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ABSTRACT

Crowdsourcing leverages the diverse skill sets of large collections
of individual contributors to solve problems and execute projects,
where contributors may vary significantly in experience, expertise,
and interest in completing tasks. Hence, to ensure the satisfaction
of its task requesters, most existing crowdsourcing platforms focus
primarily on supervising contributors’ behavior. This lopsided ap-
proach to supervision negatively impacts contributor engagement
and platform sustainability.

In this paper, we introduce rating mechanisms to evaluate re-
questers’ behavior, such that the health and sustainability of crowd-
sourcing platform can be improved. We build a game theoretical
model to systematically account for the different goals of requesters,
contributors, and platform, and their interactions. On the basis of
this model, we focus on a specific application, in which we aim to
design a rating policy that incentivizes requesters to engage less-
experienced contributors. Considering the hardness of the problem,
we develop a time efficient heuristic algorithm with theoretical
bound analysis. Finally, we conduct a user study in Amazon Me-
chanical Turk (MTurk) to validate the central hypothesis of the
model. We provide a simulation based on 3 million task records
extracted from MTurk demonstrating that our rating policy can ap-
preciably motivate requesters to hire less-experienced contributors.
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1 INTRODUCTION

Crowdsourcing systems enable new types of problem solving and
creative production across a range of domains, from citizen science
[13] to product development [32], entertainment and the arts [28].
Individuals involved in crowdsourcing are typically heterogeneous,
self-selected, and voluntary participants engaged in temporary,
decentralized problem-solving activities, for a number of selfish and
altruistic reasons [18]. In particular, these systems offer individuals
opportunities for learning, social mobility and global economy,
while enabling work that may be too difficult for machines, or too
large a scale for small groups [7].

The success of crowdsourcing platforms depends on accessibility
to high quality work despite its inherent, fundamental challenges:
individual contributors are often distant; maintain some degree of
anonymity; are not thoroughly vetted or overseen; and work for
relatively short-term rewards [35, 39]. Accordingly, thoughtful de-
sign of incentivization schemes is critically important. A number of
recent studies have demonstrated the power of incentive schemes
[18, 36, 37] to elicit fair and accurate ratings and productivity in
crowdsourcing, particularly when most aspects of performance
are measurable. However, these approaches tend to favor task re-
questers over contributors, in that they are designed to enhance
contributors’ productivity and throughput. For instance, in plat-
forms offering micro-tasks, several incentive schemes (e.g., [18, 37])
provide higher compensation to contributors with positive histor-
ical records. Although intuitive, these approaches may eventually
erode the platform’s sustainability over time, as they discourage
contributors with less experience from participating (and therefore
gaining experience). Moreover, some requesters may take the advan-
tage of the platform policies by rejecting work once completed [30].

In this paper, we design incentive mechanisms to reduce the
information asymmetry between requesters and contributors, such
that the health of a crowdsourcing platform can be maintained in
the long run. Specifically, we provide a sound approach to rate re-
questers based on their compensation policies. Ratings are calculated
based on the policies’ positive impact on platform sustainability, i.e.,
increasing number of contributors. Each requester’s rating is visible
to the public, and in particular, to potential contributors. As such,
requesters are motivated to obtain higher rating to attract qualified
contributors, which in turn bolsters platform sustainability.

It is worth noting that designing such rating policy is non-trivial
considering the conflicting and competing objectives of different
stakeholders within a platform. In this paper, we describe behav-
iors of the platform, requesters, and contributors by assuming a
three-layer architecture, where the platform (in the top layer) rates
each requester (in the second layer), and each requester in turn

Session: Long - User Behavior CIKM ’19, November 3–7, 2019, Beijing, China

2003



compensates their contributors (in the third layer) according to con-
tributors’ performance. We model between-layer interactions as a
Stackelberg game, a strategic game where a leader makes decision
first and followers move sequentially:
1) Platform vs. requesters, where the platform (as the leader) pub-
lishes their rating policy to requesters, and then requesters (as
followers) specify their compensation policy.
2) Requesters vs. contributors, where requesters (as leaders) first
determine their compensation policy, and then contributors (as
followers) decide the effort level to complete tasks.

On the basis of this game theoretical model, we formally formu-
late the optimal rating policy (ORP) problem as a three-level pro-
gramming problem, where optimization related to the contributors’
effort level is taken as a constraint when requesters determine the
compensation policy, and the optimization related to the requesters’
compensation policy is taken as a constraint when calculating the
optimal rating policy for the platform.

Given this optimization framework, we then target a specific
scenario, in which the sustainability goal from the platform is to
increase the participation of “new” contributors, i.e., contributors
with less experience/lower skill levels. In this scenario, the platform
is responsible not only for delivering high quality work to task
requesters, but also for attracting and training new contributors
with diverse background to secure its own long-term sustainabil-
ity. Considering the hardness of ORP, we develop a time-efficient
algorithm by resorting to optimization techniques including, ap-
proximation, level reduction, and relaxation. For theoretical interest,
we also derive an upper bound on platform utility and compare the
closeness of results derived by our algorithm to optimal.

