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ABSTRACT  Elucidating the biology of yeast in its full complexity has 
major implications for science, medicine and industry. One of the 
most critical processes determining yeast life and physiology is cel-
lular demise. However, the investigation of yeast cell death is a 
relatively young field, and a widely accepted set of concepts and 
terms is still missing. Here, we propose unified criteria for the defi-
nition of accidental, regulated, and programmed forms of cell 
death in yeast based on a series of morphological and biochemical 
criteria. Specifically, we provide consensus guidelines on the differ-
ential definition of terms including apoptosis, regulated necrosis, 
and autophagic cell death, as we refer to additional cell death rou-
tines that are relevant for the biology of (at least some species of) 
yeast. As this area of investigation advances rapidly, changes and 
extensions to this set of recommendations will be implemented in 
the years to come. Nonetheless, we strongly encourage the au-
thors, reviewers and editors of scientific articles to adopt these 
collective standards in order to establish an accurate framework 
for yeast cell death research and, ultimately, to accelerate the pro-
gress of this vibrant field of research. 
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Abbreviations: 
ACD - Accidental cell death, ADCD - Autophagy-
dependent cell death, ALP - Alkaline phosphatase, 
ATCD - Autophagic cell death, ATG - Autophagy-
related, CFU - Colony-forming unit, DAMP - 
Damage-associated molecular pattern, DAPI - 4',6-
diamidino-2-phenylindole, DHE – Dihydroethidium, 
DHR123 - Dihydrorhodamine 123, EM - electron 
microscopy, H2-DCF-DA - 2,7-
dichlorodihydrofluorescein diacetate, HMGB1 - High 
mobility group box 1, IDAI - Indwelling device-
associated infection, IMS - Intermembrane 
mitochondrial space, KO – Knockout, MC - Mitotic 
catastrophe, MOMP - Mitochondrial outer 
membrane permeabilization, MPT - Mitochondrial 
permeability transition, NCCD - Nomenclature 
Committee on Cell Death, OD - Optical density, PCD - 
Programmed cell death, PI - Propidium iodide, PS – 
Phosphatidylserine, RCD - Regulated cell death, ROS 
- Reactive oxygen species, TUNEL - Terminal 
deoxynucleotidyl transferase-mediated dUTP nick 
end labeling, Δψm - Mitochondrial transmembrane 
potential. 
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INTRODUCTION 
Yeast, a fungus that predominantly lives as a unicellular 
organism, has had an extraordinary influence on humanity 
throughout millennia, from its usage for baking and brew-
ing to the potential of some species to cause life-
threatening human diseases. The cultural, industrial, bio-
technological, and medical impact of this organism remains 
unparalleled. The use of yeast fermentation to produce 
alcoholic beverages and to leaven bread coincided with the 
rise of ancient civilizations and has persisted until our days. 
Importantly, the continued development of yeast strains as 
vehicles for the development of new technology, for ex-
ample in bioethanol, drug, and enzyme production, as well 
as the implementation of unconventional yeast species in 
industrial processes, highlights the ever increasing im-
portance of yeast now and in the future [1, 2]. This is ex-
emplified by the fact that the global market for yeast prod-
ucts is in the multibillion dollar range and is expected to 
grow further [3]. Beyond the mentioned applications, yeast 
has a direct impact on human health and disease. Many 
fungi, including some yeasts, can exist as commensals, i.e., 
they are part of our natural microbiota, forming the myco-
biome [4]. In fact, it is being increasingly recognized that 
fungi are a major determinant in establishing commensal 
microbial communities and are thus vital for healthy indi-
viduals [5]. However, under certain circumstances, e.g., 
compromised immunity, commensal fungi may become 
opportunistic pathogens and as such are a potential cause 
for infectious diseases [6]. These include superficial infec-
tions of the skin and nails (especially by dermatophytes) 
that affect billions worldwide, biofilm colonisations of mu-
cosal surfaces and more serious invasive infections, which 
can have very high mortality rates and are estimated to 
lead to 1.5 million deaths per year [7]. A significant number 
of these deaths arise from infections caused by the yeasts 
Candida albicans, Candida glabrata and Cryptococcus 
neoformans in immunocompromised individuals. This soci-
oeconomic burden is further amplified by the unprece-
dented rise in fungal diseases that are affecting plants and 
animals [8]. These examples highlight the importance of a 
full understanding of fungal biology, and the study of yeast 
cell biological processes has been crucial in this respect.  

Yeasts have served as a successful research tool for the 
last century, Saccharomyces cerevisiae (the budding yeast) 
being one of the most thoroughly studied eukaryotes at 
the cellular and molecular levels. Indeed, yeast continues 
to be one of the preferred model organisms to explore 
eukaryotic cell biology, both due to its technical ad-
vantages in devising/sophisticating molecular tool kits to 
study cellular biology, and to a high degree of functional 
conservation [9]. Also, yeast offers rapid growth and inex-
pensive accessibility paired with a high amenability to bio-
chemical and genetic manipulation. This enables the estab-
lishment of various experimental setups, ranging from sin-
gle experiments to high-throughput, genome-scale, unbi-
ased screenings in a short time frame. Notably, many in-
sights obtained in yeast have proven to be transferable to 
higher eukaryotes. Indeed, over the past decades, yeast 

studies have unveiled individual gene functions as well as 
gene and protein interactions, and have instrumentally 
contributed to the understanding of fundamental cellular 
processes such as eukaryotic cell cycle control [10–15], 
autophagy [16–19], mitochondrial function [20, 21], includ-
ing mitochondrial import [22–25], protein degradation [26], 
vesicle fusion [27, 28], genetic instability [29, 30], epigenet-
ic control [31, 32], metabolic regulation [33–35], or cellular 
nutrient sensing [36].  

In addition, studies on yeast have shed light on human 
diseases, providing a cellular platform to examine, for in-
stance, prion biology, virus-host interactions, metabolic 
diseases, neurodegenerative disorders, cancer, or aging 
[37–61]. Among the pathophysiologically relevant path-
ways that can readily be explored in yeast are those gov-
erning cellular demise. Indeed, cell death regulation is 
structurally and functionally conserved in yeast [21, 62–66], 
and yeast has even served to uncover and establish factors 
and pathways involved in apoptosis and other controlled 
cell death subroutines, which have later been corroborated 
in metazoan or other multicellular systems, e.g., the AAA-
ATPase Cdc48/VCP [63, 67], the BAX inhibitor-1 [68], the 
implication of metacaspases as cell death regulators [69–
71], the role of cathepsin D in non-autophagic mitochon-
drial degradation [72, 73], or the lethal impact of ER-Golgi 
transport blockage as one of the mechanisms explaining 
the demise of dopaminergic neurons during Parkinson’s 
disease [74]. To sum up, on the one hand, cell death repre-
sents a key process that can be feasibly modeled in yeast. 
On the other hand, the understanding of yeast cell death 
and its putative modulation may improve industrial and 
biotechnological applications, provide insights into myco-
biome dynamics, and help develop the fight against fungal 
and other diseases. 

In multicellular organisms, the controlled suicide of sin-
gle cells is crucial for development and homeostasis, 
providing a system that eliminates superfluous cells. The 
presence of such a mechanism also allows for the removal 
of damaged cells that might compromise organismal fit-
ness. In a single-celled organism like yeast, this paradigm 
does not seem to apply at first sight, since – in this case – 
cellular suicide entails the death of the whole organism. 
However, in a way, a population of yeast cells de facto be-
have as a multicellular entity of communicating individuals 
rather than a group of isolated cells that do not interact 
with each other. In fact, a given yeast population originates 
from a single clone, and the ultimate biological goal of that 
population is the survival of the genetic information repre-
senting that very clone. Thus, under certain circumstances, 
the death of unfit or damaged yeast cells promotes the 
survival of the population as a whole. A number of physio-
logical scenarios have been described that corroborate this 
teleological explanation for a cellular suicide program in 
yeast, including antagonistic interactions between yeasts, 
aging, mating, or colony formation [54, 61, 75–85]. Of 
note, also other unicellular organisms, including bacteria 
and protozoan parasites, incorporate regulatory processes 
that are at least partly reminiscent of higher eukaryotic cell 
death programs [86–91].  
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Even though it is now clear that yeast can indeed un-
dergo cellular suicide, the corresponding terminology to 
describe this multifaceted process remains heterogenous 
and potentially misleading. Thus, we believe that there is 
timely need for a more precise and consistent nomencla-
ture that clearly defines the concept of “yeast cell death”, 
considering morphological, enzymological, and functional 
aspects. Such standardization seems of importance, given 
that the field  of yeast cell  death is continuously expanding  
with significant progress being made at the phenotypical 
and mechanistic levels, including the finding that, akin to 
higher eukaryotes, yeast can also engage in distinct cell 
death modalities (Figure 1). In this paper we thus attempt  
for the first time to formulate a series of recommendations 
and caveats with respect to cell death-related results ob-
tained in yeast. To this aim, we have followed the direc-
tions of the Nomenclature Committee on Cell Death 
(NCCD) [92–95] and adapted them to the particularities of 
Saccharomyces cerevisiae, which we think can be extended 
to other yeast species and to multicellular filamentous 
fungi. Our goal is to frame a uniform set of guidelines that 
facilitate the communication among yeast cell death re-
searchers, ultimately supporting and accelerating scientific 
advance (Box 1). In that respect, the nomenclature pre-
sented herein will likely need to be revised and updated as 
the field of yeast cell death moves forward and even more 
precise definitions are required. 
 

