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RESEARCH ARTICLE Open Access

Integrating human omics data to prioritize
candidate genes
Yong Chen1,2, Xuebing Wu3,4 and Rui Jiang1*

Abstract

Background: The identification of genes involved in human complex diseases remains a great challenge in
computational systems biology. Although methods have been developed to use disease phenotypic similarities
with a protein-protein interaction network for the prioritization of candidate genes, other valuable omics data
sources have been largely overlooked in these methods.

Methods: With this understanding, we proposed a method called BRIDGE to prioritize candidate genes by
integrating disease phenotypic similarities with such omics data as protein-protein interactions, gene sequence
similarities, gene expression patterns, gene ontology annotations, and gene pathway memberships. BRIDGE utilizes
a multiple regression model with lasso penalty to automatically weight different data sources and is capable of
discovering genes associated with diseases whose genetic bases are completely unknown.

Results: We conducted large-scale cross-validation experiments and demonstrated that more than 60% known
disease genes can be ranked top one by BRIDGE in simulated linkage intervals, suggesting the superior performance
of this method. We further performed two comprehensive case studies by applying BRIDGE to predict novel genes
and transcriptional networks involved in obesity and type II diabetes.

Conclusion: The proposed method provides an effective and scalable way for integrating multi omics data to infer
disease genes. Further applications of BRIDGE will be benefit to providing novel disease genes and underlying
mechanisms of human diseases.

Background
The identification of disease-associated genes is the pri-
mary step towards the explanation of pathogenesis of
human complex diseases. Functional genomics have en-
abled the use of large-scale molecular and physiological
data for not only the identification of causative genes as-
sociated with a disease but also the discovery of gene
modules that directly respond to genetic and environ-
mental perturbations associated with the disease [1-3].
For example, Freudenberg and Propping proposed to
prioritize candidate genes according to gene semantic
similarities derived from the gene ontology [4]. Perez-
Iratxeta et al. utilized the fuzzy set theory to construct a
scoring system for discovering disease-related genes

based on literature descriptions of diseases and func-
tional annotations of genes [5]. Methods have also been
proposed to make use of such high-throughput data as
protein-protein interactions and gene expression profiles
[6-10]. Moreover, methods have also been proposed to
integrate multiple data sources for the purpose of
achieving highly accurate identification of genes involved
in diseases or biological processes [11]. A common char-
acteristic of these methods is the requirement of a set of
genes known as associated with a query disease before
the inference of novel associations between the query dis-
ease and candidate genes. Nevertheless, according to the re-
cent release of the OMIM (Online Mendelian Inheritance
in Man) database [12], genetic bases for a significant pro-
portion of known diseases are completely unknown, and
thus applications of these methods are greatly restricted.
To overcome this limitation, methods have been pro-

posed to utilize disease phenotypic similarities data with
protein-protein interaction (PPI) data for the priori-
tization of candidate genes [13,14]. It has been shown
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that human inherited diseases may overlap in their
clinical traits, described in databases such as OMIM.
Moreover, based on the overlapping of clinical traits,
phenotypic similarity between diseases can be derived
[15,16] and used with the proximity of gene products
in a PPI network to discover disease genes. For ex-
ample, Lage et al. proposed a Bayesian model to inte-
grate phenotypic similarities and PPI data [14]. Wu
et al. developed a method called CIPHER to explain
phenotypic similarities using gene proximities [13]. Wu
et al. also proposed a method named AlignPI to align a
phenotype network against a PPI network [10]. Li and
Patra adopted a random walk model named RWRH to
derive strength of associations for candidate genes with
diseases [17]. Vanunu et al. put forward a method
called PRINCE to simulate how disease status propa-
gated through candidate genes [18]. Chen et al. pro-
posed a maximum flow model called MAXIF to calculate
strength of associations between a query disease and a
set of candidate genes [19]. It has also been shown in
these studies that genes associated with similar diseases
have both a higher likelihood of physical interactions
between their products and a higher similarity of their
transcript expression profiles [1,3]. This finding, also
referred to as the modular nature of human genetic dis-
eases, has been supported by a number of reports
[20-22], suggesting that causative genes for phenotypic-
ally similar diseases may reside in the same biological
module, either a pathway [23], protein complex [14,24]
or a subnetwork of protein interactions [2,25]. Indeed,
genes involved in similar diseases also share similar anno-
tations in the gene ontology (GO) [26] and membership
in KEGG pathways [27], implying a positive correlation
between gene–gene relatedness and disease–disease simi-
larity [28-30].
Motivated by the above understanding, we built in this

paper a multiple regression model named BRIDGE
(Based on Regression to Identify Disease GEnes) that ex-
plains disease similarities by combining functional simi-
larity information of genes derived from such data
sources as protein-protein interactions, gene sequence
similarities, gene expression patterns, gene semantic
similarities, and gene pathway membership relatedness.
Serving as an effective information fusion method, our
method automatically inferred the relative contribution
of each data source and calculated strength of associ-
ation between a given query disease and a candidate
gene. We performed large-scale validation experiments
and showed that BRIDGE can rank disease genes at top
1 in 892 out of 1,428 linkage intervals (62.47%). We also
showed the capability of our method in prioritizing can-
didate genes for diseases whose genetic bases are com-
pletely unknown. We further performed two case studies
on obesity and diabetes to demonstrate applications of

our method to complex diseases. We also provided a
user-friendly web interface of BRIDGE at http://bioinfo.
au.tsinghua.edu.cn/bridge.

