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Cyclin C mediates stress-induced mitochondrial 
fission and apoptosis
Kun Wang, Ruilan Yan*, Katrina F. Cooper, and Randy Strich
Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08055

ABSTRACT  Mitochondria are dynamic organelles that undergo constant fission and fusion 
cycles. In response to cellular damage, this balance is shifted dramatically toward fission. 
Cyclin C–Cdk8 kinase regulates transcription of diverse gene sets. Using knockout mouse 
embryonic fibroblasts (MEFs), we demonstrate that cyclin C directs the extensive mitochon-
drial scission induced by the anticancer drug cisplatin or oxidative stress. This activity is inde-
pendent of transcriptional regulation, as Cdk8 is not required for this activity. Furthermore, 
adding purified cyclin C to unstressed permeabilized MEF cultures induced complete mito-
chondrial fragmentation that was dependent on the fission factors Drp1 and Mff. To regulate 
fission, a portion of cyclin C translocates from the nucleus to the cytoplasm, where it associ-
ates with Drp1 and is required for its enhanced mitochondrial activity in oxidatively stressed 
cells. In addition, although HeLa cells regulate cyclin C in a manner similar to MEF cells, U2OS 
osteosarcoma cultures display constitutively cytoplasmic cyclin C and semifragmented mito-
chondria. Finally, cyclin C, but not Cdk8, is required for loss of mitochondrial outer membrane 
permeability and apoptosis in cells treated with cisplatin. In conclusion, this study suggests 
that cyclin C connects stress-induced mitochondrial hyperfission and programmed cell death 
in mammalian cells.

INTRODUCTION
Mitochondria are dynamic organelles that undergo fusion and fis-
sion cycles that are controlled by conserved molecular machines 
consisting of dynamin-like GTPases (for review, see Westermann, 
2010b). Under normal growing conditions, mitochondria are usually 
observed in a connected, reticular morphology. Mitochondrial fu-
sion requires two GTPases, mitofusin 1 (Mfn1) and mitofusin 2 
(Mfn2), located in the mitochondrial outer membrane (MOM; for 
review, see Chan, 2012). The mitochondrial inner membrane fusion 

is mediated by a third GTPase, OPA1 (Olichon et al., 2003). Another 
GTPase, termed Drp1, mediates mitochondrial fission. For fission, 
GTP-bound Drp1 is recruited to the mitochondrial outer membrane, 
where it forms atypical spiral filaments around the mitochondria. 
Then, GTP hydrolysis induces ring constriction and subsequent scis-
sion of the mitochondria (Smirnova et al., 2001; Mears et al., 2011). 
Drp1 is predominantly cytosolic under normal growth conditions 
but is recruited to mitochondria via membrane-bound receptors 
hFis1 (Yoon et al., 2003) and Mff (Otera et al., 2010), although Mff 
appears to play the dominant role (Loson et al., 2013; Richter et al., 
2014). In addition, MiD49 and MiD51 (Palmer et al., 2011a) also can 
recruit Drp1 to the mitochondria (Loson et al., 2013; Richter et al., 
2014). Of interest, MiD49 or MiD51 overexpression exhibited a 
dominant-negative effect on the fission machinery, resulting in elon-
gated mitochondria (Palmer et al., 2011a; Liu et al., 2013), which is 
dependent on either mitofusin (Palmer et al., 2013). These findings 
indicate that mitochondrial dynamics is finely tuned, and this bal-
ance can be dramatically shifted in either direction through manipu-
lation of the fission or fusion machinery.

Mitochondrial dynamics play an important role in many physio-
logical processes, including the overall health of the organelle. For 
example, fission is required to eliminate defective mitochondria via 
mitophagy, whereas fusion facilitates mitochondrial DNA and mem-
brane repair (Chan, 2012). In addition, loss of mitochondrial fission 
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kinases (Cdks; Glotzer, 1995). As indicated 
by their name, cyclins display a transient ex-
pression pattern, with their levels peaking at 
specific stages during mitotic cell division 
(reviewed in Murray, 2004). However, addi-
tional cyclin–Cdk kinases (e.g., cyclin C–
Cdk8, cyclin H–Cdk7, and cyclin T–Cdk9) 
were subsequently discovered that regulate 
transcription rather than cell cycle progres-
sion (Dynlacht, 1997; Bregman et al., 2000). 
This group shares several characteristics, in-
cluding association with the RNA poly-
merase II machinery (Bjorklund and Kim, 
1996; Conaway and Conaway, 2011) and 
the fact that the cyclin levels do not fluctu-
ate during the cell cycle (Lew et al., 1991; 
Cooper et  al., 1997). Of these cyclin–Cdk 
pairs, cyclin C–Cdk8 shares the most se-
quence conservation from yeast to human 
(Lolli, 2010). The present study reports that 
in response to oxidative stress or anticancer 
drug treatment, a portion of cyclin C translo-
cates from the nucleus to the mitochondria. 
Further studies revealed that cyclin C is both 
necessary and sufficient for stress-induced 
hyperfission in a manner independent of 
Cdk8 activity. These results identify a new 
role for cyclin C as a key mediator of stress-
activated mitochondrial fragmentation.

RESULTS
Cyclin C relocalizes to the 
mitochondria after stress
We recently described a new role for the 
yeast cyclin C in the induction of mitochon-
drial fission after exposure to hydrogen per-
oxide (Cooper et al., 2012, 2014). This role 
was direct, as cyclin C translocated from the 
nucleus to sites of fission at the mitochon-
dria. However, given the significant differ-
ences between the yeast and mammalian 
fission processes (Adachi and Sesaki, 2014), 
it was unclear whether cyclin C performed a 

similar function in cells of higher organisms. To determine whether 
this role is conserved, we monitored the subcellular localization of 
cyclin C by indirect immunofluorescence (IF) in immortalized mouse 
embryonic fibroblast (MEF) cultures. As expected, cyclin C localized 
predominantly in the nuclei in the absence of stress (Figure 1A, top). 
However, by 4 h after 0.4 mM H2O2 treatment, 77% (±9; n = 6) of the 
culture exhibited a portion of cyclin C in the cytoplasm (Figure 1A, 
bottom). To determine whether cyclin C was directed to a particular 
cytoplasmic address, we also treated the cells with a mitochondrion-
specific stain (MitoTracker Red). As expected, the mitochondrial 
morphology changed from reticular to fragmented after H2O2 treat-
ment in 93% (±5, n = 4) of the cells. Of importance, this analysis re-
vealed that 100% of the cells exhibiting cytoplasmic cyclin C dem-
onstrated its partial colocalization with the mitochondria (arrows, 
Figure 1A, bottom). Quantifying cyclin C-mitochondrial colocaliza-
tion revealed a statistically significant increase in stressed cells. In 
addition, cyclin C signals were observed independent of the mito-
chondria, suggesting that cyclin C has additional cytoplasmic desti-
nations and/or transiently associates with this organelle.

in mouse knockout models is attributed to reduced neural activity 
and increased sensitivity to cell death stimuli (Ishihara et al., 2009; 
Wakabayashi et al., 2009). Moreover, fusion defects are associated 
with the human diseases optic atrophy (Alexander et  al., 2000; 
Delettre et al., 2000) and the neurodegenerative disorder Charcot–
Marie–Tooth type 2 (for review, see Kageyama et al., 2011). In addi-
tion to normal cellular development, extensive mitochondrial fission 
is also an early event in the intrinsic mitochondria-dependent pro-
grammed cell death (PCD) pathway (Cheung et al., 2007). For ex-
ample, inactivation of Drp1, or expression of a dominant-negative 
allele of this GTPase, protected cells from PCD (Frank et al., 2001; 
Arnoult, 2007) even though the proapoptotic protein Bax was still 
efficiently recruited to the mitochondria (Karbowski et  al., 2002). 
Consistent with a proapoptotic role for fission, cell lines lacking fu-
sion machinery components exhibit both constitutive mitochondrial 
fragmentation and hypersensitivity to cell death signals (Lee et al., 
2004).

