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PHYSICS

Sound vortex diffraction via topological charge

in phase gradient metagratings

Yangyang Fu'*", Chen Shen?*, Xiaohui Zhu?*, Junfei Li%, Youwen Liu',

Steven A. Cummer?', Yadong Xu?t

Wave fields with orbital angular momentum (OAM) have been widely investigated in metasurfaces. By engineering
acoustic metasurfaces with phase gradient elements, phase twisting is commonly used to obtain acoustic OAM.
However, it has limited ability to manipulate sound vortices, and a more powerful mechanism for sound vortex
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manipulation is strongly desired. Here, we propose the diffraction mechanism to manipulate sound vortices in a
cylindrical waveguide with phase gradient metagratings (PGMs). A sound vortex diffraction law is theoretically
revealed based on the generalized conservation principle of topological charge. This diffraction law can explain
and predict the complicated diffraction phenomena of sound vortices, as confirmed by numerical simulations. To
exemplify our findings, we designed and experimentally verified a PGM based on Helmholtz resonators that
support asymmetric transmission of sound vortices. Our work provides previously unidentified opportunities
for manipulating sound vortices, which can advance more versatile design for OAM-based devices.

INTRODUCTION

Vortices are common phenomena in fluid dynamics, such as whirlpools,
smoke rings, and tornados. Inspired by hydrodynamic vortices, the
concept of optical vortices was proposed by Coullet et al. (1) in 1989
by revealing the vortex solutions of the Maxwell-Bloch equations.
Later, Allen et al. (2) found that optical vortices can carry orbital
angular momentum (OAM), which is characterized by a helical
wavefront, i.e., exp(il0), where the integer / is known as topological
charge and 0 is the azimuthal angle. Distinct from the two available
states in spin angular momentum of light, defined by the chirality of
circularly polarized light, the number of allowable OAM states of
light is unbounded. Owing to the fascinating properties of OAM,
optical vortices have been widely studied in the past decades (3). In
particular, metasurfaces (4), i.e., artificial structures with subwave-
length thickness, have provided a powerful platform for OAM-
based applications (5, 6). Examples include OAM generation (4, 7),
OAM multiplexing and demultiplexing (8, 9), and spin to OAM
conversion (10).

In contrast to light waves, acoustic waves only carry OAM, as
acoustic waves are essentially scalar pressure fields and generally
considered spinless (11, 12). Acoustic OAM has recently drawn
notable attention, and several OAM-based applications were
proposed, such as particle manipulation (13, 14) and acoustic
torque (15, 16). To generate acoustic OAM, people have proposed
active and passive methods. The active method is generally imple-
mented by large active transducer arrays (17-19), which require con-
versions between acoustic and electronic signals as well as relatively
complicated feedback circuitry. On the other hand, the passive
approach uses compact and low-cost structures that can convert a
uniform wavefront into a spiral shape wavefront or sound vortex
(SV) by designing thickness-gradient structures (20, 21), spiral arms
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(22, 23), and acoustic metasurfaces (24-27). These approaches can be
directly understood from the conversion principle of topological
charge as we summarize below in Eq. 3, where F is the topological
charge provided from gradient structures. For example, acoustic
OAM of I =1 (24, 25) was produced from incident uniform wave-
front with [ = 0 and acoustic metasurface with > = 1.

To date, the generation and manipulation mechanisms of acoustic
OAM are mainly based on the twisting phase (20-27) or the geo-
metric phase effect (28, 29). The former has limited abilities in ma-
nipulating SVs, as the designed transmission (reflection) structure
only provides a single transmitted (reflected) channel. SV manipu-
lation in the latter relies on the coupling between OAM and helical
structures, and its bulk geometry design hinders practical applications.
A more powerful mechanism for manipulating SVs is strongly
desired to expand the capabilities of current OAM-based devices.
Recent advances in planar metasurfaces (30-33) have shown that
multiple reflections therein can induce more versatile diffraction
phenomena. Inspired by that work, we propose here the diffraction
mechanism to manipulate SVs in a three-dimensional (3D) cylindrical
waveguide with phase gradient metagratings (PGMs), which are
also called gradient index metasurfaces (34-37). The proposed
metastructure harnesses the grating effects and combines both grating
and gradient elements by design, which distinguishes it from previous
work where the metalayer solely acts as a simple phase twist device
(25, 26). We find that SV diffraction can be realized via artificial
topological charge from PGMs, which has not been previously
reported in either optics or acoustics, to the best of our knowledge.
Moreover, the generalized conservation principle of topological
charge is proposed to reveal theoretically the diffraction law of SV,
which can explain and predict the complicated diffraction phenomena
of SVs. We find that, depending on a critical topological charge (I°),
incident SVs take different diffraction orders. For topological charge
within [, the incident vortex is directly converted as the transmitted
vortex by taking the lowest order, while for topological charge be-
yond I, the incident vortex can take either the transmitted channel
or the reflected channel of higher diffraction order, which depends
on the integer parity (i.e., oddness or evenness) of the propagation
number of multiple reflections (i.e., the number of times the wave
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travels inside the PGM). The propagation number is relevant to the
diffraction order and the number of unit cells of PGM, and the in-
teger parity of multiple reflections could be controlled by odd/even
design for unit cells of PGM. Therefore, benefitting from the multi-
ple reflection effect in PGMs, SV diffraction in our proposed system
is powerful and versatile and delivers more possibilities for vortex
manipulation even compared with optical vortex diffraction in grat-
ing systems (7-9). For example, on the basis of the diffraction law,
asymmetric transmission of SVs is exploited as a new OAM-based
device. A PGM using Helmholtz resonators is designed and fabricated,
and asymmetric transmission of SVs is observed in experiments.
Furthermore, a unidirectional, multichannel OAM-based commu-
nication device is demonstrated. Our work reveals a general material-
mediated conversion rule for SVs, which will drive more research on
acoustic OAM and boost applications in acoustic communication.