Methods
Overview of BRIDGE
The proposed method is based on the assumption that
genes involved in diseases with similar phenotypes often
share similar characteristics across multiple genomic
data sources. Therefore, the phenotypic similarity be-
tween two diseases that calculated from text mining can
be explained using functional similarities of genes in-
volved in the diseases. The principle of our method is
shown in Figure 1(A). Given a disease d, we identify a
set of genes associated with this disease as G(d). For an-
other disease d’, we identify genes associated with this
disease as G(d’). We then extract the phenotypic similar-
ity score Sdd’ for any two diseases that was calculated by
using text mining method [31]. Based on a genomic data
source indexed by i, we calculate a score Sigg’ to
characterize the functional similarity between a pair of
two genes g∈G(d) and g’∈G(d’), and we compute the

summation
X

g∈G dð Þ
X

g 0∈G d0ð ÞS
i
gg 0 to characterize the

functional similarity between the two sets of genes G(d)
and G(d’). In our method, we consider five genomic data
sources, including protein-protein interactions (PPI),
gene sequences (GS), gene expression profiles (GE),
pathway annotations (KEGG), and gene ontology annota-
tions (GO). With these scores calculated, we adopt a mul-
tiple linear regression model to explain the phenotypic
similarity between the two diseases d and d’ using the
functional similarity between the genes involved in these

diseases, as Sdd0 ¼ αd þ
X5

i¼1
βid

X
g∈G dð Þ

X
g 0∈G d0ð ÞS

i
gg 0

� �
,

αd is the regression intercept and βid (i = 1,…,5) the regres-
sion coefficients.
Based on this principle, we illustrate in Figure 1(B) the

method for calculating a score for an individual candidate
gene. Given a query disease d and a candidate gene g, we
assume the candidate gene is the only one associated with
the disease, i.e. G(d) = {g}. We rewrite the regression func-

tion as Sdd0 ¼ αd þ
X5

i¼1
βid

X
g 0∈G d0ð ÞS

i
gg0

� �
, where d’ is

any disease included in the phenotypic similarities. We
then fit this model using the lasso penalty strategy to
automatically filter out unimportant data sources and fur-
ther calculate the coefficient of determination (R2) as a
score to measure the strength of association between dis-
ease d and gene g. Finally, as illustrated in Figure 1(C), re-
peating the above procedure for every candidate gene, we
obtain a score for each candidate gene. We then rank the
candidate genes in non-increasing order according to
their scores to obtain a ranking list. The details of calcula-
tions of gene similarities in each datasets, disease
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similarities and linear regression with lasso penalty are
explained in the following subsections.

Derivation of gene similarity and disease similarity
We use gene functional similarities to quantify the degree
of sharing common characteristics between pairs of genes.
A gene functional similarity provided for a pair of genes is
a score that ranges from 0 to 1, with 0 representing the
lowest similarity and 1 standing for the highest similarity.
To each gene pair, we calculate five types of similarities
based on five genomics data sources separately, obtaining
(1) a network similarity derived from protein-protein
interaction data, (2) a sequence similarity derived from
protein sequence data, (3) an expression similarity derived
from gene expression data, (4) a pathway similarity derived
from gene annotations in the KEGG database [27], and (5)
a semantic similarity derived from gene annotations in the
biological process domain of the Gene Ontology [26].

Network similarity
We retrieved a total of 34,364 manually curated PPIs
among 8,919 proteins from the HPRD database [32].
Treating proteins as nodes and interactions between
proteins as edges, we obtain a sparse protein-protein
interaction network. For each pair of two proteins g and
g’, we calculate the length of the shortest path (Lgg’) be-
tween the proteins and define the network similarity be-
tween the proteins using a Gaussian kernel, as

SPPIgg 0 ¼ exp −L2gg 0
� �

:

Mapping proteins back to genes, we obtain network
similarities between a total of 8,919 genes.

Sequence similarity
We downloaded sequences of the 8,919 genes in the
HPRD database from the NCBI Refseq database. Apply-
ing the NCBI blastp program [33] with default settings,
we obtain an e-value (egg’) for each pair of genes g and
g’. All calculated e-values are then transformed and
normalized to obtain sequence similarities between the
genes, as

SSEQgg 0 ¼
− log egg 0 =max − log egg 0

� �
g;g 0

egg 0 > 0

1 egg 0 ¼ 0
:

(

Expression similarity
Using whole-genome microarrays that targeting 44,775
human transcripts, an extensive gene expression atlas
of 79 human tissues has been derived by Su et.al [34]
and served as one of the largest quantitative evaluations
of gene expression focusing on the protein-encoding
transcriptome. With this data source, we calculate ex-
pression values of a gene (g) in the tissues and further
constructed a 79-dimensional vector (eg) that repre-
sents expression levels of the gene across the tissues.
Then, for any two genes g and g’ in the 8,919 genes, we
calculate the absolute Pearson correlation coefficient of
the corresponding vectors (eg and eg’) to obtain the
expression similarity SEXPgg′ between the genes, as

SEXPgg′ ¼ cov eg ; eg 0
� �

σ eg
� �

σ eg 0
� �

�����
�����:

