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Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal
physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative
stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely
unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and
defective organelles. The relationship between reactive oxygen species (ROS) and autophagy is complex. Cellular ROS is
predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles
effectively, it lowers cellular ROS thereby restoring cellular homeostasis. However, if cellular homeostasis cannot be reached, the
cells can switch back and choose a regulated cell death response. Intriguingly, the autophagic and cell death machines both
respond to the same stresses and share key regulatory proteins, suggesting that the pathways are intricately connected. Here, the
intersection between autophagy and apoptosis is discussed with a particular focus on the role ROS plays.

1. Introduction

Autophagy was discovered in 1963 as a lysosome-mediated
degradation process for nonessential or damaged cellular
constituents [1]. Since then, work pioneered in yeast [2, 3]
has revealed that this widely conserved catabolic process is
both highly regulated and a crucial integration point in cell
physiology, [4, 5]. There are three main autophagic pathways
that have been shown to coexist in mammalian cells called
macroautophagy, microautophagy, and chaperone-mediated
autophagy (CMA). Macroautophagy involves the formation
of a doubled membrane structure called the autophagosome
that fuses with the lysosome thereby transferring its luminal
content for degradation [6]. Microautophagy refers to the
process where cytosolic proteins are directly engulfed by
the lysosome [7]. CMA, as its name suggests, utilzes cyto-
solic chaperones to deliver proteins to the surface of the
lysosomes whereupon they unfold and cross the lysosomal
membrane [8].

The subject of this review is the highly conserved
process of macroautophagy, which here on out will be

referred to as “autophagy.” Although more nuanced in
higher eukaryotes, many of the AuTophaGy (Atg) genes
and processes (outlined in Figure 1) initially defined in yeast
are conserved [9, 10]. This significant body of work has also
resulted in many different types of selective autophagy being
identified. For example, mitophagy, pexophagy, and lipo-
phagy represent the lysosomal degradation of mitochondria,
peroxisome, and lipids, respectively. Given this wide range of
substrates, understanding the molecular details of how the
various components are both recognized and processed is
now at the forefront of autophagy research [9]. Unfortu-
nately, the recent explosion of published studies has also
led to considerable terminology confusion. For example, the
term canonical and noncanonical autophagy has been widely
used in the literature to describe autophagy events that use
different molecular signatures [11–13]. Recently, leaders in
the field have reached a consensus on what these signatures
should be called [10].

As stated above, autophagy maintains cellular homeosta-
sis under normal physiological conditions and in response to
exogenous stimuli. Increased levels of intracellular reactive
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oxygen species (ROS) which arise predominantly from defec-
tive mitochondria also trigger autophagy. In turn, the
increased autophagic flux drives down ROS by the consump-
tion of damaged organelles (Figure 2). Thus, excess ROS
upregulates autophagic flux, and in turn, this catabolic cellu-
lar process restores physiological ROS levels. As such,
stimulus-induced autophagy underlies and sustains an adap-
tive response to stress with cytoprotective functions. How-
ever, when the levels of ROS become overwhelming, a
nonautophagic regulated cell death (RCD) response is initi-
ated suggesting that autophagy and RCD pathways are
tightly linked [14]. How this switch is made is presently
unclear. In this review, the relationship between ROS,
autophagy and cell death are discussed. In addition, current
knowledge about the crosstalk between autophagy and apo-
ptosis is also reviewed. Lastly, cell death pathways have also
been through a recent nomenclature classification [15]. For
the purposes of this review, the type of RCD pathway will
be referred to by its subtype. Thus, when referring to apopto-
sis, unless specified differently, I will be referring to both
intrinsic and extrinsic mechanisms.

2. The Process of Autophagy

The word autophagy is fittingly derived from the Greek
words for self (auto) and eating (phagy). It is a multistep cat-
abolic process acting as a critical cellular response to nutrient
and oxygen deprivation. Thereafter, free amino acids, free
fatty acids, and ATP are recycled back into the cytoplasm
for biomolecule synthesis. In mammals, there are five key
control points, namely, initiation, nucleation, elongation,
and lysosomal fusion and degradation of autophagosome
contents. These stages are outlined in Figure 1, and the reader
is referred to many excellent and recent reviews that provide

