
Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

College of Science & Mathematics 
Departmental Research College of Science & Mathematics 

10-1-2014 

Integrated transcriptome analysis reveals miRNA-mRNA crosstalk Integrated transcriptome analysis reveals miRNA-mRNA crosstalk 

in laryngeal squamous cell carcinoma. in laryngeal squamous cell carcinoma. 

Yang Zhang 

Yong Chen 
Rowan University 

Jinhai Yu 

Guiming Liu 

Zhigang Huang 

Follow this and additional works at: https://rdw.rowan.edu/csm_facpub 

 Part of the Genetics and Genomics Commons 

Recommended Citation Recommended Citation 
Yang Zhang, Chen Yong, Yu Jinhai, Liu Guiming, Huang Zhigang. (2014). Integrated transcriptome analysis 
reveals miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma. Genomics 104(4), 249-256. 

This Article is brought to you for free and open access by the College of Science & Mathematics at Rowan Digital 
Works. It has been accepted for inclusion in College of Science & Mathematics Departmental Research by an 
authorized administrator of Rowan Digital Works. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/csm_facpub
https://rdw.rowan.edu/csm_facpub
https://rdw.rowan.edu/csm
https://rdw.rowan.edu/csm_facpub?utm_source=rdw.rowan.edu%2Fcsm_facpub%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/27?utm_source=rdw.rowan.edu%2Fcsm_facpub%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages


Integrated transcriptome analysis reveals miRNA–mRNA crosstalk in
laryngeal squamous cell carcinoma

Yang Zhang a,1, Yong Chen b,1, Jinhai Yu b, Guiming Liu c,⁎, Zhigang Huang a,⁎
a Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing 100005, China
b National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
c Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China

a b s t r a c ta r t i c l e i n f o

Article history:
Received 30 April 2014
Received in revised form 19 June 2014
Accepted 23 June 2014
Available online 28 June 2014

Keywords:
Laryngeal squamous cell carcinoma
Gene expression
Small RNAs
Data integration

Next generation sequencing (NGS) has proven to be a powerful tool in delineatingmyriads ofmolecular subtypes
of cancer, as well as in revealing accumulation of genomic mutations throughout cancer progression. Whole ge-
nomemicroRNA (miRNA) andmRNA expression profiles were obtained from patients with laryngeal squamous
cell carcinoma (LSCC) using deep sequencing technology, and were analyzed by utilizing integrative computa-
tional approaches. A large number of protein-coding and non-coding genes were detected to be differentially
expressed, indicating a functional switch in LSCC cells. A total of 127 mutated genes were detected to be signif-
icantly associated with ectoderm and epidermis development. Eleven miRNAs were found to be differentially
expressed, including a potential cancer suppressormiRNA,mir-34c, whichwas dramatically down-regulated. In-
tegrated analysis of mRNA and miRNA transcriptomes further revealed correlated dynamics among 11 miRNAs
and 138 targeted genes, forming a highly dynamical co-regulation network response to LSCC development.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Laryngeal squamous cell carcinoma (LSCC) is a commonmalignancy
that exhibits a high incidence rate in head and neck squamous cell
carcinoma cases (HNSCC). It is highly correlated with aging, smoking,
excessive alcohol consumption, poor diet, human papillomavirus
(HPV) infection and long-term exposure to specific chemicals, fumes
or pollutants. Radiotherapy, surgery, and chemotherapy are used in
LSCC therapy. However, the long-term prognosis for intermediate and
high-grade cases of LSCC remains low. To improve the chance of effec-
tive treatment of LSCC, a more detailed understanding of the molecular
mechanisms involved in the development of LSCC is essential, especially
for the identification of novel biomarkers that could serve as suitable
therapeutic targets.

Amultitude of genetic, transcriptomic and epigenetic alterationshad
been reported previously to be associatedwith LSCC. For instance, TP53,
CDKN2A, PTEN, PIK3CA, HRAS NOTCH1, IRF6, TP63 and FBXW7 have
been annotated as genes mutated in HNSCC [1–3]. Recently, the tumor
suppressors CTNNA2 and CTTNNA3 were reported to be mutated
frequently in LSCC [4]. Amicroarray approach had been used to scan dif-
ferential expressed gene that may be involved in LSCC development [5].
One particular class of regulatorymolecules, i.e. miRNAs, a class of small
non-coding RNA molecules which often function as tumor suppressors

or oncogenes, were shown to be aberrantly expressed in many types
of human cancers [6–8]. Several miRNAs were identified to be associat-
ed with LSCC by either individual miRNA studies or miRNA expression
profiling, such as mir-34a [9] and mir-24 [10]. Another phenomenon
widely observed in LSCC cells is the dysregulation of epigenetic modifi-
cations across regulatory regions. Hypermethylated DNA sequences
were found within the promoter regions of miRNA as well as in
protein-coding genes [11–13]. Despite these earlier reports on individ-
ual gene regulatory alterations, an integrated analysis of any potential
modifications in crosstalk between miRNAs and mRNA in LSCC cells re-
mains absent.

Driven by the rapid development of next-generation sequencing
(NGS) technologies, the interrogation of cellular properties on a
genome-wide scale now offers the possibility of unbiased analysis and
exploration of complete sets of specificmolecules and pathways. Subse-
quent integration of these datasets should provide biological insights
that would be impossible for isolated data sets. Recently, such integrat-
ed approaches were successfully used in investigating the role of geno-
mic alterations in cancer development and metastasis in the context of
their biological functions [14,15]. One report describes the successful
prediction of several breast cancer subtypes and designed related drug
targets by combining signaling network and genomic variations [16].
In cancer system biology, integrating multiple omics data was shown
to be useful in identifying both new oncogenes and novel pathways
[17]. To develop a comprehensive understanding of the molecular pro-
cesses involved in the development of LSCC, we utilized an integrated
strategy of measuring transcriptome-wide changes in mRNA and
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miRNA levels by combining NGS with systematic analysis. We per-
formed mRNA and miRNA transcriptomes of 12 samples. Integrated
analysis described a co-regulated network of 11 miRNAs and their co-
regulated 138 genes that are differentially expressed more than 2 fold
changes. Our data revealed not only the dynamical landscapes of indi-
vidual miRNA and mRNA expression, but also more importantly their
dynamical crosstalk, providing additional insights into the molecular
processes driving LSCC tumorigenesis.