YEAST CELL DEATH AND SURVIVAL 
A crucial issue that demands a clear definition is the ques-
tion of cell death itself. When is a cell dead? According to 
the NCCD guidelines this is only the case upon irreversible 
plasma membrane breakdown or complete cellular frag-
mentation, because only then the cell is factually disinte-
grated, irrespectively of which upstream pathway or rou-
tine has been engaged [93]. In fact, no earlier marker can 
be defined that reliably determines death in all settings. 

Thereby, this lethal irreversibility might start with the col-
lapse of the electrochemical membrane potential across 
the plasma membrane through formation of a leak. In 
yeast, the most common method to monitor cell mem-
brane integrity in vivo is to use propidium iodide (PI). PI is a 
fluorescent nucleic acid intercalator that can only enter 
cells with a ruptured cell membrane, and can be routinely 
employed in both low and high throughput formats [96–
98]. Along similar lines, colorimetric dyes like trypan blue 
may be used, but are less common [99–101]. Further po-
tential alternatives exist (e.g., 7-aminoactinomycin D), but 
will need to be thoroughly tested with respect to their 
suitability for yeast cell death applications in future studies. 
As mentioned, assessing cell membrane disintegrity is the 
only technique to quantify actual cell death and must be 
performed irrespectively of the lethal setting being ana-
lyzed. This is imperative, since lethal signaling does not 
imply that the final stage (cell death) is reached or even 
that it will be reached at a later stage (see below). In fact, 
specific subpopulations engaged in lethal pathways that 
maintain plasma membrane integrity (e.g., early apoptotic 
cells, see below) are by definition not (yet) dead. In that 
respect, timecourse experiments are important to monitor 
both the lethal subroutine-specific phenotypes and the 
actual occurrence of cell death over time. Of note, indica-
tions exist that upon specific stress insults, a small subpop-
ulation of yeast retains the ability to repair cell membrane 
damage even after having stained positive for PI [102]. 
Given the lack of other comparably well established dyes in 
this context and the large body of data supporting PI stain-
ing as a valid method to quantify loss of survival, we con-
clude that determining PI positivity is – at this point - the 
best technique to quantitatively approach yeast cell death. 
Still, for the sake of accuracy and waiting for further evi-
dence supporting the above-mentioned indications, we 
suggest expressing a corresponding quantification as “% PI-
positivity”   or  “%  cell   death   ( PI   positive )”  instead    of  

FIGURE 1: Yeast cell death. Yeast cells can 
die either upon exposure to very harsh 
microenvironmental conditions via acci-
dental cell death (ACD) or in the context 
of a failing response to mild stress via 
regulated cell death (RCD). While ACD 
invariably manifests with a necrotic mor-
photype (disintegration of cell structure, 
plasma membrane rupture), RCD can 
exhibit a spectrum of morphologies and 
can result from multiple signaling path-
ways, including regulated necrosis or 
apoptosis. Programmed cell death (PCD), 
which occurs in strictly physiological sce-
narios (e.g., development), represents a 
specific type of RCD. The possible role of 
autophagy as a cell death pathway in 
yeast remains elusive, while its cytopro-
tective function is well established. 
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“% death” or “% survival” upon using this method. In the 
long term, the development and establishment of alterna-
tive dyes should be explored in order to validate data ob-
tained with PI. A number of approaches allow to experi-
mentally assess (i) cell viability, which reflects the ability of 
a cell to divide, and (ii) cell vitality, defined as the physio-
logical capabilities of a cell [100]. Nonetheless, an im-
paired/compromised (i) proliferation or (ii) metabolic ca-
pacity does not necessarily result in cellular demise. Thus, 
these techniques alone cannot be used to demonstrate cell 
death. Still, they are very useful to complement and cor-
roborate data obtained with PI or alternative dyes.  

Assessing clonogenicity with plating assays is the most 
commonly used method to quantify cell viability [62, 103]. 
Here, a defined number of cells from a given culture are 
plated on rich medium agar plates that are further incu-
bated to allow colony formation. The ratio between the 
resulting colony-forming units (CFUs) and the originally 

plated number of cells reflects the viability state in the 
culture. Theoretically, however, it is possible that under 
specific conditions (of genetic nature, for instance), colony 
formation may be blocked in cells that per se are still alive 
(a condition usually refered to as senescence). Additional 
caveats include the possibility that live cells at the point of 
plating might die before forming a colony and/or that the 
plating procedure itself might drive (a fraction of) cells into 
death, which would be indistinguishable from cell senes-
cence. Nonetheless, the literature suggests clonogenic 
capacity as a very good correlate to cell death in a plethora 
of different settings [69, 96, 104, 105] and thus represents 
a valid approximation to quantify survival in yeast popula-
tions. Of note, clonogenicity can also be measured by mon-
itoring CFU formation at the microcolony level (time-lapse 
photomicroscopy) [106, 107]. Even though cell and colony 
counting can be automated, clonogenicity assays are ra-
ther time-consuming and used for low- to medium-
throughput analyses.  

A further technique to assess yeast viability follows the 
growth rate of a given culture, which may decrease as a 
consequence of increased cell death. For this purpose, an 
aliquot is inoculated into fresh liquid medium and the 
growth is monitored, for instance, via photometric meas-
urement of optical densities over a specific period of time 
[108, 109]. Optionally, spot dilution assays can be per-
formed, where cultures are spotted in serial dilutions on 
agar plates [110]. Here, the growth ability is compared 
between cultures at the various dilution steps in a semi-
quantitative manner, although automated readout of mi-
crocolonies can be used to yield a quantitative result [111]. 
Monitoring growth can be scaled up and performed either 
manually or using robotics support, which makes it an at-
tractive technique, especially for screen-based analyses. As 
with other viability assays, an important disadvantage is 
that a decreased growth rate can also result from a non-
lethal event such as modulation of cell cycle progression or 
a reduced metabolism due to an alteration in the use of 
media components.  

One possibility to evaluate yeast cell vitality is to direct-
ly assess the activity of specific enzymes directly. Although 
this is not widely employed in yeast cell death research, it 
represents an avenue to assay the physiological state of a 
metabolic pathway within the cell [100, 112, 113]. As 
pointed out below, a caveat of this approach is the possible 
distortion of results by residual activity in dead cells. A 
further option is to use vital dyes, like the two-color fluo-
rescent probe FUN-1, which diffuses into cells, irrespective-
ly of their viability status, and results in green fluorescence 
of the cytoplasm. Dead cells fluoresce green while (live) 
cells that have both plasma membrane integrity and meta-
bolic capability, can further process the probe, resulting in 
red vacuolar fluorescence [114, 115]. Similarly, several 
tetrazolium salts are reduced into colored formazan crys-
tals [116]. Methylene blue is converted to the colorless 
leucomethylene blue only in metabolically active cells [117], 
while the red dye phloxine B is only retained in metaboli-
cally inactive cells that are unable to actively export it [100, 
118]. Other methods aim at assessing further aspects of 

BOX 1: DEFINITIONS OF KEY CONCEPTS IN YEAST CELL 
DEATH  

 
Accidental cell death describes cellular death following 
exposure to very harsh microenvironmental conditions.  

Apoptosis represents a regulated cell death subroutine charac-
terized by specific morphologic and biochemical features and 
executed via different pro-apoptotic factors; eventually, it 
culminates in secondary necrosis. 

Autophagy defines a predominantly cytoprotective process 
that orchestrates the digestion of intracellular material (e.g. 
proteins, organelles) in the vacuole.  

Autophagy-dependent cell death describes a lethal subrou-
tine, in which the molecular machinery of autophagy (or parts 
thereof) causally contributes to cellular demise. 

Cell death defines a status of irreversible plasma membrane 
breakdown (only then, the cell is factually disintegrated, irre-
spectively of which upstream pathway or routine has been 
engaged). 

Cell viability reflects the ability of a cell to divide and thus to 
proliferate. 

Cell vitality reflects the physiological capabilities of a cell and 
thus its metabolic activity. 

Necrosis is a cell death instance mainly characterized by plas-
ma membrane permeabilization; primary necrosis (cellular 
necrosis occurring ab initio) may take place in an accidental or 
regulated manner; secondary necrosis (combined necrotic and 
apoptotic features) is the final stage of the apoptotic process.  

Programmed cell death designates a specific type of regulated 
cell death, which occurs in strictly physiological scenarios (e.g., 
development, aging). 

