Creation and Implementation of a Flipped Jigsaw Activity to Stimulate Interest in Biochemistry Among Medical Students

Charlene Williams
Rowan University

Susan Perlis
Rowan University

John Gaughan

Sangita Phadtare
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/stratford_research_day

Part of the Educational Methods Commons, and the Medical Education Commons

Let us know how access to this document benefits you - share your thoughts on our feedback form.

Williams, Charlene; Perlis, Susan; Gaughan, John; and Phadtare, Sangita, "Creation and Implementation of a Flipped Jigsaw Activity to Stimulate Interest in Biochemistry Among Medical Students" (2019). Stratford Campus Research Day. 5.
https://rdw.rowan.edu/stratford_research_day/2019/may2/5

This Event is brought to you for free and open access by the Conferences, Events, and Symposia at Rowan Digital Works. It has been accepted for inclusion in Stratford Campus Research Day by an authorized administrator of Rowan Digital Works. For more information, please contact rdw@rowan.edu.
ABSTRACT

Learner-centered pedagogical methods that are based on clinical application of basic science concepts through active learning and problem solving are shown to be effective for improving knowledge retention. As the clinical relevance of biochemistry is not always apparent to health-profession students, effective teaching of medical biochemistry should highlight the implications of biochemical concepts in pathology, minimize memorization, and make the concepts memorable for long-term retention.

Here, we report the creation and successful implementation of a flipped jigsaw activity that was developed to stimulate interest in learning biochemistry among medical students. The activity combined the elements of a flipped classroom for learning concepts followed by a jigsaw activity to retrieve the concepts by solving clinical cases, answering case-based questions, and creating concept maps. The students’ perception of the activity was very positive. They commented that the activity provided them an opportunity to review and synthesize information, help to gauge their learning by applying this information and work with peers. Students’ improved performance especially for answering the comprehension-based questions correctly in the post-quiz as well as the depth of information included in the post-quiz concept maps suggested that the activity helped them to understand how different clinical scenarios develop owing to deviations in basic biochemical pathways.

RESULTS

Quantitative representation of the students’ evaluation data of the flipped jigsaw with respect to (A) learning objectives, (B) organization and facilitation, and (C) relevancy and motivation.

DISCUSSION

Consistent with the current focus on peer-teaching or peer-assisted learning in medical education, the flipped jigsaw activity is strongly dependent on team-work as well as individual contributions to achieve optimal outcomes. As peer-teaching involves cognitive development as well as social collegiality, it plays an important role in enhancing knowledge acquisition and comprehension.

As this activity allows for both individual learning as well as team-work, it may contribute to lessening of stress among students as it accommodates different learning styles. Quizzes are taken as a group, which may further contribute to the creation of a reduced stress environment, where students can focus on thinking critically about the concepts rather than worrying about performance in the quizzes. The activity also ensures active participation from each student.

Main aspects liked by the students were (i) the session helped them to learn and understand the material, (ii) they appreciated collaborative learning and (iii) they found the session to be engaging.

As evidenced from the students’ reception of the activity and their performance in the quizzes, the activity demonstrated clinical relevance of biochemistry by promoting critical thinking and enhancement of comprehension about the concepts learned in the context of clinical disorders, allowed review, and deeper understanding of the biochemical concepts, and encouraged peer teaching and team work among students.

ACKNOWLEDGEMENTS

The authors received approval from the Human Subjects Protection Program Institutional Review Boards (IRB) at the Rowan University. The authors thank Ms. Gisselle Mayock for providing administrative help for this activity.

REFERENCES