RESULTS

Models and theory

Let us consider a PGM in a cylindrical waveguide of radius R filled
with air as shown in Fig. 1A, where the PGM with thickness of h
consists of [* groups of fanlike supercells (see Fig. 1B). Each super-
cell has an angular width of 9 = 2r/I° and is composed of m groups
of fanlike unit cells with angular width of 9; = 8/m (see Fig. 1B).
The unit cells, made of sound-hard materials (see the gray regions
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in Fig. 1B), are perforated by fanlike slits with angular width of ¥,
(82 < 91). To achieve azimuthal phase gradient, the phase shift dis-
tribution ¢;(8) over each supercell should cover a range of 2r, which
can be satisfied by filling m individual impedance-matched materials
in the slits with different refractive indices (see the gradient color
regions in Fig. 1B), i.e., n;=p;= 1+ (j — 1)A/(mh), where j=1,2---m.
Hence, the phase difference of two adjacent unit cells per period is
A¢ = 2r/m. Note that these sound-hard materials are impenetrable
for airborne acoustics; they could be designed with suitable thick-
ness or ultrathin thickness (i.e., surface) to avoid guided wave
coupling across the interior boundary of adjacent unit cells. As the
PGM is equipped with F groups of supercells whose azimuthal phase
distribution covers 2m, it can provide an effective topological charge
of I* with a clockwise helicity (see the yellow circle with arrows in
Fig. 1A). Because the azimuthal phase distribution is periodically
repeated for the vortex beams, the proposed PGM could be regarded
as azimuthal metagrating.

For the cylindrical waveguide with a fixed radius, there only exist
a finite number of vortex modes, with the number of modes de-
pending on the working frequency or wavelength (see black dashed
line in Fig. 1C), and their topological charge belongs to [ - IM, + M,
where ™ marks the maximum order of vortex modes and “+” (“=7)
defines clockwise (counterclockwise) helicity of propagating vortex.
Considering an incident SV with topological charge of I = I, its
acoustic field is expressed as

‘ Supercell
Z B Cell-m
Cell-(m-1)
[ ]
[
Cell-2
3
Cell-1
D

+—
[=3 n=3-m
S
n=2-m L=2
+—
n=1-m
Inc. _
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.......... > )

Fig. 1. Diffraction mechanism of SVs in a 3D cylindrical waveguide with PGM. (A) Schematic diagram of a 3D cylindrical waveguide with a PGM, which is composed
of F fanlike supercells. (B) Topography of the fanlike supercell consisting of m groups of fanlike unit cells. These unit cells with gradient indices can produce a discrete
phase modulation to cover a complete range of 2x. (C) Dispersion relationship of propagating vortex modes in a cylindrical waveguide, where there are two propagating
modes of /=0 (/= 1) taking values of vy=0and v=1 (v=1 and v = 2), respectively, corresponding to the lower and upper curves, and the dashed line is R = 0.64\. (D) Sketch

map of SV diffraction in PGM.
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p™ = Tikiyr) ik R) expil + ik.z) W

where 9J;, (ky, v)/3(ky,vr) | ;= r = 0, k], + k2 = Ky, ki1, and k, are the
transverse and longitudinal wave numbers, respectively; ko = 2r/A is
the wave number in air; and 1/Ji(k; yR) is a normalized factor.
According to the diffraction law of planar gratings (38, 39), the in-
cident and reflected/transmitted vortices at reflected/transmitted
interface should obey the conservation principle of topological
charge in a generalized way by including the additional topological
charge from PGM, i.e.

10 = [ 4 i )
where I'V is the topological charge of the reflected (transmitted)
vortex and # is the diffraction order. Equation 2 could also be
understood from angular momentum selection rule by operating
specific Cit rotation symmetry. Similar to the critical angle in the
generalized Snell law (4), there is a critical topological charge for
PGM in a cylindrical waveguide, which is defined as I = I - I, For
the incident SV with its topological charge within the critical one
(ie, ™ e [ - M, [), it will pass through the PGM and can be directly
twisted by the PGM, with its topological charge converted as

A Ly (3)

which corresponds to the n = 1 order in Eq. 2. However, for the in-
cident SV with its topological charge beyond the critical one (I"" >
I), the SV cannot directly pass through the PGM, as the wave vector
along the z direction becomes imaginary, caused by the converted
topological charge beyond the maximum order (I > ™). As a result,
multiple reflections will occur inside the metagrating, with the
propagation number of waves traveling inside unit cells defined as
L (see the orange lines in Fig. 1D). If waves undergo L single trips
between reflected and transmitted interfaces, then the phase differ-
ence of adjacent unit cells per period is Ap = (2n/m)L. When the
scattered SV takes the n-th diffraction order, the equivalent topo-
logical charge provided from the metagrating is nl>, leading to an
equivalent phase difference of Ag, = (2n/m)n between adjacent unit
cells per period. If these two phase differences (A¢ and Ag,) can
match with each other, implying that when guided waves inside the
unit cells oscillate back and forth with the propagation number of L,
then the incident SV will take the n-th diffraction order to depart
from the metagrating. As the effective diffraction order belongs to
n<0for I >[°and L > 0, it seems that it is impossible to achieve
Ad = Ag,. However, if phase folding of 2 is applied in A¢, then the
phase matching relationship is built as A¢p — 2nq = A@,(q is positive
integer), that is

L=gm+n (4)

In subwavelength metagrating systems, a phase folding of 2n(g =1)
is enough to achieve the phase matching condition, i.e., L = m + n.
When L is an odd number (see the orange solid lines in Fig. 1D),
it will be a transmitted SV taking the n-th diffraction order, while
when L is an even number (see the orange dashed lines in Fig. 1D),
it will be a reflected SV taking the n-th diffraction order. By con-
necting Eqs. 2 and 4, the diffraction law of SV is further given as

{ I'= ™4 nl5L = odd

I'= 1™+l L = even

©)
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As the reflected and transmitted SV's of higher diffraction order
have mirror symmetry, i.e., the helicity of the reflected SV has an
opposite sign with that of the transmitted one, the “-” sign is added
in the formula of “I".”

