Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI

Panayiotis Nikolaou
Vanderbilt University

Aaron Coffey
Vanderbilt University

Laura Walkup
Southern Illinois University Carbondale

Brogan Gust
Southern Illinois University Carbondale

Nicholas Whiting
Rowan University

See next page for additional authors

Follow this and additional works at: https://rdw.rowan.edu/csm_facpub

Part of the Atomic, Molecular and Optical Physics Commons

Recommended Citation

http://doi.org/10.1073/pnas.1306586110

This Article is brought to you for free and open access by the College of Science & Mathematics at Rowan Digital Works. It has been accepted for inclusion in Faculty Scholarship for the College of Science & Mathematics by an authorized administrator of Rowan Digital Works.
Authors
Panayiotis Nikolaou, Aaron Coffey, Laura Walkup, Brogan Gust, Nicholas Whiting, Hayley Newton, Scott Barcus, Iga Muradyan, Mikayel Dabaghyan, Gregory Moroz, Matthew Rosen, Samuel Patz, Michael Barlow, Eduard Chekmenev, and Boyd Goodson

This article is available at Rowan Digital Works: https://rdw.rowan.edu/csm_facpub/103
Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI

Panayiotis Nikolaou a,b, Aaron M. Coffey a,c, Laura L. Walkup b, Brogan M. Gust d, Nicholas Whiting d,1, Hayley Newton d, Scott Barcusb,e, Iga Muradyanf, Mikayel Dabaghyang, Gregory D. Moroz9, Matthew S. Rosenh,i, Samuel Patzi, Michael J. Barlow9, Eduard Y. Chekmenevc,j, and Boyd M. Goodsonb,2

aDepartment of Radiology, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232; bDepartment of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901; cDepartment of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235; dSir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom; 1Department of Physics, Drake University, Des Moines, IA 50311; 2Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; 3Graduate School Central Research Shop, Southern Illinois University, Carbondale, IL 62901; 4Department of Physics, Harvard University, Cambridge, MA 02138; 5Massachusetts General Hospital/Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA 02129; and 6Department of Biochemistry, Vanderbilt University, Nashville, TN 37205

The exquisite NMR spectral sensitivity and negligible reactivity of hyperpolarized xenon-129 (HP129Xe) make it attractive for a number of magnetic resonance applications; moreover, HP129Xe embodies an alternative to rare and nonrenewable 3He. However, the ability to reliably and inexpensively produce large quantities of HP129Xe with sufficiently high 129Xe nuclear spin polarization (\(P_{Xe}\)) remains a significant challenge—particularly at high Xe densities. We present results from our “open-source” large-scale (~1 L/h) 129Xe polarizer for clinical, preclinical, and materials NMR and MRI research. Automated and composed mostly of off-the-shelf components, this “hyperpolarizer” is designed to be readily implementable in other laboratories. The device runs with high resonant photon flux (up to 200 W at the RB D\textsubscript{2} line) in the xenon-rich regime (up to 1,800 torr Xe in 500 cc) in either single-batch or stopped-flow mode, negating in part the usual requirement of Xe cryocooling. Excellent agreement is observed among four independent methods used to measure spin polarization. In-cell \(P_{Xe}\) values of ~90%, ~57%, ~50%, and ~30% have been measured for Xe loadings of ~300, ~500, ~760, and ~1,570 torr, respectively. \(P_{Xe}\) values of ~41% and ~28% (with ~760 and ~1,545 torr Xe loadings) have been measured after transfer to Teflar bags and transport to a clinical 3 T scanner for MR imaging, including demonstration of lung MRI with a healthy human subject. Long “in-bag” 129Xe polarization decay times have been measured (\(T_1\) ~38 min and ~5.9 h at ~1.5 mT and 3 T, respectively)—more than sufficient for a variety of applications.

