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Abstract
Batteries made of charge carriers from Earth-crust abundant materials (e.g., Na,
K, and Mg) have received extensive attention as an alternative to Li-ion batteries
for grid storage. However, a lack of understanding of the behavior of these larger
ions in the electrode materials hinders the development of electrode structures
suitable for these large ions. In this study, we investigate the impact of alkali
ions (Li, Na, and K) on the redox chemistry andmechanical deformations of iron
phosphate composite cathodes by using electrochemical techniques and in situ
digital image correlation. Na-ion and Li-ion intercalation demonstrate a nearly
linear correlation between electrochemical strains and the state of charge and
discharge. The strain development shows nonlinear dependance on the state of
charge and discharge for K ions. Strain rate calculations show that K ion interca-
lation results in a progressive increase in the strain rate for all cycles. Li and Na
intercalation induce nearly constant strain rates with the exception of the first
discharge cycle of Na intercalation. When the same amount of ions are inserted
into the electrode, the electrode shows the lowest strain generation upon Li inter-
calation compared to larger alkali ions. Na and K ions induce similar volumetric
changes in the electrode when the state of charge and discharge is around 30%.
Although the electrode experiences larger absolute strain generation at the end of
the discharge cycles upon Na intercalation, strain rates were found to be greater
for K ions. Potential-dependent behaviors also demonstrate more sluggish redox
reactions during K intercalation, compared to Li and Na. Our quantitative anal-
ysis suggests that the strain rate, rather than the absolute value of strain, is the
critical factor in amorphization of the crystalline electrode.
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alkali-ions, chemomechanics, electrochemical strains, Iron phosphate, K-ion, Li-ion, Na-ion,
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1 INTRODUCTION

Development of cathode structures suitable for Na-ion
and K-ion batteries is still one of the major challenges on
the way to the design of next-generation alkali metal-ion
batteries. Although Li, Na, and K belong to the same alkali
metal group with a single charge in their cation form,
intercalation of Na+ and K+ ions in electrodes is difficult
since ionic radii of Na+ (1.02 Å) and K+ (1.38 Å) are larger
than that of Li+ (0.76 Å).[1] Therefore, physical and elec-
trochemical behavior of the cathode materials in response
to Na+ and K+ ion intercalation is expected to be funda-
mentally different from the response to Li+ ion. However,
there is not much known about how electrochemical reac-
tions and the transport of ions that take place in cathode
materials with different alkali metal ions. There have
been several studies focusing on electrochemical charac-
terization and investigation of the structural changes in
the electrode materials.[2–7] A lack of insight into these
reaction-transport mechanisms limits the design of novel
cathode materials for Na-ion and K-ion batteries. There-
fore, comparative studies between Li-ion, Na-ion, and
K-ion battery cathodes are critical to identify fundamental
similarities and differences during intercalation.
Even modest expansions in brittle cathodes can cause

particle fracturing in a larger crystalline-size scale.[8–12]
Intercalation of larger ions can cause structural collapse
and amorphization induced by continuous accumula-
tion of strains and distortions.[13–15] Dislocation activity
has been observed during electrochemical delithiation
of micron size LiFePO4 particles, although the lattice
strains were only around 5% for LiFePO4.[16] Synchrotron
radiation powder X-ray diffraction and pair distribution
function analysis demonstrated the formation of amor-
phous phases in iron phosphate electrodes during Na
intercalation.[11] Islam et al[17] discussed the effect of
lattice strain on the ion condition and defect properties
of LiFePO4 and NaFePO4 using atomistic simulations.
The calculations suggest that tensile strains generated
perpendicularly to the migration channels can improve
the intercalation kinetics in polyanionic compounds
cathodes.[17] Lattice strain induced by large Na+ ion inter-
calation into NaxCuS structure causes crystallographic
tuning and deviation of reaction pathways from the ther-
modynamic equilibrium.[18] K+ ion insertion into FePO4
electrode resulted in amorphization or severe crystallinity
lowering in crystalline FePO4 electrode.[19] Amorphiza-
tion of layered manganese oxide (AMnO2) is also observed
upon Na+ and K+ ion intercalation.[13] Recent TEM
studies show a slight amorphization in the iron phos-
phate electrode upon Na intercalation,[11] whereas K
ions cause amorphization in the crystal structure of iron
phosphate.[20] Although the amorphization in the struc-

