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Neurocalcin δ Modulation of ROS-GC1, a New Model of Ca2+

Signaling†

Venkateswar Venkataraman‡,§, Teresa Duda‡,∥, Sarangan Ravichandran┴, and Rameshwar
K. Sharma*,∥
∥The Unit of Regulatory and Molecular Biology, Division of Biochemistry and Molecular Biology,
Pennsylvania College of Optometry, Elkins Park, Pennsylvania 19027
§Department of Cell Biology, UMDNJ-SOM, Stratford, New Jersey 08084
┴Advanced Biomedical Computing Center, National Cancer Institute, SAIC/Frederick, Frederick,
Maryland 21702

Abstract
ROS-GC1 membrane guanylate cyclase is a Ca2+ bimodal signal transduction switch. It is turned
“off” by a rise in free Ca2+ from nanomolar to the semicromolar range in the photoreceptor outer
segments and the olfactory bulb neurons; by a similar rise in the bipolar and ganglion retinal neurons
it is turned “on”. These opposite operational modes of the switch are specified by its Ca2+ sensing
devices, respectively termed GCAPs and CD-GCAPs. Neurocalcin δ is a CD-GCAP. In the present
study, the neurocalcin δ-modulated site, V837–L858, in ROS-GC1 has been mapped. The location
and properties of this site are unique. It resides within the core domain of the catalytic module and
does not require the α-helical dimerization domain structural element (amino acids 767–811) for
activating the catalytic module. Contrary to the current beliefs, the catalytic module is intrinsically
active; it is directly regulated by the neurocalcin δ-modulated Ca2+ signal and is dimeric in nature.
A fold recognition based model of the catalytic domain of ROS-GC1 was built, and neurocalcin δ
docking simulations were carried out to define the three-dimensional features of the interacting
domains of the two molecules. These findings define a new transduction model for the Ca2+ signaling
of ROS-GC1.

The seminal discoveries of the membrane guanylate cyclases ANF-RGC1 (1-3) and ROS-GC
(4,5) opened two new transduction chapters of the cyclic GMP signaling pathways (reviewed
in refs 6-9). The first established that the hormonally dependent membrane guanylate cyclase
transduction mechanism is distinct from the G-protein-coupled receptors and the soluble
guanylate cyclases and, importantly, ceased the intense debate that questioned the independent
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1Abbreviations: ANF-RGC, atrial natriuretic factor receptor membrane guanylate cyclase; catcd, catalytic core domain; catd, catalytic
domain; CD-GCAP, calcium-dependent guanylate cyclase activating protein; dd, dimerization domain; GCAP, guanylate cyclase
activating protein; khd, kinase homology domain; ONE-GC, olfactory neuroepithelial membrane guanylate cyclase; ROS-GC, rod outer
segment membrane guanylate cyclase.
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integrity of its operation. With subsequent findings of two other receptor membrane guanylate
cyclases (10-12), a new issue came to the forefront.

Is the receptor guanylate cyclase family sole representative of all members of the family, meant
only to transduce the hormone signals, generated outside the cell?

In the second chapter, with the discovery of ROS-GC, the issue was resolved, and the answer
was no. ROS-GC was the source of cyclic GMP that was the intracellular messenger of the
LIGHT signal. It was solely modulated by the intracellular pulsated levels of Ca2+ within the
photoreceptors (13).

With these observations, the membrane guanylate cyclase family branched into two
subfamilies, hormone receptor and Ca2+-modulated, and importantly, the family got the
recognition of being the transducer of both types of signals, generated outside and inside the
cells (reviewed in refs 6,9).

At present, the field is in its third phase. The currently debated issue is: Is the ROS-GC
transduction mechanism in the exclusive domain of the outer segments of rods and cones solely
linked with phototransduction? Based on emerging evidence, the answer is no. Studies with
the selected systems demonstrate that the ROS-GC transduction system spans across the entire
neural network linked with the senses of vision (14-16), smell (17-19), and taste (20). It is also
present in the hippocampus (21) and pinealocytes (22) and in a non-neuronal system of the
seminiferous tubules (23).

ROS-GC is a two-component transduction system: the Ca2+ sensor component, GCAP
(guanylate cyclase activating protein) or CD- (Ca2+-dependent) GCAP, and the transducer
component, ROS-GC membrane guanylate cyclase. Two forms of GCAP, 1 and 2, are
expressed across species (24-27); in addition, cones of human and zebrafish also contain
GCAP3 (28). Upon sensing progressive rises in free Ca2+, GCAPs proportionately decelerate
the ROS-GC activity. CD-GCAP exists in three forms: S100B, neurocalcin δ, and frequenin
(21,29-32). They accelerate the ROS-GC activity.

ROS-GC exists in three forms: ROS-GC1 (4,5), ROS-GC2 (33,34), and ONE-GC (17,35).
Thus, theoretically, with individual pairing of a GCAP with each ROS-GC, the GCAP-
modulated ROS-GC transduction machine can exist in multiple forms; three have been
characterized in the retinal neurons (25,33,36,37), one in the olfactory bulb (38), and one in
the pinealocytes (22). Similarly, paired with a CD-GCAP, it can exist in multiple forms. S100B-
modulated ROS-GC1 is present in the photoreceptor-bipolar synapse (14), the pinealocytes
(22), and gustatory epithelium (20); neurocalcin δ-modulated ROS-GC1, in the inner retinal
neurons (16); ONE-GC, in the olfactory neuroepithelium (17); and frequenin-modulated ONE-
GC, in hippocampal neurons (21). Remarkably, GCAP1, an inhibitory Ca2+ sensor of ROS-
GC1 in photoreceptors, is a stimulatory Ca2+ sensor of ONE-GC in the olfactory
neuroepithelium (39).