Regulated cell death describes cellular death occurring in the 
context of a failing response to internal or external mild stress.  

Regulated necrosis is a regulated cell death modality with 
characteristic features of necrosis that can be inhibited by 
specific pharmacological or genetic interventions. 
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cellular physiology, including the cellular ATP content (e.g., 
based on the luciferin-luciferase reaction) [119] or mito-
chondrial transmembrane potential (e.g., upon staining 
with rhodamine 123, JC-1, TMRM/E, DiOC6(3)) [120, 121]. It 
should be noted that the readout of metabolic signatures 
has considerably improved with new generation extracellu-
lar flux analyzers, offering the possibility to simultaneously 
measure mitochondrial respiration and glycolysis (and thus 
mitochondrial function). A drawback of metabolic assays 
resides in the fact that cells may  be able to maintain  some  
metabolic activities until cell membrane rupture occurs, 
and that some rely on specific metabolic processes such as 
oxidative phosphorylation that are not mandatory for cell 
survival. Thus, such techniques may fail to detect subpopu-
lations of dead (or alive) cells, reflecting the notion that a 
decrease in growth or metabolic activity (i.e., viability or 

vitality) cannot be placed on a par with an increase in cell 
death. In conclusion, as mentioned above, the term cell 
death should be used only upon observing breakdown of 
the plasma membrane and thus loss of cell integrity (e.g., 
upon PI staining). In addition, we suggest to strengthen this 
observation by simultaneously assessing clonogenic capaci-
ty (Figure 2), since (i) it represents the best-established 
output to accurately monitor overall cellular viability and 
(ii) it empirically correlates very strongly with actual cell 
death markers. Importantly, both methods are easy, quick 
and relatively inexpensive. The use of additional 
dyes/stainings/assays provides valuable complementary 
information, but cannot be used alone to unequivocally 
define a cell as dead. 

Yeast cell death is often accompanied by oxidative 
damage and thus, a widely employed method in the field is 

FIGURE 2: Strategy to characterize yeast cell death. To define a lethal scenario in yeast, we recommend to sequentially evaluate the follow-
ing three levels. (i) The occurrence of cell death should be assessed by monitoring loss of plasma membrane integrity (e.g., by staining with 
exclusion dyes such as propidium iodide, PI). We suggest to complement this assessment by determining viability with clonogenic tests, 
knowing that, in many scenarios, clonogenic capacity correlates exceptionally well with cell survival. Other viability and vitality assays may be 
performed to corroborate the results obtained, but do not replace these two assays. (ii) If cell death is demonstrated, the possible RCD sub-
routine(s) should be examined via morphological and biochemical observations. While necrotic and autophagic phenotypes demand a fur-
ther clarification (inhibition studies) to conclude whether the observations correspond to an RCD modality (regulated necrosis, autophagic 
cell death), ACD (accidental necrosis), or a cell death correlate (protective autophagy), an apoptotic phenotype directly indicates RCD (via 
apoptosis). Irrespectively, it is imperative to follow the scenario over time (kinetics). (iii) Regulation per se and/or assessment of the regula-
tory network should be tackled by means of genetic and/or pharmacological interventions. Importantly, these interventions should inhibit or 
shift cell death and the observed subroutine-specific phenotypes to conclude on the involvement of an RCD modality (for regulated necrosis, 
autophagic cell death) and/or to provide mechanistic insight (all RCD types). 
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the detection of reactive oxygen species (ROS) [122]. In-
deed, a number of different ROS, like the superoxide anion, 
hydroxyl radical, and hydrogen peroxide, can accumulate 
upon mitochondrial disturbances, ER stress or other cellu-
lar derangements [96, 122–125]. ROS can generally be de-
tected using membrane-permeable dyes that are oxidized 
to fluorescent products in a ROS-dependent manner. Im-
portantly, these stains do not measure ROS as a group, but 
rather react with specific species. For instance, dihydroeth-
idium (DHE) preferentially reacts with superoxides, while 
dihydrorhodamine 123 (DHR123) and 2,7-
dichlorodihydrofluorescein diacetate (H2-DCF-DA) are con-
verted by a broad range of other ROS, but only poorly by 
superoxides [126]. Such specificities should be taken into 
account when measuring ROS with a particular stain, since 
distinct lethal triggers might result in the production of a 
differential ROS subset [123]. Thus, we recommend to spe-
cifically indicate the ROS subtype that is being monitored 
instead of generally referring to ROS production. Of note, 
to a certain degree, DHE may also be oxidized unspecifical-
ly (independently of superoxide). In order to exploit the full 
potential of DHE as a superoxide-specific dye, a range of 
methodological possibilities (e.g., the use of optimized 
spectra) exist [127, 128]. The standardization of such re-
finements for DHE assays, which are a preferred tool in 
yeast cell death research, should be addressed in the fu-
ture. While ROS measurements allow for high-throughput 
approaches due to their simplicity and relatively low cost, 
it is imperative to realize that this method does not dis-
criminate between living and dead cells, although ROS 
usually precede and are often causative for cell death in 
yeast [125]. In fact, ROS play a crucial role in intracellular 
signaling [129–132], functioning, for instance, as direct and 
indirect regulators of diverse physiologically relevant tar-
gets [133–135]. In addition, limited ROS generation might 
be beneficial under certain conditions, since the resulting 
adaptive responses can promote stress resistance as a 
form of preconditioning (hormesis) [131, 136–139]. Thus, 
an increase in ROS should be regarded as a cell death-
correlated phenotype only in connection with assays that 
directly determine increased plasma membrane disintegra-
tion and loss of clonogenicity (see above). Similarly, a de-
crease in ROS production by incubation with anti-oxidants 
might support the mechanistic involvement of ROS in the 
lethal process, but only when cell death is adequately mon-
itored. 
 

ACCIDENTAL VERSUS REGULATED CELL DEATH 
Cellular demise in yeast may occur in two mutually exclu-
sive variants: either as an accidental event or through a 
regulated pathway. Accidental cell death (ACD) occurs up-
on exposure to severe conditions, resulting in a rapid, un-
controllable and unavoidable form of death. ACD may fol-
low a series of extreme stimuli, including physical condi-
tions, such as very high temperatures or pressures, severe 
chemical insults like strong detergents and high concentra-
tions of acids or bases as well as mechanical challenges, for 
instance, vigorous shearing or ultrasonic treatment. The 

immediate nature of ACD, which is characterized by a vir-
tually immediate structural breakdown of cells, allows no 
form of pharmacologic or genetic inhibition. Thus, this 
form of cell death does not constitute a direct target for 
modulation or prevention. However, it remains unclear 
whether yeast cells undergoing ACD may release endoge-
nous, bioactive molecules to the extracellular space [75, 
79]. If so, such molecules could interact with local cells that 
have survived the primary insult and ignite a response 
within the whole yeast population. Such a consequence of 
ACD may resemble the release of damage-associated mo-
lecular patterns (DAMPs) by dying human cells. DAMPs can 
stimulate a direct or indirect (via innate immune effectors) 
cytotoxic response in surrounding bystander cells that have 
survived ACD [140–144]. In such a case, interfering with 
the effects of ACD on the rest of the population remains 
possible.  

ACD is often equated with necrosis, which in yeast is 
usually identified as a cellular condition of early plasma 
membrane permeabilization in the absence of typical 
apoptotic markers and of complete disintegration of sub-
cellular structures [103]. Indeed, ACD usually exhibits mor-
phological features of necrosis, but mounting evidence 
suggests that – as it is the case in human cells – a physio-
logically relevant, regulated type of necrosis does also exist 
in yeast. Thus, we recommend to avoid using the term 
“necrosis” to define an accidental and uncontrollable type 
of death, and to favor the term “ACD”. We believe that this 
will avoid any potential misunderstandings regarding the 
two fundamentally dinstinct (accidental versus regulated) 
modalities of yeast cell death manifesting with a necrotic 
morphology (see below). 

That said, many lethal stimuli result in a form of yeast 
cell death that – at odds with ACD - is executed by a genet-
ically encoded, dedicated molecular machinery. In higher 
eukaryotes, a distinction is made between such a con-
trolled form of cell death when it occurs (i) in the frame-
work of a purely physiological program, e.g., during (post-) 
embryonic development or tissue homeostasis, or (ii) as a 
response to either a perturbation of intracellular or extra-
cellular homeostasis, e.g., upon exposure to mild stress or 
as a consequence of mutations. Cell death occurring in the 
former scenario is termed “programmed cell death” (PCD), 
while the expression “regulated cell death” (RCD) encom-
passes both PCD as well as all other instances of cell death 
that depend on a molecular machinery [145–148]. 