ture can be easily identified by conventional diffraction
or electron microscopy techniques, quantitative analysis
of the physical changes in the structure during and after
amorphization while cycling the battery electrode is criti-
cal. Recently, we developed a new experimental approach
to monitor dynamic physical and structural changes in the
amorphous phase of the electrodes by combining in situ
strain measurements via digital image correlation (DIC)
and in-operando XRD techniques.[21] The study detected
the redox chemistry and the associated electrochemical
strains in the amorphous phases of the iron phosphate
electrode during K ion intercalation.[21]
In this work, we compare the operando physical and

electrochemical responses of the host cathode electrode
upon intercalation of Li, Na, and K ions using DIC and
electrochemical methods. Iron phosphate was selected as
a model system because it allows intercalation of Li, Na,
and K ions.[22,23] Chemomechanical strains were observed
to increase linearly with Li and Na intercalation. However,
strain development shows a nonlinear increase with K
intercalation. Strain rates weremore constant and lower in
value during Li intercalation. Our study provides a quan-
titative analysis into the electrochemical strains causing
irreversible deformations in the crystalline iron phosphate
electrode. More importantly, we show that although the
net value of electrochemical strains are similarwithNa and
K ion intercalation, the kinetics of strain development is
different for various ions.

2 MATERIALS ANDMETHODS

Composite electrodes were prepared by mixing pris-
tine lithium iron phosphate (LiFePO4, LFP, Hanwha
Chemical) with sodium carboxymethyl cellulose (binder,
CMC, Aldrich) and conductive additive (carbon black,
Alfa Aesar) in 8:1:1 mass ratio. Iron phosphate (FePO4,
FP) composite electrode was formed by electrochemical
displacement technique using a pristine LFP composite
electrode[21–24] via galvanostatic cycle at a rate of C/10.
FePO4 electrodes were charged and discharged with Li,
Na, or K ions by galvanostatic cycles at C/25 rate against
Li, Na, or K counter electrodes, respectively. The iron
phosphate electrodes were charged and discharged at
C/25 rate, based on a theoretical capacity of 170 mAh/g
for LiFePO4, 154 mAh/g for NaFePO4, and 131 mAh/g for
KFePO4. The following salts and solvents were used to
prepare electrolytes: 1 M LiClO4 in 1:1 (v/v) EC:DMC for Li
intercalation and 1 M NaClO4 in 1:1 (v/v) EC:DMC for Na
intercalation. Note that 0.5 M KPF6 in 1:1 (v/v) EC:DMC
or EC:PC electrolytes were used for K intercalation. DIC
technique was used to probe in situ strain generation
during battery cycling. The natural surface features of
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F IGURE 1 Potential evolution, strain generation and strain rates with respect to state of discharge (A, B, C) and charge (D, E, F) of Li
(green), Na (blue), and K (purple) ions into FePO4 electrode during the first cycle. The square and spherical symbol show when electrode is
cycled either in EC:DMC or EC:PC solvents, respectively. Strain set to zero at the beginning of each charge/discharge cycles

the composite electrode were used as a speckle pattern
suitable for the calculations of displacement fields and
their resultant strain distribution on the electrode surface.
A detailed description of the technique and custom battery
cell was provided in our previous publication.[25]

