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Prefrontal Corticotropin-Releasing Factor (CRF) Neurons
Act Locally to Modulate Frontostriatal Cognition and Circuit
Function

Sofiya Hupalo, Andrea J. Martin, “Rebecca K. Green, “David M. Devilbiss, and Craig W. Berridge
Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin 53706

The PFC and extended frontostriatal circuitry support higher cognitive processes that guide goal-directed behavior. PFC-dependent
cognitive dysfunction is a core feature of multiple psychiatric disorders. Unfortunately, a major limiting factor in the development of
treatments for PFC cognitive dysfunction is our limited understanding of the neural mechanisms underlying PFC-dependent cognition.
We recently demonstrated that activation of corticotropin-releasing factor (CRF) receptors in the caudal dorsomedial PFC (dmPFC)
impairs higher cognitive function, as measured in a working memory task. Currently, there remains much unknown about CRF-
dependent regulation of cognition, including the source of CRF for cognition-modulating receptors and the output pathways modulated
by these receptors. To address these issues, the current studies used a viral vector-based approach to chemogenetically activate or inhibit
PFC CRF neurons in working memory-tested male rats. Chemogenetic activation of caudal, but not rostral, dmPFC CRF neurons potently
impaired working memory, whereas inhibition of these neurons improved working memory. Importantly, the cognition-impairing
actions of PFC CRF neurons were dependent on local CRF receptors coupled to protein kinase A. Additional electrophysiological record-
ings demonstrated that chemogenetic activation of caudal dmPFC CRF neurons elicits a robust degradation of task-related coding
properties of dmPFC pyramidal neurons and, to a lesser extent, medium spiny neurons in the dorsomedial striatum. Collectively, these
results demonstrate thatlocal CRF release within the caudal dmPFC impairs frontostriatal cognitive and circuit function and suggest that
CRF may represent a potential target for treating frontostriatal cognitive dysfunction.
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(s )

The dorsomedial PFC and its striatal targets play a critical role in higher cognitive function. PFC-dependent cognitive dysfunction
is associated with many psychiatric disorders. Although it has long-been known that corticotropin-releasing factor (CRF) neurons
are prominent within the PFC, their role in cognition has remained unclear. Using a novel chemogenetic viral vector system, the
present studies demonstrate that PFC CRF neurons impair working memory via activation of local PKA-coupled CRF receptors, an
action associated with robust degradation in task-related frontostriatal neuronal coding. Conversely, suppression of constitutive
PFC CRF activity improved working memory. Collectively, these studies provide novel insight into the neurobiology of cognition
and suggest that CRF may represent a novel target for the treatment of cognitive dysfunction. j

ignificance Statement

2015). Many psychiatric disorders are associated with dysregula-
tion of PFC-dependent cognition (Cubillo et al., 2010; Liston et
al., 2011). Most drugs used to treat these disorders target cate-
cholamine neurotransmitters. However, there are limitations to
these drugs, including a lack of efficacy across the broader popu-
lation and, in the case of attention deficit hyperactivity disorder

Introduction
The prefrontal cortex (PFC) supports a diversity of “executive”
cognitive processes that guide goal-directed behavior (Fuster,
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(ADHD), the fact that first-line treatments (psychostimulants)
possess risk for abuse (Compton and Volkow, 2006; Setlik et al.,
2009; Berridge and Arnsten, 2015). Thus, there is a need for im-
proved treatments for PFC-dependent cognitive dysfunction.
Unfortunately, the development of alternative treatments is im-
peded by a scarcity of noncatecholamine targets.

One potential target is corticotropin-releasing factor (CRF). It
has long-been known that CRF neurons and receptors are prom-
inent in the PFC (Swanson et al., 1983; De Souza et al., 1985).
However, despite decades of research on the neurobiology of
subcortical CRF systems, the functional significance of PFC CRF
has been overlooked. We recently demonstrated that CRF recep-
tor activation in the caudal dorsomedial PFC (dmPFC) of rats
disrupts, whereas blockade of these receptors improves, spatial
working memory (Hupalo and Berridge, 2016). These observa-
tions indicate that CRF acts in the PFC to regulate higher cogni-
tive function. However, little is currently known about the
neurobiology underlying the cognitive actions of PFC CRF neu-
rotransmission, including fundamental issues, such as the source
of CRF to the PFC and the output pathways impacted by PFC
CREF signaling.

One possible source of CRF for cognition-modulating recep-
tors are local CRF-synthesizing neurons (Olschowka et al., 1982;
Swanson et al., 1983; Merchenthaler, 1984; Charlton et al., 1987;
Lewis et al., 1989). The current study examined the cognitive
actions of PFC CRF neurons using a novel dual-virus chemoge-
netic approach to bidirectionally manipulate these neurons in
WT rats tested in a working memory task. For this, Cre-
dependent “excitatory” (hM3Dq) or “inhibitory” (hM4Di)
designer receptors exclusively activated by designer drugs
(DREADDs) are combined with CRF promoter-specific expres-
sion of Cre recombinase. We observed that chemogenetic activa-
tion of caudal, but not rostral, dmPFC CRF neurons impaired,
whereas inhibition of caudal dmPFC CRF neurons improved,
working memory. Additional studies demonstrated that the
cognition-impairing effects of caudal dmPFC CRF neurons were
dependent on local CRF receptors coupled to protein kinase A
(PKA) signaling.

The dmPFC projects to the dorsomedial striatum (dmSTR),
forming frontostriatal circuits that support higher cognition
(Voorn et al., 2004; Mailly et al., 2013). Importantly, both nodes
of this circuit are necessary for successful working memory
(Spencer et al., 2012). Within the PFC, subpopulations of pyra-
midal neurons encode a diversity of information required for
successful goal attainment, as measured in tests of working mem-
ory (Curtis and D’Esposito, 2003; Histed et al., 2009; Rigotti etal.,
2013). Limited observations suggest that similar neural coding
mechanisms exist within cognition-related striatal regions
(Schultz and Romo, 1988; Levy et al., 1997; Akhlaghpour et al.,
2016).

