nsPEF-induced PIP2 depletion, PLC activity and actin cytoskeletal cortex remodeling are responsible for post-exposure cellular swelling and blebbing

Gleb Tolstykh
General Dynamics

Gary Thompson
Rowan University

Hope Beier
Air Force Research Laboratory

Zachary Steelman
Duke University

Bennett Ibey
Air Force Research Laboratory

Let us know how access to this document benefits you - share your thoughts on our feedback form.

Follow this and additional works at: https://rdw.rowan.edu/engineering_facpub

Part of the [Biomedical Engineering and Bioengineering Commons](https://rdw.rowan.edu/engineering_facpub), and the [Cell Biology Commons](https://rdw.rowan.edu/engineering_facpub)

Recommended Citation

Tolstykh, Gleb; Thompson, Gary; Beier, Hope; Steelman, Zachary; and Ibey, Bennett, "nsPEF-induced PIP2 depletion, PLC activity and actin cytoskeletal cortex remodeling are responsible for post-exposure cellular swelling and blebbing" (2017). *Henry M. Rowan College of Engineering Faculty Scholarship*. 62.
https://rdw.rowan.edu/engineering_facpub/62

This Article is brought to you for free and open access by the Henry M. Rowan College of Engineering at Rowan Digital Works. It has been accepted for inclusion in Henry M. Rowan College of Engineering Faculty Scholarship by an authorized administrator of Rowan Digital Works. For more information, please contact jiras@rowan.edu, rdw@rowan.edu.
nsPEF-induced PIP2 depletion, PLC activity and actin cytoskeletal cortex remodeling are responsible for post-exposure cellular swelling and blebbing

Gleb P. Tolstykh⁎, Gary L. Thompson⁎, Hope T. Beier⁎, Zachary A. Steelman⁎, Bennett L. Ibeys

⁎ Correspondence to: General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA.
E-mail address: gtolstykh@gmail.com (G.P. Tolstykh).

Contents lists available at ScienceDirect
Biochemistry and Biophysics Reports
ejournal homepage: www.elsevier.com/locate/bbrep

ARTICLE INFO

Keywords:
Nanosecond pulsed electric field
Nanopores
PIP2 hydrolysis
Cellular swelling and blebbing
Calcium

ABSTRACT

Cell swelling and blebbing has been commonly observed following nanosecond pulsed electric field (nsPEF) exposure. The hypothesized origin of these effects is nanoporation of the plasma membrane (PM) followed by transmembrane diffusion of extracellular fluid and disassembly of cortical actin structures. This investigation will provide evidence that shows passive movement of fluid into the cell through nanopores and increase of intracellular osmotic pressure are not solely responsible for this observed phenomena. We demonstrate that phosphatidylinositol-4,5-bisphosphate (PIP2) depletion and hydrolysis are critical steps in the chain reaction leading to cellular blebbing and swelling. PIP2 is heavily involved in osmoregulation by modulation of ion channels and also serves as an intracellular membrane anchor to cortical actin and phospholipase C (PLC). Given the rather critical role that PIP2 depletion appears to play in the response of cells to nsPEF exposure, it remains unclear how its downstream effects and, specifically, ion channel regulation may contribute to cellular swelling, blebbing, and unknown mechanisms of the lasting “permeabilization” of the PM.

1. Introduction

Exposure to nanosecond pulsed electrical fields (nsPEF) results in a myriad of observable cellular effects, including alteration of intracellular Ca²⁺ homeostasis, nuclear granulation, cytoskeletal changes, cellular blebbing, swelling, and initiation of apoptotic cell death [1–8]. While these effects are often attributed to the direct nanoporation of both the plasma and organelle membranes [9–11], the underlying mechanisms are not well understood.

