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Behavioral/Systems/Cognitive

Locus Ceruleus Regulates Sensory Encoding by Neurons and
Networks in Waking Animals

David M. Devilbiss,1 Michelle E. Page,2 and Barry D. Waterhouse3

1Department of Psychology, University of Wisconsin–Madison, Madison, Wisconsin 53706, 2Department of Neurosurgery, Thomas Jefferson University,
Philadelphia, Pennsylvania 19107, and 3Department of Neurobiology and Anatomy, Drexel University, Philadelphia, Pennsylvania 19129

Substantial evidence indicates that the locus ceruleus (LC)–norepinephrine (NE) projection system regulates behavioral state and state-
dependent processing of sensory information. Tonic LC discharge (0.1–5.0 Hz) is correlated with levels of arousal and demonstrates an
optimal firing rate during good performance in a sustained attention task. In addition, studies have shown that locally applied NE or LC
stimulation can modulate the responsiveness of neurons, including those in the thalamus, to nonmonoaminergic synaptic inputs. Many
recent investigations further indicate that within sensory relay circuits of the thalamus both general and specific features of sensory
information are represented within the collective firing patterns of like-modality neurons. However, no studies have examined the impact
of NE or LC output on the discharge properties of ensembles of functionally related cells in intact, conscious animals. Here, we provide
evidence linking LC neuronal discharge and NE efflux with LC-mediated modulation of single-neuron and neuronal ensemble represen-
tations of sensory stimuli in the ventral posteriomedial thalamus of waking rats. As such, the current study provides evidence that output
from the LC across a physiologic range modulates single thalamic neuron responsiveness to synaptic input and representation of sensory
information across ensembles of thalamic neurons in a manner that is consistent with the well documented actions of LC output on
cognition.

Key words: multichannel single unit recording; neuronal ensemble activity; sensory information processing; neuron; somatosensory
thalamus; principal components analysis

Introduction
The ability to regulate information processing under diverse be-
havioral conditions and ever changing motivational contingen-
cies is an essential property of the CNS. Considerable evidence
indicates that the locus ceruleus (LC)–norepinephrine (NE) pro-
jection system regulates behavioral state and state-dependent
processing of sensory information (Foote et al., 1983; Berridge
and Waterhouse, 2003). The LC exhibits tonic discharge, charac-
terized by a state-dependent, relatively slow (0.1–5.0 Hz) and
highly regular pattern of firing. Increasing tonic LC output acti-
vates the forebrain, as measured by EEG (Berridge and Foote,
1991), and is correlated with arousal levels (Foote et al., 1980;
Aston-Jones and Bloom, 1981), and progression from drowsy,
low-attention states to alert, highly vigilant states (Rajkowski et
al., 1994; Usher et al., 1999).

The moderately dense projection of NE-containing LC effer-
ent fibers (Simpson et al., 1997) is capable of simultaneously
releasing NE in subcortical and cortical circuits that sequentially
process like-modality sensory information (e.g., the rodent tri-

geminal somatosensory pathway). Within the thalamus, exoge-
nous or synaptically released NE produces a spectrum of cellular
modulatory actions (for review, see Berridge and Waterhouse,
2003). Importantly, these diverse actions of NE occur simulta-
neously across thalamic neurons (Devilbiss and Waterhouse,
2002). Thus, LC activation and the resulting synaptic release of
NE may place target regions of the brain, such as the thalamus, in
a state of preparedness to accurately encode and respond to sa-
lient stimulus inputs.

The rat vibrissae somatosensory system has been used exten-
sively as a model for better understanding the relationship be-
tween single-cell discharge patterns (Waite, 1973; Simons, 1978;
Ito, 1988; Armstrong-James et al., 1992; Ahissar et al., 2000;
Shoykhet et al., 2000), ensemble neuronal activity (Nicolelis et al.,
1995; Ahissar et al., 1997; Petersen and Diamond, 2000; Petersen
et al., 2001, 2002; Panzeri et al., 2003), and central coding of
sensory information from peripheral receptors (Chapin and
Nicolelis, 1999; Panzeri et al., 2001). Within “barreloid” special-
izations of the ventral posteriomedial (VPM) thalamus (Van der
Loos, 1976), individual neurons respond to deflection of a single
preferred whisker on the contralateral face with discharge pat-
terns that are coded for direction, magnitude, and velocity of
movement (Waite, 1973; Shipley, 1974; Ito, 1981). Within the
nervous system complex, computations and information transfer
are accomplished via arrays of functionally related neurons
(Erickson, 1968; Katchalsky et al., 1974; Churchland, 1989). For
example, distributed activity across ensembles of thalamic cells
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represent direction of stimulus movement across multiple whis-
kers of the vibrissae pad (Nicolelis and Chapin, 1994; Nicolelis,
1996; Chapin and Nicolelis, 1999).

Although substantial information exists regarding the effects
of the LC–NE system on sensory signal processing capabilities of
individual neurons (Rogawski and Aghajanian, 1980; Water-
house et al., 1990; Manunta and Edeline, 1997; Devilbiss and
Waterhouse, 2000; Berridge and Waterhouse, 2003; Hurley et al.,
2004), no studies have considered the impact of the noradrener-
gic system on ensemble neuronal activity in intact, conscious
animals. To address this gap in our understanding, we present
data indicating a link between output of the LC–NE system and
modulation of the sensory response properties of individual neu-
rons and neuronal ensembles within the VPM thalamus of wak-
ing rats. As such, these studies examined sensory information
mapping across ensembles of simultaneously recorded neurons
with correlation analysis and principal component analysis
(PCA) of discharge patterns to infer how NE modulates sensory
signals relayed to the cortex. Additionally, these studies examined
microdialysis measures of extracellular NE levels within the so-
matosensory VPM thalamus across a range of “low-intensity,
low-frequency” LC stimulus conditions that modulated sensory-
evoked discharge of individual thalamic neurons. By so doing, we
sought to bridge the gap between the well known state-dependent
changes in tonic LC output, the established spectrum of hetero-
geneous cellular/membrane actions of NE, and the cognitive im-
pact of tonic LC activation.

Materials and Methods
Subjects and surgery
Adult male Long–Evans hooded rats (Charles River Laboratories, Wil-
mington, MA) weighing 250 – 450 g were used in this study (electrophys-
iology, n � 6; microdialysis, n � 7) in accordance with National Insti-
tutes of Health guidelines on research animal care and the Institutional
Animal Care and Use Committee of Drexel University.

Electrophysiology. Extracellular microwire electrode bundles (NB Labs,
Denison, TX) were implanted unilaterally in the ventral posterior medial
(VPM) thalamus, and the ipsilateral LC. Detailed methodology regard-
ing the surgical preparation, recording strategies, and data analysis have
been described previously (Devilbiss and Waterhouse, 2002). Briefly, a
single electrode bundle (n � 8, 50 �m stainless steel Teflon coated mi-
crowires) was stereotaxically placed within the LC (�1.2 lateral, �3.6
caudal to the intersection of the midline and lambda; incisor bar at 11.5)
and confirmed electrophysiologically by monitoring neuronal electrical
activity as the recording probe was lowered (�50 �m/min; �6.0 dorso-
ventral). The characteristic spontaneous discharge rate (�0.1–5 Hz) and
the biphasic response to tail pinch (Akaike, 1982) were two criteria used
to identify putative LC neurons within the nucleus. A second electrode
bundle was cut on a diagonal to correspond to the anatomical structure
of the VPM barreloids, bound with a silk suture, and implanted into the
ipsilateral VPM thalamus (flat skull; �3.3 anteroposterior, �2.8 medio-
lateral, and �5.5 dorsoventral from bregma). Again, neuronal activity
was monitored during insertion to evaluate the position of individual
microwires as they approached the C3-whisker representation of the
VPM thalamus. Lastly, a flexible bipolar stimulating electrode was im-
planted around a single (C3) vibrissae of the rat’s whiskerpad. Electrode
connectors were attached to the skull with screws and dental acrylic. The
skin was loosely sealed around the dental cement and the animal was
allowed to recover for 5–10 d.