This raises an important physiological issue: How does ROS-GC1 achieve cellular specificity
for the diverse Ca2+ signals?

Ongoing studies indicate that this is accomplished through the elegant structural designs of the
GCAPs/CD-GCAPs and of the domains of ROS-GC1, which they modulate. Each ROS-GC1
module is crafted to fit with only a single Ca2+ sensor, and upon their union the module attains
an independent status of being a sole messenger of GCAP- or CD-GCAP-transmitted Ca2+

signals. In this manner, at one time, only one type of the Ca2+ signal controls the activity of
the catalytic module of ROS-GC1. The net result is that each Ca2+ spike is faithfully translated
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into the production of cyclic GMP by ROS-GC and cyclic GMP via its downstream signaling
components precisely controls cellular activity.

The present study was undertaken to gain an in-depth structural understanding of the
mechanism by which the neurocalcin δ module regulates Ca2+ signaling of ROS-GC1. The
findings reveal a new paradigm of Ca2+ signaling, redefine the catalytic module boundary of
ROS-GC1, and demonstrate a set of new principles by which the catalytic module of ROS-
GC1 operates. These principles are contrary to the current beliefs.

MATERIALS AND METHODS
ROS-GC1 Mutants

Domain structures of ROS-GC1 mutants used in this study are schematically represented in
Figures 1A and 2A. The membrane-bound mutants, Δ1016–1054, Δ972–1054, and Δ965–1054
(Δcte), and the soluble construct, M733–K1054, were prepared as described earlier (14).

The soluble constructs L806–T986 and G817–Y965 of ROS-GC1 were obtained through PCR
amplification of bovine ROS-GC1 cDNA. The catcd mutant lacking the 844MSEPIE849 motif
(catcdΔMSEPIE) was prepared using the QuickChange mutagenesis kit (Stratagene). These
fragments were cloned into pET30aLIC vector, expressed in Escherichia coli, and purified on
a Ni-NTA column (16).

Expression and Guanylate Cyclase Activity Assay
COS-7 cells were transfected with the appropriate expression construct through standard
procedures. Sixty hours after transfection, the cells were washed with 50 mM Tris-HCl (pH
7.5)/10 mM MgCl2 buffer, scraped into cold buffer, homogenized, centrifuged at 5000g, and
washed with the same buffer. The pellet represented crude membranes. The guanylate cyclase
activity was assessed according to the previous protocols (39,40).

Peptide Competition Experiments
Membranes of COS cells expressing ROS-GC1 were incubated with 2 μM neurocalcin δ, 100
μM CaCl2, and increasing concentrations of peptides for 10 min at 37 °C and assayed for
guanylate cyclase activity.

Expression and Purification of Neurocalcin δ
Myristoylated neurocalcin δ was expressed in E. coli and purified as in ref 16.

Surface Plasmon Resonance (SPR) Measurements
The purified ROS-GC1 fragment [150 ng/μL in 50 mM sodium acetate (pH 4.0)] was
immobilized on a CM5 sensor chip. The amount of immobilized protein was ~0.4 ng/mm2. An
independent flow cell was subjected to a “blank immobilization” (no protein) and used as
control. The running buffer contained 10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 2 mM
CaCl2, and 0.005% surfactant P20. The purified, myristoylated neurocalcin δ was diluted in
the same buffer and injected into the flow cell (the flow rate was 10 μL/min). The curves were
fitted according to a 1:1 Langmuir model.

Molecular Modeling
The three-dimensional structure of the ROS-GC1’s dimeric core catalytic module (catcd),
G817–Y965, was modeled using the Phyre program (42; details in
http://www.sbg.bio.ic.ac.uk/~phyre/). To identify the correct fold for the query sequence, this
program uses profile–profile matching methods together with the secondary structure
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predictions. The profile [position-specific scoring matrix (PSSM)] (42) of the query sequence
is derived from a multiple sequence alignment of the hits in a position-specific iterative blast
(PSI-BLAST) search.

The search using the catcd sequence identified a PDB entry 1AZS (chains a and b) as a possible
fold for the catcd with E-values/estimated precision (%) as 2.0e−19/100 and 2.9e−18/100,
respectively. The Phyre models based on 1AZS (chain a and b) were assembled to form the
catcd dimer structure. Accelrys Discovery Studio 1.7 program was used to add hydrogens to
the amino acid residues and energy minimized using the CHARMm force field with a small
harmonic restraint of force constant 20 kcal (mol Å2)−1. The harmonic restraint was added to
preserve the fold. The Adopted Basis Newton–Raphson (ABNR) algorithm was used for
energy minimization with rms gradient of 0.1 kcal (mol Å)−1. Residues present at the dimer
interface are listed in the Supporting Information.

Docking was carried out as described in the Supporting Information.

RESULTS
Neurocalcin δ-Modulated Domain in ROS-GC1 Resides within the aa733–963 Region

Reconstitution studies with ROS-GC1 deletion and hybrid constructs have demonstrated that
the fragment aa733–1054 is composed of three distinct Ca2+ signaling modules, one modulated
by GCAP2, the second by S100B, and the third by neurocalcin δ (14,32,43). Through the
process of elimination it was inferred that the neurocalcin δ-modulated domain in ROS-GC1
resides in the aa733–963 segment (16), an inference supported now by the following study.