For yeast cell death, many authors have used the term 
PCD to interchangeably refer to all types of cellular demise 
that are not accidental (i.e., to all instances of RCD). How-
ever, emerging evidence is confirming that a yeast popula-
tion, be it a liquid culture or a solid colony, bears a degree 
of complexity reminiscent of multicellular organisms that 
demands a revision of this terminology. For instance, dur-
ing yeast gametogenesis (or sporulation), immature meiot-
ic products as well as the mother cell itself succumb via 
activation of vacuolar rupture [149, 150]. Interestingly, the 
mother cell’s demise is delayed until spores have reached a 
threshold degree of differentiation. Thus, in this scenario, 
RCD occurs in the frame of a developmentally coordinated 
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program, de facto representing an instance of PCD. During 
yeast chronological aging, the cellular community main-
tains homeostasis thanks to the programmed death of 
dysfunctional or old cells, which spares and provides nutri-
ents to the fitter individuals [75, 76]. In yeast colonies, 
stationary-phase or slow-growing cells differentiate into 
specific subpopulations with unique metabolic properties 
and particular functions within the colony [151, 152]. 
These examples show that, indeed, yeast populations can 
harness cell death to control coordinated development, 
homeostasis and differentiation. Hence, we propose to 
define PCD in yeast as a specific instance of RCD that is 
executed in the frame of such physiologic programs. All 
other forms of regulated demise (e.g., cell death induction 
upon stress, or as a consequence of specific genetic altera-
tions) should be referred to with the superordinate term of 
RCD. 

Importantly, since RCD depends on a defined molecular 
machinery, it can be modulated with pharmacologic or 
genetic means. The extent of such modulation depends on 
the progression of the process across a hitherto poorly 
defined point-of-no-return. According to the NCCD, the 
processes preceding such point are part of cellular stress 
responses, while those following it belong to actual cell 
death signaling [93]. Adopting this rationale, RCD can be 
accelerated or delayed (but not avoided) if the point-of-no-
return has been trespassed. Instead, prior to that point, 
modulating stress responses or avoiding stress can prevent 
RCD. However, the definition of this point-of-no-return has 
not been established yet, implying that the exact boundary 
between the reversibility of a stress stimulus and the irrev-
ocable engagement in a lethal cascade remains to be speci-
fied.  

Yeast RCD may follow different subroutines (see below) 
that can be differentiated from each other by a series of 
morphological and biochemical features. To precisely char-
acterize the lethal phenotype, we recommend (i) to first 
determine if cell death actually occurs (as opposed to only 
reduced viability/vitality), (ii) if it does, to then examine the 
subroutine(s) involved via morphological and biochemical 
observations, using at least two different detection meth-
ods [155], and (iii) finally, to corroborate the implicated 
mechanism(s) via genetic and pharmacological interven-
tions (Figure 2). Finally, it should be noted that in cell 
death research, it is generally advisable to determine the 
kinetics of the parameters under scrutiny [156]. In order to 
detect the differential appearance of apoptotic or necrotic 
characteristics, we recommend assessing such features at 
different time points to yield a better resolution of cell 
death events. Importantly, subroutine-specific markers 
should precede cell death. In the following sections, we will 
describe yeast RCD subroutines and the techniques to pre-
cisely discriminate amongst them (Table 1). Beyond the 
specificities outlined below, a number of general issues 
and notes of caution also need to be considered (Box 2). 

 
 
 

APOPTOSIS 
Most studies on RCD in yeast have been conducted in the 
budding yeast Saccharomyces cerevisiae. This includes the 
first observation of an apoptotic phenotype in yeast, spe-
cifically in a strain with a point mutation in the gene coding 
for the cell cycle protein Cdc48 [63]. One of the early indi-
cations for an active cellular participation in the yeast 
apoptotic process was that RCD in this setting can be pre-
vented by inhibiting de novo protein synthesis, e.g. by cy-
cloheximide [125]. Ever since these discoveries, a set of 
methods has been established, validated and refined that 
allows to specifically determine whether a yeast cell has 
engaged in an apoptotic pathway [62]. These techniques 
are mainly based on the key morphologic and biochemical 
features of an apoptotic cell. We suggest employing at 
least two of these apoptosis-specific methods (one of them 
should be Annexin V staining, see below) and include at 
least one viability assay (preferably clonogenic capacity) to 
describe a corresponding phenotype. 

One of the events most commonly associated with 
apoptosis is the exposure of phosphatidylserine (PS) on the 
outer leaflet of the plasma membrane [182]. However, PS 
externalization might be context-dependent to a certain 
degree, at least within the complexity of the human cellu-
lar network [93, 183, 184]. It remains unclear whether this 
is also the case in yeast, although the current evidence 
suggests that PS externalization is a universal feature of 
yeast cells undergoing apoptosis. PS externalization can be 
assessed via monitoring PS-binding to Annexin V, which is 
usually fluorescently labeled for quantitative (e.g., fluores-
cence reader-based or flow cytrometric analyses) and qual-
itative (microscopic) evaluation. To this aim, the cell wall 
needs to be (partially) digested in order to make the exter-
nalized PS accessible to Annexin V and permit binding. 
Usually, the Annexin V assay is performed as a co-staining 
with a marker for plasma membrane rupture like PI [63, 96, 
104, 157]. This allows for the discrimination between sev-
eral subpopulations as they occur in yeast: (i) Annexin V/PI 
double negative, (ii) Annexin V positive, (iii) PI positive, and 
(iv) Annexin V/PI double positive cells.  

We believe that the second (Annexin V positive) and 
third (PI positive) subpopulations can be readily interpret-
ed as apoptotic and primary necrotic, respectively, provid-
ed that at least one more assay is performed to validate 
this assumption. For the fourth subpopulation (Annexin 
V/PI double positive cells), we favor the following interpre-
tation: unlike multicellular animals, a yeast population pre-
sumably does not eliminate apoptotic cells via the phago-
cytic activity of other yeast cells. In the absence of such 
clearance by scavengers, an apoptotic cell eventually un-
dergoes a metabolic collapse that results in breakdown of 
the plasma membrane integrity and thus a necrotic pheno-
type. This phenomenon is termed “secondary necrosis” to 
discriminate it from “primary necrosis”, which describes 
the phenotype of “cellular necrosis occurring ab initio” 
[185, 186]. We thus view the above-mentioned fourth sub-
group (Annexin V/PI double positive cells) as a late apop-
totic population that has undergone secondary necrosis.  
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Table 1. Methods commonly used for the assessment of cell death, viability and vitality as well as for the identification of different cell 
death subroutines in yeast. 
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Still, these cells might also have undergone secondary 
necrosis following other cell death subroutines, but at this 
point there is no evidence for this possibility, which should 
be evaluated earlier in the cascade of events leading to 
cellular demise. Importantly, the phenotypical shift from 
apoptosis to secondary necrosis might reflect defined mo-
ecular events and thus be experimentally distinguishable 
from ACD with necrotic features and primary necrosis also 
at the functional level [187, 188]. It could be argued that, 
in turn, primary necrotic cells might eventually stain for 
apoptotic markers like Annexin V, thus also yielding An-
nexinV/PI double-stained cells. However, necrotic markers 
do appear without apoptotic characteristics and such pri-
mary necrotic populations are stably maintained during 
long-term physiological conditions like chronological aging. 
This strongly suggests that primary necrosis can be distin-
guished from secondary necrosis by the absence or pres-
ence of apoptotic markers. Still, no study has yet systemat-
ically evaluated this distinction at the cellular level, for 
instance, via cell sorting analysis. Until such further analysis, 
this interpretation remains a valid approximation. In any 
case, we suggest determining the kinetics of the cell death 
process (see above) to accurately resolve the appearance 
of these subpopulations. In general, any approaches that 
facilitate monitoring death scenarios time-dependently 
represent a helpful improvement, for instance replicative 
age-associated changes using microfluidic platforms [189–
193].  

In multicellular animals, clearance of apoptotic cells is a 
central physiological feature for maintenance of organis-
mal homeostasis. Still, secondary necrosis does occur un-
der certain circumstances [186]. In vitro, cultured metazo-
an cells that are left to finalize the apoptotic process with-
out interruption (e.g., without interference of phagocytic 
scavenging) eventually succumb with features of secondary 
necrosis [186, 194, 195]. In vivo, secondary necrosis may 
occur in multicellular animals, for example, when apoptotic 
cells are shed into the lumina of hollow organs with low 
probability to encounter scavengers or when apoptotic cell 
death occurs at a pace that surpasses the local scavenging 
capacity [186, 196, 197]. These observations suggest that 
secondary necrosis following apoptosis is a conserved out-
come upon exposure to pro-apoptogenic stimuli if clear-
ance mechanisms are absent or insufficient.  