Putting the detection sensitivity provided by their high, nonequilibrium nuclear spin polarization, hyperpolarized (HP) noble gases (129Xe and 3He) are used in a number of NMR/MRI applications (1). Human lung imaging (e.g., refs. 2-5) with HP129Xe is of particular interest. Moreover, xenon is soluble in blood (6), other tissues (7, 8), and many biologically compatible liquids (9), and its proclivity for interacting with other substances and its wide chemical shift range make HP129Xe a sensitive NMR probe of molecular and material surfaces (1, 10-12). In many applications, HP129Xe can replace 3He, and the relative abundance of 129Xe can greatly reduce the impact of the worldwide 3He shortage (13) in these instances. Despite considerable progress (14-22), a major obstacle toward implementing HP129Xe for clinical imaging has been the ability to reliably and inexpensively produce large quantities of HP129Xe with high polarization (\(P_{Xe}\)). HP129Xe is usually created via spin-exchange optical pumping (SEOP) (23), whereby the unpaired electronic spins of an alkali metal vapor (e.g., Rb) are polarized via optical pumping with circularly polarized light, and the polarization is transferred to noble gas nuclear spins during collisions. It is generally anticipated that high \(P_{Xe}\) is achievable only in the low xenon-density regime (18, 24), because (i) higher Xe densities increase the destruction of Rb polarization from nonspin-conserving collisions at a rate that is orders of magnitude worse than those of other gases like 3N\textsubscript{2} and 3He (25-27); and (ii) higher total pressures tend to quench the three-body van der Waals contribution to Rb-Xe spin exchange—leaving the less-efficient two-body term (18, 23). Most large-scale polarizers, in particular all that are available commercially, operate in this low-Xe density regime. Applied research with HP129Xe is severely hampered owing to a lack of access to expensive proprietary hyperpolarizers, and to stimulate development of HP129Xe applications, we present here a low-cost, “open-source” design.

In our recent work (22, 28, 29) exploring Rb/Xe SEOP under conditions of high resonant laser flux, an inverse relationship was found between the optimal temperature and the in-cell Xe density. This effect was exploited to achieve surprisingly high \(P_{Xe}\) values at high Xe densities (e.g., ~52%, ~22%, and ~11% at 50, 500, and 2,000 torr Xe in a 75-cc cell) with <30 W of laser power (22). Expanding upon these results by over an order of magnitude, our collaboration’s first-generation large-scale (~1 L/h) 129Xe polarizer should enable a variety of clinical, preclinical, and materials magnetic resonance spectroscopy/MRI applications. (Portions of this paper were presented at the 2012 Meeting of the Radiological Society of North America.)

Significance

Lung diseases comprise the third leading cause of death in the United States and could benefit from new imaging modalities. “Hyperpolarized” xenon-129 can overcome the ordinarily weak MRI signals from low-density species in lung space or dissolved in tissue; however, clinical progress has been slowed by the difficulty in preparing large amounts of hyperpolarized xenon with high magnetization, as well as the cost and limited availability of xenon hyperpolarization devices. We describe a unique low-cost “open-source” xenon “hyperpolarizer,” characterize its ability to produce xenon-129 with high magnetization, and demonstrate its utility for human lung imaging.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

1Present address: Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030.

2To whom correspondence should be addressed. E-mail: bgoodson@chem.uiuc.edu.

3For spin-1/2 particles, polarization is defined as follows: \(P = (N_+ - N_-)/(N_+ + N_-)\), where \(N_+\) and \(N_-\) refer to the numbers of spins in the \(m = +1/2\) and \(m = -1/2\) magnetic sublevels; at thermal equilibrium, \(P_{Xe}\) is only ~2.85 x 10-4 at 3 T and ~300 K.

www.pnas.org/cgi/doi/10.1073/pnas.1306586110

PNAS Early Edition | 1 of 6
work were presented previously.3 Composed of mostly off-the-shelf components, our automated, modular polarizer is portable, easy to use, and employs an open-source design that is readily implementable in other laboratories. Unlike most clinical-scale Xe polarizers, which typically run in continuous-flow mode, our hyperpolarizer runs in either single-batch or stopped-flow mode in the Xe-rich gas regime (with up to 1,800 torr, or >90%, in a 500-cc cell). The design in part negates the usual requirement to cryo-cool the HP129Xe—a process that otherwise increases the complexity of the device and can lead to losses of spin polarization during HP129Xe accumulation, storage, phase transitions (30), and transfer. Four independent methods were used to measure spin polarization, including the following: in situ field-cycled near-IR spectroscopy (28) (to probe Rb electron spin polarization); in situ low-field 129Xe NMR (calibrated with thermal 1H NMR); gas transfer to 47.5 mT for 129Xe NMR (calibrated with thermal 13C NMR); and gas transfer and subsequent 129Xe NMR/MRI using a clinical 3 T scanner. Excellent agreement was observed among these different approaches; taken together, the 129Xe polarization values reported here represent, by a significant margin, the highest yet achieved at such high Xe densities—and establish the feasibility of attaining near-unity polarization in single batches with HP129Xe quantities sufficient for clinical use (demonstrated here with HP129Xe lung ventilation maps from a healthy human volunteer). Long 129Xe polarization lifetimes were obtained in Tedlar bags that are more than sufficient for gas-phase storage or accumulation necessary for some applications.