2. Results

2.1. Expression landscape of genes in LSCC samples

In order to comprehensively reveal genes and mechanisms poten-
tially involved in tumorigenesis of LSCC, we used an integrated NGS ap-
proach, and examined both mRNA and miRNA transcriptomes of LSCC
tissue in comparison to adjacent healthy tissue (Fig. 1A). A total of 10
tumor samples and 2 healthy samples were selected on the basis of
their clinical records (Supplementary Table 1). Total RNAwas extracted
for library construction, and mRNA and small no-coding RNA were se-
quenced by using an Illumina/Solexa platform. The reads were mapped
to the human genome for the identification of genes and noncoding
RNAs (ncRNA) for the analysis of differences in expressions patterns.

A total of 1434 genes were found to be significantly up-regulated,
and 660 genes were down-regulated (fold change ≥2) in LSCC,
representing almost 3.52% of the 59533 gene records presented in
Homo sapiens GRCh37.68 (Fig. 1B). Together, the 2094 identified
genes cover diverse gene categories of protein-coding genes,

pseudogenes, long intergenic non-coding RNAs (lincRNA), antisense,
processed_transcript, small nucleolar RNA (snoRNA), miscellaneous
RNA (misc_RNA), small nuclear RNA (snRNA), IG_V_gene, miRNA,
sense_intronic and other uncategorized genes (Fig. 1C, Supplementary
Table 2). The largest gene set represents protein-coding genes, and in-
cludes 804 up-regulated as well as 377 down-regulated genes. In com-
parison, a total of 630 ncRNAswere found to be up-regulatedmore than
2-fold, and 283 ncRNAs down-regulated more than 2-fold. In conclu-
sion, the large number of genes that exhibit differential expression pat-
terns indicates major changes in the regulation of protein-coding genes
as well as ncRNAs in LSCC.

2.2. Dynamic switches of cellular functions in LSCC

To analyze these 1181 differentially expressed genes for their func-
tional categories, we performed a systematic functional enrichment
analysis. We first clustered genes and samples by applying a two-way
hierarchical clustering analysis [18]. Genes clustered together generally
have correlated expression patterns, indicating a similar molecular
basis, whereas samples clustered together exhibit either similar pheno-
types or a significant functional modules (Fig. 1D). Twelve tumor sam-
ples were found to be clustered according to their gene expression
profiles, while 2 non-tumor samples were found to cluster together.
The 1181 genes were clustered into 11 sub-clusters, where D1 and D2
clusters were down-regulated, and D3 to D11 up-regulated in 10
tumor samples. These 11 clusters were further annotated by GO term
analysis using the DAVID database [19]. Each of these clusters was sig-
nificantly enriched in at least one biological process (p-value b 1.0E-3,

Fig. 1. Summary ofmRNA andmiRNA transcriptomic study. A) Schematic presentation of the integrated analysis ofmRNA andmiRNA transcriptomes. B)Distribution of the fold-changes of
human genes. 660 down-regulated and 1434 up-regulated genes occupy 1.11% and 2.41% of the 59533 annotated human gene records respectively. C) Genotype distribution of 2094
genes. D) Heatmap of 1181 gene expressions (FPKM) (≥2 fold change). Genes are clustered into 11 groups (D1–D11). The most enriched biological process of each gene group was an-
alyzed by DAVID database. D1: Regulation of hormone levels (1.65E-5). D2: Defense response (2.44E-33). D3: Regulation of growth (7.23E-4). D4: Cell motility (8.81E-4). D5: Epidermis
development (1.25E-29). D6: Regulation of transcription (1.48E-4). D7: Collagen fibril organization (1.35E-4). D8: Extracellular structure organization (1.58E-6). D9: Embryonic morpho-
genesis (5.05E-4). D10: Nucleosome assembly (9.61E-4). D11: Regionalization (4.88E-14).
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Fig. 1D). For example, D2 was found to be significantly enriched in
defense responses (p-value = 2.44E-33), and D11 was significantly
enriched in regionalization (p-value = 4.88E-14).

To systematically interrogate the differentially regulated functional
categories involved in LSCC tumor development, we further analyzed
the importance those 804 up-regulated and 377 down-regulated
genes in specific biological processes. Among the 804 up-regulated
genes, we found that epidermis development, epithelium development
and ectoderm development were in the top three significant up-
regulated categories (p-value b 1.0E-18). With a p-value threshold of
1.0E-5, 30 biological processes were detected, most of which are associ-
ated with cell differentiation, biological adhesion and morphogenesis
(Fig. 2A1, Supplementary Table 3). Among the 377 down-regulated
genes, defense response, inflammatory response and response to
wounding were the top three significantly up-regulated biological pro-
cesses (Fig. 2A2, p-value b 1.0E-22). An analysis of the presence of these
genes in particular cellular components showed that themost enriched
categories were related to extracellular matrix (up-regulated, Fig. 2B1)
and plasma membrane (down-regulated, Fig. 2B2, p-value b 1.0E-5,
Supplementary Table 4). We also analyzed the molecular functions

that may be dynamically regulated in 804 up-regulated and 377
down-regulated genes. While only the three categories of sequence-
specific DNA binding, transcription factor activity and calcium ion bind-
ing were found to be enriched for the up-regulated genes, 9 categories
were identified for the down-regulated genes (Fig. 2C1–2, Supplemen-
tary Table 5). These results reveal a clear dynamic switch in cellular
functions in LSCC development compared to healthy tissue.

