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RESEARCH

Deep learning-based predictive classification 
of functional subpopulations of hematopoietic 
stem cells and multipotent progenitors
Shen Wang1†, Jianzhong Han2†, Jingru Huang3†, Khayrul Islam1, Yuheng Shi3, Yuyuan Zhou4, Dongwook Kim2, 
Jane Zhou5, Zhaorui Lian2, Yaling Liu1,4* and Jian Huang2,6,7*   

Abstract 

Background Hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) play a pivotal role in maintaining 
lifelong hematopoiesis. The distinction between stem cells and other progenitors, as well as the assessment of their 
functions, has long been a central focus in stem cell research. In recent years, deep learning has emerged as a power-
ful tool for cell image analysis and classification/prediction.

Methods In this study, we explored the feasibility of employing deep learning techniques to differentiate murine 
HSCs and MPPs based solely on their morphology, as observed through light microscopy (DIC) images.

Results After rigorous training and validation using extensive image datasets, we successfully developed a three-
class classifier, referred to as the LSM model, capable of reliably distinguishing long-term HSCs, short-term HSCs, 
and MPPs. The LSM model extracts intrinsic morphological features unique to different cell types, irrespective 
of the methods used for cell identification and isolation, such as surface markers or intracellular GFP markers. Further-
more, employing the same deep learning framework, we created a two-class classifier that effectively discriminates 
between aged HSCs and young HSCs. This discovery is particularly significant as both cell types share identical surface 
markers yet serve distinct functions. This classifier holds the potential to offer a novel, rapid, and efficient means 
of assessing the functional states of HSCs, thus obviating the need for time-consuming transplantation experiments.

Conclusion Our study represents the pioneering use of deep learning to differentiate HSCs and MPPs under steady-
state conditions. This novel and robust deep learning-based platform will provide a basis for the future development 
of a new generation stem cell identification and separation system. It may also provide new insight into the molecular 
mechanisms underlying stem cell self-renewal.

Keywords Hematopoietic stem cells, Multipotent progenitors, Deep learning, Evi1 protein, α-Catulin protein, GFP, 
Fluorescence-activated cell sorting
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Background
Hematopoietic stem cells (HSCs) and multipotent pro-
genitors (MPPs) are important for lifelong blood pro-
duction and are uniquely defined by their capacity to 
self-renew while contributing to the pool of differen-
tiating cells. HSC is a rare population in mouse bone 
marrow, with approximately 1 in  105 cells being a trans-
plantable HSC [1]. As HSCs differentiate, they give rise 
to a series of progenitor cells that undergo a gradual fate 
commitment to mature blood cells [2, 3]. Numerous stud-
ies have defined phenotypic and functional heterogeneity 
within the HSC/MPP pool and have revealed the coex-
istence of several HSC/MPP subpopulations with distinct 
proliferation, self-renewal, and differentiation potentials 
[4, 5]. Based on their self-renew capability, they can be 
divided into long-term (LT) and short-term (ST) HSCs, 
and multipotent progenitors (MPPs). In the adult mice, 
all HSCs/MPPs (HSPCs) are contained in the  Lineage−/

lowSca-1+c-Kit+ (LSK) fraction of the bone marrow (BM) 
cells [6]. Higher levels of HSC purity can be achieved 
by using signaling lymphocyte activation molecule 
(SLAM) family markers CD150 and CD48 [7]. It has been 
reported that one out of every ~ 2 LSK  CD150+CD48− 
cells possess the capability to give long-term repopula-
tion in the recipients of BM transplants. Meanwhile, 
short-term HSCs (ST-HSCs) and MPPs can be isolated 
by sorting LSK/CD150−CD48− and LSK/CD150−CD48+ 
cells, respectively [7]. As an alternative, HSCs can also 
be subdivided by CD34 and CD135 (FLT3) expression 
profiles. LSK/CD34−CD135− cells are enriched with LT-
HSCs, whereas LSK/CD34+CD135− with ST-HSCs and 
LSK/CD34+CD135+ with MPPs [8]. So far, there is no 
evidence that those three subpopulations are morpho-
logically distinguishable under light microscope.

Of note, several intracellular proteins, e.g., α-catulin 
and ecotropic viral integration site-1(Evi1), have been 
identified as functional markers in murine HSCs [9, 10]. 
Thus, GFP expression driven by α-catulin or Evi1 gene 
promoters in mice has been utilized to identify HSCs and 
track their “stemness” in vivo or ex vivo [9–11].

Accumulating evidence has demonstrated that the 
HSC aging process is accompanied by functional decline. 
Specifically, HSCs from aged animals (aged HSCs) mani-
fest an increase in immunophenotypic HSC number and 
a decrease in regenerative capacity compared to their 
counterparts from young animals (young HSCs). In addi-
tion, aged HSCs tend to differentiate more to the myeloid 
lineage over the lymphoid lineage, with decreased hom-
ing and increased polarity, epigenetic changes, and clonal 
expansion [12–14].