Besides PS externalization, apoptotic cells exhibit 
chromatin condensation, which can be readily assessed by 
nuclear staining with dies such as 4',6-diamidino-2-
phenylindole (DAPI) followed by microscopic inspection [63, 
125]. Another characteristic that accompanies yeast apop-
tosis – especially at late steps of the process - is DNA frag-
mentation. It is often assessed via the “terminal deoxynu-
cleotidyl transferase-mediated dUTP nick end labeling” 
(TUNEL) test, which allows for the fluorescent labelling of 
free 3′-hydroxyl ends that can be easily monitored via mi-
croscopy analysis and quantified using a fluorescent plate 
reader or a flow cytometer [63, 96, 104, 157]. In many 
yeast cell death scenarios, TUNEL positivity matches apop-
totic markers determined by other assays [96, 104, 157, 
198]. However, TUNEL staining detects free 3′-hydroxyl 

ends regardless of the molecular mechanism involved in 
generating them. In fact, in some conditions, necrosis, DNA 
repair, or active gene transcription have all been shown to 
yield TUNEL positivity, at least in human cells [199-204]. In 
yeast, the nature and the kinetics of DNA fragmentation 
detected by the TUNEL test need further investigation, 
even though previous studies have partly addressed these 
issues [79, 205]. In summary, we recommend using the 
TUNEL test as a method to determine the occurrence of 
DNA fragmentation associated with yeast apoptosis rather 
than a technique for quantifying apoptosis on its own. In 
addition, the TUNEL test may provide an assay to screen 
for cellular demise in high-throughput assays. In this set-
ting, hits must be confirmed by testing cellular membrane 
integrity and clonogenic capacity. Furthermore, apoptotic 
DNA damage may be tested using the so-called “comet 
assay”, or single cell gel electrophoresis, whereby physio-
logic DNA strand breaks are distinguished from apoptotic 
DNA dissolution in individual cells (the latter forms a dis-
tinct cluster of fragmented DNA at the ‘tail’ of the comet) 
[206]. In addition, the flow cytometric detection of a sub-
population with hypoploid DNA content (sub-G0/G1) has 
been previously employed as an alternative to assess apop-
totic DNA degradation [207]. However, such results should 
be interpreted carefully, since apparent hypoploidy may 
also reflect an artefact from the debris associated with 
necrotic cells, unless discarded by cell sorting analyses 
[208].  

Apoptotic cell death often follows mitochondrial outer 
membrane permeabilization (MOMP), which culminates 
with the release of pro-apoptotic proteins from the inter-
membrane space and irreversible loss of mitochondrial 
transmembrane potential (Δψm) [96, 159, 160, 162-164, 
209,210]. A detailed analysis of these mitochondrial sube-
vents requires precise kinetic determinations. For instance, 
in acetic-acid induced RCD, pro-apoptotic cytochrome c 
release, which depends on the ADP/ATP carrier [211], oc-
curs before mitochondrial integrity is lost [212]. All of these 
biochemical features might be evaluated to determine an 
apoptotic phenotype, though it should be kept in mind that 
mitochondria have also been associated with at least one 
other RCD subroutine (regulated necrosis) [149]. Thus, we 
recommend the involvement of mitochondria in apoptosis 
to be validated by at least two specific methods (one of 
them should be assessing PS externalization) and at least 
one viability assay (preferentially clonogenic capacity). 

A large number of apoptotic regulators and executors 
have been identified in yeast so far [62]. This enables tes-
ting whether RCD occurring upon a given stimulus is at 
least partly dependent on one of these factors based on 
genetic manipulations, pending confirmatory experiments 
with morphological and biochemical assays. We advise to 
interpret results from genetic disruption or inhibition stu-
dies with caution, as it is difficult to estimate whether 
other or how many signaling cascades have been affected 
by a manipulation a priori specific. Indeed, many yeast cell 
death regulators, e.g., cytochrome c, apoptosis-inducing 
factor (Aif1), endonuclease G (Nuc1) and the yeast me-
tacaspase (Yca1), exert both lethal and vital functions [62, 
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69, 96, 159, 160, 213-216]. Importantly, the molecular 
network underlying apoptosis regulation in yeast is starting 
to be uncovered and additional regulators and subroutines 
that are yet unknown are expected to emerge. Thus, if a 
given cell death phenotype is not dependent on any of the 
known apoptotic regulators this does not exclude apopto-
sis as a possible cell death modality.  

For exploring a putative apoptotic mechanism in a giv-
en cell death scenario, the deletion strains of known apop-
totic regulators should be harnessed, since distinct apop-
totic subroutines exist that rely on different factors that 
may act independently from each other to orchestrate 
cellular demise. For instance, the yeast metacaspase Yca1 
is involved in many apoptotic RCD and PCD settings [62,  
69, 75]. Thus, cell death inhibition in yca1 knockout 
strains may point towards an apoptotic mechanism. How-
ever, under certain conditions, apoptosis is not executed 
via Yca1, but instead relies on other factors, including Aif1, 
Nuc1, the human cyclophilin D ortholog Cpr3, the BH3-only 
protein Ybh3 or ceramides [96, 160, 217-223]. Im-
portantly, while yeast harbors a single metacaspase-
encoding gene (YCA1), it is possible that other proteases 
might functionally substitute for metacaspases [224-226]. 
Thus, in cases where Yca1 is not involved in cell death regu-
lation, we favor the expression “Yca1-independent” in-
stead of “metacaspase-” or “caspase-independent” cell 
death. For cell death stimuli that are dependent on Yca1, 
we consider that the terms “Yca1-“, “metacaspase-“, and 
“caspase-dependent” are all appropriate. In fact, though 

much controversy has accompanied the denomination of 
metacaspases as true homologs of caspases, recent ad-
vances strongly indicate that this is the case [71]. Indeed, 
caspases and metacaspases seem to be evolutionary dis-
tinct variants with a functional commonality that do fulfill 
the criteria of homology, since they both share (i) a com-
mon cellular program (RCD) and (ii) common or at least 
overlapping substrates [70, 227, 228]. 

In human cells, extrinsic apoptosis defines a caspase-
dependent cell death subroutine that is induced by extra-
cellular lethal ligands. These ligands are sensed and trans-
mitted either via specific transmembrane death receptors 
or through so-called ‘dependence receptors'. Dependence 
receptors can trigger two opposite signaling pathways: in 
the presence of ligand, they elicit signals involved in cell 
survival, migration and differentiation, but in the absence 
of ligand, they promote apoptotic RCD. Thus, dependence 
receptors only exert lethal functions when the concentra-
tion of their specific ligands falls below a critical threshold 
level [229]. While in yeast no such dedicated receptors are 
known, cases of metacaspase-dependent apoptosis induc-
tion by molecules that may operate from the extracellular 
microenvironment have been described. For instance, tox-
ins secreted by virus-infected killer strains and a number of 
drugs have been shown to trigger apoptosis executed by 
Yca1 [82, 230-233]. Yet, it remains unknown whether these 
factors act on intracellular targets, or whether they may 
also bind to plasma membrane-localized receptors. Given 
the complexity and interactivity of a yeast population, it is 

BOX 2: GENERAL NOTES OF CAUTION  

 
Besides the specific points to be addressed for appropriately classifying an observed cell death phenotype, various general issues need to 
be considered, as well. 

(i) In general, we recommend to sequentially test the following: first, whether cell death occurs (defined as loss of plasma membrane 
integrity, which may be accompanied by decreased proliferation and/or diminished metabolic activity), second, the hallmarks of cell 
death subroutines as implied at the descriptive level (morphology, biochemistry), and third, the mechanisms of cell death as determined 
at the interventional level (genetic, pharmacological). Thus, it is imperative to combine multiple and complementary approaches, also 
with respect to kinetics (markers should preceed cell death), to characterize a specific cell death type. We recommend performing at 
least two independent and subroutine-specific assays, preferably not just restricted to the assessment of morphological features. 

(ii) While mainly qualitative or arduously quantifiable methods (e.g., electron microscopy) offer the possibility to accurately define spe-
cific cell death phenotypes, they may be poorly representative of the general sample conditions. Thus, we encourage using these me-
thods for exploratory purposes, but strongly suggest accompanying them with quantitative assays. 

(iii) In many cell death settings, the dependence on specific factors may be tested by inhibiting their function. Where possible, we 
recommend employing genetic tools (i.e., knockout, temperature-sensitive mutants) instead of pharmacological inhibitors. Indeed, the 
specificity of such compounds might not be sufficient to precisely block the activity of a single pathway/factor that characterizes a cell 
death subroutine [153]. 

(iv) If knockout strains are used to inquire the involvement of the corresponding gene/protein in a given cell death scenario, we recom-
mend employing self-generated deletion strains and control results by complementation analysis (i.e., ectopic re-expression of detleted 
genes etc.). Those available at public strain collections constitute useful starting tools for experimentation, but may have accumulated 
secondary mutations that might lead to misinterpretations [154]. 