more details on the role individual proteins play [16–18]. In
short, initiation of the preautophagosomal membranes,
which can be derived from the endoplasmic reticulum (ER)
[19], begins with the activation of the ULK1 kinase complex.
This complex is activated by cellular stress via mTORC inhi-
bition and/or AMP-activated protein kinase (AMPK) activa-
tion [20]. ULK1 phosphorylates Atg13 and Fip200 to form an
ULK1/2-mAtg13-Fip200 complex that is stabilized by Atg10
[16]. ULK1 activation promotes the recruitment of a multi-
protein complex with class III phosphatidylinositol 3-kinase
(PI3K) activity. This complex consists of 4 proteins which
are scaffolded by Beclin-1, whose role upon release from
the antiapoptotic protein Bcl-2, is to activate the vacuolar
sorting protein Vps34 [21]. Maturation of the growing
autophagosome membrane requires the complexes to recruit
two ubiquitin-like conjugation systems. Both these systems
involve the E1-like Atg7 [22, 23] which initiates the conjuga-
tion of LC3 with phosphatidylethanolamine (LC3/PE) and
Atg5 with Atg12. Incorporation of these complexes into the
autophagosome membrane is an essential process. Likewise,
Atg4, the protease that cleaves and thereby activates LC3, is
required the formation of the LC3-PE complex [24]. To
end the program, the autophagosome fuses with the lyso-
some to form the autophagolysosome. The SNARE protein
Stx17 [25] is essential for this process. Upon completion,
the contents of the autophagosomes are degraded by the lyso-
somal hydrolases producing amino acids and lipids for pro-
tein and other macromolecular synthesis and metabolism.

In the past decade, the molecular mechanisms by which
cargos are identified and consequently sequestrated within
autophagosomes have been revealed. Best understood is the
role the adaptor protein p62 plays in mitophagy. Here, p62
binds to defective and surplus mitochondria that are marked
by ubiquitin thereby entrapping them in the autophagasome

Figure 1: Schematic overview the five stages of the autophagy pathway. The execution point of where known pharmacological inhibitors act
are written in purple. See text for details.
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by binding to the autophagosome marker protein LC3
[26–28]. More recently, other selective autophagy receptors
which include Nbr1, Ndp52, Vcp, and Optineurin have
been characterized and the reader is referred to recent
reviews for more detailed information [29, 30].

3. ROS Balance

How cells decide to switch from cellular homeostasis to
apoptotic pathways upon ROS stress is not well understood.
Understanding this is critical, as many types of cancers, espe-
cially established tumors, have adopted enhanced autophagy
as a mechanism to survive in unfavorable environments. As a
result, autophagic inhibition represents a new therapeutic
tool to drive cells into regulated cell death (RCD) pathways
[31]. However, a caveat to this approach is that, although
rare, in some contexts, components of the autophagy
machinery are used in autophagic cell death pathways [15,
17, 32]. Autophagic cell death is another area that has
recently been redefined, the details of which are beyond the
scope of this current review [10]. That being said, this reclas-
sification is important as many reported studies of autopha-
gic cell death may be due to defective apoptotic machinery
[33]. However, autophagic cell death, although rare, does
exist and is classified as an event that has to be retarded by
pharmacological or genetic inhibition of autophagy. Given
the fact that multiple components of the macroautophagy
machinery have autophagy-independent functions ([34]
and see below), it is recommended that before etiologically
attributing a cell death event to macroautophagy, the
involvement of at least two different proteins of the macroau-
tophagy apparatus is shown to be required [10]. To date,
three types of autophagic cell death have met with these more
stringent criteria, autosis, ferroptosis, and more recently
necroptosis [17, 35, 36]. Paradoxically, the loss of autophagy
also contributes to de novo tumor formation, as autophagy is
required to remove genotoxic materials that prevent malig-
nant transformations [15]. Consistent with this hypothesis,
mouse models of oncogene-driven caners with defective
autophagy display accelerated tumor development. However,
the tumors were benign and autophagy was essential for the

progression to a more malignant state [33]. The favored
model from these studies is that autophagy inhibits the initi-
ation of tumorigenesis but promotes the survival of estab-
lished tumors [37]. More recently, however, in certain
contexts, the presence or absence of p53 and key Atg proteins
dictates tumor growth in certain K-Ras-driven mouse models
[38]. Thus, the relationship between autophagy, tumor sup-
pressor genes, and oncogenes certainly warrants future
studies.