Deep learning (DL) has become the state of the art for 
many computer vision tasks in biomedical research [15, 
16]. Supervised DL builds a mathematical model based 

on training samples with ground-truth labels. It extracts 
relevant biological microscopic characteristics from mas-
sive image data. The primary algorithm for DL image 
classification is based on the convolutional neural net-
work (CNN). CNN is mainly composed of convolutional 
layers that perform a convolution with “learnable” filters. 
The parameters of these filters can be optimized during 
the learning process [16, 17]. Of note, previous stud-
ies have demonstrated that CNN can be used to predict 
stem cell fate [18–20].

In our previous work, we have successfully developed 
a novel DL-based platform to detect rare circulating 
tumor cells with high accuracy [21]. In the present study, 
we investigated the potential of using DL to differentiate 
HSCs and MPPs based only on their morphology. First, 
we used a large dataset of Differential Interference Con-
trast (DIC) microscopy images of HSCs and MPPs to 
train the DL model, then assessed its efficacy with valida-
tion datasets (Fig. 1). After the DL model was established, 
we further tested it with HSCs and MPPs that were iden-
tified and isolated with different cell surface or intracel-
lular makers. Our study demonstrated for the first time 
that deep learning can distinguish different subpopula-
tions of hematopoietic precursors based on cell morphol-
ogy. This novel and robust deep learning-based platform 
provided a proof-of-principle that an antibody-free, fluo-
rescence/laser-free system is feasible to identify different 
cell populations purely based on cell morphology. It may 
also shed light on the molecular mechanisms underlying 
stem cell self-renewal.

Methods
Animals
C57BL/6(CD45.2), C57Bl/6-Boy/J(CD45.1) and 
α-catulinGFP mice were purchased from the Jackson Lab-
oratory. Evi1-IRES-GFP knock-in mice  (Evi1GFP mice) 
were kindly provided by Dr. Mineo Kurokawa at the Uni-
versity of Tokyo [10]. All mice were used at 8–12 weeks 
of age, except some  Evi1GFP mice were sacrificed at 
24-month-old. Both male and female mice were used, 
and age matched. Each experimental group will include 
at least 4 mice. They were bred and maintained in the 
animal facility at Cooper University Health Care. All pro-
cedures and protocols were following NIH-mandated 
guidelines for animal welfare and were approved by the 
Institutional Animal Care and Use Committee (IACUC) 
of Cooper University Health Care.

Antibodies
The following antibodies were used: mouse lineage 
cocktail-PE (BioLegend, cat# 78035), mouse lineage 
cocktail-APC (R&D Systems, cat# FLC001A), c-Kit-
FITC (BioLegend, cat# 161603), c-Kit-APC (BioLegend, 
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cat# 135108), c-Kit-PE/Cy7 (BioLegend, cat# 105814), 
c-Kit-BV421 (BioLegend, cat# 135124), Sca-1-BV605 
(BioLegend, cat# 108133), Sca-1-APC (eBiosci-
ence, cat# 17-5981-82), Sca-1-BV421 (BioLegend, 
cat# 108127), Sca-1-PerCP-Cy5.5 (eBioscience, cat# 
45-5981-82), CD150-BV421 (BioLegend, cat# 115925), 
CD150-PE (eBioscience, cat# 12-1501-82), CD150-
PE-Cy7 (BioLegend, cat# 115913), CD48-PE/Cy7 
(eBioscience, cat# 25-0481-80), CD48-BV711 (BioLe-
gend, cat# 103439), CD48-APC-Cy7 (BioLegend, cat# 
103432),CD34-FITC (eBioscience, cat# 11-0341-82), 
CD135-PE-Cy5 (BioLegend, cat# 135311), CD135-APC 
(BioLegend, cat# 135310), CD45.1-PerCP-Cy5.5 (Bio-
Legend, cat# 110727), CD45.2-BV421 (BioLegend, cat# 
109831), CD45.2-FITC(eBioscience, cat# 11-0454-82), 
Gr1-PE (BioLegend, cat# 108407), CD11b-APC (BioLe-
gend cat# 101211), CD4-PE (BioLegend,cat# 116005), 
CD8a-PE (BioLegend, cat# 100707), B220-APC (BioLe-
gend, cat# 103211).

Flow cytometric analysis and cell sorting
Murine BM cells were flushed out from the long bones 
(tibias and femurs) and ilia with DPBS without cal-
cium or magnesium (Corning). After lysis of red blood 
cells and rinse with DPBS, single-cell suspensions were 
stained with fluorochrome-conjugated antibodies at 4 °C 
for 15–30 min. Flow cytometric analysis and cell sorting 
were performed on a Sony SH800Z automated cell sorter 
or a BD FACSAria™ III cell sorter. Negative controls for 
gating were set by cells without antibody staining. All 
data were analyzed by using either the accompanying 
software with the Sony sorter or FlowJo software (v.10).