3 RESULTS AND DISCUSSION

3.1 First cycle

Li,Na, andK ions are intercalated into iron phosphate elec-
trode at C/25 rate while monitoring in situ strain genera-
tion in the electrode. Voltage and electrochemical strains
during the first cycle are plotted against the state of dis-
charge (SOD) or state of charge (SOC) during Li, Na,
and K ions intercalation and de-intercalation, respectively.
(Figure 1). SOD/SOC is calculated by dividing practical
capacity measured in the experiment by theoretical capac-
ity of LiFePO4, LiFePO4, or KFePO4. A single voltage
plateau is observed during Li and Na intercalation into
iron phosphate at around 3.41V (vs Li/Li0/+) and 2.81V
(vs Na/Na0/+), respectively. A two-phase reaction between

iron phosphate and LiFePO4 or NaFePO4 results in a sin-
gle potential plateau during the galvanostatic discharge
cycles.[22,23] The LiFePO4 electrode showed a flat potential
plateau around 3.44 V versus Li/Li0/+. NaFePO4 electrode
showed two distinct plateaus at around 2.93 and 3.21 V ver-
sus Na/Na0/+. The two potential plateaus during desodia-
tion are attributed to the formation of Na0.7FePO4 reaction
intermediate during transition of NaFePO4 phase to FePO4
phase.[22] In the case of K intercalation/de-intercalation,
potential profiles did not show any distinct plateau dur-
ing intercalation of K ions into iron phosphate. Similar
potential evolution in two different electrolyte systems
ensures that the electrochemical behavior is due to K-ion
intercalation/de-intercalation in the electrode. Also, a sim-
ilar potential profile was reported when K ions were inter-
calated into amorphous iron phosphate.[26] A recent in situ
XRD study also demonstrated the amorphization of the
crystalline iron phosphate during the intercalation of K
ions.[21]
The corresponding electrochemical strains in the elec-

trodes upon Li, Na, and K intercalation are shown in Fig-
ure 1B and E. The electrode expanded by almost 0.65% and
2.53% at the end of the first discharge of Li and Na ions,
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F IGURE 2 Potential evolution, strain generation and strain rates with respect to state of discharge (A,B, C) and charge (D, E, F) of Li
(green), Na (blue), and K (purple) ions into FePO4 electrode during the fourth cycle. The square and spherical symbol show when electrode is
cycled either in EC:DMC or EC:PC solvents, respectively

respectively. K ions were only able to intercalate into elec-
trode structure up to an SOD of ca. 0.30, resulting in 0.15%
strain generation. In the case of charge reactions, extrac-
tion of Li andNa ions fromLiFePO4 andNaFePO4 resulted
in –0.30 and –1.21% contraction. During the removal of K
ions, potassium iron phosphate experienced –0.40% reduc-
tion in the electrochemical strains at 0.3 SOD. The elec-
trode experiences –0.12, and –0.40% strain generation at
0.3 SOD during Li and Na ion intercalation. The NaFePO4
and KzFePO4 electrodes undergo similar strain generation
when the same amount of Na or K ions were removed from
or inserted into NaFePO4 and KzFePO4 electrodes, respec-
tively. Overall, the slope of strain build up changes dramat-
ically during K ion intercalation, whereas strain evolutions
during Li intercalation show a lower degree of nonlinear-
ity during the first discharge cycle only. The slope of strains
increased during Na ion insertion, however strain rate
become constant during Na extraction in the first cycle.
Since SOD/SOC during discharge and charge of K ions

was less than 0.35, Figure S1 is limited to 0.35 SOC/SOD
for better comparison between Li, Na, and K intercalation
behavior during the first cycle. The slope of the strains
was progressively increased as more potassium ions were

intercalated into the electrode. We determined strain rates
during charge and discharge cycles by calculating the
derivative of electrochemical strains with respect to the
SOD/SOC. Between 0.05 and 0.35 of SOD, the strain rates
for Li and Na intercalation into iron phosphate were about
1.40 and 2.40 %-SOD−1, respectively. Strain rate during Na
ion intercalation become around 3.5%-SOD−1at the end of
the discharge. On the other hand, the strain rates continu-
ously increased as more K ions were intercalated into iron
phosphate and reached to around 3.2 %-SOD−1 when the
voltage reached 1.5V versus K/K0/+ at the end of the dis-
charge cycle. During the first charge, strain rates drasti-
cally reduced fromabout -3%-SOC−1 to almost 0.5%-SOC−1
during K extraction from KzFePO4. On the other hand,
extraction of Na and Li fromNaFePO4 and LiFePO4 shows
constant strain rates at around -0.35 and -1.35 %-SOC−1,
respectively.