2.3. Mutations of differentially expressed genes

Our analysis of transcriptomic data included a systematic search for
mutations in exons at the nucleotide level. In order to find potential
genes that are highly mutated, we mapped the NGS reads to the
human genome by using the Bowtie program [20]. A total of 16,169
genes were detected with mutations by calculating the mutated sites
per kilobase nucleotides. Although thesemutated genes are almost uni-
formly spread across the human genome, only few mutations were
detected within the genome present along the Y chromosome. Interest-
ingly, most of themitochondrial genomewas found to be highlymutat-
ed (Figs. 3A,D). Nine mitochondrial genes, i.e. SFN, CTB-63M22.1,

Fig. 2. Functional enrichment of differential expressed genes. Functional enrichment of 804 up-regulated genes and 377 down-regulated genes are analyzed by using the DAVID database
with a p-value cutoff of 1.0E-5. The graph was analyzed and printed using BINGO software. Differentially regulated biological processes are shown in A1 and A2. Differentially regulated
cellular components are shown in B1 and B2. Differentially regulated molecular functions are shown in C1 and C2. Up-regulated categories are marked in light red, while the down-
regulated categories are marked light blue.
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HSPB1, KRT5, KRT6A, KRT14, IGHA1, IGLC2 and IGLC3, were found sig-
nificantly mutated (Mutation ratio N 50).

In order to discover genes that display both a highmutation ratio and
significant fold change in their expression, we calculated the product of
mutation ratio and fold change for mutated genes exhibiting highly dif-
ferential expression patterns in tumor compared to healthy samples. A
total of 127 interested genes were detected (Fig. 3B; Supplementary
Table 6). Our analysis revealed that these genes were enriched for the
functional categories of ectoderm development, epidermis develop-
ment and mitochondrial energy supply (Fig. 3C; p-value b 1.0E-5, Sup-
plementary Table 7). In particular, various mitochondrial genes were
found highly mutated and differentially expressed, especially ND4
(MT-ND4) and CO2 (MT-CO2) (Fig. 3D). These findings provide novel
evidence for a link between mitochondrial dysfunction and cancer
development.

2.4. Expression landscape of miRNAs in LSCC samples

In order to detect differentially expressed miRNAs, we compared
miRNA transcriptomes in LSCC tumor and non-tumor tissues. To this
end, total miRNA was scanned using the miRDeep2 method [21]. In
each sample, hundreds of miRNAs were detected, including many
miRNAs not described previously (Fig. 4A). In total, 170maturemiRNAs
and 4 novel miRNAs were found to be commonly expressed in all 10
tumor samples and 2 non-tumor samples. In addition, 28 miRNAs
were differentially expressed with a change greater than 1.5-fold.
Among of them, mir-100, mir-139, mir-34c and mir-375 were found
to be down-regulated, while the remaining being up-regulated. Using
amore stringent cutoff of 2-fold, 11miRNAswere identified as differen-
tially expressed, wheremir-34cwas detected to be down-regulated and
others up-regulated (≤−2 or ≥2 fold change, Table 1, Fig. 4B).

Most of these 11 miRNAs have been previously reported to be asso-
ciated with a number of diseases or tumors. For instance, the three mir-

34 familymembersmir-34a,mir-34b andmir-34c have previously been
identified as suppressors in LSCC. They are transcriptional targets of
TP53, and function in a positive feedback loop to activate TP53 [22,23].
In our LSCC tumor samples, mir-34c was detected to be greatly down-
regulated relative to the samples of healthy tissue. Mir-1301 is a
newly identified miRNA family that is involved in regulating more
than 8000 genes, as predicted in the microRNA database [24]. Among
the genes identified, we confirmed 2532 genes by using TargetScan
when applying a more critical filtering procedure [25]. The large num-
ber of targeted genes suggests that it iswidely involved in the regulation
of various cellular functions. Our functional enrichment analysis
showed that these 2532 genes are involved in at least 30 biological pro-
cesses (p-value b 1.0E-5, Supplementary Table 8). So far, only a small
number of reports indicate that mir-1301may be an inhibitor of tumor-
igenesis in HepG2 cells [26]. The differential expression of mir-1301
identified in our analysis suggests that it may be a universal regulator
miRNA and plays important roles in the development of LSCC.

2.5. Crosstalk between miRNAs and their target genes

To uncover in a systematic manner the mechanisms underlying
tumor development, an integrative approach is essential to discover
the new oncogenes, the pathways and the development of novel anti-
cancer therapies [27,28]. With mRNA and miRNA transcriptome inte-
grated, we can systematically investigate the potential functional corre-
lations amongmiRNA and their target genes.We first tested if the target
genes of the 11 miRNAwere differentially expressed in LSCC relative to
normal tissue samples. For each of themiRNAs identified, the values for
the average fold change (AFC) of their targeted genes were calculated.
To test if an AFC is significant compared with randomly calculated
values, we employed a bootstrapping method that randomly sampled
the same number of genes and calculated it as a random AFC (see
Materials and methods). A total of 8 AFCs were observed to be

Fig. 3. Functional analysis of frequentlymutated genes. A)Mapping ofmutated genes on human chromosomes. The genes with amutation ratio bigger than 50 are annotated (mitochon-
drial genes are described in D). B) Identifying genes with fold change (FC) and mutation ratio (MR). 127 genes were obtained with a cutoff value of 6. C) Functional enrichment of these
genes. The p-values are calculated by using the DAVID database. D) Heatmap of mutated mitochondrial genes.
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significant (p-value = 1.0E-5, Table 1), suggesting that these targeted
genes were indeed differentially expressed in LSCC samples. Second,
we tested if the 11miRNAs and their co-regulated genes were function-
ally linked as part of a connected network. A total of 1487 genes were
identified to be co-regulated by these 11 miRNAs. Functional analysis
revealed that theyweremost enriched in the processes of cell adhesion,
cell morphogenesis, as well as neuronal development and differentia-
tion (Supplementary Table 9). When investigating the genes that were
differentially expressed for more or less than 2-fold, 339 interactions
were found among 138 genes and 11 miRNAs (Fig. 4C). Among the 11

miRNAs, the node degrees of mir-1301, mir-183, mir-96, mir-9-3, mir-
182, mir-34c and mir-15b were bigger than 10, while mir-450a-1,
mir-450a-2 and mir-184 were all found to be only loosely connected.
Among the 138 genes, 118 genes were found to be up-regulated in
tumor samples, while 20 geneswere down-regulated, suggesting differ-
ent expression patterns by combinational regulations of miRNAs.