DIC image acquisition and GFP fluorescence measurement
Fluorescence-activated cell sorting (FACS)-sorted 
cells were plated in coverglass-bottomed chambers 
(Cellvis) and maintained in DPBS/2% FBS through-
out image acquisition. An Olympus FV3000 confocal 
microscope was used to take DIC and fluorescence 
images simultaneously at a resolution of 2048 × 2048. 
Fluorescence images of different cell groups were 
taken under exact the same recording conditions and 
GFP fluorescence intensities were measured by using 
Fiji software.

Data processing
We built a MATLAB toolbox for image processing 
based on our previous work [21]. We used the tool-
box to detect single cells in DIC images and remove 
the outliers (debris and cell clusters) by applying size 
thresholding and uniqueness checks. The toolbox then 
segmented the cells into cell-centered single-cell image 
crops of 64 × 64 pixels and labeled them by cell types. 
We applied data augmentation to the training examples 
using arbitrary image transformation including random 
rotation, horizontal flipping, and brightness adjustment 
on the original single-cell crops. We practiced over-
sampling on the minor classes in each run during the 
training experiment to balance different training sam-
ples. The oversampling algorithm randomly sampled 
training images from the minority until the number of 
the examples reached the same number in the majority 
class. Therefore, in our experiment, the training data-
set for each run contained equivalent numbers of data 
samples for all three classes.

Fig. 1 An overview of the flow of the experiment. The workflow depicts the steps from murine BM cell preparation, HSPCs isolation, image 
acquisition, to DL training and validation (Created with BioRender.com)
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Deep learning framework and training
Our deep learning models utilized the ResNet-50 
architecture [22] as the pretrained layers that were 
fine-tuned by the training datasets. ResNet-50 is a 
convolutional neural network (CNN) architecture that 
is commonly used for image classification tasks. It 
consists of 5 convolutional blocks with varying num-
bers of convolutional layers in each block. The con-
volutional layers in ResNet-50 extract features from 
input images at different levels of abstraction, with 
the deeper blocks learning more complex features. 
ResNet-50 also includes shortcut connections through 
skip connections that add the input to the output of 
the convolutional layers. This facilitates better feature 
learning by maintaining a strong gradient flow during 
training. Following the convolutional blocks, our mod-
els had two fully-connected layers with Rectified Linear 
Unit (ReLu) activation functions and a dropout layer 
with a dropout rate of 0.3 to prevent overfitting during 
training. The models used a SoftMax activation func-
tion with a cross-entropy loss for generating predicted 
results. The ADAM optimizer with a weight decay of 
0.05 was applied for training experiments, with a learn-
ing rate of 5 ×  10–4 for the fully-connected layers and 
a retraining of the convolutional layers at 1% of the 
learning rate. We trained the model with a batch size of 
512 for 20 epochs on a Tesla P100 GPU on the Google 
Colab platform with Pytorch 1.10.0. The final training 
outcome was reported with a training and validation 
split of 8:2.

Long‑term competitive reconstitution assays
The experiments were performed as previously 
described [23]. Briefly, adult congenic recipient mice 
(CD45.1) were lethally irradiated (1000  rad, split dose 
3 h apart). Purified donor cells were then injected along 
with 3 ×  105 wild type “competitor” cells (CD45.1) into 
the retro-orbital plexus of individual recipient mice. 
To induce anesthesia for the retro-orbital injection, 
mice were exposed to Isoflurane to minimize discom-
fort and stress, administered through inhalation for 
a duration of 30–40  s. For the euthanasia of mice, it 
was performed using  CO2 inhalation followed by cer-
vical dislocation, in strict adherence to the American 
Veterinary Medical Association (AVMA) guidelines. 
Hematopoietic reconstitution was monitored over time 
in the peripheral blood using conjugated antibodies to 
CD45.2 (104, FITC), B220 (6B2), Mac-1 (M1/70), CD3 
(KT31.1), and Gr-1 (8C5). All recipient mice (n = 3 
each group) were sacrificed after 4  months and their 
BM cells were collected and stained with the following: 

Lineage cocktail-PE, CD45.1-PerCP-Cy5.5, CD150-PE-
Cy7, c-Kit-APC, CD48-APC-Cy7, and CD45.2-BV421, 
Sca-1-BV605.

Statistical analysis
Data are presented as means ± SEM unless otherwise 
stated. The statistical significance was determined by the 
one-way ANOVA (for experiments with multiple groups) 
or the unpaired two-tailed Student’s t test (for two groups 
comparison). *p < 0.05; **p < 0.01; ***p < 0.001.