On the basis of the above diffraction law, one can predict the
diffraction phenomena of SVs in a cylindrical waveguide with
PGM. For an incident SV with its topological charge within the
critical one, one-pass process happens in the metagrating, and then
the incident SV is converted as the transmitted SV taking the lowest
order of n = 1, which is independent of m. While for the topological
charge beyond the critical one, multiple reflections will occur inside
the PGM (see orange arrows in Fig. 1D). When an odd (even) propaga-
tion route of waves traveling inside the metagrating reaches diffrac-
tion condition, strong transmitted (reflected) SV can be generated
by obeying Eq. 5, as schematically shown in Fig. 1D. In some cases,
although several diffraction orders are simultaneously available for
an incident SV to follow, the multiple reflection effect in PGM happens
in sequence (see orange arrows in Fig. 1D), and the maximum dif-
fraction order, corresponding to the minimum propagation number,
is preferential to reach the diffraction condition, referring to L = m + n.
Furthermore, if a PGM is designed by odd and even unit cells,
owing to the parity transition of the propagation number, then scat-
tering reversal effect (i.e., transmission and reflection reversal) of
SVs can happen in higher-order diffraction.

Numerical demonstration for the diffraction law of

sound vortices

To confirm the validity of the above theoretical formulas, numerical
simulations are performed to demonstrate the scattering behaviors
of SVs in a cylindrical waveguide with PGM. The radius of the
waveguide is chosen as R = 0.64A, and the maximum propagation
order of SVs in such a waveguide is ™ = 2 (see Fig. 1C). Two super-
cells (I° = 2) are designed for PGM, and the critical topological charge
is [° = 0. If each supercell is composed of five unit cells (m = 5), then
the scattering phenomena for incident SVs with different OAM
(I" € [ - 2,2]) could be predicted from the revealed diffraction law
summarized in Eqgs. 3 to 5. For incident SVs with I'"" € [ — 2, /], they will
be transmitted SV's obeying Eq. 3. As we can see from Fig. 2 (A and B),
the incident SVs with I'" = — 2 and I'" = — 1 are converted into trans-
mitted beams with I' = 0 and ' = 1, respectively. In particular, for the
case of I'" = - 2, two different kinds of planar wavefronts are seen on
the transmitted side, because two monopole modes (I = 0) with I' =
0 are concurrently excited by observing the dispersion relationship
in Fig. 1C, where two | = 0 modes with different wave vectors can
exist at the working wavelength (see the dashed line). While for in-
cident SVs with I € (I, 2], the diffraction behavior becomes com-
plicated. For the case of I'" = 1, the maximum diffraction order is
n = — 1, accordingly, the propagation number is an even integer, L =
m + n = 4. As a result, there should be a reflected SV with I = 1 fol-
lowing the lower formula of Eq. 5, as demonstrated by the numerical
simulation in Fig. 2C. For the case of I'" = 2, the maximum diffrac-
tion order turns into #n = — 2, and the propagation number becomes
an odd integer of L = 3. Accordingly, it is a transmitted SV with
I' = - 2 following the upper formula of Eq. 5, which is numerically
demonstrated in Fig. 2D.

However, if each supercell is composed of six unit cells (1 = 6),
following the diffraction law, then incident SVs with I € [ - 2, I]
undergo similar transmission effects with these in the case of m =5,
as demonstrated by the simulated results in Fig. 2 (E and F), while
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Fig. 2. Numerical demonstration for SV diffraction through ideal PGMs. (A to
D) The simulated total acoustic pressure field patterns for incident SVs with differ-
ent topological charge through the PGM with fF=2and m=5. (E to H) The simulat-
ed total acoustic pressure field patterns for incident SVs with different topological
charge through the PGM with /> =2 and m = 6. In all cases, 9, = 0.99;, R = 0.64, h =
0.5%, and A = 10 cm. In addition, a cylinder with 0.05R is inserted in the center of
PGMs for the convenience of simulations.

for incident SVs with /™ = 1 and I™ = 2, transmission and reflection
of SVs taking higher diffraction orders will be completely reversed
owing to the parity change of L. For example, for the case of I = 1
(see Fig. 2G), there is a transmitted SV with I'= — 1, which is caused
by an odd propagation number of L = m + n = 5, while for the case
of I'" = 2, the corresponding propagation number is L = 4, which
turns into a reflected SV with I = 2 (Fig. 2H). The corresponding
results of SV diffraction in Fig. 2 could be clearly observed from their
phase distributions on a cross section in the transmitted/reflected
area, as shown in fig. S1. Therefore, the revealed diffraction law is
well confirmed by the simulated results of the PGMs with > = 2. In
addition, the PGMs with three supercells (lé = 3) are used to further
confirm the diffraction law, shown in figs. S2 and S3. On the basis of
the diffraction law of SV, we can find that several diffraction orders
could be excited for incident SVs, and therefore, PGMs can be
served as multichannel OAM convertors including reflected and
transmitted channels, overcoming the limit of single channel of
twisting phase.