Finally, we conduct a user study to validate the central hypothesis
of our model, namely the ability of a rating scheme to apprecia-
bly impact requester behavior. We involve MTurk contributors,
asking them to provide insights on the design of specific tasks
and their willingness to support the inclusion of contributors with
less experience. We also carry out an extensive evaluation of our
proposed rating policy by leveraging a real dataset (over 3 mil-
lion task records) extracted from MTurk. The experimental results
demonstrate that our approach can significantly improve the over-
all performance of less-experienced contributors, 214.3% higher
than their recorded performance in the dataset.

We summarize our contributions as follows:
1) We first build a general game theoretical model that takes into
account different objectives of platform, requesters, and contribu-
tors, and their interactions. Based on the model, we formulate the
optimal rating policy problem in crowdsourcing, a new class of op-
timization problems that aim to maximize platform sustainability.
2) Based on the general optimization framework, we target a specific
scenario wherein the platform aims to maximize the participation
from new contributors. As a solution, we propose a time-efficient
algorithm with theoretical bound provided.
3) We conduct an extensive evaluation of the framework, using
real-data, simulations and through a proof of concept user study.
The latter helps us validate the impact of rating policy to requesters’
decision. The trace-driven simulation (that relies on the real dataset)
demonstrates the superiority of our rating policy in terms of en-
gaging less-experienced contributors in crowdsourcing services.

The remainder of the paper is organized as follows: In the next
section, we present our general model and problem formulation. In
Section 3, we focus on a specific scenario and develop the algorithm
to derive the rating policy. In Section 4, we present the results of
our user study and evaluate the performance of our rating policy
with data-driven simulations. Finally, we present related work in
Section 5 and conclude in Section 6.

2 MODEL AND PROBLEM FORMULATION
Informally, we focus on a three-party scheme, where requesters
offer microtasks for contributors to complete. Microtasks are made
available by a platform provider, that acts as a host and supervisor of
the ongoing crowdwork transactions. We assume that contributors
select preferred microtasks as they are made available. Workers can
leave and join the platform at any time, but are typically persistent
and are in a larger number than requesters. Requesters aim to "hire"
contributors who can provide quality responses/work in a timely
fashion. In this section, we formalize this model, including notations
and assumptions of rating and compensation policies (in Section 2.1)
and objectives of different stakeholders (in Section 2.2). Based on
the model, we then formulate the optimal rating policy problem
(in Section 2.3). Table 1 lists the main notations as well as their
explanations that will be used in this paper.

Table 1: Notations and descriptions

Notation Description
M The number of requesters
N The number of contributors
xi, j Contributor i ’s effort level on the tasks from requester j
X Effort level space
bi Contributor i ’s background vector
ej Requester j ’s task feature vector
qi, j Contributor i ’s work quality on the tasks from requester j
ci, j Contributor i ’s compensation paid by requester j
C Compensation space
yj Parameter vector of requester j ’s compensation policy
Y Compensation policy space
f Compensation function
h Rating function
R Rating space
I The set of polyhedrons (cells) partitioned in the

compensation policy space
Il The l th polyhedron (cell) in I

zl The rating assigned to the l th polyhedron Il
α laz
i Contributor i ’s laziness coefficient

α cost
j Requester j ’s cost coefficient

α rate
j Requester j ’s rating coefficient

д Platform’s utility function

2.1 Compensation and Rating Policies
Compensation policy. In practical terms, compensation policies
calculate optimal compensation strategies for contributors, con-
sidering contributors’ expected effort level (e.g., average working
time/task), background (e.g., skill level and expertise), and tasks’
features (e.g., difficulty levels).

We consider a scenario composed ofM requesters {1, 2, ...,M}

andN contributors {1, 2, ...,N }. Each requester j posts a set of tasks
on a crowdsourcing platform with a compensation policy displayed,
and then contributors determine whether to complete the tasks and
howmuch effort to put in, in order to receive compensation. We use

Session: Long - User Behavior CIKM ’19, November 3–7, 2019, Beijing, China

2004



the variable xi, j ∈ X to represent each contributor i’s effort level on
requester j’s tasks, whereX ⊂ R represents contributors’ effort level
space. Here, we normalize xi, j to the interval [0, 1] (X = [0, 1]). We

use vectors bi =
[
bi,1, ...,bi,U

]
∈ RU and ej =

[
ei,1, ..., ei,T

]
∈ RT

to represent the background of contributor i and the task feature of
requester j. Given the above notations, the quality of work output
by contributor i , denoted by qi, j , can be represented as a function
of his/her effort level xi, j , given the background bi and the task
feature ej : qi, j = ξ

(
xi, j ; bi , ej

)
.

We assume that the compensation that contributor i obtains from
requester j, denoted by ci, j ∈ C, depends on contributors’ effort,
background, and tasks’ feature, where C denotes the compensation

space. We can then represent requester j’s compensation policy as
a map f : X �→ C. Therefore, contributor i’s compensation ci, j is
given by

ci, j = f
(
xi, j ; bi , ej , yj

)
(1)

where vector yj =
[
yj,1, ...,yj,L

]
includes the parameters to char-

acterize f (a detailed example will be introduced in Section 3).

Property 2.1. f is assumed to have the following properties:

P-I: Contributor i obtains no payment if his/her effort level is 0, i.e.,

f
(
0, bi , ej ; yj

)
= 0.

P-II: f
(
xi, j ; bi , ej , yj

)
is monotonically increasing overxi, j ∈ [0, 1].