Three ROS-GC1 deletion mutants, Δ1016–1054, Δ972–1054, and Δ965–1054 (Δcte) (Figure
1A), were constructed, expressed in COS cells, and assessed for their basal and neurocalcin
δ-dependent guanylate cyclase activities at a fixed, 100 μM, Ca2+ concentration; membranes
expressing wild-type ROS-GC1 served as controls. The basal activity of the mutants was
comparable to each other and to the wild type [110–130 pmol of cyclic GMP min−1 (mg of
protein)−1 (Figure 1A)], indicating that all were equally expressed and the deleted fragments
had no deleterious effect on their structural integrities.

The wild-type ROS-GC1 and its truncated mutants responded to neurocalcin δ in a dose-
dependent fashion and with almost identical patterns; their half-maximal (EC50) activations
occurred at 0.8 μM and saturations at about 4 μM (Figure 1B). Collectively, these results prove
that the cte domain of ROS-GC1, aa965–1054, has no role in the neurocalcin δ modulation of
Ca2+ signaling, and also, it is not involved in controlling the basal activity of ROS-GC1.
Therefore, the neurocalcin δ-modulated domain must reside in the aa733–964 fragment of
ROS-GC1.

These results support the earlier inference but do not directly prove that the ROS-GC1 segment,
aa733–964, houses the neurocalcin-modulated site. It was proven by the following studies.

The Neurocalcin δ-Modulated Site Resides in the Core Catalytic Domain, and This Domain
Lacks the α-Helical Dimerization Structural Element

The aa733–964 segment of ROS-GC1 is composed of the following sequential domains: partial
kinase homology domain (khd), aa733–766; α-helical dimerization domain (dd), aa767–811;
catalytic domain (catd), aa812–964 (Figure 2A). Their percentage sequence identities with the
corresponding domains of ROS-GC2 and ONE-GC are as follows: partial khd, 63 and 49; dd,
91 and 76; catd, 92 and 85. It is noted that the boundaries of the dd and the catd are arbitrary
and have not yet been properly defined experimentally.
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Because the khd segment is the least conserved and catd the most conserved, the initial intuition
was that the khd segment, aa737–766, might represent the neurocalcin δ-modulated domain.
This possibility was tested by the use of a soluble construct, L806–T986 (Figure 2A). This
construct lacked the khd segment, aa733–766, and, notably, also the dd. The selection of this
construct was based on the consideration that it will segregate the catalytic domain from the
domain that houses the neurocalcin δ-modulated domain. The decision to assign the L806–
T986 boundary to the catd was that this domain is conserved among all members of the
membrane guanylate cyclase family, and there is even higher conservation among the ROS-
GC subfamily members, 92% with ROS-GC2 and 85% with ONE-GC. Because the core
domain of the catd (catcd) has not been clearly defined (44, 45), as a precautionary measure
not to disturb its functional integrity, the design of the L806–T986 construct was such that its
boundary extended into the cte domain. This strategy was based on the original information
from the surface receptor membrane guanylate cyclase subfamily where the catalytic domain
stretched and ended at the C-terminal end. Importantly, because the L806–T986 fragment did
not contain dd, it was expected that this domain will be monomeric and will have no intrinsic
and regulatory activity. Earlier studies had demonstrated that dd is obligatory for the signal
transduction activity of all membrane guanylate cyclases (44, 46, 47). The predicted function
of dd is to form the contact points for homodimerization of the catalytic module and bring this
module from the inactive to the active state.

The L806–T986 and other soluble constructs represented in Figure 2A were expressed in E.
coli and purified to homogeneity. All were biologically active; they contained comparable
intrinsic guanylate cyclase activity (Figure 2A), and as it will become clear, they were
significantly stimulated by neurocalcin δ. A noteworthy point is that the intrinsic guanylate
cyclase activities of all soluble constructs were about 20-fold lower than the membrane-bound
constructs (compare Figures 1A and 2A). This difference in activities has also been observed
before for other soluble constructs of the membrane guanylate cyclases (16, 48), yet it has not
been commented upon. It is now noted that the difference is accountable to the transmembrane
module, which apparently upregulates the catalytic module activity (19).

These results demonstrate that the α-helical dd is not a part of the catcd and catcd by itself has
an intrinsic catalytic activity.

To assess the oligomeric status of catcd, gel filtration analysis was carried out. The purified
protein was loaded onto a Superdex 75 column, and the eluted fractions were monitored by
absorbance at 280 nm. A single peak with a retention time of 19.4 min was observed (Figure
2B). On the basis of calibration with molecular mass standards (Figure 2B, inset) this peak
corresponded to the 50 kDa protein, indicating that the catcd exists as a dimer in its isolated
form.