(v) For the quantification of fluorescence-based detection methods, we recommend using flow cytometry rather than a fluorescent 
plate reader. Data obtained with a plate reader may indeed be influenced by the fluorescence of the entire culture, which may vary with 
several parameters including strain-specific cell size. Few highly fluorescent cells may yield the same signals compared to a substantial 
fraction of moderately or low fluorescent but still positively stained cells. Thus, even upon normalization to the OD600, bulk results are 
less accurate than results obtained with flow cytometry, which is based on actual single-cell fluorescence. Plate readers may be conven-
ient for high-throughput studies, but positive hits should be validated using flow cytometry. 
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conceivable that a yet-to-be-determined extrinsic apoptot-
ic pathway may co-regulate cell death within a yeast com-
munity [79, 234]. However, and meeting the definition of 
extrinsic apoptosis put forward by the NCCD, we suggest 
not to use this term until dedicated death receptors or 
dependence receptors are discovered. Similarly, another 
specific type of apoptosis in human cells, anoikis, which 
defines a form of intrinsic apoptosis restricted to adherent 
cells that detach from the matrix [235], is theoretically 
possible in yeast. Indeed, adhesion mediated by cell-wall-
bound adhesins is crucial for colony and biofilm formation 
as well as for host-pathogen interactions [236-238]. While 
it remains conceivable that normally adherent yeast cells, 
which detach in a specific scenario where adhesion is im-
portant, might undergo a form of anoikis, this form of RCD 
has not (yet) been described in yeast. 

 

REGULATED NECROSIS 
In dying yeast, necrotic characteristics may appear in the 
frame of a primary or secondary necrotic process. While 
secondary necrosis is probably a consequence of apoptosis 
in most if not all cases (see above), a primary necrotic phe-
notype (which occurs without any preceding apoptotic 
traits) may result from two cell death modalities: ACD or 
RCD. Indeed, yeast primary necrosis can not only be the 
outcome of severe insults (accidental necrosis), but also 
develop as an event orchestrated by a genetically con-
trolled machinery (regulated necrosis) [103]. In both cases, 
cell death is characterized by a set of distinct morphologi-
cal and biochemical features that defines it as necrotic.  

Necrosis first leads to a gain in cell volume and orga-
nelle swelling (oncosis), which may be observed, for in-
stance, using fluorescent microscopy of GFP-fused proteins 
that mark organellar membranes [149]. Eventually, necrot-
ic cells also show the complete breakdown and disintegra-
tion of subcellular structures, which can be assessed using 
electron microscopy [157]. Similarly, the rupture of the 
plasma membrane that accompanies necrosis can easily be 
assayed via electron microscopy or fluorochromes like PI 
that only enter cells with a disintegrated cell membrane, 
but are excluded by healthy or early apoptotic cells [103, 
157]. In yeast, the release of intracellular material has not 
yet been systematically employed as an assay to character-
ize necrotic cell death. However, the nucleo-cytosolic 
translocation of Nhp6A may be used to assess necrosis in 
yeast [104, 157, 165, 239]. Nhp6A is the yeast homolog of 
the mammalian protein high mobility group box 1 
(HMGB1), whose release accompanies immunogenic cell 
death mammalian cells [144, 240]. We suggest assessing at 
least two of these markers in order to define bona fide 
primary necrosis in yeast. In addition, viability should be 
measured with at least one assay (preferably by assessing 
clonogenic capacity) to corroborate cellular demise. Finally, 
we strongly recommend to exclude the presence of apop-
totic death indicators, and most importantly to differenti-
ate the observed phenotype from secondary necrosis. 

As in higher eukaryotic cells, in yeast, ACD may be trig-
gered upon the challenge to extremely detrimental condi-

tions. Thus, agents like hydrogen peroxide, acetic acid, 
amphotericin B, or several metals that are pro-apoptotic at 
low doses may induce necrosis at high concentrations [125, 
218, 241, 242]. We assume that necrosis is the conse-
quence of radical cellular damage in most of these cases, 
and hence a bona fide instance of ACD. This is in line with 
the concept that not only the type but also the intensity of 
a given perturbation determines the form of death [91, 
243].  

As mentioned above, yeast can undergo regulated ne-
crosis, reminiscent of the RCD instances detected in human 
cells [244]. Indeed, genetic and chemical manipulations 
demonstrate that yeast necrosis can be inhibited, at least 
in some settings, indicating that it results from the activa-
tion of a molecular mechanism. In order to differentiate 
regulated from accidental necrosis, it is necessary to test 
whether a pharmacological or genetic intervention is capa-
ble of inhibiting necrosis in the scenario that is being stud-
ied. Known necrosis-modulatory approaches include the 
exogenous administration of the naturally occurring poly-
amine spermidine, which can specifically reduce primary 
necrotic cell death in the context of chronological aging 
[157]. A similar outcome can be obtained by genetic modu-
lation of polyamine biosynthesis [157]. In addition, the 
proteolytically inactive propeptide of the vacuolar endo-
protease Pep4, the homolog of human cathepsin D, has 
been shown to mediate antinecrotic effects. Accordingly, 
prolonged overexpression of Pep4 (or its propeptide) can 
extend chronological lifespan via specific inhibition of ne-
crosis [104, 245]. Intriguingly, the antinecrotic function of 
Pep4 depends on polyamine biosynthesis [104]. In fact, 
further vacuolar factors as well as other organelles, e.g., 
peroxisomes, might be connected to regulated necrosis, 
but this requires further investigation [246-250].  

Under certain circumstances, regulated necrosis in 
mammalian cells may be mechanistically linked to primary 
Δψm dissipation [251, 252], and such a mitochondrial per-
meability transition (MPT)-driven necrosis is connected to 
a series of pathological conditions [253]. In yeast, necrotic 
cell death also seems to depend on mitochondria in several 
settings [149, 165, 221]. In addition, recent reports show 
that necrotic cell death upon a lipotoxic insult requires a 
functional Rim101 signaling cascade that involves the cal-
pain-like protease Rim13/Cpl1 for lethal execution [254, 
255]. To interrogate a possible case of regulated necrosis, 
it is thus advisable to evaluate a possible mitochondrial 
involvement. For that purpose, it would be indicated to 
examine whether necrosis is diminished upon abrogation 
of mitochondrial function, e.g., in a ρ0 strain (which lacks 
mitochondrial DNA). However, as previously mentioned, 
mitochondria are the main executors of apoptotic cell 
death. Thus, mitochondrial dependence cannot be used as 
a sole determinant to characterize regulated necrosis and 
must be accompanied by a set of other assays that demon-
strate the primary necrotic nature of cell death. Of note, 
several known mammalian mediators of regulated necrosis 
have homologs in yeast, including cathepsins, cyclophilin D, 
calpains, Hsp90, or protein kinase A, among others [244], 
but only a few of them have been examined in this context 
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[103, 256]. It will be interesting to see whether these fac-
tors possess a conserved necrotic function in yeast, which 
would expand the possibilities to determine bona fide reg-
ulated necrosis. Similarly, it remains to be seen whether 
known inhibitors of regulated necrosis in mammals also 
interfere with some cell death scenarios in yeast as well 
[257]. 

A number of questions remain to be answered with re-
gard to the actual existence of a necrotic RCD subroutine in 
yeast. In mammals, regulated necrosis plays a number of 
key roles, most prominently due to its immunogenic nature, 
for instance upon pathogen infection [244]. Such interac-
tion with the immune system, however, is a feature of 
complex multicellular organisms. Nonetheless, several 
physiological scenarios in which regulated necrosis seems 
to be instrumental for yeast, provide a teleological expla-
nation for its existence in a unicellular organism. During 
chronological aging, for instance, yeast cells die exhibiting 
markers of both early/late apoptosis and primary necrosis 
[61, 75, 157]. Interestingly, the fraction of cells dying by 
primary necrosis actually represents the majority of the 
dying population that is reduced upon a cytoprotective 
intervention, at least via polyamine-mediated lifespan ex-
tension [104, 157]. Another example is the necrotic death 
of the meiotic mother cell during the terminal stages of 
gametogenesis (sporulation) [149]. In this setting, necrosis 
occurs after the spores have reached the final phases of 
development, suggesting a controlled coordination that 
allows for gamete differentiation prior to the elimination of 
the mother cell. This might well constitute an instance of 
necrotic PCD, reinforcing the notion that yeast populations 
must be seen as a multicellular community of genetically 
identical cells that responds to selective pressures by en-
suring the long-term survival of at least one clonal individ-
ual. Therefore, it is conceivable that regulated necrosis 
might participate in cell-to-cell communication via the in-
evitable release of intracellular contents, as this is the case 
in higher eukaryotes [244]. Such hypothetical necrosis-
related quorum-sensing molecules, however, are yet to be 
identified in yeast. 

In human cells, different types of regulated necrosis 
have been defined, with MPT-driven regulated necrosis 
and necroptosis among the most extensively studied forms 
[258, 259]. In yeast, mechanistic insights into the control of 
necrosis are still very limited at this point. Thus, we strong-
ly discourage the use of neologisms to avoid confusion. 
Instead, we propose to employ the term “regulated necro-
sis” to describe any genetically controlled form of necrosis 
in yeast (or “programmed necrosis” if it is a form of PCD). 
Further research into the molecular activators, transducers 
and executioners of regulated necrosis in yeast will reveal 
whether potentially different subroutines of the process 
exist. 

