Wearable Fitness Tracking Improves Self-Efficacy for Exercise

Adam Sturts OMS-II
Rowan University SOM

Adarsh Gupta DO
Rowan University SOM

Follow this and additional works at: https://rdw.rowan.edu/stratford_research_day

Part of the [Behavior and Behavior Mechanisms Commons](https://rdw.rowan.edu/stratford_research_day), [Community Health and Preventive Medicine Commons](https://rdw.rowan.edu/stratford_research_day), and the [Exercise Science Commons](https://rdw.rowan.edu/stratford_research_day).

Let us know how access to this document benefits you - share your thoughts on our feedback form.

https://rdw.rowan.edu/stratford_research_day/2018/may3/16

This Event is brought to you for free and open access by the Conferences, Events, and Symposia at Rowan Digital Works. It has been accepted for inclusion in Stratford Campus Research Day by an authorized administrator of Rowan Digital Works. For more information, please contact rdw@rowan.edu.
Wearable Fitness Tracking Improves Self-Efficacy For Exercise

Adam Sturts, OMSII & Adarsh Gupta, DO

Department of Family Medicine, Rowan University School of Osteopathic Medicine 42 East Laurel Road, UDP-2512 Stratford, NJ 08084

Background

- Self-efficacy is the belief in one’s ability to accomplish a task, such as exercise.
- Physical activity participation is elevated among individuals that have greater intrinsic self-efficacy for exercise.¹
- Wearable fitness trackers are devices, usually worn around the wrist, that monitor user information related to fitness and health.
- The present study examines the impact of wearable fitness tracker technologies on self-efficacy for exercise and physical activity levels.

Methods

- 198 family medicine patients participated in this cross sectional study (average age = 47.55, ranging 18-79 years).
- Each participant recorded weekly physical activity habits; survey questions derived from International Global Physical Activity Assessment.²
- Participants also completed the 9 question Self-Efficacy for Exercise Scale (0 - 45 total score, 0 = no self-efficacy for exercise, 45 = maximal self-efficacy for exercise).
- Wearable fitness device user total self-efficacy for exercise scores were compared to non device users (Standard Two Sample T Test).
- The Two Sample Kolmogorov-Smirnov test for relative internal consistency was utilized to assess the reliability of the self efficacy for exercise survey.

Results

- Wearable fitness tracking device users were found to have higher levels of self-efficacy for exercise than non-users across all participating ages, genders and ethnicities (p < .05).
- Self-efficacy for exercise scores were distributed normally (Two Sample KS = .092), indicating significant survey validity.
- Participants reported an average increase in physical activity levels with the concomitant use of their devices, reflecting an association between physical activity levels and wearable fitness device use.
- One potential explanation for the associations between wearable fitness device use, self-efficacy, and physical activity involves wearable fitness technology’s use as a tool for generating positive behavioral modification of exercise habits among users.
- Technological devices, for example mobile devices, have been shown to increase physical activity levels, supporting the mechanism described above and illustrated below:

![Figure 1: Frequency distribution of total self-efficacy scores. Data normally distributed. Kolmogorov-Smirnov nonsignificant (.092).](image)

![Figure 2: Wearable fitness device usage associated with higher levels of self-efficacy for Exercise. t(198)= 2.76, p=.006.](image)

<table>
<thead>
<tr>
<th>Table 1: Group Statistics, Total Self-Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE USER</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>YES</td>
</tr>
</tbody>
</table>

While using their wearable fitness device, device users participated in an average of 153.38 additional minutes of physical activity per week (self-reported).

Conclusion

- Future study design should aim to explore the relationships between wearable fitness technology and behavioral modification, and also to understand the role of wearable fitness device use in the clinical setting as a tool for improving health outcomes.

References