The working memory modulatory actions of PFC cat-
echolamines are associated with a robust modulation of task-
related coding properties of PFC neurons (Arnsten, 2011). The
extent to which these neurophysiological actions are relayed to
the downstream striatum is currently unclear. To determine
whether PFC CRF neurotransmission impacts task-related activ-
ity in either the dmPFC or dmSTR, we combined ensemble
single-unit recordings with chemogenetic activation of caudal
dmPFC CRF neurons in working memory-tested animals. Acti-
vation of caudal dmPFC CRF neurons robustly degraded task-
related coding properties of putative pyramidal dmPFC neurons,
with lesser, though significant, effects observed for putative me-
dium spiny neurons in the dmSTR.
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Together, these studies provide the first evidence that PFC
CRF neurons potently disrupt frontostriatal cognitive and circuit
function. Additionally, these observations provide a strong ratio-
nale for future research into the behavioral and physiological
actions of PFC CRF neurons, the neural mechanisms subserving
these actions, and the potential clinical relevance of the PEC CRF
system.

Materials and Methods

Animals

Male Sprague Dawley rats (300-500 g; Charles River) were pair-housed
with enrichment (Nylabone, Bio-Serv) on a 13/11 h light/dark cycle.
Animals used for electrophysiological recordings were singly housed.
Animals were fed ad libitum for 4—7 d, and food was titrated for
each animal (15-17 g chow/d) to maintain motivation for food reward
while avoiding weight loss. Training/testing was conducted between
0800 and 1600 h 5-6 d/week. All facilities and procedures were in accor-
dance with National Institutes of Health guidelines and approved by an
Institutional Animal Care and Use Committee.

Working memory training

Training and testing were conducted as previously described (Berridge et
al., 2012b; Hupalo and Berridge, 2016). Briefly, animals were trained to
enter the arm of a T-maze not chosen on the previous trial to receive food
reward (45 mg sucrose pellet/trial, Bio-Serv). Between trials, animals
were placed in a start box at the base of the maze and prevented from
exiting by a gate (see Fig. 2A). Following surgery, animals resumed test-
ing with the introduction of a delay between trials titrated to achieve the
desired performance level. Sessions consisted of 20 trials (one session/d).
For electrophysiology studies, sessions consisted of 30 trials (two ses-
sions/d).

Surgery

Viral infusions. Rats were anesthetized with isoflurane and received a
mixture of two viruses (see Fig. 1A) targeting the rostral (anteroposterior
4.0; lateral +0.8; ventral —2.0 from brain surface) or caudal (anteropos-
terior 2.6; lateral +0.8; ventral —3.0) dmPFC: AAV8-CRF-Cre (6.5 X
10" gc/ml; Vector Biolabs) + AAV8-hSyn-DIO-hM3Dq-mCherry
(4.6 X 10" gc/ml; Addgene) or AAV8-hSyn-DIO-hM4Di-mCherry
(4 X 10" g¢/ml) or AAV8-hSyn-DIO-mCherry (3.1 X 10'? gc/ml). The
viral mixture was premixed at a 1:2 ratio of CRF-Cre to DIO-mCherry
and infused into each dmPFC hemisphere at a rate of 0.25 ul/min. Injec-
tor needles were left in place for 3 min before removal.

Cannulae. A subset of caudal dmPFC CRF-hM3Dq animals was im-
planted with cannulae (26 gauge) bilaterally over this region (anteropos-
terior 3.0-2.4; lateral *0.8; ventral —0.2). Another group of caudal
dmPFC CRF-hM3Dq animals were bilaterally cannulated targeting the
medial septum (MS; anteroposterior 0.5; lateral =0.9 with 4° angle; ven-
tral —0.5).

Electrodes. Additional caudal dmPFC CRF-hM3Dq or control virus
animals were implanted with chronic recording electrodes targeting both
the dmPFC and dmSTR (see Fig. 4A), as previously described (Devilbiss
etal.,2012,2017). In the PFC, alinear electrode array (8 electrodes/array,
50 wm wires, ~200 wm separation; NB Labs) was implanted into layer V,
oriented rostrocaudally (anteroposterior 3.6-2.2, lateral =0.75; ventral
—3.0). An 8-electrode bundle was unilaterally implanted into the dmSTR
(anteroposterior 0.45; lateral =3.5 with 11.5° angle; ventral —3.6; see
Fig. 5A).

Cannulae and electrodes were secured in place with skull screws and
dental acrylic.

Drugs

CRFg(human/rat, Bachem) and the PKA inhibitor, Rp-cAMPs (Tocris
Bioscience), were dissolved in buffered artificial extracellular fluid (147
mMm NaCl, 1.3 mm CaCl, 0.9 mm MgCl, 2.5 mm KCl, pH 7.4). p-Phe-CRF
(human/rat, Bachem) and clozapine N-oxide (CNO; NIMH Chemical
Synthesis and Drug Supply Program) were dissolved in 0.9% saline.
Before treatment, CNO was gently warmed to ensure the drug was in
solution.
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Experimental design

Drug treatments. For systemic CNO treatments, animals were injected
subcutaneously (1 ml/kg) 45 min before testing. Bilateral intra-PFC
(3 mm projection) and intra-MS (5.5 mm projection) CNO infusions
were performed with 33-gauge needles using a microprocessor-
controlled pump (Harvard Apparatus) at a rate of 0.25 and 0.125 wl/min
for 2 min, respectively. Needles were kept in place for 2 min following
infusions. Smaller infusion volumes (250 nl vs 500 nl) were used for the
MS to minimize drug flow up the needle tract and into the lateral ventri-
cles. Prior studies demonstrate this volume allows selective targeting of
this region with multiple pharmacological manipulations (Berridge et al.,
2012a).