The cyclin protein family was initially identified as promoters of 
cell cyclin progression that bound and activated cyclin-dependent 

FIGURE 1:  Cyclin C relocalizes to the mitochondria after stress. (A) Representative images of 
cyclin C localization as monitored by indirect IF in MEF cultures before and after H2O2 treatment 
(0.4 mM for 4 h). Mitochondria and nuclei were visualized using MitoTracker Red and DAPI 
staining, respectively. Mitochondria–cyclin C colocalization was calculated using the PCC under 
the conditions indicated. Bars indicate mean (±SEM) from three experiments. *p = 0.05, 
**p = 0.001. Inset, 3× magnified image; arrows indicate mitochondria–cyclin C colocalization. 
(B) Western blot analysis of similar cell equivalents of mitochondrial fractions prepared from 
immortalized MEF cells before and after 0.4 mM H2O2 treatment. Por1 levels were monitored to 
determine mitochondrial loading. Cyclin C signal intensity relative to Por1 averaged from three 
experiments (SEM ≤10%) is indicated below, with untreated sample set to 1. Molecular weight 
standards (kilodaltons) are indicated on the left. (C) The mitochondrial fractions described in B 
were treated with proteinase K (+) or buffer alone (–) as indicated. Cox4 levels served as loading 
control for mitochondria. (D) Cdk8 localization in MEF cells treated as described in A. (E) A 
wild-type MEF culture was incubated with the caspase inhibitor AC-DEVD-CHO (20 μM) for 1 h 
and then treated with cisplatin (20 μM) for 24 h. MitoTracker Red was added 30 min before 
fixation. Cyclin C and nuclei were identified as in A.
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temperature/atmosphere-controlled chamber and subjected to 
FRAP analysis after H2O2 treatment. In two separate trials, the H2O2-
treated CNCC−/− MEF cells exhibited a faster recovery after photo-
bleaching compared with the control cells (Figure 2D). Taken to-
gether, these experiments indicate that cyclin C is required for 
extensive mitochondrial fission after stress. To determine whether 
Cdk8 also mediates stress-induced mitochondrial fragmentation, 
we repeated these experiments with wild-type MEF cells knocked 
down for Cdk8 (Figure 2E). The analysis of mitochondrial morphol-
ogy revealed no reduction in stress-induced hyperfission when Cdk8 
levels were reduced compared with wild type (Figure 2F). These re-
sults indicate that cyclin C, but not Cdk8, is required for stress-acti-
vated mitochondrial fragmentation.

Cyclin C is sufficient to induce mitochondrial fragmentation
The foregoing results indicate that cyclin C is necessary for stress-
induced hyperfission. The next question we addressed was whether 
cyclin C was sufficient to induce fission or whether additional stress-
specific signals were required. To examine this issue, we used per-
meabilized CCNC−/− MEF cells and Escherichia coli–purified human 
glutathione S-transferase (GST)–cyclin C (Hs GST-cyclin C). The 
CCNC−/−-null cell line was used to avoid any contribution from en-
dogenous cyclin C. GST-cyclin C or GST (∼4 nM) was added to digi-
tonin-treated cells, and mitochondrial morphology was monitored 
in living cells by confocal microscopy. Images were collected for 
18 min at 2-min increments. Before addition of the fusion proteins, 
the percentage of cells exhibiting predominantly fragmented mito-
chondria was calculated for each dish. Cells were considered to 
have fragmented mitochondria if they did not possess ≥10 mito-
chondria with a length >10 μM. As indicated in Figure 1, 8–10% of 
the cells exhibited a fragmented morphology before treatment. De-
convolved images reveled little detectable changes in mitochon-
drial morphology in the GST-treated cultures up to 18 min (9.3%; 
Figure 3A, left). However, significant fragmentation of the mitochon-
dria was observed when the human GST-cyclin C was added to cells 
beginning by 10 min, with 94% of the culture exhibiting complete 
fragmentation by 18 min (arrows, Supplemental Figure S3, middle, 
for a full-field view). These results indicate that cyclin C is sufficient 
to induce mitochondrial fission without an added stress signal. To 
determine whether this function is conserved, we also examined the 
activity of the yeast cyclin C fused to GST (GST-cyclin C Sc). The 
yeast fusion protein was as efficient in inducing mitochondrial fission 
as the human cyclin C (Figure 3A, right), indicating that this activity 
is conserved. To determine whether the quantity of GST-cyclin C 
added was rate limiting, we repeated this experiment with twice the 
GST-cyclin C Hs concentration as before. These studies revealed a 
more rapid response, with total mitochondrial fragmentation occur-
ring by 8 min (Figure 3B). These results suggest that the relocaliza-
tion rate of cyclin C may help the cell regulate the kinetics of mito-
chondrial fission.

Previous studies found that Drp1 function is controlled by several 
posttranslational modifications, such as phosphorylation (Palmer 
et al., 2011b), SUMOylation (Braschi et al., 2009; Guo et al., 2013), 
and ubiquitylation (Horn et al., 2011). For phosphorylation, both in-
hibitory (Chang and Blackstone, 2007; Cribbs and Strack, 2007) and 
stimulatory (Taguchi et al., 2007) modifications were identified. For 
example, cyclin B–Cdk1 phosphorylation at the G2/M boundary 
stimulates Drp1 activity to induce fission to promote mitochondrial 
partitioning during mitosis (Taguchi et al., 2007). This modification is 
clearly observed in cells arrested at the G2/M boundary after addi-
tion of the microtubule-destabilizing agent nocodazole (Figure 3C). 
Therefore one possibility is that cytoplasmic cyclin C is now free to 

To further investigate cyclin C–mitochondria interaction, we con-
ducted subcellular fractionation in extracts prepared from MEF cells 
before and after H2O2 treatment. These studies revealed a modest 
(2.2-fold) enrichment of cyclin C in the mitochondrial fraction only in 
the H2O2-treated cells (Figure 1B). A similar enrichment was ob-
served for the yeast cyclin C (Cooper et al., 2012, 2014). However, 
unlike the yeast cyclin C (Cooper et al., 1997), the mouse protein is 
not subjected to proteolysis after stress (Supplemental Figure S1). 
Cyclin C was sensitive to proteinase K digestion in these mitochon-
drial fractions (Figure 1C), suggesting that it localized to the outer 
mitochondrial membrane. However, some residual cyclin C was still 
detected after proteinase K treatment, leaving open the possibility 
that a portion of mitochondrial cyclin C is internalized. In addition, 
indirect immunofluorescence revealed a very low cytoplasmic Cdk8 
signal after stress application (Figure 1D). These studies indicate 
that cyclin C, but not Cdk8, exhibits stress-induced relocalization to 
the mitochondria and perhaps other cytoplasmic addresses.