Here, we allow requester j to determine his/her compensation
policy by specifying yj , and hence yj is considered as the decision
variables of requester j. We let Y ⊆ RL represent the set of all
possible decisions made by requesters, namely the compensation

policy space. Hence, each yj ∈ Y. We assume X, C, and Y are all
compact space.

Rating policy. We assume that the platform rates each requester
j according to requester j’s decision yj that specifies the compensa-
tion policy f . For simplicity, we assume that other factors affecting
the quality of a requester are ignored or equal across requesters, i.e.
all tasks are equally well designed, and requesters are all honest,
and follow the published compensation policies.

Therefore, the rating policy, denoted by h, can be modeled as a
map from the compensation policy space Y to the rating space R,
i.e., h : Y �→ R, where R ⊂ R is compact. To derive the optimal
rating function using optimization techniques, it is necessary to
describe the function by a finite set of decision variables. As such,
we approximate the rating function h by

1) partitioning Y into a set of L-dimensional polyhedrons I ={
I1, ..., Il , ..., IQ

}
;

2) assuming that the rating that requester j obtains is a constant
zl within each polyhedron Il , where zl is the decision made
by the platform.

Hence, the rating policy h can be represented by a Q-dimensional
step function:

h
(
yj ; z

)
= zl , if yj ∈ Il , (l = 1, ...,Q), (2)

where z =
[
z1, ..., zQ

]
.

2.2 Objectives of Different Stakeholders

Contributor: Given the requester compensation policy f , each
contributor i seeks to determine the effort level xi, j such that his/her
compensation f

(
xi, j ; bi , ej , yj

)
is maximized while the effort level

xi, j is minimized:

max f
(
xi, j ; bi , ej , yj

)
− α lazi xi, j s.t. xi, j ∈ X (3)

where α lazi , called contributor i’s laziness coefficient, represents con-
tributor i’s unwillingness to put effort in submitting correct tasks,
i.e., higher α lazi implies less effort to be taken by the contributor.

Requester: Each requester j aims to determine yj to maximize the

overall quality of contributors’ ouput
∑
i ξ

(
xi, j ; bi , ej

)
and to mini-

mize the total cost
∑
i f

(
xi, j ; bi , ej , yj

)
. Moreover, as contributors

tend to choose completing tasks from requesters with higher rating,
requester j also aims to improve his/her rating to compete with
other requesters. Hence, the objective function of requester j can
be represented by

max u
req
j =

∑
i

ξ
(
xi, j ; bi , ej

)
− αcostj

∑
i

f
(
xi, j ; bi , ej , yj

)
+α ratej h

(
yj ; z

)
(4)

s.t. yj ∈ Y, (5)

where the cost coefficient αcostj reflects the requester j’s unwilling-

ness to compensate contributors (i.e., higher αcostj implies lower

compensation paid to contributors) and the rating coefficient α ratej

indicates the requester’s willingness to improve his rating (i.e.,
higher α ratej implies higher willingness to improve the rating).

Platform: We represent platform health and sustainability as a
function of decisions from all the contributors (X =

{
xi, j

}
N×M

)
and requesters (Y = [y1, ..., yM ]), and the rating policy (z), given
the all contributors’ background information (B = [b1, ..., bN ]) and
the features of all tasks from requesters (E = [e1, ..., eM ]):

sustainability = д (X,Y, z;B,E) . (6)

We give a simple example of д here:

Example: As the success of crowdsourcing is highly due to the
high number of contributors available in the system, it is of great
importance to attract “new contributors” to participate. In this case,
we could define д as the sum of new contributors’ contributions
to a given set of tasks. More precisely, suppose bi,1 represents the
experience of each contributor i (i.e., could be measured by the
number of tasks contributor i has completed) since joining in the
system, then д can be defined as

д (X,Y, z;B,E) =
∑
bi,1≤η ξ

(
xi, j ; bi , ej

)
(7)

where η is a predefined threshold for bi,1 to identify whether con-
tributor i is “new” or not.

Besides the above example, we also support other objectives
that benefit the platform health and sustainability such as skill
acquisition, increased knowledge, upward mobility etc. Here, we
can include different types of goals in the problem formulation and
take a linear combination of their defined utility as the objective
function to maximize. In what follows, we still use the general
functionд (X,Y, z;B,E) to represent the platform’s utility. Formally,
besides requesters and contributors, we add the third role in the
system: the platform, that aims to maximize its own health and
sustainability:

max д (X,Y, z;B,E) (8)

s.t. z ∈ Z. (9)
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2.3 Problem Formulation.

We model the interaction between the requester and his/her con-
tributors as a Stackelberg game, where a leader makes a decision
(outlines the decision space) first and his/her followersmove sequen-
tially. More precisely, the requester (as the leader) first specifies the
compensation policy, and the contributors (as followers) determine
how much effort to put in.

Similarly, the interaction between the platform and requesters
can be also modeled as a Stackelberg game, where the platform
is taken as the leader who first publishes the rating policy and
requesters are taken as followers who then specify their compensa-
tion policy according to the rating policy.

