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Deep Carbon through Deep Time

Data-Driven Insights

robert m. hazen, yana bromberg, robert t. downs,
ahmed eleish, paul g. falkowski, peter fox,

donato giovannelli, daniel r. hummer, grethe hystad,
joshua j. golden, andrew h. knoll, congrui li, chao liu,

eli k. moore, shaunna m. morrison, a.d. muscente,
anirudh prabhu, jolyon ralph, michelle y. rucker,
simone e. runyon, lisa a. warden, and hao zhong

20.1 Introduction: Data and the Deep Carbon Observatory

For most of the history of science, data-driven discovery has been difficult and time-
consuming: a lifetime of meticulous data collection and thoughtful synthesis was
required to recognize previously hidden, higher-dimensional trends in multivariate
data. Recognition of processes such as biological evolution by natural selection (1,2),
continental evolution by plate tectonics (3,4), atmospheric and ocean oxygenation by
photosynthesis (5,6), and climate change (7,8) required decades of integrated data
synthesis preceding the discovery and acceptance of critical Earth phenomena. How-
ever, we stand at the precipice of a unique opportunity: to dramatically accelerate
scientific discovery by coupling hard-won data resources with advanced analytical and
visualization techniques (9,10). Today, Earth and life sciences are generating a multi-
tude of data resources in numerous subdisciplines. Integration and synthesis of these
diverse data resources will lead to an abductive, data-driven approach to investigating
Earth’s mineralogical and geochemical history, as well as the coevolution of the
geosphere and biosphere (11–13).

In this chapter, we examine applications of data science in deep carbon research through
three “use cases.” The first example focuses on geochemical and mineralogical anomalies
from a period in Earth history (~1.3 to 0.9 Ga) when the supercontinent Rodinia was being
assembled from previously scattered continental blocks. The second case study examines
the diversity and distribution of minerals, notably carbon-bearing minerals, through deep
time from the contexts of mineral evolution, mineral ecology, and mineral network
analysis. The third and most speculative use case considers ways to analyze and visualize
data that relate microbial protein expression to growth environments – complex intercon-
nections that may shed light on Earth’s coevolving microbial ecosystems and near-surface
geochemical environments. In each example, discoveries related to Earth’s deep-time
evolution have resulted from the analysis and visualization of large data resources fostered
by the Deep Carbon Observatory (DCO).
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20.2 Use Case #1: Global Signatures of Supercontinent Assembly

Large and growing geochemical and mineralogical data resources facilitate global surveys
of trends in crustal evolution through deep time. Over the past 3 billion years, Earth has
undergone five periods of supercontinent assembly, during which most continents con-
verged and concentrated into one more or less contiguous landmass. Each of these
assembly episodes was followed by intervals of supercontinent stability, rifting, and
dispersal (14–16).

In spite of some shared geochemical, mineralogical, and tectonic characteristics, each of
these five supercontinent episodes is distinct in detail. The Mesoproterozoic Rodinian
supercontinent, in particular, displays several unique mineralogical and geochemical
characteristics that point to a unique outcome of collisional events between ~1.3 and
0.9 billion years ago (16–22). Rodinia represents an important transitional period for
Earth’s carbon cycle in terms of both geochemical and biological evolution. In this section,
we examine rapidly growing data resources in mineralogy and geochemistry that shed light
on the unique character of this interval of Earth’s history.

20.2.1 Mineralogical Evidence

Evidence for five cycles of supercontinent assembly, stability, and dispersal are strikingly
preserved in the age distributions of high-temperature minerals (including many igneous,
metamorphic, and hydrothermal species), which may be preferentially formed and/or
preserved during continental suturing. The most notable mineralogical proxy is detrital
zircon grains (23–29). As with other supercontinents (Figure 20.1a), the assembly of
Rodinia saw a significant peak in the production and/or detrital preservation of zircon,
with a global maximum at ~1.1 to 1.0 Ga (23,29).

Important mineralogical insights into supercontinent cycles are provided byminerals other
than zircon (Figure 20.1) (16,30,31), and these mineral species can be explored through deep
time thanks to the creation and rapid expansion of the Mineral Evolution Database (MED;
rruff.info/evolution), an important contribution of DCOmineralogists. TheMED incorporates
more than 195,000 mineral/locality/age data, mostly for minerals from well-constrained
magmatic, metamorphic, or hydrothermal events (data as of June 10, 2019). Liu et al.
(16,22) employed the MED to explore and document age distributions of minerals and found
that minerals containing niobium and yttrium (Figure 20.1b and c) exhibit similar trends to
those of zircon; theseminerals displaymaxima slightly later than zircon, at ~1.1 to 0.95Ga. By
contrast, minerals ofmost other elements, includingNi, Co,Au, S,Hg, Li, and C (Figure 20.1d
to j), record significant pulses of mineralization during the assembly of Kenorland, Nuna,
Gondwana (Pannotia), and Pangaea, but notably indicate decreased mineralization during
Rodinian assembly (30–35). From these observations, we conclude that the currently
expressed patterns ofmineralization associatedwith the Rodinian assembly are unique relative
to those of the other aforementioned supercontinents.
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20.2.2 Trace Element Distributions

Temporal changes in the global averages of trace elements in igneous rocks complement
and amplify mineral evolution data. Liu et al. (16,22) compiled trace element data for
globally distributed igneous rocks from the EarthChem database (earthchem.org) and the
United States Geological Survey (USGS) Mineral Resources Online Spatial database
(mrdata.usgs.gov). They compiled age/concentration data for 129,161 samples with
reported Zr analyses, 105,045 with Nb analyses, 121,373 with Y analyses, 77,835 with
Co analyses, and 82,611 with Ni analyses from igneous rocks, all of which are associated
with SiO2 content (wt.%) and modern geographic coordinates (Figure 20.2).

The period of Rodinian assembly from 1.3 to 0.9 Ga saw significantly greater niobium,
yttrium, and zirconium concentrations in igneous rocks than at any other time during the
last 3 billion years (Figure 20.2). Furthermore, these trace element maxima apply to both
mafic and felsic igneous rocks. By contrast, Liu et al.’s (16,22) survey found that average
nickel and cobalt concentrations in igneous rocks display no significant enrichments or
depletions during this interval (Figure 20.2).