 
OTHER RCD TYPES 
In mammalian cells, a series of other RCD modalities have 
been defined. Macroautophagy (hereafter referred to as 
autophagy) is a conserved catabolic process that orches-

trates the digestion of intracellular material (e.g., protein 
aggregates, organelles) in the vacuole. During autophagy, 
double-membraned vesicles (so-called autophagosomes) 
form and engulf cytoplasmic components, followed by the 
fusion of autophagosomes with the vacuole, where the 
cargo is degraded and the resulting macromolecules are 
released into the cytoplasm for reuse [16, 260]. Thus, au-
tophagy is predominantly a cell survival mechanism (see 
below). Historically, though, “autophagic cell death” 
(ATCD) was one of the three distinct cell death manifesta-
tions (besides apoptosis and necrosis) that were described 
for human cells based on morphological criteria [261]. Alt-
hough this original description did not indicate any func-
tional connection, it became a widespread belief that ATCD 
would point to cell death as a mechanistic outcome of au-
tophagy. The term ATCD has indeed been extensively mis-
used to describe cell death instances that occur in the 
presence of autophagic markers, instead of testing an ac-
tual dependency on the process and/or its molecular ma-
chinery, i.e., assessing the retardation of cell death via 
pharmacological or genetic inhibition of autophagy [260]. 
In fact, the NCCD has recently agreed to identify such 
forms of cell death as “autophagy-dependent cell death” 
(ADCD) [95]. ADCD can in principle describe (i) cell death 
dependent on the autophagic machinery (in its whole, or 
parts thereof) and (ii) cell death dependent on actual au-
tophagic degradation. Indeed, (i) components of the au-
tophagic machinery have been etiologically implicated in 
specific settings of RCD in Drosophila melanogaster and 
human cells [243, 262-266]. In these contexts, the molecu-
lar apparatus for autophagy contributes to cellular demise. 
To our knowledge, however, there is no study in which cell 
death has been directly linked to (ii) a functional autophag-
ic flux. Thus, we surmise that most cases of ADCD rather 
depend on components of the autophagic machinery than 
on autophagic responses. In fact, the molecular machinery 
of ADCD and adaptive autophagy partially differ (at least in 
D. melanogaster) [267, 268]. 

In yeast, the term ATCD has been used to describe cel-
lular demise occurring under specific external stress condi-
tions like zinc-induced cell death [269], heterologous ex-
pression of human α-synuclein [174] or human p53 [270] 
as well as internal deficiencies like defects in inorganic py-
rophosphatases [271]. Following the recent proposition 
by the NCCD, we favor the use of the term ADCD (instead 
of ATCD) in yeast, as well. Again, ADCD should be used to 
describe cell death only when autophagy (or at least two 
proteins from the autophagic machinery, see below) has 
been experimentally given an etiological implication in the 
process. As a note of caution, it is important to underscore 
that the term ADCD should be avoided if the autophagic 
machinery (or components thereof) is activated parallel to 
(rather than triggering) RCD or if it promotes other RCD 
subroutines [95]. In fact, in most known cases from yeast 
to human, autophagy acts as a cytoprotective response to 
detrimental stress conditions, in which it disposes dam-
aged cellular material [37, 272, 273]. Accordingly, cell 
death is rather accelerated than repressed upon inhibition 
of autophagy in both human cells and yeast [274-276]. In 
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fact, and despite the evidence for autophagy activation in 
the course of cell death (see above), the very existence of 
ADCD as an actual cell death type has been questioned 
[277, 278]. In any case, cell death may often be preceded 
or accompanied by autophagy markers, probably mirroring 
the final effort of dying cells to counteract a lethal stress. 
Thus, in most cases, cells showing biomarkers of autophagy 
might be dying with, and not by, autophagy. We thus con-
sider that the use of the term ADCD should be used with 
utmost care, taking into account the aforementioned NCCD 
recommendations [95]. 

A number of microscopic, biochemical and enzymatic 
assays are available and established [175, 279, 280] to de-
termine autophagic flux, i.e., the progression through the 
pathway and thus its degradation activity [175, 176]. One 
of the most common methods to measure autophagic flux 
in yeast is to evaluate the vacuolar processing (or GFP lib-
eration) of N-terminally GFP-tagged Atg8, a central modu-
lator of autophagosome formation, and its delivery to the 
vacuole, via fluorescence or immunoblot analysis [166-170]. 
Other widely used assays include assessing the autophagy-
dependent activity of a modified version of the vacuolar 
alkaline phosphatase Pho8 via a specific enzymatic assay 
[118, 171] or monitoring the pH-change of cellular com-
partments upon delivery of pH-sensitive fluorescent pro-
teins to the vacuole (such as Rosella) [173]. However, such 
quantitative assessments – while necessary – are not suffi-
cient to characterize ADCD: for that purpose, a functional 
dependency on the autophagic machinery (or components 
thereof) must be concluded, as mentioned above. Thus, all 
cases of cell death that are accompanied by autophagic 
markers, but cannot be suppressed or retarded by inhibit-
ing the (at least parts of) the molecular apparatus of au-
tophagy should not be considered as ADCD.  

The causative implication of autophagy in cell death 
may be explored by deletion of autophagy-related (ATG) 
genes, which are the key orchestrators of the process [175]. 
However, ATGs may have autophagy-unrelated functions 
as well [281]. Thus, akin to the recommendations for high-
er eukaryotes [260], we suggest testing at least two (and 
better more) distinct ATG deletions to assess dependency 
on the autophagic machinery. Inhibitory components of 
the autophagic apparatus can also be targeted, e.g., by 
constitutively activating the TOR complex 1 or the RAS/PKA 
signaling pathway, resulting in autophagy suppression 
[178-181]. As mentioned above, dependence of cell death 
on the molecular machinery of autophagy (in its whole, or 
parts thereof) does not imply cell death to be dependent 
on autophagic degradation. To evaluate if the autophagic 
response is implicated in the lethal execution, one may 
take advantage of chemical inhibition [175, 177]. Vacuolar 
proteolysis can be blocked through direct inhibition of pro-
teases either genetically (e.g., by deleting PEP4 or PRB1) or 
pharmacologically (e.g., by addition of pepstatin A, E-64D, 
leupeptin alone or in combination) as well as by neutraliz-
ing the vacuolar pH (e.g., by means of chloroquine) [175, 
176]. In yeast, chemical inhibition of autophagosome for-
mation (as it is commonly applied in mammals using specif-
ic suppressors of phosphatidylinositol 3-kinase) is not typi-

cally employed, since substantially higher concentrations 
of these drugs are often needed [262, 265]. In fact, genetic 
approaches are generally favored in the ADCD field due to 
insufficient specificity of most pharmacological autophagy 
inhibitors [260]. 

The expression “mitotic catastrophe” (MC) was first 
employed to illustrate the lethal phenotype of a tempera-
ture-sensitive fission yeast mutant strain that enters mito-
sis prematurely without effectively completing it [11]. The 
term MC has since been most frequently used to define 
cell death that occurs upon aberrant mitosis [94], which is 
frequently accompanied by gross nuclear alterations. In 
yeast, as in mammals, it may result from genome instability, 
microtubule destabilization, DNA damage, or alterations in 
cell cycle checkpoints [282-285]. Intriguingly, yeast RCD has 
been connected to most of these features [63, 286-288]. It 
will be interesting to follow whether known MC scenarios 
culminate in specific RCD subroutines.  

In mammalian cells, death following mitotic aberrations 
can, indeed, be either apoptotic or necrotic [289]. Since 
mitotic defects may contribute to malignant transfor-
mation in the mammalian system, MC can be viewed as an 
oncosuppressive mechanism that operates via cell death or 
senescence [94, 289]. In fact, suppression of MC provokes 
tumorigenesis and cancer progression in mammals [290]. 
By analogy, MC in yeast might be a mechanism to elimi-
nate mitosis-incompetent and thus unfit cells from the 
population. Adhering to the recommendations by the 
NCCD [94], we thus propose to use the term MC as an in-
dependent molecular avenue that precedes RCD, but does 
not constitute a bona fide cell death executioner mecha-
nism by itself [290]. 

A series of other cell death subroutines have been de-
fined in human cells that, however, are restricted to specif-
ic cell types and thus do not apply to yeast. 
 

RCD IN OTHER YEASTS AND FILAMENTOUS FUNGI 
As previously mentioned, yeast cell death has been most 
extensively studied in S. cerevisiae. However, other yeast 
species have been shown to share similar cell death char-
acteristics and also bear a set of comparable cell death 
subroutines. Thus, we propose to extend the above-
described recommendations formulated above to all yeast 
species. 

