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Abstract: Fibrous proteins such as silks have been used as textile and biomedical materials for
decades due to their natural abundance, high flexibility, biocompatibility, and excellent mechanical
properties. In addition, they also can avoid many problems related to traditional materials such as
toxic chemical residues or brittleness. With the fast development of cutting-edge flexible materials and
bioelectronics processing technologies, the market for biocompatible materials with extremely high
or low thermal conductivity is growing rapidly. The thermal conductivity of protein films, which is
usually on the order of 0.1 W/m·K, can be rather tunable as the value for stretched protein fibers
can be substantially larger, outperforming that of many synthetic polymer materials. These findings
indicate that the thermal conductivity and the heat transfer direction of protein-based materials
can be finely controlled by manipulating their nano-scale structures. This review will focus on the
structure of different fibrous proteins, such as silks, collagen and keratin, summarizing factors that
can influence the thermal conductivity of protein-based materials and the different experimental
methods used to measure their heat transfer properties.

Keywords: thermal conductivity; protein; crystal structure; green materials

1. Introduction

Biopolymers are polymers that have components found in nature. They can be synthesized
naturally or man-made. Similar to synthetic polymers, biopolymers are long-chain molecules with
many repeating units. Based on their main components, biopolymers can be specified into three
main categories: proteins (e.g., silks, elastin, resilin, keratin, collagen, and various plant proteins),
polysaccharides (e.g., cellulose, starch, and chitin), and nucleic acids (e.g., deoxyribonucleic acid and
ribonucleic acid). In addition to biomedical applications, biopolymers, especially protein polymers,
are also widely used in green applications, which can significantly reduce or eliminate the use or
production of substances hazardous to humans, animals, plants, and the environment [1]. Therefore,
protein-based heat transfer materials can be excellent candidates to replace many materials currently
used in the market such as synthetic polymers or metals.

Thermal conductivity describes the transport of heat through a material body driven by a
temperature gradient. With the rapid development of delicate high-tech instruments, such as ultra
large scale integration (ULSI) in digital devices and communication equipment, special materials with
tunable thermal conductivity or heat transfer direction are in tremendous demand [2,3]. A better
understanding of the thermal conductivity of materials will enhance current material design techniques
and applications in various fields. Typically, most polymers are classified as poor conductors,
while metals are generally very good conductors. As shown in Table 1, the thermal conductivity of
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Nylon 6 is 0.25 W/m·K compared to 400 W/m·K for copper [4]. The contrasting thermal conductivity
values of these two materials in specific, or polymers and metals in general, are caused by their different
principles of heat transport [5,6]. In metals, the thermal conductivity can generally be attributed to
charge carriers which transfer energy. However, for polymers, heat conduction takes place through
lattice vibrations (phonons). In general, the amorphous structure in polymers results in a decrease in
the mean free path of phonons, which lowers the material’s thermal conductivity. Moreover, defects in
bulk polymers, voids, chain ends, interfaces and impurities also affect a material’s thermal conductivity.

Table 1. Thermal conductivity values of common polymers and metals at room temperature [7–13].

Material Thermal Conductivity (W/m·K)

Low density polyethylene (LDPE) 0.3
High density polyethylene (HDPE) 0.44

Polycarbonate 0.22
Polyvinyl chloride (PVC) 0.19

Nylon-6 (PA6) 0.25
Polythiophene nanofibers (amorphous) ~4.4

Polyethylene nanofibers ~104
Silkworm silk (axial direction) ~6.53

Flax fiber 0.1187
Squid protein 0.3–1.3

Silk/wool hybrid 0.000397–0.000663
Human skin 0.23–0.488
Aluminum 235

Copper 400
Nickel 158
Gold 345

Aluminum 235
Diamond 1000

The thermal conductivity of polymers is normally on the order of 0.1 W/m·K, which makes
most polymers good thermal insulators. The insulating properties can be enhanced by foaming them
and controlling the pore size in the foams. Today, polymer-based thermal insulation materials have
been used in space technology [14], for example, to protect the structural integrity of spaceships.
Polymer-based thermal insulation materials are also an important part of buildings, electrical power
lines, and clothing for firefighters [15–17]. Due to their low density, low thermal expansion and low
maintenance, these materials could be utilized in microelectronics, automobiles, and satellite devices
as well. On the other hand, with the appropriate nanostructure, polymers can also possess very high
thermal conductivity. For example, polymer nanofibers grow in a limited nanotube space have been
found to have a thermal conductivity of up to 100 W/m·K [7] that can be maintained over a wide
range of temperature without degradation.