Results
Preparation of HSPC subpopulations and image datasets 
for DL training
To explore whether we could use DL to distinguish dif-
ferent subsets of HSPCs based on their morphology, we 
first isolated HSCs and MPPs from murine BM by FACS. 
We used a well-established combination of surface mark-
ers consisting of LSK  (lineage−Sca1+c-Kit+) and SLAM 
(CD150 and CD48) markers and sorted out three sub-
populations: LT-HSCs (LSK/CD150+CD48−), ST-HSCs 
(LSK/CD150−CD48−) and MPPs (LSK/CD150−CD48+) 
(Fig.  2A). We then seeded those cells in culture cham-
bers with coverglass bottoms and acquired DIC and 
confocal fluorescence images (Fig. 2B). Over 96% of the 
recorded cells in the images exhibit anticipated fluores-
cence features (Fig. 2B), indicating that the sorting pro-
cess was accurate and reliable. In DIC images, most cells 
(~ 95%) have a spherical shape (Fig. 2B) while the rest are 
irregular or polymorphic. The cell membranes of these 
cells appear to be rough, but no specific morphological 
features unique to any cell population can be identified 
through visual inspection. LT-HSCs, ST-HSCs and MPPs 
are small cells, majority of which have a diameter less 
than 10  μm. Figure  2C shows the dispersion of the cell 
sizes of these cells. Large cell outliers make up approxi-
mately 0.10% of the MPPs and 0.03% of the two HSC 
groups. Our measurement shows that the average diam-
eters (mean ± SEM) of LT-HSCs, ST-HSCs, and MPPs are 
8.05 ± 0.02, 8.05 ± 0.03, and 8.44 ± 0.02  μm, respectively, 
and they are not significantly different.

Development of a novel DL model to distinguish LT‑HSCs, 
ST‑HSCs, and MPPs
To build a DL model to distinguish murine HSCs and 
MPPs, we first utilized a customized MATLAB toolbox 
to automatically locate individual cells in acquired DIC 
images and segmented them into cell-centered single-
cell image crops of 64 × 64 pixels. The image crops were 
labeled by cell types as ground truth. From five inde-
pendent experiments, we compiled an image dataset for 
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DL model training and validation, comprising 4050 LT-
HSCs, 7868 ST-HSCs, and 9676 MPPs. We applied data 
augmentation to enhance data diversity and avoid over-
fitting, practiced oversampling to balance the significance 
of the minority subsets, and employed transfer learning 
to obviate the need for bigger datasets (detailed informa-
tion described in “Materials and Methods”).

We designed the new DL model as a three-class clas-
sifier that would assign three probability scores to every 
cell tested. The scores are between 0 and 1 with the sum 
of three scores equal to 1. The predicted cell type is 

determined by the highest probability score (prediction 
score) that ranges from 0.34 to 1. After several rounds 
of training and validation, the DL model was challenged 
with the cells it had never seen before. The results are 
summarized in a confusion matrix (Fig. 3A). Out of 647 
FACS-sorted LT-HSCs, 60% were classified as LT-HSCs, 
30% as ST-HSCs and 10% as MPPs. Therefore, the rate of 
consistency between the DL classification and the immu-
nophenotypic sorting is 60% for LT-HSC group. Similarly, 
the consistency rates for ST-HSC and MPP were 77% 
(1206/1574) and 77% (1497/1935), respectively. Based on 
these results, various measures were generated to gauge 
the performance of the method (Fig. 3B), including preci-
sion (positive predictive value), recall (sensitivity), macro 
average (arithmetic mean), and weighted average (aver-
age adjusted by sample sizes). Our DL model achieved 
an overall F1 score of 0.74 (Fig. 3B) and high area under 
the curve of the receiver operating characteristic (ROC-
AUC) scores (Fig.  3C), which suggests that the model 
was performing well in the classification of LT-HSCs, ST-
HSCs, and MPPs. This model will henceforth be referred 
to as the LSM model (L stands for LT-HSCs, S for ST-
HSCs, and M for MPPs).

Generally, more data input results in better DL model 
prediction. We therefore investigated how the size of 
a dataset would influence the performance of the LSM 
model. To this end, we first randomly sampled 80% of the 
previous training dataset (17,438 cells in total) to serve 
as the full-scale training sample (13,950 cells) and used 
the remainder (3488 cells) for validation. We divided the 
training sample randomly into 10 fractions (1395 cells 
each fraction). While keeping all other essential param-
eters constant, we trained the model with incremental 
sample fractions until the entire training sample was 
used. We performed 5 iterations for each training sample 
size, and at the end of each training, validation dataset 
was classified, and the overall consistency rate was used 
to gauge the performance of the LSM model (Fig.  3D). 
As anticipated, the size of training samples is positively 
correlated with the performance of the LSM model, how-
ever, the correlation is not linear (Fig. 3D). When 80% of 
the training samples were used, the overall consistency 
rate (71%) was nearly as good as what could be achieved 
with the entire training samples (73%). An extrapolation 
based on the real data points predicts that the overall 
consistency rate can approach 77% if the training sam-
ple size is doubled (Fig.  3D). These data indicate that 
the LSM model can be further improved. However, an 
experiment as we just described may be needed to decide 
whether the benefits of model improvement worth the 
time, effort, and cost required to expand the dataset.