3.1. ROS. ROS is classified as a heterogeneous group of
molecules generated naturally in cellular metabolism from
diatomic oxygen [39]. The group includes the highly reac-
tive free oxygen radicals (superoxide anion O2

−, hydroxyl
radical OH−) and the stable ‘diffusible’ non-radical oxi-
dant, hydrogen peroxide (H2O2). Their formation begins
with the univalent reduction of oxygen to produce super-
oxide radical O2

− (see Figure 3). This predominantly
occurs in the mitochondria as a result of electron leakage
during normal respiration in the electron transport chain
[40]. O2

− is also produced from other sources: in
peroxisomes through β-oxidation of fatty acids and flavin
oxidase activity [41]; in the endoplasmic reticulum (ER)
from protein oxidation of molecular oxygen [42]; and by
enzymatic reduction of molecular oxygen with xanthine/
xanthine oxidase, uncoupled nitric oxide synthases (NOS),
cytochrome P-450 isoforms, and NADPH-dependent oxi-
dases (NOXs) being key contributors [39]. As O2

− is highly
reactive with the ability to convert to the toxic OH− radical,
it is rapidly converted to the more stable and membrane-
diffusible ROS H2O2 [43]. This occurs either spontaneously
or through the actions of superoxide dismutases (SOD1 and
SOD 2 [44]).

3.2. Antioxidants. How cells process intracellular H2O2 is
intricately linked to their cell fate. It can be converted to
water (ROS detoxification) or the genotoxic hydroxyl radical
by different enzymes. Lastly, it can be used as a signaling mol-
ecule in a process coined redox signaling (Figure 3). ROS
detoxification is executed by a variety of enzymes, the key
players being catalase, glutathione peroxidases (GPXs),
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Figure 2: Diagram showing the closely linked relationship between ROS levels, autophagy, and apoptosis. See text for details.
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peroxiredoxins, glutathione peroxidases (GSH-Px or GPx),
and thioredoxin (TXN). Whilst PRXs are associated with
H2O2 scavenging, the GPX family of proteins (GPX1–8) cat-
alyzes the reduction of H2O2 to H2O by oxidizing reduced
glutathione (GSH) to glutathione disulfide (GSSG). Consis-
tent with this, GSH oxidation to GSSG results in intracellular
redox imbalance which is reflected by a decreased GSH:GSSG
ratio [45]. Other antioxidants are vitamin C, vitamin E, and
carotenoids. Conversion of H2O2 to the damaging free
hydroxyl radicals occurs by the Fenton reaction where free
iron (Fe2+) reacts with H2O2. This insoluble radical has
strong oxidizing potential and causes irreversible oxidative
damage to virtually any cellular macromolecules within the
vicinity of their production [46, 47]. Thus, cellular levels of
H2O2 and OH

− are maintained by a balance between oxidant
and antioxidant responses.

3.3. Role of Transcription Factors. The transcription factor
Nrf2 (nuclear factor erythroid 2-related factor 2) [48] plays
a key role in both ROS detoxification, prevention of OH−

production, and redox balance [49]. Following exposure
to oxidants or electrophiles, Nrf2 accumulates in the
nucleus where it upregulates four groups of genes encod-
ing detoxification and antioxidant enzymes. These include
those needed for the biosynthesis and maintenance of
GSH [50], cytosolic thioredoxin (TXN), thioredoxin reduc-
tase (TXNRD), and sulfiredoxin (SRXN), all of which
reduce oxidized protein thiols [51]. In addition, genomic
studies have revealed that Nrf2 regulates over 600 genes
[52] including those required for inhibition of inflammation
and the repair or removal of damaged proteins. This has
resulted in Nrf2 being named “the master regulator of antiox-
idant responses” [53]. As befitting this principal role, Nrf2

itself is tightly controlled by ubiquitin-mediated proteolysis
which is inhibited following oxidative stress (see below for
details) [54].

Worth mentioning is that Nrf2 indirectly helps to mod-
ulate ROS levels by regulating free Fe(II) homeostasis. This
is achieved by the upregulation of genes encoding members
of the ferritin complex, which detoxifies Fe(II) by convert-
ing it into Fe(III). This complex also sequesters iron within
its own structure that prevents it from being accessed by
the Fenton reaction, thus reducing the production of
OH− radicals from ROS [55, 56]. Given this role, it comes
as no surprise that iron excess can significantly promote
tumorigenesis [57, 58]. This has led to the emergence of
using iron chelation or transferrin receptor-neutralizing
antibodies, to treat cancer [59]. However, the molecular
mechanisms by which iron excess promotes tumorigenesis
remain unclear. Recently, the tumor suppressor p53 was
identified as a protein that can ligate the heme iron using
one cysteine side chain. This promotes p53 nuclear export
and degradation by ubiquitin-mediated proteolysis [60].
Lastly, although beyond the scope of this review, it is impor-
tant to mention that other transcription factor families, for
example, Forkhead box O (FoxO) and nuclear factor-κB
(NF-κB), also regulate antioxidant gene expression [53].