Compared with biopolymers, however, most synthetic polymer materials or metals with highly
conducting or insulating properties have obvious drawbacks for certain applications. For instance,
thermal transfer films made of polyurethane and polystyrene have a limited temperature usage
range because of flammability. In addition, synthetic polymers are often non-biocompatible,
which may produce toxic residues when they are used as biomedical materials or food packaging
materials. Although metals have high thermal conductivities, they are also electrically conductive and
mechanically stiff.

On the other hand, thermal transfer biopolymer materials such as silk, collagen and keratin are
mechanically flexible, naturally fire retardant, transparent and biocompatible. Due to their light weight,
flexibility, easy processing and corrosion resistance, biopolymer insulators or biopolymer materials
with high thermal conductivity have attracted much attention recently [18–20]. Protein polymers,
such as silk, can be manufactured into diverse applications, such as sensor parts, aerospace recycling
components, electrical products, medical materials, and textile materials [21–25]. The relationship
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between hardness and thermal conductivity in current market is shown in Figure 1. With numerous
ongoing studies to increase their thermal conductivity and a tremendous potential market in the
future, protein-based thermal conductive materials may have vast application in green and sustainable
material industry in the future.
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Figure 1. A and B are the ideal areas of thermal conductive and thermal insulating materials using
protein-based polymers, respectively; C areas represent metal-based or ceramic-based materials that
have both high thermal conductivity and high elastic modulus; D areas represents the typical synthetic
polymer-based heat transfer materials that currently exist in the market.

2. Structure of Protein-Based Polymers

Protein-based polymers are biocompatible green polymers due to their biological nature and
recyclability [26,27]. This covers a broad range of biopolymers such as silks, elastin, keratin, resilin
and collagen. They have been used in biomedical fields for many applications because of their
marvelous biocompatibility, biodegradability, extraordinary mechanical properties and economic
benefits. The properties of natural proteins can be tuned through modifying their structure at micro-
or nano-scale. There has been considerable interest as of late to modify the protein structure to achieve
high thermal conductivity and Figure 2 shows one pathway that raw protein materials can be processed
to reach that goal.

2.1. Silk

Silk is a well-known natural fiber produced by silkworms or spiders. Silk has been well studied
in the past decades due to its outstanding mechanical durability, stable chemical properties and
good biocompatibility [28,29]. It can be classified into wild silk and domestic silk according to the
growth environment of the insects. Domestic silkworm silk fiber mainly consists of fibroin and sericin.
Silk fibroin accounts for 60–80% of the fiber while sericin accounts for 20–30%. Sericin functions
as a natural glue that combines fibroin fibers together [30]. Domestic Bombyx mori silk fibroin is
characterized with a unique amino acid sequence of GAGAGS, a hydrophobic block which contributes
to the formation of β sheets in the fibroin structure [31]. The high tensile strength of silk fiber is
attributed to the β sheets while the hydrophobic block contributes to its elasticity [32]. Studies have
shown that properties of silk-based materials can be effectively manipulated through controlling the
content and alignment of the β sheets [32].

Silk fibroin has been manufactured into nanofibers, particles, scaffold and film that can be
widely used in biomedical field and healthcare industry [33–35]. Regenerated water-based silk fibroin
suspension have been coated onto fruits which can effectively modulate the gas diffusion [36] that
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can help manage fruit freshness during the transportation and in the poor areas where people have
no refrigerators. Additionally, silk fibroin has been manufactured into particles as a drug carrier
that can realize controllable drug release [34]. Spider silk fiber has been reported with high thermal
conductivity, up to 416 W/m·K, although this claim is not universally accepted [37–39].
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thermal conductive protein materials. Tunable thermal conductivity can be achieved through modifying
the structure of protein structures.