Figure 1 Scheme of BRIDGE. (A) A multiple linear regression model is proposed to explain the phenotypic similarity between two diseases using

functional similarities between the two sets of genes associated with the diseases. The regression function is Sdd′ ¼ αd þ
X5

i¼1
βid

X
g∈G dð Þ

X
g′∈G d′ð ÞS

i
gg′

� �
,

where Sidd’ is the phenotypic similarity between two diseases d and d’, Sigg’ the functional similarity between two genes g and g’ derived from the i-th data
source, G(d) and G(d’) genes associated with diseases d and d’, respectively. We consider five genomic data sources (PPI, GS, GE, KEGG, and GO) in our
model. (B) Given a query disease g and a candidate gene d, we assume the candidate gene is the only one associated with the disease,
i.e. G(d) = {g}, and we calculate the coefficient of determination (R2) of the fitted model as a score to measure the strength of association
between the disease and the gene. (C) Repeating (B) for every candidate gene, we obtain a score for each candidate. We then rank the candidate genes
in non-increasing order according to their scores to obtain a ranking list.
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Pathway similarity
We downloaded annotations of all human pathways
from the KEGG database (released in July 2011). After
removing all diseases-related pathways to avoid bias to-
wards well-studied diseases, we obtain a total of 177
pathways. In the selected 8,919 genes, there are a total
of 2,604 genes included in these pathways. For each of
these genes (g), we construct a 177-dimensional binary
vector (Pg), with an element being 1 if the gene is in-
volved in the corresponding pathway and 0 otherwise.
Then, for a pair of two genes g and g’, we calculate the
cosine of the angle between the corresponding vectors
(Pg and Pg’) to obtain the pathway similarity between the
two genes, as

SKEGGgg 0 ¼ pg⋅ pg 0

Pg

�� �� Pg 0
�� �� ;

where |Pg| and |Pg '| are the norms of the vectors Pg and
Pg’ , respectively.

Semantic similarity
We downloaded the biological process domain of the
gene ontology (GO) and associated annotations from the
gene ontology project [26]. Among the 8,919 genes,
5,549 genes have at least one biological process annota-
tion. With this data source, we calculate the semantic
similarity between any pair of the 5,549 genes using the
tool GOSemSim [35,36]. Briefly, for a term t in the bio-
logical process domain, the probability that the term is
used in annotations is estimated as

pt ¼
# term t or its descendants used in annotationsf g

# Total annotationsf g :

Then, the semantic similarity of two terms t and t’ is
defined as the information content of their lowest com-
mon ancestor, as

Stt′ ¼ − log min
x∈A t;t′ð Þ

px;

where A(t,t’) is the set of all common ancestors of t and
t’. Then, for two genes g and g’, represented as two sets
of GO terms G and G’, respectively, their semantic simi-
larity is calculated as

SGOBPgg′ ¼ 1

Gj j þ G′
�� �� X

t∈G
max
t′∈G′

Stt′ þ
X

t′∈G
max
t∈G

Stt′

� �
:

Dealing with missing data
As mentioned above, values in gene similarity range
from 0 to 1, where 0 for the lowest similarity and 1 for
the highest similarity. However, some similarity scores
between genes could not be calculated, as shown above
in KEGG pathways and GO annotations, yielding the

missing data problem. To deal with this problem, we
simply replaced missing values with the lowest similarity
value 0.

Phenotypic similarity
We obtained phenotypic similarities between 5,080 human
diseases from the literature [31]. Briefly, van Driel et al.
used the anatomy (A) and the disease (C) sections of the
medical subject headings vocabulary (MeSH) to extract
terms from the OMIM database, and characterized
each disease phenotype with a vector of standardized
and weighted phenotypic feature terms mapped from
corresponding OMIM records in the full text (TX)
and clinical synopsis (CS) fields. Then, they calculated
for each pair of disease phenotypes a similarity score as the
cosine of the angle between feature vectors corresponding
to the diseases. They further evaluated the reliability of the
resulting phenotypic similarities and showed that disease
similarity scores are positively correlated with a number of
measures of gene functions.

Linear regression with lasso penalty
We adopt a multiple linear regression model to ex-
plain the phenotypic similarity between two diseases
d and d’ using genes associated with the diseases, as

Sdd′ ¼ αd þ
X5

i¼1
βid

X
g∈G dð Þ

X
g′∈G d′ð ÞS

i
gg′

� �
, where G

(d) and G(d’) are sets of genes associated with d and d’, re-
spectively. Parameters in this regression model can be es-
timated using the maximum likelihood estimation, which
is equivalent to solving the following optimization prob-
lem by the least squares approach,

min :
X
∀d′∈D

αd þ
X5

i¼1
βid

X
g∈G dð Þ

X
g′∈G d′ð ÞS

i
gg′

� �� �	 
2
:

To filter out unimportant data sources, a regulari-
zation term is added in the above objective function, as

min :
X
∀d′∈D

Sdd′− αd þ
X5

i¼1
βid

X
g∈G dð Þ

X
g′∈G d′ð ÞS

i
gg′

� �� �	 
2
þ λ

X
g∈G dð Þ

X5
i¼1

R βid
� �

;

where λ is a constant, and R βid
� �

serves as the regula-

rization term. In this work, the lasso penalty R βid
� � ¼ βid

�� ��
is adopted, with the benefit of shrinking some coeffi-
cients to zero and therefore serving as a feature selec-
tion method [37,38]. This property enables our method
to retain good data sources as effective features in the
calculation of scores for candidate genes. The lasso re-
gression is calculated using a modified version of the
LARS algorithm [37,38]. In each run, the value of λ is
optimized as the one with best goodness-of-fit estimates
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AIC (Akaike's Information Criterion). The Matlab code of
solving lasso regression is downloaded from the website
http://www.di.ens.fr/~mschmidt/Software/lasso.html.
Given a query disease and a set of candidate genes, we

then calculate a score for an individual candidate gene
based on the above multiple regression model. Let d in-
dicates the query disease and g a candidate gene, we as-
sume the candidate gene is the only one associated with
the disease, i.e. G(d) = {g}, and we rewrite the regression

function as Sdd′ ¼ αd þ
X5

i¼1
βid

X
g′∈G d′ð ÞS

i
gg′

� �
, where

d’ is any disease included in the phenotypic similar-
ities. We then fit this model using the lasso penalty
strategy and calculate the coefficient of determination
(R2) of the fitted model as a score to measure the
strength of association between the query disease (d)
and the candidate gene (g). Repeating this procedure to
obtain a score for each candidate gene, we are able to rank
the candidate genes in non-increasing order according to
their scores to obtain a ranking list.