Considering the above two types of interactions, i.e., platform
(layer 1) vs. requesters (layer 2), and requesters (layer 2) vs. con-
tributors (layer 3), the optimal rating policy (ORP) problem can be
formulated as a three-level optimization problem:

max д (X,Y, z;B,E) (Layer 1)
s.t.

max
∑
i ξ

(
xi, j ; bi , ej

)
− αcostj

∑
i f

(
xi, j ; bi , ej , yj

)
+α ratej h

(
yj ; z

)
(Layer 2)

s.t.

max f
(
xi, j ; bi , ej , yj

)
− α lazi xi, j (Layer 3)

s.t. xi, j ∈ X, i = 1, ...,N ,

yj ∈ Y, j = 1, ...,M,

z ∈ Z

The decision variables of the optimization problem in layer 1, 2,
and 3 are z, yj , and xi, j (i = 1, ...,N , j = 1, ...,M), respectively.
The above hierarchical relationship results from the fact that the
optimization related to the contributors’ behavior is taken as a
constraint when the requester makes the decision, and similarly,
the optimization related to the requesters’ behavior is taken as a
constraint for the platform’s decision. The objective is to find the
optimal rating policy z for the platform to maximize a pre-defined
dimension of system health and sustainability.

Like most works in the area of bi-level programming (BiP), in
this paper, we assume the existence of optimistic bi-level optimum,
where the followers are expected to choose a solution that is a best
one from the point-of-view of the leader [5, 16, 27, 34]. The solution
of the above problem is provided as the suggested rating policy to
the platform.

3 RATING POLICY TO INCENTIVIZE
CONTRIBUTORS WITH LESS EXPERIENCE

In this section, we concentrate on a scenario where the platform
aims to incentivize contributors with less experience to actively
participate in crowdsourcing services. In Section 3.1, by consid-
ering contributors’ experience as a main factor for requesters to
determine the compensation, we assume compensation policies
in a specific class. Based on this assumption, we then propose a
time efficient solution to derive the optimal rating policy in Section
3.2&3.3. Table 2 lists the additional notations that will be used in
this section.

3.1 Assumptions of Compensation Policies and
Platform Utility

Compensationpolicies. In crowdsourcing systems such asMTurk
[31], requesters may have requirements for contributors’ experi-
ence (e.g., represented as accumulated rating) when distributing
tasks. We model each requester j’s experience requirement as a pa-
rameter in its compensation policy f , denoted by yj,2. Without loss
of generality, we let bi,1 denote contributor i’s experience. There-
fore, contributor’s work can be accepted by requester j if only if
bi,1 ≥ yj,2. In requester j’s compensation policy, we also consider
another parameter yj,1, which reflects the average compensation
awarded to all contributors. Like [36], we assume f to be quadratic
and continuous in its domain X.

Table 2: Notations and descriptions (Section 3)

Notation Description
yj,1, yj,2 Compensation policy parameters: yj,1 reflects requester

j ’s overall compensation awarded to all contributors;
yj,2 denotes the requester’s minimum requirement for
contributors’ experience

bi,1 Contributor i ’s experience
Θ Heaviside step function
γ new Weight assigned to new contributors’ performance in

platform utility
Z = {zl,k } Z is the rating matrix. zl,k represents the rating assigned

to cell Il,k
u
req
j

(I ) The utility of requester j given [yj,1, yj,2] ∈ I

η Threshold to identify “new” contributors

According to the above assumptions and Property 2.1 (for general
compensation policies), we can represent f as:

f
(
xi, j ; bi , ej , yj

)
= Θ(bi,1 − yj,2)yj,1xi, j (2 − xi, j ) (10)

where Θ is the Heaviside step function [26]:

Θ(w) =

{
1 w ≥ 0
0 otherwise

(11)

indicating that contributor i’s response will be accepted if only if
his/her experience bi,1 is higher than the requirement yj,2.

According to Equation (10), each requester j determines his/her
compensation policy by specifying the two parameters yj =

[
yj,1,yj,2

]
.

In this case, Y ⊂ R2. We normalize both yj,1 and yj,2 to [0, 1].

Platform’s utility. We make the following two assumptions re-
garding the utility function д of the platform:
A1) д increases monotonically with the increase of contributors’
overall performance;
A2) д increases monotonically with the increase of the overall per-
formance of “new” contributors, whose experience bi,1 is no higher
than a predefined threshold η;

According to A1 and A2, we define д as follows:

д (X,Y;B,E) (12)

=
∑
j

∑
i

ξ
(
xi, j ; bi , ej

)
︸���������������������︷︷���������������������︸
contributors’ overall

performance

+γ new
∑
j

∑
bi,1≤η

ξ
(
xi, j ; bi , ej

)
︸������������������������︷︷������������������������︸

new contributors’
performance
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whereγ new is a coefficient to reflect howmuch the platform focuses
on motivating new contributors’ participation.

Rating policy representation. We now determine the approxi-
mated representation of the rating policy h in this specific scenario:
We 1) partition Y into a 2-dimensional grid I = {Il,k }L×K , as
Figure 1 shows, where each cell

Il,k =

(
l − 1

L
,
l

L

]
×

(
k − 1

K
,
k

K

]
(l = 1, ...,L, k = 1, ...,K ), (13)

2) assume that the rating zl,k assigned to requester j is a constant
given yj within each cell Il,k .