By carefully observing the above results of the PGM with m = 5,
incident SVs with I = + 1 undergo different scattering process, that
is, one can pass through the PGM with an OAM of I' = 1 (see
Fig. 2B), and the other one is almost reflected back with I = 1 (see
Fig. 2C). Therefore, the OAM splitter can be realized for the vortex
beams with I = + 1 incident from one side. If the SV with [ = — 1
or I =1 is incident from the left and right sides, asymmetric trans-
mission of SVs could be obtained in the waveguide. For example, when
SV with I' = — 1 is incident from the left side of the waveguide,
higher transmission of transmitted vortex with I' = 1 can happen,

Fuetal., Sci. Adv. 2020; 6 : eaba9876 2 October 2020

while for SV with ™ = — 1 incident from the right side, which is
identical with the case of SV with I'" = 1 incident from the left side,
it will be reflected back, leading to lower transmission of the vortex
beam with I' = — 1. In the following, practical design of the PGM and
experimental measurements are performed to demonstrate the
asymmetric transmission of SVs. The results not only experimentally
verify our revealed diffraction law but also practically realize a new
type of OAM-based device.

Practical design of PGM

To further demonstrate the diffraction law of SVs in a cylindrical
waveguide with PGMs, we use Helmholtz resonators to design the
above PGM with > = 2 and m = 5 at the wavelength of A = 10 cm.
Five different fanlike resonators are designed to construct the super-
cell of the PGM as shown in Fig. 3A, where each resonator is imple-
mented by rotating its azimuthal section (right side) along the z axis
with 9; = 36°. The azimuthal section is constituted by four rows of
subresonators (see the red dashed frame in Fig. 3A), and each sub-
resonator consists of four identical Helmholtz resonators and a straight
pipe (40). Such a four-row design can effectively enhance hybrid
resonances to obtain a high transmission. Each subresonator has a
height of w = R/4 = 1.6 cm, and the thickness of walls is = 1.5 mm.
To overcome the wave coupling between these fanlike resonators,
five rectangular blocks with size of & x R X t are placed behind each
resonator. The transmission and phase profiles of the subresonator
are displayed in Fig. 3B, in which the width of each cavity’s neck is
Wneck = 1.5 mm. We can see that by changing the height of cavities
(wo/w), the subresonator can cover a complete phase range of 2x
with transmission coefficient beyond 90%. Five different heights of
cavities are selected for these five Helmholtz resonators to obtain
the required phase shifts, as marked by the yellow symbols in
Fig. 3B. The fourth resonator has a slightly lower transmission
(91%) than that of the other ones (more than 95%). By modifying
the cavity size of the fourth resonator, given as wpeck = 1.1 mm and
wo = 6.33 mm, its transmission is improved to 95.3%, yet with its
phase shift unchanged. Consequently, five phase gradient resonators
are designed with their transmissions all beyond 95%. Figure 3, C and D,
respectively, shows the simulated acoustic field patterns of SV with
I'" = — 1 incident on the designed PGM from the left side and the
right side of the waveguide, and the proposed asymmetric transmis-
sion of SVs is well presented in the designed PGM-based waveguide
system, which are consistent with the ideal results in Fig. 2 (B and C).
Tiny undesired scattering is observed in the designed results, which
may be caused by the deviation of transmission and phase between
the subresonator and the fanlike resonator, as the PGM is designed
from 2D approximation. Better results might be achieved by directly
designing individual fanlike resonators in each row and considering
the change of cross section in a 3D manner (25). The simulated re-
sults of other SVs incident on the designed PGM are also consistent
with these in the ideal cases, as shown in fig. S5. In addition, we also
design the PGM with I°=2and m = 6 (see fig. S4), and similar
results fitting with the ideal cases are achieved, which are displayed
in fig. S5.

Experimental demonstration for asymmetric transmission

of sound vortices

Using 3D printing technology, the designed PGM is fabricated as
shown in Fig. 4A. Measurements are performed in an 80-cm-long
cylindrical waveguide (R = 6.4 cm) to verify the proposed asymmetric
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Fig. 3. Practical design for PGM. (A) Schematic of one supercell (left side) of the designed PGM (F = 2) with five (m = 5) different fanlike resonators at A= 10 cm, where
each resonator is realized by rotating its azimuthal section (right side) along the z axis with 9; = 36°. The azimuthal section consists of four rows of four identical sub-
resonators with height of w=R/4 = 1.6 cm, and the thickness of walls is t = 1.5 mm. Five rectangular blocks with h x R x t are placed behind each resonator. (B) Transmis-
sion and phase shift versus the height ratio (wo/w) of the 2D subresonator, in which the neck of the Helmholtz cavity is 1.5 mm. (C) and (D) are the simulated acoustic
total field patterns of SV with /" = — 1 incident on the designed PGM from the left side and the right side of the waveguide, respectively.

transmission of SVs, with the sample placed in the center (see
Fig. 4B). In experiments, the incident SV with I = — 1 is generated
by four mini speakers with gradient phase modulations, given as 0,
n/2, w, and 37/2 (see Fig. 4B). These four speakers are arranged on a
circle of radius r; = 0.7R(see Fig. 4B). The experimentally measured
incident SV is shown in fig. S6, where it well agrees with the numer-
ical result. For the SV with I = — 1 incident from the left side (see
the vortex beam with blue color in Fig. 4B), the numerically simu-
lated phase and amplitude distributions at z = 2.6\ (see the blue
dashed curve in Fig. 4B) are displayed in Fig. 4C, where higher
transmission is seen and SV with I' = 1 is clearly found from the
phase distribution. The experimentally measured phase and ampli-
tude distributions are shown in the right panels of Fig. 4C, which
reveal consistent results with those from numerical simulations. Be-
cause the transmission of the designed Helmholtz resonators has a
slight variation in amplitude, the transmitted SV with ' = 1 exhibits
nonuniform transmission over the azimuth. However, the null
pressure amplitudes at the center are clearly seen, exhibiting typical
feature of vortex beams. For SV with I = — 1 emitting from the
right side of the waveguide (see the vortex beam with red color in
Fig. 4B), the corresponding numerical and experimental results are
shown in Fig. 4D. Both simulated and measured results show lower
transmission of SV. The discrepancy of the phase profile in the ex-
periment is attributed to the low transmission of SV with I'= - 1, as
the total acoustic field can be substantially affected by other trans-
mitted vortex modes, which are mainly composed of SV with I = 1
due to the imperfect phase and amplitude profiles of the PGM caused
by fabrication errors and intrinsic losses. Moreover, the imperfect
boundary conditions may also lead to a compromised result. To
quantify the asymmetric transmission of SVs, transmission efficiency,