The Catcd Segment L806–T986 Contains the Neurocalcin δ-Modulated Site
The reconstitution experiment where the L806–T986 fragment of ROS-GC1 and neurocalcin
δ were the sole components demonstrated that, in the presence of the saturation amount of free
Ca2+, neurocalcin δ stimulated the guanylate cyclase activity in a dose-dependent fashion
(Figure 2C). This mode and extent of the guanylate cyclase stimulation were almost identical
to those of the parent mutant, representing its aa733–1054 fragment (Figure 2C). In both cases
the EC50 value of neurocalcin δ was 0.8 μM; Vmax was achieved at about 2 μM, and maximal
stimulation was about 2.5-fold (Figure 2C). These results demonstrate that L806–T986 contains
the neurocalcin δ-modulated site and that the partial khd fragment, dd, and cte segments in the
aa733–1054 domain of ROS-GC1 have no relationship with the neurocalcin δ-modulated
domain. Thus, this evidence pointed to the catcd for housing the neurocalcin-modulated
domain. Therefore, the G817–Y965 mutant, catcd, became the subject of investigation.
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The catcd is a highly conserved domain between the membrane guanylate cyclase family
members; there is 93% sequence similarity with its corresponding domain in ROS-GC2 and
more than 85% with ONE-GC. It was, therefore, predicted that catcd represents the core domain
of the catalytic module.

A reconstitution experiment showed that the G817–Y965 mutant’s mode of response to
neurocalcin δ was identical to that of the L806–T986 mutant (Figure 2C). Neurocalcin δ
stimulated its activity with an EC50 of 0.8 μM, and the maximal stimulation of about 2.5-fold
was obtained at 2 μM neurocalcin δ.

Together, these results lead to the conclusions that the G817–Y965 domain of ROS-GC1
constitutes the core catalytic domain, the Ca2+-bound neurocalcin δ-modulated site resides in
this domain, and the domain is intrinsically active and exists as a dimer. Also, the dd is not
obligatory for its activity. The current dogma is that the dd is pivotal for the catalytic activity
of all members of the membrane guanylate cyclase family (46,47).

The Catcd Binds Neurocalcin δ
To decide if Ca2+-bound neurocalcin δ binds directly to catcd, SPR analyses were performed.
The catcd fragment, G817–Y965, was immobilized on a sensor chip, and incremental
concentrations of neurocalcin δ were supplied in the mobile phase. A representative set of
sensorgrams with the respective curves derived after fitting to a 1:1 Langmuir binding model
is presented (Figure 3A). It is noted that the dissociation phase commenced before the injection
was completed, particularly at higher concentrations of neurocalcin δ (Figure 3A, 4 μM). To
determine the half-maximal binding (EC50), the average experimental RU values at equilibrium
(RUeq) were plotted as a function of neurocalcin δ concentration (Figure 3B). Half-maximal
binding was at 0.5 μM. Analyses of the data using a nonlinear regression curve fit model and
by Scatchard plot (Figure 3C) yielded KD values of 0.66 and 0.7 μM, respectively. When this
value was calculated using the BIAevaluation 3.2 software, it was 0.55 μM. These values are
comparable, and they are in good agreement with the EC50 value for neurocalcin δ activation
of catcd (Figure 2C). Thus, the catcd domain of ROS-GC1 defines the neurocalcin δ binding
and transduction site.

Other binding parameters between neurocalcin δ and catcd assessed by the SPR analysis were
as follows: kon (association rate constant) 7.7 × 104 M−1 s−1, koff (dissociation constant) 4.2 ×
10−2 s−1, KA (equilibrium association constant) 1.8 × 106 M−1, and KD (equilibrium
dissociation constant) 5.52 × 10−7 M−1. Thus, binding between ROS-GC1 and neurocalcin δ
is of moderate affinity. The values are very close to the previously determined values for the
ROS-GC1 fragment aa733–1054 (16), leading to the conclusion that the catcd fragment,
G817–Y965, houses the complete neurocalcin δ binding site.

Peptide Competition Experiments Define the aa837–858 Region of ROS-GC1 To Be the
Binding and the Transduction Site of Neurocalcin δ

To narrow down the neurocalcin δ regulatory site and to determine if this site is also the
transduction site, peptide competition experiments were conducted. Peptides spanning the
aa797–961 region, consisting of the entire catcd and the N-terminally located 20 aa domain,
were synthesized with a length of 22 aa and an overlap of 2 aa. These peptides were scanned
for their inhibitory effects on the neurocalcin δ-dependent ROS-GC1 activity.

The COS cell membranes expressing ROS-GC1 were incubated with a 0.4 mM concentration
of each peptide in the presence of 2 μM neurocalcin δ and Ca2+. Only three peptides
significantly inhibited neurocalcin δ-stimulated cyclase activity, and their inhibitory effect was
further analyzed. Peptide 3, 837VGFTTISAMSEPIEVVDLLNDL858, was the most effective
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(Figure 4A). It caused almost complete inhibition at 300 μM, and its IC50 value was 90 μM
(Figure 4A). Peptide 1, 797QKTDRLLTQMLPPSVAEALKMG818, and peptide
2, 817MGTPVEPEYFEEVTLYFSDIVG838, did not show any inhibition of neurocalcin δ-
stimulated activity up to 125 μM. However, they both respectively inhibited 20% and 50% of
the neurocalcin δ-dependent activity at 400 μM; their IC50 values were 250 and 200 μM (Figure
4A). These results demonstrate that the major neurocalcin δ binding and transduction site
resides within the V837–L858 segment of ROS-GC1. A few overlapping residues of peptide 2,
however, slightly affected the binding and transduction activities of neurocalcin δ.

This conclusion was validated by the reconstitution study: an excess of neurocalcin δ resulted
in reversal of the inhibition by peptide 3 (Figure 4B). These results prove that the V837–L858

region of ROS-GC1 represents both the binding and the transduction domain of neurocalcin
δ.