Therefore, h can be written as a 2 dimensional step function:

h
(
yj ;Z

)
= zl,k , if yj ∈ Il,k , (l = 1, ...,L,k = 1, ...,K) (14)

where Z = {zl,k }L×K .
In addition, to incentivize requesters to hire contributors with

yj,1

0 yj,2K
1

K
k-1

K
k

K
K-1 1

L
1

L
l-1
L
l

L
L-1
1

Il,k

I1,1

IL,1

Il,1

I1,k

IL,k IL,K

Il,K

I1,K... ...

...
......

...

... ...

... ...

...
...

Figure 1: Grid of Y.

less experience, we award
requesters high rating if
they have lower require-
ments for contributors’ ex-
perience (Property 3.1(a)).
Considering that requesters
may pay contributors with
unfairly low compensation
[30], we penalize requesters
with lower rating if their
overall compensation is lower
(Property 3.1(b)).

Property 3.1. (a) h
(
yj ;Z

)
decreases monotonically with yj,2,

which is enforced by the constraints: zl,k−1 ≥ zl,k , for each l =
1, ...,L, k = 2, ...,K .
(b) h

(
yj ;Z

)
increases monotonically with yj,1, which is enforced by

the constraints: zl−1,k ≤ zl,k , for each l = 2, ...,L, k = 1, ...,K .

3.2 Level Reduction of ORP

Even with additional assumptions made on requesters’ compen-
sation policies in this specific scenario, ORP is still hard to solve
due to its three-level structure. Fortunately, the problem in Layer 3

is convex and sufficiently regular [41], i.e., the objective function
(defined by Equation (10) is quadratic and the feasible region is an
interval (i.e., xi, j ∈ [0, 1]). Hence, the problem can be replaced by a
closed-form equilibrium constraint, as described in Proposition 3.1:

Proposition 3.1. Given requester j’s compensation policy coef-

ficient yj , the optimal reaction of contributor i , denoted by x∗i, j , is

derived as

x∗i, j = ϕ
(
yj ;α

laz
i

)
(15)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 yj,2 > ei, j or yj,1 ∈

[
0,

α laz
i

2

)
2yj,1−α laz

i

yj,1
yj,2 ≤ ei, j and yj,1 ∈

[
α laz
i

2 ,α
laz
i

]
1 yj,2 ≤ ei, j and yj,1 ∈

(
α lazi ,∞

)
Proof. The detailed proof can be found in Appendix. �

Then, the optimization in Layer 2&3 can be rewritten as:

max
∑
i ξ

(
xi, j ; bi , ej

)
− αcostj

∑
i f

(
xi, j ; bi , ej , yj

)
+α ratej h

(
yj ; z

)
(Layer 2)

s.t. xi, j = ϕ(yj ;α lazi ), ∀xi, j ∈ X

0 ≤ yj ≤ 1, j = 1, ...,M,

and ORP is reduced to a BiP.
Note that the optimization problem in Layer 2 is non-convex, and

hence it is hard to apply level reduction by deriving the equilibrium
constraints in closed form again.

3.3 Algorithm Design
In this section, we target addressing the BiP composed of Layer
1&2,. BiP in general is known to be strongly NP-hard [14], and it
has been proven that merely evaluating a solution for optimality
is also a NP-hard task [6, 42]. Therefore, in this section, we aim to
design a time efficient heuristic that can achieve near-optimal.

3.3.1 Single requester case. We start with a simpler version of
ORP, where only the interaction between the platform and a single
requester j is considered. In this case, the platform aims to maximize
the utility defined by

дj
(
yj ;B, ej

)
(16)

=
∑
i

ξ
(
ϕ
(
yj ;α

laz
i

)
, bi , ej

)
+ γ new

∑
bi,1≤η

ξ
(
ϕ
(
yj ;α

laz
i

)
, bi , ej

)
.

This simplified ORP is actually composed of two single-level opti-
mization problems P1 and P2 that can be solved sequentially:
1)We note that the platform utility defined in Equation (16) depends
only on the requester j’s decision yj . Hence, P1 is defined to find
y∗j to maximize дj :

y∗j = arg max
yj ∈Y

дj
(
yj ;B, ej

)
. (17)

which can be solved by well-developed methods such as the sub-
gradient methods [17].
2) After deriving y∗j , in P2, we derive the rating policy Z∗j such that

requester j utility is maximized at I∗j , i.e.,

u
req
j

(
I∗j

)
− u

req
j (I ) ≥ Δ, ∀I (18)

where I∗j is the cell y∗j located in and Δ > 0 is a constant. That

is, with Z∗j , requester j will make his/her optimal decision in I∗j ,

which is close to y∗j , and hence closely approach the maximum дj .

To ensure Equation (18), we derive the following constraints for
the entries in Z∗j according to Equation (4):

zI ∗j − zI ≥ ψI ∗j , I , ∀I ∈ I\I∗j (19)

where

ψI ∗
j
, I =

(
α cost
j

∑
i

(
f
(
ϕ
(
I ∗j ;α

laz
i

)
, bi , ej ; I

)
− f

(
ϕ
(
I ;α laz

i

)
, bi , ej ; I

))