Methods

XeNA Polarizer. XeNA, self-contained in a mobile chassis, is composed of a laser system, an electromagnetically coated assembly, a vacuum/gas-handling manifold, on-board optical and NMR spectrometers (and other sensors) for quality assurance (QA) and feedback, and a computer/automation system (Fig. 1A). The optical path (Fig. 1B) begins with a 200-W laser diode array (QPC Lasers) that produces tunable, frequency-narrowed (29) laser output at the Rb D_2 line (\sim794.8 nm; nominal FWHM = 0.27 nm). The laser beam passes through an optical fiber and expands to 2-inch diameter before collimation and entrance into a polarizing beam-splitter (PBS). The s-polarized beam component (<10%) is reflected 90° and discarded; the main (p-polarized) beam is rendered circularly polarized with a quarter-wave (QWP) plate and directed into the oven, which contains a cylindrical glass optical pumping (OP) cell (2” o.d., 9.75”, 500 cc) previously coated with a silanizing agent (Surfasil, Pierce) to slow gas diffusion and loaded with <200 mg of Rb. The cell is loaded with a variable Xe/N$_2$ gas mixture; N$_2$ helps suppress reemission of unpolarized light from electronically excited Rb (14) and provides additional collision-broadening of the Rb absorption line (31). The laser beam enters/exits through 3-inch anti-reflection-coated sapphire windows. The beam is retro-reflected back through the cell via a 3-inch mirror and directed into the optics assembly, where the PBS reflects the beam into a beam block. The Teflon oven’s temperature is controlled via a heated/cooled gas line from a self-pressurized liquid N$_2$ dewar. The oven resides in a magnetic field provided by a four-coil electromagnet (Acutran, 23.6° i.d.; nominal fields of 5.26 or 5.04 mT, corresponding to 62.0-kHz resonance frequency for Xe2 and Xe, respectively). The manifold directs gas flow from cylinders containing natural-abundance Xe (26.44% 129Xe), isotopically enriched Xe (–86% 129Xe), and N$_2$ gas, providing desired mixtures up to 2,000 torr. All experiments used naturally abundant 129Xe, unless otherwise stated. After passing through Q$_0$ getters, the gases are loaded into the OP cell. Following SEOP, the HP129Xe mixture is flowed through perfluoroalkoxy (PFA) tubing and a Teflon filter (Millipore Watagard) to get any residual Rb before collection in a Tedlar bag. The cell’s glass valve has a mechanically actuated Teflon stopcock; the manifold valves are automated pneumatic or solenoid valves, with Teflon surfaces for those downstream of the cell. In situ QA is provided by Ocean Optics HR4000 near-IR and Magritek Kea2 low-field NMR spectrometers. The near-IR spectrometer’s fiber is positioned behind the 3-inch mirror; the NMR spectrometer uses a home-built NMR probe/oven.

$A = -\ln T = -\ln \left(\frac{I_{\text{hot}}}{I_{\text{cold}}} \right)$, \hspace{1cm} [1]

where A and T denote the absorbance and transmittance, respectively, and I_{hot} and I_{cold} are the integrated intensities of the transmitted laser spectra obtained when a gas-loaded cell is respectively “hot” and “cold” (i.e., with and without significant Rb vapor present). With some simple assumptions, absorbance values may then be compared under the same conditions—except with or without the SEOP magnetic field (B_0) on—to calculate an estimate of $\left< P_{\text{Rb}} \right>$, according to a simple relation derived from Beer’s Law (28):

\hspace{1cm} Fig. 1. The XeNA polarizer. (A) Schematic of the polarizer’s key components (liquid N$_2$ dewar not shown for clarity). The optical path (shown in B) is represented by (“/4”). For the gas cylinders, “H” and “E” designate Xe with naturally abundant 129Xe and isotopically enriched 129Xe, respectively.

\hspace{1cm} co. User operation of XeNA employs a GUI programmed in open-source software (processing.org), which drives a microcontroller box that houses the “brain” of the polarizer (Arduino Mega 2560 REV3 microcontroller board), solid-state relays, and a Bürkert manifold enabling pneumatic valve operation. Material costs for the hyperpolarizer were $<125,000.

Other Experimental Aspects. Xenon was purchased from Nova Gases. MR spectra and images were obtained at 47.5 mT (32) or 3-T field using a Magritek Kea2 with permanent magnet (559-kHz 129Xe frequency and 508-13-kHz 13C frequency) or a Siemens 3-T clinical MRI scanner (34.09-MHz 129Xe frequency), respectively. Elemental analysis of Tedlar bag contents (following SEOP runs) was performed by Element One to ensure that <50 ng of Rb was present in the bag after transfer.

