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Abstract: Subsurface fires and smoldering events at landfills can present serious health hazards and
threats to the environment. These fires are much more costly and difficult to extinguish than open
fires at the landfill surface. The initiation of a subsurface fire may go unnoticed for a long period
of time and undetected fires may spread over a large area. Unfortunately, not all landfill operators
keep or publish heat elevation data and many landfills are not equipped with a landfill gas extraction
system to control subsurface temperatures generated from the chemical reactions within. The timely
and cost-effective identification of subsurface fires is an important and pressing issue. In this work,
we describe a method for using satellite thermal infrared imagery at a moderate spatial resolution
to identify the locations of subsurface fires and monitor their migration within landfills. The focus
of this study was the Bridgeton Sanitary Landfill in Bridgeton, MO, USA where a subsurface fire
was first identified in 2010 and continues to burn today. Observations from Landsat satellites over
the last seventeen years were examined for surface temperature anomalies (or hot spots) that may
be associated with subsurface fires. The results showed that the locations of hot spots identified
in satellite imagery match the known locations of the subsurface fires. Changes in the hot-spot
locations with time, as determined by in situ measurements, correspond to the spreading routes of
the subsurface fires. These results indicate that the proposed approach based on satellite observations
can be used as a tool for the identification of landfill subsurface fires by landfill owners/operators to
monitor landfills and minimize the expenses associated with extinguishing landfill fires.

Keywords: landfill internal elevated temperature; Landsat image processing; land surface thermal
mapping; Bridgeton landfill

1. Introduction

Currently, there is no reliable and cost-effective method available in the United States (U.S.) for
detecting and monitoring subsurface smoldering events (SSEs) and related thermal imbalances at U.S.
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landfills [1]. Such a method is needed as a timely warning tool for the identification of the location and
spatiotemporal extent of subsurface “hotspots,” while also aiding in the prevention or minimization of
costly subsurface fires and thermal damage to liners and gas/leachate handling systems. The space
borne remote sensing of landfill surface temperatures by thermal infrared sensing offers a promising
approach. As discussed below, interpretation of the publicly available Landsat data archive enables the
monitoring of large areas, such as landfills. The nondestructive, noninvasive methods described in this
paper allow for the observation of multiple locations quickly and at low-to-no cost and the assembly
of a satellite image archive that indicates changes in the thermal state of landfill surfaces over time.
Further algorithmic interpretations of these thermal–areal time series can be used to isolate persistent
hotspot signatures by filtering externally forced thermal variations (e.g., from seasonal thermal trends)
and short-term thermal excursions [2]. Moreover, with further development, the algorithms presented
herein can serve as a basis for an automated monitoring/warning method. For example, the application
of machine learning to sudden-change detection could ultimately reduce the burden associated with
human-in-the-loop monitoring and facilitate expert event verification and the pursuit of remedial
action. Using this algorithmic approach, we present our case study and the obtained preliminary
simple stationary statistical metrics (e.g., mean and standard deviation) for the data collected during the
study period, with the results indicating that accumulated subsurface heat can be detected by satellite
images. We identified the 2010 onset and migration of an SSE in the Bridgeton Sanitary Landfill, with
the remote sensing results comparing favorably to ground observations during the same time period.

Previously researchers have examined four landfills located in North America (Michigan,
New Mexico, Alaska, and British Columbia) to investigate the thermal states of municipal solid waste
(MSW) landfills as a function of usual operational conditions and climatic regions [3]. A comprehensive
study has also been conducted to assess the physical and thermal properties of wastes affecting heat
transfer and fire ignition [4,5]. In accordance with many other studies, this work showed that in
landfills with no SSE or other long-term thermal anomalies, the usual heat generated in MSW landfills
is largely the byproduct of the biological decomposition of organic waste along with leachate and
gas [6–13]. Under these conditions, the landfill temperature remains close to the air temperature at
shallow depths and near the edges of the landfill and reaches maximum values relative to the air and
ground temperatures near the areal center and at intermediate depths. Observations indicated that a
baseline “healthy” landfill thermal state can be observed by satellite-based remote sensing [3].

Indeed, this technology has been used previously to map and monitor landfills. For example,
Landsat Thematic Mapper (TM) images were used to monitor the Al-Qurain landfill in Kuwait and
observed a 1–4 ◦C temperature elevation for the surface of the landfill site relative to the surrounding
desert area [14]. A similar study at the Trail Road landfill site near Ottawa, Canada observed an average
9 ◦C temperature elevation from 1985 to 2009 [15]. These studies demonstrate that satellite-based
remote sensing applications that use time series analysis and appropriate image processing techniques
can identify and map landfill sites based on differences between baseline surface temperatures and
their surroundings. However, none have focused on the detection and monitoring of the evolution of
persistent hotspots as an indicator of landfill health disturbance.