−
∑
i

(
ξ
(
ϕ
(
I ∗j ;α

laz
i

)
, bi , ej

)
− ξ

(
ϕ
(
I ;α laz

i

)
, bi , ej

))
+ Δ

) /
α rate
j

is a contant.
Moreover, to guarantee that the requester’s reaction yj con-

verges to I∗j instead of any local utility maxima, we require that

the requester’s utility has no local maxima except I∗j in Z. According
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to the position of I∗j , we partition the decision space Y into four

regions I, II, III, and IV, as Figure 2(a) shows. We then determine
the following constraints to ensure that requester j’s decision can
eventually flow to I∗j nomatter where its initially status is (as shown

in Figure 2(b)):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zIl,k − zIl,k+1 ≥ ψIl,k , Il,k+1 in regions I&II
zIl,k − zIl,k−1 ≥ ψIl,k , Il,k−1 in regions III&IV
zIl,k − zIl+1,k ≥ ψIl,k , Il+1,k in regions I&IV
zIl,k − zIl−1,k ≥ ψIl,k , Il−1,k in regions II&III

(20)

Equation (20) indicates that the requester’s decision will flow from
Il,k+1 to Il,k in regions I&II, and flow from Il,k−1 to Il,k in regions
III&IV; similarly, the decision will flow from Il+1,k to Il,k in regions
I&IV, and flow from Il−1,k to Il,k in regions III&IV. For simplicity,
we use Ωj to represent the set of entry pairs in Z restricted by the
constraints in Equation (20).

3.3.2 Multi requester case. To derive the rating policy for mul-
tiple requesters, a possible solution is to apply the algorithm in-
troduced in Section 3.3.1 directly to each requester j to obtain Ωj

(j = 1, ...,M). Then, by taking together all the constraints of the
entry pairs in Ω1, ...,ΩM , as well as the constraints in Property 3.1,
we can formulate the problem to derive the optimal rating policy
for all requesters.

However, due to the diverse task features as well as requesters’
different focus on cost, work quality, and rating, the feasible region
restricted by the constraints from Ω1, ...,ΩM is possibly an empty
set, indicating that it is hard to find a universal rating policy that
can align all the requesters to optimize the platform utility. As
a solution, we relax the problem by introducing each constraint
zI ∗j − zI ≥ ψI ∗j , I into the objective function:

min
∑
j

∑
(I, I ∗j )∈Ωj

Λ
(
zI +ψI ∗j , I − zI ∗j

)
(21)

where Λ is defined as

Λ(w) =

{
w w ≥ 0
0 otherwise

. (22)

meaning that the objective function get penalized if any constraints
are violated.

Here, we introduce an intermediate variable tI ∗j , I ≥ 0 for each

constraint zI ∗j − zI ≥ ψI ∗j , I , with

− zI ∗j + zI +ψI
∗
j , I

− tI ∗j , I ≤ 0 (23)

Then, the objective function defined in Equation (21) can be rewrit-
ten as

min
∑
j

∑
(I, I ∗j )∈Ωj

tI ∗j , I (24)

s.t. tI ∗j , I ≥ 0,∀(I , I∗j ) ∈ Ωj , j = 1, ...,M . (25)

By additionally considering the constraints in Property 3.1, the
above problem (in Equations (24)(25)) is essentially a linear pro-
gramming (LP) problem that can be solved by existing approaches
such as the simplex methods [17].

Finally, for theoretical interests, we also derive an upper bound
of the platform utility in Proposition 3.2:

yj,1

O yj,2

Il,k

II

IV I

III

(a) Partition regions

yj,1

O yj,2

Il,k

(b) Flow directions in each region

Figure 2: Partitioned regions inY to ensure yj to flow to Il,k .

Proposition 3.2.
∑
j дj

(
y∗j ;B, ej

)
offers an upper bound of the

platform utility in ORP.

Proof. The detailed proof can be found in Appendix. �

By comparing this theoretical bound with the platform utility
obtained by our heuristic algorithm, we can check how close our
approach achieves the optimal. The detailed comparison between
our solution and this upper bound will be given in Section 4.

4 PERFORMANCE EVALUATION

We first validate the central hypothesis in our model via a real user
study in Section 4.1. After that, we conduct simulations to evaluate
the performance of our rating policy based on both real trace data
and synthetic data in Section 4.2.

4.1 MTurk User Study

We conduct a controlled experiment with users on MTurk (ap-
proved through institutional IRB No. 00012140) to validate the main
assumption of the model, namely, the power of an appropriately-
designed rating policy to impact requesters’ willingness to support
platform objectives. In this case specifically, we target the inclusion
of contributors with less experience.

Study Design. The task we deploy asks participants to serve as
task requesters, designing a task to post on Turk. We tell partici-
pants that we will post their tasks to Turk to be completed by Turk
contributors, and that they will receive a bonus based on their task’s
real outcomes (varied for Control and Test groups, see below).

Our instructions are as follows: Your contributors have to label 50
tweets. Each Tweet needs to be labeled as including (or not) evidence

of self-disclosure (i.e., revelation of personal information). Each Tweet

should be labelled by 3 unique contributors, for a total of 150 labels.
Participants are asked to select the number of individual tweets

to be assigned per task, and the corresponding payment policy.
They are not given a set budget, but are asked to imagine that the
money is their own. Participants are additionally asked to select
inclusion criteria for their contributors. They may select from the
following inclusion criteria:

� Master-Only
� Specific Skills (select any combination of the following)

- English language speaker
- Location within the United States
- Social media user

� No Prerequisites

The experimental manipulation is contained within the contrib-
utors’ “bonus". That is, the Control and Test groups are given the
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Figure 3: Comparison of required skill levels between the

test group and the control group

following information, respectively, about distribution of bonuses
to study participants.