Third, the correlation among miRNAs and their regulated genes
were detected by calculating the Pearson correlations, using a cutoff of
0.75 (Fig. 4D). Fifty genes were found to be highly associated with 8
miRNAs. Interestingly, mir-182, mir-96, mir-183, mir-15b and mir-9-3

Fig. 4. Expression analysis of miRNA. A) Novel miRNA and miRNA of each sample. Four novel miRNA and 170 mature miRNA were found to be commonly expressed in 12 samples.
B) Clustering of 11 significantly expressed miRNAs. The expression values for each miRNA were normalized by its maximal value in all 12 samples. C) The common target genes of the
11 significantly expressed miRNAs. D) 8 miRNA and their highly correlated target genes. Numbers between target genes and their miRNAs indicate the Pearson correlations. A cutoff
0.75 is used to output the highly correlated miRNA-gene pairs (proportion b 1%).

Table 1
Annotation of 11 significantly expressed miRNAs.

ENSG ID Name Mature sequence FC NTG AFC p-Value

ENSG00000207562 Mir-34c aggcaguguaguuagcugauugc −2.38 609 0.71 1.0E-5
ENSG00000221445 Mir-1301 uugcagcugccugggagugacu 2.25 2467 0.65 1.0E-5
ENSG00000207779 Mir-15b uagcagcacaucaugguuuaca 3.21 2218 0.59 1.0E-5
ENSG00000207990 Mir-182 uuuggcaaugguagaacucacacu 2.62 508 0.58 1.0E-5
ENSG00000207691 Mir-183 uauggcacugguagaauucacu 2.63 560 0.62 1.0E-5
ENSG00000207695 Mir-184 uggacggagaacugauaagg 2.62 22 0.81 2.5E-2
ENSG00000207621 Mir-224 caagucacuagugguuccguuuag 3.13 289 0.65 1.0E-5
ENSG00000199132 Mir-450a-1 uuuugcgauguguuccuaau 2.39 28 1.07 2.1E-3
ENSG00000207755 Mir-450a-2 uuuugcaauauguuccugaau 2.99 71 0.57 1.1E-2
ENSG00000207819 Mir-9-3 ucuuugguuaucuagcuguauga 3.25 401 0.59 1.0E-5
ENSG00000199158 Mir-96 uuuggcacuagcacauuuuug 2.79 384 0.65 1.0E-5

Note: Fold change (FC). Number of targeted genes (NTG). Average fold change (AFC) of miRNA target genes. The p-value was calculated using a bootstrapping method.
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constructed a connected network, indicating that these 5 miRNAs are
involved in common biological processes. In this sub-network, two
genes, ADAMTS19 and WDR52 were observed as hubs in connecting
the 5 miRNAs. ADAMTS19 is a member of ADAMTS (a disintegrin and
metalloproteinase containing a thrombospodin motif) gene family
that has been recently linked to a variety of physiological and patholog-
ical conditions, including arthritis and cancer [29]. Here, its differential
expression was observed to be co-regulated by mir-182, mir-183, mir-
96 and mir-15b, suggesting that the increase in ADAMTS levels in
LSCC is a direct consequence of the dysregulation of a connected
miRNA network. Another gene, WDR52, is a connected node of mir-
15b and mir-9-3. The precise function of this gene, however, remains
unknown. The miRNAs mir-34c, mir-1301 and mir-224 are connected
to 12, 30, and 4 genes, respectively. The regulatory connections and
the correlation in expression of these 11 miRNAs and their targeted
genes all suggest the presence of a convergent miRNA regulatory net-
work that is responsive to the functional switches in the initiation and
progression of LSCC.

3. Discussion

In order to investigate the interplay of genes andmiRNAs in LSCC,we
used mRNA and miRNA transcriptomes to detect not only the genomic
mutations, expression dynamics and functional switches, but also in
fact a correlated effect of these disease factors during the tumorigenic
processes. In total, 1181 coding genes miRNAs were found to be differ-
entially expressed.We presented a systematic analysis for the function-
al enrichment of these coding genes. We also utilized the acquired data
sets to discover and validate base-pair mutations that accumulated in
these melanomas. Our analysis revealed a surprisingly high rate of so-
matic mutations in genes of LSCC samples, when compared with
healthy tissues surrounding the cancer samples. Interestingly, we ob-
served especially high mutation ratios within the mitochondrial ge-
nome. In details, nine mitochondrial genes (SFN, CTB-63M22.1, HSPB1,
KRT5, KRT6A, KRT14, IGHA1, IGLC2 and IGLC3)were found significantly
mutated. Importantly, most of these genes identified in our work have
been reported previously to be involved in the development of LSCC
and other cancers. More specifically, SFN is an adapter protein implicat-
ed in the regulation of a large spectrum of both general and specialized
signaling pathways. The dysregulation of SFN had been correlated with
the development of squamous cell carcinoma [30]. CTB-63M22.1 was
first reported to be a pseudogene, but subsequently shown to be differ-
entially expressed in multiple diseases, including prostate cancer [31]
and acute myeloid leukemia [32]. Differential expression of CTB-
63M22.1 was also observed in our study. HSPB1 encodes a heat shock
protein that is induced by environmental stress as well as upon devel-
opmental changes. HSPB1 protein interacts with TP53, and is involved
in stress resistance and actin organization. Defects in this gene are
known to cause the onset of carcinogenesis in squamous cells [33,34].
KRT5, KRT6A and KRT14 are members of the keratin protein family,
which are co-expressed during the differentiation process of simple
and stratified epithelial tissues. Mutations in these keratin proteins
have been associated with skin diseases [35,36]. IGHA1, IGLC2 and
IGLC3 are members of the immunoglobulin protein family, and are in-
volved in complement activation and regulation of immune response
[37]. The high mutation levels of these three immunoglobulin proteins
suggest that the dysfunction of the immune response is a likely factor
in contributing to LSCCdevelopment. In summary, these genomicmuta-
tions of mitochondrial genes correspondwell with the observed chang-
es in expression dynamics, lending support to the well-established fact
that energy production within solid tumors is transformed from mito-
chondrial oxidative phosphorylation to aerobic glycolysis [38,39].
Thus, the somatic mutations in mtDNA observed in our study provide
further confirmation of mitochondrial alterations in cancer.