Fuetal., Sci. Adv. 2020; 6 : eaba9876 2 October 2020

defined as square root of the transmitted to incident sound power
ratio is employed (25). The transmission efficiencies for the left and
right incidences are numerically (experimentally) calculated as 97.6
and 16.6% (76.8 and 32.6%), respectively. The mismatch of numer-
ical and experimental results is mainly caused by the intrinsic losses
in Helmholtz resonators. By numerically introducing losses in the
air channels of Helmholtz resonators [given as p = 1.21 kg/m’ and
¢ = 343(1 + yi) with y = 0.015] to mimic the viscous and thermal
dissipation, the corresponding transmission efficiencies are numeri-
cally obtained as 75.1 and 24.3%, respectively, which are consistent
with the experimental results. Nevertheless, highly asymmetric
transmission of SVs via the designed PGM is demonstrated in both
simulations and experiments.

Unidirectional OAM-based communication

Based on of the asymmetric transmission of SVs in Fig. 4, unidirec-
tional OAM-based communication could be further exploited as a
new OAM-based device. For demonstration, two designed PGMs
(lg =2 and m = 5) with a distance of 20 cm are considered in the
waveguide, yet with opposite rotation direction, i.e., they have topo-
logical charge of F=2and[F=-2forSV propagating along the +z
direction (see Fig. 5A). Four active sources with gradient phase
modulations are used to generate OAM information, as shown in
Fig. 4B. When they are placed at the left (right) port, SV with I'"" =
— 1 (™ =1) will emit from the left (right) side of the waveguide. For
the case of OAM information (SV with I' = — 1) input from the left
side (see Fig. 5A), it is well captured at the output side as shown in
Fig. 5C. The output phase information is the same with that of the
input one, although they have some deviation in amplitude due to
intrinsic losses in PGMs. While for the SV with /' = 1 incident from
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Fig. 4. Experimental demonstration for asymmetric transmission of SVs. (A) Fabricated sample. (B) Experimental setup. (C) Simulated (left) and measured (right)
phase and amplitude distributions at z = 2.6\ for SV with [ = — 1 incident from the left side of the waveguide. (D) Simulated (left) and measured (right) phase and
amplitude distributions at z = — 2.6\ for SV with I = — 1 incident from the right side of the waveguide. Photo Credit: Yangyang Fu, Nanjing University of Aeronautics

and Astronautics.

the right side (see Fig. 5B), the input OAM information is greatly
lost at the output side, as seen in Fig. 5D. Therefore, unidirectional
OAM-based communication is well observed in the proposed PGM-
based waveguide system, as information is only preserved from one
direction. In the current case, only one OAM channel (I = 1) is used
to achieve unidirectional OAM-based communication, and it could
be extended to multichannel response by carefully choosing avail-
able M and F to design a PGM-based waveguide system. For exam-
ple, on the basis of the results in fig. S2, unidirectional OAM-based
multiplex communication can be realized to work in two different
channels (/=1 and [ = 2) as shown in fig. S7, where two PGMs with
I =3 and m = 5 are introduced in a waveguide with M = 2. Alterna-
tively, unidirectional OAM-based communication could also be
achieved in a waveguide with multiple PGMs with I* = 1, where
incident OAM states are, respectively, retrieved from a nonzero in-
tensity of the [ = 0 mode at corresponding core positions based on
the way of phase twisting (26). As shown in fig. S8, the nonzero in-
tensities at corresponding core positions for these SVs from the left
port are available to get the information of input OAM states with a
single microphone, while they are null intensities for these SVs from
the right port and fail to retrieve input OAM states, as also expected
from the diffraction law of SVs.

DISCUSSION

In conclusion, by considering the metastructure (PGM) as azimuthal
grating and introducing the generalized conservation principle of
topological charge, we have proposed and revealed the diffraction

Fuetal., Sci. Adv. 2020; 6 : eaba9876 2 October 2020

mechanism of SVs in a cylindrical waveguide, which can fully
explain and predict the scattering behavior of SVs. We find that,
depending on a critical topological charge, incident SVs can either
transmit through PGM with the lowest diffraction order or take
higher diffraction orders with the transmission and reflection depend-
ing on the integer parity of PGMs. Therefore, SV diffraction via
PGMs provides versatile propagation channels, breaking through
the limit of a single channel of twisting phase. Two PGMs (F=2)
with five and six unit cells are used to numerically demonstrate our
findings. In particular, asymmetric transmission of SVs is found in
the PGM (I = 2) with five unit cells, where the transmitted SVs with
highly asymmetric amplitudes are preserved with the identical
topological charge. Furthermore, we designed and fabricated the
PGM (lé = 2) with five unit cells, and asymmetric transmission of
SVsis clearly observed in experiments. On the basis of the asymmetric
transmission of SVs, unidirectional OAM-based communication is
further demonstrated in the PGM-based waveguide system, which
opens up a new away of OAM-based communication.