4. ROS as a Signaling Molecule

Since the 1990's, the model that cellular oxidant production
is inherently damaging has been replaced by a more com-
plex scenario in which regulated oxidant production func-
tions as important physiological regulators of intracellular
signaling pathways [61]. These include cellular proliferation
and differentiation as well as stress-responsive programs

Fenton reactionER

External stress

Mitochondria

Peroxisomes

NOX

O2
− H2O2 H2OSOD

OH−

Lipid peroxidation

Protein damage

DNA/RNA damage
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Fe3+
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Figure 3: Schematic illustration of the mechanism involved in reactive oxygen species (ROS) formation and elimination. Endogenous forms
of ROS arise from NADPH oxidase (NOX) as well as the organelles shown. The cytosolic superoxide (O2

−) is converted into hydrogen
peroxide (H2O2) by superoxide dismutase (SOD). H2O2 has three fates. It can be detoxified to water by glutathione peroxidase (GPX)
peroxiredoxin (PRx), thioredoxin (TRX), and catalase (CAT). The reduced form of glutathione (GSH) promotes this reaction whereas
oxidation to glutathione disulfide GSSH results in intracellular redox. H2O2 can be converted to the cytotoxic hydroxyl radical (OH−) via
the Fenton reaction resulting in irreversible damage to lipids, proteins, and DNA. Lastly, H2O2 can also be used as a signaling molecule by
oxidizing critical thiols within proteins to regulate numerous biological processes.
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[62]. This posttranslational modification is achieved by
H2O2-mediated oxidation of reactive cysteine residues
found within redox-sensitive signaling proteins. Importantly,
this reaction, in which the sulfhydryl group undergoes
deprotonation and oxidation, is reversible being easily
reduced back to reduced cysteine by either enzymatic systems
(thioredoxin/thioredoxin reductase system) or nonenzy-
matic reactions (thiol/disulfide exchange). This reversibility
provides the on/off switch, a character of that is essential
for signaling. An emerging theme is that antioxidant pro-
teins also actively participate in redox signaling [61]. For
example, they catalyze the reduction of oxidized proteins
as well as binding to signaling intermediates thereby activat-
ing downstream effectors such as p38 MAPK and the c-Jun
N-terminal kinase (JNK) [61]. However, when ROS levels
cannot reach homeostasis, the reversible SOH derivative
can be hyperoxidized to the irreversible and damaging
SO2H derivative [63].

Given the potential of this posttranslational modification
to affect a wide range of cellular processes, large-scale prote-
omic approaches have been used to identify proteins that
potentially possess modulatory cysteine residues [64–66].
The results identified many phosphatases that are well estab-
lished signaling molecules [67, 68]. A more recent study has
identified that many mitochondrial proteins contain poten-
tially reactive cysteines [69]. Intriguingly, apart from the pro-
tease Atg4, no other autophagy proteins were identified in
these screens. However, two groups have proposed that the
superoxide acts as a signal to activate mitophagy by depolar-
izing the mitochondrial inner membrane. These depolarized
mitochondria become fragmented and recruit Park2, the
mitophagy E3 ubiquitin ligase [70, 71].

5. RNS as a Signaling Molecule

Although not the subject of this review, in addition to ROS,
cells contain reactive nitrogen species (RNS) mostly in the
form of nitric oxide (NO−). Nitric oxide is generated by
the mitochondria and acts as a cell signaling molecule in
many physiological processes including mitochondrial bio-
genesis and bioenergetics [72, 73]. NO− itself is not highly
toxic as it is efficiently removed by its rapid diffusion
through tissues into red blood cells, where it is converted
to nitrate by reaction with oxyhemoglobin [74]. However,
when both superoxide O2

− and NO− are synthesized within
a few cell diameters of each other, they will combine spon-
taneously to form peroxynitrite (ONOO−) that can mediate
cellular damage in a wide range of conditions [75]. Small
amounts of peroxynitrite may also spontaneously decom-
pose to yield NO2

− and the hydroxyl radical [76]. Similar
to ROS, RNS can add posttranslational modifications to
proteins by S-nitrosylation of reactive cysteines [77]. Impor-
tantly, Drp1, the GTPase that regulates mitochondrial fis-
sion, is posttranslationally modified in such a manner
[78]. In addition, several proteins that bind to the core fis-
sion/fusion proteins also contain redox-sensitive motifs
[79]. Taken together, this data suggests that RNS and ROS
both regulate mitochondrial morphology via posttransla-
tional modification.