3.2 Subsequent cycles

Figure 2 shows the voltage profile and strain generation
during the fourth cycle. The second and third cycle data
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were also plotted in Figures S2–S6. Overall, the poten-
tial profiles during the subsequent charge/discharge cycle
of Li, Na, and K ions show very similar behavior com-
pared with the first cycles. A single potential plateau was
observed during both charge and discharge of Li ions
in LiFePO4 cathode. Charge cycles during Na extraction
showed two distinct potential plateaus and Na intercala-
tion resulted in a single potential plateau in NaFePO4.
Again, potential profiles did not show any distinct plateaus
during subsequent charge/discharge cycles of K ions in
KzFePO4 cathode.
Electrochemical strains showed a nearly linear increase

with Li and Na intercalation. However, strain generation
data showed nonlinear increase during K ion intercala-
tion into KzFePO4. Na and K intercalation resulted in
much larger electrochemical strains in the electrode com-
pared to the Li intercalation due to their comparably larger
ion sizes. It is interesting that the electrode experiences
almost the same amount of strain generation during Na
and K ion intercalation when the same number of ions
are inserted into or removed from the electrode structure.
We, again, calculated the strain rates during Li, Na, and
K intercalation into the electrode structure. Similar to the
first cycle, the strain rate continuously increased during K
ion intercalation at the fourth discharge cycle. However,
the values of calculated strain rates were almost constant
during charge/discharge cycles of Li and Na ions in the
electrode. Strain rates during K ion intercalation clearly
demonstrated amajor difference in comparisonwith strain
rates during Li and Na intercalation into iron phosphate
electrode.
Overall, lithium intercalation into the iron phosphate

results in the least strain generation in the electrode struc-
ture compared to the Na+ ion and K+ ion intercalation.
This behavior was expected as the Li ions is the small-
est in ionic size, therefore results in less expansion in the
crystalline structure during discharge. During the first dis-
charge, Na ion intercalation in the crystalline iron phos-
phate resulted in a steady increase in strain rate, which
becomes almost 3.5%-SOD−1 at the end of the first dis-
charge. Surprisingly, the rate of strains at the end of the
first discharge was very similar upon Na and K ion inter-
calation. In the subsequent cycles, Na-ion intercalation
cause much larger strains in the electrode due to larger
discharge capacities in comparison with K-ion intercala-
tion. The strain rates were almost constant around 2%-
SOD−1 in the subsequent discharge cycles during Na inser-
tion. This is quite interesting behavior. Previously, Xiang
et al.[11] reported a loss of crystallinity in the iron phos-
phate electrode during the first discharge cycle by in situ
XRD measurements supported by ex situ TEM analysis.
They associated the loss of crystallinity in the first dis-
charge cycle to the formation of amorphous phases in the

iron phosphate electrode. Beyond the first discharge cycle,
their XRD analysis demonstrated the preservation of crys-
tallinity in the iron phosphate electrode.[11] This study is
well-aligned with our results with the progressive strain
rate evolution only observed during the first discharge of
Na ion intercalation. In the case of K ion intercalation,
the steady increase in the strain rates are observed in the
subsequent cycles too. XRD studies on K ion intercala-
tion into iron phosphate demonstrated amorphization in
the crystalline structure.[19,21] Therefore, progressive evo-
lution of the strain rates in the electrodes is likely due
to the occurrence of plastic deformation in the electrode
structure. Constant strain rates during Li and Na interca-
lation can be interpreted as preserving crystalline structure
while removing these ions from the host structure. Sharp
changes in strain rates during K insertion and removal
from the electrode results in an SOC (discharge) depen-
dent nonlinear strain evolution and deformations in the
electrode.

