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Abstract
Background: Most existing algorithms for modeling and analyzing molecular
networks assume a static or time-invariant network topology. Such view, however,
does not render the temporal evolution of the underlying biological process as
molecular networks are typically “re-wired” over time in response to cellular
development and environmental changes. In our previous work, we formulated the
inference of time-varying or dynamic networks as a tracking problem, where the target
state is the ensemble of edges in the network. We used the Kalman filter to track the
network topology over time. Unfortunately, the output of the Kalman filter does not
reflect known properties of molecular networks, such as sparsity.

Results: To address the problem of inferring sparse time-varying networks from a set
of under-sampled measurements, we propose the Approximate Kernel RecONstruction
(AKRON) Kalman filter. AKRON supersedes the Lasso regularization by starting from the
Lasso-Kalman inferred network and judiciously searching the space for a sparser
solution. We derive theoretical bounds for the optimality of AKRON. We evaluate our
approach against the Lasso-Kalman filter on synthetic data. The results show that not
only does AKRON-Kalman provide better reconstruction errors, but it is also better at
identifying if edges exist within a network. Furthermore, we perform a real-world
benchmark on the lifecycle (embryonic, larval, pupal, and adult stages) of the
Drosophila Melanogaster.

Conclusions: We show that the networks inferred by the AKRON-Kalman filter are
sparse and can detect more known gene-to-gene interactions for the Drosophila
melanogaster than the Lasso-Kalman filter. Finally, all of the code reported in this
contribution will be publicly available.

Keywords: Time-varying network, Compressive sensing, Gene regulatory, Gene
regulatory networks

Background
Understanding the dynamical behavior of living cells from their complex genomic regula-
tory networks is a challenge posed in systems biology; yet it is one of critical importance
(i.e., morphogenesis). Gene expression data can be used to infer, or reverse-engineer, the
underlying genomic network to analyze the interactions between the molecules. Unfor-
tunately, most of the existing work on reverse-engineering genomic regulatory networks
estimates one single static network from all available data, which is often collected during
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different cellular functions or developmental epochs. The idea that molecular networks
are remodeled as a function of time and stage is well understood; this conclusion is sup-
ported by the developmental networks of sea urchin embryos [1]. Throughout a cellular
process, such as cancer progression or anticancer therapy, there may exist multiple under-
lying “themes” that determine the functionalities of each molecule and their relationships
to others, and such themes are dynamic. In signal processing terms, summarizing gene
expression data, that comes from different cellular stages, into one network would be
similar to characterizing a non-stationary signal by its Fourier spectrum. Biologically,
static networks cannot reveal regime-specific or key transient interactions that lead to
biological changes.
One of the challenges of inferring a time-varying network is that there are only a few

observations available at each time point. This small sample size is amplified by the high
dimension of every sample, leading to a small n large p problem (i.e., more variables than
observations). In particular, the system is under-determined. However, exploiting the fact
that molecular networks are sparse, one can use compressive sensing to find a solution.
Compressive sensing is concerned with the optimal reconstruction of a sparse signal from
an under-determined linear system [2, 3]. Under-determined systems are quite common
in computational biology/ecology, and the application of compressive sensing to solve
these under-determined systems in nature has been a popular solution [4–6]. Compres-
sive sensing theory states that, under the restricted isometry property (RIP), the optimal
sparsest solution of a linear system is equivalent to the minimum l1-norm solution [2, 3].
Unfortunately, it is almost impossible to check whether a linear system satisfies the RIP
condition. In general, the minimum l1-norm solution can be far from the optimal sparse
solution.
In our previous work [4], we addressed the problem of under-sampled sparse systems

