. Collectively, these discoveries highlight that interaction of MM cells to BM microenvironment not only promote growth, survival and migration of MM cells, but also confer resistance to conventional chemotherapy. We hypothesized that an agent capable of inhibiting the migration of myeloma cells to bone marrow and suppressing the expression of survival protein Mcl-1 would be a better option for MM treatment. We have synthesized a novel dual inhibitor of CXCR4 and Mcl-1. In our in vitro data suggests that this molecule inhibits the expression of CXCR4 and Mcl-1 and survival of MM cells.

We modified GA by adding Mcl-1 inhibitor moiety in order to develop this molecule as a dual-inhibitor of CXCR4 and Mcl-1. We investigated whether the gambogic acid (GA) analogs (GA-

1) 1) can modulate survival and drug resistance of MM cells.

Gambogic acid - A hope for MM

Introduction

- MM cells are highly dependent on the bone marrow (BM) microenvironment for growth and survival.
- Migration of cells through the blood to the BM niches requires active navigation, a process termed homing.
- One of the most extensively studied chemokines in homing is stromal cell-derived factor-1α (SDF-1α) also known as CXCL12 (CXC chemokine ligand 12 (CXCL12)) and its receptor, CXCR4.
- The BM microenvironment constitutes cells secrete chemokines, cytokines, and growth factors such as interleukin 6 (IL6), vascular endothelial growth factor (VEGF), SDF-1α, and tumor necrosis factor α (TNFα) etc.
- These growth factors contribute in activation of several signaling pathways including nuclear factor-kB (NF-kB), phosphatidylinositol 3-kinase (PI3K)/Akt, Ras-Raf-MAPK kinase (MEK)-extracellular signal regulated kinase (ERK), and the Janus kinase 1 (JAK1)-signal transducer and activator of transcription 3 (STAT3). Activation of these pathways has been associated with increased expression of several anti-apoptotic proteins such as Bcl-2, Bcl-xl, Mcl-1, and XIAP. Collectively, these discoveries highlight that interaction of MM cells to BM microenvironment not only promote growth, survival and migration of MM cells, but also confer resistance to conventional chemotherapy. We hypothesized that an agent capable of inhibiting the migration of myeloma cells to bone marrow and suppressing the expression of survival protein Mcl-1 would be a better option for MM treatment. We have synthesized a novel dual inhibitor of CXCR4 and Mcl-1. In our in vitro data suggests that this molecule inhibits the expression of CXCR4 and Mcl-1 and survival of MM cells.

Hypothesis

- MM cells are highly dependent on the bone marrow (BM) microenvironment for growth and survival.
- Migration of cells through the blood to the BM niches requires active navigation, a process termed homing.
- One of the most extensively studied chemokines in homing is stromal cell-derived factor-1α (SDF-1α) also known as CXCL12 (CXC chemokine ligand 12 (CXCL12)) and its receptor, CXCR4.
- The BM microenvironment constitutes cells secrete chemokines, cytokines, and growth factors such as interleukin 6 (IL6), vascular endothelial growth factor (VEGF), SDF-1α, and tumor necrosis factor α (TNFα) etc.
- These growth factors contribute in activation of several signaling pathways including nuclear factor-kB (NF-kB), phosphatidylinositol 3-kinase (PI3K)/Akt, Ras-Raf-MAPK kinase (MEK)-extracellular signal regulated kinase (ERK), and the Janus kinase 1 (JAK1)-signal transducer and activator of transcription 3 (STAT3). Activation of these pathways has been associated with increased expression of several anti-apoptotic proteins such as Bcl-2, Bcl-xl, Mcl-1, and XIAP. Collectively, these discoveries highlight that interaction of MM cells to BM microenvironment not only promote growth, survival and migration of MM cells, but also confer resistance to conventional chemotherapy. We hypothesized that an agent capable of inhibiting the migration of myeloma cells to bone marrow and suppressing the expression of survival protein Mcl-1 would be a better option for MM treatment. We have synthesized a novel dual inhibitor of CXCR4 and Mcl-1. In our in vitro data suggests that this molecule inhibits the expression of CXCR4 and Mcl-1 and survival of MM cells.

Results

GA interacts with CXCR4 and modulates the expression of CXCR4 protein of MM cells

Figure 2. GA was docked onto CXCR4, and compared with AMD3100. CXCR4 resides within 5 Å distance from the ligands are shown with gray carbon atoms and ligands shown with green carbon atoms. Oxygen atoms are colored red, nitrogen blue, and polar hydrogen white. BA, GA suppresses CXCR4 levels in a dose- and time- dependent manner. C, Surface expression of CXCR4 in GA treated MM cells was determined by flow cytometry.

Conclusion and future directions

Figure 3. A, GA analogs reduce the survival of MM cells. MM cells (RPMI 8226 and U266) were treated with different concentration of GA, and its analogs for 48h. Cell viabilities were assessed using MIT assay. As shown in the figure treatment of GA and its analog effectively kill MM cells. Prism software was used to plot the graph. B, Effect of GA analog on survival protein signal pathways in human MM RPMI 8226 cells were treated with the indicated amount of GA analog for 24h. Treatment of GA analog modulates expression of anti-apoptotic proteins such as Mcl-1, Bcl-2 and caspase 3.

References