20.2.3 Why Is Rodinian Assembly Unique?

Rodinia has long been recognized as distinct from other supercontinents. In addition to the
mineralogical and geochemical anomalies noted above (Figure 20.1), the time from 1.3 to
0.9 Ga is marked by enhanced anorogenic magmatism, as well as a relative minimum
extent of continental margins and collisional belts (21,36–40). Liu et al.’s (16,22) obser-
vation of significant maxima in the Nb, Y, and Zr composition of Rodinian igneous rocks
(Figure 20.2) amplifies evidence that Rodinian assembly was unique, while pointing to
possible reasons for these differences.

The enrichments of Nb, Y, and Zr, coupled with the greater relative abundances of
minerals of these three elements, point to a distinctive tectonic setting for Rodinia.
Rodinian assembly was dominated by “non-arc” magmatism, in contrast to other intervals
of supercontinent assembly when collision-related mineralization and island arc magma-
tism were of greater relative significance (41–46). In particular, these tectonic conditions at
1.3 to 0.9 Ga led to enhanced production of NYF-type (i.e. Nb-, Y-, and F-enriched)
pegmatites, with associated increases in the occurrence and diversity of Nb-, Y-, and Zr-
bearing minerals (46–49). This mineralization may have been associated with a warmer
mantle and/or a thickened continental crust during Rodinian assembly (50,51) – character-
istics that may reduce scavenging of high-field-strength elements by interaction with the
depleted mantle during arc magmatism (52,53).

The relative enrichment of Nb, Y, and Zr contrasts with the behavior of many other
elements during the period of Rodinian assembly. The minerals of most elements are
notably lacking during the 1.3 to 0.9 Ga interval, as manifest in the relatively few ore
deposits associated with the time of Rodinian assembly (30,31,36,38). However, the trace
element concentrations of Co, Ni, and many other elements in igneous rocks do not show
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Figure 20.2 Trace element concentrations of Zr, Nb, Y, Ni, and Co in global igneous rocks through the last 3.0 Ga. Maximum values for Zr, Nb, and
Y occur during and immediately before Rodinian assembly, in contrast to Ni and Co. Gray-filled circles are data resampled from earthchem.org with
bootstrap resampling. Moving averages and medians of samples within �100 Ma bin sizes are calculated for each 100 Ma. Red solid lines are averages;
red dashed lines are 95% confidence intervals of the moving average; blue solid lines are medians; blue dashed lines indicate the lower (25%) and upper
(75%) quantiles
(after 16).
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corresponding depletions compared to other supercontinent episodes (Figure 20.2) (16).
Given this consistency in metal concentrations, reduced Rodinian ore deposition seems
unlikely. Rather, the lack of Mesoproterozoic ore deposits may be a consequence of
enhanced erosion of near-surface deposits that formed preferentially near active margins.
This style of erosion was perhaps more characteristic of Rodinia than other supercontinents
for two reasons. First, pre-collisional erosion of Rodinia may have been more aggressive
than with other supercontinents, because the accretion of Rodinia is thought to have been
both prolonged and “extrovert,” with assembly by two-sided subduction (54–56). Such a
tectonic context would have caused the loss of most volcanic-hosted massive sulfide
deposits, which require rapid accretion of continental margins for preservation (38).
Furthermore, the major orogens associated with Rodinian assembly experienced cycles
of collisional distension that must have led to enhanced deep erosion. These processes are
reflected in the high regional metamorphic grade of many surviving rocks associated with
two major Rodinian sutures: the Grenville and Sveconorwegian orogens (20,57–60). Thus,
for example, the absence of Rodinian-age gold deposits likely reflects removal of the
shallower loci of mineralization, whereas the enhanced production of Grenvillian fluvial
sediments led to the abundance of detrital zircon crystals of that age (61–63) Consequently,
the observed distribution and diversity of minerals during the period of Rodinian assembly
reflects a unique combination of mineralization events and preservational biases.

20.2.4 Implications for the Carbon Cycle

Tectonic events such as supercontinent assembly and dispersal have direct effects on
carbon cycling at Earth’s surface (64–66; Chapter 11, this volume). How might the distinct
aggregation and breakup of Rodinia have influenced the carbon cycle and, related to this,
redox conditions and life?

In principle, uplift and erosion associated with supercontinent assembly might have
affected both atmospheric pCO2 and nutrient fluxes into the oceans. Denudation rates of
modern active margins (e.g. New Zealand, Taiwan) were reported to be highest on
continents/islands – orders of magnitude higher than mountain belts (e.g. Alps, Hima-
laya) and shields away from the coast (67). The Rodinian supercontinent was proposed to
be formed via closure of Pacific-type oceans (62,68), with abundant active but rare
passive continental margins (38). On geologic timescales, continental erosion/weathering
is the major sink for atmospheric CO2 (69), and the high erosion/weathering rate of
Rodinian active margins could have sequestered CO2 more rapidly, paving the way for
Neoproterozoic global glaciations (36). The fact that global ice ages postdate Rodinian
assembly by more than 200 million years indicates that while Rodinian CO2 drawdown
might have contributed to later Proterozoic climate change, other factors must be
considered as well.

Enhanced weathering and erosion had the potential to increase P fluxes into the
oceans, thus promoting primary production. For example, the later Mesozoic and
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Cenozoic uplift of major mountain belts appears to have impacted primary production,
driving ecosystem-wide biological changes in the oceans (70). In addition, enhanced
formation of rapidly subsiding sedimentary basins during the Rodinian breakup might
have increased rates of organic carbon burial, thereby contributing to Neoproterozoic
oxygenation (71).

We have several geochemical tools for exploring secular variations in carbon cycling,
most notably the carbon isotopic record of carbonate and organic carbon (72). In addition,
a variety of proxies permit inferences about changing redox conditions in the oceans and
atmosphere (73), and fossils record the course of early evolution (74,75). Interestingly,
supercontinental events correlate only weakly with the carbon isotopic, paleo-redox, and
fossil records. Rodinian assembly correlates with a moderate increase in the secular
variation of carbon isotopes, following a long interval of near-invariant values (76),
whereas a much larger amplitude of C-isotopic variations is associated with the Rodinian
breakup and its aftermath (77). Proxies for redox conditions show little change in
association with either Rodinian assembly or breakup, perhaps because limited
P availability (78) muted Earth system responses to these tectonic events. Global changes
in oxygen levels and biological complexity occur only near the end of the Proterozoic Era,
in association with a state change in P availability linked by some to climate rather than
directly to tectonics (79).