by proposing a new energy-weighted likelihood function that ensures the convergence
of the likelihood function for under-determined systems with unknown covariance. The
approach was coined Small sample MUltivariate Regression with Covariance estimation
(SMURC) and was applied to infer the wing-muscle gene regulatory networks of the
Drosophila Melanogaster during the four phases of its development [4]. However, the
estimated networks at every epoch used only the data in the corresponding epoch. In
particular, the larval network ignored all the measurements in the previous embryonic
phase, and so was the case for the subsequent stages. Other research efforts have been
proposed to address the problem of recovering time-varying gene regulatory networks by
using dynamic Bayesian models [7], non-parametric Bayesian regression [8], and random
graph models [9].
In this contribution, we introduce a new approach to modeling sparse time-varying net-

works and their applications to gene regulatory networks that are based on our recent
work [10, 11]. We start by projecting the Kalman solution onto an “approximately sparse”
space by using l1-regularization. We further expand upon our previous work by using a
Kalman smoother. We then explore the l1-neighborhood for sparser solutions by leverag-
ing our recent compressive sensing technique known as Kernel RecONstruction (KRON)
[12]. KRON recovers the optimal sparsest solution whether the RIP condition is satisfied
or not. However, KRON’s computational complexity is still exponential in the num-
ber of parameters p. We, therefore, advance Approximate KRON (AKRON) [11], which
builds growing neighborhoods of the l1 solution that moves towards the optimal sparsest
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solution and eventually reaches it. The size of the neighborhood is tunable depending on
the computational resources available. We derive theoretical bounds of optimality. The
AKRON Kalman filter is validated on synthetic and real-world data sets.

The state-space model and Kalman filter

Following the works in [4, 13], we model the network dynamics using a state space model.
The system equation is given by a random walk model, which reflects a lack of prior
knowledge of the network topological changes. The observation equation is given by a
first-order differential equation, whose parameters reflect the strength and sign of inter-
actions (positive and negative are activating and repressing, respectively) [14]. The state
space model of the incoming edges, ai ∈ R

p, for gene i can be shown to be [13]

ai(k + 1) =ai(k) + wi(k). (1)

yi(k) =XT(k) ai(k) + vi(k), (2)

where i = 1, · · · , p and p is the number of genes. X(k) ∈ R
p×n is the gene expres-

sion matrix at time k. yi(k) is the rate of change of expression of gene i at time k. wi(k)
and vi(k) are the process and observation noise, respectively. These noise processes are
assumed to be zero mean Gaussian noise processes with the known covariances Qk and
Rk , respectively, and uncorrelated to the state vector ai(k). The full connectivity matrix,
A(k), can be recovered by simultaneous parallel recovery of its rows ati(k) at every time
instant k. Thus, we can process each gene in parallel. The Kalman filter can be used to
track a(k) [13, 15]; however, this is only if the system is observable. The problem with
using a Kalman filter in our setting is that the system is under-determined (i.e., more vari-
ables than equations, p > n). This problem, however, can be circumvented by taking into
account the sparsity of the vector ai(k). Since each gene in the genomic regulatory net-
work is governed by only a small number of other genes, these networks are known to be
sparse. Furthermore, we have also experimented with a Kalman Smoother that is applied
after the Kalman filter. Note that the Kalman Smoother is optional. A Kalman smoother
can reduce the covariance of the optimal estimate. We implemented Rauch et al.’s Kalman
smoothing algorithm [16] and we compared AKRON-Kalman both with and without
smoothing.
The pseudo code for the proposed Kalman filtering approach is shown in Fig. 1.

Constrained Kalman filtering

It is known that the connectivity of the edges in gene regulatory networks [13] is sparse.
Unfortunately, the output of the Kalman filter is likely not going to be sparse.We first start
by projecting the Kalman solution at time k, ak|k , onto the set of “approximately sparse”
vectors by solving the following Lasso problem [17]:

a∗
k|k = arg min

a∈Rp

{
(1 − α)