For dual intra-PFC and systemic treatments, animals first received
intra-PFC infusion of b-Phe-CRF, Rp-cAMPs, or vehicle followed by a
subcutaneous CNO or vehicle injection (1 ml/kg). Animals were tested
30 min later.

Working memory testing procedures. Baseline performance levels of
80%-92.5% or 70%—82.5% were used to detect working memory im-
pairing and improving effects, respectively. Baseline performance was
calculated by averaging an animal’s performance accuracy on the 2 d
immediately before the treatment day. Given performance improves
with repeated testing, delays were increased (10—30 s) when performance
exceeded the desired range. In this study, no animals exceeded perfor-
mance criteria past 30 s delays. Animals receiving intratissue infusions
received a mock injection and/or intratissue infusion before the first
treatment.

Histology and immunohistochemistry. Animals were anesthetized and
transcardially perfused with 250 ml chilled heparinized saline (1 unit
heparin/ml 0.9% saline) followed by 450 ml of 4% PFA in 0.01 m PB, pH
7.4. For electrophysiology studies, cathodal 15 wA current was first
passed through every electrode for 10 s before perfusion. Brains were
removed, stored in PFA overnight, and taken through graded sucrose
solutions (20%-30% sucrose in 0.1 M PBS, pH 7.4). Electrode or needle
placement was verified in 40-um-thick coronal sections stained with
Neutral Red dye (Sigma-Aldrich).

For immunohistochemical processing of CRF and Fos, sections were
rinsed with 0.01 M PBS and incubated in a blocking agent containing 5%
normal donkey serum in 0.01 M PBS + 0.1% Triton X-100 at room
temperature for 45 min. Subsequently, the blocking agent was removed,
and sections were incubated in primary guinea pig anti-CRF antibody
(1:4000; catalog #t-5007; Peninsula Labs) or rabbit anti-fos (1:3000; cat-
alog #abe457, EMD Millipore) in the blocking agent overnight at 4°C.
Sections were washed and incubated in secondary donkey anti-guinea
pig AF488 or donkey anti-rabbit AF405 for 1.5 h at room temperature
(Jackson ImmunoResearch Laboratories). Secondary-only controls were
used in all instances. Sections were mounted and coverslipped using
ProLong Diamond Antifade Mountant (Thermo Fisher Scientific). The
primary antibodies used to target CRF and Fos have been extensively
validated using preabsorption and other controls (Das et al., 2007; Rajb-
handari et al., 2015; Scharner et al., 2016).

Viral spread and cell counts. The spread of viral expression within the
PFC was determined using 40 um coronal sections. Immunohistochem-
ical and cell counting procedures were used to assess (1) the proportion
of viral-transfected CRF neurons and (2) the extent to which our viral
vector system permitted activation of PFC CRF neurons using Fos im-
munoreactivity (-ir). Brain sections from animals receiving viral infu-
sions were examined using an Olympus BX51 light and reflected
fluorescence microscope. The spread of virus was mapped throughout
the rostrocaudal and dorsoventral extent of the PFC to ensure that the
majority of viral expression was restricted to one quadrant (rostral vs
caudal dmPFC). For animals receiving intra-PFC viral infusions and
intra-PFC/MS cannulae, alternating sections were Nissl stained to con-
firm injector needle placement while intervening sections were used to
measure viral spread. Data were included only when histological analyses
verified accurate placement of the reporter protein (mCherry) and min-
imal tissue damage.

In a subset of animals, single-labeled (CRF-ir/Fos-ir or mCherry) and
double-labeled (CRF-ir/Fos-ir+mCherry) neurons were counted in
600X images using a Nikon A1R+ confocal microscope. For each sec-

Hupalo et al. @ PFC CRF and Frontostriatal Cognitive Function

tion, 3 or 4 images were obtained from the main body of viral expression
of each hemisphere. Images were obtained from 3 to 5 sections/animal (4
total animals). Cells were only counted if there was a clear nucleus. The
percentage of double-labeled mCherry neurons was averaged. Cells were
considered double-labeled only when fluorescence was clearly observed
for mCherry (red signal, cytoplasm) and CRF-ir (green signal, cyto-
plasm) or Fos-ir (UV/blue signal, nucleus) within the same cell.

Electrophysiological recordings in working memory tested rats. On test-
ing days, animals were transported to the recording room and tethered to
a 32-channel commutator and a multichannel electrophysiology ac-
quisition processor (MAP, Plexon). Putative single units in the
dmPFC and dmSTR were isolated using template-matching algo-
rithms to discriminate action potentials. Extracellular action potential
waveforms exhibiting at least a 3:1 signal-to-noise ratio were discrimi-
nated using template-matching algorithms. The following criteria en-
sured that sorted waveforms arose from single neurons: (1) variability of
peak waveform voltage, (2) variability of waveform slope, (3) scattergram
distribution in the first three principal components, and (4) refractory
period (see Fig. 4C). For all recording sessions, neural activity was simul-
taneously amplified, discriminated, and time stamped as previously de-
scribed (Devilbiss et al., 2012, 2017).

After spike-sorting, a baseline recording session (30 trials, 10 s delays)
was conducted. One hour later, animals were injected with CNO (3 mg/
kg) or vehicle and 45 min later tested for an additional 30 trial session.
Video recordings (80 frames/s) and IR beam grids time-stamped the
animal’s location in the T-maze (see Fig. 4B). When animals fully entered
a T-maze arm (see Fig. 4A, pink quadrant), either a high- or low-
frequency 0.5 s tone identified correct and incorrect choices, respectively.
Finally, the moment the animal bit on the sucrose pellet (reward) was
time-stamped from video.