One possible explanation of the results just described is that, 
due to its relatively small size (33 kDa), cyclin C may simply leak out 
of the nucleus due to nuclear breakdown associated with the apop-
totic response. To test this possibility, we treated MEF cells with a 
caspase 3 inhibitor (Ac-DEVD-CHO) to prevent H2O2-induced PCD 
progression and loss of nuclear integrity. Similar to the results in 
Figure 1A, mitochondrial fragmentation (97% ± 0.5; n = 3) and cyclin 
C relocalization (83% ± 4; n = 3) were observed in these cells (see 
Figure 1E for a representative image). These results indicate that 
cyclin C relocalization and mitochondrial fragmentation do not re-
quire caspase activity.

Cyclin C is required for stress-induced mitochondrial fission
The mitochondrial localization of cyclin C prompted the question of 
whether this factor was involved in the extensive mitochondrial re-
modeling that occurs in stressed cells. To address this question, we 
constructed a floxed allele of cyclin C (CCNCfl) with Cre recombina-
tion sites flanking exons 2–4 that encode most of the cyclin box 
domain responsible for Cdk8 interaction (Supplemental Figure S2; 
see Materials and Methods). An immortalized homozygous CCNC 
deletion (CCNC−/−) MEF cell line was generated (Figure 2A). Gross 
analysis of this CCNC−/− cell line did not reveal any significant differ-
ences in growth rate, cell morphology, or return to growth kinetics 
after dilution and replating (unpublished data). Therefore cyclin C is 
dispensable for mitotic cell division.

To trigger mitochondrial hyperfission, the cells were treated with 
the anticancer drug cisplatin. Cisplatin was chosen because it pro-
vides a reproducible cellular response but still operates by generat-
ing reactive oxygen in the nucleus to induce DNA damage (for re-
view, see Deavall et al., 2012). In the wild-type cell line, an eightfold 
increase in cells containing fragmented mitochondrial was observed 
after drug treatment (Figure 2B). Conversely, no significant increase 
in the percentage of cells exhibiting the hyperfission phenotype was 
observed in CCNC−/− MEF cells compared with the untreated con-
trol. However, mitochondrial morphology in the stressed CCNC−/− 
cells appeared less regular than in the untreated control, with po-
tential constrictions (arrows, Figure 2C).

To quantify the extent of mitochondrial fission in a different way, 
we conducted a fluorescence recovery after photobleaching (FRAP) 
assay. This approach measures mitochondrial connectivity by deter-
mining the rate at which a photobleached mitochondrial section 
gets repopulated by unbleached fluorescent molecules from con-
nected mitochondria (Cleland et al., 2011). The faster the photo-
bleached region is repopulated, the more connected are the mito-
chondria. Wild-type or CCNC−/− MEF cultures were maintained in a 
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Cyclin C–induced fission operates through the 
Drp1-Mff pathway
Next we assessed whether GST-cyclin C was functioning though the 
known mitochondrial fission pathway. As outlined earlier, fission re-
quires recruitment of the dynamin-like GTPase Drp1 to the mito-
chondria. To determine whether Drp1 is necessary for cyclin C-in-
duced fission, we added GST-cyclin C to permeabilized cells treated 
with the reported IC50 concentration of Mdivi-1, a specific inhibitor 
of the GTPase Drp1 (Cassidy-Stone et al., 2008). This compound 
effectively inhibits Drp1 function in human cell lines (Cui et al., 2010), 
as well as in MEF cultures (Vazquez-Martin et al., 2012). Compared 
to untreated controls, fragmentation was reduced in these cells, 

interact with another Cdk to modify Drp1 and induce fission. How-
ever, we find no increase in Drp1 phosphorylation at the activating 
serine (Ser-616) in HeLa cells subjected to H2O2 or in permeabilized 
CCNC−/− MEF cells treated with GST-cyclin C (Figure 3D). These re-
sults indicate that enhanced Ser616 phosphorylation is not required 
for elevated Drp1 activity in stressed cells. Quantitation of the Ser-
616 phosphorylation signal indicated that this modification was re-
duced in permeabilized cells treated with GST-cyclin C (Figure 3D). 
Although we have no clear role for cyclin C in controlling Drp1 phos-
phorylation, one possible explanation is that the accelerated fission 
in these experiments results in dephosphorylation of Ser-616, help-
ing to attenuate mitochondrial fragmentation.

FIGURE 2:  Cyclin C is required for stress-induced mitochondrial fission. (A) Western blot analysis of cyclin C levels in 
wild-type and CCNC−/− MEF cells (see Supplemental Figure S2). Cdk8 levels were monitored as a loading control. 
Mitochondrial morphology was monitored in CCNC+/+ (B) or CCNC−/− (C) MEF cells before and 24 h after 20 μM 
cisplatin treatment. Percentages of cells with highly fragmented mitochondria (mean ± SEM, n = 3). Enlarged images are 
indicated by the boxes. Arrows indicate regions of intermediate phenotype. (D) FRAP studies were conducted on 
wild-type and CCNC−/− MEF cells after H2O2 treatment (0.4 mM). Curves represent separate experiments in which at 
least 40 individual mitochondria were sampled (mean ± SEM). (E) Western blot analysis of wild-type MEF cells treated 
with either scrambled (sc) or CDK8-specific siRNAs. β-Actin levels were used as a loading control. Ø, mock transfection. 
(F) Mitochondrial morphology of CDK8 siRNA–transfected cells analyzed as described in B.
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was significantly reduced. However, the mitochondria were pro-
tected from GST-cyclin C–induced fission in the double-mutant cell 
line (Figure 4B, right). These results indicate that cyclin C uses both 
hFis1 and Mff to mediate fission in this assay, with Mff playing the 
predominant role. In support of this model, cyclin C–mitochondria 
colocalization is significantly reduced in stressed (0.4 H2O2) cells 
lacking Mff and hFis1 function (Figure 1A). Taken together, our 
results indicate that cyclin C operates predominantly through 
Mff-Drp1 to direct mitochondrial fragmentation in these assays.

Cyclin C is required for stress-induced mitochondrial 
accumulation of Drp1
The results just described indicate that cyclin C induces mitochon-
drial fission through a Drp1-dependent pathway. We next ad-
dressed whether cyclin C controls mitochondrial fission by regulat-
ing Drp1. In response to stress, Drp1 localization changes from 

with long mitochondrial filaments still observed in nearly half of the 
cells after 18 min (white arrows, Figure 4A). These results indicate 
that Drp1 is required for GST-cyclin C–induced fission.