∥∥ak|k − a
∥∥2
2 + α‖a‖1

}
, (3)

where α ∈[ 0, 1] controls the tradeoff between the Kalman estimate and sparsity. An α

close to zero will result in a solution that is close to the Kalman estimate, but that may
not be sparse. The opposite happens when α is close 1, which will produce a sparser
solution, but may be far from the Kalman estimate. This is achieved by minimizing the
reconstruction error (i.e., the first term in (3)).
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Fig. 1 AKRON-Kalman Tracker+Smoother

AKRON: a search for a sparser solution

Consider the following l0-optimization problem, which finds the optimal sparsest
solution in a linear under-determined system.

x∗ = arg min
x∈Rp

‖x‖0
s.t. �x = y (4)

where ‖ · ‖0 is the l0-norm, which is defined as the support of the vector, x ∈ R
p, y ∈ R

n,
and � ∈ R

n×p. We consider the scenario where p � n and denote in the sequel s = p−n.
Without loss of generality, � is assumed to be full-rank. Compressive sensing theory [3]
shows that, under the Restricted Isometry Property (RIP) condition on the matrix �, the
l1-norm solution is equivalent to the l0-norm solution. Unfortunately, it is impossible to
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check if the RIP condition is satisfied for a given matrix. Despite this strict condition, l1
has been routinely used to find a sparse solution in systems of the form (4).
The proposed Approximate Kernel RecONstruction (AKRON) is an approximation

to computationally complex Kernel RecONstruction (KRON) problems [12]. KRON is
able to achieve an exact solution to (4), but the algorithm becomes computationally
expensive for typically p > 15. AKRON, detailed below, is introduced to balance the
trade-off between the computational resources that are available and the accuracy of the
reconstruction.
The Kalman filter estimate is first sparsified by incorporating l1 regularization in (3)

(line 5 of Fig. 1). However, the l1 projection is not guaranteed to be the optimal sparsest
solution. AKRON-Kalman filter (AKRON-KF) starts off from the l1-regularized Kalman
estimate in (3). Then, the s = p − n smallest elements of the l1 projection in (3) are set
to zero. The logic behind this strategy is to use the l1-projection to guess the position of
the zeros in the optimal solution. Given that the kernel of the system matrix � in (3) has
dimension s, we know that if s zero locations are correctly set, then the optimal sparsest
solution can be exactly found by solving the linear system in (4) [12].
Following this reasoning, AKRON finds a sparser solution by exploring

δ-neighborhoods of the l1-projection. The central idea behind AKRON’s δ-
neighborhoods is as follows: (i) find the indices with the (s + δ) smallest magnitudes of
the l1 solution, (ii) set exactly s of these indices to zero, (iii) re-solve the system �x = y.
All the possible

(s+δ
s

)
combinations of the smallest elements in the solution of (3) are

evaluated. This idea can also be viewed as a “perturbation” of the l1 approximation to
make it closer to the l0-norm. The size of the neighborhood δ is tunable depending on
the computational power available, and vary from 0 (l1-approximation) to n (KRON, i.e.,
perfect reconstruction).
Example: To understand the AKRON algorithm and illustrate the importance of the

δ-neighborhoods, we present a simple numerical example. Consider the following ran-
domly generated noiseless system as in (4):

� =
⎛
⎜⎝

−0.4588 1.5977 −0.8724 −0.1121 −1.3068
0.2942 3.0954 −1.0530 0.3454 1.5257

−0.1948 −0.7558 −0.9756 0.1549 0.9586

⎞
⎟⎠ ;

y =
(

−1.2316 1.1739 0.8135
)T

The optimal �0-norm sparsest solution is given by

x∗ =
(
0 0 0 −1.2372 1.04858

)T
(5)

The �1 solution, which solves (4), is given by

x̂1 =
(
0.0 −0.034 0.047 0.0 0.870

)T

Clearly, the l1-solution is not as sparse as the optimal solution and has incorrect zero
locations. We have n = 3, p = 5 and thus s = 2. If we choose δ = 1 the AKRON
considers the s + δ = 3-smallest magnitudes of x̂1, which are located at indices 1, 2 and
4. We set s = 2 locations to zero among these 3 indices. We consider all