Some of these nsPEF-induced biological effects appear to be similar to situations observed during the normal lifespan of mammalian cells. For example, plasma membrane (PM) blebs occur during cytokinesis, cell migration, proliferation, and apoptosis [12]. It has been shown that both PIP2 and phosphoinositide-specific PLC are required for regulation of cortical actin dynamics during cytokinesis, since PIP2 needs to be continuously hydrolyzed for successful completion of cell division, and its hydrolysis pair diacylglycerol (DAG) with protein kinase C (PKC) to stimulate cellular growth and proliferation [13,14]. Likewise, PIP2 and phosphoinositide-specific PLC are heavily involved in regulation of vital cellular functions such as modulation of PM transport proteins, cytoskeleton dynamics, intracellular Ca²⁺ homeostasis, and regulation of cellular volume [15–21]. While alterations of these functions have all been observed after nsPEF exposures, their relation to the nsPEF-induced PIP2 signaling pathway is not understood.

Recently, we confirmed that a single 16.2 kV/cm, 600 ns electric pulse initiates an intracellular phosphoinositide PIP2 signaling cascade similar to one initiated by activation of Gq/11-coupled receptors, but in cells without such receptors [22]. PIP2 depletion by nsPEF exposure was demonstrated by direct monitoring of translocation of optical probes of PIP2 hydrolysis. The nsPEF-induced PIP2 signaling mirrored the responses following human muscarinic acetylcholine Gq/11-coupled receptor (hM1) activation [22,23]. Additionally, the nsPEF-induced increase in intracellular Ca²⁺ is almost identical to the calcium rise observed after purinergic P2Y6, Gq/11-coupled receptor stimulation [24], further suggesting PLC activation and induction of PIP2 signaling. Initiation of PIP2 signaling results in production of DAG and inositol-1,4,5-trisphosphate (IP3) [25], leading to elevation of cytosolic Ca²⁺ from IP3-sensitive Ca²⁺ stores and DAG – dependent activation of PKC
endogenous PLC activation, some experiments were paired with Gq/11-coupled hM1 receptor agonist ooxotremorine (OxoM, 10 μM) or AngII receptor agonist angiotensin II (AngII, 10 μM). In a subset of experiments, cells were incubated with PLC blocker edelfosine (10–20 μM) for 30 min prior to OxoM, AngII, or nsPEF exposure. Agonists were added by circulating fresh bath buffer containing either OxoM or AngII at a flow rate of 2 mL/min. All media, chemicals and pharmaceuticals were obtained from Life Technologies, Tocris Bioscience or Sigma-Aldrich. Also, 4 mM propidium iodide (PI) (BD Bioscience) was added to the external solution during some experiments to verify cell viability.

2.4. Data analysis

Cell fluorescence was measured using ImageJ software (NIH) [32]. To measure CaGr fluorescence changes, regions of interest (ROI) were drawn in the cytoplasmic region of cells under study. For PLC5-PH-EGFP and m-Apple-actin fluorescence measurements, ROI were carefully drawn to demark the PM and the cytoplasm of the cell. We used slightly wider ROI during PM measurements to compensate for PM moving during blebbing. Mean fluorescence was measured for each ROI for all images using ImageJ Multi-Measure. Similarly, to measure cell perimeter lengths, ROI were hand-drawn around each cell, and the perimeter was measured. These values were transferred to GraphPad Prism 6 software for statistical analysis and plotting. The responses were calculated for each cell as a percentage difference (ΔF, %) from the mean of the four frames prior to exposure (Baseline) to the frames taken after exposure (Value) using the formula: 100×(Value − Baseline)/Baseline. All imaging experiments were performed at one frame per second (1 Hz).

3. Results and discussion

The roles of local cytoskeleton and changes of intracellular hydrostatic pressure in blebbing cells after nsPEF exposure [7] have been studied previously. However, the role that PIP2 depletion and hydrolysis play in the nsPEF-induced cellular response has not been evaluated. To achieve this goal, we used edelfosine (ET-18-O-CH3), a synthetic alkyl-lysophospholipid that blocks PLC to prevent PIP2 hydrolysis [13,33]. Since edelfosine could arrest cell cycle, inhibit cytokinesis, and initiate apoptosis [13,34–36], we performed a series of experiments to determine its safe operational dose. A small fraction of cells (2%) bathed for 20 min in the 10 μM edelfosine containing buffer experienced PI uptake. However, 100% of the cells had PI uptake after the dose of edelfosine was increased above 30 μM (data not shown). PI uptake is a widely accepted sign of attenuation of cellular viability and PM integrity [37].