Microdialysis. Animals were implanted with a microwire bundle in the
LC nucleus 1 week before implantation of a microdialysis probe in the
ipsilateral VPM thalamus. Concentric microdialysis probes were con-
structed as described previously (Abercrombie and Finlay, 1991). In vitro
recovery for dialysis probes was determined before implant. Microdialy-
sis probes were targeted to the same region in the VPM thalamus as the
recording electrode bundles and were secured to the skull with skull

screws and dental acrylic. The dialysis probe was connected to a fluid
swivel (Instech Laboratories, Plymouth Meeting, PA) and the rat was
placed in the same chamber used for electrophysiological recording. Ar-
tificial CSF [aCSF; containing the following (in mM): 147 NaCl, 1.7
CaCl2, 0.9 MgCl2, 4 KCl] was continuously perfused through the probe at
a rate of 1.5 �l/min. On the following experimental day, 20 min dialysate
samples were collected before and during LC stimulation. The amount of
NE in dialysates (15 �l) was determined with HPLC with electrochemical
detection (HPLC-EC) (Page and Abercrombie, 1997).

Experimental procedure
Awake, freely moving animals were allowed to acclimate to the testing
chamber for 2 h before experimental procedures began. During this time,
putative single units of the VPM thalamus were discriminated using
template-matching algorithms. After each experimental session, pre-
established offline criteria were used to demonstrate that waveforms as-
signed to each discriminated “unit” originated from a single neuron.
These criteria are comprised of assessments based on unit waveform
properties and spike train discharge patterns (Devilbiss and Waterhouse,
2002), including (1) peak waveform voltage, (2) slope(s) of waveform
from peak to peak, (3) clustering of scattergram points from the first two
principal components of the waveform, and (4) spike train autocorrel-
gram (2 ms refractory period).

Electrophysiological experiments were initiated after online discrimi-
nation of VPM thalamic units and confirmation that units were respon-
sive to whiskerpad stimulation. The bipolar stimulating electrode im-
planted around the vibrissae of the rat’s whiskerpad was used to deliver
biphasic pulses (range 1–3 mA; 1 ms duration) that were threshold for
producing a rostral twitch of the same single vibrissae and for eliciting a
robust excitatory discharge in a majority of the simultaneously recorded
VPM thalamic units. The control condition was always presented first; 90
whiskerpad stimuli that randomly varied in time (2 s mean intertrial
interval, range 1.5–2.5 s) were delivered to animals to prevent stimulus
habituation of the somatosensory system. After the initial baseline pe-
riod, three pseudorandomized tonic LC stimulation conditions (animals
received each condition in a random order) were presented, followed by
a recovery condition (whisker stimulation only). LC stimulation consist-
ing of monopolar single electrical pulses at a frequency of 0.5, 1.0, and 5.0
Hz (0.2 ms duration) was delivered to the LC across two of the eight wires
of the microwire bundle implant. A custom head stage permitted electri-
cal activation of the LC concurrent with LC neural activity recordings. LC
stimulation current was adjusted across a range of 3 to 300 �A to produce
the maximal effect on target VPM thalamic neurons. During each period
of LC activation, whiskerpad stimuli were presented in the same manner
as control conditions; however, stimulus pulses to the LC and whisker-
pad were never allowed to occur simultaneously.

Data analysis. LC neuronal firing rates and VPM neuron discharge
patterns were determined from computer-stored time stamps of dis-
criminated waveforms. Initially, rate histograms with 1 ms time bins
were used to evaluate baseline tonic discharge of LC neurons. Sensory-
evoked discharge patterns of individual VPM neurons were analyzed by
quantifying peristimulus time histograms (PSTHs) as described previ-
ously in Devilbiss and Waterhouse (2002). In brief, measures of
stimulus-evoked firing were calculated from PSTHs collected during pe-
riods of quiet resting for either control or LC stimulation conditions.
From each PSTH, the mean probability of discharge during the whisker
stimulus-evoked response was calculated; the response window was de-
fined by Gaussian 99% confidence intervals that determined the response
window beginning and end. Lastly, spike trains from all verified single
neurons were examined for “unreasonable correlation between spike
trains” to determine that any single neuron was not recorded from more
than one electrode. If a pair of neurons demonstrated a correlation �0.6
across the duration of the experiment, one of the neurons was excluded
from analysis.

Functional changes in the ensemble of simultaneously recorded VPM
neurons during LC activation were determined by analyzing differences
in neuronal correlation with all-pairwise cross-correlational analyses as
well as PCA. Initially, functional relationships between neuronal pairs
were determined generating cross-correlegrams from individual neural
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spike train data, 3 ms before to 90 ms after whisker stimulus presentation
(Gerstein et al., 1989; Devilbiss and Waterhouse, 2002). Spike trains were
discretized with 3 ms time bins and used to calculate correlations be-
tween neural discharge patterns. Furthermore, a PSTH shift predictor
was used to eliminate stimulus-induced correlation (Aertsen and Ger-
stein, 1985; Aertsen et al., 1989; Eggermont, 1992, 1994). Lastly, the mean
correlation 10 ms before to 10 ms after each action potential was calcu-
lated and plotted as a scattergram in Matlab (MathWorks, Natick, MA).
Thus, functional connectivity could be assessed from neural discharge
patterns during processing of whiskerpad stimuli, but were not directly
related to simultaneous activation of VPM neurons by excitatory afferent
input.

Additionally, correlation matrices were used to produce an eigenvalue
decomposition by PCA. Neuronal spike trains (mean frequency of 3 ms
bin) from the entire experimental session served as variables to calculate
principal components (PCs). Spike-train integration time intervals were
based on the period that postsynaptic neurons (i.e., cortical neurons)
likely integrate afferent input (Wilent and Contreras, 2004). Similar re-
sults were obtained at longer windows (10 ms; data not shown). An
eigenfunction for each PC was calculated as the sum of eigenvalue-
weighted neuronal spike trains. Weighted spike trains for each neuron
were determined by multiplying the spike train of each neuron by the
eigenvalue weights of each PC. Line and scatterplots of eigenvalue
weights were created to assess changes in neural relationships before,
during, and after LC stimulation. PSTHs were generated from PC eigen-
functions of the spike trains of individual recorded units (Chapin and
Nicolelis, 1999; Devilbiss and Waterhouse, 2002). The averaged pretreat-
ment values of each group were compared with the corresponding re-
sponses during LC stimulation conditions, and analyzed via a two-way
ANOVA with repeated measures. Dunnett’s post hoc tests were used to
determine significant differences between pretreatment and LC stimula-
tion conditions.

Videotape analysis of the entire experimental session with a video
counter timer providing time stamps (resolution, 0.1 s) synchronized to
the multiunit recording and stimulus control systems provided a means
to confirm that animals remained in a quiet resting state throughout the

experiment. A quiet resting state in these experiments was defined be-
haviorally as an animal lying down with its head raised from the chamber
floor.