6. Direct Effect of ROS on Autophagy

It is well established that ROS can induce autophagy, as this
is a major mechanism used to exsanguinate superfluous cel-
lular ROS. In turn, autophagy drives down the levels of ROS
as it consumes damaged mitochondria, the major source of
ROS. This “pas de deux” represents a finely tuned negative
feedback mechanism by which autophagy eliminates the
source of oxidative stress and protects the cell from oxida-
tive damage. Increased intracellular ROS that is accompa-
nied with increased autophagic flux is triggered by many
factors including starvation, hypoxia, TNFα (tumor necrosis
factor α), andNGF (nerve growth factor) deprivation [80, 81].
Consistent with this, studies have shown that treatment of
make cells with the ROS scavenger N-acetyl cysteine (NAC)
decreases both cellular ROS production and autophagy,
implicating redox thiol signaling as an important regulator
of autophagy. Likewise, exogenous H2O2 and suppressed
NF-κB activation of mTOR mimics these effects [82]. These
findings are consistent with H2O2 effects being mediated
through the production of ROS and redox signaling. How-
ever, the precise molecular details on how ROS crosstalks
with the autophagic machinery are still unclear. In the last
few years, it has emerged that redox imbalance has a pivotal
role in driving the process. Consistent with this, two proteins
Atg4 and Keap1, which have opposing roles in promoting or
inhibiting autophagy, respectively, are regulated by redox sig-
naling. Lastly, AMPK, which is a major inducer of autoph-
agy in response to starvation, may also indirectly play a
role (see Figure 4).

6.1. ATG4. Atg4 is the only mammalian protein whose redox
regulation has been shown to be necessary for the progres-
sion of autophagy [24]. Atg4 is a protease which is active in
a reducing environment where it cleaves the C-terminal
domain of LC3. This allows LC3 conjugation with

Keap1

AMPK ATG4

Autophagy

Nrf2

Antioxidants

ROS

p62

Figure 4: Diagram depicting the genetic relationship between ROS
and autophagy initiation. The dotted lines represent an indirect
relationship.
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phosphoethanolamine (PE) which is a hallmark of, and nec-
essary for, autophagosome formation. Upon oxidation of an
active cysteine residue (C81), the protease activity is inhib-
ited, resulting in increased autophagy. These results were
obtained in 2007, and although it has also been speculated
that other enzymes involved in the initiation and elongation
stages of autophagosome formation may also be regulated by
redox signaling, no concrete evidence has been reported.

6.2. AMPK. AMPK an established indirect regulator of
autophagy [20, 83, 84]. During normal physiological condi-
tions, cellular homeostasis is maintained by strictly matching
the generation and consumption of ATP. When ATP levels
become low, they are replenished by autophagic recycling
of unnecessary cytoplasmic material, such as misfolded pro-
teins, supernumerary, or defective organelles [18]. AMPK is
critical for this process as it is an energy sensor, being acti-
vated by increased levels of ADP and AMP [84, 85]. This
AMP:ATP imbalance can be stimulated by multiple stresses
including amino acid starvation, glucose withdrawal, hyp-
oxia, and H2O2 [86]. Given this role, it is not surprising that
AMPK is regulated by the intracellular redox status, being
activated by Trx1 during energy starvation which promotes
access by AMPK to two key cysteine residues in the catalytic
subunit [87]. Once activated, AMPK can initiate autophagy
by several ways. It negatively regulates components of the
mTOR signaling cascade [88, 89] as well as directly activat-
ing the ULK1 kinase [90] (Figure 1). Furthermore, in yeast, it
has recently been shown that following glucose starvation,
the AMPK homologue Snf1 is recruited to the outer mito-
chondrial membrane, where it phosphorylates the Atr
homologue Mec1. This is then required for recruitment of
Atg1 (ULK1 homologue) thereby allowing the Snf1-Mec1-
Atg1 module to maintain mitochondrial respiration by ini-
tialing autophagy during glucose starvation [91]. Although
the molecular mechanisms still remain unclear, Atg1 may
maintain mitochondrial respiration by directly or indirectly
phosphorylating key mitochondrial proteins which are
essential for respiration [91].