MiRNAs have been established as key regulators in both normal and
pathological cellular processes, which exert both divergent and

convergent control of gene expression through miRNA regulatory net-
works [40]. Cooperative targeting by multiple miRNAs ensures more
complex and robust control of gene expression compared to the level
of control by a single miRNA. Here, we analyzed a convergent miRNA
regulatory network, including 11 miRNAs and 138 genes which were
all found to be differentially expressed in LSCC cells. Thus, our results
provide supporting evidence of the existence of a p53-miRNA network,
wheremir-34c is directly regulated by p53 [23,41]. Previously, dynamic
miRNA expression in the plasma of LSCC patient was investigated, and
17 miRNAs were found to be up-regulated, and 9 down-regulated [6].
However, none of the miRNAs were identified as one of our 11 signifi-
cantly expressed miRNAs. A possible reason of this difference may be
these miRNAs are tissue-specific. Compared the miRNAs detected in
plasma, our analysis present a more directed analysis of miRNA dys-
functions in LSCC cells.

With increasing amounts of cancer-related omics data available,
it is essential for a better understanding of cancer to integrate results
from across diverse experimental approaches. Here, we presented an
integrated analysis of the mRNA–miRNA transcriptome. However,
additional omics data should be included once they become available
for LSCC samples, in particular large-scale epigenetic and genomics
data sets. Integrating more of these omics data should contribute to
the identification of effective drug combinations and molecularly
targeted therapeutics. Thus, our research presented here not only in-
terrogates transcriptome data sources, but also includes a systematic
and integrated analysis that should be useful for further LSCC
research.

4. Materials and methods

4.1. Sample preparation and RNA extraction

LSCC tumor tissues were obtained from the tissue bank of Tongren
Hospital, Beijing, China. This studywas approved by the Ethics Commit-
tee of Beijing Tongren Hospital. A total of twelve samples consisting of
ten tumor tissues and two non-tumor tissues were selected from ten
LSCC patients. Of these patients, 6 were male and 4 were female.
Among these patients, 8 were newly diagnosed and 2 were diagnosed
with re-ocurring LSCC tumors (Supplementary Table 1). TRIzol Reagent
(Invitroen) was used to isolate total RNA for RNA sequencing following
manufacturer's instructions. The mRNAs and small RNAs were separat-
ed for independent sequencing.

4.2. mRNA sequencing

The quality of mRNA samples was checked using an Agilent 2100
Bioanalyzer total RNA Chip (Agilent) prior to sequencing. We used the
Illumina platform for analyzing transcriptomes employing a 100-bp
paired-end library according to manufacturer's instructions (Illumina).
Libraries were constructed following the Illumina Paired-End Sequenc-
ing Library Preparation Protocol. Library quality and concentrationwere
determined using an Agilent 2100 Bioanalyzer (Agilent). Each sample
was paired-end sequenced with the Illumina HiSeq 2000 using HiSeq
Sequencing kits.

RNA-Seq reads from each mRNA sample were mapped against
the human genome by using Bowtie with the ‘best’ strata option
[20]. Reads from each sample were mapped with less than 2 mis-
matches. To analyze differential expression, FPKM values (frag-
ments per kilobase of transcript per million mapped reads) were
calculated by using Cufflinks [42]. The fold change (FC) of a gene is
defined as the log2 transformed fold change of the averaged
FPKMs that calculated from 10 tumor tissues and 2 non-tumor
tissues, FC = − log2 ∑ i = 1

10 0.1 ⋅ FPKM(i)/∑j = 1
2 0.5 ⋅ FPKM(j). De-

letions and additions were called by using the SAMtools package
[43].
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4.3. Small RNA sequencing

Libraries of Small RNA cDNA were created using the Illumina
Small RNA Sample Preparation Alternative v1.5 Protocol. These
cDNA libraries were then sequenced on the Illumina Genome
Analyzer IIX with 35 base pair reads according to manufacturer's in-
structions. Each library was run on a single lane in the flow cell with
36 cycles using Illumina version 5 chemistry. Reads were mapped
on known miRNAs using the quantifier script from the miRDeep2
package [21]. Known miRNA sequences were downloaded from
miRBase release 18, November 2013 [44]. To discover novel
miRNAs, the miRDeep2 algorithm was used with default settings
and filtered reads by size 17 nt. Among the new miRNAs discovered
using this approach, only high-confidence miRNAs were considered
that contained both mature and star sequences complementary
with 2-nt 30 overhang detected in multiple samples. Secondary
RNA structures of the precursors were directly obtained using
miRDeep2, which uses RNAfold as its default setting [45]. The
targeted genes of miRNA are predicted by using TargetScan method
[25].

4.4. Bioinformatics analysis

Functional enrichment analysis was performed and printed by using
DAVID database [19] and BINGO software [46]. Expression matrixes
were clustered by using a two-way hierarchical clustering analysis [18].
After calculating the number of mutated sites (insertion and deletion)
in gene body, the gene mutation ratio (MR) is defined as MR =
(# mutated site) ⋅ 1000/gene length. The product of mutation ratio
and fold change is then calculated to findmutated genes with highly dif-
ferential expressions in tumor and non-tumor samples. The correlation
networks of miRNA and their targeted genes are performed on statistical
and functional analyses. First, we used a Pearson correlation to estimate
the expression correlation between a miRNA and its targeted genes
(mRNAs). For every miRNA or mRNA, a 12-dimension vector was
constructed by using its expression levels for each sample. The Pearson
correlation is then calculated as r X; Yð Þ ¼ ∑n

i¼1 Xi−X
� �

Yi−Y
� �

=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Xi−X
� �2q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Yi−Y
� �2q� �

, where n = 12 and X and Y are

the expression vectors of the miRNA and mRNA. X and Y are the
mean of X and Y. The miRNA co-regulated network is constructed by
calculating the miRNA and their targeted genes whose fold changes
are bigger than 2. The network was drawn by using Cytoscape software
[47].