Microdialysis. Microdialysis experiments began after a stable baseline
of three samples was achieved. After initial baseline measurements, the
LC was stimulated at 300 �A at 1.0 Hz. Statistical differences between
baseline conditions and LC stimulation conditions were determined with
a paired t test. After return of NE levels to baseline levels, the series of
control and tonic LC stimulation conditions used for electrophysiologi-
cal experiments were delivered. Each 20 min dialysate sample was
matched to one of the control, recovery, or four tonic LC stimulation
conditions. Once NE levels returned to baseline, NE determined from
randomized LC stimulation conditions was not tested for statistical sig-
nificance because of possible sample to sample interference.

Histology. Electrode placement within the VPM thalamus, ipsilateral
LC, and contralateral whiskerpad was verified by passing 60 �A of cur-
rent across two microwires for 45 s, and then perfusing with 0.9% saline
followed by a 10% formalin solution containing 5% potassium ferrocya-
nide which produces a Prussian blue reaction product. Verification of the
placement of LC electrodes was important for establishing the anatomi-
cal specificity of LC-mediated effects.

Results
Effects of tonic LC stimulation on LC–NE output
Tonic electrical activation of the LC over a range of low-intensity,
low-frequency stimulus conditions produced increases in NE re-
lease within the VPM thalamus as measured by microdialysis/
HPLC-EC methods. Significant increases (paired t test, p �
0.0104) in thalamic NE levels from initial baseline samples
(1.56 � 0.30 pg/15 �l; n � 7 animals) were observed during 1.0
Hz, 300 �A tonic LC stimulation (Fig. 1A,B). After cessation of
LC stimulation, NE levels in dialysate samples returned to base-
line within the following sampling period. Furthermore, after
re-establishing baseline levels (1.37 � 0.22 pg/15 �l), a linear
increase in thalamic NE efflux was observed with increasing fre-

Figure 1. Relationship of tonic LC electrical stimulation to dialysate levels of NE and LC discharge rates. A, Graphic representation of NE levels in the thalamus with respect to ipsilateral LC
stimulation parameters. The y-axis represents the concentration of NE, as determined by HPLC-EC measures, in 20 min/15 �l samples (*p � 0.05). A significant increase in NE was observed (1.5–2.3
pg/15 �l) between baseline and the 300 �A at 1.0 Hz stimulus condition. The remaining data points were not tested for statistical significance because of possible interference from preceding data
collection. Error bars indicate SE. B, Example chromatogram of dialysate sample during the 300 �A at 1.0 Hz LC stimulation condition. The y-axis represents microvolts of detector current, the x-axis
represents time after sample injection, and the arrow indicates the NE signal peak. C, Photomicrograph of a brainstem coronal section. A Prussian blue reaction product indicates the placement of
a recording/stimulation microwire bundle adjacent to the LC nucleus. Of the cases tested, this electrode implant was the most distal from the LC border but was near enough to the nucleus to produce
increased levels of extracellular NE in the ipsilateral thalamus. Dorsal is up; lateral is left. D, Rate histograms of LC neuronal activity before and during tonic electrical stimulation of the LC nucleus.
For each histogram, the y-axis indicates discharge frequency; the x-axis represents experimental time (sec.). The top histogram represents a recorded unit within the LC during quietly resting control
conditions (no LC stimulation). The bottom histogram is the same unit during quiet resting behavior and 1.0 Hz stimulation of the LC. The average discharge rate of the unit increased from 1.49 (A)
to 3.12 Hz (B).
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quencies of tonic LC stimulation (0.5–5.0 Hz at 100 �A). In-
creases in NE release were only observed when LC stimulation
electrodes were placed within or juxtaposed to the core of the LC
nucleus (Fig. 1C). Generally, tonic stimulation increased the dis-
charge rate of LC neurons in an additive manner (Fig. 1D). For
example, for this animal, 1.0 Hz LC stimulation increased tonic
discharge in the quietly resting rat from 1.5 to 3.1 Hz. However,
across all animals tested, increasing frequencies of LC stimulation
(Stim) increased LC discharge from 0.85 Hz (baseline/control) to
0.90 (0.5 Hz LC Stim) to 1.33 (1.0 Hz LC Stim) and 3.15 (5.0 Hz
LC Stim). Together, these observations indicate that LC stimula-
tion through microwire electrode bundles with currents 5- to
10-fold lower than those used previously produced activation of
LC neurons and increases in VPM thalamic NE that were com-
parable with previously reported levels (Florin-Lechner et al.,
1996; Berridge and Abercrombie, 1999).

Effects of increasing frequencies of tonic LC stimulation on
responses of VPM thalamic neurons to sensory-driven input
The effects of LC activation on neuronal responsiveness to affer-
ent input were examined in 191 units recorded from the VPM
thalamus of six awake, quietly resting animals. Only units that
met strict off-line verification procedures were classified as single
neurons and included in these analyses (Fig. 2A, black unit).
Accordingly, 74 of the 191 recorded units were verified as single
neurons, 40 of which responded to whiskerpad stimulation. The
magnitude of the sensory-evoked responses from these cells was
altered during tonic LC stimulation conditions that produced
significant increases of NE within the VPM (Fig. 2B). When stim-
ulating electrodes were placed outside (�250 �m) the LC, no
effect or variable results were observed (Devilbiss and Water-
house, 2004) and were not considered further in this study. Over-
all, thalamic sensory-evoked excitatory responses were modu-
lated according to a biphasic or “inverted-U” LC-mediated
response function (Fig. 2C) (ANOVA; F(3,58) � 3.57; p � 0.015).
During initial periods of low-level LC activation, sensory-driven
responses were facilitated. With increasing levels of LC stimula-
tion, sensory-driven responses of the VPM thalamus were further
enhanced to a peak value (2.15-fold increase above control re-
sponse levels). Additional increases in LC activation reduced
evoked discharge from the peak value yielding the biphasic or
inverted-U LC-mediated modulatory response profile.

Although the overall effect of increasing LC–NE output was to
elicit an inverted-U modulatory profile for sensory evoked dis-
charge, individual cells expressed distinctive responses to LC
stimulation that were independent from one another (Fig. 3).
These effects included facilitation (57%), suppression (23%), or
negligible effect (20%) on sensory stimulus-evoked discharges
(n � 40 whisker responsive neurons). Importantly, these cell-
specific LC-mediated modulatory effects were observed across
ensembles of simultaneously recorded VPM thalamic neurons.
For example, in representative recordings from neighboring
VPM thalamic neurons (Fig. 3), facilitation was characterized by
either an inverted-U modulatory profile (Fig. 3A, cell 1) or a
continually increasing LC-stimulation frequency response curve
(cell 2). In contrast, the suppressant profile of action was charac-
terized by a monotonic response curve, such that stimulus-
evoked responses were progressively reduced over increasing LC
stimulation frequencies (Fig. 3A, cell 3). Thus, consistent with
previous studies (Rogawski and Aghajanian, 1980; McCormick
and Prince, 1988; George, 1992; Devilbiss and Waterhouse, 2000,
2004), LC activation or NE application can differentially affect

the responsiveness of thalamic neurons responding to the same
peripheral stimulus.