Fig. 2 LT-HSCs, ST-HSCs, and MPPs do not exhibit significant 
difference in size. A Representative FACS density dot plots show 
the gating strategy employed to identify and isolate LT-HSCs, ST-HSCs, 
and MPPs from murine BM. B DIC and fluorescence images were 
taken immediately after FACS. Typical images are shown. Scale bar (in 
white) = 10 μm. C The box plot depicting the cell diameter dispersion 
of LT-HSCs, ST-HSCs, and MPPs. The boxes represent the middle 50% 
(interquartile range, IQR) of cells and the solid lines inside the boxes 
are the medians. The upper and lower whiskers indicate the cells 
that are outside the middle 50% range, and they are calculated 
as ± 1.5 × IQR. Outliers are not shown. n = 5
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The LSM model differentiates cells based on their 
morphological features
After multiple rounds of training and validation, the LSM 
model obtained the capability to differentiate HSCs and 
MPPs. To elucidate what the LSM model had learned 
from this process, we first performed a principal compo-
nent analysis (PCA) on the cell images. PCA reduced the 
high-dimensional information from the original imaging 
data into two-dimensional principal components (PC1 
and PC2). On the PCA plot, the distribution of HSCs and 
MPPs is dispersed and mixed (Fig.  4A, left), indicating 
that these cell types were not distinguishable from each 
other at this moment. In comparison, after being pro-
cessed by the LSM model, imaging data were analyzed in 
the same way. Strikingly, cell type specific clusters were 
formed with limited overlap (Fig. 4A, right). These results 
proved that the LSM model can extract cell-specific mor-
phological features from different cell types. Next, we 
constructed a class activation map (Score-CAM) from 
the convolutional layers of the LSM model (Fig.  4B). 
Score-CAMs are commonly used to explain how a DL 
model learns to classify an input image into a particular 
class [24]. On a heat map, the regions receiving strong 

attention from the DL model are colored in red, while 
blue color means the areas are ignored. When the LSM 
model was given the single-cell image inputs, its strong-
est attention was attracted to the areas that were almost 
exclusively within the cell boundaries (Fig.  4B). Taken 
together, our data indicate that cell morphology captured 
in the light microscopy images contains crucial informa-
tion for accurately classifying cells by the LSM model.

The cellular features extracted by the LSM model are 
intrinsic to HSCs
In previous experiments, HSPCs were identified and 
isolated based on the binding of antibodies to corre-
sponding surface antigens. It is possible that certain 
antibody-antigen interactions may result in cell-specific 
morphological manifestation, which could make the 
efficacy of the LSM model antibody/antigen depend-
ent. To exclude this possibility, we first tested the LSM 
model with the HSPCs that were sorted out based on 
LSK/CD34/CD135, another set of surface markers 
widely used to identify and isolate murine HSPCs [8]. 
The immunophenotypes of LT-HSCs, ST-HSCs, and 
MPPs were shown in Fig.  5A. Although the F1 scores 

Fig. 3 The LSM model’s performance in predicting distinct hematopoietic precursor subpopulations. A The confusion matrix of the LSM model. 
After the training and validation process, new cells from three HSPC subsets were classified by the model and the results are summarized. n = 5. 
B The performance metrics of the model. C The ROC-AUC curve of the model. All AUC values are above 0.85, indicative of a good performance 
of the model. Diagonal dashed line represents a random classifier with no discrimination. D The performance of the LSM model is correlated 
with the training sample size. With increased sample sizes (from 10 to 100% of total training data), the overall consistency rate of the model 
improved accordingly. For each sample size, five iterations of training were executed with 20 epochs. The mean of the overall consistency rate (blue 
dots) and the corresponding 95% confidence interval (blue shade) are shown. The dashed line is a fitted curve with extrapolation
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for the classification of ST-HSC and MPP are slightly 
lower than those seen previously, the performance of 
the LSM model on LT-HSC classification remains con-
sistent (Fig.  5B). It’s noteworthy that under current 
condition, the immunophenotypic LT-HSCs are CD34/
CD135 double negative. These data suggest that the 
crucial cell-specific information for accurately classify-
ing cells by the LSM model is not likely to derive from 
the antibody/antigen interactions.

We further addressed the issue by utilizing the 
α-catulin protein, an intracellular marker of HSCs that 
has been found to be expressed almost exclusively in 
murine HSCs [9]. In the α-catulinGFP mice, α-catulin-
GFP+c-Kit+ cells in the BM are mainly LT-HSCs with a 
small portion of ST-HSCs [9]. We therefore first sorted 
out LSK/α-catulin-GFP+ cells (Fig. 5C), and then used 
the LSM model to classify the cells. A total of 1227 
LSK/α-catulin-GFP+ cells were classified. In line with 
expectation, 74% of them were classified as LT-HSC, 
14.0% as ST-HSC, and 12% as MPP (Fig. 5D). Together, 
our data indicate that neither antibody/antigen interac-
tion nor GFP overexpression has a significant impact 

on the classification of cells using the LSM model, par-
ticularly in the context of LT-HSC classification. What 
the LSM model learned is intrinsic to the tested cells, 
i.e., LT-HSCs, ST-HSCs and MPPs.