Drp1 is recruited to the mitochondria by a collection of outer 
membrane receptors (Mff, hFis1, MiD49, MiD51; Otera et al., 2010; 
Loson et al., 2013; Palmer et al., 2013), with Mff playving the major 
role in this process. To determine whether cyclin C-induced fission 
operates through one or more of these receptors, the we repeated 
permeabilized cell assay with MEF cell lines deleted for hFis1, Mff, 
or both genes. Without added GST-cyclin C, these cell lines exhib-
ited extended mitochondrial morphology, with this phenotype be-
ing most pronounced in the double mutant (Loson et  al., 2013; 
Figure 4B, top). The addition of GST-cyclin C induced robust fission 
in the hFis1−/− cell line within 20 min (white arrows, Figure 4B, left). 
Similarly, fission was observed in the Mff−/−-knockout cell line 
(Figure 4B, middle), although the total amount of fragmentation 

FIGURE 3:  Cyclin C is sufficient to induce mitochondrial fission in the absence of stress. (A) Live-cell imaging of 
CCNC−/− MEF cells permeabilized by digitonin and then incubated with ∼4 nM of GST or human (Hs) or yeast (Sc) 
GST-cyclin C for the times indicated. Magnified regions (zoom) are indicated by the boxes. Arrows indicate regions of 
interest described in the text. GST alone controlled for the effects of permeabilization on mitochondrial morphology. 
Percentage of each population exhibiting a fragmented phenotype by 18 min (mean ± SEM). (B) Experiment in A 
repeated with 8 nM GST-cyclin C. (C) HeLa cells after a thymidine block/release protocol were treated with nocodazole 
(NZ; 0.1 μg/ml) for 12 h to arrest cells in G2. Western blot analysis of whole-cell extracts probed with the antibodies 
indicated to determine Ser-616 phosphorylation status. β-Actin levels were used as a loading control. (D) Western blot 
analysis of Ser-616 phosphorylated Drp1 in HeLa cells exposed (4 h) to differing concentrations of H2O2 or 
permeabilized CCNC−/− MEF cells incubated 20 min with GST or GST-cyclin C as indicated. The blot was stripped and 
reprobed for Drp1 and β-actin for loading controls. The intensities of the phospho-Drp1 signals relative to Drp1 were 
determined by phosphorimaging for each lane.
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(Figure 5C). This reduced association was 
also observed using fluorescence micros-
copy (Figure 5B, bottom). Similarly, Drp1 
enrichment in mitochondrial fractions de-
rived from stressed cells was present, but 
reduced, in CCNC−/− cells compared with 
wild type (Figure 5D). Taken together, 
these results indicate that cyclin C is re-
quired for efficient relocalization of Drp1 
from the cytoplasm to the mitochondria. 
However, it is important to note that a sta-
tistically significant increase in Drp1 asso-
ciation with the mitochondria was still ob-
served in stressed CCNC−/− cells. This 
observation suggests that cyclin C may be 
promoting mitochondrial fission through a 
mechanism other than simple targeting of 
Drp1 to the mitochondria (see Discussion).

Stress-activated subcellular 
relocalization of cyclin C in HeLa cells
The physiology of transformed versus non-
transformed cells differs markedly. For ex-
ample, elevated internal reactive oxygen 
species (ROS; Trachootham et al., 2006) and 
alternative carbon utilization pathways 
(Warburg, 1956) often distinguish trans-
formed from normal cells. To determine 
whether stress-induced cyclin C localization 
occurred in human tumor cell lines, we visu-
alized endogenous cyclin C localization by 
IF in H2O2-stressed HeLa cells. In the ab-
sence of stress, cyclin C displayed diffuse 
nuclear staining, as expected for a transcrip-
tion factor (Figure 6A, top). However, unlike 
MEF cultures, a portion of cyclin C was ob-
served as small cytoplasmic punctate foci 
even under normal culture conditions 
(Figure 6A, boxed region). Increased magni-
fication revealed that cyclin C was associ-
ated with the mitochondria (arrow), but 
much of the signal observed was indepen-
dent of the mitochondria. H2O2 addition 
enhanced mitochondrial fragmentation, al-
though not as dramatically as observed in 
MEF cells (Figure 6A, bottom). Moreover, 

cyclin C foci were more aggregated in the cytoplasm and displayed 
clear association with the ends of the mitochondria (arrows). Similar 
to MEF cultures, Cdk8 remained nuclear in H2O2-treated HeLa cells 
(Figure 6B). These findings indicate that cyclin C relocalization to the 
mitochondria after stress is also observed in HeLa cells.

The absence of a predicted mitochondrial signal sequence indi-
cated that translocation of cyclin C to the mitochondria occurred 
through a nonsecretory pathway. The tumor suppressor p53 also 
displays mitochondrial translocation in response to DNA damage 
(Murphy et al., 2004) through a mechanism sensitive to the Hsp70 
chaperone inhibitor pifithrin-μ (PES; Strom et al., 2006; Leu et al., 
2009). To determine whether a similar strategy is used to relocalize 
cyclin C from the nucleus to the cytoplasm, we added PES to HeLa 
cells before H2O2 addition. Without PES, cyclin C demonstrated en-
hanced colocalized with the mitochondria after H2O2 treatment 
(Figure 6C). However, pretreatment with PES reduced mitochondrial 

mostly cytosolic to distinct foci at sites of fission (Frank et al., 2001). 
As shown in Figure 5A, wild-type CCNC+/+ MEF cells treated with 
cisplatin displayed Drp1 accumulation at the mitochondria, espe-
cially those ringing the nucleus. This change in mitochondrial colo-
calization can be visualized by profiling the relative Drp1 and mito-
chondrial signals (Figure 5A, right). Not only do the mitochondrial 
and Drp1 signals demonstrate a more positive correlation after cis-
platin treatment, the widths of the foci increased as well, suggest-
ing Drp1 aggregation. This increase in Drp1–mitochondria colo-
calization was confirmed calculating the Pearson colocalization 
coefficient (PCC) for these experiments (Figure 5C).

Next we followed Drp1–mitochondria association in CCNC−/− 
MEF cells. Before cisplatin treatment, Drp1 displayed mitochondrial 
colocalization similar to wild type (Figure 5, B, top, and C). In cispla-
tin-treated CCNC−/− cultures, a significant reduction in Drp1–mito-
chondria colocalization was observed compared with wild type 

FIGURE 4:  Cyclin C induces mitochondrial fragmentation through the normal fission machinery. 
(A) CCNC−/− MEF cells with our without Mdivi-1 treatment (50 μM) for 30 min before digitonin 
permeabilization and incubation with human GST-cyclin C for the times indicated. Arrows 
indicate regions of the mitochondria refractory to fission. (B) Representative images of MEF cells 
with the indicated genotypes before (top) and after (bottom) addition of GST-cyclin C. Arrows 
indicate regions of the mitochondria undergoing fission. Percentage of cells exhibiting a fission 
phenotype is indicated with corresponding p values.
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visualized than in HeLa cells. Somewhat similar to HeLa cells, a por-
tion of cyclin C was observed in the cytoplasm before H2O2 addition 
(Figure 7A). However, when the U2OS cells were counterstained 
with MitoTracker Red, cyclin C exhibited extensive association with 
the mitochondria (arrows, Figure 7A). This observation was consis-
tent throughout the culture (see Supplemental Figure S4 for full-
field image). In addition, cyclin C associated with regions within this 
linear structure representing either potential sites of fission (white 
arrows) as determined by constriction of the MitoTracker signal or 
actual scission points (yellow arrows). These findings suggest that 

association of cyclin C after H2O2 stress (Figure 6C, bottom). These 
findings suggest that a similar pathway promotes cyclin C and p53 
mitochondrial localization after cellular damage.