The optimal LC output for eliciting peak responses to
stimulus-driven synaptic input was specific for each thalamic
neuron. For example, the stimulus-evoked discharge of cell 1
(Fig. 3B) was maximally enhanced (1.6-fold from control) during
1.0 Hz LC stimulation, whereas cell 2 demonstrated a maximal
2.1-fold facilitation during 5.0 Hz stimulation. Thus, although an
optimal level of LC output for enhancing VPM thalamic neuron
responsiveness to synaptic input could be identified, the level of
LC activation for achieving this effect was often different for
neighboring cells in the same animal. An optimal level of LC

Figure 2. The effect of LC stimulation on individual thalamic neuron responses to whiskerpad
stimulation. A, Representative discrimination of waveforms recorded simultaneously from rat
VPM thalamus. The single unit (black traces) verified by off-line analysis was characterized by
visually distinct waveform patterns (left) that were spatially isolated from other waveform
clusters when visualized in principal component space (right). B, Peristimulus time histograms
demonstrate somatosensory stimulus-evoked discharge of a typical VPM thalamic neuron be-
fore (left) and during 1.0 Hz LC stimulation (right). Inset numbers represent the summed prob-
ability of neuronal discharge during the excitatory response. For each histogram, the vertical
axis represents the probability of neuronal discharge during a given time bin (x-axis). Whiskerpad
stimulation was presented at 0.0 s. The inset waveforms indicate the stability of the cell record-
ing across experimental time. C, Average change in stimulus-evoked response for all recorded
VPM thalamic neurons (n � 40) over the range of tonic LC stimulation frequencies. The maxi-
mal, statistically significant increase in VPM thalamic neuronal responsiveness to synaptic input
was observed at 1.0 Hz tonic LC stimulation (*p � 0.05). Error bars indicate SE.
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output was also observed for neurons exhibiting suppression of
sensory-evoked responses with increasing LC output. For exam-
ple, cell 3 (Fig. 3B) responded most vigorously under control
conditions of basal LC discharge rates. However, with increasing
LC output sensory-evoked responses were monotonically sup-
pressed to a maximal 1.7-fold suppression during 5.0 Hz LC stim-
ulation conditions. Thus, for this neuron, the optimal response to
sensory input was observed at baseline levels of tonic LC output.

Population level analysis: cross-correlegrams
To test the hypothesis that LC output modulates the representa-
tion of sensory signal coding across ensembles of thalamic cells,
we examined the effect of LC activation on correlated or near-
coincident discharge between simultaneously recorded neurons
(Gerstein et al., 1989). As illustrated by the cross-correlegram
shown in Figure 4, many neuron pairings demonstrated a signif-
icant relationship between their spike train discharges. After ap-
propriate corrections for direct sensory-stimulus effects, the cor-
relegram for this representative pair indicates a temporal
relationship whereby the reference neuron tends to discharge 20
ms before the paired second neuron. Such a temporal relation-
ship indicates a functional, although not necessarily a direct, syn-
aptic connection between these two cells (Aertsen and Gerstein,
1985; Aertsen et al., 1989; Devilbiss and Waterhouse, 2002). To
extend this analysis across all neuronal pairs in a recorded ensem-
ble, these relationships were visualized by plotting incidences of
significant correlation [exceeding 99% confidence intervals
(CIs)] as a scattergram (Fig. 5A) for each condition. Moreover,
the probability of correlated discharge between each neuronal

Figure 3. The effects of tonic LC output on somatosensory-evoked discharge of simultaneously recorded thalamic neurons. Peristimulus time histograms illustrate sensory-driven responses of
three simultaneously recorded VPM thalamic neurons (1 each row) before (left column), during (middle; 0.5–5.0 Hz), and after (right column) periods of LC stimulation. Whiskerpad stimulus-evoked
excitatory discharges were facilitated according to a parabolic/inverted-U relationship (cells 1 and 2) or were monotonically suppressed (cell 3) with increasing LC stimulus frequencies. For each
histogram, the vertical axis represents the frequency of discharge for a given time bin. The horizontal axis represents time before and after the onset of the stimulus presentation (0 s). All histograms
sum the unit activity during an equivalent number of stimulus trials. Each numerical inset indicates the peak response frequency of the response of the cell to whiskerpad stimulation. The inset
waveforms indicate the stability of individual neuron recording across experimental time. B, Line graphs indicate the peak stimulus-evoked excitatory discharge for each experimental condition
(percent of control). Note that cell 2 required a higher frequency of LC stimulation than cell 1 to achieve its peak facilitated response.

Figure 4. Representative cross-correlegram between two VPM thalamic neurons. Dur-
ing control conditions, significant correlation between spike trains (�13–18 ms) of this
neuron pair indicates that they are functionally connected. Additionally, the latency of the
correlegram peak indicates that this cell preferentially discharges after the reference neuron.
Correlated discharge between these neurons was subtracted from a PSTH shift-predictor and
plotted (solid line) in conjunction with 99% confidence intervals for the correlegram (dotted
line). The y-axis represents the probability of correlation; the x-axis depicts time before and
after thalamic reference neuron discharge (0 ms indicated by center vertical line). Correlations
between �30 ms (indicated by outer vertical lines) were further analyzed.
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pair was indicated by a color-coded scale. During control and
LC-stimulation conditions, significant correlations were ob-
served typically between 30 ms before and 30 ms after the dis-
charge of the reference neuron. Additionally, after confirming
that a single neuron was not recorded on multiple electrodes (see
Materials and Methods), correlations were observed both within
and across microwire electrodes.

Tonic LC stimulation produced several distinct effects on cor-
related activity within an ensemble of neurons (Fig. 5A–C). First,
increasing levels of LC output incrementally altered the pattern of
functional connectivity. These effects are indicated in Figure 5A
as changes in the pattern of significant correlations between neu-
ron pairs. For example, a given neuronal pair of the ensemble
either demonstrated correlated activity during control condi-
tions (Fig. 5Ai) and no correlated activity during LC stimulation
(Fig. 5Aii) or vice versa. Second, increasing LC output (Fig. 5Aii-
i,Aiv) led to increases in the absolute number of significant cor-

relations between neurons. For example,
the number of significant correlations
during 0.5 Hz stimulation (Fig. 5Aii, 249/
12,096) did not change substantially from
control conditions (Fig. Ai, 308/12,096).
However, the number of significant corre-
lations was increased 1.85-fold from con-
trol during 1.0 Hz stimulation (Fig. 5Aiii,
569/12,096). Additional increases in LC
stimulation produced a reduction in the
number of correlation incidents from the
peak value (Fig. 5Aiv) but one that was still
higher than control, thus yielding a bipha-
sic or inverted-U relationship for this in-
dex of LC action. Importantly, for a given
subject, the number of significant correla-
tions did not change across control epochs
within an experimental session (data not
shown).

Additional examination of the effects
of LC activation on correlated activity be-
tween VPM thalamic neurons demon-
strated that correlation strength (absolute
value of probability of near-coincident
discharge) between neuron pairs was also
modulated across an inverted-U modula-
tory profile. These effects were indepen-
dent of the above changes in the number of
significant correlations. For the represen-
tative case in Figure 5, 0.5 Hz LC stimula-
tion elicited an increase in correlational
strength for 540 neuron pairings (Fig.
5Aii). Additional increases in LC output
(1.0 Hz stimulation) yielded 845 instances
of increased correlation strength (Fig.
5Aiii). However, the highest level of LC
output (5.0 Hz) tested produced fewer
(n � 777) instances of increased correla-
tion strength. These results, combined
with the above changes in the number of
significant correlations, suggest that in-
creasing LC output increases the number
and strength of functional connections
among neurons within the VPM thalamus
according to an inverted-U response
relationship.