(s+δ
s

) = (3
2
) = 3

combinations of two zeros in indices 1, 2 and 4 of x̂1. The combination of indices 1 and 2
set to zero leads to the sparsest optimal solution x∗ in (5). Thus, in this case, the �1-norm
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solution is sub-optimal; but by considering a δ = 1-neighborhood of this approximation,
AKRON is able to exactly recover the sparsest optimal l0-solution.
In the noisy case, where the constraint in (4) is replaced by ‖�x − y‖ ≤ ε, with ε being

a given noise threshold level, the neighborhood δ is chosen adaptively as follows: set the s
smallest magnitudes of the l1 solution to zero; compute the observation error ‖�x − y‖.
If this error is smaller than the energy of the noise, we adopt this solution. Otherwise, the
next smallest element is set to zero and the error is recalculated.
In the following propositions, we investigate under which assumptions on the entries

of the l1 solution and its closeness to the l0 solution, will AKRON yield the optimal l0
solution.

Proposition 1 Consider the system in (4) with the optimal l0-solution x∗ having k > s
zeros. Consider the l1-solution, x1, and assume that ‖x1−x∗‖2 ≤ ε. Let J denote the number
of indices j such that

|(x1)j| ≤ ε√
k − s + 1

. (6)

Then, by choosing δ ≤ J − s, AKRON yields the optimal l0-solution.

Proof Let � and � be the index sets of zero and non-zero entries in the l0-solution x∗,
respectively. We have |�| = k. We need to show that at least s indices in � are where (6)
holds. To prove this fact, assume the opposite, i.e., at least (k− s+1) indices in� are such
that

|(x1)j| >
ε√

k − s + 1
.

However, in this case, we have

‖x1 − x∗‖2 >
√
k − s + 1

ε√
k − s + 1

= ε,

which contradicts the assumption ‖x1 − x∗‖2 ≤ ε.

The following proposition derives an upper bound for δ ∈ N+ when the non-zero ele-
ments of the optimal l0-solution are bounded from below. We first need the following
Lemma.

Lemma 1 Consider the system in (4) with the optimal l0-solution x∗ and approximate
l1-solution x1. Denote by � and � the index sets of zero and non-zero entries in x∗, respec-
tively. Assume that ‖x1 − x∗‖2 ≤ ε. Let R be the number of indices j ∈ � such that
|(x1)j| ≤ ε. If δ = R, then AKRON yields the optimal solution.

Proof To obtain the sparsest l0-solution, it is sufficient to choose s zeros in “correct
places”, i.e., with indices in �. Recall that AKRON sets s out of the smallest-magnitude
(s + δ) entries in x1 to zero. Therefore, AKRON will yield the optimal solution if out of
these (s+ δ) smallest-magnitude entries, there are at least s entries from �. But all entries
from � have |(x1)j| ≤ ε, for otherwise the assumption ‖x1 − x∗‖2 ≤ ε would be violated.
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This means that only those entries from �, which also satisfy |(x1)j| ≤ ε, could be chosen
by AKRON, and there are only R of them. Hence δ = R will yield the optimal l0-solution.
Lemma 1 provides a sufficient condition on δ for optimality of AKRON, namely, if δ =

R, then we are guaranteed the optimal l0-solution. Since this condition is not necessary,
we could reach optimality with δ ≤ R.

Proposition 2 Consider the system in (4) with the optimal l0-solution x∗ and approxi-
mate l1-solution x1. Let � be the set of indices of non-zero elements in x∗. Assume that the
non-zero entries of x∗ are bounded from below, i.e.,

∣∣∣(x∗)
j

∣∣∣ ≥ η, for all j ∈ � and for some η > 0.

Assume further that ‖x1 − x∗‖2 ≤ ε. If ε < η, then δ ≤
(

ε
η−ε

)2
yields the optimal l0-

solution. In particular, if ε <
η
2 then δ = 0 suffices.