Results

An estimate of the spatial average of the Rb electron spin polarization, $\left< P_{\text{Rb}} \right>$, can be obtained from measurement of the transmitted light of the pump laser while the magnetic field is cycled (28) (Fig. 2). Spectra are recorded from the laser transmitted through the cell to calculate absorbance values:

\hspace{1cm} Fig. 1. The XeNA polarizer. (A) Schematic of the polarizer’s key components (liquid N$_2$ dewar not shown for clarity). The optical path (shown in B) is represented by (“/4”). For the gas cylinders, “H” and “E” designate Xe with naturally abundant 129Xe and isotopically enriched 129Xe, respectively.

\hspace{1cm} co. User operation of XeNA employs a GUI programmed in open-source software (processing.org), which drives a microcontroller box that houses the “brain” of the polarizer (Arduino Mega 2560 REV3 microcontroller board), solid-state relays, and a Bürkert manifold enabling pneumatic valve operation. Material costs for the hyperpolarizer were $<125,000.

Other Experimental Aspects. Xenon was purchased from Nova Gases. MR spectra and images were obtained at 47.5 mT (32) or 3-T field using a Magritek Kea2 with permanent magnet (559-kHz 129Xe frequency and 508-kHz 13C frequency) or a Siemens 3-T clinical MRI scanner (34.09-MHz 129Xe frequency), respectively. Elemental analysis of Tedlar bag contents (following SEOP runs) was performed by Element One to ensure that <50 ng of Rb was present in the bag after transfer.
where A_0 is the absorbance when $B_0 = 0$. Examples of transmission spectra are shown in Fig. 2 for a cell containing 495 and 1,545 torr of Xe and N_2, respectively. Multiple near-IR spectra were obtained in rapid succession for each condition, and then averaged and integrated. One set of scans was obtained at 57 °C, ~10 min into the SEOP process; the corresponding values of P_{RB} and P_{Xe} measured with low-field NMR (see below) were 43 ± 9% and 48.3 ± 2.8%, respectively. P_{RB} cannot be higher than (P_{RB}) (Eq. 3); however, the difference between these values is less than the uncertainty.

As part of the optimization process, the temperature of the cell was raised to 65 °C, and after several minutes the sequence was repeated. Improved values of (P_{RB}) and P_{Xe} of 71 ± 6% and 57 ± 3%, respectively, were obtained.

Xe polarization was monitored directly via NMR under three different sets of conditions (Figs. 3 and 4). First, low-field 129Xe NMR can be used to measure P_{Xe} within the OP cell. Fig. 3A shows an example of a high-129Xe NMR spectrum obtained at 5.25 mT from a cell containing 1,545 torr of Xe following SEOP and cooldown. Low-field NMR is calibrated using a thermal 1H reference signal obtained using the same NMR circuit at the same field 15C reference signal obtained from 170 mmol of sodium 13C acetate in 99.8% D_2O located in an identical phantom (Fig. 3D). Comparison with in situ 5.26-mT 129Xe NMR polarimetry taken from the OP cell during the same experiment before transferring the gas to 47.5-mT magnet (68.5 ± 3.9%) indicated no polarization loss within error, and thus a highly efficient 129Xe transport process. In future designs, we hope to implement the new approach by Saam and coworkers (33) to measure P_{Xe} from corresponding shifts in the optically detected Rb ESR signal.

The hyperpolarizer was delivered to Brigham and Woman’s Hospital (Boston, MA) and installed adjacent to a clinical MRI suite in February 2012. Optimization of the cell cooldown and automated Xe-transfer processes allowed Xe transfer to Taldir bags via expansion and subsequent transport to a 3-T clinical MRI. Inset of Fig. 4A shows a high-field 129Xe NMR spectrum from a Taldir bag containing —800 cc of gas (38% Xe by volume, given a cell loading of 760 torr Xe/1,240 torr N_2). The P_{Xe} value is calibrated using a thermal 129Xe NMR signal from a 3-L spherical reference sample containing 4 atm Xe with 86% 129Xe enrichment and 2 atm O_2 with a T_1 of 0.99 s. Again, little loss of polarization was suffered throughout the transfer/transport process, given values of 42.8 ± 2.4% and 41 ± 2% for P_{Xe} measured in the cell before transfer and at 3 T in the Taldir bag, respectively. The latter P_{Xe} corresponds to 1.46 mT from a cell containing 5 mM $CuSO_4$-doped water (Fig. 3B). As part of our initial tests of the Xe-transfer process, P_{Xe} measurement was also performed at an intermediate field of 47.5 mT located ~2 m from the polarizer. Fig. 3C shows a high-field 129Xe NMR spectrum obtained at this field from a portion of HP129Xe within a cell containing 300 torr Xe following automated transfer to a ~50-cc polypropylene spherical phantom connected to the polarizer via 0.25-inch o.d. PFA tubing and located within the field of the permanent magnet. 129Xe polarization (here, 68.7 ± 3.4%) was calibrated using a thermal 13C reference signal obtained from 170 mmol of sodium 13C acetate in 99.8% D_2O located in an identical phantom (Fig. 3D). Comparison with in situ 5.26-mT 129Xe NMR polarimetry taken from the OP cell during the same experiment before transferring the gas to 47.5-mT magnet (68.5 ± 3.9%) indicated no polarization loss within error, and thus a highly efficient HP129Xe transport process. In future designs, we hope to implement the new approach by Saam and coworkers (33) to measure P_{Xe} from corresponding shifts in the optically detected Rb ESR signal.