2.2. Collagen

Collagen is a structural protein that mainly exists in the extracellular matrix. Collagen is mostly
found in the fibrous connective tissues of animals such as tendons, bones, ligaments, and skin [40].
Arranged collagens provide mechanical support in the connective tissues while fractional collagen
provides toughness and maintain the anisotropy for biomineralized material [41,42]. Most of the
collagens found in the body are classified into three main types [42], and all collagens share a
right-handed triple helix structure [43]. Collagen is called as the “steel of biological materials” and has
been extensively investigated [44].

Collagens have been widely used in tissue engineering. It is reported that oriented collagen tubes
(OCT) combined with fibroblast growth factor can accelerate the repair of sciatic nerve defects in
rat [45]. Large and complex 3D scaffold with uniform and homogeneous porous structure can also
been obtained through the freeze-drying method using collagens as raw materials [46].
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2.3. Keratin

Keratin is a fibrous structural protein that mainly exists in hair, fingernails, scales, feathers and
wools [47]. Keratin is known for its excellent chemical stability, and it is insoluble in both water
and organic solvents [48]. Keratins can be further classified into type I and type II according to their
sequences [49]. They are long and unbranched filaments containing a central alpha helical domain
separated by three beta-turn segments [50]. Due to its high molecular diversity, keratin is an important
type of intermediate filament. In epithelial cells, keratin filaments are bundled as tonofilaments, which
act as bones of the cellular scaffold and contribute rigidity to the cell. They help tissues maintain
structural integrity and sustain mechanical stress [50,51].

Good biocompatibility and biodegradability have made keratin one of the most promising
biomaterials. Regenerated wool keratin films manufactured from ionic liquid have been well
studied. Beta-sheet and alpha-helix structures can be manipulated through changing the process
parameters [52,53]. Keratin-PCL nanofibers have been obtained through electrospinning, while cellular
compatibility of the composite nanofibers has also been observed [54].

3. Parameters to Influence the Thermal Conductivity of Protein Polymers

In general, the Debye equation (Equation (1)) [55] is used to model the thermal conductivity κ of
isotropic 3-D materials due to phonon transport [56]:

κ =
1
3

Cυl (1)

where C is the volumetric heat capacity, v the speed of sound, and l the mean free path of the
phonons, which is limited by point defects, scattering from sample boundaries, and phonon–phonon
interactions [57]. The thermal conductivity of protein polymer materials can be governed by many
factors such as crystallinity, molecular chain alignment, temperature, moisture, impurities, interfaces,
and chemical bonding. Therefore, many recent studies have focused on manipulating thermal
conductivity of polymer materials at the micro- and nano-scales [58–70].

3.1. Crystallinity and Crystal Alignment

Many experiments have shown that polymers with high crystallinity have much higher κ values
compared to that of their amorphous counterparts [5,7,71–75]. The amorphous structure decreases the
mean free path of phonons, and disordered alignment will scatter phonons and decrease the speed of
sound v, which can be seen in Figure 3 (effect of crystal content). Xu et al. reported that less crystalline
structure and more random coils contributed to the relatively lower κ values of hexafluoroisopropanol
(HFIP) film of L. hesperus [71]. A recent study by Tomko et al. found that tunable and reversible
thermal conductivity of the hydrated tandem-repeat (TR) protein film can be achieved by altering
its amorphous conformation or overall network topology. The κ values of the hydrated TR protein
films is not only higher than that of the ambient TR protein films, but also related to the number
of protein building block repeats [13]. On the other hand, Shen et al. found that the κ values of
polyethylene nanofiber fabricated by a ultra-drawn method can reach as high as 104 W/m·K [7].
After crystallization, the thermal conductivity of the polymer materials can be further improved,
with an almost perfect crystal alignment orientation following the crystalline direction. A mechanism
was proposed in Figure 4 to help understand this idea. It was also believed that the defect density of
polymers would decrease after a crystallization process.
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Figure 4. Effect of crystal alignment on heat transfer: (a) structure of bulk crystalized polymer with
less crystal alignment; (b) structure of stretched crystalized polymer with good crystal orientation.