The very fast induction of autophagy following ROS
exposure suggests that a rapid on/off molecular switch
may regulate initiation of autophagy. Some research has
implicated that AMPK could play a role as, following hyp-
oxia, it is activated in an AMP:ATP-independent manner
[92, 93]. In support of a rapid switch, is the observation
that following ROS induction, GSH is excluded from cells.
This consequently permits the accumulation of redox-
sensitive proteins in their oxidized form. Also, chemically
oxidized GSH can induce autophagy in the absence of an
autophagic stimulus [94, 95]. This result serves to
strengthen the key role redox homeostasis plays in autoph-
agy commitment.

6.3. Others. Other proteins also indirectly respond to
increased cellular ROS. These include high mobility group
box 1 (Hmgb1, a nuclear protein that is released extracellu-
larly in response to cytokines), Ras, and various kinases,
Atm, Akt, Erk, JNK, and Perk to name a few [96]. In recent
years, the role these proteins play in regulating autophagy

has become increasingly important as their signaling capabil-
ities have been linked to cancer cell progression [97]. A classic
example is oncogenic Kras signaling, which is an established
driver of pancreatic ductal adenocarcinoma (PDAC). More
recently, tumor growth has been shown to be contingent on
stromal inputs that are derived from fibroblasts of the pancre-
atic tumor microenvironment [98]. These observations have
initiated test therapies that couple an established autophagy
inhibitor (chloroquine) with kinase inhibitors [33].

6.4. Keap1 and p62. Different to Atg4, the Kelch-like ECH-
associated protein 1 (Keap1) is a redox-sensitive protein that
indirectly negatively regulates autophagy in response to ROS
[99]. Keap1 serves as a substrate adaptor protein for the
(Keap1)-Cullin 3 (Cul3) E3 ubiquitin ligase complex [100].
Under normal physiological conditions, this complex is
responsible for the rapid turnover of the transcription factor
Nrf2. However, Keap1 is equipped with reactive cysteine res-
idues which, upon exposure to oxidants, causes a conforma-
tional change which impairs its ability to trap Nrf2 for
ubiquitylation and degradation [101]. The resulting stable
Nrf2 then translocates to the nucleus where it upregulates
antioxidant genes [102]. Stable Nrf2 can also be created by
competitive binding of p62 to the Nrf2-binding site on
Keap1. p62 as mentioned above, is the autophagic adaptor
protein that brings dysfunctional mitochondria to the phago-
some [103]. Therefore, increased free p62 levels activate the
Nrf2 pathway. p62 is also an Nrf2 target gene, thus creating
a positive regulatory loop [104]. p62 also promotes the
expression of other signaling proteins including NF-κB and
mTor1 [105, 106] and thus has gained notoriety as a signal-
ing hub [107]. Intriguingly none of these functions depend
on the ubiquitin-associated or LC3-interacting region
domains of p62 [105], but they are linked to cytosolic p62
levels which are regulated by autophagy via by its LIR
domain that binds to LC3 on autophagasomal membranes
[105]. As in vivo studies have shown that overexpression of
p62 is carcinogenic in hepatocellular carcinoma [108], it
has been suggested that homeostatic maintenance cytosolic
p62 levels contributes to the final outcome of the tumorigenic
process [107]. This has led to the idea that a critical role of
autophagy is to prevent p62-driven tumor initiation and
malignant transformation.

7. Autophagy and Apoptosis—Till Death Do
We Part

Both autophagy and apoptosis respond to similar stresses.
However, the molecular mechanisms that dictate cell fate
decisions are only just emerging. What is striking is that
proteins that were originally thought to be required for just
one pathway have now been shown to play a role in both.
Thus, the decision to commit cellular suicide following stress
may be controlled by many factors as opposed to a simple
molecular switch. What is also apparent is that our under-
standing of how apoptosis repurposes the ATG machinery
to promote cell death far outweighs the current knowledge
of how autophagy inhibits apoptosis. This is somewhat sur-
prising as there are a large number of examples in the
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literature where autophagy protects against apoptosis. The
salient points of this symbiotic relationship are discussed
below and summarized in Figure 5. Further details can be
found in many excellent reviews and original papers cited
therein [14, 109–112]. The overwhelming recent explosion
of data has though served to emphasize that, like all mar-
riages, the relationship is complex. What is becoming clear
however is that in a narcissistic manner, each pathway steals
and adapts proteins from the other pathway to promote its
own mechanism.