Subsurface heating activities result in higher surface temperatures by the transfer of heat from
the interior to the landfill surface [2,16]. Data from landfills experiencing SSEs, “subsurface oxidation
events,” or “elevated temperatures” suggest that temperatures inside landfills can reach 100–125 ◦C
and even 150 ◦C in some cases [17]. In such cases, subsurface heating manifests as a hotspot with a
temperature exceeding the normal elevation in baseline temperature. Accordingly, thermal imaging
of the landfill surface, inferential heat transfer analysis, and the correction of baseline-temperature
elevation can provide a viable and efficient method for hotspot detection, which may enable smolder/fire
detection and perhaps prevention. Once the locations, timeline, and extent of an SSE or related event
are identified, site operators will be better equipped to determine the appropriate remedial actions to
be taken.
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2. Study Goal and Site Description

The goal of this paper is to introduce methodologies for the remote satellite monitoring of the
location and movement of subsurface thermal events within landfills, such as smolders and fires. As a
case study, these methods were applied to the Bridgeton Sanitary Landfill in Bridgeton, Missouri,
U.S., where abnormal subsurface thermal activity has been ongoing since 2010 [18,19]. The Bridgeton
Sanitary Landfill in Bridgeton, MO (GPS: 38.767◦, −90.443◦), roughly 20 miles from downtown St. Louis,
MO, is part of a larger site containing five distinct waste areas, a transfer station, and a maintenance
building (Figure 1).
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Figure 1. Outlines of Bridgeton landfill areas [20].

This landfill is divided into the North (adjacent to nuclear waste disposal area) and South Quarries,
which are connected by a narrow band called the “Neck.” The North (upper) and South (lower) Quarries
cover an area of approximately 52 acres. Waste placement at the Bridgeton landfill commenced around
1985 and ceased in December 2004. The total waste thickness at the end of the waste acceptance
period was reported to be approximately 320 feet, with 80 feet of waste above the ground surface [21].
The landfill accepted approximately 17,000,000 in-place cubic yards of waste, including commercial,
industrial, and municipal solid wastes. The Bridgeton landfill has a leachate collection system and
is equipped with 200 temperature and gas well monitoring units. In our analysis, measurements
from these sources were used as ground truth for comparison with the remote sensing results. In late
2010, a subsurface elevated temperature event was confirmed in the southern half of the landfill. This
SSE, also known as a “subsurface fire (SF),” later expanded in all directions. Stark (2013) estimated
the expansion rate of underground combustion in the South Quarry area to be 2.8–3.0 feet per day.
This expansion rate estimate was later adjusted to 1–2 feet per day [21,22]. The smoldering event
appears to be contained in the South Quarry [23].

Satellite Data Acquisition and Processing

The U.S. Geological Survey (USGS) Earth Explorer tool provides the ability to query, search,
and order satellite images, aerial photographs, and cartographic products from several sources.
However, none of these representations contain information related to temperature. To determine
land surface temperature (LST) distributions, Level 1 satellite images of the exact location of the
Bridgeton Sanitary Landfill (GeoTIFF format) were downloaded from the USGS online archive
(https://earthexplorer.usgs.gov) and were then processed as described below. Observations from
Landsat satellites were used to detect the thermal state of the Bridgeton landfill area and to identify

https://earthexplorer.usgs.gov
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thermal anomalies at its surface. All relevant Landsat data generated between 2000 and 2016 were
downloaded and images with only slight (less than 10%) overall cloud contamination were retained.
All retained images were then subjected to an image acceptance test, i.e., an algorithm designed to
use the Quality Assessment band (now available with downloaded data for Landsat 5, 7 and 8) to
accept only images (in this study, the landfill scene) that have no clouds, snow, water, or other land
cover that may lead to misleading results. In addition, the images were visually checked to ensure
that the landfill area was not obscured by clouds. Due to cloud contamination of the imagery and
because of the long, 16-day revisit time of Landsat satellites, the average annual number of clear-sky
images collected was seven, for a total of 115 images over the 16-year time period. No reliable data
were available between December 2011 and March 2013 as the Landsat 5 archive ended in November
2011, Landsat 8 was launched in April 2013, and the Landsat 7 data for 2012 were found to be unusable
for this analysis because of sensor problems. The missing 2012 data is unfortunate, but only affect
15 months out of 204. Hotspots can still be tracked for over 93% of the period of interest.

Images from 2000–2011 were obtained using the Landsat 5 TM. Starting from 2013, we acquired
data from the Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments.
The number and positions of the spectral bands in the Landsat sensors differed, but we used all sensors
that provided observations in the visible, near-infrared (near-IR), and thermal infrared (TIR) bands.
The spatial resolution of all the sensors in the visible and near-IR bands was 30 m, and that of the
TIR band was 120 m on the TM sensor and 100 m on the TIRS sensor. However, the USGS provides
observations in these bands resampled to 30-m resolution, which is the same as that of the visible and
near-IR bands. All scenes were acquired at Level 1B with observations in all bands provided as 8 bits
for the TM and 16 bits for the OLI and TIRS.

Preprocessing of the satellite imagery was performed according to the procedure described in the
Landsat handbook [24]. Digital numbers (DNs) in the optical bands were converted first to radiance
and then to reflectance. The reflectance values were corrected for variable Sun–Earth distances and
normalized to the overhead Sun by dividing the reflectance by the cosine of the solar zenith angle.
Observations in the TIR band were converted first to radiance and then to brightness temperature Tb
values. The calibration coefficients used to convert DN counts into physical values (reflectance and
brightness temperature) were obtained from metafiles supplied by the USGS with the Landsat imagery
(Table 1).