3.2. Chain Orientation

A high degree of chain orientation can help increase the κ values of polymers even with an
amorphous conformation [76–79]. For example, progress has been made recently by Singh et al. [80] to
improve the thermal conductivity of amorphous polythiophene using a nano-scale design method.
The molecular chain orientation in the across-plane direction of polythiophene was significantly
improved during electropolymerization through a nano-scale template (Figure 5b). The κ values of
formed amorphous polythiophene reached up to 4.4 W/m·K compared to 0.2 W/m·K for the bulk
polymer. The smaller the diameter of the nanofiber, the higher the degree of orientation and thermal
conductivity. It was hypothesized that the enhancement of the chain orientation in polythiophene
nanofibers increased the speed of sound in materials while decreasing the phonon scattering. This was
subsequently confirmed by molecular simulation studies [81].



Polymers 2019, 11, 456 7 of 18

Polymers 2019, 11, x FOR PEER REVIEW 6 of 17 

 

Figure 3. Effect of crystallinity on heat transfer: (a) structure of bulk polymer material with low 
crystallinity; (b) structures of polymer material with higher crystallinity. 

 

Figure 4. Effect of crystal alignment on heat transfer: (a) structure of bulk crystalized polymer with 
less crystal alignment; (b) structure of stretched crystalized polymer with good crystal orientation.  

3.2. Chain Orientation 

A high degree of chain orientation can help increase the κ values of polymers even with an 
amorphous conformation [76–79]. For example, progress has been made recently by Singh et al. [80] 
to improve the thermal conductivity of amorphous polythiophene using a nano-scale design method. 
The molecular chain orientation in the across-plane direction of polythiophene was significantly 
improved during electropolymerization through a nano-scale template (Figure 5b). The κ values of 
formed amorphous polythiophene reached up to 4.4 W/m·K compared to 0.2 W/m·K for the bulk 
polymer. The smaller the diameter of the nanofiber, the higher the degree of orientation and thermal 
conductivity. It was hypothesized that the enhancement of the chain orientation in polythiophene 
nanofibers increased the speed of sound in materials while decreasing the phonon scattering. This 
was subsequently confirmed by molecular simulation studies [81].  

 

Figure 5. Effect of molecular chain alignment on heat transfer: (a) structure of bulk non-crystalized 
polymer with less chain alignment; (b) structure of stretched non-crystalized polymer with good 
chain orientation.  

3.3. Composites  

Another effective way to improve the κ values of polymers is to mix them with nano-structural 
materials that have high thermal conductivity such as carbon nanotubes, graphene, boron nitride 
nanosheets, nano-scale aluminum nitride, and copper nanoparticles [57,82–94]. Nanostructure fillers 

Figure 5. Effect of molecular chain alignment on heat transfer: (a) structure of bulk non-crystalized
polymer with less chain alignment; (b) structure of stretched non-crystalized polymer with good
chain orientation.

3.3. Composites

Another effective way to improve the κ values of polymers is to mix them with nano-structural
materials that have high thermal conductivity such as carbon nanotubes, graphene, boron nitride
nanosheets, nano-scale aluminum nitride, and copper nanoparticles [57,82–94]. Nanostructure fillers
are not only used in elevating thermal conductivity but also in controlling electrical and mechanical
properties of polymer composites. The κ values of a polymer composite can be directly controlled by
the filler’s size, shape, volume fraction and distribution in the polymer matrix.