Validation methods and evaluation criteria
We adopt three large-scale leave-one-out cross-validation
experiments to assess the capability of the proposed method
in discovering disease genes. Using the tool BioMart [39],
we obtain a total of 1,428 associations between 1,126
human diseases and 938 genes. In each validation run, we
use a known disease-gene association as the test case,
pretend that the association is unknown, and rank the test
gene in the case against a set of control genes that are
obtained in the following three different ways: 1) an artificial
linkage interval (all neighboring genes within 10 Mb on
both sides of the test gene are selected as control genes); 2)
random controls (99 genes randomly selected from all the
8,919 genes are used as control genes); 3) the whole
genome (all the 8,919 genes are used as control genes).
With ranks of test genes collected, we use the follow-

ing criteria to evaluate the performance of the proposed
method. First, we claim a prediction as success if a test
gene is ranked first (having the largest R2 value), and we
calculate the proportion of test genes that are success-
fully predicted. To eliminate the possible influence of
the number of control genes, we calculate a criterion
called fold enrichment (FE) [13,14]. If a method ranks a
proportion of p known disease genes at the top of a total
of m candidate genes, the fold enrichment is calculated
as pm. For example, when testing against random con-
trols, our method successfully ranks known disease
genes at the top of a total of 100 candidate genes in
57.42% (820 of 1,428) test cases, achieving a fold enrich-
ment of 57.42% × 100 = 57.42 (p = 57.42%, m = 100). Sec-
ond, we normalize ranks by dividing them with the total
number of candidate genes in the ranking list to obtain

rank ratios and calculate a criterion called mean rank ra-
tio (MRR) as the average of rank ratios of all test genes
in the validation runs. Third, given a threshold of rank
ratio, we calculate the criterion of sensitivity as the frac-
tion of test genes ranked above the threshold and the
criterion of specificity as the fraction of control genes
ranked below the threshold, and we further plot the rank
receiver operating characteristic (ROC) curve by varying
threshold values and calculated the area under the ROC
curve (AUC). Finally, given a threshold value of the R2

value, we considered candidate genes whose R2 value
were greater than the threshold as positive predictions
and obtained a set of true positives as the intersection of
test genes and the positive predictions. We then define
the criterion of recall as the fraction of the true positives
in the test genes and the criterion of precision as the
fraction of the true positives in all positive predictions.
It may be a concern that a disease is associated with

multiple genes. Intuitively, the inclusion of known rela-
tionships between a disease and its associated genes may
facilitate the identification of novel genes that are associ-
ated with the disease. To eliminate such a confounding
factor, we perform ab initio predictions to assess the
capability of our method in discovering genes that are
associated with a disease whose genetic basis is com-
pletely unknown. Specifically, in each prediction run, we
use a known disease-gene association as the test case,
suppose that all associations of the test disease involved
in are unknown, and rank the test gene in the case against
a set of control genes. Similar to the leave-one-out cross-
validation experiments, we also use three control sets: an
artificial linkage interval, random controls, and the whole
genome. We consider a prediction as success if the
test gene is ranked among top k of the ranking list,
and calculate the criteria as defined previously. When
k is equal to 1 (the test disease is associated with a
single gene), an ab initio prediction degenerates to a
leave-one-out cross-validation.

Results
Performance of BRIDGE
We first carried out the leave-one-out cross-validation
experiment against artificial linkage intervals to simulate
the capability of BRIDGE in discovering disease-
associated genes from a candidate region identified by
traditional disease-mapping methods such as linkage
analysis and association studies [40,41]. Focusing on the
1,428 associations between 1,126 diseases and 938 genes,
in each validation run, we selected a test case of disease-
gene associations out of the 1,428 known disease-gene
associations and collected a set of control genes that
were located within 10 Mbp around the gene in the case
(i.e., test gene). We found that the number of control
genes varied from 15 to 58 in these artificial linkage
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intervals, with the median being 39. We then ranked
each test gene against its control gene set. Results show
that 892 out of the 1,428 (62.47%) test genes are ranked
at top one. Moreover, the mean rank ratio (MRR) of all
1,428 test genes is only 8.90%, suggesting that most test
genes are assigned high ranks. We further varied the
rank threshold, calculated the sensitivity and specificity
under each threshold value, and plotted the ROC curve
in Figure 2. It can be clearly seen from the figure that
the curve (blue line) increases rapidly towards the top-
left corner of the plot, indicating the effectiveness of our
method in discovering disease-associated genes in this
simulation study. The area under the ROC curve (AUC
score) is calculated as 90.86%, also suggesting the validity
of our method. We further took the goodness-of-fit of the
linear regression model into consideration. By setting
threshold values for the coefficient of determination (R2),
we calculated the precision and the recall at each cutoff
value, and we plotted the precision values under various
threshold in Figure 3A. It can be seen from the figure that
the curve exhibits a unimodal pattern, with the highest
precision achieved as 91.18% at the R2 cutoff value of 0.02.
We further plotted the precision-recall curve in Figure 3B,
which demonstrates that the high precision can be
maintained in a wide range of the recall. For example,
the precision is as high as 84.7% when the recall
maintains a relatively high value of 45%.
To assess the capability of BRIDGE in discovering

disease-associated genes that spread over the genome, we
conducted the leave-one-out cross-validation experiment