Despite the overall increase in correlation strength with in-
creasing LC output, we noted that initially strong correlations
(positive or negative) observed during control conditions tended
to be reduced with increasing LC output. This effect is depicted in
Figure 5Ai–Aiv as a reduction in the number of red and blue
(corresponding to strong positive or negative correlations, re-
spectively) points. Thus, these data were furthered examined to
test whether LC induced changes in correlation strength may be
dependent on the initial strength of correlation. Average correla-
tional strength over 20 ms (�10 ms around the reference spike)
for each neuron pair (Fig. 5A) was rank-ordered for control con-
ditions. Retaining rank order, the average correlation strength for
each neuron pair was plotted for control and LC stimulation
conditions (Fig. 5B). During 0.5 and 1.0 Hz LC stimulation, the
correlation between spike trains was increased for several neuron
pairs that initially demonstrated negative correlations (right side
of waterfall plot), thus reducing the strength of their negative

Figure 5. Effects of LC activation on functional connectivity within an ensemble of VPM neurons. Ai–Aiv, Functional connec-
tivity, defined by patterns of correlational strength, was plotted before (Ai) and during (Aii–Aiv) periods of LC tonic stimulation.
Significant (�99% CIs) incidences of correlation were plotted for each combination of neuron pairs (x-axis) before and after the
reference spike ( y-axis) for this representative case. Strength of significant correlations was indicated by the tick color (color bar).
Increasing levels of LC stimulation [0.5 Hz (Aii), 1.0 Hz (Aiii), 5.0 Hz (Aiv)] produced an inverted-U response profile with respect to
the number of significant correlations. B, A waterfall plot of rank-ordered data from Ai–Aiv demonstrates that LC-induced
changes in the pattern or strength of correlations between neurons were not dependent on initial correlational strength. Neuronal
pairs were rank-ordered according to correlational strength during control (x-axis, neuron pair; y-axis, correlation strength; z-axis,
LC stimulation condition). Increasing LC output levels (0.5, 1.0, and 5.0 Hz) increased or decreased neuron pair correlational
strength regardless of rank-order position. C, Graphic representation of average changes in correlation strength. Across all animals
tested (n �6), the number and strength of significant correlations between neurons in recorded ensembles changed as a function
of LC stimulation frequency. The relationship between the number of correlated pairs and correlation strength and LC output
followed an inverted-U response profile. These data indicate that increasing LC output dynamically reconfigures the functional
circuitry between VPM neurons engaged in coding of sensory stimuli. *p � 0.05; **p � 0.001. Error bars indicate SE.
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correlation. In contrast, the correlation between strong positively
correlated neuronal pairs was diminished with increasing LC
stimulation (left side of plot). Additionally, weakly correlated
neuronal pairs (center of plot) demonstrated a heterogeneous
mix of increases and decreases in correlational strength with in-
creasing frequencies of LC stimulation. Thus, the net effect of LC
activation was to reduce the extreme positive and negative corre-
lations among cells within the recorded ensemble, while increas-
ing the overall functional connectivity within the recorded array.

The above analyses used to determine changes in correlated
discharge between neurons of the VPM thalamus were per-
formed on data sets from all subjects yielding similar results. As
such, activation of the LC efferent path elicited similar effects on
functional connectivity across all animals tested (Fig. 5C). Both
the number (ANOVA; F(3,26) � 13.91; p � 0.0001) and strength
(ANOVA; F(3,26) � 6.04; p � 0.0028) of significantly correlated
discharge patterns were modulated from the control condition
with increasing levels of LC stimulation according to an
inverted-U response relationship. These data indicate that func-
tional connectivity, as defined by patterns of correlated spike
train discharge, is altered in the VPM thalamus with increasing
levels of LC activation.

Population level analysis: PCA eigenvalue weights
Distributed patterns of stimulus-related discharge within the
VPM thalamus were further studied with PC analysis. Previous
studies in vibrissa-related regions of the VPM thalamus (i.e., bar-
reloids) have demonstrated that eigenvectors (vectors of PC
weights) derived from PC analysis of multineuron spike train
activity are conserved across animals and represent specific stim-
ulus properties (e.g., direction of vibrissa movement) (Chapin
and Nicolelis, 1999). In the current study, functionally relevant
relationships between recorded neurons were determined when
PC eigenvalues were rank ordered according to latency and mag-
nitude of their sensory evoked responses (Fig. 6). Individual
VPM thalamic neurons exhibit the strongest response with the
shortest latency to sensory input from a principal or primary
whisker on the contralateral face (Diamond et al., 1992). As illus-
trated in Figure 6A, rank-ordering neurons by response charac-
teristics (sum of mean evoked-discharge and response latency)
resulted in PC eigenvector patterns that were representative of
principal whisker relationships (Chapin and Nicolelis, 1999).
Neurons with the largest response and shortest latency to whis-
kerpad stimulation are positioned on the left in Figure 6, with the
weakest response and longest latency placed on the right. The PC
eigenvector weights shown in Figure 6A are representative of the
patterns found across all animals in this study. Overall, PC1 con-
tained all positive and relatively homogeneous PC weights,
whereas PC2 demonstrated a linear increase in eigenvector
weights across the ordered array of neurons. As such, the positive,
homogeneous weights of PC1 indicate that this component rep-
resents generalized neuronal activity across the neural ensemble.
In contrast, the linear relationship between the weights of PC2
and neuronal response properties suggests that PC2 represents a
more specific description of sensory information. For example,
PC2 likely represents a sensory coding scheme that is dependent
on a graded relationship between neuronal activity across an en-
semble and a specific dimension of receptive field structure, such
as direction of movement across the array of facial vibrissae
(Chapin and Nicolelis, 1999).

Additional analysis of PC weights identified changes in eigen-
values with increasing levels of LC activation. Changes in PC1
weights from control values are illustrated in Figure 6Bi. Neurons

that were plotted at the extremes of the rank-ordering scale dem-
onstrated the largest changes in PC weights during increasing LC
activation. These changes in PC weights resulted in rotation of
the slope of PC1, such that with increasing levels of LC stimula-
tion the slope of PC1 became equivalent to zero (Fig. 6Bii). For
example, during control conditions, the slope of the regression
line representing PC1 weights was significantly different from
zero (slope, �0.0189; R 2 � 0.4567; F(3,51) � 10.12; p � 0.079).
However with increasing LC stimulation, a significant positive
rotation of this regression line was observed ( f(x)� �0.01842 �
x � 0.3798, 0.5 Hz; f(x)� �0.004311 � x � 0.2845, 1.0 Hz; f(x) �
0.01069 � x � 0.001586, 5.0 Hz; F(3,48) � 5.59735; p � 0.0023).