Table 1. Brightness temperature constant values for use with Equation (1).

Constant K1 K2

Units W/ (sr m2 µm) kelvin
L5 TM 607.76 1260.56
L8 TIR 774.89 1321.08

To estimate the LST from the observed IR brightness temperature Tb, we used the approach
below [25]:

LST =
Tb

1 +
(
λ Tb

d

)
ln(e)

, (1)

where Tb is the blackbody temperature; λ is the wavelength of the emitted radiance; d is defined by
d = ch/kB, where the velocity of light (c = 3 × 108 m/s) is multiplied by Planck’s constant (h = 6.26
× 10−34 J.s) and divided by Boltzmann’s constant (kB = 1.38 × 10−23 J/K); and e is the land surface
emissivity. The emissivity is calculated using Equation (2) [26]:

e = 0.004 + 0.986 PV, (2)

where PV is the proportion of vegetation, which is sometimes referred to as the fractional vegetation
cover and calculated using Equation (3):
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PV =

[
NDVI−NDVImin

NDVImax −NDVImin

]2

. (3)

In this equation, NDVI is the normalized difference vegetation index. To calculate the NDVI of
the surface, we used Equation (4) [27]:

NDVI =
[NIR −RED

NIR + RED

]
, (4)

where NIR represents the near-IR band reflectance and RED is the visible red band reflectance. NDVImax

and NDVImin in Equation (3) are the maximum and minimum NDVI indices in the image, respectively,
for which NDVImax = 0.5 for vegetation and NDVImin = 0.2 for soil can be used [28].

Atmospheric scattering and absorption may also affect the estimation of land surface emissivity
from NDVI [29]. In this study, the effects of scattering and absorption on the NDVI—particularly
the atmospheric absorption by carbon dioxide and water vapor—were not taken into consideration.
This could result in an overall underestimation of the absolute LST by 1–3 K. However, it would not
affect the contrasts and gradients of the observed surface temperature because (1) there is no reason to
expect meaningful variations in the atmospheric composition over the area of a landfill and (2) such
uncertainties relative to the nominal absolute temperatures, which were subsequently considered,
were not found to meaningfully impact hot spot detection.

3. Approach

Landsat images were processed using in-house MATLAB code. All images were read with a 1-km
buffer around a central point of the landfill. The buffer generated an image with 67 × 67 pixels, which
covers approximately 4 km2 for all bands, including the LST thermal images. The advantage of this
approach is that the landfill’s surrounding area can be analyzed if needed [30]. For convenience, the
resulting image (67 × 67) was masked with an overall landfill shape file, as illustrated in Figure 2.
To align our analysis with prior observations of the Bridgeton landfill, we also divided the landfill area
into three smaller regions: a lower region (the South Quarry where most of the landfill activities occur),
a middle region (the Neck area), and an upper region (the North Quarry and radioactive waste areas),
each of which is well defined by its own shape file, as shown in Figure 2.
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Figure 2. (a) Bridgton Landfill, divided by regions, and the surrounding area. (b) Latitude and
longitude of the landfill and overlay of regions on Google Earth.
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This approach has several advantages: (a) the effect of any extreme reading due to water or
buildings or any other land cover can be isolated to ensure that only readings within the study area are
considered; (b) each area/subarea can be analyzed separately, as described in the following; (c) hotspots
that move within each area/subarea can be easily traced over time spans of many years; and (d) the
status of each landfill subarea can be tracked independently.

4. Results

In this section, several interpretations of the Landsat LST data with respect to the landfill are
presented. While these interpretations yield quantitatively different results, the general trends identified
by each enable hotspot detection. This unanimity of interpretation suggests that these algorithms are
robust with respect to each other and yield similar conclusions regarding the spatial and temporal
extents of hotspots determined by others. Here, we use simple stationary statistical metrics (e.g.,
mean and standard deviation) to demonstrate proof-of-principle use of LST measurements for landfill
hotspot detection and monitoring. Future extensions of these approaches, which are described below,
may involve more rigorous (thermal) change detection techniques such as cumulative sum control
(CUSUM) and related online change-detection algorithms.

LST-change interpretations are presented here at three levels of spatiotemporal resolution. This has
the advantage of reducing complexity when detecting or monitoring landfills, i.e., there is no need
to expend computational resources or human-in-the-loop attention for the observation of baseline
thermal behavior, but upon detection of a hot spot, different degrees of spatial resolution can be
invoked. Initially, the landfill is treated as a whole system characterized by average, minimum, and
maximum LSTs across the entire spatial domain. Time series trends enable the observation of baseline
and excursive behaviors, although with no distinct spatial resolutions. Subsequently, the landfill is
divided into regions (determined by both historical definitions as well as automated clustering analysis)
to resolve the general location of the enhanced thermal activity. For sites like the Bridgeton landfill
that are adjacent to sensitive assets (e.g., the radiologically impacted zone indicated in Figure 1), such
determination indicates the areal extent that may require action without adding further complexity
(quantity, noise, uncertainty) from pixel-resolved (30 × 30 m) LST measurements. Lastly, we consider
pixel resolved LST measurements of the Bridgeton landfill to further demonstrate the robustness
of our analysis. As demonstrated below, each of these analyses based on satellite remote sensing
was corroborated by independent ground-truth data and field measurements for this well-studied
site [21,23,31].