against random controls by prioritizing each test gene
against 99 genes selected at random. Results show that
820 out of the 1,428 (57.42%) test genes are ranked at the
top. Moreover, the MRR of all 1,428 test genes is only
8.34%, suggesting that most test genes are also assigned
high ranks. We further plotted the ROC curve in Figure 2
and calculated the AUC score as 90.78%, also suggesting
the high quality of our method. The trend of the precision
against the threshold R2 value and the precision-recall
curve, as shown in Figure 3, also demonstrate similar
patterns as those for the validation against an artificial
linkage interval, revealing the effectiveness of our method
in discovering disease-associated genes spreading over
the genome.
We further pursued a more ambitious goal of scanning

the whole genome for disease-associated genes by priori-
tizing each test gene against all 8,919 genes in the simi-
larity profiles. Results show that 419 out of the 1,428
(29.34%) test genes are ranked at top one. We further
plotted the ROC curve in Figure 2 and calculated the
AUC score as 90.21%, also suggesting the high quality of
our method. In order to simulate the situation of discov-
ering disease-associated genes for diseases whose genetic
basis is completed unknown, we further conducted the
ab initio prediction experiments. Results show that 398
out of the 1,428 (27.87%) test genes are ranked first.
Moreover, the AUC score only slightly drops to 89.16%,
suggesting that BRIDGE does not rely on known genetic
basis of a disease for future discovery and is effective in
predicting genes for diseases without any known genetic
origins.

Contributions of individual data sources to gene
prioritization
We further assessed the capability of BRIDGE in the
prioritization of candidate genes using individual data
sources and presented the results in Table 1. It can be
seen from the table that each data source individually
characterizes functional similarities between genes from
a certain perspective, and thus shows positive contribu-
tion in the prioritization of candidate genes. For ex-
ample, using the PPI data alone, BRIDGE achieves an
AUC of 86.08% in the validation of linkage intervals and
82.23% in the validation of random controls. Using gene
expression data alone, BRIDGE achieves an AUC of
74.30% in the validation of linkage intervals and 69.04%
in the validation of random controls. Using other data
sources, BRIDGE achieves AUC scores between 76.02%
and 79.08% in the validation of linkage intervals. These
results suggest that the PPI data provide more useful in-
formation in disease gene prioritization. This conjecture
is also supported by the other criteria. For example, in
the validation of linkage intervals, 47.41% test genes are
ranked first by using PPI data alone, while only 23.25%

Figure 2 The leave-one-out cross-validation results. ROC curve
on artificial linkage interval, random control, whole genome are
shown. The ab initio prediction result on whole genome is also
shown as black line. The zoom-in plot shows details of the low
1-specificity region.
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are ranked first by using gene expression data (see
Table 1 for more details).
We also noticed the great improvement in the per-

formance of BRIDGE when the five data sources were
integrated. When applying a regular regression to inte-
grate all of the five data sources, we achieved a TOP of
56.96%, an AUC of 89.92%, an FE of 64.25, and an MRR
of 11.2% in the validation against linkage intervals. In
the validation against random controls, the regular re-
gression model achieved a TOP of 53.69%, an AUC of
90.24%, an FE of 53.69, and an MRR of 9.98%. In com-
parison, BRIDGE achieved a TOP of 62.47%, an AUC of
90.86%, an FE of 68.09, and an MRR of 8.90% in the val-
idation against linkage, and a TOP of 57.42%, an AUC of
90.78%, an FE of 57.42, and an MRR of 8.34% in the val-
idation against random controls. These results suggest

that the lasso penalty is helpful for variable selection in
the integration of multiple data sources, and thus bene-
fiting our method to achieve high performance in pin-
pointing disease genes.

Comparison with existing methods
We systematically compared BRIDGE with two existing
methods CIPHER [13] and ENDEAVOUR [11]. Briefly,
both BRIDGE and ENDEAVOUR were based on the in-
tegration of multiple genomic data, while ENDEAVOUR
used more than ten data sources, including the five data-
sets (PPI, GS, GE, KEGG, and GO) used in our study.
CIPHER was in principle similar to the regular regres-
sion method using only gene similarities derived from
PPI data as the predictor variable. The comparisons
were conducted by repeating the cross-validation

Figure 3 The performance of BRIDGE on three control sets. (A) The precision- recall curve when score threshold varies. (B) Score threshold
plotted against precision.

Table 1 Validation results of each dataset and integration of 5 data sources

Artificial linkage interval Random control Whole genome

TOP AUC FE MRR TOP AUC FE MRR TOP AUC FE MRR

ALL (Lasso) Leave one out 62.47% 90.86% 68.09 8.90% 57.42% 90.78% 57.42 8.34% 29.34% 90.21% 2616.84 7.57%

Ab initio 61.48% 90.61% 67.01 10.98% 56.58% 90.49% 56.58 8.87% 27.87% 89.16% 2484.89 8.09%

ALL (Regular) Leave one out 56.96% 89.92% 64.25 11.20% 53.69% 90.24% 53.69 9.98% 24.16% 89.01% 2154.80 8.72%

Ab initio 55.47% 89.52% 63.74 11.60% 52.64% 90.02% 52.64 9.65% 23.11% 88.16% 2061.20 9.22%

PPI Leave one out 47.41% 86.08% 51.66 16.94% 42.07% 82.23% 42.07 18.05% 9.87% 79.78% 880.31 19.46%

Ab initio 44.82% 84.45% 48.85 17.95% 39.29% 80.02% 39.29 20.29% 9.16% 79.05% 816.98 20.08%