The hyperpolarizer was delivered to Brigham and Woman’s Hospital (Boston, MA) and installed adjacent to a clinical MRI suite in February 2012. Optimization of the cell cooldown and automated Xe-transfer processes allowed Xe transfer to Taldir bags via expansion and subsequent transport to a 3-T clinical MRI. Inset of Fig. 4A shows a high-field 129Xe NMR spectrum from a Taldir bag containing —800 cc of gas (38% Xe by volume, given a cell loading of 760 torr Xe/1,240 torr N_2). The P_{Xe} value is calibrated using a thermal 129Xe NMR signal from a 3-L spherical reference sample containing 4 atm Xe with 86% 129Xe enrichment and 2 atm O_2 with a T_1 of 0.99 s. Again, little loss of polarization was suffered throughout the transfer/transport process, given values of 42.8 ± 2.4% and 41 ± 2% for P_{Xe} measured in the cell before transfer and at 3 T in the Taldir bag, respectively. The latter P_{Xe} corresponds to

Assumptions include the following: ~100% circularly polarized light; negligible electronically excited Rb; spatially constant [Rb]; and $P_{RB} = 0$ when $B_0 = 0$ (which ignores effects of weak residual static fields). More precise results may be obtained by applying an orthogonal field during $B_0 = 0$ scans (or by orienting the polarizer orthogonally to the residual (e.g., Earth’s) field).
to a ~144,000-fold polarization enhancement over the thermal equilibrium value. When preparing multiple bags of HPXe, the total time to produce each bag is ~35-40 min, including ~15-20 min of SEOP/Xe-polarization time. The final 129Xe polarization and mole fraction depend on the cell-loading parameters. The strong NMR signals obtained from the HP129Xe gas allowed the polarization decay to be monitored under a variety of conditions. Fig. 4 shows 129Xe T1 relaxation data for HP129Xe in Tedlar bags recorded at 3 T, but stored at different field strengths: following exponential fits, T1 decay times of 38 ± 12 min and 5.9 ± 0.4 h were observed for 129Xe gas in Tedlar bags at 1.5 mT and 3 T, respectively. Such long T1 values bode well for a variety of applications where gas-phase storage and/or accumulation of HP129Xe is needed (24).

129Xe polarization values for various Xe densities, operating conditions, and measurement magnetic fields are summarized in Fig. 5A. The data exhibit good run-to-run and method-to-method agreement across the various measurements for the given Xe cell loadings (~300-1,600 torr), despite the fact that the Pxe values were measured at different fields, with different NMR acquisition methodologies, and different thermal reference samples. The data include values for in-cell Pxe values of 90.9 ± 5.2%, 57.1 ± 3.3%, 50.1 ± 2.9%, and 33.4 ± 1.9% measured for Xe loadings of 300, 495, 765, and 1,570 torr, respectively; Pxe values of 41 ± 1.6% and 28 ± 1.1% with ~760 and ~1,545 torr Xe loadings were obtained following transfer to Tedlar bags and subsequent transport to the 3-T scanner, permitting imaging with high signal-to-noise ratio (SNR) (~40) to be demonstrated (Fig. 5A, Inset). Moreover, these posttransfer values are ~2.7 times greater than previous bests in Pxe, achieved near such high Xe densities; when combined with the increase in cell volume, these results constitute a ~18-fold improvement in HP129Xe production over the previous best results obtained at such high in-cell Xe densities (22). Finally, recent Food and Drug Administration Investigational New Drug and Institutional Review Board regulatory approval has allowed initial experiments with human subjects to begin. For example, 3D HP129Xe MRI lung ventilation maps (Fig. 5B) and spectra have now been obtained from healthy human volunteers, demonstrating the utility of the polarizer for a variety of clinical applications.