Proof Since |(x∗)j| ≥ η for j ∈ �, we have

∥∥x1 − x∗∥∥
2 ≥ (η − ε)

√
R ≥ (η − ε)

√
δ,

where we used the fact that δ ≤ R from Lemma 1. Thus, ε ≥ ‖x1 − x∗‖2 ≥ (η − ε)
√

δ,
which completes the proof.

Although Propositions 1 and 2 derive theoretical bounds for the choice of the neigh-
borhood radius δ to recover the optimal sparsest solution, we found in our experiments
below that relatively small values of δ are sufficient to achieve a balance between desired
accuracy and computational complexity.

Results
In this section, we present an empirical analysis of the AKRON-KF and its smoother,
including comparisons to other approaches proposed for detecting the relationships
between different genes in a molecular network. The experiments include a number of
carefully designed synthetic data sets, as well as a real-world data set, namely the fruit fly.

Overview of experimental protocols

Our experiments are conducted on real-world and synthetic data. The advantage of the
synthetic data are that the ground truth networks are known; therefore, we can calculate
different statistics about the reconstruction error of the network. Unfortunately, we do
not have a clear view of the “ground truth” for real-world data. Therefore, we use findings
from the life sciences that have studied these networks andwere able to infer gene-to-gene
relationships that are well established [18].
Our experiments make use of the following algorithms for a sparse reconstruction of a

time-varying network:

• l1-KF(S): This algorithm is the output of the Kalman filter with the l1 projection
applied to the state vector. The (S) indicates whether the smoother was implemented.

• AKRON-KF(S): This is the proposed approach using the output of l1-KF(S) to seed
AKRON. It is also implemented with and without the smoother.
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Both of the above algorithms can reconstruct a network that represents the interac-
tions between genes.We compute the true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) rates. These rates are summarized through accuracy (acc),
sensitivity (sen), specificity (spe), and Matthew’s correlation coefficient (mcc), which are
defined below.

acc = TP + TN
TP + TN + FP + FN

,

sen = TP
TP + FN

,

spe = TN
TN + FP

,

mcc = TP · TN − FP · FN√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

.

Matthew’s correlation coefficient provides a more balanced statistic for examining the
overall trade-offs between the different rates (i.e., TP, TN, FP, and FN).

Results on synthetic data

Synthetic time-varying networks are simulated to evaluate the efficacy of the proposed
AKRON-KF(S) on data that we have complete control over. All results in this section
are presented as the average over 25 monte carlo simulations. Averaging is performed
because there could be a large degree of variation in the time-varying networks that are
randomly generated.
First, we evaluate the impact of α in (3) on the estimation of ak|k and the reconstruc-

tion errors of l1-KF and AKRON-KF. The experiment is configured as follows: a 25-gene
network evolves over four-time points by simulating a random walk; all networks being
85% sparse. At each time step, there are nine observations that are available. Figure 2
shows the effect of α on the reconstruction errors of AKRON-KF and l1-KF. Clearly,

a

d e

b c

Fig. 2 Comparison of AKRON-KF and l1-KF on a synthetic data with 25 genes over four time points and with
85% sparsity. All results are averaged over 25 monte carlo simulations. a Error. b Accuracy. c Sensitivity.
d Specificity. eMCC
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AKRON-KF is the better performer across the statistics that we collected. Thus, AKRON
significantly improves the previous implementation of sparse Kalman filters for time-
varying networks. Furthermore, AKRON-KF detects the location of the edges in the
simulated networks (see Fig. 2b). Simply using the solution from l1-KF for a small α is
not enough to find the location of the zeros. In fact, α needs to be close to one to achieve
a high accuracy at edge detection (i.e., (3) will place a large weight on the l1 penalty and
a small weigh on the error). Given these results, we choose α = 0.2 for the remainder
of the experiments since this value provides a reasonable trade-off between the differ-
ent statistics that were assessed. Figure 2e shows that AKRON-KF is also superior to
Lasso-KF as assessed by Matthew’s correlation coefficient, which provides a balanced
measure.
Second, we expand the synthetic experiments to evaluate the impact of δ in AKRON and