Thus, at our present state of knowledge, the momentous tectonic events of Rodinian
assembly and dispersal seem to have exerted only a limited influence on the surficial
carbon cycle, with dispersal correlating more closely with enhanced organic carbon burial,
perhaps minor oxygen enrichment, and protistan diversification (75) than with supercon-
tinent assembly.

20.3 Use Case #2: Carbon Mineral Evolution, Mineral Ecology,
and Mineral Network Analysis

Data-driven exploration is built on open-access data resources and the application of
advanced analytical and visualization techniques. Databases, such as that of the RRUFF
Project (rruff.info), which includes information on all approved mineral species, and that
of mindat.org, which documents species found at more than 300,000 localities with
greater than 1,000,000 mineral/locality data, provide opportunities to explore mineral
data with new analytical tools. The effects of preservational and/or sampling bias in
these data are poorly understood and are the subject of further investigation. The DCO
has seized this opportunity by facilitating significant advances in the accumulation,
analysis, and visualization of mineral data – notably information housed in the MED
related to the more than 400 approved carbon-bearing mineral species (80–82). As such,
carbon minerals constitute an important test case for new approaches to mineralogy,
while providing unique insights into the evolving roles of carbon through deep time
(Figure 20.3).
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20.3.1 Carbon Mineral Evolution

Mineral evolution is the study of the changing diversity and distribution of minerals
through deep time – the consequence of varied physical, chemical, and, in the case of
Earth, biological processes (11,83–85). Hazen et al. (80) surveyed carbon mineral evolu-
tion from a qualitative viewpoint, tracing changes in the nature and extent of carbon-
bearing minerals through ten stages of Earth’s evolution. From the most primitive Stage 1,
characterized by chondrite meteorites, which contain several carbide minerals and allo-
tropes of carbon, to the thriving terrestrial biosphere of Stage 10, with more than
400 approved carbon mineral species, Earth’s 4.567-billion-year history saw significant
increases in the diversity and complexity of C-bearing phases. The number of crystalline
forms of C-bearing compounds has seen a dramatic rise with the creative contributions of
chemists in the “Anthropocene Epoch” – an explosion of new mineral-like forms that some
observers have dubbed “Stage 11” of Earth’s mineral evolution (86,87).

The development of the MED (88), which tabulates 17,455 ages for C-bearing mineral/
locality data (data as of May 21, 2018), facilitates a more quantitative examination of
carbon mineral evolution. A detailed investigation of these minerals, including their
paragenetic modes, associated species, geochemical contexts, tectonic settings, and other
parameters, is beyond the scope of this chapter. However, an overview of the temporal

Moon-forming collision

End of Great Bombardment

Earliest start of photosynthesis
Start of plate tectonics

Great Oxygenation Event

Snowball Earth

4000 mya 2500 mya 541 mya
Hadean Archean Proterozoic Phanerozoic

OXYGEN

WATER

LIFE

CARBON MINERAL
SPECIES

today4600 million years ago

4600 mya

Figure 20.3 Carbon mineral evolution timeline over 4.5 billion years. Carbon played a key role
throughout this evolutionary path, with an explosion in carbon mineral diversity in the Proterozoic
and Phanerozoic.
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Figure 20.4 Temporal distribution of carbon minerals. (a) The past 4 billion years with 50‑million-
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distributions of C-bearing minerals reveals important physical, chemical, and biological
processes that influence carbon mineralization. Figure 20.4 illustrates these newly
expanded MED carbon mineral data.

The temporal distribution of carbon minerals reveals significant trends. As with most
other groups of minerals, C-bearing species display striking episodicity, with pulses of
mineralization as well as time intervals with few recorded carbon minerals. For example,
significant maxima in preserved carbonate minerals are recorded at 2.75 to 2.70 Ga and at
2.55 to 2.50 Ga, with each interval having more than 150 points of reported carbon
mineral/locality/age data. Those two 50-million-year intervals frame the assembly of
Kenorland, the earliest well-documented supercontinent. By contrast, the 200-million-year
interval from 2.45 to 2.25 Ga, a period of presumed Kenorland stability and generally low
mineralization, has fewer than 20 total reported carbon mineral occurrences. As noted in
Section 20.2, such a sharp contrast in numbers of mineral occurrences likely reflects a
combination of episodic mineralization and preservational biases.

A similar contrast is observed for Nuna, the next widely recognized supercontinent
episode in Earth’s history. Approximately 800 mineral/locality/age data are recorded for
the 250-million-year period of presumed Nuna assembly from 1.95 to 1.70 Ga. By
contrast, the 250-million-year interval of Nuna breakup from 1.60 to 1.35 Ga is represented
by fewer than 250 reports of C-bearing minerals.

Though less dramatic, the assembly of Rodinia is also reflected in the carbon mineral
record. Approximately 400 mineral/locality/age data are recorded for the assembly
period from 1.1 to 0.9 Ga, as opposed to fewer than 20 data points from the subsequent
100-million-year interval from 0.9 to 0.8 Ga. As suggested in Section 20.2, the relatively
modest mineral inventory from Rodinian assembly likely reflects significant erosional loss
of near-surface (i.e. more carbonate-rich) deposits compared to Kenorland and Nuna.

Approximately 80% of reported carbon mineral occurrences in the MED are from the
Phanerozoic Eon, which spans the last 540 million years when carbonate biomineralization
became an important mode of near-surface carbon mineralization. The greater number of
data from the Phanerozoic Eon allows a more detailed examination of carbon mineral
evolution during the past 500 million years. Figure 20.4c underscores the nonuniform
distribution of documented carbon mineralization during the past 600 million years. Of
note is that almost 1700 mineral/locality/age data are recorded from the 20-million-year
interval from 360 to 340 Ma, a time of the supercontinent Pangaea’s assembly, and thus a
plausible time of enhanced mineralization and preservation.