For everymiRNA, the average fold change (AFC) value of its targeted
genes was calculated as AFC =∑ i = 1

N |FC(i)|/N, where FC(i) is the fold
change value of i-th gene, and N is the number of targeted genes of the
miRNA. For this AFC, a bootstrapping method was used to test if its
change is significant compared with randomly calculated values. The
method was implemented by randomly selecting N genes from
human genome, and then calculating the AFC values for these N genes.
To obtain a bootstrapping distribution of AFC values, the procedure
was repeated 100,000 times.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ygeno.2014.06.004.

Acknowledgments

The authors would like to thank Dr. Torsten Juelich for the critical
reading of this manuscript and useful suggestions. This work was
supported by the grants from the National Natural Science Foundation
of China (81302374, 81241084 and 61273228), Beijing Natural Science
Foundation (7121005 and 5122016), and Beijing Nova Program
(xx2013043).

References

[1] N. Agrawal, M.J. Frederick, C.R. Pickering, C. Bettegowda, K. Chang, R.J. Li, C. Fakhry,
T.X. Xie, J. Zhang, J. Wang, N. Zhang, A.K. El-Naggar, S.A. Jasser, J.N. Weinstein, L.
Trevino, J.A. Drummond, D.M. Muzny, Y. Wu, L.D. Wood, R.H. Hruban, W.H.
Westra, W.M. Koch, J.A. Califano, R.A. Gibbs, D. Sidransky, B. Vogelstein, V.E.
Velculescu, N. Papadopoulos, D.A. Wheeler, K.W. Kinzler, J.N. Myers, Exome se-
quencing of head and neck squamous cell carcinoma reveals inactivating mutations
in NOTCH1, Science 333 (2011) 1154–1157.

[2] N. Stransky, A.M. Egloff, A.D. Tward, A.D. Kostic, K. Cibulskis, A. Sivachenko, G.V.
Kryukov, M.S. Lawrence, C. Sougnez, A. McKenna, E. Shefler, A.H. Ramos, P.
Stojanov, S.L. Carter, D. Voet, M.L. Cortes, D. Auclair, M.F. Berger, G. Saksena, C.
Guiducci, R.C. Onofrio, M. Parkin, M. Romkes, J.L. Weissfeld, R.R. Seethala, L. Wang,
C. Rangel-Escareno, J.C. Fernandez-Lopez, A. Hidalgo-Miranda, J. Melendez-Zajgla,
W. Winckler, K. Ardlie, S.B. Gabriel, M. Meyerson, E.S. Lander, G. Getz, T.R. Golub,
L.A. Garraway, J.R. Grandis, The mutational landscape of head and neck squamous
cell carcinoma, Science 333 (2011) 1157–1160.

[3] C.R. Leemans, B.J. Braakhuis, R.H. Brakenhoff, The molecular biology of head and
neck cancer, Nat. Rev. Cancer 11 (2011) 9–22.

[4] M. Fanjul-Fernandez, V. Quesada, R. Cabanillas, J. Cadinanos, T. Fontanil, A. Obaya, A.
J. Ramsay, J.L. Llorente, A. Astudillo, S. Cal, C. Lopez-Otin, Cell–cell adhesion genes
CTNNA2 and CTNNA3 are tumour suppressors frequently mutated in laryngeal car-
cinomas, Nat. Commun. 4 (2013) 2531.

[5] L.J. Ma,W. Li, X. Zhang, D.H. Huang, H. Zhang, J.Y. Xiao, Y.Q. Tian, Differential gene ex-
pression profiling of laryngeal squamous cell carcinoma by laser capture microdis-
section and complementary DNA microarrays, Arch. Med. Res. 40 (2009) 114–123.

[6] L. Ayaz, A. Gorur, H.Y. Yaroglu, C. Ozcan, L. Tamer, Differential expression of
microRNAs in plasma of patients with laryngeal squamous cell carcinoma: potential
early-detection markers for laryngeal squamous cell carcinoma, J. Cancer Res. Clin.
Oncol. 139 (2013) 1499–1506.

[7] M. Esteller, Non-coding RNAs in human disease, Nat. Rev. Genet. 12 (2011)
861–874.

[8] C.M. Croce, G.A. Calin, miRNAs, cancer, and stem cell division, Cell 122 (2005) 6–7.
[9] Z. Shen, G. Zhan, D. Ye, Y. Ren, L. Cheng, Z. Wu, J. Guo, MicroRNA-34a affects the oc-

currence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene
survivin, Med. Oncol. 29 (2012) 2473–2480.

[10] Y. Guo, W. Fu, H. Chen, C. Shang, M. Zhong, miR-24 functions as a tumor suppressor
in Hep2 laryngeal carcinoma cells partly through down-regulation of the S100A8
protein, Oncol. Rep. 27 (2012) 1097–1103.

[11] S.M. Langevin, R.A. Stone, C.H. Bunker, M.A. Lyons-Weiler, W.A. LaFramboise, L.
Kelly, R.R. Seethala, J.R. Grandis, R.W. Sobol, E. Taioli, MicroRNA-137 promoter
methylation is associated with poorer overall survival in patients with squamous
cell carcinoma of the head and neck, Cancer 117 (2011) 1454–1462.