4.1. Temperature Trends

Figure 3a shows the differences between the mean air temperature measured at the landfill and
the mean LST over the entire landfill recorded by satellites within the same hour as the air temperature.
The differences show that the LST is consistently higher than the air temperature. Although the LST is
expected to exceed air temperature somewhat as a normal result of subsurface processes in the landfill,
differences that systematically increase over time indicate changes in the subsurface activities such as a
smoldering or fire event.

The temperature variation shown in Figure 3a exhibits a periodic cycle due to seasonal changes,
whereby the LST is higher during the summer or late spring and lower during the winter or late fall.
The landfill maintains an average mean difference of approximately 6 ◦C (black straight line labeled
“Mean 2000–2016”) between 2000 and 2016. From 2000 to 2011, the mean difference varies about 6 ◦C.
After 2013, the mean difference appears to increase. Figure 3b shows the difference between the highest
and lowest LSTs at the landfill (LST_max, LST_min). This difference shows an increasing trend similar
to that of the mean difference, with relatively consistent values from 2000 to 2011, and higher values
afterward. The higher temperature differences correspond to observed subsurface thermal events
at the landfill. Figure 3b can shed light on some of the anomalies in the temperature change in the
landfill as the difference between the lowest and the highest LSTs measured by remote sensing on
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the same day is increasing. However, this difference cannot tell us where the change is happening.
With the extrapolation of LST data from the satellite images, it is possible to use the temperature trends
to independently identify a recent SSE [21]. To determine the locations of hotspots, three areas were
selected for closer study (with a focus on the spatial temperature distribution): the South Quarry (red)
in the south area of the landfill, where most fire incidents have occurred and where the maximum
temperature was recorded (both satellite and ground measurement); the Neck area (blue) to track any
hotspots approaching the neck; and the North Quarry (green) adjacent to the radioactive waste area in
the north part of the landfill. In Figure 4a, the landfill is divided into regions, using the mean LST as a
baseline, to enable comparison of the deviations of these three different regions from the mean landfill
temperature over 16 years. Figure 4 also depicts the history of heat elevation of the landfill during
the study period. It reveals that during the 2000–2011 period, the all-regions temperature is clustered
around the mean landfill temperature except for that of the upper region, which experienced elevated
temperatures during the years 2004–2006 (Figure 4b in the lower middle part of Figure 4 shows the
moving average).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 20 

temperature trends to independently identify a recent SSE [21]. To determine the locations of 
hotspots, three areas were selected for closer study (with a focus on the spatial temperature 
distribution): the South Quarry (red) in the south area of the landfill, where most fire incidents have 
occurred and where the maximum temperature was recorded (both satellite and ground 
measurement); the Neck area (blue) to track any hotspots approaching the neck; and the North 
Quarry (green) adjacent to the radioactive waste area in the north part of the landfill. In Figure 4a, 
the landfill is divided into regions, using the mean LST as a baseline, to enable comparison of the 
deviations of these three different regions from the mean landfill temperature over 16 years. Figure 
4 also depicts the history of heat elevation of the landfill during the study period. It reveals that 
during the 2000–2011 period, the all-regions temperature is clustered around the mean landfill 
temperature except for that of the upper region, which experienced elevated temperatures during the 
years 2004–2006 (Figure 4b in the lower middle part of Figure 4 shows the moving average). 

 
Figure 3. (a) Comparison of mean LSTs and mean air temperatures and (b) a comparison of the 
maximum and minimum LSTs for given image dates for Bridgeton landfill. 

 
Figure 4. Relative temperature differences in the 17-year span for Bridgeton Sanitary Landfill, 
Missouri. (a) Mean LST of different regions within the landfill; (b) LST generated from moving 
average approach. 

Starting in 2013, compared to previous years, the whole landfill exhibited elevated temperatures. 
The lower region (South Quarry) continued to have the highest temperatures from 2013 to 2015. 
However, the northern region, which had maintained consistently low temperatures, experienced an 

Figure 3. (a) Comparison of mean LSTs and mean air temperatures and (b) a comparison of the
maximum and minimum LSTs for given image dates for Bridgeton landfill.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 20 

temperature trends to independently identify a recent SSE [21]. To determine the locations of 
hotspots, three areas were selected for closer study (with a focus on the spatial temperature 
distribution): the South Quarry (red) in the south area of the landfill, where most fire incidents have 
occurred and where the maximum temperature was recorded (both satellite and ground 
measurement); the Neck area (blue) to track any hotspots approaching the neck; and the North 
Quarry (green) adjacent to the radioactive waste area in the north part of the landfill. In Figure 4a, 
the landfill is divided into regions, using the mean LST as a baseline, to enable comparison of the 
deviations of these three different regions from the mean landfill temperature over 16 years. Figure 
4 also depicts the history of heat elevation of the landfill during the study period. It reveals that 
during the 2000–2011 period, the all-regions temperature is clustered around the mean landfill 
temperature except for that of the upper region, which experienced elevated temperatures during the 
years 2004–2006 (Figure 4b in the lower middle part of Figure 4 shows the moving average). 