KEGG Leave one out 42.16% 76.02% 46.20 16.36% 35.89% 73.12% 35.89 19.50% 11.48% 62.38% 1023.90 12.93%

Ab initio 41.02% 75.19% 44.91 16.52% 34.20% 71.31% 34.20 20.10% 11.20% 62.20% 998.93 13.01%

GS Leave one out 40.34% 79.08% 43.97 18.59% 40.20% 74.07% 40.20 15.80% 10.64% 67.26% 948.98 15.09%

Ab initio 40.27% 78.69% 43.89 18.80% 38.45% 72.73% 38.45 16.40% 10.31% 66.03% 919.55 15.65%

GE Leave one out 23.25% 74.30% 25.34 31.15% 17.44% 69.04% 17.44 29.51% 1.75% 67.61% 156.08 28.79%

Ab initio 22.97% 74.03% 25.04 31.48% 16.53% 68.60% 16.53 29.94% 1.47% 67.12% 131.11 29.21%

GO Leave one out 24.65% 76.99% 26.86 24.94% 20.24% 69.18% 22.24 23.51% 8.05% 61.74% 717.98 22.63%

Ab initio 24.00% 76.81% 26.16 25.08% 20.10% 68.89% 20.13 23.71% 7.47% 61.44% 666.25 22.95%
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experiments on both artificial linkage intervals and ran-
dom control gene sets for each method, based on its
preferred genomic datasets. The performance of each
was evaluated using the four criteria (TOP, AUC, FE and
MRR).
As shown in Table 2, in the validation against artificial

linkage intervals, CIPHER achieved a TOP of 47.41%, an
AUC of 86.08%, an FE of 51.66, and an MRR of 16.94%,
while BRIDGE achieved a TOP of 62.47%, an AUC of
90.86%, an FE of 68.09, and an MRR of 8.90%. The im-
provement of BRIDGE over CIPHER in this validation
experiment was then achieved as 15.06% for TOP, 4.78%
for AUC, 16.43 for FE, and 8.04% for MRR. Similarly, in
the validation against random controls, CIPHER achieved
a TOP of 42.07%, an AUC of 82.23%, an FE of 42.07, and
an MRR of 18.05%, while BRIDGE achieved a TOP of
57.42%, an AUC of 90.78%, an FE of 57.42, and an MRR
of 8.34%. The improvement of BRIDGE over CIPHER
is then achieved as 15.35% for TOP, 8.55% for AUC,
15.35 for FE, and 9.71% for MRR. These results clearly
suggest that BRIDGE outperforms CIPHER in all criteria
evaluated, indicating the power of integrating multiple
data sources.
ENDEAVOUR was developed according to the guilt-

by-association principle, and thus a set of seed genes
known to be associated with a query disease was re-
quired in the calculation of scores for candidate genes.
To meet this requirement, we extracted from our data
set a total of 470 associations between 168 diseases and
375 genes, with each of these diseases associated with 2
or more genes. We then compared ENDEAVOUR (on-
line service at http://homes.esat.kuleuven.be/~bioiuser/
endeavour) and BRIDGE on this data set. Briefly, in the
leave-one-out cross-validation experiment against link-
age intervals, ENDEAVOUR achieved a TOP of 45.80%,
an AUC of 91.89%, an FE of 49.92, and an MRR of
7.79%. BRIDGE achieved a TOP of 66.15%, an AUC of
94.17%, an FE of 72.10, and an MRR of 6.73%. The im-
provement of BRIDGE over ENDEAVOUR in this valid-
ation experiment is then achieved as 20.35% for TOP,
2.28% for AUC, 22.18 for FE, and 1.06% for MRR. In the
validation against random controls, ENDEAVOUR
achieved a TOP of 44.10%, an AUC of 92.03%, an FE of

44.10, and an MRR of 11.27%, while BRIDGE achieved a
TOP of 63.50%, an AUC of 93.85%, an FE of 63.50 and
an MRR of 6.95%. The improvement of BRIDGE over
ENDEAVOUR in this validation experiment is then
achieved as 19.40% for TOP, 1.82% for AUC, 19.40 for
FE, and 4.32% for MRR. These results clearly suggest
that BRIDGE outperforms ENDEAVOUR in all criteria
evaluated, though ENDEAVOUR used more data
sources than BRIDGE.

Case studies: obesity and type II diabetes mellitus
We further performed two case studies on obesity and
diabetes mellitus to demonstrate the capability of
BRIDGE in uncovering disease genes and predicting
novel susceptible candidates. For each of these two dis-
orders, we performed the ab initio whole-genome pre-
diction and checked the predicted genes ranked in top
100. We chose 100 because this number was comparable
to the resolution of a typical association study for human
complex diseases [41,42].
Obesity is a major public health problem, resulting in

increased morbidity and mortality and severe economic
burdens on healthcare systems. Although several genes
involved in obesity were reported to act through the
central nervous system (CNS) [43], and in particular the
hypothalamus, to influence energy balance and appetite,
research on obesity is far from complete [44-46]. The
overview section of obesity in OMIM (MIM: 601665)
presented a list of 15 genes, 13 of which were character-
ized in our gene similarity profiles. We first examined
the results of a genome-wide ab-initio-prioritization.
BRIDGE assigned high ranks to most of the known
obesity genes, with 8 out of these 13 in top 100 (actually
in top 50) of the ranked genome. This was statistically
significant compared to a uniform distribution of disease
gene ranks (3.35-16, Fisher’s exact test, one-sided). Fur-
thermore, we checked whether our method could pre-
dict novel susceptibility genes that have been identified
only recently. We found 63 genes (Additional file 1:
Table S1) suggested as disease genes and 28 genes re-
ported to cause obesity or fatty liver annotated by DA-
VID [47] and GeneCards [48]. Taking genes LEP and
NPY as examples, gene LEP was ranked 4th and gene