Figure 6. PC weighting coefficients calculated from an array of 16 simultaneously recorded
VPM thalamic neurons. A, Graph depicting PC eigenvalue weight coefficients 1 and 2 from the
ensemble of thalamic neurons during periods of quiet rest (t � 1100 s). The neurons on the
x-axis are rank ordered according to sensory response characteristics (evoked response magni-
tude by evoked response latency). Shorter latencies and larger responses to sensory stimuli
indicate a cell that is receiving input from the center of the receptive field of the neuron.
Rank-ordering data by this method yields results similar to those reported previously by Chapin
et al. (1999). Bi, Bii, PC1 eigenvalues (Bi) and the corresponding changes from control (Bii) are
plotted for each cell during different LC output conditions (control, 0.5, 1.0, and 5.0 Hz stimu-
lation). With increasing LC stimulation, the slope of the linear regression lines are rotated
counterclockwise from 0.676 (control) to 0.011 (0.5 Hz). Additionally, the coefficient of deter-
mination decreased (R 2 � 0.458, control; R 2 � 0.231, 0.5 Hz), indicating greater variation in
eigenvalues and, thus, a loss of directional information represented by PC1. C, As in B, PC2
eigenvalues (Ci) and the corresponding changes from control (Cii) are plotted for each cell
during different LC output conditions (control, 0.5, 1.0, and 5.0 Hz stimulation). In this case, the
slope of the linear regression lines were not rotated in conjunction with increasing LC stimula-
tion, and the variability of eigenvalues was slightly reduced (R 2 � 0.827, control; R 2 � 0.896,
0.5 Hz). However, PC2 eigenvalues were best fitted with a sigmoidal curve (R 2 � 0.940) during
0.5 Hz LC stimulation. Overall, these data indicate that increasing tonic LC output levels reduce
the relationship between neuronal response properties and their contribution to the PC1 and
more strongly relate neuronal response properties to PC2. It is likely that these actions result in
a greater discrimination of sensory signals at low levels of LC output and a less variable (i.e.,
more discrete) representation at higher levels.
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In other words, in a frequency-dependent manner, LC stimula-
tion decreased the contribution of both robustly responding and
weakly responding neurons (e.g., sig004b and sig002b) (Fig. 6Bi)
to PC1, thus minimizing the relationship between neural rank
order and PC weight (Fig. 6ii). Additionally, with increasing lev-
els of LC stimulation, the coefficient of determination (R 2) of the
linear regression was reduced (0.5 Hz, 0.4331; 1.0 Hz, 0.04072;
5.0 Hz, 0.2308). Reductions in R 2 and fit of the data to the linear
model further supports the position that the relationship be-
tween neural rank order and PC1 weight is reduced with increas-
ing LC output.

In contrast to LC-mediated effects on PC1, the slope of PC2
weights (Fig. 6Ci,Cii) across rank-ordered neurons was not
changed significantly with increasing levels of LC activation.
Slopes of PC2 remained parallel but had significantly different
y-intercepts (Fig. 6Ci) (control, �0.3893; 0.5 Hz, �0.3823; 1.0
Hz, �0.4665; 5.0 Hz, �0.5127; F(3,51) � 4.3288; p � 0.00857).
Likewise, the coefficient of determination (R 2) was increased
rather than reduced with increasing levels of LC stimulation
(control, 0.8272; 0.5 Hz, 0.8959; 1.0 Hz, 0.8931; 5.0 Hz, 0.9053),
indicating a better fit of the data to the regression line with in-
creasing activation of the LC efferent path. However, it is worth
noting that during 0.5 Hz LC stimulation (not others), the eigen-
values of several neurons from this case were increased from
control values (Fig. 6Cii, sig006b–sig008c). These increases al-
tered the eigenvalue pattern and were best fitted with a nonlinear,
sigmoidal curve (R 2 � 0.940 vs R 2 � 0.896 for linear regression).
The improved fit of PC2 weights with a sigmoidal curve indicates
that the gradient of PC2 weights across the ensemble of neurons
began to approach a step function. As such, the effects of low
levels of LC output (0.5 Hz) on the contribution of VPM neuron
discharge patterns to PC2 putatively reflect more clearly defined
center/surround delineation across the receptive field. By associ-
ation, this effect suggests that the relation of each neuron’s dis-
charge pattern to whisker movement was more clearly defined at
this level of LC output. With additional increases in LC activation
(5.0 Hz), PC2 weights across rank-ordered neurons were again
best fitted with the linear regression model.

In addition to the relationship between PC eigenvalues and
the latency and magnitude of sensory evoked responses of each
neuron, the percentage total variance of neuronal firing patterns
explained by each PC was determined. PC1 exhibited a modest
inverted-U response profile with respect to LC output levels. The
percentage of variance explained by PC1 peaked at 1.0 Hz LC
stimulation (2.4% above control) and fell below control levels
(97.6% of control) with additional increases in LC output. This
increase at 1.0 Hz LC stimulation suggests that more variability of
the neuronal spike train (i.e., responses) is allocated to represent
the overall (global) response. In contrast to the modest changes in
PC1, the percentage total variance of neuronal firing patterns
explained by PC2 successively increased to 12% above control
conditions with increasing levels of LC output (control, 6.656%
vs 5.0 Hz, 7.425%). The more pronounced increase in variance
explained by PC2 suggests that at higher levels of LC activation,
more of the variability within neuronal spike train activities (i.e.,
responses) is allocated to the representation of the sensory signals
distributed across the neuronal ensemble. For example, PC2 and
its relationship to direction of whisker movement may be more
robustly coded in the distributed activity of ensembles of
neurons.

In summary, increasing levels of LC activation produced sig-
nificant effects on the PC1–PC2 weights for ensembles of sensory
thalamic neurons. The actions of increasing LC stimulation re-

sulted in a more variable set of PC1 weights that were less repre-
sentative of stimulus properties than during control conditions.
Therefore, as LC activation increased, the relatively nonspecific
nature of PC1 with respect to stimulus attributes became more
pronounced. In contrast, with increasing LC stimulation, the
shape of the regression for PC2 weights shifted from a linear to a
sigmoidal representation. This shift suggested that the relation-
ship between individual neuron discharge patterns and stimulus
properties was more clearly defined during periods of elevated LC
output. Furthermore, at the highest level of LC stimulation, more
of the combined activity across this ensemble of neurons was
dedicated to the representation of higher-order coding of whis-
kerpad stimulation.

Population level analysis: PCA eigenvalue weight maps
The weights for each PC are, in essence, coordinates that map the
discharge pattern of each neuron within the multidimensional
PC space. Thus, weights for each PC represent a definition of the
role of each neuron in processing multidimensional sensory in-
formation. PC1 and PC2 dimensions of sensory information pro-
cessing are hypothesized to encode magnitude and direction of
whisker deflection. Increasing levels of LC stimulation altered the
position of each neuron within the first two dimensions of PC
space (i.e., PC1 vs PC2). For example, the weights for PC1 and
PC2 for an ensemble of 16 simultaneously recorded VPM neu-
rons are plotted in Figure 7. Across conditions of increasing LC
activation, the location of each neuron in PC space changes. Low
levels of LC stimulation produced a more negative slope of the
regression line for these data (control, �0.8019 vs 0.5 Hz,
�1.1539), which was significantly different from the other slopes
(F � 7.728; p � 0.0148). Additional increases in LC activation
rotated the slope in a positive direction (maximal positive slope,
0.7436 5.0 Hz). However, the neuronal representations in PC
space did not rotate as a whole cluster, but independently moved
within the PC space with increasing frequencies of LC stimula-

Figure 7. The effect of LC stimulation on functional relationships between neurons. For each
of 16 simultaneously recorded VPM neurons, the PC eigenvalue weighting coefficient of the first
PC (PC1; x-axis) was plotted against the second (PC2; y-axis). The result is a graphic represen-
tation of the relationships between neurons within the recorded array. These plots were created
for control (A) and LC stimulation [0.5 Hz (B), 1.0 Hz (C), 5.0 Hz (D)] periods. For each level of LC
activation, neuron position changes within the space defined by PC1 and PC2 and a shift in the
linear regression slope indicate changes in the contribution of each neuron to these dimensions
of stimulus information processing.
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tion. These data further indicate that output
from LC is capable of altering the contribu-
tion of a neuron to different dimensions of
sensory information processing.

Population level analysis:
PCA eigenfunctions
PC weights in conjunction with the neuro-
nal spike-train data from simultaneously
recorded single neurons of the VPM
within individual animals were used to
construct a number of eigenfunctions.
Specifically, eigenfunctions were calcu-
lated as the principal component eigen-
vector multiplied by the spike-train activ-
ity of a single neuron.