 
Figure 3. (a) Comparison of mean LSTs and mean air temperatures and (b) a comparison of the 
maximum and minimum LSTs for given image dates for Bridgeton landfill. 

 
Figure 4. Relative temperature differences in the 17-year span for Bridgeton Sanitary Landfill, 
Missouri. (a) Mean LST of different regions within the landfill; (b) LST generated from moving 
average approach. 

Starting in 2013, compared to previous years, the whole landfill exhibited elevated temperatures. 
The lower region (South Quarry) continued to have the highest temperatures from 2013 to 2015. 
However, the northern region, which had maintained consistently low temperatures, experienced an 

Figure 4. Relative temperature differences in the 17-year span for Bridgeton Sanitary Landfill, Missouri.
(a) Mean LST of different regions within the landfill; (b) LST generated from moving average approach.



Appl. Sci. 2020, 10, 6801 8 of 20

Starting in 2013, compared to previous years, the whole landfill exhibited elevated temperatures.
The lower region (South Quarry) continued to have the highest temperatures from 2013 to 2015.
However, the northern region, which had maintained consistently low temperatures, experienced
an increase in temperature of approximately 7 ◦C between 2013 and 2016 compared to the southern
region. This can be clearly observed in the spike of elevated temperature in mid-2014 when the
temperature of the North Quarry (green line in Figure 4) rises above the mean temperature of the
landfill. The subsurface temperature in the southern area of the landfill continued to increase after
2011. During the years of the study, the maximum temperature was recorded in the lower region 81%
of the time, and in the upper region only 12% of the time. Taking the upper region as a control, Figure 5
depicts the spatial temperature distribution in the landfill. Figure 5b shows that the lower region was
measured to have the highest temperature, followed by the middle region. However, there were times
where the upper region recorded the highest temperature. Figure 5a,c is analogous to Figure 5b with
respect to the minimum and the mean temperature values.
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Figure 5. Taking the upper region as a ”control” and comparing it with the lower/middle regions.

Thus far, we have shown that by examining the landfill spatially, we were able to detect temperature
anomalies (Figure 3) from satellite images, after which we detected regions with a higher temperature
and revealed the historical health status of the landfill (Figures 4 and 5). Next, we delve deeper to
show changes at the pixel level and how the movement of the hot spots within the landfill can be
traced during the years of the study. Figure 6 shows multitemporal maps (thermal maps) of the
Bridgeton landfill in normalized scale (−8 to 8), in which the hotspots are easy to discern based on
the LST. Figure 6a–l shows twelve snapshots of the LST hotspots from 2000 to 2011, respectively.
These hotspots are consistently evident in the south and/or southeastern part of the South Quarry.
Intermittent hotspots appear in the Neck area. Figure 6m–u shows nine snapshots of the LST hotspots
from 2013 to 2016. These hotspots expanded to cover the entire southern portion of the landfill over
the time period spanned by Figure 6.
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Figure 7 shows locations that reached the highest (or near-highest) temperature values most
frequently (frequency of maxima). The bar on the right side of the figure indicates the number of 
highest temperature occurrences at that spot. This information can be used to predict where internal 
fires are likely to occur. By continuously monitoring the frequency of maxima, we can identify new
hotspots and track the beginning and end of SSEs. The red squares in Figure 7 indicate hotspots 
reported in February 2014 [23]. Some of the yellow squares correspond to other reported SSEs, such 
as that reported in 2012 [31]. 

Figure 6. Thermal map of Bridgeton landfill displaying LST in degree Celsius (◦C) at various times
and dates from 2000–2011: 7 September 2000 (A); 9 October 2000 (B); 8 July 2001 (C); 14 July 2003
(D); 15 August 2003 (E); 27 April 2004 (F); 1 June 2005 (G); 6 July 2006 (H); 27 September 2007 (I);
3 September 2010 (J); 5 October 2010 (K); 6 September 2011 (L); 25 July 2013 (M); 26 August 2013 (N);
11 September 2013 (O); 30 November 2013 (P); 13 August 2014 (Q); 29 August 2014 (R); 26 April 2015
(S); 12 May 2015 (T); 30 May 2016 (U).

Figure 7 shows locations that reached the highest (or near-highest) temperature values most
frequently (frequency of maxima). The bar on the right side of the figure indicates the number of
highest temperature occurrences at that spot. This information can be used to predict where internal
fires are likely to occur. By continuously monitoring the frequency of maxima, we can identify new
hotspots and track the beginning and end of SSEs. The red squares in Figure 7 indicate hotspots



Appl. Sci. 2020, 10, 6801 11 of 20

reported in February 2014 [23]. Some of the yellow squares correspond to other reported SSEs, such as
that reported in 2012 [31].
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Figure 7. Location of frequency of maxima/near-maxima around the landfill site of Bridgeton, Missouri.
The bar on the right side indicates the frequency of occurrence of maximum temperature at that point.