Cyclin C displays constitutive cytoplasmic localization in 
U2OS cells
To determine whether cyclin C translocation was a more general 
aspect of the oxidative stress response, we examined its subcellular 
localization in the U2OS osteosarcoma cell line. We chose this cell 
line because we found that individual mitochondria are more easily 

FIGURE 5:  Cyclin C is required for normal stress-induced mitochondrial accumulation of Drp1. (A) Representative 
images of Drp1 in wild-type MEF cells before and after cisplatin (20 μM) treatment by IF. Arrows indicate the 
cytoplasmic paths used for pixel profiling of Drp1 and mitochondrial signals shown on the right. (B) Experiments 
described in A repeated with CCNC−/− cells. (C) PCC for Drp1–mitochondria colocalization determined from three 
independent experiments. Mean (±SEM) and p values. (D) Enriched mitochondrial fractions prepared from wild-type and 
CCNC−/− cells before and after H2O2 exposure (0.4 mM, 2 h) were probed for the presence of Drp1 and cytochrome c. 
Cox4 levels were monitored to ensure equal mitochondrial loading.
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addition, although mitochondrial fission is occurring in these un-
stressed cells, more extensive fragmentation is observed after H2O2 
addition, suggesting that an additional stress signal is required for 
full fission to occur.

Drp1 and cyclin C associate in vivo
The finding that cyclin C is required for normal recruitment of Drp1 
to the mitochondria raised the question of whether cyclin C regu-
lated this process through a direct or an indirect mechanism. We 
next used coimmunoprecipitation studies to address this question. 
Our initial attempts using endogenously expressed proteins in MEF 
cells were unsuccessful at detecting cyclin C and Drp1 coimmuno-
precipitation (unpublished data). Studies in both yeast and mam-
malian cells found that either overexpression or cross-linking was 
required to detect interactions between components of the fission 
machinery (Bhar et al., 2006). However, cyclin C overexpression in 
MEF cells was toxic, requiring use of a different cell model. We were 
able to stably introduce a hemagglutinin (HA) epitope–tagged cy-
clin C expression plasmid into the U2OS osteosarcoma cell line. This 
cell line was transiently transfected with a plasmid expressing YFP-
Drp1. Soluble extracts prepared from cultures before and after H2O2 
treatment were immunoprecipitated with the HA monoclonal anti-
body (mAb) and the immunoprecipitates probed for the presence of 
YFP-Drp1. YFP-Drp1 was found in the HA immunoprecipitates 
dependent on the presence of HA-cyclin C (Figure 7E, compare 
lanes 6 and 7). These findings indicate that cyclin C associates with 
Drp1 in U2OS cells. Of importance, as indicated by the immunofluo-
rescence studies, cyclin C–Drp1 interaction was detected in extracts 
prepared from both stressed and unstressed cultures (lanes 7 and 8). 
Consistent with our results in permeabilized MEF cultures, these 

cyclin C mediates mitochondrial fission in U2OS cells without add-
ing an exogenous stressing agent. However, the mitochondria ap-
peared to be retained in an overall structure, as suggested by the 
linear distribution of the MitoTracker Red signal. However, after oxi-
dative stress, the mitochondria become more fragmented and ex-
hibit more disorganized puncta typical for stress-induced hyperfis-
sion (yellow arrow, Figure 7B). In addition, more independent 
mitochondrial (red arrow) and cyclin C (green arrow) signals are seen 
in these samples compared with untreated cells. These results sug-
gest that cyclin C association with the mitochondria is not sufficient 
for complete fragmentation in this cell line. However, the addition of 
a stress signal promotes fission and perhaps cyclin C release from 
the mitochondria.

To explore further the finding that cyclin C does not induce com-
plete fission in U2OS cells, we next determined whether cyclin C 
associated with Drp1 in this cell type. Initially, the U2OS cell line was 
transiently transfected with a plasmid expressing yellow fluorescent 
protein (YFP)–Drp1. These cells were subjected to H2O2 stress or left 
untreated and cyclin C localization determined by IF. Fluorescence 
microscopy revealed a close association between cyclin C and YFP-
Drp1 in unstressed cultures (yellow arrows, Figure 7C). In response 
to H2O2, the colocalization between these two proteins continued, 
with the foci becoming larger, suggesting a concentration of these 
factors. These results indicate that cyclin C associates with Drp1 in 
stressed and unstressed U2OS cells. We next tested Drp1–mito-
chondria colocalization in U2OS cells before and after H2O2 expo-
sure. In the absence of stress, Drp1 was observed extensively local-
ized to linearly organized mitochondrial filaments (Figure 7D). In 
many instances, Drp1 appeared to be at sites of fission, based on 
the constriction of the MitoTracker Red signal (yellow arrows). In 

FIGURE 6:  Characterization of cyclin C relocalization in stressed HeLa cells. (A) Subcellular localization of cyclin C, the 
nucleus, and mitochondria was determined in HeLa cell cultures before and after H2O2 addition (0.4 mM, 4 h). Arrows in 
the deconvolved images indicate points of interest discussed in the text. The zoom images are indicated by the boxes. 
(B) Cdk8, nuclear, and mitochondria subcellular localization in HeLa cells before and after H2O2 (0.4 mM) stress as 
determined by fluorescence microscopy. (C) The Hsp70 chaperone inhibitor PES (10 μM) and/or H2O2 (0.4 mM) was 
added to HeLa cultures as indicated. Representative images of cyclin C, mitochondrial, and nuclear localization were 
examined by fluorescence microscopy. Merged and enlarged (indicated by boxes) images. PCC was determined for 
cyclin C–mitochondria colocalization in the cytoplasm (mean ±SEM). p = 0.01 for stressed cells with and without PES; 
n indicates number of fields examined.
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CNCC−/− cultures, indicating that loss of cyclin C alone does not 
alter PCD rates (Figure 8A). However, after cisplatin treatment, 
CCNC−/− cells exhibited a significant reduction in annexin V signal 
compared with the CCNC+/+ control. To verify that this phenotype 
was due to the loss of cyclin C activity, we repeated this experiment 
with the null CCNC−/− cell line transfected with an enhanced green 
fluorescent protein (EGFP)–cyclin C expression plasmid. The per-
centage of the population that was double positive for EGFP and 
annexin V staining was determined. These studies found that EGFP-
cyclin C complimented the cisplatin resistance phenotype, indicat-
ing that cyclin C is required for normal PCD efficiency in MEF cells. 
Similarly, CCNC−/− MEF cells were more resistant to H2O2 exposure 
than wild-type controls (Figure 8B). These results indicate that cyclin 
C is required for normal PCD efficiency in response to two different 
stimuli.

findings indicate that cytoplasmic localization is sufficient to pro-
mote cyclin C–Drp1 interaction and subsequent fission. Therefore 
the decision to release cyclin C from the nucleus represents an 
important control point regulating stress-induced mitochondrial 
fission.