7.1. Brief Outline of Apoptosis. The cast of characters that play
a role in the intersection of apoptosis and autophagy are
derived from two distinct but connected apoptotic pathways,
intrinsic and extrinsic apoptosis (outlined in Figure 5) and
described in many excellent reviews [113, 114], so only the
salient details are given below. The intrinsic pathway is
characterized by pro- and antideath signals converging
at mitochondrial membranes. These consequently become
permeabilized (MOMP—mitochondrial outer membrane
permeabilization), leading to the release of mitochondrial
intermembrane proteins including cytochrome c. Rapid cell
death follows as MOMP triggers both caspase activation on
the apoptosome and blocks caspase inhibitors. Together, this

starts a cascade of active caspases which cleave hundreds of
cellular substrates ending in cellular demise. The Bcl-2 family
of proteins consists of proapoptotic and prosurvival proteins
which together control MOMP. Under basal conditions, the
prosurvival proteins, Bcl-2, Bcl-XL, and Mcl-1, inhibit
MOMP in two ways. First, they directly bind and inhibit
the proapoptotic effector proteins Bax and Bak, which form
the pores in the mitochondrial membrane. Second, they bind
to BH3-only proteins such as Bim which prevents them from
activating Bax [115].

The extrinsic receptor-mediated apoptosis pathway is
triggered by the ligation of death receptors with their cog-
nate ligands. This stimulates receptor clustering resulting
in the recruitment of cytoplasmic adapter proteins, impor-
tant amongst which is Fadd. Fadd then associates with
procaspase-8 leading to the formation of a death-inducing
signaling complex (DISC). This results in the dimerization
and catalytic activation of caspase-8, which can then directly
cleave and activate caspase-3 [116]. Both intrinsic and
extrinsic pathways result in caspase-3 activation that is
linked to the initiation of the execution phase of apoptosis.
Crosstalk between the two pathways is mediated by
caspase-8 cleavage and activation of BID. BID is a BH3-
interacting domain death agonist, the product of which
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Figure 5: Diagram showing the intricate relationship between autophagy and the extrinsic and intrinsic apoptotic pathways. See text
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(truncated BID; tBID) is required in some cell types for
death receptor-induced apoptosis [117].

7.2. Beclin-1 and Bcl-2. The best described relationship
between autophagic and apoptotic proteins is the complex
relationship between Beclin-1, the antiapoptotic proteins,
Bcl-2 [118] (plus family members Mcl1-1 and Bcl-XL) and
the prodeath protein Bax [119]. In this ménage à trois Bcl-2
plays a key role as under normal physiological conditions,
its interaction with Beclin-1 and Bax inhibits autophagy
and apoptosis, respectively [118]. Currently, there is no con-
sensus on the molecular mechanisms that define this rela-
tionship. Furthermore, it is complicated as there are two
distinct cellular pools of Bcl-2, one at the ER where it is
bound to Beclin-1, [118, 120], and the other at mitochondria
where it is bound to Bax. In the original model, (model A, in
Figure 5) under autophagy-inducing conditions, a BH3-only
protein, (either Bik, Bad, or Nova) competitively binds to
Bcl-2, thereby displacing it from Beclin-1 [118, 121]. This
displacement is augmented by JNK1 phosphorylation of
Bcl-2 and required for Beclin-1 to activate Vps34 resulting
in the nucleation of an isolation membrane thereby pro-
moting autophagy [122]. As Bcl-2 has a higher affinity
for Bax than Beclin-1, this low level phosphorylation of
Bcl-2 is not enough for it to be dissociated from mito-
chondrial Bax. This proapoptosis move occurs if the stress
signal becomes overwhelming and requires Bcl-2 hyper-
phosphorylation [122].

Many inducers of autophagy also cause cell death, which
lead David Vauz and colleagues to challenge this model. In a
series of elegant genetic and biochemical experiments, his
group demonstrated that in the absence of Bax and Bak,
antagonizing or altering the levels of prosurvival Bcl-2 fam-
ily members has no detectable impact on autophagy [121].
This then suggests a model (model B in Figure 5) in which
the effects of Bcl-2 on autophagy are an indirect conse-
quence of its inhibition of apoptosis by associating with
Bax and Bad. Thus, as both Beclin-1 and Bcl-2 are key reg-
ulators of autophagy and apoptosis, respectively, it is imper-
ative that these opposing models be resolved. As it seems to
be the case in many studies, both models could be correct
but context specific.