Table 2 Comparisons of BRIDGE with CIPHER and ENDEAVOUR

Artificial linkage interval Random control

TOP AUC FE MRR TOP AUC FE MRR

CIPHER1 47.41% 86.08% 51.66 16.94% 42.07% 82.23% 42.07 18.05%

BRIDGE1 62.47% 90.86% 68.09 8.90% 57.42% 90.78% 57.42 8.34%

ENDEAVOUR2 45.80% 91.89% 49.92 7.79% 44.10% 92.03% 44.10 11.27%

BRIDGE2 66.15% 94.17% 72.10 6.73% 63.50% 93.85% 63.50 6.95%
1CIPHER and BRIDGE are evaluated using the 1,428 associations between 1,126 diseases and 938 genes. 2ENDEAVOUR and BRIDGE are evaluated using the 470
associations between 168 diseases and 375 genes.
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NPY 6th in our prediction. We found numerous litera-
ture reports suggest that LEP (leptin) is a protein pro-
duced by adipose tissue that circulates to the brain and
interacts with receptors in the hypothalamus to inhibit
eating [49,50]. It has also been reported that stress exag-
gerates diet-induced obesity through a peripheral mech-
anism in the abdominal white adipose tissue that is
mediated by NPY (neuropeptide Y) [51]. Actually, syn-
thesis and release of NPY are both regulated by leptin
binding to its hypothalamic receptor which mediates
some of the effects of leptin on food intake [51,52]. An-
other susceptible gene is NPY2R, a 5′ variant of which
has been reported to be associated with both severe
adult obesity and childhood obesity by case–control
studies [52,53]. Further, we examined gene function en-
richment among the top 100 obesity-related genes by
using DAVID to analyze enrichment of GO biological
process terms. Results (Additional file 2: Table S2) show
that those genes are enriched in fatty acid metabolic
processes, lipid metabolic processes, and cell communi-
cation. These findings are consistent with the current
knowledge on obesity [41,43].
Type II diabetes mellitus is a disease characterized by

high blood glucose in the context of insulin resistance
and relative insulin deficiency. The OMIM overview sec-
tion of type II diabetes mellitus (MIM: 125853) pre-
sented a list of 29 genes, 20 of which are characterized
in our gene similarity profiles. We first examined the re-
sults of a genome-wide ab-initio-prioritization. BRIDGE
assigned high ranks to most of the known diabetes mel-
litus causing genes, with 13 out of these 20 in the top
100 of the ranked genome. This was statistically signifi-
cant compared to a uniform distribution of disease gene
ranks (1.08e-16, Fisher’s exact test, one-sided). Next we
checked whether our method can predict novel suscepti-
bility genes that were identified recently. We found 52
genes (Additional file 3: Table S3) suggested as disease
genes and 33 genes were reported to be genes associated
with diabetes, noninsulin-dependent diabetes mellitus
(NIDDM) or isulin sensitivity annotated by DAVID and
GeneCards. For example, gene INS was reported to be
involved in insulin resistance [54,55], insulin sensitivity
[56] and NIDDM [57]. IAPP was reported to be involved
insulinoma, insulin resistance [58,59]. Furthermore, we
examined gene functions enriched among the top 100
genes, carried out using DAVID. An analysis enrichment
of GO biological process terms (Additional file 4: Table S4)
showed that those genes were enriched in the insulin
receptor signaling pathway, carbohydrate transport,
carbohydrate homeostasis, and the carbohydrate metabolic
process [55,60].
We also checked the genes RNF128 and MAFA, which

were ranked at top 1 and top 2 for diabetes, respectively.
RNF128 encodes a type I transmembrane protein located

in the endocytic pathway and its expression significantly
inhibited activation-induced IL4 and IL2 [61] that are in-
volved in type I diabetes mellitus pathway (KEGG:
hsa04940). MAFA is a transcription factor binding to
RIPE3b, a conserved enhancer element that regulates pan-
creatic beta cell-specific expression of the insulin gene
(INS) [62]. The above evidence not only supports the fact
that MAFA and RNF128 are genes associated with dia-
betes, but also proposes more links and nodes to complete
the maturity onset diabetes pathway (KEGG: hsa04950)
and type I diabetes mellitus (KEGG: hsa04940).
Early studies have recognized that obesity and diabetes

are related. Obesity confers considerable risk for diabetes
and is found in approximately 55% of patients diagnosed
with type II diabetes [63]. Central obesity is known to pre-
dispose individuals to insulin resistance [64,65]. Abdom-
inal fat is especially active hormonally, secreting a group
of hormones called adipokines that may impair glucose
tolerance [64]. Our results further confirm that obesity
and diabetes mellitus are partly related through associated
genes and cellular processes [66]. Fifteen genes ranked
among top 100 genes for obesity are also related to insulin
sensitivity, NIDDM, insulin resistance. Meanwhile, 9 genes
ranked among top 100 genes for diabetes are also related
to obesity or fatty liver (annotated by DAVID database,
Additional file 1: Table S1 and Additional file 3: Table S3).
These genes are mostly involved in the regulation of en-
ergy balance, as annotated by DAVID database. These
findings are consistent with early research suggesting that
obesity and diabetes are highly related. The results also
support that molecular therapy of obesity and diabetes
may be done by controlling the genes involved in the
regulation of energy balance [41,44].