As illustrated in Figure 8A–B, the first
PC eigenfunction exhibited an inverted-U
response curve across the range of tonic
LC outputs tested (F(4,19) � 23.4; p �
0.0001). The maximal increase in magni-
tude (1.16-fold) was observed during 1.0
Hz LC stimulation. Likewise, the second
PC eigenfunction, demonstrated an
inverted-U response curve across the
range of LC outputs tested (F(4,19) � 5.46;
p � 0.0097), but the maximal increase in
PC2 was substantially larger than PC1
(2.57-fold). Additional increases in LC ac-
tivation (5.0 Hz) suppressed the aug-
mented responses of PC1 and PC2 toward
control levels and below. As indicated above, the magnitude of
nonstimulus related (background) activity of PC1 and PC2 was
also modulated by increasing levels of LC stimulation. Back-
ground activity of PC1 and PC2 was incrementally suppressed
with increasing LC stimulation to a maximum during 1.0 Hz LC
stimulation (PC1, 69% of control at 0.5 Hz, 27% at 1.0 Hz; PC2,
49% at 0.5 Hz, 51% at 1.0 Hz). The suppression of background
activity in PC1 and PC2 was minimal (near control levels) with
additional increases in LC activation (5.0 Hz).

This series of PCA analyses demonstrated for this representa-
tive animal were performed on data sets from all subjects yielding
similar results. The effects of increasing LC stimulation on pop-
ulation coding schemes (represented by PC1 and PC2 in this
analysis) were observed across all animals tested (Fig. 8C). Over-
all, increasing the frequency of tonic LC stimulation elicited a
parabolic or inverted-U stimulus-response curve for PC1
(ANOVA; F(4,52) � 5.70; p � 0.0011) and PC2 (ANOVA; F(4,40) �
3.85; p � 0.0134), as recorded from ensembles of thalamic neu-
rons in multiple animals (n � 6). However, across subjects, PC2
was facilitated to a greater extent than PC1. These data indicate
that the ability of tonic LC output to alter sensory representations
within a distributed ensemble of neurons is robust and conserved
across animals.

Discussion
The present study demonstrates that tonic LC output regulates
cellular and local network responses to sensory-driven synaptic
input in the VPM thalamus of awake, quiet resting animals. Uni-
lateral microstimulation of LC increased both LC unit discharge
and NE efflux in the ipsilateral VPM thalamus. Under these same
conditions, VPM single-unit responses to whiskerpad stimula-
tion were modulated in a cell-specific manner according to either

an inverted-U or monotonic suppressant response profile. At the
ensemble level, distributed representations of sensory stimuli, as
measured by PCA or functional connectivity between VPM neu-
rons was also increased over an inverted-U profile with increas-
ing LC output. Together, these observations forge an important
link between established cellular actions of the LC–NE system
and the impact of this pathway on local thalamic network re-
sponses to sensory-driven synaptic input. Furthermore, these re-
sults reveal new modes of noradrenergic modulation of sensory
signal processing in waking animals.

Heterogeneity of LC actions on single neurons
Increased LC output produced cell-specific modulation of sen-
sory stimulus-evoked thalamic neuron responses similar to that
observed previously with continuous, local iontophoretic admin-
istration of NE (Foote et al., 1975; Rogawski and Aghajanian,
1980; Waterhouse and Woodward, 1980; Armstrong-James and
Fox, 1983; Kossl and Vater, 1989; Waterhouse et al., 1990; Mc-
Cormick et al., 1991; George, 1992; Holdefer and Jacobs, 1994).
Thus, in our view, the heterogeneous nature of LC-mediated
neuromodulatory actions in the unanesthetized animal repre-
sents innate interactions between noradrenergic and non-
noradrenergic synaptic influences on target cells under physio-
logic conditions as opposed to experimental differences imposed
by one-cell-at-a-time recording procedures. Previous in vitro and
in vivo studies have also demonstrated considerable variability
with respect to neuronal sensitivity to NE (Sato and Kayama,
1983; Snow et al., 1999; Devilbiss and Waterhouse, 2000, 2004).
These studies demonstrated that “facilitation” was predomi-
nantly mediated by �1 receptor, whereas “suppression” was likely
mediated through NE activation of either the postsynaptic �2 or
� receptor (Devilbiss and Waterhouse, 2000). Thus, the cellular
complement of adrenergic receptor subtypes, receptor sensitivity

Figure 8. The effects of LC stimulation on population coding properties of ensembles of VPM thalamic neurons. A, Peristimulus
time histograms illustrate first (top) and second (bottom) PC eigenfunctions for an ensemble (n � 16) of simultaneously recorded
VPM thalamic neurons before, during, and after periods of tonic LC stimulation (0.5–5.0 Hz). Numerical insets indicate magnitude
of the PC response (note: PC 2 biphasic response is measured peak to peak). Both PC1 and PC2 representations of sensory-related
activity were modulated by LC output according to an inverted-U relationship. B, Plot of data from A demonstrate that PC 2
(related to the rostrocaudal spatial domain of whisker displacement) was modulated to a greater extent during 1.0 Hz LC stimu-
lation than PC1 (generalized neural activity). C, Examination of data collected from n � 6 animals indicates that effects of LC
activation on PC1 and PC2 were robust and conserved across all subjects tested. *p � 0.05.
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for NE binding, and local concentrations of NE are important
determinants of LC action on target neurons. Moreover, LC–NE
output cannot simply be defined in terms of its ability to upregu-
late or downregulate stimulus-evoked responses of single neu-
rons, but rather in terms of its ability to alter the repertoire of
available responses from an assembly of neurons that encode
information across a distributed network. Within this context, it
is noteworthy that distributed activity across ensembles of neu-
rons is believed to be critical for accurate coding of sensory infor-
mation within sensory pathways (Nicolelis et al., 1995; Laurent et
al., 1996; Chapin and Nicolelis, 1999; Devilbiss and Waterhouse,
2002).

Dynamic reorganization of the neural ensemble
The current analyses indicate that the functional connections
between VPM neurons were simultaneously strengthened and
reduced with increasing LC output, thus resulting in continual
changes in connectivity patterns among these cells. Moreover,
the size of cell assemblies actively encoding sensory stimuli were
expanded and reduced in conjunction with increases/decreases in
functional connectivity. Correlated neuronal activity peaks were
narrow, suggesting common input or reciprocal connectivity
(Csicsvari et al., 1998; Lampl et al., 1999; Marshall et al., 2002;
Bartho et al., 2004). Importantly, correlegram peaks were not
stimulus induced, given that PSTH corrections were applied to all
correlegrams (Gerstein et al., 1989). Moreover, convergent pro-
jections from either the principal (PrV) or spinal trigeminal nu-
cleus (SpV) likely provide singular inputs to VPM neurons. For
example, both anatomical and electrophysiological studies reveal
SpV neurons have large receptive fields and project to PrV and
VPM thalamus, thus eliciting responses in VPM neurons from
several whiskers (Chiaia et al., 1991; Wang and Ohara, 1993;
Friedberg et al., 2004; Timofeeva et al., 2004). Additionally, dif-
ferences in response latencies between PrV (�6.7 ms) or SpV
(�11 ms) and VPM neurons (Friedberg et al., 2004) could indeed
produce the sharp and delayed peaks that were evident in many
cross-correlegrams. Nonetheless, other putative circuit mecha-
nisms could produce correlated discharge between VPM neurons
(see below) (Bal et al., 1995b; Nicolelis et al., 1995; Bal and Mc-
Cormick, 1996; Ritz and Sejnowski, 1997; Lampl et al., 1999;
Singer, 1999; Friedberg et al., 2004; Harris, 2005).