The Catcd Domain Region V837–L858 Is Directly Modulated by Neurocalcin δ
To further confirm the above conclusion, a direct reconstitution study using the isolated catcd
and neurocalcin δ was conducted. In the presence of a saturating amount of free Ca2+,
neurocalcin δ stimulated catcd in a dose-dependent fashion with an EC50 of 0.8 μM, Vmax was
achieved at 2 μM, and its maximal stimulation was about 2.5-fold (Figure 5A). The incubation
of catcd with increasing concentrations of peptide 3 (V837–L858) in the presence of a 2 μM
concentration of neurocalcin δ and a saturating amount of Ca2+ inhibited in excess of 90%
catcd activity (Figure 5B), and reversal of the inhibition occurred with an excess of neurocalcin
δ (Figure 5C). Together, these and the earlier reconstitution results unequivocally prove that
the V837–L858 domain of ROS-GC1 is both the binding and the transduction site of ROS-GC1.

The V837–L858 Signal Transduction Site of Catcd Is Specific to Neurocalcin δ
An exquisite feature of ROS-GC1 is that it is a bimodal Ca2+ signal transduction switch;
nanomolar to semimicromolar ranges of free Ca2+ stimulate and higher ranges inhibit it. The
former mode occurs via GCAPs, 1 and 2; the latter via CD-GCAPs, S100B and neurocalcin
δ. To assess the specificity of the neurocalcin δ signal transduction site, catcd was tested for
its responses to GCAPs and S100B; wtROS-GC1 expressed in COS cells served as a positive
control.

Both GCAPs and S100B stimulated ROS-GC1 activity, 6-, 5.5-, and 9-fold for GCAP1,
GCAP2, and S100B, respectively, but had no influence on the isolated catcd’s activity (Figure
6). Therefore, the neurocalcin δ, GCAP1, GCAP2, and S100B modular sites in ROS-GC1 are
distinct and totally independent of each other’s activity.

The ROS-GC1 Segment 845MSEPIE850 Is an Important Motif for Neurocalcin δ Signal
Transduction

Alignment of the ROS-GC1 region V837–L858 sequence with the sequence of another ROS-
GC subfamily member, ONE-GC (GenBank number L37203), which is also modulated by
Ca2+-bound neurocalcin δ (17-19), showed a common MSEPIE motif. This motif is not
conserved in the natriuretic peptide receptor guanylate cyclases, ANF-RGC and CNP-RGC.
In these receptor cyclases, the corresponding sequence is ESTPMQ (variant residues indicated
in bold). The possibility was considered that the catcd segment 845MSEPIE850 may be
important for neurocalcin δ signaling.

To assess this possibility, the 845MSEPIE850 motif was deleted in the catcd sequence, and the
construct, catcdΔMSEPIE (Figure 2A), was purified and analyzed.
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Its basal guanylate cyclase activity was identical to its parent catcd (compare 7.1 with 7; Figure
2A). This indicated that the tertiary structure of the mutant has not been affected by the deletion
of the motif and the motif has no role in regulation of the basal cyclase activity of the core
catalytic module.

However, the mutant lost 75% of its neurocalcin δ-modulated activity (Figure 7). This
concludes that the 845MSEPIE850 motif is essential in the neurocalcin-modulated Ca2+

signaling of the catalytic module.

Molecular Modeling
To pictorially define the neurocalcin-binding domain in the catalytic module and the
neurocalcin δ domain with which the catalytic module interacts, the tools of molecular
modeling and docking were used.

For these tasks, in the absence of its crystal structure, a fold recognition based model of the
ROS-GC1’s catalytic domain was created; for neurocalcin δ, the available crystal structure was
used as a template (PDB ID 1BJF; 49).

A previous study has modeled the three-dimensional structure of the catalytic module of human
ROS-GC1 (PDB ID 1AWL; 50), and using it as a template, a subsequent study has successfully
resolved its catalysis sites (51). The 1AWL model is very similar to the model in the present
study. However, the 1AWL model warrants certain comments.

At the time the 1AWL model was created, the understanding was that membrane guanylate
cyclases were active only when dimerized (47). They needed the coiled-coil dimerization
structural motif for its stepwise activation, first dimer formation to express its basal and
subsequently to show its regulatory activities. Therefore, the isolated catalytic domain, lacking
the α-helical dd, would be monomeric. These facts were ignored in the construction of the
1AWL model, which depicts the isolated catalytic domain as a dimer. Importantly, the site-
directed mutagenesis study conducted to validate the model was on the intact wild-type ROS-
GC1 and not on the isolated catalytic domain construct (51).

In contrast, the principles on which the present model is built are opposite to those of the 1AWL
model. Here the model is built after the properties of the isolated catalytic module without its
coiled-coiled structural motif have been established; i.e., the module is intrinsically dimerized,
is active, and is inherently regulatory.

The Neurocalcin δ-Binding Domain Represents a Helix–Loop–Helix Structural Motif
The template used to create the three-dimensional catcd model was the crystal structure of
Gs-bound adenylate cyclase II (PDB ID 1AZS; 52) [rat AC2 C2 domain homodimer was the
template for the 1AWL model (50)]. The program used in this study was Phyre. It incorporates
the secondary structure along with the aa sequence profiles of the protein. The monomer form
of the model is presented in Figure 8A; it is referred to as the “modified catcd model” (modified
model) to distinguish it from the 1AWL model. The modified model encompasses the M816–
L1006 region of the catalytic domain; notably, the region does not contain the hinge region of
ROS-GC1 (dd in Figure 2A).

