Sphingosine-1-phosphate Dysregulation And The Development Of Pelvic Organ Prolapse (Poster)

Colin Sperling

Cooper Medical School of Rowan University

Let us know how access to this document benefits you - share your thoughts on our feedback form.

Follow this and additional works at: https://rdw.rowan.edu/cmsru_capstones

Recommended Citation
Sperling, Colin, "Sphingosine-1-phosphate Dysregulation And The Development Of Pelvic Organ Prolapse (Poster)" (2019). Cooper Medical School of Rowan University Capstone Projects. 17.
https://rdw.rowan.edu/cmsru_capstones/17
INTRODUCTION & OBJECTIVES

- Pelvic Organ Prolapse (POP) is a disorder that occurs when the muscularity of the pelvic floor weakens, resulting in pathologic descent of pelvic organs into the vaginal canal.
- While risk factors for POP have been suggested such as genetic predisposition, childbirth, obesity, and advancing age, the etiology of this condition remains largely unknown.
- Females have an 11% lifetime risk of POP which can result in urinary, bowel, and sexual dysfunction that can significantly impair a woman’s quality of life.¹
- Sphingosine-1-Phosphate (S1P) is a bioactive lysosphingolipid with countless metabolic functions including regulation of cell proliferation and smooth muscle (SM) contractility.² S1P is generated by the phosphorylation of sphingosine by sphingosine kinase, which exists as two major isoforms (SPHK1 & SPHK2).
- We hypothesized that SPHK isoform expression could be altered in vaginal SM, thereby leading to decreased vaginal wall stability and subsequent POP.

BACKGROUND

Schematic A:
- Representation of the S1P pathway. Binding of S1P to its receptors (S1P2, S1P3) results in smooth muscle contraction.

METHODS

- Anterior vaginal wall smooth muscle and epithelial tissue samples were obtained from women undergoing surgery at Cooper University Hospital.
- Control Samples: obtained from women undergoing routine hysterectomy with no history of POP.
- Experimental Samples: obtained from women with POP undergoing reconstructive surgical repair.
- Tissue samples were extracted into SDS-PAGE sample buffer. Quantitative Western Blot analysis using Bio-Rad’s No-Stain Gel line/Trans-Blot Turbo Blotting System/Chemidoc Image/Image Lab 6.0 software and fluorescently tagged antibodies were used to determine relative expressions of SPHK1, SPHK2, & SPP1.

RESULTS

- Western Blot with Target Proteins
 - SPHK1 (43 kDa)
 - SPP1 (99 kDa)
- Total Protein Normalization (Fig. A)

Figure 1: Vaginal Smooth Muscle Tissue
- SPHK1 expression 46% lower in POP compared to controls normalized to total protein
- SPHK1 expression 46% lower in POP compared to controls normalized to total protein

Figure 2: Vaginal Epithelial Tissue
- SPHK1 expression 40% lower in POP compared to controls normalized to total protein
- SPHK1 expression 40% lower in POP compared to controls normalized to total protein

Figure 3: Vaginal Smooth Muscle Cells
- SPPI expression 13% lower in POP compared to controls normalized to total protein

Figure 4: Human Tissue Extracts.
- 12.5 Demonstrates the presence of SPHK1 (Left) and SPP1 (Right) in human vaginal, cardiac, and skeletal muscle. The presence of these enzymes in human bladder samples was inconclusive.

DISCUSSION & CONCLUSIONS

- Our novel data suggests that SPHK1 is the predominant sphingosine kinase in human anterior vaginal SM and epithelial tissue samples and that its levels are decreased dramatically in women with POP compared to controls.
- Levels of SPP1 were also found to be lower in vaginal wall smooth muscle (but only slightly). The larger decrease in SPHK1 vs SPP1 expression would suggest a shift toward a higher sphingosine-to-S1P ratio and thus a shift toward apoptosis and cell cycle arrest and overall decreased vaginal wall stability.
- These findings suggest a POP preventative treatment strategy of stabilizing SPHK1 levels in the vagina.
- Our study utilized human samples making our findings translationally relevant.
- A limitation of our data is that only 5 control and 5 POP human samples were utilized. More samples will be analyzed in the future.

REFERENCES