For example, it was demonstrated that polyvinyl alcohol (PVA) incorporated with boron nitride
nanotubes can be electrospun into composite mats with a much higher thermal conductivity than
that of pure PVA mats [79]. The κ value of the film increased as the volume fraction and alignment
degree of nano-filler increased. It is noted that nano-structural materials can provide a better thermal
transport path which limits phonon scattering.

Due to the different phases in the polymer composites, which are phonon-based conductors, it is
unavoidable that phonons would scatter at the interfaces. Therefore, the size and shape of the filler is
important. A recent study reported that κ value of polymer composite decreased as the filler particle
size increased when the filler volume fraction was above 5%, as shown in Figure 6 [95].
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3.4. Other Parameters

Researchers have shown that the κ values of polymer nanocomposites can increase with the
temperature [96,97]. Besides, it is also believed that the chemical process can help improve the
interfacial bonding between the graphite nanoplatelets (GNPs) and polymer matrix, which also
increased the κ values of the nanocomposites [96]. As reported by C. Cassignol et al., the κ values of
polypyrrole (PPy) increased with the moisture content, especially from 8.5% to 13.5% [98]. Tomko et al.
reported that the hydrated tandem-repeat (TR) protein films had an increased thermal conductivity
compared to ambient state TR protein films [13]. Therefore, in addition to parameters such as
crystallinity, chain orientation and fillers, the κ values of polymers also vary with the change of
temperature, moisture and other factors [57,98,99]. Due to the anisotropic structure and microstructure
of polymers, the κ values of polymer in the cross-plane direction or the in-plane direction can also be
different [100–104].

4. Experimental Methods to Measure the Thermal Conductivity of Protein-Based Materials

κ is defined by the heat flow due to a temperature gradient. More precisely,

κ =
QL

A∆T
(2)

where L is the length, A the cross-sectional area and ∆T is the temperature difference across the ends
of the sample. Fourier’s Law states that

1
A

dQ
dt

= −κ
dT
dz

(3)

where dQ/dt is the rate of heat flow along the z direction, and dT/dz the resulting thermal gradient.
Many techniques have been developed in the last decades to measure the thermal conductivity of solids,
nanoparticles and nanofluids [105–109]. Therefore, different kinds of experimental setups, as described
below, have been made to measure the κ values of protein-based biopolymers [3,63–65,71,104,110,111].

4.1. Temperature-Modulated Differential Scanning Calorimetry Method

Differential scanning calorimetry (DSC) is a thermal analysis technology that can be used to
measure various thermal and chemical properties of materials, such as glass transition temperature,
decomposition temperature, melting point, crystallinity and oxidative stability. It is based on
measuring the heat flow into or out of the specimen as a function of temperature or time [112–114].
Temperature-modulated differential scanning calorimetry (TMDSC) [115] divides the total heat flow
into reversing part (heat capacity) and non-reversing part (kinetic). As a result, specific transition
information, direct measurement of heat capacity and higher sensitivity can be obtained. TMDSC
method was used to measure the κ values of silkworm cocoons in the thickness direction [65,72,115].

As reported by Zhang et al. [65], the measurement was under the protection of nitrogen gas,
and the TMDSC had a temperature amplitude of ±1 ◦C and 60 s period. For a circular cylinder sample,
the measured thermal conductivity κ0 is given by

κ0 =
8LC2

Cpmd2P
(4)

where d is the diameter, P an experimental parameter, m the mass of the circular cylinder sample, C the
apparent heat capacity, and Cp the specific heat capacity of the sample, which can be measured directly
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by the TMDSC. Because of the heat loss through side areas of the circular cylinder sample, which
resulted in the measurement discrepancy,

κ =
1
2

[
κ0 − 2D +

(
κ2

0 − 4Dκ0

) 1
2
]

(5)

where D is the thermal conductivity calibration constant, determined by κ0 and the κ value of the
reference sample.