The analysis of temperature trends shown above are based on the historical configuration of the
Bridgeton Sanitary Landfill (North Quarry, Neck, and South Quarry) by the names used by the landfill
operator. The purpose of this analysis was to monitor the movement of the hot spots in the landfill and
the subsurface heat elevation to prevent them from reaching the North Quarry, which is adjacent to
nuclear waste. The approach of an elevated heat area to the Neck serves as a warning and the need for
action to be taken to prevent heat from spreading northward. However, for any landfill, the historical
data collected and processed from satellite images can be grouped to identify regions for further study
and to cluster them into three or more regions according to their temperature profiles. We used a
simple method based on the areas of hottest, moderate, and cooler temperature to cluster the Bridgeton
landfill into three regions. These newly define clusters (Figure 8) yield very similar results to those
obtained above, and details of our analysis can be found in Appendix A. The blue cluster represents
the hottest region in the landfill, i.e., the lower region in our study. Similarly, the green and yellow
regions represent the middle and upper regions, respectively.
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4.2. Behavior of the Landfill at Pixel Level in Both Spatial and Time Domains

Next, we investigated the behavior of each pixel in the LST observations by tracing the temperature
profile for any given pixel during the 17 years of study. The observations were captured in
different seasons of the year, with the summer observations usually having high temperatures,
winter observations low temperatures, and spring and fall observations moderate temperatures.
Therefore, it is difficult to infer any temperature anomalies. However, high ∆LSTs (LSTmax-LSTmin)
for any given observation may indicate a temperature anomaly. Figure 3b shows the ∆LST values for
all observations. The observations that exceed the mean temperature during the study years range
from 6–18 ◦C and warrant further investigation to determine their location. To allow for comparison of
different observations, they were normalized by subtracting the mean.

For each observation:
n = number of observations (LST thermal images) = 115.
p = index number of non-NaN-value (nonblank) pixels for a given image (i,j) = 306, where i, j are

the number of rows and columns, respectively, in any given image, as shown in Figure 9a. For instance,
(I = 27, j = 1) = P(1).

t1 = time of image1 jan 2000
tn = time of image115 dec 2016

∆Tij(t) =
(
Tij(t) − TavgLF(t)

)
.

(5)

where:

∆Tij(t) is the normalized pixel (i,j) in any given image data;
Tij(t) is the recorded temperature in the LST observation in pixel (i,j) at time t;
TavgLF(t)

is the landfill observation (image) average, which is given by Equation (6).

TavgLF(t)
=

∑i=p
i=1 Ttp(i)

p
, t = 1 : 115. (6)
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Figure 9. (a) Landfill pixels numbered from 1–306; (b) normalized data of observation 15 April 2011; (c)
equivalent HI. (Blank squares = NaN values (nonblank)).

We developed a heat index (HI) to classify the degree to which the temperature in each pixel
deviated from the mean. Each classification was assigned an index number based on its variation from
the mean, such that index (n) corresponds to an interval of (n) standard deviations from the mean,
n = 1:5 as follows:

The HI for any given observation = HI(t) = −1 for ∆Tij(t) < 0

= 1 for 0 > ∆Tij(t) ≤ std(t)
= 2 for std(t) > ∆Tij(t) ≤ 2 std(t)
= 3 for 2std(t) > ∆Tij(t) ≤ 3 std(t)
= 4 for 3std(t) > ∆Tij(t) ≤ 4 std(t)
= 5 for ∆Tij(t) > 4 std(t)

All negative deviations are assigned index (−1) as they indicate temperatures below the mean.
Figure 9b,c shows the normalized temperatures and equivalent HI values for image 79, dated
15 April 2011.

Now, all the observations are normalized to the mean, as shown in Figure 9b, and the equivalent
HI (t) is calculated, as shown in Figure 9c. During this process, a master HI image is created to record
the indices for each of the observations. The final HI is shown in Figure 10a, which ranges from −86
to 199. In addition, we added all the HI indices to an HI matrix of size (115,306), where each row
represents one observation in one row vector and each column represents pixel values from t = 1 to
t = 115.

As shown above, the same calculations were repeated for all the observations (from t = 1 on
(“2010-01-19” to t = 115 on “2016-12-08”) to obtain HI (t) values for all the observations. The end results
are the HI image shown in Figure 10a and the HI matrix (not shown).
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The HI obtained shows the temperature difference between all pixels in the landfill expressed in
multiple standard deviations from the mean to avoid absolute temperature differences that could lead
to the misinterpretation of thermal hot spots in different seasons. To study the temperature effect on
each cell in the landfill during the study period, we calculated the accumulated heat index (AHI) as the
cumulative columnwise sum of HI (CUMSUM):

AHI(n=115,p=306) = cumsum(AH(t)) . (7)

Each row in the AHI is a cumulative sum of the preceding rows; therefore, the thermal status of
the landfill can be inferred and plotted at any given time during the study period. The last row in the
AHI is equivalent to the result shown in Figure 10a reshaped into a row vector.