The cat domain consists of six α helices, 1, 2, 3, 3′, 4, and 5, and of eight β sheets, 1–8 (Figure
8A). The α helix 3′ motif is composed of seven residues, 911TFRMRHM917. The structure of
this motif was not identified in the 1AWL model.

The cat domain dimer model (Figure 8B) was created using the 1AZS dimer as a template. In
general, this model is very similar to the 1AWL model. Both models depict the configuration
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of the homodimer to be antiparallel. There, however, are some significant differences in the
nature of the residues that mediate dimerization and surround the substrate molecule GTP
(Supporting Information).

The highlighted feature of the modified model is that it depicts the neurocalcin δ-modulated
domain, V837–L858. This domain is located near the N-terminal region of the core cat domain.
This domain is accessible to the solvent and, importantly, is not buried within the dimer
interface. These features make this region available for interaction with neurocalcin δ. One
important characteristic of this domain is that it consists of a helix–loop–helix structure (Figure
8B; indicated in yellow and by an arrowhead).

A Docking Study Defines the Neurocalcin δ and the Catd Interaction Site
To simulate the interaction site between neurocalcin δ and the catalytic domain, two different
docking programs, 3D-Dock and ZDOCK, were independently used (discussed in Supporting
Information). In more than 10000 docking solutions, both programs yielded only one and the
same result: (1) the catalytic core domain V837–L858 is the favored region that interacts with
neurocalcin δ; (2) the residues in and around the EF1 hand of neurocalcin δ are the primary
interaction sites with its target catalytic domain.

The neurocalcin δ-docked catalytic module is depicted in Figure 8C. For simplicity, the figure
shows the interaction between the catalytic module and neurocalcin δ, monomer to monomer.
The interactive sites are located within the dotted box. The helix–loop–helix (V837–L858)
structure of the catcd is indicated as a blue ribbon.

The model provides important clues on the nature of the docking pocket and the events relating
to its creation (Figure 8D). The pocket involves the V-shaped crevice of the neurocalcin δ’s
EF1 hand. Into this crevice fits the helix–loop–helix V837–L858 region of the catalytic domain
(Figure 8D). The residues forming the crevice are H25, E26, Q28, E29, W30, K32, G33, F34,
R36, D37, C38, L43, E47, K50, I51, Y52, N54, F55, and F56. They are within a sphere of 4.5 Å
from the catcd V837–L858 region and belong to the EF1 hand of neurocalcin δ, and they form
a distinctive patch due to the presence of hydrophobic and charged residues. The prediction is
that the nature of this solvent-accessible patch is unique for the interaction between the Ca2+-
bound neurocalcin δ and the helix–loop–helix structure of the catalytic domain.

DISCUSSION
In this comprehensive study a new transduction model for the Ca2+ signaling of ROS-GC1 is
defined. This transduction model is applicable to the cyclic GMP signaling pathway present
in the inner plexiform layers of the retinal layers and is modulated by the Ca2+ sensor
neurocalcin δ (16,53,54). Molecular principles of this model are illustrated below.

The Neurocalcin δ-Modulated Site in ROS-GC1 Is Unusual
The intracellular region of ROS-GC1 is modular in nature, and through defined modules this
region acts as the transduction site of multiple forms of Ca2+ signals: GCAP1’s, M445–L456

and L503–I522 (55); GCAP2’s, Y965–N981 (43); and S100B’s, G962–N981 (14).

The present study demonstrates that the V837–L858 region of ROS-GC1 is the neurocalcin δ
binding and also the transduction site in ROS-GC1. This site contains a consensus neurocalcin
δ recognition and transduction motif, whose sequence is 845MSEPIE850.

The location of the neurocalcin-modulated site is unusual. Unlike the domains of other Ca2+

sensors, this site resides in the core domain of the catalytic module. The residences of all other
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modular domains are outside the catalytic domain, and the Ca2+ signals modulated by these
domains do not interfere with operation of the neurocalcin δ module.

Boundary of the Catalytic Domain
The unexpected finding that the neurocalcin δ binding domain resides in the catalytic domain
required the resolution of a central issue. What is the precise boundary of the catalytic module
in ROS-GC1? This, to date, remains vaguely defined on the basis of the hydropathic analysis
of ANF-RGC (reviewed in ref 6). The entire segment beyond the khd region has been marked
as the catalytic cyclase domain (Figure 1 A, top panel).

The α-Helical Dimerization Structural Element Is Not a Part of the Catalytic Domain
This region beyond the khd includes an α-helical interdomain, a 43 aa segment, which precedes
the catalytic domain (dd in Figure 1A). This segment is conserved in all members of the
membrane guanylate cyclase family. The present consensus is that it functions as a dimerization
domain for all members of the membrane guanylate cyclase family, and the dd constitutes a
pivotal structural component for a unified transduction model of all members of the guanylate
cyclase family(44,46,47). In this theme, the peptide hormone, or the Ca2+, signal activates the
dd; the dd, in turn, causes dimerization of the catalytic domain, and the dimerization event
results in basal and regulatory activities of the catalytic domain.

Implicit in this theme is that the catalytic domain in its native state is monomeric. A critical
element of this signal transduction model is that the contact points for dimerization of the core
catalytic domain reside in the dd. For the ROS-GC1 model this element is Arg787 (47). This
model has been validated for the ANF signaling of ANF-RGC (46) and the GCAP1 signaling
of ROS-GC1 (47). However, none of these studies have been conducted on the isolated domain
of the catalytic domain.