The LSM model can prospectively identify murine 
functional HSCs
It has been demonstrated that the LSM model is capable 
of differentiating isolated HSPC subpopulations. We then 
asked how it would perform prospectively in a mixture 
of HSPCs without the use of SLAM or CD34/CD135 
surface markers. To answer this interesting question, 
we challenged the LSM model with LSK/GFP+ BM cells 
from the  Evi1GFP transgenic mice, another animal model 
in HSC studies [10]. Evi1 is a transcription factor of the 
SET/PR domain protein family and plays a critical role in 
maintaining HSC stemness [10]. Unlike the α-catulinGFP 
transgenic mice, GFP expression in the  Evi1GFP mice is 
controlled by Evi1 gene promoter, and it’s found in over 
90% immunophenotypic LT-HSCs, ~ 80% ST-HSCs, 
and ~ 30% MPPs [10]. Therefore, LSK/Evi1-GFP+ cells 
are a mixture of HSPCs. Out of the 1726 LSK/Evi1-GFP+ 

Fig. 4 Interpretation of the LSM model. A Cell imaging data were processed by principal component analysis and the PCA score plots show 
the striking difference that feature extraction by the LSM model can make. B Visual explanation of the LSM model. Cells from the three groups were 
randomly selected and their attention heatmaps in the LSM model were generated by Score-CAM. Red regions received the highest attention 
by the LSM model, while blue regions were largely ignored. n = 5. Scale bar = 10 μm .
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cells classified by the LSM model, 55% were predicted as 
LT-HSC, 27% as ST-HSC, and 18% as MPP (Fig. 6A). A 
fluorescence analysis revealed that GFP expression in all 
three predicted cell types varied greatly, however, strong 
GFP expression was more frequently seen in the pre-
dicted HSCs (Fig. 6B, left). In line with this finding, the 
average GFP fluorescence intensity of all predicted HSCs 
was higher than that of the predicted MPPs (Fig.  6B, 
left), which is consistent with a previous report [10]. This 
trend was not affected when the prediction score thresh-
old (manifesting the confidence of the LSM model) was 
increased to 0.5, 0.7, or 0.9 (Fig. 6B, right). Although GFP 
expression patterns were similar in predicted HSCs, aver-
age GFP intensity was slightly higher in the predicted 
ST-HSC population (Fig. 6B). Among the cells that were 
tested, a minority (~ 6%) exhibited the highest level of 
GFP (GFP-high). Importantly, all those cells were pre-
dicted by the LSM model as LT-HSC.

It has recently been shown that in early embryonic 
development, high Evi1 expressing cells are predomi-
nantly localized to the intra-embryonic arteries and pref-
erentially give rise to HSCs [25]. Based on this report 
and the prediction of the LSM model, we proposed that 
high Evi1 expressing precursors in adult murine BM are 
true functional HSCs. To test this hypothesis, we con-
ducted a competitive transplantation experiment using 

FACS-sorted top 3% GFP-high cells from the LSK/Evi1-
GFP+ pool, with GFP negative LSK cells as the control. 
We transplanted 5 or 10 GFP-high or GFP-negative cells 
(CD45.2) along with 3 ×  105 wildtype (CD45.1) “competi-
tor” cells into lethally irradiated recipient mice (CD45.1). 
After 4 months, we harvested BM from the transplanted 
mice and measured chimerism (percentage of donor-
derived cells). As shown in Table  1, the numbers of 
chimeric-positive mice—defined by convention as > 1% 
donor-derived (CD45.2) cells in either BM or peripheral 
blood—were significantly higher in GFP-high group (5/5 
mice for 5 cells and 5/5 for 10 cells). In contrast, no long-
term reconstitution was found in GFP-negative group 
(0/5 and 0/4 for 5 cells and 10 cells). The degrees of chi-
merism for GFP-high 5-cell group (mean = 8.116%) and 
10-cell group (mean = 13.67%) were substantially higher 
than those for the GFP-negative 5-cell (mean = 0.035%) 
and 10-cell group (mean = 0.064%) (Fig.  6C). These 
results suggested that the LSM model has the potential to 
prospectively identify functional murine HSCs.

Deep learning cannot differentiate MPP subpopulations 
(MPP2‑4) from their DIC images
Accumulating evidence indicates that MPPs can be fur-
ther divided into at least three subpopulations (MPP2-4), 
which exhibit different lineage bias and functions [26]. 