When the number of unit cells in a lossy PGM is increased, the
transmission/reflection efficiency of the scattered SV via higher dif-
fraction order will gradually decrease, as more propagation length
via the multiple reflection effect happens in the lossy PGMs, which
leads to more absorption. For example, when the SV with I'" = 1 is
incident on the PGM-based waveguide (see Fig. 2C), the reflection
efficiency of I' = 1 greatly reduces with the increase in the number of
unit cells, as shown in fig. S9A, and therefore, PGMs with simplified
design (41, 42) can be used to reduce the undesired absorption. While
for the SV with I'" = — 1, the transmitted SV via the lower diffraction
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Fig. 5. Unidirectional OAM-based communication in PGM-based waveguide system. (A) and (B) are the simulated total pressure field patterns for SV with
™= — 1 and SV with /™ = 1 incident from the left and right sides, respectively. (C) and (D) are input and output phase and amplitude, corresponding to (A) and (B),
respectively. In simulations, the viscous and thermal dissipation in Helmholtz resonators is mimicked by including losses in the air channels, given as p = 1.21 kg/
m?and ¢ = 343(1 + vi) with y = 0.015. Two designed PGMs with opposite rotation direction are placed with a distance of 20 cm, and the output phase and amplitude

are evaluated at planes of z=+ 3.

order (i.e., Eq. 3) is almost not affected, as it undergoes one-path
propagation process independent of the number of unit cells in
PGM:s, as shown in fig. S9B. Therefore, some potential OAM-based
applications could be realized in the lossy PGM-based waveguide
system, such as asymmetric OAM absorption and OAM-selected
absorption. In addition, when incident SV and scattered SV have a
larger wave vector, similar to diffraction properties of planar acous-
tic metasurfaces (43, 44), undesirable/parasitic diffraction orders can
appear, which might lead to a low conversion efficiency. The design
strategies that incorporate bianisotropy (27, 45) could be potentially
used to overcome this problem. In short, the proposed diffraction
law of SVs provides a clear blueprint for manipulating SVs with
azimuthal phase gradient and also enables a deep understanding
of the fundamental diffraction behavior in PGM-based systems
and the intrinsic link between diffraction phenomena in 2D free
space and 3D cylindrical waveguides. The proposed diffraction
mechanism provides a new paradigm for controlling acoustic OAM
and enables versatile manipulation of SVs, which can lead to nu-
merous acoustic OAM-based applications, such as multichannel
OAM convertor, OAM splitter, unidirectional transmission of OAM,
and OAM-based information communication.

MATERIALS AND METHODS

Numerical simulations

The full-wave simulations are performed using COMSOL Multiph-
ysics pressure acoustics module, where background pressure filed is
used to generate SVs using the expression in Eq. 1. For simulations
in Figs. 2, 3, and 5, the PGM materials are set with p = 1180 kg/m’
and ¢ = 2700 m/s, and perfectly matched layers are used in the left
and right sides to reduce undesired reflections. In Fig. 4, the simu-
lated amplitudes and phases are extracted from Fig. 3.

Fuetal., Sci. Adv. 2020; 6 : eaba9876 2 October 2020

Experiments

The sample was fabricated with fused deposition modeling using
3D printing, and the printed material is acrylonitrile butadiene
styrene plastic with density of 1180 kg/m’ and speed of sound
2700 m/s. The fabricated PGM is placed in a cylindrical waveguide
for the measurement. Four mini speakers with 0.9-cm radius are
arranged on a circle of radius r; = 0.7R and are modulated with
gradient input phase profiles, given as 0, ©/2, w, and 3n/2, to generate
SV with I'" = — 1. The transmitted field is scanned using a moving
microphone with a step of 2.0 cm. The acoustic field at each spot is
then calculated using Fourier transform. The overall scanned area is
the cross section at z = + 2.6\ of the waveguide, and the signal at each
position is averaged out of four measurements to reduce noise. The
transmitted field of empty waveguide at z = + 2.6\ is also measured
for normalization.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/40/eaba9876/DC1

REFERENCES AND NOTES

1. P.Coullet, L. Gil, F. Rocca, Optical vortices. Opt. Commun. 73, 403-408 (1989).

2. L.Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, Orbital angular
momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A
45,8185-8189 (1992).

3. Y.Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan, Optical vortices 30 years
on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8,
90 (2019).

4. N.Yu, P.Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light
propagation with phase discontinuities: Generalized laws of reflection and refraction.
Science 334, 333-337 (2011).

5. X.Wang, Z.Nie, Y. Liang, J. Wang, T. Li, B. Jia, Recent advances on optical vortex
generation. Nanophotonics 7, 1533-1556 (2018).

6. M.L.N.Chen, L.J. Jiang, W. E. Sha, Orbital angular momentum generation and detection
by geometric-phase based metasurfaces. Appl. Sci. 8,362 (2018).

70of 8

0202 ‘v JaquianoN uo /610’ Bewaduslos saoueape//:dny wolj papeojumod


http://advances.sciencemag.org/cgi/content/full/6/40/eaba9876/DC1
http://advances.sciencemag.org/cgi/content/full/6/40/eaba9876/DC1
http://advances.sciencemag.org/

SCIENCE ADVANCES | RESEARCH ARTICLE

7. K.Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner,
M. J. Padgett, J.-H. Teng, C.-W. Qiu, Spiniform phase-encoded metagratings
entangling arbitrary rational-order orbital angular momentum. Light Sci. Appl. 7,
17156 (2018).

8. T.Lei, M. Zhang, Y.Li, P.Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, X. Yuan,
Massive individual orbital angular momentum channels for multiplexing enabled by
Dammann gratings. Light Sci. Appl. 4, €257 (2015).