To verify the potency of edelfosine as a blocker of PLC activity, we monitored intracellular Ca2+ release after Gα11-coupled receptor activation. By using Ca2+-chelation in outside buffer, we determined that a 20–30 min pretreatment of cells in 10 μM edelfosine resulted in sufficient decrease of PLC-dependent intracellular Ca2+ release from the ER (Fig. 1 (A)). In contrast, but similar to our previous observations [23], addition of 10–20 μM edelfosine was unable to completely prevent intracellular Ca2+ spikes after a single 600 ns, 16.2 kV/cm electric pulse (EP) (Fig. 1 (B)). The persistence of the intracellular Ca2+ rise suggests that the initial nsPEF-induced PIP2 depletion is a result of strong, direct mechanical impact on the cellular PM, and not PLC-mediated hydrolysis.

Based on these observations, we chose to use 20 μM of edelfosine to maximally block PLC activity. To outline the critical role of PLC in the cell response to nsPEF, all edelfosine experiments were performed in Ca2+ containing external buffer. Fig. 2 shows translocation of the PLC5-PH-EGFP construct from the PM to the cytoplasm after Gα11-coupled receptor stimulation by agonists. This stimulation leads to activation of PLC, which then hydrolyzes PIP2 to IP3 and DAG. The PLC5-PH-EGFP construct, with tagged IP3, accumulates in the cytoplasm — directly
demonstrating significant reduction of the PM PIP$_2$ content (Fig. 2 (A) and (B), after AngII 10 µM and OxoM 10 µM treatment, respectively). This robust PIP$_2$ hydrolysis process was accompanied by massive cellular blebbing (Fig. 2 (A) and (B) white arrows), providing a link between PIP$_2$ membrane levels and cell blebbing. Application of 20 µM edelfosine completely blocked the downstream effects of PLC activity, even in the presence of specific G$_{q/11}$-coupled hM1 receptor agonist OxoM (Fig. 2 (C)). The G$_{q/11}$-dependent PIP$_2$ hydrolysis caused cellular perimeter changes due to blebbing, but without any PM nanoporation. CHO-AngII cells treated with AngII experienced statistically significant perimeters increase from 62.3 ± 1.9 µm to 70.2 ± 2.4 µm (two-tailed t-test, $P=0.014$, n=23). Similarly the CHO-hM1 cells treated with OxoM had a perimeter increase from 41.8 ± 1.3 µm to 48.07 ± 1.6 µm (two-tailed t-test, $P=0.005$, n=17). The edelfosine pretreated AngII and hM1 cells had no blebbing, perimeter decrease, and no significant perimeter increase after agonist application (Fig. 2 (C)).

Similar to G$_{q/11}$-receptors stimulation, single and multiple 16.2 kV/cm nsPEF exposures caused PIP$_2$ depletion in CHO-hM1 cells with consequential cell swelling and blebbing. Pretreatment of cells with edelfosine significantly reduced post-exposure cellular perimeter changes and eliminated cell blebbing from a single 16.2 kV/cm pulse. A slight increase of post exposure cellular perimeter was observed after one 16.2 kV/cm EP (from 41.1 ± 1.1 µm to 42.4 ± 1.1 µm, $P=0.432$), and the increase was more noticeable after twenty 16.2 kV/cm EPs (from 44.9 ± 2.29 µm to 48.7 ± 2.48 µm, $P=0.296$). The summaries of delta percent (Δ%) changes of cell perimeter are presented in Fig. 2 (D). The Δ% changes were: CHO-hM1 9.8 ± 3 (n=20); CHO-AngII 11.5 ± 2.5 (n=25); and 5.9 ± 2.3 (n=15), 24.2 ± 2.6 (n=13) for 1 and 20, 600 nsPEFs, respectively. In edelfosine-treated groups Δ% changes were: −3.8 ± 1.4 for CHO-hM1 (n=12); −0.77 ± 0.99 CHO-AngII (n=16); 1.9 ± 0.6 and 6.9 ± 2.1 for 1 and 20, 600 nsPEFs (n=11 and 6).