Cyclin C is required for normal stress-induced apoptosis
Previous studies in yeast and mammalian cell culture systems found 
that failure to induce mitochondrial hyperfission is associated with 
resistance to exogenous cytotoxic compounds (Fannjiang et  al., 
2004; Lee et al., 2004; Cooper et al., 2014). To determine whether 
the murine cyclin C regulates programmed cell death, we treated 
wild-type and CCNC−/− MEF cells with 20 μM cisplatin for 24 h. 
Before drug treatment, no differences in the percentage of the an-
nexin V–positive cells were observed between CCNC+/+ and 

FIGURE 7:  Constitutive cytoplasmic localization of cyclin C in U2OS cells. (A) Subcellular localization of cyclin C, 
mitochondria, and nuclei in unstressed U2OS cells. White and yellow arrows in enlarged images indicate cyclin C 
localization at potential sites of fission (constricted MitoTracker signal) and the ends of mitochondria, respectively. 
(B) Experiments in A after H2O2 treatment (0.4 mM). Green and red arrows indicate cyclin C and mitochondrial signals 
independent of each other. Yellow arrows indicate merger of the two signals. (C) Colocalization of YFP-Drp1 and cyclin C 
in U2OS cells before and after H2O2 stress as indicated. Yellow arrows indicate overlap between the two signals in both 
treated and untreated cells. (D) Endogenous Drp1 localization was monitored by IF before and after H2O2 (0.4 mM, 3 h) 
treatment. Boxed regions in the merged panels are enlarged in the bottom images. Yellow arrows indicate Drp1–
mitochondria association at fission sites based on constriction of the MitoTracker Red signal. (E) Extracts prepared from 
stressed or untreated U2OS cells expressing HA-cyclin C and/or YFP-Drp1 as indicated were either subjected to straight 
Western blot analysis (50 μg) and probed with the antibodies indicated (lanes 1–4) or immunoprecipitated (IP, 250 μg) 
with HA mAb and the immunoprecipitates probed for the indicated proteins (lanes 5–8).
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Next we explored where in the PCD pathway cyclin C operated. 
Given its role in inducing mitochondrial fission, we first examined 
the ability of CCNC−/− cells to execute MOM permeabilization 
(MOMP). For these studies, MOMP was measured in two ways. First, 
wild- type and CCNC−/− MEF cells were loaded with a dye (tetra
methylrhodamine methyl ester [TMRM]) that readily accumulates in 
active, intact mitochondria but is released after MOMP. In these 
studies, we found that both wild-type and CCNC−/− MEF cells incor-
porated TMRM into their mitochondria to similar extents, indicating 
that the mitochondrial membranes were functioning similarly in both 
cell lines (Figure 6F). In response to H2O2, TMRM was rapidly lost 
from the wild-type cells, but only a slight reduction was observed in 
the mutant cultures. These results indicate that cyclin C is required 
for MOMP. This conclusion is supported by the finding that the inner 
membrane protein cytochrome c is absent in wild-type MEF mito-
chondria after stress but still present in the stressed mutant prepara-
tions (Figure 5D). Taken together, these results indicate that cyclin C 
is required for mitochondrial fission, efficient loss of mitochondrial 
outer membrane integrity, and PCD execution in response to cyto-
toxic signals.

DISCUSSION
In all organisms examined, exposure to exogenous stress shifts the 
balance between mitochondrial fission and fusion dramatically to-
ward fission (Igaki et al., 2000; Frank et al., 2001; Karbowski et al., 
2002; Vieira et al., 2002; Breckenridge et al., 2003; for review, see 
Hoppins and Nunnari, 2012). Although the basic fission machinery is 
required for the extensive mitochondrial fragmentation observed 
after stress, the signal that triggers this response has been unknown. 
This study finds that the nuclear transcription factor cyclin C is both 
necessary and sufficient for stress-induced mitochondrial fragmen-
tation. First, MEF cells deleted for cyclin C fail to undergo mitochon-
drial hyperfission in response to an anticancer drug or H2O2. Sec-
ond, the addition of purified cyclin C to nonstressed permeabilized 
cultures rapidly induces mitochondrial fragmentation. This role ap-
pears to be direct, as cyclin C interacts with the dynamin-like fission 
GTPase Drp1 and enhances its association with the mitochondria. In 
addition, knocking down CDK8 did not affect mitochondrial fission 
in response to cellular damage, suggesting that cyclin C induces 
mitochondrial fission independent of its transcriptional regulatory 
role. Although not common, Cdk-independent roles for other cy-
clins have been reported. For example, cyclin D1, which drives G1 
progression by inducing Cdk activity, also binds transcription factors 
and chromatin-remodeling machines to control gene expression (Fu 
et al., 2004). In addition, cyclin E can stimulate DNA replication in-
dependent of Cdk2 through direct interaction with the MCM initia-
tion complex (Geng et al., 2007). However, this is the first example 
of a cyclin involved in transcriptional regulation, rather than cell cy-
cle progression, to have a function independent of its Cdk.

A previous study revealed that the budding yeast cyclin C also 
translocates to the mitochondria and is required for stress-induced 
fission (Cooper et  al., 2014). In addition, we demonstrate in the 
present study that the addition of the yeast cyclin C to permeabi-
lized MEF cultures is sufficient to induce fission. These results indi-
cate that the role cyclin C plays in controlling mitochondrial fission is 
an ancient process. Although the outcomes are similar, the underly-
ing mechanisms, both in regulating cyclin C and how it controls mi-
tochondrial morphology, appear different in yeast and mammalian 
cells. In yeast, several stressors, including oxidative stress, induce 
complete relocalization of cyclin C to the cytoplasm, where it is de-
stroyed after mitochondrial fission (Cooper et al., 1997, 2012). How-
ever, in stressed MEF and HeLa cultures, only a portion of cyclin C 

One model consistent with these results proposes that cyclin C 
relocalization to the mitochondria promotes hyperfission and subse-
quent PCD. An alternative hypothesis is that loss of cyclin C causes 
misregulation of a gene (or genes) that in turn controls sensitivity to 
cisplatin or H2O2. To test these two models, we used small interfer-
ing RNA (siRNA) to knock down Cdk8 in wild-type MEF cells (Figure 
6C). As shown in Figure 6D, no difference in the sensitivity of these 
cells to cisplatin was observed compared with the scrambled siRNA–
transfected controls. Taken together, these data argue that cyclin C 
regulates ROS-induced PCD independent of its role as a transcrip-
tion factor. We next determined how general a role cyclin C played 
in controlling PCD pathways. Wild-type and CCNC−/− MEF cultures 
were subjected to extrinsic death receptor–mediated cell killing. No 
difference in annexin V staining was observed between the wild-
type and mutant cultures (Figure 6E), indicating that cyclin C regula-
tion was restricted to the mitochondrial intrinsic pathway.