the dimensionality of the kernel of X, and we also evaluate the impact that the smoothing
has on the reconstruction of the networks. We simulated three different kernel dimen-
sions and values for δ. Table 1 shows the outcome of these experiments. The entries in
the table are presented as A/B, where A and B are the results from AKRON-KF and
l1-KF, respectively. The table is also divided in half to separate the results for the Kalman
filter and Kalman smoother. Similar to the first experiment, we observe that AKRON-KF
typically outperforms l1-KF in nearly every statistic and the results can be quite signif-
icant. Furthermore, systems with a large kernel dimension (i.e., large p small n) benefit
significantly from a larger value of δ. For example, consider a network that is 9 × 50 × 4.
δ = 1 provides a little reduction in error; however, increasing δ to 3, significantly reduces
the error and increases the other statistics. Finally, we observe that smoothing improves
the error of the system; however, we should note that this improvement comes at a
computational cost.

Table 1 Results on simulated networks

AKRON-KF AKRON-KFS

δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

err 9 × 11 × 4 2.27/131.42 1.83/119.78 2.74/128.54 0.68/133.65 1.38/122.99 1.21/128.05

9 × 25 × 4 7.86/62.42 25.49/58.88 16.84/63.87 1.72/64.72 8.99/69.45 4.85/68

9 × 50 × 4 17.06/18.06 10.92/18.25 4.94/18.81 7.11/22.02 12.59/21.35 2.74/22.47

acc 9 × 11 × 4 97.52/57.6 98.57/54.87 98.59/56.06 98.23/58.28 98.53/57.98 99.33/57.04

9 × 25 × 4 96.31/63.25 97.49/65.17 98.17/65.43 97.82/77.12 98.84/77.23 99.46/78.54

9 × 50 × 4 97.79/85.74 98.87/85.35 99.22/85.05 98.31/93.99 99.05/93.99 99.52/93.9

sen 9 × 11 × 4 98.52/67.25 98.92/65.69 98.62/66.22 99.1/65.89 98.68/65.29 99.34/64.98

9 × 25 × 4 98.69/89.51 98.7/90.61 98.95/91.67 99.28/89.48 99.37/89.41 99.65/90.18

9 × 50 × 4 99.32/98.73 99.59/98.78 99.67/98.72 99.48/98.27 99.63/98.24 99.78/98.23

spe 9 × 11 × 4 96/45.58 97.96/41.55 98.55/43.94 96.83/43.19 98.29/42.53 99.3/42.17

9 × 25 × 4 82.55/17.32 89.28/17.79 92.33/19.42 88.46/20.71 94.97/20.01 98.05/22.18

9 × 50 × 4 48.16/7.17 68.95/6.95 78.78/6.31 57.77/9.37 73.93/8.17 87.62/7.72

mcc 9 × 11 × 4 94.6/6.1 95.23/11.33 97.17/10.56 96.7/12.95 97.46/8.63 97.52/8.61

9 × 25 × 4 84.74/12.08 89.1/13.45 92.88/11.88 90.76/7.92 97.76/8.76 95.47/10.86

9 × 50 × 4 54.44/13.33 65.12/13.99 81.71/13.3 58.54/7.05 79.02/9.81 86.51/8.11

Each entry in the table reports two numbers separated by “/”. The number on the left is the result of AKRON and the number on
the right is the result of Lasso-KF. The simulation is performed with a 15% network density. The dimensions A × B × C can be
interpreted as A samples with B genes across C timestamps
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a b c d
Fig. 3 Reconstructed networks for the l1-KF across the four time stages. Edges in the network represent
either the suppression of a gene or excitation of a gene, or one gene excites while the other suppresses.
a Embryonic. b Larval. c Pupal. d Adult