Figure 20.4 (cont.) and Phanerozoic occurrences (760 to 0 Ma) with 20‑million-year bins. Anhydrous
carbonates (orange, lowest segment), hydrous carbonates (blue, next lowest segment), other (i.e.
diamond and carbides, black, next lowest segment), and organic minerals (green; topmost segment).
Graphs are based on 17,455 mineral/locality/age data tabulated in the MED (rruff.info/ima; as of
February 15, 2018). Note that this tabulation is based on mineral specimens collected from specific
localities and does not include sedimentary carbonate formations.
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An important concurrent event was the expansion of late Paleozoic ice sheets in
Gondwana, a scenario linked to enhanced burial of organic matter associated with the
evolution of trees and diversification of seed plants, stem group ferns, and lycopods. This
interval was also notable for the 359 Ma Devonian–Mississippian boundary, which marks
the last pulse of elevated extinctions that occurred through much of the Devonian Period.
A notable degree of ecological reorganization also occurred in marine environments,
including the complete turnover of rugose corals, a once-abundant order of corals that
are now extinct, at the family level. It is not obvious how these paleobiological develop-
ments might have led to enhanced mineralization, although it is possible that at least some
of the observed paleobiological events might reflect responses to tectonic events and their
environmental consequences, as recorded by carbon mineral occurrences.

By contrast, the interval from 200 to 180 Ma is represented by fewer than 15 C-bearing
mineral/locality/age data points worldwide. This 20-million-year period occurred at the
beginning of Pangaea’s breakup and the opening of the modern Atlantic Ocean, a time
characterized by tectonic conditions that might be associated with reduced carbon mineral-
ization or deposition and enhanced erosional loss. The beginning of this interval corres-
ponds to the end-Triassic mass extinction associated with massive volcanism, whereas a
minor extinction event at 182 Ma is also associated with a large igneous province
(89). However, neither of these short intervals of species loss have obvious connections
to the mineral record.

Note that the distribution of mineral occurrences during the Precambrian at 50-million-
year intervals (Figure 20.4b) is not unlike the peak distributions of the Phanerozoic Eon at
20-million-year intervals (Figure 20.4c). An unresolved question in mineral evolution
research is the extent to which the temporal distribution of mineral groups, including C-
bearing species, is fractal; in other words, does the same pattern of mineral distribution
repeat at finer and finer temporal scales? This question can only be answered by gathering
many more mineral/locality/age data with the highest possible time resolution. We are
currently limited to the 195,000 mineral/locality/age data compiled in the MED, but there
are likely many more data yet to be extracted from the existing literature, as well as many
rock and mineral samples that have yet to be analyzed. For instance, rock-forming minerals
are particularly underrepresented in the MED simply due to sampling bias.

20.3.2 Carbon Mineral Ecology

Mineral ecology is the study of mineral diversity–distribution relationships of minerals at
the global scale –an effort that depends on large and growing data resources on mineral
species and their localities on Earth’s crust. Hazen et al. (81) applied a large number of rare
events (LNRE) formalism (90–93) to model the distribution of 403 approved mineral
species of carbon. Using 82,922 mineral species/locality data tabulated in mindat.org (as of
January 1, 2015), they demonstrated that all C-bearing minerals as well as several
compositional subsets containing C conform to LNRE distributions.
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The LNRE model is particularly useful because it can be used to determine an
“accumulation curve” – a formalism that enables estimations of the probability that the
next carbon mineral/locality discovery will represent a new species (Figure 20.5).
Figure 20.5a displays the frequency spectrum analysis for 403 C-bearing mineral species
based on 82,922 individual mineral-locality data (from mindat.org as of January 2015). We
found that 101 minerals – more than 25% of known C-bearing species – have been
identified from only one locality worldwide. Another 42 species have been found at exactly
two localities. Based on this information, we employed a Generalized Inverse Gauss–
Poisson function to model the number of mineral species for minerals found at between
1 and 14 localities (90).

This LNRE model facilitated the prediction of the mineral species accumulation curve
(Figure 20.5b). In Figure 20.5b, the upper curve (labeled “All”) plots the expected number of
approved C mineral species (y-axis) as additional mineral species/locality data (x-axis) are
discovered. The vertical dashed line indicates data recorded as of January 2015 in mindat.org.
The model also predicts the varying numbers of mineral species known from exactly one
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Figure 20.5 (a) Frequency spectrum analysis of 403 C-bearing minerals, with 82,922 individual
mineral-locality data (from mindat.org as of January 2015), employing a generalized inverse Gauss–
Poisson (GIGP) function to model the number of mineral species for minerals found at between 1 and
15 localities (90). (b) This model facilitates the prediction of the mineral species accumulation curve
(upper curve, “All”), plotting the number of expected C mineral species (y-axis) as additional mineral
species-locality data (x-axis) are discovered. The vertical dashed line indicates data recorded as of
January 2015 in mindat.org. The model also predicts the varying numbers of mineral species known
from exactly one locality (curve 1) or from exactly two localities (curve 2). Note that the model
predicts that the number of C-bearing mineral species known from only one locality is now
decreasing, whereas the number from two localities is now increasing, though it will eventually
decrease. We predict that the number of minerals known from two localities will surpass those known
from one locality when the number of species-locality data exceeds ~400,000.
Reproduced from Hazen et al. (81) with permission.
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locality (curve “1”) or from exactly two localities (curve “2”). Note that the model
predicts that the number of C-bearing mineral species known from only one locality is
now decreasing, whereas the number from two localities is now increasing, though it too
will eventually decrease. We predict that the number of minerals known from exactly two
localities will surpass those from one locality when the number of species-locality data
exceeds ~400,000.