1) Control group: You will receive a bonus of up to $0.50 based

on the quality of responses we receive, and an additional $0.50

based on your rating. In turn, your rating is generated 50%
by your contributors (presumably based on fair pay) and 50%
by the platform based on your willingness to engage less expe-

rienced users.

2) Test group: You will receive a bonus of up to $1 based on the

quality of responses we receive.

Findings. We collected responses from 140 participants, 70 Control
and 70 Test. After discarding 3 responses that did not pass our
quality check, we remained with 67 participants in the Control
condition and 70 in the Test condition.

We are primarily interested in exploring the impact of our ex-
perimental manipulation, namely, a rating scheme that explicitly
rewards inclusion of less experienced contributors. At a fundamen-
tal level, if requesters are evaluated based on their willingness to
adhere to platform objectives, will that have an impact on their
behavior?

We first normalize inclusion criteria on the interval [0, 1]. Se-
lection of No prerequisites maps to 0, Master-Only maps to 1, and
selection of any subset of 1, 2, or 3 Selected Skills maps to 0.25,
0.5 and 0.75, respectively. We find no significant difference in the
mean skill level requested by Control and Experimental groups
(0.42 and 0.4, respectively). The task as we proposed it motivates
some basic inclusion criteria, e.g., English language proficiency.
However, we also observe that the rating scheme we present does
serve to reduce the likelihood requesters will restrict their inclusion
criteria to Master-Only, or even a requirement of all three selected
skills. Figure 3(a) gives the distributions of skill levels selected by
participants in the Control and Test groups. Figure 3(b) compares
the percentages of requesters setting inclusion criteria greater than
or equal to 0.5. In our experiment, this translated to at least two
selected skills, or Master-Only status. More generally, we envision
this bound to represent a divide between skills that are absolutely
necessary to credibly complete the task, and skills that are “nice to
have" but may be overly exclusionary for new or less experienced
contributors in the platform [30].

4.2 Simulation
Simulation based on real trace. We carry out an extensive eval-
uation of our proposed rating policy using a real dataset (over 3
million task records) extracted fromMTurk from September 2014 to
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Figure 4: Simulation based on real dataset.

January 2017 [15]. This data includes contributor identifiers, quali-
fication (experience), partial records (29.6% of human intelligence

tasks (HITs)) of when a contributor progresses through the different
stages of completing HITs (including accept, submit, abandon), a
partial record of subsequent requester actions (including accept, re-

ject), and requesters’ payments to contributors. We here normalize
contributors’ experience to interval [0, 1] and set the new contribu-
tor threshold η = 0.5 by default, i.e., contributors with experience
lower than 0.5 are considered as “new” contributors. Later, we also
change the value of η and check how the performance of the rating
policy is impacted (in Figure 5(d)).

In the following, we test three metrics:
1) the platform utility (defined by Equation (12));
2) the overall performance of new contributors, defined as the sum per-

formance of all new contributors, i.e.,
∑
bi,1≤η ξ

(
ϕ
(
yj ;α lazi

)
, bi , ej

)
.

3) the approximation ratio of the platform utility, defined as the
ratio of platform utility’s upper bound (derived in Proposition 3.2)
to the utility obtained by our rating policy.

We first filter out the requesters and contributors with less than
10 HITs. Then, for the first experiment, we randomly select a repre-
sentative sample of 22 contributors (with 7994 submitted HITs). We
consider contributors’ complete ratio and approved ratio as proxies
of their effort level and performance, respectively. According to
Equation (15), each contributor i’s reaction xi, j has a linear relation-
ship with 1/yj,1 (yj,1 denotes requester j’s experience requirement).
Then, given a group of the contributor’s behavior records and the
corresponding requirements from requesters, we estimate the con-
tributor’s laziness coefficient by using linear regression [38]. Figure
4(a) depicts the histograms of contributors’ laziness coefficient α lazi ,

from which we observe that around 45.5% contributors have α lazi
lower than 1. Figure 4(a) also shows the distribution of contribu-
tors’ experience, where 81.8% contributors are identified as new
contributors, i.e., with experience lower than 0.5.

We compare the platform utility with/without the rating policy
and its upper bound in Figure 4(b). Here, we categorize all HITs
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into 10 different groups according to the task required qualification
(such as “Adult Content qualification”, “Native Hindi speaker”), and
sort these group based on the number of requesters participated
in. We note that the rating may impact or change both requesters
and contributors’ decisions compared with their actual recorded
behavior. Hence, in the simulation with the rating policy, we de-
rive the requesters and the contributors’ behavior based on the
assumption that they always maximize their own utilities (defined
by Equations (4) and (3), respectively). Figure 4(b) demonstrates
that the platform utility is significantly improved with the rating
policy, which effectively motivates requesters to get new contrib-
utors involved as possible. Using our rating policy, the average
approximation ratio of the platform utility across the 10 groups is
1.18, indicating that our approach can achieve the optimal closely.
Figure 4(c) compares the new contributors’ overall performance
with and without the rating policy. Not surprisingly, motivated by
our rating policy, the performance contributed by new contributors
is much higher (214.3%) than that with no rating policy.