Neuron identification and event tuning. For the dmPFC, wide-spiking
(WS), putative glutamatergic, versus narrow-spiking (NS), putative in-
hibitory cell types were differentiated by quantifying the peak-to-peak
latency of the extracellular action potential waveform (WS > 200 us; NS,
100—200 ws), as previously described (Povysheva et al., 2006; Mitchell et
al., 2007; Devilbiss et al., 2017). For the dmSTR, medium spiny neurons
(MSNs) and fast-spiking (FS) interneurons were identified using the
peak-to-valley duration (MSN > 250 us; FS < 200 us) and firing rate
(MSN < 8 Hz) (Berke et al., 2004; Kim et al., 2007; Stalnaker et al., 2012).

Distinct subpopulations of dmPFC and dmSTR neurons displayed
excitatory responses to specific T-maze task events, including delay, re-
ward, correct signal, and error signal (see Fig. 4 D, E). Given the relatively
high baseline task accuracy (84.6 * 1.6%), it was not possible to analyze
error responses of dmPFC or dmSTR neurons. The selective response or
“event-tuning” of a neuron was determined during baseline recordings
from the z score of a neuron’s activity during a particular task interval
versus its overall spiking activity. zscores >0.025 for the delay period and
>0.18 for all other task events identified groups of neurons displaying
strong tuning to task events, similar to exemplar responses described by
other laboratories (Fuster and Alexander, 1971; Batuev et al., 1990; Horst
and Laubach, 2013). Lower z score thresholds were used for the delay
interval given it was ~10-fold longer in duration than other task inter-
vals. Units displaying z scores between —0.18 and 0.08 (—0.045 to 0.01
for the delay) were considered untuned to task events. Units with z scores
ranging between the cutoffs for strongly tuned and untuned neurons
were excluded from analyses.

Consistent with prior studies in working memory tested rats (Hyman
etal., 2010; Devilbiss et al., 2017), we observed no significant differences
in baseline mean spiking rates for left versus right or correct versus in-
correct trials among strongly tuned and untuned neurons in either re-
gion. Therefore, these task events/conditions were grouped together in
subsequent analyses. To account for any differences in baseline spiking
rates among neurons and experimental cohorts, and to accurately com-
pare the effects of CNO on task-related responses, mean spike rates are
presented as a percentage change from the baseline session.

Statistical analyses
Cognitive testing. A repeated-measures ANOVA analyzed the effect of
drug treatments on performance accuracy. Statistical comparisons be-
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tween drug dose and vehicle were determined using Bonferroni corrected
t tests.

Electrophysiological recordings. The mean spiking rate during each task
interval was determined on a trial-by-trial basis using perievent time
histogram (PETH) analysis. For each neuron, the percentage change in
mean spiking rate from baseline was determined for each task event and
averaged for each neuron category (strongly tuned, untuned). No signif-
icant changes in firing rate from baseline were observed in vehicle-
treated hM3Dq animals or CNO-treated viral controls. Thus, changes in
firing rate were analyzed using group (hM3Dq-CNO, hM3Dq-VEH,
control-CNO) as a between-subject variable in a one-way ANOVA.
Changes in population sizes of strongly tuned and untuned neurons were
calculated using a x? test. Pairwise comparisons between the three
groups were determined using Bonferroni corrected ¢ tests.

Results

Chemogenetic targeting of CRF neurons

To assess the working memory actions of PFC CRF neurons,
“excitatory” (hM3Dq) or “inhibitory” (hM4Di) DREADDs were
infused into the caudal or rostral dmPFC (Fig. 1A). An additional
group received a control virus mixture lacking a DREADD trans-
gene (CRF-Cre + DIO-mCherry). Robust reporter protein ex-
pression was observed within 3 weeks (Fig. 1B). Viral expression
was limited to a radius of ~500 um, filling the majority of either
the rostral or caudal dmPFC with minimal spread into the ven-
tromedial PFC or adjacent dmPFC hemifields (Fig. 2Bi,Ci). The
viral mixture transfected CRF neurons efficiently: 94 * 5% of
mCherry neurons colocalized with CRF-ir (n = 354 cells, 4 ani-
mals; Fig. 1C). Importantly, mCherry-positive cells lacking
CRF-ir were not observed.

To assess whether the DREADD agonist, CNO, activates
hM3Dgq-expressing PFC CRF neurons, we examined Fos-ir in
hM3Dq (n = 4) or viral control animals (#n = 3) treated with 3
mg/kg CNO in the home-cage (highest dose used in subsequent
studies). In hM3Dq animals, CNO elicited Fos-ir in 79 = 0.6% of
mCherry neurons (n = 347; Fig. 1Di). In contrast, no Fos-ir was
observed in mCherry neurons within the dmPFC of viral controls
(Fig. 1Dii).

Working memory actions of PFC CRF neurons

Chemogenetic activation of caudal dmPFC CRF neurons (CRF-
Cre + DIO-hM3Dgq, n = 7) dose-dependently impaired working
memory performance (baseline, 83.9 = 2.1%) relative to vehicle
(baseline, 80.7 = 1.7%; F(, 4 = 28.6, p = 0.002) and CNO-
treated viral controls (baseline, 81.7 * 2.8%; n =7, F, 15, = 35.0,
p < 0.001; Fig. 2Bii). This occurred in the absence of significant
changes in run time (vehicle: 3.6 = 1.0 min; 3 mg/kg CNO: 3.8 =
0.5 min, F, 4 = 1.1, p = 0.4; viral controls: 3.9 = 1.0 min,
F 13 = 1.5, p = 0.3). In contrast, chemogenetic activation of
rostral dmPFC CRF neurons (n = 6) had no significant effects on
performance (baseline, 86.7 * 1.7%) relative to vehicle (baseline,
84.2 £ 2.1%; F(, 5= 0.9, p = 0.39) or CNO-treated viral controls
(n=17;F 1, = 1.0, p = 0.3; Fig. 2Cii).