Figure 7 shows the schematic of TM-DSC method. In principle, the discrepancy from the purge
gas may be reduced effectively with a low thermal conductivity purge gas, such as argon. Based on
various assumptions [115–119], the accuracy of this method is around 3–4% from the values measured
from other techniques. This method is limited to measure κ values in the range from 0.1 to 1.5 W/m·K.
However, one notes that recent studies also used conventional DSC to measure κ values.Polymers 2019, 11, x FOR PEER REVIEW 9 of 17 

 

 

Figure 7. Schematic of the differential scanning calorimetry method. Reprinted with permission of 
Elsevier. [116]. 

4.2. 3-ω Method (Transient Hot Wire Method)  

The 3-ω method is a technique that has been widely used to measure κ values of thin films for 
several decades [109,120]. Compared to contactless methods, it does not require expensive devices 
with a complicated setup. A typical experimental setup for the 3-ω method is shown in Figure 8. For 
this method, a narrow metal line is patterned on the surface of the film sample directly. Alternating 
current at angular frequency ω is applied to the metallic strip, and Joule heating is caused at a 
frequency of 2ω. In addition, the temperature-dependent resistance of the metal results in a voltage 
of third harmonic 3ω. As reported by Delan et al. [110], this method was used to test the thermal 
conductivity of a porous silk film in thickness direction.  

 

Figure 8. Experimental setup of the 3-ω method. A is the top view of the measurement setup, and B 
is the side view of the setup. 

Even though the 3-ω method is a simple, fast, low-cost method with high accuracy, this 
technique is limited to electrically nonconductive materials [121]. Therefore, many 

Figure 7. Schematic of the differential scanning calorimetry method. Reprinted with permission of
Elsevier [116].

4.2. 3-ω Method (Transient Hot Wire Method)

The 3-ω method is a technique that has been widely used to measure κ values of thin films for
several decades [109,120]. Compared to contactless methods, it does not require expensive devices with
a complicated setup. A typical experimental setup for the 3-ω method is shown in Figure 8. For this
method, a narrow metal line is patterned on the surface of the film sample directly. Alternating current
at angular frequency ω is applied to the metallic strip, and Joule heating is caused at a frequency of 2ω.
In addition, the temperature-dependent resistance of the metal results in a voltage of third harmonic
3ω. As reported by Delan et al. [110], this method was used to test the thermal conductivity of a porous
silk film in thickness direction.
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Even though the 3-ω method is a simple, fast, low-cost method with high accuracy, this technique
is limited to electrically nonconductive materials [121]. Therefore, many extended/modified techniques
have been developed recently to solve this problem, which also simplified the technique and increased
the measurement accuracy [64,121].

4.3. Transient Electrothermal Technique (TET) Method

Based on the original 3-ω method, the transient electrothermal technique (TET) was developed by
Liu et al. [64] to test the thermal conductivity of silk fiber in the axial direction. Figure 9 is a schematic
of the TET method [64]. In order to keep the heat flow in one dimension, the length L of the silk fiber
must be much longer than its diameter. A thin gold film is coated on the silk to make it electrically
conductive. The two ends of the silk fiber are fixed on the copper base by silver paste with direct
current (DC) fed through it. An oscilloscope is used to record the current and the induced voltage as a
function of time. The measured thermal conductivity κ0 is given by

κ0 = I2RL/(12A∆T) (6)

where I is the current, R the total resistance of silk fiber and gold film, A the total cross-sectional area
of the silk fiber and gold film and ∆T the temperature difference. ∆T can be determined from the
resistance change ∆R and the measured temperature coefficient of resistance η. Because of the gold
film radiation, as well as the heat convection between the gold film and the surrounding gas, the value
of κ of the silk fiber can be determined:

κ = κ0 −
LLorenzTL

RA
(7)

where LLorenz is the Lorenz number.
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4.4. Photothermal Technique

The photothermal technique (PT) method is an efficient way to measure thermal conductivity of
carbon nanotubes, composite films and thin metal layers [122–125]. As reported by Xu et al., PT was
used to measure the κ value of spider silk films [71]. A schematic of the PT method are shown in
Figure 10. A thin gold film is coated onto the surface of the silk films. In this technique, the gold film is
irradiated by a modulated-intensity laser. Due to the high κ value of the gold film, the temperature
of the silk film changes periodically with a phase shift. The κ value of the silk film is determined by
fitting the phase shift as a function of the modulation frequency of the laser. Alternatively, the κ value
can be calculated from fitting the amplitude of thermal radiation from the gold film although this
generally has less accuracy.
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5. Thermal Conductivity of Different Types of Protein-Based Materials

