May 2nd, 12:00 AM

Repetitive Mild Traumatic Brain Injury Impairs Performance in a Rodent Assay of Cognitive Flexibility

Christopher P. Knapp
Rowan University

Doug P. Fox
Rowan University

Ramesh Raghupathi
Drexel University

Laura L. Giacometti
Drexel University

Stan B. Floresco
University of British Columbia

See next page for additional authors
Follow this and additional works at: https://rdw.rowan.edu/stratford_research_day

Part of the Cognitive Neuroscience Commons, Medical Neurobiology Commons, Neurology Commons, and the Sports Sciences Commons

Let us know how access to this document benefits you - share your thoughts on our feedback form.

https://rdw.rowan.edu/stratford_research_day/2019/may2/25

This Event is brought to you for free and open access by the Conferences, Events, and Symposia at Rowan Digital Works. It has been accepted for inclusion in Stratford Campus Research Day by an authorized administrator of Rowan Digital Works. For more information, please contact rdw@rowan.edu.
Repetitive mild traumatic brain injury impairs performance in a rodent assay of cognitive flexibility

Christopher P. Knapp, Doug P. Fox, Ramesh Raghupathi, Laura L. Giacometti, Stan B. Floresco, Barry D. Waterhouse, Rachel L. Navarra

Department of Cell Biology & Neuroscience, Rowan University GSRS, Stratford NJ 1 Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA 3* Department of Psychology, University of British Columbia, Vancouver, Canada

Introduction

Mild traumatic brain injury (mTBI) occurs in almost 80% of the 3 million reported cases of TBI-related emergency department visits each year in the United States. The majority of mTBIs, sometimes classified as concussions, are due to sports-related activities and typically occur repeatedly over the course of an athlete’s career. mTBI symptoms are generally classified as either somatic or neuropsychiatric/cognitive in nature and include impairments in prefrontal cortex mediated functions, including attention, memory, processing speed, reaction times, problem solving, and cognitive flexibility. To date, there remains a major gap in our understanding of the behavioral manifestations, underlying neurobiology, and treatment of mTBI. An even greater gap exists in our understanding of the consequences of repeated mTBI incidents. The goal of the present study was to examine the effects of repetitive mTBI within a rodent assay of cognitive flexibility. Rats were exposed to a series of three closed head injuries (controlled cortical impact model) within a week prior to performing an automated strategy shifting task, which required rats to learn and shift strategies according to changing task demands. Rats initially acquired a visual cue strategy in which a light illuminated above one of two possible levers (left or right) indicated the correct response for reward. Twenty-four hours after initial acquisition, rats again performed the task using the visual cue strategy followed by a series of strategy shifting and reversal learning challenges.

Methods

- **Male Long Evans rats (n = 22, 75-100g upon arrival) were housed in a 12 : 12 hour inverted light cycle facility and had ad libitum access to water.**
- **Animal training, injuries, and testing timeline:**
 - **Weeks 1-2** - Initial training
 - **Week 3** - Pre-injury ITT discrimination strategy training
 - **Week 4** - Main experiment: ITT discrimination strategy training, injury, and testing
- **Injury model:** All rats (150-200g at the beginning of surgeries) were anesthetized and subjected to either sham surgery or mild traumatic closed head injuries using a CCI device every three days for a total of three insults. Briefly, a 5mm-diameter metal impactor tip was zeroed with the skull along the sagittal sulure line so that the edge of the tip was aligned with bregma. The tip was then electronically driven into the skull at a velocity of 5.5ms to a depth of 2.5mm below the zero point.

Visual Cue and Egocentric Response

- **Test progression:**
 - **Cue Retrieval**
 - **Strategy Shift to Response (e.g. left)**
 - **Reversal (e.g. right)**

Conclusions

- **Summary:** Repetitive mTBI increased reaction times and reduced throughput scores, a performance index that blends accuracy and response speed [1].
- **Significance:** These results indicate that performance and task efficiency in an operant test of cognitive flexibility are impaired after repetitive mTBI. As such, this model presents a useful approach for further investigating the behavioral deficits and potential treatment strategies for patients who have experienced multiple mTBI insults.

Acknowledgements and Support

Supported by the New Jersey Commission on Brain Injury Research (NJBIR) - CBIR17PIL007 and seed funds from Rowan University to BDW.