In general, mCherry expression was not observed outside the
targeted region of the PFC. The one exception to this was in
~30% of animals receiving viral infusions in the caudal, but not
rostral dmPFC, retrograde mCherry labeling of cell bodies was
observed in the MS (Fig. 2Di), a region known to project to the
PFC (Senut et al., 1989). To determine whether activation of MS
CRF neurons could have contributed to the cognition-impairing
effects of systemic CNO, a subset of animals containing mCherry
in the MS (confirmed postmortem; n = 4) were infused with
CNO directly into the MS or caudal dmPFC. In these animals,
CNO infusions (0.5 mm) into the caudal dmPFC impaired task
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performance comparable with that seen with systemic adminis-
tration (baseline, 88.6 = 1.7%; n = 7, F(; 5y = 22.4,p = 0.003). In
contrast, intra-MS CNO infusions had no significant effects on per-
formance (baseline, 85.9 * 3.3%; F, 5y = 0.8, p = 0.4; Fig. 2Dii).

In contrast to that seen with activation of PFC CRF neurons,
chemogenetic inhibition of caudal dmPFC CRF neurons (CRF-
Cre + DIO-hM4Di) improved task performance (baseline,
78.1 = 1.1%) relative to vehicle (baseline, 81.8 = 1.1%; n = 8,
F(1.7 = 15.6,p = 0.006) or CNO-treated viral controls (baseline,
81.7 * 2.8%; n = 7, F ;14 = 20.9, p < 0.001; Fig. 2E). This effect
occurred in the absence of significant effects on maze run time
(vehicle: 2.8 + 0.3 min; 3 mg/kg CNO: 2.7 + 0.3 min, F, ;, = 0.5,
p = 0.6; viral controls: 3.9 * 0.8 min, F, ,,) = 2.1, p = 0.1).

Circuit and intracellular signaling mechanisms underlying
the cognitive actions of PFC CRF neurons

Additional studies examined whether CRF neurons in the caudal
dmPFC release CRF locally to impair working memory. Animals
expressing CRF-hM3Dq in this region received infusions of ei-
ther vehicle or the CRF antagonist, D-Phe-CRF (100 ng/hemi-
sphere) directly into the caudal dmPFC before receiving systemic
CNO at the maximally impairing dose (3 mg/kg; n = 9). In ani-
mals pretreated with intra-PFC vehicle, CNO elicited a robust
working memory impairment (baseline, 86.9 * 1.8%; F, 4 =
49.5, p < 0.001) that was prevented by local b-Phe-CRF infusions
(baseline, 82.6 + 1.9%; CNO X antagonist interaction, F(, g) =
31.4, p < 0.001; Fig. 3A).

CRF1 receptors are the dominant subtype in the rodent PFC
and may couple to the Gs-PKA intracellular signaling cascade
(Chalmers et al., 1995; Miguel et al., 2014). To examine whether
the cognition-impairing actions of PFEC CRF neurons are depen-
dent on local PKA signaling, animals received bilateral infusions
of vehicle or the PKA inhibitor, Rp-cAMPs (20 nMm), into the
caudal dmPFC before systemic CNO (3 mg/kg CNO; n = 5).
Rp-cAMPs alone had no significant effects on task performance
(Fig. 3B; baseline, 85.6 + 1.2%; F(, ,) = 1.4, p = 0.3). In animals
pretreated with intra-PFC vehicle, CNO impaired task perfor-
mance (baseline, 88.5 = 1.3%; F; 4, = 29.4, p = 0.005), whereas
intra-PFC Rp-cAMPs pretreatment completely blocked this ef-
fect (baseline, 85.6 * 2.1%; CNO X Rp-cAMPs interaction;
F.4 = 27.2, p = 0.01; Fig. 3B).

Effects of PFC CRF neuronal activation on task-related
activity across the frontostriatal circuit

To assess the effects of caudal dmPFC CRF neuronal activation
on the coding properties of neurons within dorsomedial fronto-
striatal circuitry, animals were implanted with chronic recording
electrodes in the dmPFC and dmSTR following intracaudal
dmPFC infusion of CRF-hM3Dq (n = 5) or viral vector control
animals (n = 3) (Fig. 4). Animals were tested for a 30 trial baseline
session and a second 30 trial session following treatment with
vehicle or CNO.

Baseline neuronal response properties

Across all animals, we isolated a total of 420 dmPFC neurons
(most within dorsal prelimbic PFC), 96% classified as WS and 4%
as NS. Due to the low number of NS dmPFC neurons isolated,
these neurons were not analyzed further. Under baseline condi-
tions, 25% of dmPFC WS, putative pyramidal, neurons were clas-
sified as being strongly tuned to the delay interval, whereas 10%
were strongly tuned to reward. Interestingly, dmPFC WS neu-
rons were relatively insensitive to the correct signal tone and thus
were not analyzed further. A larger proportion of dmPFC WS
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Figure 1.  Chemogenetic approach. 4, Schematic depicting dual viral system to activate (CRF-Cre + hSyn-DI0-hM3Dq) or inhibit (CRF-Cre + hSyn-DIO-hM4Di) CRF neurons in the PFC. B,
Photomicrograph depicting mCherry expression in the caudal dmPFC from a CRF-hM3Dqg-treated animal. Scale bar, 200 wm. cc, Corpus callosum. €, Top, Collapsed 30 um z stack from inset in B,
demonstrating mCherry colocalization with CRF-ir cells. Scale bar, 30 .m. Bottom, Inset from above, rotated at various angles. Scale bar, 10 m. Di, CNO elicits an excitatory influence in PFC CRF neurons as
measured by Fos-ir in mCherry neurons of CNO-treated CRF-hM3Dq animals. Dii, Absence of Fos-ir in the PFC of CNO-treated viral controls (mCherry + CNO; CRF-Cre hSyn-DIO-mCherry). Scale bar, 10 um.

neurons was classified as being insensitive (“untuned”) to task  atively small number of FS neurons, only MSNs were included in
events (delay, 39%; reward, 53%). subsequent analyses. dmSTR MSN neurons also displayed strong