Predicted transcriptional networks involved in obesity
and diabetes
Using our predicted results, we further analyzed
transcription factors (TF) and dissected possible
transcriptional networks involved in complex dis-
eases. In the SABiosciences’ proprietary database known as
DECODE (DECipherment Of DNA Elements) (http://www.
sabiosciences.com/chipqpcrsearch.php), predicted binding
sites of different transcription factors can be searched
for promoter regions of human genes. We analyzed
TFs of the top 100 predicted genes for obesity and
diabetes. For obesity, 192 TFs (Additional file 1: Table S1)
were predicted, with an average of 7 TFs per gene. We
then linked all these TFs and their regulated genes to
construct a predictive transcriptional network with a total
of 292 nodes and 705 edges (Additional file 5: Figure S1).
Among these TFs, we found 9 TFs (PPAR-gamma1,
PPAR-gamma2, NF-kappaB, NF-kappaB1, GR, GR-beta,
GR-alpha, c-Jun, AP-1) regulating more than 21 genes
individually.
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For diabetes, 182 TFs (Additional file 3: Table S3) were
predicted, with an average of 6.6 TFs per gene. We also
linked these TFs and regulated genes to construct a pre-
dictive transcriptional network with a total of 282 nodes
and 664 edges (Additional file 6: Figure S2). Among
these TFs, we found 9 TFs (PPAR-gamma1, PPAR-
gamma2, NF-kappaB, NF-kappaB1, HNF-4alpha1, NRSF
form1, NRSF form2, c-Jun, AP-1) regulating more than
12 genes individually. Most of these common TFs
(PPAR-gamma1, PPAR-gamma2, NF-kappaB, NF-
kappaB1, c-Jun, AP-1) are related to metabolic and
neurological processes, further confirming that a similar
underlying regulatory mechanism exists for both obesity
and diabetes.
Beside these enriched transcription factors, other

oncogenic transcription factors, such as P53 and E2F
that are involved in many types of cancers, are also
found to regulate the predicted genes for obesity and
diabetes. We observed that many of the top 100 pre-
dicted genes of obesity were associated with many kinds
of diseases. Our study was consistent with recent find-
ings, suggesting that obesity and cancer may share a
common fatty acid network [67] and obesity may cause
many other diseases, such as diabetes, leukemia, colon
cancer and breast cancer.

Discussion and conclusion
In this paper, we developed a method called BRIDGE to
integrate the disease phenotypic similarity with such
functional genomic data sources as protein-protein in-
teractions, gene sequence similarity, gene expression
profiles, gene pathway annotations, and gene ontology
annotations to prioritize candidate genes for the discov-
ery of disease genes. We proposed to convert each gen-
omic data source into a pairwise similarity profile
describing functional similarity of genes and then use a
multiple regression model to characterize the strength of
association between a candidate gene and a query dis-
ease. A lasso penalty was further incorporated to achieve
automatic selection of the most valuable information in
the regression process. Through large-scale validation ex-
periments, we demonstrated that the proposed method
was capable of ranking a large proportion of known
disease-associated genes in the top of ranking lists, sug-
gesting the superior performance of our method. We fur-
ther performed detailed case studies on obesity and
diabetes to illustrate potential novel findings produced by
our method.
The success of our method is mainly due to the inte-

grated use of multiple genomics data. As we have shown,
each data source characterizes a certain aspect of func-
tional similarity between genes, and through the integra-
tion framework, multiple data sources are able to
complement each other to achieve a more comprehensive

description of functional similarity between genes. An-
other merit characteristic of our method is the capability
of predicting genes associated with diseases whose genetic
bases are completely unknown. This feature is achieved
by using the phonotypic similarities. Although there have
been a few methods using such this information, BRIDGE
demonstrates superior performance in prediction tasks,
mainly owing to the use of the lasso regression model that
enables the automatic selection of valuable information.
The following aspects of our method may be further im-

proved. First, the computational burden of the lasso re-
gression method is obviously heavier than the ordinary
regression method. Second, a problem in the study of as-
sociations between diseases and genes is the underlying
bias towards well-studied genes [68]. Existing methods for
candidate gene prioritization still do not have a way to
correct such bias. With the integration of multiple omics
data sources, however, this bias issue is alleviated, because
different data sets measure gene functions from different
perspectives, and thus final results will not depend on a
single data source. Nevertheless, how to completely elim-
inate the influence of bias is still an open question worth
further exploration. Finally, in this paper we demonstrated
the integration of five data sources. However, it is not hard
to incorporate more data sources into the BRIDGE frame-
work. These data sources may include but not limited to
literature information (abstracts in EntrezGene), SNP data,
EST expression (EST data from Ensemble) [69], protein
domains (Pfam and InterPro) [70], cis-regulatory modules
(TOUCAN) [71], transcriptional motifs (TRANSFAC)
[72], and many others. The main work in this possible ex-
tension will be the derivation of suitable pairwise similar-
ities for genes from these data sources.

Additional files

Additional file 1: Table S1. Detailed information of predicted top 100
obesity genes.

Additional file 2: Table S2. Enriched biological processes in top 100
obesity related genes.

Additional file 3: Table S3. Detailed information of predicted top 100
diabetes genes.

Additional file 4: Table S4. Enriched biological processes in top 100
diabetes related genes.

Additional file 5: Figure S1. The predicted transcription network of
100 predicted obesity genes. The network was constructed by top 100
predicted genes (red) for obesity and their related 192 transcription
factors (pink). The transcription factors regulating more than 21 genes are
noted as green.

Additional file 6: Figure S2. The predicted transcription network of
100 predicted diabetes genes. The network was constructed by top 100
predicted genes (red) for diabetes and related 182 transcription factors
(pink). The transcription factors regulating more than 12 genes are noted
as green.
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