Fig. 5 The LSM model distinguishes HSPCs sorted with LSK/CD34/CD135 surface markers and α-catulin-GFP. A Representative FACS density dot 
plots show the gating strategy employed to sort murine LT-HSCs, ST-HSCs, and MPPs using LSK/CD34/CD135 surface markers. B The performance 
metrics of the LSM model in the classification of HSPCs obtained from A. A total of 4142 LT-HSCs, 873 ST-HSCs, and 1780 MPPs were obtained from 4 
C57BL/6 mice and tested. C DIC and fluorescence images of LSK/α-catulin-GFP+ cells were taken immediately after FACS. Representative images 
are shown. Scale bar = 10 μm. D Total 1227 LSK/α-catulin-GFP+ cells were obtained from 4 α-catulinGFP mice and analyzed by the LSM model. 74% 
of them were classified as LT-HSC
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Fig. 6 Long-term competitive reconstitution of HSCs based on prospective classification by the LSM model. A LSK/Evi1-GFP+ cells were 
FACS-sorted from  Evi1GFP transgenic mice and classified by the LSM model. A representative field of view is shown. Scale bar = 10 μm. B GFP 
fluorescence analysis of the classified cell types. Solid green dots are individual  GFP+ cells and the gray outlines depict the distribution of their GFP 
fluorescence intensity. The orange dashed lines indicate the medians of each cell groups. Increasing the prediction score threshold from 0.34 (all 
scores) to 0.9 didn’t significantly change fluorescence intensity features among predicted cell types, and the cells with the highest GFP expression 
(inside red boxes) were always classified as LT-HSC. n = 5. C Competitive reconstitution of irradiated mice with GFP-high cells. Top 3% high GFP 
expressing cells were FACS-sorted from the LSK/Evi1-GFP+ pool and transplanted into lethally irradiated recipients. Each recipient was transplanted 
with 5 or 10 GFP-high cells and 3 ×  105 host-derived BM cells. GFP-negative LSK cells were used as control. BM was harvested after 4 months 
for chimerism analysis. n = 3 each group. **p < 0.01 (compared to GFP-negative group. Unpaired t test)

Table 1 Competitive reconstitution of irradiated mice with GFP-high cells

Donor cell population Numbers of donor cells injected per 
recipient mice

Numbers of recipient mice Recipient mice 
with multilineage 
reconstitution

BM LSK/Evi1-GFP high 5 cells 5 100% (5/5)

10 cells 5 100% (5/5)

BM LSK/Evi1-GFP negative 5 cells 5 0% (0/5)

10 cells 4 0% (0/4)
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To test whether DL can be used to differentiate MPP 
subpopulations, we tried to build a new 3-class classi-
fier exclusively for MPP classification. We adopted the 
same strategy for model training and validation when 
feeding the DL platform with DIC image dataset of dif-
ferent MPPs (Additional file 1: Fig. S1). After several tri-
als, the consistency rate of classification was much lower 
than the LSM model. Particularly, after we introduced 
more convolutional layers in ResNet (see “Methods” for 
details), the performance of the model didn’t improve, 
suggesting a bottleneck had been reached. By compari-
son, the LSM model worked very well in the classifica-
tion of all three MPP subpopulations (Additional file  2: 
Table S1). These results suggest that deep learning, as a 
powerful cell classification tool, has its limitations and its 
success depends on target cells. On the other hand, these 
data proved again that the LSM model is a reliable classi-
fier for general MPP identification.

Deep learning can differentiate immunophenotypically 
identical aged and young HSCs
It is well known that HSCs from aged mice (aged HSCs) 
are functionally defective compared with their counter-
parts in young mice (young HSCs), though they have the 
same immunophenotypes (LSK/CD150+CD48−) on flow 
cytometry. We were wondering whether the functional 

difference had any manifestation in their morphology. To 
investigate this issue, we designed a new model based on 
the previous DL platform. In brief, we FACS-sorted out 
LT-HSCs (LSK/CD150+CD48−) from the BM of young 
(8–10  weeks old) and aged (24  months old) mice, and 
then compiled DIC image datasets. After training, vali-
dation, and optimization, the new DL model was able 
to separate the two populations accurately and is herein 
named as the YA model (Fig. 7). First and foremost, the 
YA model viewed most young HSCs (74%) as one type 
of cell and the majority of aged HSCs (80%) as another, 
though both cells were LSK/CD150+CD48−. Interest-
ingly, a small percentage of young HSCs (26%) were clas-
sified as aged HSC, and vice versa in aged HSCs (20% 
were classified as young HSC) (Fig. 7A, B). The overall F1 
score of the YA model is 0.78 (Fig. 7C), which is higher 
than the LSM model.