Within the dmSTR, we isolated a total of 255 neurons, 88%  delay-related (30%) and reward-related (16%) activity. In con-
classified as MSN, 9% as FS, and 3% unclassified. Given the rel-  trast to the dmPFC, a robust subpopulation of MSNs exhibited
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Figure 2.  CRF neurons in the caudal, but not rostral, dmPFC modulate working memory. A, T-maze schematic. Bi, Schematics depict hM3Dq viral spread in the caudal dmPFC (anteroposterior
3.2-2.2) from all animals tested. Bii, CNO dose-dependently impairs task performance relative to vehicle (n = 7) and CNO-treated viral control animals (n = 7; control 3 mg/kg). Gi, hM3Dq viral
spread in the rostral dmPFC (anteroposterior 4.2-3.2). Gii, Chemogenetic activation of CRF neurons in the rostral dmPFC has no significant effects on task performance relative to vehicle (n = 6) and
viral controls (n = 7). Di, Left, Retrograde mCherry cell body labeling observed in the MSin ~30% of animals. Right, Schematics representing intra-MS infusion sites (n = 4). Dii, When infused into
the PFC, 0.5 mm CNO robustly impairs task performance (n = 7), while having no effects on performance when infused into the MS (n = 4). E, Chemogenetic suppression of CRF neuronsin the caudal
dmPFCimproves task performance relative to vehicle (n = 8) and CNO-treated viral controls (n = 7). Results are mean == SEM percentage change in accuracy relative to baseline. *p << 0.05 versus
vehicle. *p << 0.001 versus viral controls. **p << 0.01 versus vehicle. ***p < 0.001 versus vehicle. ***p < 0.001 versus viral controls.

24, 54% reduction) relative to vehicle or
CNO-treated viral controls (hM3Dgq-
VEH: n = 25, —0.6%; control-CNO: n =
54, 0.1%; Fig. 5C). Activation of PFC CRF
neurons significantly diminished the pop-
ulation size of strongly tuned delay neu-
rons by 75% relative to hM3Dq-VEH
(—8%) and control-CNO (—30%)
groups (x> = 6.3, p = 0.04; Fig. 5C). PFC
CRF neuronal activation also significantly
reduced reward-related activity of WS
neurons (Fg, 3y = 3.1, p = 0.05, n = 16,
—29.1%) relative to vehicle (n = 15,
—0.9%) and viral controls (n = 11, 2.6%),
while not significantly affecting the popu-
lation size of strongly tuned reward neu-
rons (x> = 0.1, p = 0.9; hM3Dgq-CNO,
—19%; hM3Dq-VEH, —13%; control-
CNO, —27%; Fig. 5C).

As shown in Figure 5D, PFC CRF neu-
ronal activation had no significant effects
on the larger population of WS neurons that were untuned to
either delay (spiking: F, ;5 = 1.1, p = 0.3; population size: x* =
0.7, p = 0.7) or reward (spiking: F, 5,3y = 0.23, p = 0.8; popula-
tion size: x> = 2.04, p = 0.4).
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Figure 3. Working memory actions of caudal dmPFC CRF neurons are dependent on local CRF receptors coupled to PKA.
A, Intra-PFCinfusion of the nonselective CRF antagonist o-Phe-CRF (100 ng/hemisphere) blocks the working memory-impairing
effects of chemogenetic activation of caudal dmPFC CRF neurons (3 mg/kg CNO; n = 9). B, Intra-PFCinfusion of the PKA inhibitor
Rp-cAMPs (20 nu/hemisphere) also blocks the working memory-impairing effects of 3 mg/kg CNO (n = 5). Results are mean *
SEM percentage change in accuracy relative to baseline. *p << 0.05. **p << 0.01. ***p < 0.001.

prominent and punctate excitatory responses to the correct signal
tone (21%). A large proportion of MSNs were untuned to delay
(41%), reward (72%), and correct signal (64%)).

Effects of caudal dmPFC CRF neuronal activation on task-related
activity in the dmPFC

Vehicle treatment of hM3Dq animals (n = 4) or CNO treatment
(3 mg/kg) of viral controls (n = 3) did not significantly affect
working memory (hM3Dq-VEH: baseline, 84.3 = 1.9%; p =
0.14; control-CNO: baseline, 84.1 * 2.2%; p = 0.16; Fig. 5B). In
hM3Dq animals (# = 5), CNO significantly impaired task per-
formance (baseline, 85.4 * 2.3%; p = 0.0001; Fig. 5B). This was
associated with a robust suppression of task-related activity of
delay-tuned dmPFC WS neurons (F, ;o) = 22.3, p < 0.001, n =

PFC CRF neuronal activation elicits a weaker degradation of
task-related activity in the dmSTR

Chemogenetic activation of PFC CRF neurons robustly dimin-
ished the population size of delay-tuned MSNs (—75%) relative
to vehicle (—7%) and CNO-treated viral controls (14%; y* = 5.7,
p = 0.05; Fig. 6A). This was accompanied by a nonsignificant
trend for reduction in delay-related activity (F, 65y = 1.3, p = 0.2,
n =12, —18.4%) relative to vehicle (—3.6%, n = 28) and CNO-
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Figure 4.