3.3 Potential-dependent mechanical
behavior

To further elucidate the difference between the elec-
trochemical deformation behaviors observed in the
electrodes, we further investigated the redox chemistry
and associated mechanical deformations in the electrode.
Capacity and strain derivatives in the FePO4 electrode
during Li, Na, and K intercalation were calculated to
evaluate electrochemical reaction processes and structural
changes in the electrode. The derivatives in the first
two cycles are shown in Figure 3. Strain and capacity
derivatives during the third and fourth cycles are shown in
Figure S7. The electrochemical potentials in Na and K ion
batteries were measured against the reduction potential of
Na and K metals.
Capacity and strain derivative analyses demonstrated

the fundamental differences in intercalation mechanism
of Li-ion, Na-ion, and K-ion into iron phosphate. Dur-
ing Li and Na intercalation, the shape and location of
strain derivative curves are almost identical to the capac-
ity derivatives during the four cycles. Capacity and strain
derivative peaks during Li and Na intercalation occurred
at potentials where redox reactions and associated phase
transformations in the electrode structure have been
reported before.[22,23] Reversible behavior of the deriva-
tives in each cycle suggests that the redox potentials do
not change significantly over the subsequent cycles. Li-
ion intercalation took place in a narrow potential range
as demonstrated by sharp capacity and strain deriva-
tives in Figure 3. The observation of broader peaks in
capacity and strain derivatives during Na-ion intercalation
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F IGURE 3 Normalized derivatives of capacity (dQ/dE) and strains (de/dE) with respect to potential for intercalation of Li (green), Na
(blue), and K (purple) ions into FePO4 during first (A, B) and second (C, D) discharge and charge cycles. Derivatives are normalized by
dividing the maximum nominal values in each charge and discharge cycles

suggests the slower intercalation in comparison to Li-ions.
In the case of K ion intercalation, there was a significant
difference in terms of the evolution of capacity and strain
derivatives. First, irreversible derivative peaks of strain and
capacity derivative peaks were observed during the first
discharge of K ions at around 2.3 V and 1.55 V. In the
subsequent discharge cycles, very broad capacity peaks
were observed at around 1.9 V. Strain derivatives did not
show any characteristic peaks except change in the rate
of strain derivatives at around 1.9 V. This behavior sug-
gests the structural resistance towards the intercalation of
K-ions into iron phosphate. During the charge cycles and
upon K ion extraction from the electrode, broad capac-
ity and strain derivative peaks were observed at around
2.75 V during the extraction of K ions from the elec-
trode. A well-defined and reversible derivative peak dur-
ing extraction of K ions points to the slower reaction
kinetics during the phase transformation in the electrode
structure.

4 CONCLUSION

In this work, we compared the electrochemical and
mechanical response of the iron phosphate cathodes upon
Li, Na, and K ion intercalation by using electrochemi-
cal techniques and in situ digital image correlation. Iron

phosphate model electrodes were prepared by electro-
chemical displacement technique in order to ensure iden-
tical morphology, structure, and chemistry in the pris-
tine iron phosphate electrodes. Strain evolution during
Li and Na intercalation results in more linear depen-
dence on the SOC/SOD with the exception of the first
discharge cycle of Na ions. However, strains generated
in the electrode shows nonlinear behavior during inser-
tion and extraction of K ions. When the same amount of
K and Na ions were intercalated, similar chemomechan-
ical expansions were observed. When the same amount
of ions are intercalated into the electrode, the least volu-
metric expansions were observed for Li-ion insertion. The
electrode experienced larger magnitudes of strains upon
Na ion intercalation at the end of discharge cycles. How-
ever, strain rate calculations showed that K ion interca-
lation results in a progressive increase in the strain rate,
whereas Li and Na intercalation induce nearly constant
strain rates. Potential-dependent behaviors also demon-
strate more sluggish redox reactions during K intercala-
tion, compared to the Li and Na intercalation. Our results
shows that strain rates are critical factor for the amorphiza-
tion of the crystalline structure, rather than the absolute
value of electrochemical strains. These observations pro-
vide a fundamental insight into the impact of alkali ions
on the redox chemistry and associated chemomechanical
deformations.
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