Employing this model, Hazen et al. (81) predicted that at least 548 carbon mineral
species occur in Earth’s crust today –a result that suggests at least 145 C-bearing minerals
exist but have yet to be discovered. Additional hints regarding the nature of these
“missing” carbon minerals are gleaned by analyzing compositional subsets of common
additional elements in C-bearing minerals, including oxygen, hydrogen, calcium, and
sodium. Accordingly, Hazen et al. (81) predicted that 129 missing carbon minerals contain
oxygen (primarily carbonates) and 118 species contain hydrogen (mostly hydrous carbon-
ates). In addition, more than 50 of the missing species contain calcium, while more than
60 contain sodium. Additional studies of the distributions of known minerals according to
their distinctive sizes, colors, crystal forms, and physical properties (93) suggest that many
of the missing carbon minerals may have been overlooked because they are colorless,
poorly crystalized, water soluble, and/or occur in minute grains. Similarly, these same
factors are likely why nearly 35% of Na minerals have yet to be discovered and, con-
versely, why fewer than 20% of Cu, Mg, Ni, S, Te, U, and V minerals are still unknown
(93). This powerful data-driven approach has allowed the systematic prediction and
discovery of large numbers of previously unknown mineral species for the first time.

These newly applied data analytic methods have led to DCO’s Carbon Mineral
Challenge (mineralchallenge.net), which enlists professional mineralogists and amateur
mineral collectors around the world in the search for new species. More than 30 new
carbon minerals – roughly 20% of the predicted total missing inventory – have been
reported since January of 2016. Two of those species, abellaite (NaPb2(CO3)2(OH)) and
parasite-(La) (CaLa2(CO3)3F2), were predicted as possible new carbon minerals by Hazen
et al. (81). Other new carbon species were not predicted. Of note is the organic mineral
tinnunculite (C5H4N4O3

.2H2O), which crystallizes when the excrement of the kestrel,
Falco tinnunculus, bakes in the hot gases of a burning coal fire. Though tinnunculite
was not anticipated by our analysis, we did predict that several new organic minerals would
be included in the list of new finds.

Mineral ecology and data-driven approaches to predicting and discovering new mineral
species (as well as valuable mineral resources identified using similar statistical
approaches) are in their infancy. In addition to further studies of carbon mineral ecology
on Earth, efforts concentrating outward, focusing on other planetary bodies, will be
necessary. Some work has begun, including hypothesizing the mineral diversity of
Saturn’s moon, Titan (94,95). Maynard-Caseley et al. (94) propose a rich, diverse popula-
tion of carbon minerals, specifically organic molecular minerals, on Titan’s frozen surface.
The applications of such data-driven methods as cluster analysis, network analysis, and
affinity analysis to mineral systems are poised to revolutionize the way we think about the
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diversity and distribution of minerals on Earth and other worlds by providing a more
complete, multivariate understanding of these systems.

20.3.3 Carbon Mineral Network Analysis

Advances in data-driven discovery rely on application of creative analytical and visualiza-
tion methods to complex multi-dimensional systems. Mineral network analysis (82) is a
particularly powerful approach to understanding complex relationships among mineral
species, their localities, paragenetic modes, and varied physical and chemical properties.

Figure 20.6a displays a force-directed network graph in which colored circles (nodes)
indicate C-bearing mineral species, while lines between circles (edges) denote coexisting
pairs of minerals. The sizes of nodes indicate the relative abundances of the minerals, while
colors represent major C-bearing mineral groups. In this force-directed graph, each edge has
an optimal length like a spring; edges are stretched or compressed to achieve a “lowest
energy” state for the entire network. Similarly, Figure 20.6b shows a bipartite network of
403 C-bearing mineral species from approximately 300 mineralized regions on Earth. These
graphs are interactive; each node can be clicked and dragged to more closely examine the
number and nature of edges (see dtdi.carnegiescience.edu for interactive renderings).

An important characteristic of network visualizations is that they can be analyzed with
numerous metrics, each of which quantifies aspects of the local and global distributions
of nodes and links (96–98). For example, the carbon network (Figure 20.6a) has density
D = 0.24 (i.e. 24% of all possible edges are present) – a value that is intermediate between
those of copper minerals (D = 0.12) and igneous minerals (D = 0.64) (82). The network
diameter, which measures the maximum degree of separation between any two network
nodes, is d = 4, while the network affinity is a = 0.55.

One of the surprising findings related to networks of minerals is that they may embed
information not coded into the network layout. For example, a slight chemical trend is visible
in Figure 20.6a, with nearly all of the anhydrous carbonates not containing transition
elements, lanthanides, and/or actinides (orange nodes) plotting on the left side of the network
and the majority of the organics and hydrous carbonates containing transition elements,
lanthanides, and/or actinides (green and purple nodes, respectively) plotting on the right. In
Figure 20.6b, a few trends regarding the diversity and distribution of minerals in space and
time are evident. First, the “U-shaped” distribution of black locality nodes, with a few very
common carbon minerals “inside” andmanymore rare carbon minerals “outside,” is a visual
representation of the LNRE distribution illustrated in Figure 20.5. Second, there is an
embedded timeline, with the oldest minerals in the center of the locality “U” radiating
outward as the mineral species’ age of first occurrence becomes younger.

Mineral network analysis, a direct outgrowth of interactions among diverse members of
the DCO community, is in its infancy. We anticipate that open-access data resources, as
well as freely available analytical and visualization software, will lead to a transformation
in the ways that we study complex mineral systems on Earth and other worlds.
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Figure 20.6 (a) Force-directed, unipartite network graphs of 403 C-bearing mineral species. Nodes
represent C-bearing mineral species, while lines between nodes denote coexisting pairs of minerals.
Node diameters indicate the relative abundances of the minerals, while colors represent
compositional groups (dark blue = hydrous carbonates with transition elements, lanthanides, and/or
actinides; light blue = hydrous carbonates without transition elements, lanthanides, and/or actinides;
red = anhydrous carbonates with transition elements, lanthanides, and/or actinides; orange =
anhydrous carbonates without transition elements, lanthanides, and/or actinides; black = carbon
allotropes and carbides; green = organic minerals). (b) Force-directed, bipartite network of 403
C-bearing mineral species and their localities on Earth (see also http://dtdi.carnegiescience.edu/node/
4557 for an interactive version). Colored nodes represent carbon mineral species, with node size
corresponding to the frequency of occurrence and color corresponding to the age of earliest known
occurrence of each mineral species. Black nodes represent regional localities, with diameter
corresponding to the relative numbers of distinct C-bearing mineral species found at each locality.
The network rendering reveals important information regarding the diversity and distribution of carbon
minerals through space and time. In particular, the “U-shaped” distribution of black locality nodes,
with a few very common carbonminerals “inside” andmanymore rare carbonminerals “outside,” is an
alternative visual representation of the LNRE distribution illustrated in Figure 20.5.
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20.4 Use Case #3: Enzyme Evolution and the Environmental Control
of Protein Expression