Columns in the AHI (p = 1: p = 306) represent pixel locations in the landfill, as shown in Figure 9a.
By tracing each column, the thermal status and behavior of a specific location can be determined from
January 2000 to December 2016. To do so, new indices must be extracted based on the cumulative sum
of the AHI. These new indices can be calculated as described above at k-standard deviation intervals
using the following equation:

I = AHI(t, p) > [MeanAHI + (K× stdAHI )], (8)

where K = 1, 2, 3, 4

I = 1 for all negative indices (lowest);
I = 2, 3, 4 for intervals 2, 3, 4 standard deviations;
I = 5, for AHI (t,p) > MeanAHI + (4∗ stdAHI ) − (highest),

where MeanAHI is the mean of all indices in the AHI and can be calculated as follows:

MeanAHI =

∑p=306
p=1

∑t=115
t=1 AH(t)

n × p
, (9)

and stdAHI is the standard deviation of the AHI column means. The overall heat index (I) of the
landfill for the study period is obtained as explained above and shown in Figure 10b.
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By the end of the study period, we observed that 10% of the landfill was experiencing high
temperature, mainly in the southwest of the South Quarry, and 25% of the landfill was showing
temperatures three times greater than the standard deviation. As shown in Figure 11a, cells/pixels with
I = 5 tend to exhibit increasing behavior during the period of study. The pixels in Figure 11b with I = 4
show the same increasing trend at lower levels of standard deviation. As indicated in Figure 11a,b,
the heat elevation in this area of the landfill is consistent for many years and is also expanding to
neighboring areas. The other I (1–3) indices show different trends, with some pixels showing an
increasing trend and others a decreasing trend for the same index. However, all the rising indices
reach their peaks beginning in year 2010 and maintain that level until mid-2013. I = 3 in Figure 11c
shows the same increasing trend at different levels of standard deviation until 2013, but some pixels
continue to increase while others start to decrease. A few I = 2 pixels in Figure 11d continue to rise to
nearly two standard deviations and most are above one standard deviation. However, some pixels
show decreasing temperatures until 2013 and then start to rise again. Similarly, pixels with the index
I = 1 pose no concern as they remain around the mean. We are only concerned with the beginning of
the temperature rise at the end of 2013 in Figure 11e.
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The SSE reported in 2010 can be inferred from the rising temperature indices shown in Figure 11,
wherein all pixels/cells reach peak values beginning in 2010, which they retain until the end of 2011,
except for I 4 and I 5, which continue to increase rapidly [21,23]. Following the same reasoning
described above, Figure 12a,b shows the thermal status of the landfill between February 2010 and
September 2011 (19 months), in which the locations of all pixels that continue to rise in temperature are
evident. Figure 12c shows the location and degree of difference over the 19 months. A comparison of
Figure 10b, which shows the thermal status of landfill by the end of 2016, with Figure 12b reveals that
there is greater heat elevation and that it has continued to spread in the southern part of the landfill.
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Figure 12. Thermal states of the landfill in (a) February 2010 and (b) September 2011, and (c) thermal
status difference.

Figure 13 shows a plot of the X-bar (XBAR) control chart for the AHI matrix (115,306), which
contains indices 1–5 for all years of the study (time domain) and for all pixels (spatial domain).
The XBAR chart detects violations based on those that exceed ±3 σ between the two red lines in
Figure 13a,b. We ignore violations below −3 σ as they indicate low temperature, which is not a matter of
concern. Figure 13a shows violations in the time domain (observations from January 2000 to December
2016), of which there were many during the period of study. Similarly, Figure 13b shows violations at
the pixel level by matching the pixels in Figure 13b with I (3–5). The x-axes indicate the pixel locations
depicted in Figure 9a.
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5. Discussion and Conclusions

Surprisingly, there are few published papers regarding the remote monitoring of landfill fires.
To our knowledge, this is the first study to evaluate the performance of an interdisciplinary remote
sensing method in monitoring and predicting fire events in the USA. Because of the closures of many
landfills and other disposal facilities over the past 40 years [32], the number of neglected waste sites has
increased along with the chance of subsurface events. These closed and abandoned waste sites around
the USA must be monitored for subsurface activities that can lead to above-surface hazards. Remote
sensing can be used to address this problem and locate hotspots by monitoring the thermal signature of