Results on Flybase

The application of interest is the inference of the time-varying wing-muscle genomic
network of the Drosophila Melanogaster (fruit fly). The Drosophila’s microarray dataset
originally consists of 4028 genes taken over 66 different time points [18]. The data
includes 4 stages of the Drosophila’s life: embryonic (samples 1 through 30), larval (sam-
ples 31 through 40), pupal (samples 41 through 58), and adulthood (samples 59 through
66). Flybase hosts a list of undirected gene interactions [19]. We set α = 0.2 based on the
experiments in the previous section for l1-KF and AKRON-KF.
In this application, we considered a list of 11 genes that are responsible for the wing

muscle development, which has been considered by many researchers before [7–9, 20].
The embryonic, pupal, and larval stages are undersampled to 9 observations in each stage
that were used in the reconstruction of the 11-gene network in each developmental epoch.
All 8 time points were used in the adulthood period. To summarize, the reconstruction of
the connectivity matrix uses 9 samples in the embryonic, pupal, and larval developmental
stages and 8 samples in the adulthood developmental stage. The 11 gene network was
reconstructed throughout each of the four developmental stages using AKRON-KF and
AKRON-KFS.
The networks reconstruction using the l1-KF and AKRON-KF are shown in Figs. 3a-d

and 4a-d, respectively. For clarity, the displayed networks do not show the strength
of the interaction, only that there is an interaction detected by one of the algorithms.
The AKRON-KF tracker results in clearly sparser networks than the l1-KF. AKRON-KF
was able to find all the connections reported in Flybase: (Actn,prm) appears in the
embryonic, larval, and pupal stages, (Actn,up) appears in all four stages, (up,mhc)
appears in the embryonic, larval, and pupal stages, (up,sls) appears in the embryonic,
larval, and pupal stages and (sls,mhc) appears in the embryonic and larval stages.

a b c d
Fig. 4 Reconstructed networks for the AKRON-KF across the four time stages. Edges in the network represent
either the suppression of a gene or excitation of a gene, or one gene excites while the other suppresses.
a Embryonic. b Larval. c Pupal. d Adult
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a b c d
Fig. 5 Reconstructed networks for the l1-KF with a smoother across the four time stages. Edges in the
network represent either the suppression of a gene or excitation of a gene, or one gene excites while the
other suppresses. a Embryonic. b Larval. c Pupal. d Adult

The other two connections appear through one medium gene (Actn,sls) appears in
the embryonic, pupal and adulthood phases through one additional gene and (twin,
eve) appears through one or more additional genes only in the embryonic and larval
phases.
The networks reconstruction using the l1-KF and AKRON-KF with smoothers are

shown in Figs. 5a-d and 6a-d, respectively. The smoothing provides very similar network
topologies to the ones without the smoother; however, we did observe that the networks
were sparser in the larval stage (see Figs. 4b and 6b). Note that while Fig. 7 is considered
the ground truth, the could exist relationships that have not yet been discovered. These
statistics are shown in Table 2, which again shows the benefit of using the AKRON-KF
over the l1-KF.
Table 3 lists all previous algorithms that were applied to this genetic network. Only

the AKRON-KF, l1-KF [13], SMURC [4] and Dynamic Bayesian networks [7] considered
time-varying networks; and, hence, were able to distinguish the different phases in the
network. The other algorithms (minimum description length [20], random graph model
[9], and nonparametric Bayesian regression [8]) assumed a stationary network, and hence
it is not clear at which stage the detected connections develop. The AKRON-KF along
with the l1-KF are the only algorithms able to recover all known interactions and specify
the developmental stage where these interactions occur. Although the l1-KF also finds all
reported interactions, the networks are denser (less sparse) than the AKRON-KF. With
regard to the MDL results in Table 2, we have not reported the interations. The MDL
authors in [20] inferred a single network, using all 66 time points, that characterizes the
entire Drosophila’s life cycle. In particular, the MDL approach is stationary and does not
differentiate between the phases or time-varying epochs of the data. We wanted to report