Discussion

The performance of the polarizer is the result of a number of aspects of the SEOP process that are both fundamental and technical in nature (29). SEOP can be treated as a simple relaxation process (23), which, at steady state, simplifies to give the following (15):

\[
P_{\text{Xe}}(t = \infty) = \frac{\gamma_{\text{SE}}}{\gamma_{\text{SE}} + \gamma_{\text{Xe}}} \cdot P_{\text{Rb}},
\]

where \(\gamma_{\text{SE}}\) is the Rb/Xe spin exchange rate and \(\gamma_{\text{Xe}}\) is the 129Xe nuclear spin destruction rate (\(=1/T_1\)); thus, it is convenient to
categorize aspects of the hyperpolarizer and its operation as factors that help optimize \(P_{ RB} \), \(P_{ SE} \), and/or \(\Gamma_{ Xe} \), respectively. First, the most important factor in maximizing global \(P_{ RB} \) is the cell illumination by the laser. At a given position \((r) \) within the cell, the local \(P_{ RB} \) is given by the following (15):

\[
P_{ RB}(r) = \frac{\gamma_{ OP}(r)}{\gamma_{ OP}(r) + \Gamma_{ SD}} \quad [4]
\]

where \(\gamma_{ OP}(r) \) is the local OP rate [given by the integrated product of the laser flux and the Rb absorption cross-section (31)], and \(\Gamma_{ SD} \) is the Rb electronic spin destruction rate, which is dominated by nonspin-conserving collisions with Xe [via the spin-rotation interaction (25, 27)] and is high under our conditions because of its proportionality to \([Xe] \). Correspondingly, the laser power used here is also high—usually \(\sim 170 \) W, mostly resonant with the Rb D\(_1\) line. In fact, the resonant photon flux is roughly sixfold greater than in ref. 22, but this increase explains only part of the performance improvement. Care was also taken with the optical path to ensure complete illumination throughout the OP cell, with no dark regions, and with additional photon flux provided by retro-reflection. Control of the cell temperature is also key for SEOP optimization. Previously, it was shown that there can be an inverse relationship between Xe density and the optimal temperature for SEOP, where higher \([Xe] \) favors lower cell temperatures (22, 29)—an effect that may be explained in part by the need to maintain uniform illumination throughout the cell. Although \(\gamma_{ SE} \) is proportional to the Rb density (34)—ostensibly favoring higher cell temperatures—maintaining a high “phonon-to-Rb” ratio (in part by limiting \([Rb] \)) can be particularly important for preserving global \(P_{ RB} \) as Xe density is increased, and Xe-induced Rb spin-destruction becomes dominant. [An additional contribution may arise from poor energy dissipation caused by reduced thermal conductivity of Xe-rich mixtures—a possibility we are currently studying with in situ Raman spectroscopy (35).] For example, ongoing simulations predict a high \(\Gamma_{ SD} \) value of \(\sim 134,300 \) s\(^{-1}\) for the experimental conditions of the 65 °C data in Fig. 2, dominated by Xe collisions (25–27). However, the high resonant photon flux at the front of the cell should give nearly a ninefold greater optical pumping rate \((\gamma_{ OP} \sim 1.16 \times 10^5 \) s\(^{-1}\)) using Eq. 4; such values for \(\Gamma_{ SD} \) and \(\gamma_{ OP} \) would correspond to \(P_{ RB} \sim 89.6\% \). Maintaining a relatively low Rb density allows the laser to penetrate efficiently to ensure high photon flux and Rb polarization throughout the cell, consistent with the experimental \((P_{ RB} = 71 \pm 6\%) \); Thus, particularly in the limit where \(\Gamma_{ Xe} \) is negligible, maximizing \(P_{ RB} \) is more important than \(\gamma_{ SE} \), once \(\gamma_{ SE} \) is sufficiently high. Indeed, our high \(P_{ Xe} \) values were enabled in part by our ability to achieve long-in-cell \(^{129}\)Xe \(T_1(=1/\Gamma_{ Xe}) \) decay times. As one example, following SEOP with a cell containing 495 torr Xe and cooldown to 33 °C (where Rb should be condensed), a cell \(T_1 \) of 1.9 ± 0.6 h was measured at 5.26 mT. Given a typical build-up time constant measured for one experiment of \(\gamma_{ OP} = (\gamma_{ SE} + \Gamma_{ Xe}) \) = 8.5 min, this \(^{129}\)Xe \(T_1 \) translates to a spin-exchange rate of \(\sim 1.8 \times 10^{-9} \) s\(^{-1}\)—roughly an order of magnitude greater than \(\Gamma_{ Xe} \). Thus, according to Eq. 3, \(P_{ Xe} \) should closely approach \(P_{ RB} \) under these conditions, again in good agreement with the Fig. 2 experiments.