[12] S. Pierini, S.H. Jordanov, A.V. Mitkova, I.J. Chalakov, M.B. Melnicharov, V. Kunev, V.I.
Mitev, R.P. Kaneva, T.E. Goranova, Promoter hypermethylation of CDKN2A, MGMT,
MLH1, and DAPK genes in laryngeal squamous cell carcinoma and their associations
with clinical profiles of the patients, Head Neck (2013), http://dx.doi.org/10.1002/
hed.23413.

[13] T.S. Wong, W. Gao, Z.H. Li, J.Y. Chan, W.K. Ho, Epigenetic dysregulation in laryngeal
squamous cell carcinoma, J. Oncol. 2012 (2012) 739461.

[14] E. Wang, Understanding genomic alterations in cancer genomes using an integrative
network approach, Cancer Lett. 340 (2013) 261–269.

[15] Y. Chen, J. Hao,W. Jiang, T. He, X. Zhang, T. Jiang, R. Jiang, Identifying potential cancer
driver genes by genomic data integration, Sci. Rep. 3 (2013) 3538.

[16] N. Zaman, L. Li, M.L. Jaramillo, Z. Sun, C. Tibiche, M. Banville, C. Collins, M. Trifiro, M.
Paliouras, A. Nantel, M. O'Connor-McCourt, E. Wang, Signaling network assessment
of mutations and copy number variations predict breast cancer subtype-specific
drug targets, Cell Rep. 5 (2013) 216–223.

[17] K. Wang, S.J. Diskin, H. Zhang, E.F. Attiyeh, C. Winter, C. Hou, R.W. Schnepp, M.
Diamond, K. Bosse, P.A. Mayes, J. Glessner, C. Kim, E. Frackelton, M. Garris, Q.
Wang, W. Glaberson, R. Chiavacci, L. Nguyen, J. Jagannathan, N. Saeki, H. Sasaki, S.
F. Grant, A. Iolascon, Y.P. Mosse, K.A. Cole, H. Li, M. Devoto, P.W. McGrady, W.B.
London, M. Capasso, N. Rahman, H. Hakonarson, J.M. Maris, Integrative genomics
identifies LMO1 as a neuroblastoma oncogene, Nature 469 (2011) 216–220.

[18] M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein, Cluster analysis and display of
genome-wide expression patterns, Proc. Natl. Acad. Sci. U. S. A. 95 (1998)
14863–14868.

[19] G. Dennis Jr., B.T. Sherman, D.A. Hosack, J. Yang, W. Gao, H.C. Lane, R.A. Lempicki,
DAVID: database for annotation, visualization, and integrated discovery, Genome
Biol. 4 (2003) P3.

[20] B. Langmead, C. Trapnell, M. Pop, S.L. Salzberg, Ultrafast and memory-efficient align-
ment of short DNA sequences to the human genome, Genome Biol. 10 (2009) R25.

[21] M.R. Friedlander, W. Chen, C. Adamidi, J. Maaskola, R. Einspanier, S. Knespel, N.
Rajewsky, Discovering microRNAs from deep sequencing data using miRDeep,
Nat. Biotechnol. 26 (2008) 407–415.

[22] D.C. Corney, A. Flesken-Nikitin, A.K. Godwin, W. Wang, A.Y. Nikitin, MicroRNA-34b
and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation
and adhesion-independent growth, Cancer Res. 67 (2007) 8433–8438.

[23] H. Hermeking, MicroRNAs in the p53 network: micromanagement of tumour sup-
pression, Nat. Rev. Cancer 12 (2012) 613–626.

[24] D. Betel, M. Wilson, A. Gabow, D.S. Marks, C. Sander, The microRNA.org resource:
targets and expression, Nucleic Acids Res. 36 (2008) D149–D153.

[25] R.C. Friedman, K.K. Farh, C.B. Burge, D.P. Bartel, Most mammalian mRNAs are con-
served targets of microRNAs, Genome Res. 19 (2009) 92–105.

[26] L. Fang, N. Yang, J. Ma, Y. Fu, G.S. Yang, microRNA-1301-mediated inhibition of tu-
morigenesis, Oncol. Rep. 27 (2012) 929–934.

255Y. Zhang et al. / Genomics 104 (2014) 249–256

http://dx.doi.org/10.1016/j.ygeno.2014.06.004
http://dx.doi.org/10.1016/j.ygeno.2014.06.004
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0005
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0005
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0005
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0005
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0005
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0005
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0005
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0010
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0010
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0010
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0010
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0010
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0010
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0010
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0010
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0015
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0015
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0020
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0020
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0020
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0020
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0025
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0025
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0025
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0030
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0030
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0030
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0030
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0035
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0035
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0220
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0040
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0040
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0040
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0225
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0225
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0225
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0045
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0045
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0045
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0045
http://dx.doi.org/10.1002/hed.23413
http://dx.doi.org/10.1002/hed.23413
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0055
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0055
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0060
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0060
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0065
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0065
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0070
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0070
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0070
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0070
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0075
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0075
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0075
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0075
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0075
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0075
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0080
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0080
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0080
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0085
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0085
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0085
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0090
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0090
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0095
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0095
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0095
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0100
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0100
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0100
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0105
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0105
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0110
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0110
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0115
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0115
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0235
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0235


[27] D.R. Rhodes, A.M. Chinnaiyan, Integrative analysis of the cancer transcriptome, Nat.
Genet. 37 (2005) S31–S37 (Suppl.).

[28] A.L. Barabasi, N. Gulbahce, J. Loscalzo, Network medicine: a network-based ap-
proach to human disease, Nat. Rev. Genet. 12 (2011) 56–68.

[29] E.A. Knauff, L. Franke, M.A. van Es, L.H. van den Berg, Y.T. van der Schouw, J.S. Laven,
C.B. Lambalk, A. Hoek, A.J. Goverde, S. Christin-Maitre, A.J. Hsueh, C. Wijmenga, B.C.
Fauser, Genome-wide association study in premature ovarian failure patients sug-
gests ADAMTS19 as a possible candidate gene, Hum. Reprod. 24 (2009) 2372–2378.