Frontostriatal recordings in working memory-tested rats. A, T-maze schematicillustrating task events, including delay, two distinct auditory tones serving as outcome-related signals

on correct versus error trials, and sugar reward. B, Animal position is tracked using video recordings and infrared beams. C, Top, Action potential waveforms of 4 discriminated WS dmPFC neurons.
Bottom, Waveforms from these units exhibit separable clusters in 3D-principal component space. D, Exemplar rasters (top) and PETHs (bottom) of WS dmPFC neurons exhibiting punctate excitatory
responses during T-maze events. Shaded areas of PETHs represent duration of interval. Spiking rates were calculated for 100 ms time bins. £, Exemplar rasters and PETHs of putative MSNs within the

dmSTR displaying strong task tuning.

treated viral controls (n = 28, 1.0%; Fig. 6A). For reward-tuned
MSNs, PFC CRF neuronal activation did not significantly affect
task-related activity (—21%, F(, 33 = 1.2, p = 0.3, n = 9; VEH,
0%, n = 20; CNO-treated controls, 2.2%, n = 19), or population
size (x> = 0.01, p = 0.9; Fig. 6A). MSNs strongly tuned to the
correct signal were insensitive to CNO or vehicle across all groups
(spiking: F, 45 = 0.03, p = 0.9; population size: x> = 0.6, p =
0.7), as were MSNs untuned to delay (spiking: F(, g9y = 0.5, p =
0.6; population size: x> = 0.6, p = 0.7), reward (spiking:
F(5.158 = 0.06, p = 0.9; population size: x> = 0.9, p = 0.6), and
correct signal (spiking: F, 149y = 0.1, p = 0.9; population size:
x*> = 1.1, p = 0.5; Fig. 6B).

Discussion

Both the PFC and CRF have long been implicated in psychopa-
thology associated with cognitive impairment. Given this, it is
surprising that the cognitive actions of CRF neurotransmission in
the PFC have been largely overlooked. The current studies pro-
vide the first evidence that CRF neurons in the caudal dmPFC are
constitutively active under working memory testing conditions
and act to impair working memory via local PKA-coupled CRF
receptors. Additionally, these studies demonstrate that the
cognition-impairing action of CRF neurotransmission in the
caudal dmPFC is associated with a robust degradation of delay-
and reward-related activity within the dmPFC and, to a lesser
extent, in the dmSTR. Collectively, these observations provide
novel insight into the neurobiology of frontostriatal-dependent
cognition and suggest that CRF may represent a novel target for
the treatment of PFC/frontostriatal-dependent cognitive dys-
function.

Topography of CRF actions within the dmPFC

The cognitive actions of PFC CRF neurons were topographically
organized, being limited to the caudal portion of the dmPFC.
This is consistent with a well-described functional topography of
the rodent medial PFC dorsoventrally (Voorn et al., 2004; Gab-
bott et al., 2005) and rostrocaudally (Alsene et al., 2011; Hupalo
and Berridge, 2016). The neural bases for the topography associ-
ated with the cognitive actions of PFC CRF are currently
unknown. Given CRF neurons and receptors are present
throughout the medial PFC (Swanson et al., 1983; De Souza etal.,
1985), this topography does not appear to arise from differential
neuronal and/or receptor distribution. Instead, this may reflect a
topographical organization in the projection patterns of PFC
neurons. Recent studies indicate that CRF-synthesizing and CRF
receptor-expressing neurons in the rodent PFC represent distinct
neuronal populations (Uribe-Marifio et al., 2016). Moreover, at
least some of these CRF receptor-expressing neurons are pyrami-
dal neurons (Gallopin et al., 2006). Thus, the restriction of the
cognitive effects of CRF neurotransmission to the caudal dmPFC
may reflect unique projection patterns of CRF receptor-
expressing pyramidal neurons from this region. Consistent with
this, extensive evidence demonstrates differing efferent projec-
tion targets across dorsal versus ventral PFC subfields (Sesack et
al., 1989; Heidbreder and Groenewegen, 2003; Gabbott et al.,
2005). The topographical organization of rostral versus caudal
PEC projections has been less intensively studied. However, lim-
ited observations indicate the rostral medial PFC extends denser
projections to the rostroventral and dmSTR, whereas the caudal
medial PFC more strongly innervates the caudal ventral striatum
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Chemogenetic activation of CRF neurons in the caudal dmPFC degrades delay and reward signaling in WS dmPFC neurons. 4, Left, Schematics depicting CRF-hM3Dq expression in the

caudal dmPFCand electrode placements in the dmPFCand dmSTR. Right, 4 X photomicrographs depicting placement of one electrode in layer V of the dmPFC and three electrodes in the dmSTR.
Scale bar, 250 pum. B, In recorded animals, CNO impaired task performance in the hM3Dq group (5 animals, 7 recording sessions), but not in vehicle (4 animals, 10 sessions) or CNO-treated viral
controls (3 animals, 10 recording sessions). C, Left, Exemplar rasters/PETHs demonstrating task-related activity of strongly tuned delay (top) and reward (bottom) WS neurons under baseline and
CNO conditions (delay, 10s; reward, 15). Middle, CNO-induced activation of dmPFC CRF neurons robustly suppressed task-related activity of strongly tuned delay (n = 24) and reward (n = 16), WS
neurons relative to vehicle (delay, n = 25; reward, n = 15), and CNO-treated viral controls (delay, n = 54; reward, n = 11). Right, PFC CRF neuronal activation diminished the population size of
strongly tuned delay (top), but not reward (bottom) neurons. D, Left, Exemplar rasters/PETHs of a WS neuron untuned to delay (top) and reward (bottom) under baseline and CNO conditions. CNO
had no significant effects on task-related activity (middle) or population sizes (right) of these neurons in hM3Dq animals (delay, n = 55; reward, n = 65), relative to vehicle (delay, n =
40; reward, n = 59), and viral controls (delay, n = 64; reward, n = 92). *p << 0.05 versus control-CNO. *p < 0.05 versus hM3Dg-SAL. ***p < 0.001 versus control-CNO. t +p <

0.001 versus hM3Dg-SAL.

and mediodorsal thalamic nucleus (Sesack et al., 1989; Gorelova
and Yang, 1997). The neural basis for the topography associated
with the cognitive actions of PFC CRF neurotransmission is an
important area for future studies.