The present study, which incorporates the results of the isolated catalytic module, proves that
45 aa dd is not a part of the catalytic core domain. The core domain is intrinsically active in
both its basal and neurocalcin δ regulatory state. In its native state, it exists as a dimer. Finally,
because Arg787 is not a part of the core catalytic domain, it is not a pivotal element in the
neurocalcin δ-modulated ROS-GC signal transduction model. Therefore, the fundamental
principles of operation for the neurocalcin δ-modulated ROS-GC1 transduction mechanism
are unique to itself.

ROS-GC1, Three-Dimensional Model
First, to view its tertiary structure, the fold recognition based model of the monomer of the
catalytic module was built. It covered the aa segment 816–1006 of ROS-GC1. A noteworthy
feature of this model is that it does not contain the dd domain; this eliminates any effect this
domain may have on the structure of the catalytic module. Compared to 1AWL (50), this model
indicates an additional seven-residue 911TFRMRHM917 helix.

On the basis of the existing evidence that the native form of ROS-GC1 is composed of two
homomeric subunits, to pictorially define the neurocalcin-binding transduction motif, V837–
L858, in their respective monomers, the catd dimer model was created.

The prominent feature of this model (Figure 8B) is that two chains of the catalytic module are
antiparallel. In each chain, the neurocalcin δ-binding transduction motif is located toward the
N-terminal region of the chain. In these configurations, the two neurocalcin-binding
transduction sites are distally apart. The notable characteristics of these sites are that they are
composed of helix–loop–helix structure (Figure 8B, yellow ribbons).
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Catalytic Domain Neurocalcin δ Interaction Site
A remarkable result of the modeling-docking study is that it explains the principles of the union
between the catalytic domain of ROS-GC1 and neurocalcin δ. The contact points between these
domains are designed to form a perfect fit. The neurocalcin δ-binding transduction motif of
the catalytic domain consists of a helix–loop–helix structure (Figure 8B). This structure is
accessible to the solvent and comfortably fits in the V-shaped crevice of neurocalcin δ. This
crevice is formed by the defined EF1-hand residues (Figure 8D). These residues form a special
hydrophobic–hydrophilic patch, which may be a distinctive feature of the Ca2+-dependent
signaling property of neurocalcin δ.

Signal Transduction Model
By the facts provided by this study and some aided by the computational modeling, a
preliminary stepwise neurocalcin δ signal transduction model is envisioned. Step 1: the
postphototransduction signal in the IPL neurons generates a rise of free Ca2+ in the
semimicromolar range. Step 2: Ca2+ binds neurocalcin δ. Step 3: neurocalcin δ undergoes a
Ca2+-dependent configurational change. Step 4: with an EC50 of 0.5 μM, its defined domain
in the EF1 hand binds its V837–L858 modulated region of the cat domain in ROS-GC1; the cat
domain in its native form exists as a dimer. Step 5: with kon of 7 × 104 M−1 s−1, the cat domain
is activated and generates cyclic GMP. Step 6: with a koff of 4.2 × 10−2 s−1, the neurocalcin is
dissociated, and the process reverts back to the step 1 state of the neuron.

Similar operational steps are envisioned in the neurocalcin δ-modulated Ca2+ signaling of the
ONE-GC membrane guanylate cyclase in the olfactory neuroepithelium linked with the odorant
transduction (19).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Mapping of the neurocalcin δ-modulated region. (A) Schematic representation of ROS-GC1
and its deletion mutants. The following abbreviations denote the predicted domains: ext,
extracellular domain; tm, transmembrane domain; jmd, juxtamembrane domain; khd, kinase
homology domain; dd, dimerization domain; catd, cyclase catalytic domain; cte, C-terminal
extension. Numbering corresponds to the mature protein. Specific activities of the proteins are
shown in the right-hand column ([A]). (B) Neurocalcin δ-dependent stimulation of ROS-GC1
and its deletion derivatives. COS cells were individually transfected with ROS-GC1 or its
deletion mutant cDNA, and the cell particulate fractions were prepared. These were assayed
for guanylate cyclase activity in the presence of incremental concentrations of neurocalcin δ
and 100 μM Ca2+. The experiment was done in triplicate and repeated two times. The results
presented are from one typical experiment. Error bars are within the size of the symbols.
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Figure 2.
The neurocalcin δ interaction site with ROS-GC1 resides within the ROS-GC1 domain G817–
Y965. (A) Schematic representation of the ROS-GC1 soluble fragments. The following
abbreviations denote the predicted domains: dd, dimerization domain; catd, cyclase catalytic
domain; catcd; catalytic core domain; cte, C-terminal extension. Numbers shown correspond
to the mature protein. Specific activity of the fragments is given in the right-hand column ([A]).
(B) Analysis of the purified catcd domain by gel filtration. The ROS-GC1 catcd domain was
expressed in E. coli and purified. The purified protein was loaded onto a Superdex 75 gel
filtration column and analyzed on an Akta FPLC system. Loading and elution was in buffer
containing 220 mM Tris-HCl (pH 7.5) and 150 mM NaCl. Elution was monitored by
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absorbance at 280 nm. A single peak was observed with a retention time of 19.4 min,
corresponding to a size of 50 kDa. The column was calibrated using molecular size standards
purchased from Amersham Biosciences. The retention time for one of the standards,
ovalbumin, is indicated by a gray dashed arrow. Inset: The elution profile of the standards used
is shown; the peak corresponding to each protein standard is labeled. The experiment was
carried out with three separate preparations of the protein. The results presented are from one
experiment. (C) Stimulation of the soluble ROS-GC1 fragments by neurocalcin δ. ROS-GC1
fragments aa733–1054, aa806–986, or aa817–965 were expressed and purified. These proteins
were tested for neurocalcin δ dependent cyclase activity in the presence of 100 μM Ca2+. The
experiment was repeated two times with separate preparations of the protein. Error bars are
within the size of the symbols.
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Figure 3.
Binding of neurocalcin δ to the ROS-GC1 region G817–Y965. Purified ROS-GC1 fragment
G817–Y965 was immobilized on a CM5 sensor chip, and neurocalcin δ was supplied in the
mobile phase. (A) A set of four representative sensorgrams from one run depicting binding of
neurocalcin δ at concentrations of 0.5, 1, 2, and 4 μM is shown. The curves were fitted to a 1:1
Langmuir model. The raw (in gray) and fitted (in black) curves for each concentration of
neurocalcin δ are presented. (B) Binding at equilibrium (RUeq) as a function of neurocalcin
δ concentration. The results presented are the mean ± standard error of four experiments
performed on different days with two independent preparations of neurocalcin δ. The data were
analyzed using GraphPad Prism and resulted in an EC50 value of 0.5 μM and a KD value of
0.66 μM. (C) Scatchard transformation of the binding data. Linear regression analysis of the
data was carried out with GraphPad Prism.
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Figure 4.
Peptide competition. (A) Inhibition of ROS-GC1 activity. Membranes of COS cells expressing
ROS-GC1 were incubated with increasing concentrations of a peptide in the presence of 2
μM neurocalcin δ and 100 μM Ca2+. (B) Reversal of inhibition by an excess of neurocalcin
δ. Membranes of COS cells expressing ROS-GC1 were incubated with 2 μM neurocalcin δ
(open bars), 2 μM neurocalcin δ and 0.3 mM peptide (closed bars), or 5 μM neurocalcin δ and
0.3 mM peptide (checkered bars) and assayed for guanylate cyclase activity as in (A).
Experiments were carried out in triplicate and repeated twice. The data shown are from a
representative experiment.