In addition to long HP\(^{129}\)Xe relaxation times measured in OP cells, slow polarization decay was also observed following transfer to Tedlar bags. Generally, \(^{129}\)Xe relaxation rates are determined by several potential contributions (adapted from ref. 24):

\[
\Gamma_{ Xe} = \Gamma_1 + \Gamma_2 + \Gamma_{ O2} + \Gamma_{ w}. \quad [5]
\]

where \(\Gamma_1 \) is an “intrinsic” contribution from spin-rotation interactions of transient and persistent Xe/Xe dimers \(\{\Gamma_1 = \Gamma_1 + \Gamma_P \} \) (36), \(\Gamma_2 \) results from diffusion through field gradients, \(\Gamma_{ O2} \) results from dipolar interactions with residual paramagnetic O\(_2\) in the gas mixture, and \(\Gamma_1 = \Gamma_{ w,c} + \Gamma_{ w,n} \) includes contributions from Xe/wall collisions involving interactions with surface spins of unpaired electrons and nuclei, respectively. \(\Gamma_{ w,c} \) can be neglected for Tedlar (polyvinyl fluoride); moreover, \(\Gamma_2 \) can be neglected for the 3-T measurements given the homogeneous field. Saam and coworkers recently provided a semiempirical formula for \(\Gamma_1 \) that when adapted for our conditions, is given by the following (24):

\[
\Gamma_1 = \frac{[Xe]}{56.1h} + \frac{1}{4.59h} \left[1 + (3.65 \times 10^{-3})B_0^2 \right] \left(1 + 0.51 \frac{[N_2]}{[Xe]} \right)^{-1}, \quad [6]
\]

where the two additive terms respectively correspond to \(\Gamma_1 \) and \(\Gamma_{ O2} \). \(B_0 \) is in tesla, the gas densities are in amagat \[1 \text{ amagat} = 2.6873 \times 10^{15} \text{ cm}^{-3}\], the density of an ideal gas at 0 °C and 760 torr, and 0.51 is a factor that takes into account the differential breakup rate of persistent Xe dimers from collisions with N\(_2\). Using values for \([Xe] \) and \([N_2] \) of 0.35 and 0.58 amag, Eq. 6 predicts a limiting value of 1/\(\Gamma_{ Xe} \) = 7.8 h (with 10% uncertainty), in relatively good agreement with our experimental value of 5.9 ± 0.4 h at 3 T, and indicating effective suppression of other relaxation pathways. Given the expected absence of paramagnetic wall sites, if we assume that \((\cdot) \) relaxation from wall collisions involving surface nuclear spins (37) (e.g., \(^1\text{H}, ^{19}\text{F} \)) is essentially quenched at high field and \((i) \) that the remaining contribution to \(\Gamma_{ Xe} \) is from residual O\(_2\) [with a relaxation of \(~0.4 \text{ Hz/amag} \) (38)], then the differential relaxation rate would correspond to an upper limit for the O\(_2\) partial pressure of \(\sim 2 \times 10^{-2} \) torr—a reasonable amount. Although \(\Gamma_1 \) is the limiting factor for our high-field \(^{129}\)Xe relaxation, the accelerated decay at 1.5 mT (\(T_1 \approx 38 \pm 12 \) min) is consistent with \(\Gamma_{ w,N} \) providing the dominant mechanism. Driehuys et al. (37) showed that, at low field (\(~10 \) mT), dipolar relaxation with \(^1\text{H} \) “wall” spins was the primary contributor to \(^{129}\)Xe polarization decay in cells with organosilane coatings, with \(T_1 \sim 50 \) min at 1.5 mT and 297 K. Although Tedlar may lack the nanoscale Xe permeability of SurfaSil coatings (37), it does possess a high surface density of \(^1\text{H} \) and \(^{19}\text{F} \) spins and likely provides an attractive surface for transient Xe adsorption. More detailed studies of \(^{129}\)Xe relaxation in Tedlar containers will be the subject of future efforts.

The polarizer’s performance can also be compared with the spin-transfer efficiency, \(\eta \), defined as follows (adapting from ref. 39):

\[
\eta = \frac{P_{ Xe} \cdot N_{ Xe}}{\Gamma_{ Xe} \cdot P_{ Xe} \cdot N_{ Xe}} \quad [7]
\]