9. Y.Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, X. Luo, Orbital angular momentum multiplexing
and demultiplexing by a single metasurface. Adv. Opt. Mater. 5, 1600502 (2017).

10. R.C.Devlin, A. Ambrosio, N. A. Rubin, J. P. Balthasar Mueller, F. Capasso, Arbitrary
spin-to-orbital angular momentum conversion of light. Science 358, 896-901
(2017).

11. K.Y.Bliokh, F. Nori, Spin and orbital angular momenta of acoustic beams. Phys. Rev. B 99,
174310 (2019).

12. C.Shi,R.Zhao, Y. Long, S. Yang, Y. Wang, H. Chen, J. Ren, X. Zhang, Observation
of acoustic spin. Natl. Sci. Rev. 6, 707-712 (2019).

13. C.R.P.Courtney, C.E. M. Demore, H. Wu, A. Grinenko, P. D. Wilcox, S. Cochran,

B. W. Drinkwater, Independent trapping and manipulation of microparticles using
dexterous acoustic tweezers. Appl. Phys. Lett. 104, 154103 (2014).

14. T.Wang, M.Ke, W. Li, Q. Yang, C. Qiu, Z. Liu, Particle manipulation with acoustic vortex
beam induced by a brass plate with spiral shape structure. Appl. Phys. Lett. 109, 123506
(2016).

15. K.Volke-Sepulveda, A. O. Santillan, R. R. Boullosa, Transfer of angular momentum
to matter from acoustical vortices in free space. Phys. Rev. Lett. 100, 024302 (2008).

16. Z.Y.Hong, J. Zhang, B. W. Drinkwater, Observation of orbital angular momentum transfer
from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett.
114, 214301 (2015).

17. R.Marchiano, J.-L. Thomas, Synthesis and analysis of linear and nonlinear acoustical
vortices. Phys. Rev. E 71, 066616 (2005).

18. A.Riaud, J.-L. Thomas, E. Charron, A. Bussonniére, O. B. Matar, M. Baudoin, Anisotropic
swirling surface acoustic waves from inverse filtering for on-chip generation of acoustic
vortices. Phys. Rev. Appl. 4,034004 (2015).

19. C.Shi, M. Dubois, Y. Wang, X. Zhang, High-speed acoustic communication by
multiplexing orbital angular momentum. Proc. Natl. Acad. Sci. U.S.A. 114, 7250-7253
(2017).

20. J.L.Ealo, J. C. Prieto, F. Seco, Airborne ultrasonic vortex generation using flexible
ferroelectrets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1651-1657 (2011).

21. R.Wunenburger, J. I. V. Lozano, E. Brasselet, Acoustic orbital angular momentum transfer
to matter by chiral scattering. New J. Phys. 17, 103022 (2015).

22. X.Jiang, J. Zhao, S--l. Liu, B. Liang, X.-y. Zou, J. Yang, C.-W. Qiu, J.-c. Cheng, Broadband
and stable acoustic vortex emitter with multi-arm coiling slits. Appl. Phys. Lett. 108,
203501 (2016).

23. N.Jiménez, V. Romero-Garcia, L. M. Garcia-Raffi, F. Camarena, K. Staliunas, Sharp acoustic
vortex focusing by Fresnel-spiral zone plates. Appl. Phys. Lett. 112, 204101 (2018).

24. L.Ye, C.Qiu,J. Ly, K. Tang, H. Jia, M. Ke, S. Peng, Z. Liu, Making sound vortices by
metasurfaces. AIP Adv. 6, 085007 (2016).

25. X.Jiang, Y.Li, B. Liang, J.-C. Cheng, L. Zhang, Convert acoustic resonances to orbital
angular momentum. Phys. Rev. Lett. 117, 034301 (2016).

26. X.lJiang, B. Liang, J.-C. Cheng, C.-W. Qiu, Twisted acoustics: metasurface-enabled
multiplexing and Demultiplexing. Adv. Mater. 30, e1800257 (2018).

27. J.Li, A. Diaz-Rubio, C. Shen, Z. Jia, S. Tretyakov, S. A. Cummer, Highly efficient generation
of angular momentum with cylindrical bianisotropic metasurfaces. Phys. Rev. Appl. 11,
024016 (2019).

28. S.Wang, G. Ma, C.T. Chan, Topological transport of sound mediated by spin-redirection
geometric phase. Sci. Adv. 4, eaaq1475 (2018).

29. F.Liu, W.Li, Z. Pu, M. Ke, Acoustic waves splitter employing orbital angular Momentum.
Appl. Phys. Lett. 114, 193501 (2019).

30. Y.Li, C.Shen,Y.Xie, J. Li, W.Wang, S. A. Cummer, Y. Jing, Tunable asymmetric
transmission via lossy acoustic metasurfaces. Phys. Rev. Lett. 119, 035501 (2017).

31. C.Shen, S. A. Cummer, Harnessing multiple internal reflections to design highly
absorptive acoustic metasurfaces. Phys. Rev. Appl. 9, 054009 (2018).

Fuetal., Sci. Adv. 2020; 6 : eaba9876 2 October 2020

32. Y.Fu,C.Shen, Y. Cao, L. Gao, H. Chen, C. T. Chan, S. A. Cummer, Y. Xu, Reversal
of transmission and reflection based on acoustic metagratings with integer parity design.
Nat. Commun. 10, 2326 (2019).

33. Y.Cao, Y.Fu, Q. Zhou, X. Ou, L. Gao, H. Chen, Y. Xu, Mechanism behind angularly
asymmetric diffraction in phase-gradient metasurfaces. Phys. Rev. Appl. 12, 024006
(2019).