Venkataraman et al. Page 19

Biochemistry. Author manuscript; available in PMC 2010 March 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Peptide competition on the isolated ROS-GC1 fragment G817–Y965. The ROS-GC1 fragment
G817–Y965 was assayed for neurocalcin δ-dependent cyclase activity in the presence of 100
μM Ca2+ (A). To the reaction mixture consisting of 2 μM neurocalcin δ, the fragment, and 100
μM Ca2+ were added increased concentrations of peptide 3 (V837–L858) (B). To the reaction
mixture containing 2 μM neurocalcin δ, the fragment, and 0.3 mM peptide 3 [conditions as in
(B)] were added the indicated concentrations of neurocalcin δ (C), and the guanylate cyclase
activity was assayed. The experiment was done in triplicate and was repeated two times. The
results presented are from one experiment. Error bars are within the size of the symbol.
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Figure 6.
Specificity of the catcd V837–L858 signal transduction site. The purified catcd fragment was
assayed for guanylate cyclase activity in the presence of the indicated concentrations of S100B
and 100 μM Ca2+ or GCAP1 or GCAP2 in the presence of 10 nM Ca2+. Membranes of COS
cell expressing ROS-GC1 were processed in parallel as the control. The experiment was done
in triplicate and repeated two times with separate protein preparations. The results presented
(mean ± SD) are from one experiment.
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Figure 7.
Effect of neurocalcin δ on the guanylate cyclase activity of the catcdΔMSEPIE. The
catcdΔMSEPIE mutant was assayed for guanylate cyclase activity in the presence of increasing
concentrations of neurocalcin δ and 100 μM Ca2+. The catcd (control) was treated identically.
The experiment was done in triplicate and repeated four times. The results presented are from
one experiment. The error bar is within the size of the symbol.
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Figure 8.
Three-dimensional model of the ROS-GC1 catalytic domain and molecular docking of
neurocalcin δ. (A) Ribbon diagram of the ROS-GC1 catalytic domain monomer. A three-
dimensional model of the ROS-GC1 domain M816–L1006 was created as described in Materials
and Methods. The α helices are shown in red and the β strands in cyan. Numbering is according
to the 1AZS template. The N- and C-termini are indicated by arrows. (B) The solvent-accessible
V837–L858 domain of the ROS-GC1 catalytic domain. The two monomeric ROS-GC1 catalytic
domains are indicated in red and green, respectively. Within each monomer, the region
corresponding to V837–L858 (peptide 3) is indicated in yellow and labeled. The N- and C-
termini are labeled. (C) The ROS-GC1 catalytic domain/neurocalcin δ complex. Monomers of
the ROS-GC1 catalytic domain and of neurocalcin δ are depicted for clarity. The ROS-GC1
catalytic domain is depicted as a green ribbon, and its helix–loop–helix V837–L858 region is in
blue; the solvent-accessible surface of neurocalcin δ is depicted in gold. A dotted box is drawn
around the region of docking. (D) Residues on neurocalcin δ within a 4.5 Å sphere from the
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interacting ROS-GC1 catalytic domain region. The docking region [dotted box in (C)] is
expanded. The ROS-GC1 helix–loop–helix region (V837–L858) is depicted as a blue ribbon.
The neurocalcin δ residues located within a 4.5 Å sphere from the V837–L858 region are
depicted as stick models in red, embedded within the solvent surface (transparent gold). The
amino acid residues are labeled.
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