FIGURE 8:  Cyclin C is required for intrinsic programmed cell death. 
(A) MEF cultures with the indicated genotypes were treated with 
cisplatin for 24 h and then assayed for annexin V positivity by FACS 
analysis. EGFP-cyclin C expression plasmid was transiently transfected 
into the CCNC−/− culture and the experiment was repeated, sorting 
for EGFP- and annexin V–positive cells. The mean (±SEM) from at 
least three independent experiments. (B) MEF cultures with the 
indicated genotypes were treated with TNF-α and CHX for 24 h and 
then assayed as in A. (C) Western blot of extracts prepared from 
cultures treated with CDK8-specific siRNA or a scrambled control. 
β-Tubulin levels were determined as a loading control. (D) Annexin V 
values were determined as described in A for wild-type MEF cultures 
treated with the siRNA constructs as indicated. (E) TMRM staining 
was evaluated in wild-type and CCNC−/− MEF cultures before and 
after H2O2 treatment (0.4 mM for 4 h) as indicated.
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that many factors, including the particular system studied and/or the 
stressors applied, may influence the complex interaction between 
mitochondrial dynamics and execution of the programmed cell 
death pathway. For example, conditions just able to attain the 
threshold required to evoke PCD may require fission to facilitate the 
process. However, harsher treatments may be able to generate 
enough relocalization of proapoptotic Bcl-2 proteins to induce 
MOMP and subsequent cell death. Therefore the final decision of 
whether to execute PCD may depend on the magnitude of the 
apoptotic signal and the sensitivity of the system. The presence of 
cyclin C may result in a lower threshold to trigger MOMP and sub-
sequent cell death.

MATERIALS AND METHODS
Cell culture, transfection, and siRNA
U2OS and HeLa cells were obtained from the American Type 
Culture Collection (Manassas, VA) and cultured in DMEM supple-
mented with 10% fetal bovine serum (FBS) and 1% penicillin/strep-
tomycin. For localization and mitochondrial morphology experi-
ments in MEF cultures, the cells were maintained in 5% CO2, 5% O2. 
CCNC+/+ and CCNCfl/fl MEF cell lines were established from 13.5-d 
postcoitum embryos using standard protocols. These cell lines were 
subsequently immortalized through introduction of the SV40 T-anti-
gen (Tevethia, 1984). The immortalized CCNCfl/fl MEF cells were 
then infected with retrovirus (pMIY2-Cre-IRES-YFP) expressing Cre-
YFP recombinase. Positive transfectants were obtained by fluores-
cence-activated cell sorting (FACS) to generate a CCNC−/− MEF 
pool. Single clones were further isolated by dilution plating, with the 
deletion allele verified by PCR and Western blots (see Supplemental 
Figure S2 for details). Thymidine/nocodazole arrest/release/arrest 
protocol was conducted with 2 mM thymidine for 24 h, followed by 
release into normal medium containing 0.1 μg/ml nocodazole 
(Sigma-Aldrich, St. Louis, MO). DNA plasmids were transfected into 
cells with Lipofectamine 2000 (Invitrogen). Cdk8 siRNA (Cell Signal-
ing Technology, Danvers, MA) was introduced into cells using 
siPORT transfection reagent (Invitrogen) according to the manufac-
turer’s instructions. The GST-cyclin C fusion genes were constructed 
by inserting the human cyclin C cDNA (a gift from S. Reed, Scripps 
Research Institute, La Jolla, CA) or the yeast coding sequence into 
pGEX-2T (GE Healthcare, Pittsburgh, PA). The fusion proteins, as 
well as the GST control, were expressed and purified from E. coli as 
suggested by the manufacturer. GST fusion protein concentrations 
were approximated by comparing Coomassie-stained bands to 
known BSA standards.

PCR genotyping of MEF cells
The primers used to genotype the MEF cells, CCNC2 (5′-TAA TCG 
ACC AGA CAG TAC GGG AGT C-3′), SDL2 (5′-GGT AGT TTA TCT 
GAA CTG ATG AAA ACA CAT C-3′), and Lox1 (5′-GGA AGC 
AGA AGC AAC AGG AAT CTG-3′), are indicated in Supplemental 
Figure S2A.

Indirect immunofluorescence
Cells were cultured on coverslips and then fixed with 4% para-
formaldehyde for 20 min, permeabilized with 0.2% Triton X-100 
for 15 min, blocked with 2% BSA, and incubated with antibodies 
as indicated. The cells were mounted with 4′,6-diamidino-2-phe-
nylindole (DAPI)–containing medium (Vector Labs, Burlingame, 
CA), and the images were acquired with Nikon (Melville, NY) 
Eclipse 90i microscope equipped with a Retiga Exi charge-cou-
pled device (CCD) camera and NIS software for data analysis. 
Data were collected using Autoquant and processed using Image 

relocates to the cytoplasm, and no significant loss in protein levels 
was detected. This observation may indicate that cyclin C main-
tains its function as a transcriptional regulator even in stressed 
mammalian cells. In addition, we observed elevated cytoplasmic 
cyclin C in unstressed HeLa cells that was more dramatic in U2OS 
cultures. This may be the result of the high endogenous ROS load 
associated with tumor cells, which in turn triggers partial cyclin C 
release (Trachootham et al., 2006). Alternatively, Med13p, a con-
served component of the Cdk8 module, was recently demon-
strated to retain cyclin C in the nucleus in unstressed yeast cells 
(Khakhina et al., 2014). Therefore U2OS cells may be defective in 
Med13-dependent cyclin C nuclear retention or contain an acti-
vated signal transduction pathway that constitutively signals cyclin 
C release. This question is being examined.

Another difference between yeast and mammalian cyclin C is in 
how they stimulate fission. In yeast, cyclin C associates with Mdv1p 
(Cooper et al., 2014), the adaptor protein that bridges the dynamin 
protein Dnm1p to the outer membrane receptor Fis1p (Westermann, 
2010a). The role of Mdv1p or cyclin C in stressed yeast cells is not to 
recruit Dnm1p to the mitochondria. Instead, Mdv1p and cyclin C 
stimulate Dnm1p to form productive complexes (Schauss et  al., 
2006; Cooper et al., 2014). However, in mammalian cells, no adaptor 
proteins similar to Mdv1p have been identified. Instead, cyclin C ap-
pears to interact directly with Drp1 and functions primarily through 
the Mff mitochondrial receptor. Previous studies revealed elevated 
Drp1 association with the mitochondria in stressed cells (Frank et al., 
2001). This study found that cyclin C is required for this enhanced 
association, suggesting a role in Drp1 mitochondrial recruitment 
and/or its retention on the organelle. However, we still detect an el-
evated, although reduced, association of Drp1 with the mitochon-
dria in stressed CCNC−/− cells. Therefore the role of cyclin C may not 
be solely to help target Drp1 to the mitochondria but also to en-
hance its activity once associated at the organelle. Although many 
potential roles for cyclin C could be envisioned, one possible func-
tion is based on the finding that stable Drp1 filament formation oc-
curs in its GTP-bound state (Ingerman et  al., 2005; Naylor et  al., 
2006; Lackner et al., 2009). However, the complex itself possesses 
intrinsic GTPase activity, with GTP hydrolysis causing ring constric-
tion and filament dissolution. Therefore the ability of cyclin C to 
stabilize the GTP-bound form of Drp1 would enhance filament sta-
bility and therefore its retention on the mitochondria. Alternatively, 
cyclin C may enhance Drp1-Mff association, again leading to en-
hanced mitochondrial retention. Additional biochemical studies 
are required to test these possibilities. In conclusion, this article 
describes a conserved role for cyclin C in directing stress-induced 
mitochondrial fragmentation in mammalian cells.