Blebbing after G$_{q/11}$-receptor stimulation or nsPEF exposure appears to share similar core mechanisms, as blocking PLC activity with edelfosine was able to prevent blebbing in both G$_{q/11}$-receptor agonists and a single nsPEF pulse case and decrease its occurrence in multiple pulse experiments. This persistence of some blebbing in nsPEF-exposed cells could be related to nsPEF-induced nanoporation of the PM, which leads to slight perimeter increase due to cell swelling, in addition to alterations of PIP$_2$-dependent cell osmoregulation.

A recent study of fixation-induced cell blebbing demonstrated a correlation between blebbing and PIP$_2$ levels at the PM. In summary, cell fixation-induced blebbing was reduced in PIP$_2$-containing cells but occurred in PIP$_2$-depleted cells. Moreover, lowering of the PIP$_2$ level at cytoskeleton-attaching membrane sites caused bleb formation at these sites [38]. As we have shown that the PIP$_2$-depletion response appears to persist in nsPEF-exposed cells even after blocking PLC (Fig. 1(B)), we investigated the relationship between local PIP$_2$ depletion and cellular blebbing after nsPEF exposure. Surface plots created on cells...
before and after single or multiple pulsed EF exposures materialize like a fluorescent ring surrounding the cytoplasm due to strong localization of the PLCδ-PH-EGFP construct to the PM (Fig. 3(A–H)). Lowering of PIP2 content after nsPEF-induced PIP2 depletion resulted in reduction of PM fluorescence due to PLCδ-PH-EGFP translocation to the cytoplasm, as demonstrated by disappearance of the fluorescent ring (Fig. 3(A) vs. (B) for 1, 16.2 kV/cm 600 nsPEF; (C) vs. (D) for 20, 16.2 kV/cm 600 nsPEFs). Post-exposure cellular blebbing occurred at areas of maximum PIP2 depletion (Fig. 3(B) and (D), white and black arrows). Pretreatment of cells with 20 μM edelfosine blocked PLC and prevented PIP2 depletion, preserving the fluorescent ring in place after exposure (Fig. 3(E) vs. (F) for 1, 16.2 kV/cm 600 nsPEF; (G) vs. (H) for 20, 16.2 kV/cm 600 nsPEFs). The post-exposure rate of translocation of PLCδ-PH-EGFP from PM to cytoplasm was significantly reduced in edelfosine-treated groups (Fig. 3, (F) vs. (B), and (H) vs. (D)). Note that in the edelfosine-treated group, 20, 16.2 kV/cm 600 nsPEFs caused strong PIP2 depletion only in the area of the highest field (anode facing), where the bleb formed (Fig. 3(H), white and black arrows).

The time-course of the PIP2 depletion and cell blebbing from these multiple pulse exposures are demonstrated in Figs. 3 (I) and 3 (J). Complete PIP2 depletion was observed after application of 20, 16.2 kV/cm 600 nsPEFs immediately after exposure (Fig. 3 (I), 10 s), and cellular blebbing was observed 10 s after exposure (Fig. 3 (I), 15 s, white arrow). In edelfosine-pretreated cells, a similar exposure to 20 nsEPs produced PIP2 depletion only on the cell side facing the anodic electrode (Fig. 3(J), 10s, red arrow). This observation suggests direct effect of nsPEF exposure on the PM. The underlying mechanism for such a direct effect on the PM remains elusive with possibilities being a stimulus due to mechanical waves or electrophoretic flow, localized reactive oxygen species, or electrodeformation-induced stretch [39–41].