Microbes in Earth’s crust have played key roles in the carbon cycle throughout space and
time (99; Chapters 17 and 18, this volume). In order to better understand “whole-Earth
carbon,” we must examine the relationships among: (1) the physical and chemical charac-
teristics of varied microbial environments (Chapters 16 and 19, this volume); (2) the
metabolic strategies adopted by microbial consortia in these environments (Chapter 17,
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Figure 20.6 (cont.)
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this volume); and (3) the consequent variation of microbial gene molecular function and
expression (Chapter 18, this volume). The exploration of the complex interconnections
among the physical, chemical, and biological aspects of microbial ecosystems represents
an as yet unrealized opportunity for understanding the coevolving geosphere and
biosphere.

A fundamental stumbling block in documenting the role of microbes in Earth’s carbon
cycle through deep time is the lack of relevant data on the nature and expression of proteins
in ancient microbial ecosystems. In spite of the occasional preservation of Precambrian
microfossils, scant biomolecular traces survive in ancient rock formations (100–102).
Therefore, an understanding of the biochemical evolution of microbes might seem beyond
our reach.

A promising strategy to understand aspects of the coevolution of geochemical and
biochemical systems is based on the analysis of the large and growing data resources
describing microbial ecosystems. Extant microbial communities span a wide range of
physical and chemical environmental conditions (e.g. high and low pH, temperature
extremes, high salinity and pressure, low consumable resource availability, and low water
activity), some of which likely mimic a range of ancient conditions extending back to the
dawn of life (103). While extant microorganisms living in these ecosystems are modern
organisms that coevolved with our planet and adapted to its changing conditions, they still
harbor ancestral metabolic traits. Consequently, today’s microorganisms contain both
inherited traits as well as recently acquired ones.

Considering that ancient protein structures and functions are at least to some extent
conserved in modern organisms, then modern analogs of presumed ancient environments
may resemble life’s earliest enzymatic systems. For instance, extant strict anaerobes that
inhabit anoxic, geothermal environments must have inherited the metabolic machinery
necessary to conserve energy using redox couples abundant in geothermally influenced
environments (e.g. hydrogen and sulfur) and to fix carbon dioxide of magmatic origin
(103). These same organisms also must have acquired the ability to cope with reactive
oxygen species in order to adapt as atmospheric oxygen levels on Earth increased over
the last 700 million years. However, being unable to accurately differentiate new
adaptations of older functions from truly new innovations complicates the process of
reconstructing the emergence and evolution of metabolisms. The integration of large data
sets obtained from the study of extant microorganisms and their protein structures,
coupled with detailed environmental, geochemical, and mineralogical information, may
allow us to better understand the emergence and evolution of microbial metabolism. In
particular, it may provide new insights into how the geosphere and biosphere have
coevolved, ultimately resulting in the complex network of metabolic reactions we see
today (104,105).

Here, we propose strategies for applying methods of data analysis and visualization in
order to answer questions about microbial ecology, protein evolution, and their relationship
to carbon mineralization through deep time.
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20.4.1 Network Analysis of Protein Structures: Geo–Bio Interactions
on Evolutionary Scales

Methods of network analysis are well suited to the exploration of the evolution of and
relationship between protein structure and function (106–108). The combination of geo-
chemically identifiable timescales with biologically determined timelines permits glimpses
into the history of life on Earth. For example, Bromberg and colleagues have employed
similarity networks to analyze relationships among the structures of nearly 4700 oxidor-
eductases from varied microbial and multicellular organisms. Since electron transfer
reactions are necessary to fulfill the energy requirements of all life-forms, the ability to
carry out redox reactions must have been among the first functions acquired by early life.
Understanding the evolution of biological redox machinery can thus shine light on the
history of life and on its interactions with Earth’s environment.

Ideally, the evolution of redox abilities could be traced through the analysis of the
relevant enzyme sequences. However, the origins of biological redox, which likely corres-
pond to the origins of life, as well as the dramatic environmental changes that have since
taken place (e.g. the Great Oxidation Event and the “fold explosion” of protein structures),
are ancient. This fact makes the exploration of the mutations in sequence space that led to
the current biological “state of the art” nearly impossible (109,110). Protein three-
dimensional structures, on the other hand, retain evolutionary evidence for significantly
longer stretches of time. Note that the process of the divergent evolution of folded
structures implies that existing folds emerged from prior ones. However, functionally
similar folds may also arise independently via convergent evolution. Using network
analysis, augmented by metrics of sequence similarity in structural alignments, it is
possible to trace distant relations between redox proteins to estimate whether they have
common ancestors or whether they developed independently.

Bromberg et al. have created a method, sahle (structure-annotated homology, ligand-
extended), for evaluating the reliability of structural similarity of transition metal binding
sites in proteins, defined as spheres of 15-Å radius from the active metal-containing site
(111). A sahle score, ranged 0–100, gives weight to an edge between two spheres/nodes in
the resulting network (Figure 20.7). The color of the nodes indicates the primary metal at
the active site of a given sphere in a protein. Interestingly, network connectivity illustrates
that the biological use of metals may be traceable through evolutionary time; in other
words, the earliest proteins preferentially incorporated Fe, with later proteins using Mn and
then Cu –the same sequence seen in the network graph – although metal information was
not explicitly encoded in the network topology. This network reinforces previous findings
from geochemistry (112) and biochemistry (104,105) that suggest that Fe proteins are
ancient, whereas Cu-bearing proteins evolved later, possibly related to the presence and
bioavailability of Fe and Cu in Earth’s oceans through deep time (113).

An important finding of these and other network applications is that graphs of evolving
systems (i.e. fossil taxa or mineral species) inevitably embed a time axis (Figure 20.8). This
discovery points to possible data-driven approaches to gaining insights into the evolution
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of specific protein groups. For example, clustering of spheres in the network provides a
means for reducing experimental bias in favor of generating a more naturally representative
set of nodes and edges, which can be further used to build evolutionary trees of redox
reactions on global timescales. These approaches can also inform synthetic biology,
directing possible experimental mutagenesis efforts for designing and evaluating evolu-
tionary intermediates that no longer exist in nature.