Where \(N_{ Xe} \) is the number of \(^{129}\)Xe spins, \(\Delta t \) is the photon absorption rate, and \(T_1 \) is the \(^{129}\)Xe relaxation time in hot illuminated cells (taken here as \(\gamma_{ OP} \)). Treated effectively as a constant fundamental to Rb/Xe SEOP, \(\eta \) was found to be \(\sim 0.043 \) (39) (i.e., \(\sim 4.3\% \) of the light angular momentum should end up in \(^{129}\)Xe spins). Unfortunately, polarizers generally do not approach such efficiency. For example, extrapolating from the prediction of \(\sim 25 \) cc-atm/h of 100%-polarized \(^{129}\)Xe with 1 W of absorbed light, our \(\sim 90\)-W absorption would correspond to \(\sim 22.2 \) L-atm/h of 100%-polarized \(^{129}\)Xe. We can calculate a “production efficiency”, \(\eta_p \), defined as the number of polarized \(^{129}\)Xe spins produced versus photons absorbed during a SEOP run: \(\sim 0.94 \) L-atm/h of \(^{129}\)Xe spins with \(P_{ SE} \) \(\sim 30\% \) (equivalent to \(\sim 0.28 \) L-atm/h of \(P_{ Xe} = 100\% \) \(^{129}\)Xe spins [we assume 1.570 torr Xe, 295 K, SEOP time of 17.5 min, and 100% duty cycle, corresponding to \(\sim 3.5 \) L-atm/h Xe gas, with \(P_{ Xe} \sim 30\% \) for the \(^{129}\)Xe fraction (26.44%)]), giving \(\eta_p \sim 0.0054 \). However, if we assume little \(P_{ Xe} \) loss with the use of 100%-enriched \(^{129}\)Xe, these numbers would climb to \(\sim 1.1 \) L-atm/h and \(\eta_p \sim 0.021 \), respectively. Although more comparable to the theoretical.
limits, these values suggest room for improvement in future designs, and justify further study of fundamental aspects governing SEOP efficiency.

On a technical level, efficiency is aided by the presence of in situ monitoring of the laser absorption and 129Xe NMR signals, which allow real-time SEOP optimization. Afterward, 129Xe polarization losses are mitigated by (i) rapid cooldown of the cell while reducing the laser power (to further decrease the heat load, while still providing sufficient Rb illumination—a procedure that allows only a few percent loss of P_{Xe}; as well as (ii) suppressing exposure to O$_2$ and other paramagnetic materials throughout the gas lines, (iii) moving the HP 129Xe quickly into the sample or transport vessel, and (iv) avoiding Xe phase transitions and other relaxation-susceptible portions of the Xe phase diagram (30).

Indeed, Xe cryocollection/sublimation before transfer to the sample is optional for XeNA, but it is normally a requirement with other polarizer designs operating with standard “xenon-lean” gas mixtures. We should add that not cryocollecting the Xe does result in dilution of the HP 129Xe with N$_2$ gas and leaves behind significant fractions of the SEOP mixture in the cell following the expansion process; however, both of these issues can be mitigated, respectively, by using Xe-rich mixtures and by the addition of a large automated gas piston (15) where the cell contents can be expanded into a much larger volume before transfer.

Conclusion

We have presented results from a (~1 L/h) hyperpolarizer that produces batches of HP 129Xe sufficient for clinical use. The hyperpolarizer’s open-source design and automated operation should facilitate implementation of HP 129Xe technology into other laboratories and clinical settings. Good agreement was obtained among the four independent methods for characterizing the spin polarization. The ability to achieve high P_{Xe} values at high Xe densities, combined with stopped-flow operation, negates the usual requirement of Xe cryoaccumulation and storage, and opens a door to greatly improved polarization efficiency for quadrupolar isotopes (40, 41) (e.g., 83Kr and 133Xe). Further improvements in designs and gas-handling efficiency will be manifested in our second-generation hyperpolarizer (now under development); other possible improvements in SEOP efficiency of the heavy noble gases may exploit Cs (42) or Cs/Rb hybrid SEOP schemes. These results, combined with ultra-long gas-phase polarization lifetimes and recent regulatory approval, bode well for a host of planned clinical applications with human subjects.

Acknowledgments. We thank B. Saam and G. Schrank for helpful conversations, K. Ranta for simulations, E. Koehnemann for glassblowing, and the reviewers for helpful suggestions. N.W. was supported by National Science Foundation (NSF) Postdoctoral Fellowship OISE-0963933; S.B., B. M. Gust, and B. M. Goodson were supported in part by NSF Grants DMR 0852004 and 1157058. This work was funded by National Institutes of Health (NIH) Grant TR01 HL096471 and Southern Illinois University Office of Sponsored Projects Administration. M.J.B. is supported by the School of Physical Sciences, University of Nottingham. E.Y.C. thanks the support from NIH/National Cancer Institute Grant SR00 CA134749-03 and Department of Defense Congressionally Directed Medical Research Programs Era of Hope Award W81XWH-12-1-0159 BC112431. A.M.C. thanks the support from training NIH Grant R25 CA136440.