Appl. Sci. 2020, 10, 6801 17 of 20

these waste sites. Hotspots can be an indication of the potential for fire that can threaten human health
and the environment. In this paper, a noninvasive method is proposed for monitoring temperature by
the collection of sufficient information to enable the timely detection of subsurface events. To reach
this goal, in this study, temperature data contained in the Landsat satellite images (USGS Explorer
archives) were converted into a more workable format and then analyzed. As presented in the results
section, the location of hotspots at Bridgeton Sanitary Landfill, Missouri, were successfully detected
and monitored. Multitemporal LST thermal maps were plotted for this case study, whereby a large
difference between the LST and air temperature provided a warning of the need to investigate. We
controlled for seasonality by measuring temperatures at different areas in the same landfill at the
same time. This technique can effectively detect most hotspots and the results have been verified
by the consultant report [21,23]. The use of satellite remote sensing techniques for the detection of
possible fires in landfills has great practical significance when there is no landfill data available or in
the detection of illegal waste dumps. The 30-m spatial resolution of the thermal band can detect most
of the substantial hotspots as these usually last for months and their generated heat propagates both
vertically and horizontally for distances that are detectable by satellite infrared sensors. However; this
technique is limited by the validity and availability of imagery because of cloud cover and the length
of time between revisits of the satellite to the same place (every 16 days), respectively. The depth of
the hotspot is also an important factor. For hotspots of the same size, the deeper the hotspot is, the
smaller the increase in LST temperature. Given the availability of public data from the USGS Explorer
satellite images database, the proposed method can be applied to any landfill in USA territory to
predict subsurface thermal events.

Future work should include the incorporation of this method into a formal satellite-based landfill
monitoring system that uses thermal infrared observations from Landsat satellites to assess the thermal
state of any landfill surface and identify anomalous thermal patterns and changes of any USA landfill.
This information can also be used to issue warnings regarding the potential for landfill fires. The results
generated by this study provide perfect data input for the monitoring system and includes algorithms
for efficient satellite image classification and physically based land-surface temperature retrieval.
Thermal remote sensing is an effective tool for monitoring the internal activities of landfills and provides
a reliable method for predicting fire outbreaks and preventing possible environmental disasters.
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Appendix A. Clustering the Landfill Based on Its Temperature

The original landfill configuration, shown in Figure 5, used shapefiles with following number
of pixels:

Number of cells for whole landfill = 306
Number of cells South quarry (lower region) = 180
Number of cells Neck area (middle region) = 72
Number of cells North quarry (upper region) = 54

To apply this methodology for any landfill, landfills can be clustered based on their temperature
profile. This will help in focusing on regions that have higher temperature or substantial temperature
differences in the same landfill. The temperature profile can be built from the satellite observations
for any number of years or months. Doing so, we bear in mind that subsurface heat elevation or
smoldering events will last long (persistent for some time) if it is not treated by the landfill operators
and its effect will be shown in all subsequent satellite images. For Bridgeton landfill, we collected
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115 satellite observations from year 2000 to 2016 as shown in Table 1. These observations construct a
temperature time series; therefore; to create new clusters we need to consider observation time from
image 1 at ti = 1 until te = 115 for all the image pixels (i, j). Clustering can be done using any of
the clustering techniques such as k-means or PCA. However, we clustered the landfill based on the
deviation from the mean as follows:

ti = initial time ( image 1)

te = end time ( image 115)

n = number of observations

Tij(t) = Temperature at cell i, j and time t

Tavg_LF(t) = mean landfill temperature at time t

∆ij(t) =
(
Tij(t) − Tavg_LF(t)

)
for cells, i,j are the pixel coordinates

mean = (
te∑
ti

∆ij(t))/n

STD = Standard deviation
(∑te

ti
∆ij(t)

)
Then calculating:

mean− STD
yields
−→ Cluster 1 (yellow)

mean + STD
yields
−→ Cluster 2 (green)

Cluster 3 is all the rest (blue). The resultant cluster is shown in Figure A1.
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Figure A1. Clustering Bridgeton landfill based on the mean and standard deviation of all observations.

Cluster 3 (blue) is equivalent to lower part or South quarry where the highest temperature is
recorded most of the time, cluster 2 (green) similar to middle region where moderate temperature is
recorded and the cluster 1 (yellow) is the upper region where the lowest temperature is recorded most
of the time. The shapefiles and the number of cells for each region has been changed to:

Number of cells for whole landfill = 306
Number of cells South quarry (lower region) = 52
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Number of cells Neck area (middle region) = 190
Number of cells North quarry (upper region) = 64

This analysis is simple and helps to identify the regions of concern and the percentage of landfill
going under different heat elevation levels; for instance, about 17% of the landfill is under subsurface
heat elevation (blue), about 62% is under moderate heat elevation (green) and 21% of the landfill is
under normal heat conditions. Reproducing spatial temperature profiles was previously obtained
in Figures 3 and 4, based on new clusters that show similar heat trends. In addition, using k-means
clustering resulted in a similar classification.

References

1. You, H.; Ma, Z.; Tang, Y.; Wang, Y.; Yan, J.; Ni, M.; Cen, K.; Huang, Q. Comparison of ANN (MLP), ANFIS,
SVM, and RF models for the online classification of heating value of burning municipal solid waste in
circulating fluidized bed incinerators. Waste Manag. 2017, 68, 186–197. [CrossRef]

2. Hanson, J.L.; Liu, W.-L.; Yesiller, N. Analytical and numerical methodology for modeling temperatures in
landfills. In GeoCongress 2008: Geotechnics of Waste Management and Remediation; American Society of Civil
Engineers (ASCE): New Orleans, LA, USA, 2008; pp. 24–31.
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