Blebs were formed with a significant time delay of 20 s after exposure (Fig. 3 (J), white arrow), and bleb formation was related to complete local PIP2 depletion. Thus, cell blebbing after nsPEF impact or Gq11-receptors stimulation might be directly related to alteration of the PIP2 - PM - cortical actin structure. Cortical actin disassembly was linked earlier to blebbing of erythrocytes in patients with choreo-acanthocytosis [42]. In CHO cells, similar observations were reported as a downstream effect of nsPEF exposure [7]. However, the relation between cortical actin disassembly and PM PIP2 depletion was not demonstrated. To study this relationship, we transiently transfected stable CHO-m-Apple-actin cells with PLCδ-PH-EGFP construct. A 20 16.2 kV/cm 600 nsEPs produced observable PIP2 depletion 2 s after exposure (green arrows highlight depletion). Conversely, the m-Apple actin distribution is not affected 2 s post exposure (Fig. 4 (A)). According to our previous experiments [23], the peak of PLCδ-PH-EGFP translocation into the cytoplasm occurs within 9 s after exposure. Surprisingly, at 9 s after nsPEF exposure, we noted dimming of the cortical actin fluorescence, and correspondingly, blebbing started in the
same region of the PM (Fig. 4 (A)), at 9 s, white arrows). Thus, actin cortex dissociation follows nsPEF-induced PIP2 depletion in an EF dose-dependent manner. After nsPEF exposure, PLCδ-PH-EGFP transfectected cells show a decrease in PM fluorescence and an increase in cytoplasmic fluorescence (Fig. 4 (B) and (D)). Conversely, only a decrease of PM fluorescence was noted in the mApple-actin group (Fig. 4 (C) and (E)), suggesting actin cortex dissociation and not fluorescent crosstalk from the PLCδ-PH-EGFP emission. Exponential decay analysis revealed a best-fit using two-phase decay (τfast~6 s for 20 P and ~4 s for 1 P) for PLCδ-PH-EGFP response and one phase decay for m-Apple-actin response (τ~17 s for 20 P and ~11 s for 1 P) (Fig. 4 (B) and (C), blue lines). This finding confirms that actin cortex dissociation follows PIP2 depletion temporally.

Despite the myriad of reported cell effects after nsPEF (both acute and long term) exposure, we believe that these observations share a root physiological mechanism, namely PIP2 depletion and PLC activation. This activation is strikingly similar to that observed during G_{q11} receptor mediated responses to pharmaceutical stimuli. In previous papers, we showed that nsPEF can cause depletion of PIP2 and activation of PLC in the absence of calcium and that effect appears predominately on the anode portion of the PM [23]. In this paper, we have shown that PIP2 depletion, PLC activity, and subsequent actin cortex dissociation are the likely origins of the well-documented cellular swelling and blebbing observed after nsPEF exposure. If we accept that PIP2 depletion and downstream consequences of this depletion occur during nsPEF stimulation, then the role of ion channels and intracellular enzymes in the response of cells to nsPEF cannot be ignored. Furthermore, longer-term consequences such as sensitization, stimulation, and cell death are also related directly to PIP2 depletion. From this work and previous papers, it is clear that nsPEF-induced

Fig. 4. Actin cortex and PIP2 changes after nsPEF exposure. Actin cortex dissociation is directly related to PIP2 depletion and cellular blebbing (A). Rapid PLCδ-PH-EGFP probe translocation is observed after nsPEF exposure (B and D). A slower decrease in mApple-actin cortex fluorescence is also observed after nsPEF exposure (C), but without accumulation in the cytoplasm (E). Data are presented as mean of Δ% fluorescence changes with SEM.
biophysical response is both a physical interaction between the field and the membranes of cells and a resultant biological/biochemical reaction occurring in specific cellular initiated pathways. What remains unclear is the biophysical mechanism(s) underlying nanoporation and depletion of PIP2 and their further interrelations on the molecular level. Such understanding will be the focus of future work.

Acknowledgments

This work was supported by the Air Force Office of Scientific Research LRIR #13RH08COR. We would like to thank Dr. Mark S. Shapiro for providing CHO cell lines and Ms. Melissa Tarango for technical assistance during our experiments.

Appendix A. Transparency document

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.bbrep.2016.11.005.

References