a b c d
Fig. 6 Reconstructed networks for the AKRON-KF with a smoother across the four time stages. Edges in the
network represent either the suppression of a gene or excitation of a gene, or one gene excites while the
other suppresses. a Embryonic. b Larval. c Pupal. d Adult
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Fig. 7 The known undirected gene interactions in the Drosophila’s 11-gene wing muscle network as
determined from Flybase [18]

the MDL findings as they are in the literature. Notice that AKRON used less points and
found more correct interactions.

Conclusion
In this work, we addressed the problem of inferring time-varying molecular networks as a
tracking problem that can be solved using the Kalman filter. Themajor difficulty, however,
is that there is not a sufficient number of observations at each time point, which makes
the state-space model unobservable and the tracking senseless. Fortunately, molecular
networks are known to be sparse because the dynamics of every gene are governed by
only a small number of genes. By incorporating the sparsity condition, we show that the
tracking problem becomes feasible.
We presented the AKRON Kalman filter, which builds on our previous work on the

Lasso-Kalman filter (l1-KF). Our proposed approach leverages the AKRON algorithm to
find a sparser solution that is more representative of the ground truth. The proposed
tracker/smoother first computes the output of l1-KF; then explores growing neighbor-
hoods of the l1-projection to look for sparser solutions, eventually reaching the optimal
sparsest estimate. The size of these neighborhoods is a tunable parameter that depends on

Table 2 Results of the AKRON-KF and l1-KF on the real-world Drosophila Melanogaster data set

Algorithm acc sens spec mcc

AKRON δ = 1 35.54 93.94 13.64 10.55

δ = 2 36.16 94.07 13.75 10.97

δ = 3 38.02 95.71 14.53 14.53

ε = 0.0005 49.59 90.35 13.28 5.67

L1-KF 38.43 88.69 11.71 0.59
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Table 3 Detection of the known gene interactions in Flybase (E: embryonic, L: larval, P: pupal and A:
adulthood)

(prm,Actn) (sls,mhc) (mhc,up) (sls,Actn) (sls,up) (twi,eve) (up,Actn)

AKRON-KFS � (E,L,A) � (A) � (L,P,A) � (E,P,A) � (E,L,P,A) � (E,L) � (E)

AKRON-KF � (E,L,A) � (A) � (L,P,A) � (E,P,A) � (E,L,P,A) � (E,L) � (E)

LASSO-Kalman [13] � (E,L,P) � (E,L) � (E,L,P) � (E,L,P) � (E,L,P) � (E,L,P,A) � (E,L,P,A)

SMURC [4] � (A) � (A) � (L) � (L) � (E) � (P) ×
MDL [20] � � × × × � ×
Random graph model [9] × × � (E,L,P,A) � (P,A) � (E,L,P,A) × ×
Dyn. Bayes. netw. [7] × � (E,L,P,A) × × × × ×
Nonpar. Bayes. [8] × × × × × � (E) ×

the computational power available. AKRON-KF was benchmarked on synthetic and real-
world data against l1-KF. The results demonstrate that the proposed approach is better
at recovering sparse time-varying networks than l1-KF. Not only was the reconstruc-
tion error of the proposed approach lower than l1-KF, but it was also better at detecting
whether an edge exists in a network. AKRON-KF tracker was applied to infer the wing
muscle gene regulatory network of theDrosophilaMelanogaster during four developmen-
tal phases of its life cycle, and successfully identified all seven known interactions reported
in Flybase. We should also note that our proposed approach will work for time-series
networks that have more than four times steps and sparsity levels
Our future work includes applying the AKRON-KF to other types of data, particularly

data related to different types of cancers to create a predictive network biomarker for
clinical outcome. These ideas have applicability in translational clinical cancer research,
basic cancer research, and in network-based drug discovery.
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