[30] Y. Qi, J.F. Chiu, L. Wang, D.L. Kwong, Q.Y. He, Comparative proteomic analysis of
esophageal squamous cell carcinoma, Proteomics 5 (2005) 2960–2971.

[31] U.R. Chandran, C. Ma, R. Dhir, M. Bisceglia, M. Lyons-Weiler, W. Liang, G.
Michalopoulos, M. Becich, F.A. Monzon, Gene expression profiles of prostate cancer
reveal involvement of multiple molecular pathways in the metastatic process, BMC
Cancer 7 (2007) 64.

[32] Y. Oshima, M. Ueda, Y. Yamashita, Y.L. Choi, J. Ota, S. Ueno, R. Ohki, K. Koinuma, T.
Wada, K. Ozawa, A. Fujimura, H. Mano, DNA microarray analysis of hematopoietic
stem cell-like fractions from individuals with the M2 subtype of acute myeloid leu-
kemia, Leukemia 17 (2003) 1990–1997.

[33] H. Mese, A. Sasaki, S. Nakayama, N. Yoshioka, Y. Yoshihama, K. Kishimoto, T.
Matsumura, Prognostic significance of heat shock protein 27 (HSP27) in patients
with oral squamous cell carcinoma, Oncol. Rep. 9 (2002) 341–344.

[34] F. Trautinger, C. Kokesch, I. Herbacek, R.M. Knobler, I. Kindas-Mugge, Overexpres-
sion of the small heat shock protein, hsp27, confers resistance to hyperthermia,
but not to oxidative stress and UV-induced cell death, in a stably transfected squa-
mous cell carcinoma cell line, J. Photochem. Photobiol. B Biol. 39 (1997) 90–95.

[35] C.B. Sorensen, A.S. Ladekjaer-Mikkelsen, B.S. Andresen, F. Brandrup, N.K. Veien, S.K.
Buus, I. Anton-Lamprecht, T.A. Kruse, P.K. Jensen, H. Eiberg, L. Bolund, N. Gregersen,
Identification of novel and known mutations in the genes for keratin 5 and 14 in
Danish patients with epidermolysis bullosa simplex: correlation between genotype
and phenotype, J. Invest. Dermatol. 112 (1999) 184–190.

[36] B. Jerabkova, J. Marek, H. Buckova, L. Kopeckova, K. Vesely, J. Valickova, J. Fajkus, L.
Fajkusova, Keratin mutations in patients with epidermolysis bullosa simplex: corre-
lations between phenotype severity and disturbance of intermediate filament mo-
lecular structure, Br. J. Dermatol. 162 (2010) 1004–1013.

[37] C.T. Watson, F. Breden, The immunoglobulin heavy chain locus: genetic variation,
missing data, and implications for human disease, Genes Immun. 13 (2012)
363–373.

[38] D.C. Wallace, Mitochondria and cancer, Nat. Rev. Cancer 12 (2012) 685–698.
[39] O. Warburg, On the origin of cancer cells, Science 123 (1956) 309–314.
[40] N. Pencheva, S.F. Tavazoie, Control of metastatic progression by microRNA regulato-

ry networks, Nat. Cell Biol. 15 (2013) 546–554.
[41] Y.H. Cha, N.H. Kim, C. Park, I. Lee, H.S. Kim, J.I. Yook, MiRNA-34 intrinsically links p53

tumor suppressor and Wnt signaling, Cell Cycle 11 (2012) 1273–1281.
[42] C. Trapnell, B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, S.L.

Salzberg, B.J. Wold, L. Pachter, Transcript assembly and quantification by RNA-Seq
reveals unannotated transcripts and isoform switching during cell differentiation,
Nat. Biotechnol. 28 (2010) 511–515.

[43] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
R. Durbin, The sequence alignment/map format and SAMtools, Bioinformatics 25
(2009) 2078–2079.

[44] A. Kozomara, S. Griffiths-Jones, miRBase: integrating microRNA annotation and
deep-sequencing data, Nucleic Acids Res. 39 (2011) D152–D157.

[45] I.L. Hofacker, P.F. Stadler, Memory efficient folding algorithms for circular RNA sec-
ondary structures, Bioinformatics 22 (2006) 1172–1176.

[46] S. Maere, K. Heymans, M. Kuiper, BiNGO: a Cytoscape plugin to assess overrepresen-
tation of gene ontology categories in biological networks, Bioinformatics 21 (2005)
3448–3449.

[47] P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B.
Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models
of biomolecular interaction networks, Genome Res. 13 (2003) 2498–2504.

256 Y. Zhang et al. / Genomics 104 (2014) 249–256

http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0120
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0120
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0125
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0125
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0130
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0130
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0130
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0130
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0135
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0135
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0140
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0140
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0140
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0140
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0145
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0145
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0145
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0145
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0150
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0150
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0150
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0155
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0155
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0155
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0155
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0160
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0160
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0160
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0160
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0160
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0165
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0165
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0165
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0165
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0170
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0170
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0170
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0175
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0180
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0185
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0185
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0190
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0190
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0195
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0195
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0195
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0195
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0200
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0200
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0200
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0240
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0240
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0205
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0205
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0210
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0210
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0210
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0215
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0215
http://refhub.elsevier.com/S0888-7543(14)00097-4/rf0215

	Integrated transcriptome analysis reveals miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma.
	Recommended Citation

	Integrated transcriptome analysis reveals miRNA–mRNA crosstalk in laryngeal squamous cell carcinoma
	1. Introduction
	2. Results
	2.1. Expression landscape of genes in LSCC samples
	2.2. Dynamic switches of cellular functions in LSCC
	2.3. Mutations of differentially expressed genes
	2.4. Expression landscape of miRNAs in LSCC samples
	2.5. Crosstalk between miRNAs and their target genes

	3. Discussion
	4. Materials and methods
	4.1. Sample preparation and RNA extraction
	4.2. mRNA sequencing
	4.3. Small RNA sequencing
	4.4. Bioinformatics analysis

	Acknowledgments
	References