Over the range of tonic LC output frequencies tested, target
cell assemblies in the thalamus continuously self-organized (i.e.,
altered cellular contributions to sensory stimulus coding). Al-
though the observed changes in VPM functional connectivity
may not strictly define the neural code used by trigeminal cir-
cuitry, they are likely to have a significant impact on the cortical
representation of peripheral sensory stimuli. In a functional con-
text, cortical neurons operate on a continuum as temporal inte-
grators and coherence detectors (Rudolph and Destexhe, 2003).
Synchronous activity, as observed in the current study, provides a
strong afferent drive for cortical neurons (Salinas and Sejnowski,
2000; Sejnowski and Paulsen, 2006). For example, during periods
of low LC–NE output (�0.9 –1.33 Hz at 0.5–1.0 Hz stimulation,
respectively) VPM thalamic neurons demonstrated the highest
amount of synchronous/correlated discharge. Thus, levels of LC
output, associated with active waking (Aston-Jones and Bloom,
1981), likely increase the flow of sensory information from the
thalamus to the cortex and result in optimization of sensory stim-
ulus coding for ongoing state-dependent behavioral tasks.

Potential mechanisms underlying VPM neuromodulation
Mechanisms underlying changes in VPM functional connectivity
and sensory coding across LC output levels are poorly under-
stood. Depolarization of VPM neurons by �1-receptor activation
(McCormick and Pape, 1990; McCormick, 1992) may raise the
probability of action potential generation within a subset of VPM
neurons, thereby producing near-synchronous discharge
(Azouz, 2005) and increased functional connectivity (Aertsen
and Gerstein, 1985). With additional increases in LC–NE output,
activation of �-receptors enhances the hyperpolarization-
activated cation current (McCormick, 1992) of VPM neurons
and decrease discharge probability and the likelihood of synchro-
nous discharge.

The above described effects were observed only when stimu-
lating electrodes were located in close proximity to LC (i.e., �250
�m). Thus, tissue activation in this study was limited to LC and
peri-LC regions. Nonetheless, LC projections to other brainstem
neuromodulatory nuclei, such as the lateral dorsal tegmental
(LDT) nucleus (Jones and Yang, 1985; Hallanger et al., 1987;
Jones, 1990), represent indirect pathways through which LC
stimulation could influence VPM sensory responses. The brain-
stem LDT is a principal source of acetylcholine (ACh) to the
thalamus (Satoh and Fibiger, 1986). Although ACh has been
shown to depolarize VPM neurons (McCormick and Pape, 1988;
Bal et al., 1995a), LC–NE inhibits LDT-ACh cells (Grant and
Highfield, 1991; Kohlmeier and Reiner, 1999) and facilitates
LDT-GABAergic interneurons (Kohlmeier and Reiner, 1999).
Thus, it is unlikely that LC-mediated changes in LDT output
could account for the experimental outcomes observed in the
present study.

Actions of NE on nucleus reticularis thalami (nRT) may also
influence VPM neuronal firing. For example, high-frequency
bursts of action potentials in nRT cells (observed during sleep)
lead to rebound EPSPs and discharge of VPM neurons (Bal et al.,
1995a). However, NE depolarizes GABAergic nRT neurons (Mc-
Cormick and Wang, 1991), thereby reducing oscillatory dis-
charge within nRT and the VPM (Lee and McCormick, 1996).
Thus, NE actions that suppress low-frequency oscillations of
nRT/VPM neurons are unlikely to account for increased VPM-
correlated activity as observed in the current study. On the other
hand, noradrenergically mediated suppression of nRT could fa-
cilitate evoked discharge within the VPM. Existing evidence sug-
gests that such effects would emerge in transitions from sleep to
waking, but the consequences of wake-related increases in NE on
nRT neuronal discharge and subsequent effects on VPM neuro-
nal responsiveness is unknown.

Finally, initial evidence suggests that thalamic cell correlations
are dependent on cortical thalamic feedback (Sillito et al., 1994).
Corticothalamic glutamate release onto VPM mGlu receptors
could slowly depolarize and activate VPM neurons (McCormick
and von Krosigk, 1992). However, existing evidence indicates
that NE depresses activity in cortical-VPM and cortical-nRT
pathways (Castro-Alamancos and Calcagnotto, 2001).

In summary, given the range of possible mechanisms, the
most parsimonious explanation for the observed modulatory ac-
tions is that LC–NE output exerts direct effects on VPM neurons
so as to promote synchronous discharge in this sensory relay
nucleus during periods of active information gathering.

Relationship between tonic LC stimulation, NE efflux, and
sensory signal modulation
In the current study, LC neurons displayed basal firing rates sim-
ilar to those reported previously for quietly resting, but awake

Devilbiss et al. • LC Actions on Sensory Coding J. Neurosci., September 27, 2006 • 26(39):9860 –9872 • 9869



animals (�0.8 Hz) (Aston-Jones and Bloom, 1981). Electrical
stimulation (0.5–5.0 Hz) of the nucleus increased NE efflux in
VPM and elevated the discharge of LC neurons to levels (�0.9 –
3.15 Hz) observed during active waking (i.e., exploration, orient-
ing) (Aston-Jones and Bloom, 1981). Thus, we believe the results
reported here are most apropos to understanding processes ex-
pressed in the alert and active animal. The fact that the range of
LC discharge in our behaving animals was slightly narrower than
reported previously (Aston-Jones and Bloom, 1981) is likely at-
tributable to the fact that our animals were well habituated to
their testing environment.

The results of the present study indicate that minimal LC
activation (�0.5–1.0 Hz) and NE output (15–30%) are sufficient
to optimize individual neuron response properties, connectivity,
and distributed representations of afferent information within
the VPM thalamus. Additional increases in LC output (i.e., �5
Hz) are likely related to alarm situations and stress (Berridge and
Waterhouse, 2003). Thus, it is of interest that under conditions
associated with gathering of sensory information (i.e., explora-
tion), the LC–NE system operates within a range that maximizes
information processing capabilities of cellular assemblies within
the sensory thalamus. In contrast, under other behavioral cir-
cumstances, such as quiet rest or stress, the output from the
LC–NE system appears capable of priming the sensory thalamic
circuitry for other computational tasks and sensory signal pro-
cessing strategies.

Functional relevance of LC alterations in target
neuron discharge
Fluctuations in tonic LC–NE levels are linked to the level of per-
formance in sustained attention tasks (Aston-Jones et al., 1994;
Rajkowski et al., 1994; Usher et al., 1999), working memory (Arn-
sten and Dudley, 2005), and decision-related actions (Ivanova et
al., 1997; Clayton et al., 2004; Nieuwenhuis et al., 2005) according
to an inverted-U function. Despite variability of effects on indi-
vidual neurons, the impact of this noradrenergic system on
stimulus-evoked responses, correlated patterns of neuronal dis-
charge, and distributed representations of sensory information
was characterized by a similar inverted-U modulatory profile
across physiologic increases in LC–NE output. Thus, we provide
the first evidence that heterogeneous cellular neuromodulatory
effects associated with tonic LC output combine at a neuronal
ensemble level to produce a singular sensory signal modulatory
action that is related to behavior/cognition. Moreover, this work
provides a perspective on how a brainstem modulatory system
can coordinately regulate signal processing across a population of
neurons within the circuitry of an ascending sensory network.
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