There are many studies discussing the thermal conductivity of silkworm silk. Under relaxed
conditions, the thermal conductivity of silkworm silk in the axial direction is 0.042 W/m·K [64].
Under tension, the thermal conductivity increases. At 68% elongation, silkworm silk achieves its
highest thermal conductivity of 13.1 W/m·K [64]. Beyond that elongation point, its κ value and
thermal diffusivity decrease rapidly with strain.

There has been a report by Huang et al. that spider silk a very high κ value of 340 W/m·K [63].
They reported that the κ value increased to 415.9 W/m·K under a strain of 19.7%. However, this claim
is not universally accepted. The measured κ value and thermal diffusivity of Nephila clavipes spider
silk reported by Xing et al. was 1.2 W/m·K and 6 × 10−7 m2/s, respectively [37]. Xing and coworkers
explained the thermal conductivity difference may be attributed to the vacuum level and heat transfer
analysis method. Results published by Fuente et al. [39] claimed that the thermal diffusivity of spider
silk is around 2 × 10−7 m2/s, which is 400 times lower than the value reported by Huang et al. [63].
Due to the extremely thin diameter of spider fibers, it is challenging to get accurate thermal conductivity
and thermal diffusivity values, and more refined techniques need to be developed.

The thermal conductivity values of collagens and keratins were reported before. It showed that
the κ value of sheep collagens is a linear function of temperature between 25 and 50 ◦C, and the values
were around 0.53 W/m·K [103]. The thermal conductivity of keratins has been measured as earlier as
1945, and the κ value of wool fibers in the diameter direction is around 4.62 × 10−4 W/m·K, confirming
their excellent thermal insulation properties [104].

6. Thermal Conductivity Differences between 1-D Fibers and 2-D Films

As compared to silk films, the structure of silk fiber is much simpler and can be easily characterized
and manipulated. Liu et al. reported that the κ value of silkworm silk fiber in the axial direction ranges
from 0.54–6.53 W/m·K. However, when the silk fiber was stretched, the κ value of the stretched silk
fiber increased, and at an elongation of 63.8%, the κ value was up to 13.1 W/m·K. However, thermal
conductivity of both silkworm silk films and spider silk films in the thickness direction is only in a
range from 0.15–1 W/m·K [3,65,71,110].

In these studies, Raman spectroscopy, scanning electron microscopy [126], DSC, and infrared
spectroscopy (FTIR) were used to characterize the structure of the films and the single fibers. As noted
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above, higher crystallinity and molecular chain alignment result in a higher thermal conductivity.
When a single fiber is strained, the crystallinity increases, which means the amorphous structure
transforms into β-pleated sheets. As for silk films, due to their uncontrolled process of synthesis,
lower degree of alignment, lower crystallinity, and higher porosity, they have relatively low thermal
conductivity in the cross-plane direction.

7. Conclusions and Future Development

Extraordinary mechanical properties and biocompatibility of protein-based materials, such as
silks, collagens and keratins, outperform many synthetic polymer materials. Because of their excellent
chemical and physical properties, protein-based materials and their composites with extremely high or
low thermal conductivity may have a great potential in new technology. Although extremely high
thermal conductivity of a single silk fiber has been claimed, the thermal conductivity of protein-based
materials, such as silk films, are still relatively low. Composites with high thermal conductivity
nano-additives, such as carbon nanotubes and graphene, may lead to protein-based materials with
high thermal conductivity in the future. Nonetheless, it is important to develop a creative method to
prepare protein-based biopolymer materials with high crystallinity and chain alignment along with
fewer defects to continue progress toward highly thermally conductive protein-based materials.
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