(a)

(b)

Figure 20.7 (a) Similarity network diagram of relationships among protein structures. The
4686 circular nodes represent oxidoreductases for which the three-dimensional structure is known.
The linking and therefore distribution of nodes relates to similarities in protein fold structure in a 15-
Å radius from the active metal-containing site. Nodes are colored according to the principal metal
cation at the active site. Network connectivity illustrates that functional similarity of spheres may be
traceable through evolutionary time (i.e. although metal information was not used in the building of
this network, the time-related sequence Fe to Cu is embedded). This network indicates that Fe
proteins are ancient, whereas Cu proteins evolved later. The pie chart (b) shows the relative
abundance of metals in the graph.
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Figure 20.8 Networks that illustrate structural or coexistence relationships among individual
members of an evolving system (i.e. mineral species, fossil taxa, or protein structures) inevitably
embed a time axis, even though no age information is used in the generation of the graphs. (a)
Phanerozoic fossil animals: nodes represent family-level taxa, while lines indicate coexisting fauna. The
network was partitioned using the Louvain (multilayer) algorithm for community detection (138),
resulting in the discovery of five modules, or “evolutionary paleocommunities.” An embedded time
axis is visible from the Cambrian to modern fauna and each partition represents a major extinction
event. (b) Plot of diversity (total number of genera) versus time for each of the modules in (a).
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The inherent flexibility of network approaches allows for the incorporation of additional
data, thus strengthening any inferences made. For example, as there are no protein fossils
that can be used to establish dates of redox protein existence, one reliable piece of
information that can be used for this purpose is transition metal availability, which would
drive the selection of the molecular functionality necessary for life. By matching the
currently existing microbiome molecular function (114) and metal cofactor annotations
with mineralogical and geochemical data, it is possible to reveal the relationships between
the presence and abundance of specific enzymatic functionalities and metal availabilities.
Functional annotations can thus be mapped to metal availability and, further, to the
corresponding evolutionary age. Additionally, using machine learning techniques to rec-
ognize patterns in molecular function to metal availability relationships, it is likely possible
to pinpoint any discrepancies between expectations and existing annotations, suggesting
areas for more extensive research. As a result, protein structure networks, in combination
with geochemical evidence, could provide a glimpse into the emergence and evolution of
life on our planet and an understanding of the principles that could govern life on other
planets.

20.4.2 Network Analysis of Extant Microbial Ecosystems: Geo–Bio
Interactions on Ecological Scales

Investigations of the relationships between individual microbial taxa, microbiomes, and
environmental conditions are complicated by the large number of contributing physical,
chemical, and biological parameters, culminating in a complexity that is not easily
representable by two-dimensional graphical methods. It has been suggested that new
analytical techniques will be necessary to explore the large data sets produced by high-
throughput DNA sequencing to discover new connections between microbiomes and the
environment (115). Quantitative gene content analysis of terrestrial and marine microbial
communities has already revealed habitat-specific fingerprints that reflect known charac-
teristics of the sampled environments (116). Metagenomic and amplicon sequencing of
diverse environments and microbial communities are now paving the way toward outlining
the global ecosystem network and the development of ecosystem-wide dynamic models
(117,118).

Network analysis and machine learning can be used to investigate microbial
communities from all types of ecosystems and are useful approaches for examining and
determining patterns in large, complex data sets, and they provide predictive power in the
absence of mechanistic models (115,119–121). Since microbes are notoriously difficult to
culture, the primary source of information on their diversity and evolution comes from the
environmental distribution of microbiome data (122,123). Metagenomics – the study of
genetic material obtained directly from environmental samples – has opened the door to the
incredible diversity of microbial communities in the biosphere. The large-scale analysis of
metagenomes, in concert with a wide range of environmental characteristics and geological
diversity, will allow for the identification of unknown geo–bio interactions in the near
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future. This opportunity may lay the foundations for better understanding the geosphere
and biosphere and their coevolution on this planet. As of the time of writing (January
2018), there were 6983 metagenomes available on the Department of Energy Joint
Genome Institute public database (https://img.jgi.doe.gov), covering a variety of environ-
ments. Identifying relationships among physical and chemical parameters, such as tem-
perature, pH, salinity, geochemistry, and the diversity in microbial communities, can reveal
microbial responses to changing environmental conditions, and such information is critical
to understanding microbial adaptations to different environments and their functions within
those environments. Many studies have already shown the strong links between environ-
mental conditions and microbial populations, a number of which did so with network
analytical approaches (115,118,122,124–131). We suggest that the application of advanced
analytical approaches to the microbial metagenomes and their corresponding environ-
ments, coupled with geochemical, geological, and mineralogical information, could trans-
form the way we understand the role of microbial diversity in ecosystems.

Sharing and relating data sets between different disciplines, however, remains a great
challenge. One way to deal with this challenge is through ensuring online availability of
data. Currently, large amounts of sequenced data that represent a substantial portion of the
total environmental diversity of Earth reside in online databases (e.g. MG-RAST, NCBI,
JGI IMG, CAMERA). However, the quality of the associated metadata is generally low,
with essential information like pH, temperature, salinity, redox state, and organic load
often missing (132). Moreover, the links among sequence data, metadata, and any geo-
chemical, geological, or other environmental data collected during the study are difficult or
impossible to establish. Numerous attempts are being made by the scientific community to
standardize the quality and type of metadata collected along with each sequenced sample in
order to increase interoperative power. For example, efforts from the Genomic Standard
Consortium (gensc.org) such as the Minimum Information about a Metagenomic Sequence
(133), initiatives like the Earth Microbiome Project (earthmicrobiome.org), and the release
of metadata-curated metagenomes (134) are pointing the metagenomics community in the
right direction. Pioneering data sets of interdisciplinary, colocated data have been collected
by the International Continental Drilling Programs (icdp-online.org), the International
Ocean Discovery Program (iodp.org), and the DCO Integrated Field Site Initiatives
(deepcarbon.net). These sampling programs will provide unprecedented environmental,
geological, and geochemical metadata to analyze along with the associated metagenomes.
Expansion of these efforts is crucial for advancing this important work in the future toward
understanding geo–bio interactions on a global scale.