The connection between mitochondrial hyperfission and PCD is 
not clear, although it has been observed in many systems (Martinou 
and Youle, 2011). The localization of proapoptotic factors that in-
duce MOMP (e.g., Bax) to sites of fission (Karbowski et al., 2002) has 
been suggested to be an intersection of these two processes. One 
possibility is that loss of stress-induced fission sites such as observed 
in CCNC−/− cells may reduce the frequency at which these proapop-
totic factors can associate with the MOM, as observed previously 
(Tondera et al., 2009). This possibility incorporates a model propos-
ing that, during the fission process, transient hemifission intermedi-
ates are produced that are more easily breeched (Katsov et  al., 
2004). The combination of Bax recruitment and the formation of 
these intermediate membrane structures may accelerate the release 
of proapoptotic factors (Martinou and Youle, 2011). It is important to 
note, however, that mitochondrial fission is not always a prerequisite 
for cytochrome c release or PCD. These observations may indicate 
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alkaline phosphatase and chemiluminescence. These signals were 
quantified using a CCD imager (Kodak, Rochester, NY). To deter-
mine fold enrichments, the cyclin C signal was compared with 
Por1 levels. To calculate colocalization values, the PCC was ob-
tained using NIS software, examining the cytoplasm of at least 
10 cells from three separate experiments. Mitochondrial fragmen-
tation was quantitated by calculating the percentage of the popu-
lation with >10 mitochondria with a length of ≥10 μM. SDs of the 
means were calculated using the Student’s t test.

Survival and stress assays
MEF cells were seeded in 12-well plates at a density of 0.5 × 
105 cells/well at 1 d before stress treatment. H2O2 was added to 
cells immediately after a switch to serum-free medium. For cispla-
tin treatment, the drug was added to normal culture medium. Ac-
tivation of the extrinsic pathway was accomplished with addition of 
tumor necrosis factor-α (TNF-α; 5 ng/ml) and cycloheximide (CHX; 
10 μg/ml) for 24 h. Annexin V (BD Biosciences) assays were con-
ducted as described by the manufacturer. MOMP studies were 
performed as described (Verma et  al., 2013), with the following 
modifications. Exponential wild-type or CCNC−/− MEF cultures 
were treated with H2O2 (0.4 mM) for 3 h before staining with TMRM 
(Molecular Probes).

Pro software. Primary antibodies (cyclin C [Thermo Scientific], 
Drp1 [BD Transduction Laboratories, San Jose, CA], Cdk8 [Santa 
Cruz Biotechnology, Santa Cruz, CA], phosphorylated Drp1 
[#3455; Cell Technologies, Shaker Heights, OH], HA epitope 
[Roche, Indianapolis, IN], GFP [Clontech, Mountain View, CA], and 
β-actin [Sigma-Aldrich]) were used according to suppliers’ sugges-
tions. Fluorescein isothiocyanate–conjugated secondary antibod-
ies were from Jackson Laboratories. Mitochondrial staining was 
accomplished using MitoTracker Red CMXRos as described by the 
manufacturer (Molecular Probes, Grand Island, NY). Caspase 3 
was inhibited in CCNC+/+ MEF cells as described previously 
(Naarmann-de Vries et al., 2013) with 10 μM (final concentration) 
of Ac-DEVD-CHO (BD PharMingen, San Jose, CA) for 1 h before 
addition of 20 μM cisplatin treatment for 24 h. MitoTracker Red 
was added 30 min before fixing the cells. The Hsp70 chaperone 
inhibitor PES was added (10 μM) to cultures 30 min before H2O2 
treatment.

Mitochondrial fragmentation assays
FRAP assays were conducted essentially as described (Cleland et al., 
2011), with the following modifications. CCNC+/+ and CCNC−/− MEF 
cells were treated with 0.4 mM H2O2 for 4 h. Mitochondrial mor-
phology was monitored by MitoTracker Red staining. The cells were 
imaged with the 60× objective on the Nikon Eclipse C1Ti confocal 
microscope equipped with a Ds-Qi1MC CCD camera. Data were 
collected before and after a 2-μm circle containing multiple mito-
chondria was photobleached with a 633-nm laser. Forty individual 
FRAP samples were analyzed from each experiment that displayed 
an approximate 30% signal bleaching to allow better comparisons 
of the resulting recovery curves. The GST-cyclin C addition experi-
ments were conducted with MEF cells seeded 1 d before in 35-mm 
glass-bottom culture dishes. The cells were preloaded with Mi-
toTracker Red for 30 min and then washed with phosphate-buffered 
saline (PBS) twice before transfer to membrane maintenance buffer 
(DMEM, 10% FBS, 1% penicillin/streptomycin, 110 mM sucrose, and 
1 mg/ml BSA; Verma et al., 2013). The cells were then placed in a 
CO2- and temperature-controlled chamber on the confocal micro-
scope. Digitonin, 1.0 μg/ml, was added for 2 min to permeabilize 
the cells, and then another 1 ml of membrane maintenance buffer 
was added containing human (Hs) or yeast (Sc) GST-cyclin C fusion 
proteins or GST alone (approximate 4 nM final concentration). Per-
meabilization conditions were determined by monitoring the ability 
of propidium iodide to enter digitonin- treated cells. Cells were 
monitored by confocal microscopy with a 561-nm laser (1% power). 
Mdivi-1 (50 μM) was added to the cells for 30 min and then washed 
away with PBS before the permeation step.

Subcellular fractionation, extract preparation, and 
colocalization analysis
Mitochondrion-enriched fractions were obtained using the Thermo 
Scientific mitochondrial isolation kit from ∼1 × 107 log-phase cells. 
Whole-cell extracts were prepared from cells harvested in lysis 
buffer (250 mM NaCl, 50 mM Tris-HCl, pH 7.8, 0.5% NP-40, plus 
protease inhibitors) and then incubated for 30 min on ice before 
disruption. Whole-cell lysates were centrifuged at 13,000 × g for 
10 min at 4°C to separate soluble proteins from aggregates and 
cell debris. Protein concentrations were determined by Bradford 
microassays (Bio-Rad). Western blot analysis was conducted with 
antibodies directed against cyclin C (Bethyl, Montgomery, TX), 
Por1/VDAC (Clontech), Cox4 (Molecular Probes), HA (Roche), and 
GFP (Clontech), used as recommended by the suppliers. Western 
blot signals were visualized by secondary antibody conjugated to 
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