34. Y.Xu,Y.Fu, H. Chen, Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016).

35. B.Assouar, B. Liang, Y.Wu, Y. Li, J.-C. Cheng, Y. Jing, Acoustic metasurfaces. Nat. Rev.
Mater. 3, 460-472 (2018).

36. X.Wang, X. Fang, D. Mao, Y. Jing, Y. Li, Extremely asymmetrical acoustic metasurface
mirror at the exceptional point. Phys. Rev. Lett. 123, 214302 (2019).

37. W.Wang, Y. Xie, B.-l. Popa, S. A. Cummer, Subwavelength diffractive acoustics
and wavefront manipulation with a reflective acoustic metasurface. J. Appl. Phys. 120,
195103 (2016).

38. Y.Xu,Y.Fu, H. Chen, Steering light by a sub-wavelength metallic grating
from transformation optics. Sci. Rep. 5, 12219 (2015).

39. Y. Xie, W. Wang, H. Chen, A. Konneker, B.-l. Popa, S. A. Cummer, Wavefront modulation
and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5,
5553 (2014).

40. Y.Li,S.Qi, M. B. Assouar, Theory of metascreen-based acoustic passive phased array.
New J. Phys. 18, 043024 (2016).

41. Y.Fuy,Y.Cao, Y. Xu, Multifunctional reflection in acoustic metagratings with simplified
design. Appl. Phys. Lett. 114, 053502 (2019).

42. Y.-Y.Fu,J-Q.Tao, A-L.Song, Y.-W. Liu, Y.-D. Xu, Controllably asymmetric beam
splitting via gap-induced diffraction channel transition in dual-layer binary
metagratings. Front. Phys. 15, 52502 (2020).

43. N.J.R.K.Gerard, Y.Li, Y. Jing, Investigation of acoustic metasurfaces with constituent
material properties considered. J. Appl. Phys. 123, 124905 (2018).

44. N.J.R.K.Gerard, H. Cui, C. Shen, Y. Xie, S. Cummer, X. Zheng, Y. Jing, Fabrication
and experimental demonstration of a hybrid resonant acoustic gradient index
metasurface at 40 kHz. Appl. Phys. Lett. 114, 231902 (2019).

45. J.Li, C. Shen, A. Diaz-Rubio, S. Tretyakov, S. A. Cummer, Systematic design
and experimental demonstration of bianisotropic metasurfaces for scattering-free
manipulation of acoustic wavefronts. Nat. Commun. 9, 1342 (2018).

Acknowledgments: Y.X. thanks the support from the Key Laboratory of Functional
Material for Informatics, Shanghai Institute of Microsystem and Information Technology,
Chinese Academy of Sciences, Shanghai 200050, China. Funding: This work was supported by
the National Natural Science Foundation of China (grant nos. 11904169, 11974010, and
11604229), the Natural Science Foundation of Jiangsu Province (grant nos. BK20190383 and
BK20171206), a project funded by the China Postdoctoral Science Foundation (grant nos. 2018
T110540), and the Priority Academic Program Development (PAPD) of Jiangsu Higher
Education Institutions. C.S., J.L., and S.A.C. were supported by a Multidisciplinary University
Research Initiative grant from the Office of Naval Research (N00014-13-1-0631) and an
Emerging Frontiers in Research and Innovation grant from the U.S. National Science
Foundation (grant no. EFMA-1641084). Author contributions: Y.F. and Y.X. conceived the
idea. Y.F., CS., and Y.X. performed the theoretical calculation and numerical simulations. C.S.,
X.Z.,and S.A.C. fabricated the samples and performed experiments. J.L.. and Y.L. helped with
the theoretical interpretation. Y.F., Y.X,, and S.A.C. supervised the project. All authors discussed
the results and prepared the manuscript. Competing interests: The authors declare that they
have no competing interests. Data and materials availability: All data needed to evaluate
the conclusions in the paper are present in the paper and/or the Supplementary Materials.
Additional data related to this paper may be requested from the authors.

Submitted 21 January 2020
Accepted 21 August 2020
Published 2 October 2020
10.1126/sciadv.aba9876

Citation: Y. Fu, C. Shen, X. Zhu, J. Li, Y. Liu, S. A. Cummer, Y. Xu, Sound vortex diffraction via
topological charge in phase gradient metagratings. Sci. Adv. 6, eaba9876 (2020).

80of8

0202 ‘v JaquianoN uo /610’ Bewaduslos saoueape//:dny wolj papeojumod


http://advances.sciencemag.org/

Science Advances

Sound vortex diffraction via topological charge in phase gradient metagratings
Yangyang Fu, Chen Shen, Xiaohui Zhu, Junfei Li, Youwen Liu, Steven A. Cummer and Yadong Xu

Sci Adv 6 (40), eaba9876.
DOI: 10.1126/sciadv.aba9876

ARTICLE TOOLS http://advances.sciencemag.org/content/6/40/eaba9876
,\SA%FE’@\V'LESNTARY http://advances.sciencemag.org/content/suppl/2020/09/28/6.40.eaba9876.DC1
REFERENCES This article cites 45 articles, 4 of which you can access for free

http://advances.sciencemag.org/content/6/40/eaba9876#BIBL

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

0202 ‘v JaquianoN uo /610’ Bewaduslos saoueape//:dny wolj papeojumod

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 New
York Avenue NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of
Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial
License 4.0 (CC BY-NC).


http://advances.sciencemag.org/content/6/40/eaba9876
http://advances.sciencemag.org/content/suppl/2020/09/28/6.40.eaba9876.DC1
http://advances.sciencemag.org/content/6/40/eaba9876#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

	Sound vortex diffraction via topological charge in phase gradient metagratings
	Recommended Citation
	Authors

	Science Journals — AAAS