Neurocircuitry underlying the cognitive actions of PFC

CRF neurons

Limited evidence indicates at least some PFC CRF neurons are
GABAergic interneurons (Mohila and Onn, 2005; Helmeke et al.,
2008). Consistent with this, recent immunohistochemical studies
in our laboratory indicate that ~15% of CRF neurons are immu-

noreactive for the GABAergic marker, GAD67, with the remain-
ing 85% displaying immunoreactivity for the glutamatergic marker,
CaMKIIa. The observation that CRF acts locally in the PFC to im-
pair working memory could implicate GABAergic CRF interneu-
rons in the cognitive effects of our chemogenetic manipulations.
However, the fact that PFC CRF neuronal activation had no effects
on the broader population of neurons not displaying task-related
activity indicates that PEC CRF signaling does not generally increase
inhibitory tone within the dmPFC. Ongoing studies in our labora-
tory are investigating the potential contribution of distinct PFC CRF
neuronal subpopulations to working memory.
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Effects of PFC CRF neuronal activation on task-related activity of dmSTR MSNs. A4, Left, Exemplar rasters/PETHs demonstrating task-related activity of strongly tuned delay (top) and

reward (bottom) MSNs under baseline and CNO conditions. Middle, CNO elicited a trend for suppression of task-related activity of strongly tuned delay (n = 12) and reward MSNs (n = 9) inhM3Dq
animals that was not observed with vehicle (delay, n = 28; reward, n = 15) or (NO-treated viral controls (delay, n = 28; reward, n = 12). Right, PFC CRF neuronal activation diminished the
population size of strongly tuned delay (top), but not reward (bottom), MSNs. B, Left, Exemplar rasters/PETHs of MSNs untuned to delay (top) and reward (bottom) MSNs. CNO elicited no significant
effects on task-related activity (middle) or the population size (right) of untuned MSNs in hM3Dq animals (delay, n = 27; reward, n = 35), vehicle-treated hM3Dq animals (delay, n = 26; reward,
n = 65), or (NO-treated viral controls (delay, n = 39; reward, n = 61). *p << 0.05 versus control-CNO. "'p << 0.05 versus hM3Dg-SAL.

Chemogenetic activation of caudal dmPFC CRF neurons ro-
bustly suppressed delay-related activity of dmPFC neurons. This
was accompanied by a dramatic decrease in the population size of
WS neurons identified as strongly tuned to delay. A weaker,
though significant, suppression of reward-related activity was
also observed. Consistent with the weaker nature of this effect, we
did not observe a significant reduction in the population size of
reward-tuned PFC neurons. The neural mechanisms underlying
the preferential actions of PEC CRF neurotransmission on delay-
related activity remain to be determined. In the downstream
dmSTR, activation of PFC CRF neurons strongly reduced the
population of delayed-tuned neurons, but elicited weaker and
nonsignificant reductions in the firing rate of delay- and reward-
tuned MSNs. Combined, these observations indicate that caudal
dmPFC CRF neurons weaken task-related coding broadly, but
differentially, within frontostriatal circuitry.

Consistent with prior studies, we observed no mCherry fibers
in the dmSTR, suggesting that PFC CRF neurons may not directly
innervate the dmSTR (Swanson et al., 1983; Merchenthaler,
1984). Nonetheless, PFC CRF neuronal activation weakened
task-related neuronal coding in the dmSTR. It is possible that
delay-related activity of dmSTR neurons is driven, at least in part,
by excitatory projections from delay and reward-tuned pyrami-

dal neurons in the dmPFC. Thus, CRF-dependent reductions in
excitatory signaling from the dmPFC to the dmSTR may contrib-
ute to a weakening of task-related activity in the dmSTR. The
weaker effects observed in the dmSTR, relative to the dmPFC,
could reflect the fact that task-related activity of MSNs is not
solely driven by caudal dmPFC delay-tuned neurons. Indeed,
both the rostral and caudal aspects of the dmPFC are known to
project to the dmSTR region recorded from in the current studies
(Spencer et al., 2012). Thus, neurons in the rostral dmPFC may
well contribute to task-related coding in the dmSTR. The precise
neural circuitry by which PFC CRF signaling modulates down-
stream striatal targets remains a topic of future studies.

Translational relevance

PEC cognitive dysfunction is associated with a variety of behav-
ioral disorders, including ADHD, depression, schizophrenia, and
addiction. The fact that CRF acts in the PFC to modulate higher
cognitive function could implicate CRF in one or more of these
disorders and/or suggest that drugs interfering with CRF neu-
rotransmission may have therapeutic potential for the treatment
of PFC-dependent cognitive dysfunction. Additionally, the cur-
rent observations suggest that the cognition-enhancing actions of
caudal dmCRF neuronal suppression mimic those seen with all
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FDA-approved drugs for ADHD (Spencer et al., 2015). Thus,
CRF may represent a novel target for the development of phar-
macological treatments for this disorder. Beyond these clinical
conditions, the cognitive and neurophysiological actions of PFC
CRF neuronal activation are similar to those seen with stress and
stress-related disorders (Birnbaum et al., 1999; Arnsten, 2009;
Devilbiss et al., 2017). Evidence suggests acute stress increases
levels of both CRF and CRF1 receptor mRNA in the PFC (Meng
et al., 2011; Uribe-Marino et al., 2016). Additionally, viral-
mediated deletion of CRF1 receptors prevented acute stress-
induced impairment in reversal learning (Uribe-Marifio et al.,
2016). Collectively, these observations suggest the hypothesis
that stress-related cognitive impairment involves increased CRF
neurotransmission in the PFC.

While CRF neurotransmission in the PFC may contribute to
stress-related cognitive impairment, in the current studies, ani-
mals were highly habituated and motivated to engage in cognitive
testing and displayed relatively high baseline performance accu-
racy. Thus, the cognition-enhancing actions of CRF neuronal
suppression are unlikely to reflect solely an “anti-stress” effect.
Instead, these results suggest that PFC CRF neurons are active
across a range of conditions associated with higher arousal and
motivational states, both stressful and nonstressful (Merali et al.,
2004). The broader behavioral actions of CRF neurotransmission
in the PFC and the translational relevance of these actions are
important topics for future research.
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