Discussion
Hematopoietic stem and progenitor cells (HSPCs) are a 
critical component of bone marrow (BM) transplants, 
which are a mainstay of life-saving therapy for patients 
with leukemia and congenital blood disorders. Cur-
rently, FACS is the primary method for identifying 
and separating HSPCs. While powerful, it has several 
drawbacks: it requires antibody staining and laser light 

Fig. 7 The YA model differentiates young and aged LT-HSCs. A The YA model was trained to differentiate LT-HSCs from young and aged mice using 
the image data of immunophenotypic LT-HSCs (LSK/SLAM/GFP+). Typical model predictions in DIC images are shown. Scale bar = 10 μm. B After 
the YA model was trained, it was tested with new image data sets. The results are summarized in the confusion matrix. n = 5 each group. C The 
performance metrics of the YA model
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sources to produce scattered and fluorescent signals, 
which can negatively affect cell viability and stem cell 
activity [27]. In contrast, a deep learning-based platform 
has the potential to be developed into a label-free and 
laser-free method for HSPC studies with further techni-
cal improvements. In this study, we provided evidence 
to support the concept that long-term HSCs (LT-HSCs), 
short-term HSCs (ST-HSCs), and multipotent progeni-
tors (MPPs) can be classified in a steady state using the 
deep learning method. Interestingly, the intrinsic cell-
specific information needed for effective identification 
can be obtained from light microscopy images alone. 
Additionally, our deep learning model can differentiate 
between functionally distinctive young HSCs and aged 
HSCs, which have the same immunophenotypes [12–14]. 
Without performing a tedious long-term limiting dilu-
tion transplantation assay, it is currently impossible to 
distinguish these cells. The success of our young vs aged 
(YA) model supports the idea that deep learning can 
be developed into a unique tool for assessing the func-
tional states and activities of HSCs. In conjunction with 
or without flow cytometry, deep learning is expected to 
have more applications in the study of HSPCs, especially 
when it is integrated with various imaging and cell sepa-
ration hardware systems.

The heterogeneity of immunophenotypically sorted 
HSCs and MPPs is well documented. For instance, long-
term competitive reconstitution assay confirms less 
than 50% of LT-HSCs identified by LSK/SLAM markers 
[7]. Likewise, the frequency of true LT-HSCs in LSK/α-
catulin-GFP+ is only 33% [9]. Therefore, while evaluat-
ing the performance of our deep learning models, we did 
not consider FACS-sorted cell populations as an absolute 
gold standard and refrained from using the terms "accu-
racy" or "accuracy rate". Instead, we opted for the term 
"consistency rate" to indicate that we were comparing 
two different methods designed for the same purpose.

Although flow cytometry-based HSC separation is a 
well-established technique, our deep learning model can 
provide value in various contexts. Firstly, as it is well doc-
umented, the phenotype of stem cells can change devel-
opmentally [28] or when regeneration is stimulated by 
agents such as 5-fluorouracil [29], making it challenging 
to identify HSCs based on surface markers alone. Addi-
tionally, surface markers may also change during HSC 
culture and expansion [30]. In such circumstances, our 
morphology-based identification method may become 
important for accurately identifying HSCs.

An intriguing question that remains unanswered is 
which morphological features are crucial for our deep 
learning models to make accurate classifications. This 
is a complex but fundamental issue for deep learning 
as an analyzing method. Deep learning is a powerful 

tool that can extract various cell features, such as mor-
phology, granularity, biomass, and more [17, 31]. For 
instance, deep learning can be trained to detect and 
measure cell size and shape in microscopic images, 
which can help identify abnormalities or changes in cell 
morphology [32, 33]. In this study, we carefully regis-
tered the sizes and shapes of the target cells (Fig.  2C) 
to evaluate their impact on our model’s classifications. 
As there was no significant difference in size and shape 
between LT-HSCs, ST-HSCs, and MPPs, we postulate 
that these parameters did not play a crucial role in the 
cell classifications made by our models. It has been 
reported that in addition to steady state morphology, 
dynamic cellular behaviors in artificial experimen-
tal settings can serve as multidimensional datasets 
for deep learning to learn and extract [34], which may 
reflect the cellular difference in intracellular protein 
concentration and localization. However, it is not clear 
what specific features were extracted by deep learning 
in those experimental settings. It’s noteworthy that our 
effort to differentiate MPP subtypes by deep learning 
failed, which not only reflects the limitations of deep 
learning but also implies that the learning and extrac-
tion process could be highly cell specific.

Lastly, it’s worth noting that our LSM model’s perfor-
mance has been tested in hematopoietic precursors har-
vested from at least 33 mice, and the results have shown 
high consistency. However, we still need to separate dif-
ferent HSC populations based on our LSM model and 
conduct a stringent functional transplantation to validate 
the efficacy of stem cell identification and classification 
through this technology.

Conclusions
While our work is still in its early phases, it has not only 
broadened the application of deep learning but also 
provides a promising avenue for uncovering previously 
unknown features of HSCs. This approach has signifi-
cant potential to advance our understanding of stem cell 
biology.
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