Schizosaccharomyces pombe (fission yeast) has been 
shown to express an RCD machinery that responds to vari-
ous stimuli. These include physiological triggers such as 
aging, defects like the abnormal metabolism of intracellu-
lar lipids [291-294], and a number of insults, including ER 
stress [295], inositol starvation [292,  293] or the heter-
ologous expression of several metazoan apoptotic effec-
tors, e.g., BAX and BAK [296]. All of these stimuli converge 
on the activation of apoptosis. Of note, according to our 
definitions, neither regulated necrosis nor ADCD have been 
demonstrated in S. pombe (yet). Among the described S. 
pombe apoptosis executors are the chaperone Cnx1 (cal-
nexin) and the metacaspase Pca1 [295, 297]. Pca1 is in-
volved in the apoptotic response to inositol starvation 
[295, 297] and lipid-induced, non-apoptotic cell death in 
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minimal medium. Conversely, Pca1 does not seem to play 
any role during apoptosis induced by ER stress [295], 
valproic acid treatment [298], or lipotoxic stress in mini-
mal medium [292]. S. pombe apoptosis is expected to 
involve additional players, as there is evidence for the 
presence of different factors in fission yeast that are ho-
mologous to effectors of S. cerevisiae apoptosis, including 
the protease Nma111 [299], Aif1 [300] or endonuclease 
G [301]. 

The major opportunistic human pathogen Candida albi-
cans, which has become a molecular genetics model to 
study pathogenicity, virulence and fungal development 
[302, 303], can also undergo apoptosis following the ex-
posure to a plethora of different agents [242, 304–306]. 
To date, no RCD subroutines other than apoptosis have 
been described. Interestingly, apoptosis can occur in both 
the blastospore and the hyphal form of this organism 
[305] as well as in Candida biofilms, which are highly tol-
erant to standard antimycotics and hence difficult to eradi-
cate. Exploiting the apoptosis machinery in cells constitut-
ing biofilms may pave the way to their effective eradica-
tion, and hence limit the incidence of indwelling device-
associated infections (IDAIs) [307–309]. C. albicans also 
harbors a gene encoding a metacaspase (CaMCA1) [310], 
which mediates apoptosis, for instance, upon treatment 
with farnesol [311], caspofungin [312], and micafungin 
[232] or upon interaction with murine macrophages 
[311, 313]. Conversely, CaMca1 is not involved in other 
apoptotic settings like exposure to the plant defensin 
RsAFP2 [314]. The Ras–cAMP–PKA signaling pathway 
[315] and the bZip transcription factor Cap1 [316, 317] 
have also been implicated in distinct apoptotic scenarios. 
Finally, other closely related Candida species, e.g., Candida 
glabrata [318], Candida krusei [319], Candida 
dubliniensis [320], Candida tropicalis [321], or Candida 
parapsilosis [232, 322], have been reported to exhibit 
apoptotic markers upon lethal challenge.  

Cryptococcus neoformans, an important pathogen of 
immunocompromised and immunocompetent patients, 
also undergoes apoptosis [323, 324], with apoptosis-
inducing factor and two metacaspases independently or-
chestrating this lethal subroutine [324]. At least one other 
Cryptococcus genus member, Cryptococcus laurentii, has 
also been shown to respond to some stimuli with apoptotic 
RCD [325]. Furthermore, a number of other yeast species, 
e.g., Kluyveromyces lactis [326, 327], Pichia pastoris 
[328], Rhodotorula glutinis [329], or Zygosaccharomyces 
bailii [330, 331], may develop signs of apoptosis under 
certain conditions. We surmise that similar lethal programs 
are to be discovered in other yeast species. In fact, such 
discoveries and further characterization of both identified 
and yet uncovered RCD programs are expected to follow in 
the near future, given that antifungal therapeutics for 
medical and industrial purposes may increasingly rely on 
targeting the yeast RCD machinery [332, 333]. We thus 
suggest adopting the recommendations formulated above 
for the description of cell death in all types of yeasts. 

It should be noted that a growing body of work is ad-
dressing RCD in multicellular fungi. A major human patho-

genic fungus that causes life-threatening disease is Asper-
gillus fumigatus, which has also been demonstrated to 
undergo apoptosis under certain conditions [334, 335]. The 
genome of A. fumigatus codes for two metacaspases (CasA 
and CasB), whose relative contribution to cell death seems 
to depend on the scenario [335–337]. In fact, other fungal 
proteases might also exert metacaspase activities that are 
relevant for cell viability and/or survival [337]. Aspergillus 
nidulans is another member of the Aspergillus spp. that has 
been demonstrated to undergo RCD [338, 339]. The ge-
nome of A. nidulans appears to code for an apoptotic ma-
chinery with relevant players like apoptosis-inducing factor 
and two putative metacaspases [339, 340]. Another fila-
mentous fungus, Podospora anserina, is used as an aging 
model that incorporates crucial apoptotic factors, including 
two metacaspases (PaMCA1 and PaMCA2) and at least five 
Aif members, of which only mitochondrial (but not cyto-
solic) isoforms seem to be relevant for aging-driven RCD 
[341, 342]. A role for the P. anserina cyclophilin D ortholog 
in RCD [343–345] as well as for autophagy in aging and 
lifespan control of P. anserina [346, 347] have been re-
ported. Further instances of fungal RCD [306, 348] have 
been documented in Paracoccidioides brasiliensis [349], 
Colletotrichum gloeosporioides [350], Fusarium oxysporum 
[351], Fusarium graminearum [352], Mucor racemosus 
[353], Botrytis cinerea [354], Penicillium expansum [355], 
Rhizopus oryzae [356], Scedosporium prolificans [357] and 
Neurospora crassa [358]. As multicellular organisms, fila-
mentous fungi have developed programs that are reminis-
cent of organismal RCD. For instance, several putative 
homologs of factors relevant for animal apoptotic control 
that are not found in unicellular yeast are present in the 
genomes of filamentous species [359]. Thus, multicellular 
fungi may have complex traits not present in yeasts that 
may add to the criteria and definitions presented herein. 
 

CONCLUDING REMARKS 
The impact of yeast (and other fungi, including filamentous 
species) on our lives at multiple socioeconomic, scientific 
and medical levels emphasizes the importance of decoding 
the mechanisms that determine its survival and control its 
demise. Therefore, the molecular comprehension and po-
tential manipulation of yeast cell death hold major promise 
for biotechnological and biomedical applications. We antic-
ipate that numerous fields might benefit from the possibil-
ity to modulate yeast cell death. For instance, the produc-
tivity of yeast during large-scale processes in the pharma-
ceutical and industrial arenas largely depends on its viabil-
ity and ultimately on its tolerance to stress and its demise 
in stationary cultures. Also, novel pharmacological ap-
proaches that specifically target the RCD machinery of 
yeast pathogens may bypass the ever-increasing resistance 
to classical antimycotics, which is an emerging public 
health problem. Other medical manipulations of yeast RCD 
are also conceivable, e.g., strategies to intervene on path-
ogenic deviations of the mycobiome. Finally, yeast will 
continue to help the community in deciphering eukaryotic 
cell death pathways as it serves as an important model for 
human disease. Given its power to study the relationship 
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between genotype and phenotype, we expect to gain fur-
ther insights from yeast to identify actionable targets that 
may be subjected to pharmacological (drug discovery) or 
genetical manipulation.  

For all these reasons, it is now imperative to set the 
standards for defining and studying cell death in yeast. 
That said, we want to emphasize that the present set of 
recommendations should be taken – as any scientific over-
view – as a snapshot of the current knowledge, rather than 
as a definitive compilation. Indeed, as research continues, 
we surmise that the present guidelines will have to be ex-
tended and revised. For instance, other nuanced changes 
to - or even novel types of - RCD may emerge from contin-
ued efforts to characterize the multicellular character of 
yeast populations, including but not restricted to uncover-
ing intercellular communication, interaction between pop-
ulations or cellular differentiation within colonies and bio-
films. Still, neologisms should be introduced with care and 
only when the characterization of a lethal process that 
bears new functional and biochemical aspects requires it. 
Otherwise, new expressions should be avoided to limit 
confusion. 

Another crucial point is to acknowledge the inherent 
complexity and dynamic nature of RCD in general and its 
different subroutines in particular. In fact, it is the crosstalk 
between pro-life and pro-death signals that determines 
cellular fate, and the activation of pro-survival pathways 
(such as autophagy) may often accompany lethal signals. 
Also, stress conditions may activate different RCD subrou-
tines that can be interconnected or may occur inde-
pendently, sequentially, or in parallel. Indeed, the inhibi-
tion of one specific RCD modality might trigger backup 
mechanisms that still ensure cell death execution. It is thus 
important to keep these points in mind when classifying a 
lethal phenotype. 

Altogether, the present guidelines attempt to unify the 
nomenclature and definition of yeast cell death modalities 

and - in our opinion – will help other fields of unicellular 
research (e.g., bacteriology, parasitology, etc.) to establish 
their set of recommendations using the present one as a 
basis. We are convinced that some degree of linguistic and 
experimental standardization is necessary for facilitating 
communication among researchers, especially at a point 
where the existence of yeast RCD is scientifically accepted 
and its socioeconomical impact is ever growing. 
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