Our ability to generate predictive models of the relationships between -omic data and
environmental data is further hindered by the varying data structures specific to the
different fields of study (135,136). The poor resolution of our current understanding of
the relationship between functional diversity and redundancy, biodiversity, ecosystem
roles, and niche partitioning also presents challenges. A possible way to overcome this
problem is by using predictive models that are not linked to specific hypothesis but take
advantage of big data approaches that allow data-driven discoveries. Tools such as network
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analysis and machine learning can identify hidden patterns in large-scale data and provide
predictive power in the absence of mechanistic models (115,119–121). Similar techniques
have been used in metagenomic modeling to predict microbial assemblages and their
metabolic properties (e.g. 113–115,137), and they can be applied to the investigation of
the interaction between the geosphere and biosphere.

Recently, we have attempted a preliminary exploration of large-scale patterns in the
relationships among oxidoreductase metalloproteins and the mineral diversity present at
the same location (Figure 20.9). Based on publicly available metagenomic data from

(a)

(b)

Figure 20.9 Bipartite networks of our preliminary analysis of geo–bio interactions based on 40 random
metagenomes downloaded from MG-RAST and the mineral composition of the same site obtained from
the Mindat database. (a) Bipartite network of the metalloprotein oxidoreductases (enzyme commission
EC1 class) and the sites where they were found (in black). Enzyme nodes sized according to their counts
and colored by their subclass. (b) Bipartite network of the mineral diversity at the same sites. Mineral
nodes in gray, sized according to their mineral diversity; site nodes in black.
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40 randomly selected microbial ecosystems (including samples from shallow-water and
deep-sea hydrothermal vents, hot springs, permafrost, mines, soils, arctic soils, marine
sediments, and salt marshes), our analysis reveals distinct patterns in the association
between specific metalloprotein functions and the mineral settings where those functions
are commonly abundant. In particular, geochemistry and redox conditions govern oxido-
reductase gene diversity distribution in the observed environments. The microbial commu-
nities of certain locations had few or no distinctively expressed oxidoreductase proteins
within the network, thus exhibiting overlap with other communities with similar environ-
mental conditions. However, microbial communities from most locations expressed unique
oxidoreductases that were not present in the communities of the other environments. This
information is crucial to understanding niche partitioning among environmental taxa and
may reveal key details regarding how environmental conditions and metal availability
shape microbial community function.

We expected a great deal of overlap in gene expression between the microbial popula-
tions of many environments as we observed in our initial analysis. These functions will
shed light on the expected and unexpected core functions of diverse communities. Add-
itionally, numerous genes that are exclusively expressed in particular environments or
under distinctive physical/chemical conditions will reveal geo–bio interactions that
evolved in systems that are ancient Earth analogs to the modern day. We conclude that
expanding data resources on microbial communities and ecosystems and better integration
with geochemical, mineralogical, and geological databases will provide opportunities for
documenting the effects of environmental parameters on gene distribution and functional
diversity.

20.5 Conclusions: The Future of Data-Driven Discovery

Among the DCO’s enduring legacies, and a tremendous opportunity for future advances, is
the continued development and exploitation of data resources in the geosciences and
biosciences. Our experiences over the decadal adventure of the DCO have convinced us
that further advances in data-driven discovery will rest on three coequal pillars. The first
ongoing demand is the creation and enhancement of comprehensive data resources, includ-
ing those in geochemistry, petrology, mineralogy, paleobiology, paleotectonics, microbiol-
ogy, proteomics, and other deep time aspects of carbon’s global cycles in space and time.

Hand in hand with database enhancement, we require the development and adaptation
of established and new methods for data analysis and visualization. Ongoing advances
include new techniques to exploit geochemical data, novel LNRE formulations designed
for specific applications to mineralogical and paleobiological systems, modified
approaches to visualizing networks of varied geological and biological systems, and
applications of affinity analysis to Earth systems.

Thirdly, data-driven discovery will advance through continued creative application of
data resources and analytical methods targeted to answer complex problems related to
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Earth’s evolution through space and time. Our ambitions for the coming years include:
estimating the erosional bias of the ancient rock record from differential mineral preserva-
tion through deep time; investigating the completeness of the fossil record with LNRE
methods applied to the Paleobiology Database (paleobiodb.org); creating interactive net-
works of all known mineral species, fossil genera, and microbes and their environmental
contexts; and applying affinity analysis to the discovery of new mineral and ore deposits.

The DCO has fostered the beginning of the era of data-driven discovery in carbon
mineral science and has promoted the collection and assembly of a wide range of data
resources. The DCO has employed existing analytical and visualization methods while
developing new approaches and has raised and refined a suite of fundamental questions
about Earth’s carbon from crust to core – its forms, movements, quantities, and origins.
Looking forward to the next decade of exploration, we predict that data-driven discovery
will play an ever-greater role in our emerging understanding of carbon in Earth.
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Questions for the Classroom

1 What are the “three pillars” of data-driven discovery and why are all three important?
2 What are some of the visualization methods that can enhance discovery and how

many different parameters can be displayed simultaneously with each of these
methods?

3 Why are time axes embedded in network graphs of evolving systems, even though no
age information is used in the generation of these graphs?

4 What was “Rodinia” and what is the evidence for its unique signature in Earth’s
history?

5 What are some of the preservational biases likely affecting the rock record and how
do these biases scale with time?

6 How many carbon mineral localities are in the MED today and how many of those
localities are dated? Which locality has the most carbon mineral species?

7 What are the biases in sampling the carbon minerals listed in the text and what are
additional biases not covered in the chapter?
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8 What is an LNRE distribution and why is it a useful model for mineral distributions?
9 To what other systems could you apply an LNRE model and associated accumulation

curve?
10 What factors might be important in describing a microbial ecosystem, such as a

community of microbes living beneath the ocean floor?
11 What is a metagenome and how is it sequenced? Why is shotgun metagenomics

used instead of pure cultures?
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