7.3. Caspases. Caspases are cysteine proteases that tradition-
ally are principle mediators of apoptotic cell death [123]. In
recent years, they have been shown to shift the balance of cel-
lular homeostasis towards apoptosis by dismantling several
key Atg proteins, including Atg3, Vps34, and Beclin-1. The
culprit caspases are 3 and 8 that cleave PI3K members
(Vps34 and Beclin-1) and Atg3, respectively [124–126].
Worthy of note is that the proteolytic product of Beclin-1
(and caplain cleaved Atg5, see below) translocates to the
outer mitochondrial membrane and exhibits a proapoptotic
activity [125, 127]. Thus, the apoptotic machinery not only
inactivates autophagy but also repurposes proteins to pro-
mote cell death. Consistent with this theme, the cleavage of
Beclin-1 is enhanced by Bax thereby further suppressing
autophagy [127]. As neither the N- nor C-terminal fragments
of Beclin-1 can interact with Vps34, the cleavage of Beclin-1

has been shown to be a critical event whereby caspases inhibit
autophagy [128, 129]. Consistent with this, a noncleavable
Beclin-1 mutant can restore autophagy [130].

Unexpectedly, it has also been shown that caspases can
also promote autophagy under certain contexts. As stated
above, caspase-8 is activated byDISC, amultiprotein signaling
platform. In the absence of DISC, caspase-8 can still be acti-
vated from procaspase-8 by being recruited to autophago-
somes. Its localization to the autophagosome this is
executed by binding either to the autophagic cargo receptor
p62 or through an interaction between the adaptor protein
Fadd and Atg5 [128]. It remains unclear if this mechanism
promotes apoptosis or autophagy pathways as both scenar-
ios have been reported in the literature in different tumor
types [128, 131]. The most likely scenario is that these con-
tradictory functions are likely to be context specific. Ascrib-
ing which function caspase-8 is playing at the
autophagosome is worth while as this mechanism has been
successfully exploited to render cancerous cell lines respon-
sive to further pharmacological treatment [132].

Other caspases also have been reported to have proau-
tophagic roles [133]. Similar to caspase-8, their prosurvival
survival role at present appears to be context specific
[134–136]. For more details, I refer the reader to an excel-
lent recent review [133]. Further research needs to be exe-
cuted to define the exact mechanism by which these
caspases execute their proautophagic role. To summarize
the relationship of caspases with apoptosis is surprisingly
complex, with different caspases augmenting prosurvival
or death pathways [133].

7.4. Atg5 and Atg12. Atg5 and Atg12 are two members of the
ubiquitin-like conjugation systems that are needed for autop-
hagosome formation. As stated earlier, the ubiquitin-like
protein Atg12 is transferred from Atg7 the E1-like enzyme,
via Atg10 (E2-like) to form a covalent attachment with
Atg5 [137–139]. The Atg12–5 conjugate is essential for
autophagy. More recently, procell death roles have emerged
for both Atg5 and Atg12 in their unconjugated forms. Atg5
is cleaved by caplains (which are cysteine proteases activated
by cellular stress) and plays a key role in the initiation of apo-
ptosis [140]. Following cleavage, the N-terminal of Atg5
translocates to the mitochondria, where it mediates the
release of cytochrome c by interacting with Bcl-XL to pro-
mote apoptosis [141]. More recently, unconjugated Atg12
also been ascribed a procell death function by two quite sep-
arate autophagy-independent mechanisms. Firstly, free
Atg12 binds to and inactivates mitochondrial Bcl-2 family
members [142]. Secondly, Atg12 can conjugate to Atg3
where it promotes mitochondrial fusion and restricts mito-
chondrial mass [143]. Lastly, although not involved in medi-
ating apoptosis, the Atg12–Atg3 conjugate promotes basal
autophagy and endolysosomal trafficking [144]. Taken
together, these observations serve to demonstrate the flexibil-
ity of repurposing Atg proteins for different roles dependent
upon the cellular circumstances. Despite these discoveries, it
remains to be seen if any or a combination of these interac-
tions represents a key event where autophagy and apoptosis
diverge in response to specific signals.
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8. Conclusions

This review has summarized how cells maintain cellular
ROS levels as well as discussing the complicated relationship
between autophagy and apoptosis. The last decade has seen
an explosion of reports that has lead to an increased under-
standing of how these pathways communicate. Importantly,
the overriding theme evolving from these studies is that the
relationship between autophagy and apoptosis is inter-
twined, with proteins from both pathways being repurposed
for the benefit of the other. What is also emerging is that
these new roles (also known as night job) of proteins whose
“day job” is firmly established are, in many cases, context
specific. Given the consideration that many chemotherapeu-
tic regimes both inhibit apoptosis and/or autophagy [5, 33,
97], it is of great importance that both the molecular mech-
anisms and context-specific job assignment be defined for
these multifunctional proteins.
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