In addition, Figure 4(d) shows the platform utility achieved by
our rating policy with η increased from 0.4 to 0.5, where η denotes
the threshold to identify “new contributors”. As we observed, to
ensure high quality work from contributors while still securing
fair rating, requesters are more likely to hire contributors of which
the experience is close to or slightly lower than η. Hence, when
the platform looses the criteria for identifying “new” contributors,
it actually offers requesters more space to hire more experienced
contributors, leading to a higher overall performance from all the
contributors. However, higher η may discourage participation from
new contributors whose experience is far below η. As the right
sub-figure in Figure 4(d) shows, when η is changed from 0.4 to 0.5
or 0.6, the overall performance of contributors with experience
≤ 0.4 is decreased, since requesters prefer to choose contributors
with experience in level 5 or 6 rather than in the levels lower than
4 in this case. This experimental result also indicates the impor-
tance to identify the targeted contributor group to incentivize when
determining the threshold η.

Simulation based on synthetic data. We next evaluate the per-
formance of our rating policy via synthetically generated data. The
main parameters in the synthetic data, including contributors’ lazi-
ness coefficient and experience, and requesters’ cost and rating coef-
ficients still follow the same distribution of the original dataset [15].

As our rating policy has to deal with conflicting objectives from
multiple requesters, it is of great interest to check how the variance
of task features from different requesters can impact the rating
policy’s performance. Here, we consider task difficulty level as
its main feature, which is reflected by the ratio of contributors’
overall performance on this task to the contributors’ effort level.
We generate 5 groups of tasks with their difficulty levels following
normal distribution, with the mean values all equal to 0.417 (same
as it is in the dataset [15]) and the standard deviation increased
from 0.0 to 0.20. We depict the platform utility’s approximation
ratio given these 5 group tasks in Figure 5(a). As shown in the
figure, the approximation ratio increases with the increase of the
difficulty level standard deviation, implying bigger gap between our
solution and the upper bound when the task variance is higher. This
is because that, with higher diverse task features across different
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Figure 5: Simulation based on synthetic data.

requesters, requesters are more likely to have different focus on task
quality, cost, and rating, making it more difficult for our algorithm
to find a universal rating policy to align all requesters to optimize
the platform utility.

Figure 5(b) shows the overall performance from contributors
with the coefficient γ new increased from 0.5 to 2.5, where γ new

defined in the platform utility (Equation (12)) implies how much
the platform focuses on hiring new contributors. As expected, new
contributors’ performance improves when the platform assigns
higher weights to new contributors’ participation in its utility.

Finally, in Figure 5(c), we compare the platform utility with an
increasing number of contributors, from 10 to 50. To ensure that
the newly generated contributors are statistically similar to the real
dataset [15], we first fit the distribution of contributors’ experience
and laziness coefficient in the real dataset with exponential curves:
0.270e−0.270 and 2.295e−2.295, respectively, as shown in Figure 4(a).
Then, we generate contributors with their experience and laziness
coefficient following these two exponential distributions. The fig-
ure demonstrates that higher number of contributors create higher
utility for the platform, indicating the importance of attracting new
contributors to participate in crowdsourcing services. In addition,
computational cost is also a concern when increasing the size of
contributor pool. Hence, we compare the computation time to de-
rive the rating policy with the different number of contributors in
Figure 5(d). Even though the computation time increases with the
increase of number of contributors in the figure, the computation
time with 50 contributors is still lower than 6 seconds, which is still
acceptable.

5 RELATEDWORK

Recent work has brought to light some of the critical challenges
of developing safe, ethical and effective crowdsourcing systems [3,
19, 22, 33]. While some crowdsourcing systems consistently attract
high-quality contributors, other seemingly similar ones suffer from
low quality work, or even fail due to too little participation [9].
As contributors in crowdsourcing are mostly self-centered, it is
of great importance to understand how to provide incentives for
contributors to provide high-quality work, which has been studied
for decades by a variety of work from different domains [10, 12, 18].
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The types of reward (or compensation) used as incentive for
contributors varies depending on the particular application. Some
crowdsourcing systems (e.g., MTurk [6]) offer financial incentives
for participation [18], many others are driven by social-psychological
rewards, e.g., both intrinsic motivators like interest [10, 12, 20] or
the satisfaction of benefiting a cause [9] (e.g., participating in a
scientific research [13, 40]), as well as extrinsic social rewards such
as reputation or status [1]. There is now a growing effort in social
psychology that aims to address what motivates contributors in
crowdsourcing systems [2, 21, 23, 24]. A related and well studied
research problem is how to allocate rewards to incentivize desirable

outcomes [18]. For example, in online knowledge sharing forums
(e.g., Quora), efforts have been devoted to studying reward alloca-
tion issues, including what reward policies elicit quicker responses
from contributors [20], how to distribute attention rewards amongst
contributors [12], as well as how to reward contributors regarding
the implementability of outcomes [10].
Game theoretic approaches.Many incentive strategies are based
on the analysis of users’ reaction and interaction, resorting to game

theoretical models. A game-theoretic approach to incentive design,
in general, proceeds by constructing an appropriate model where
users make decisions over an action space that are typically as-
sociated with users’ benefits and costs [9, 11]. Generally, there
are two research directions amongst game-theoretic approaches
to incentives: 1) analyze users’ behavior equilibrium under given
compensation policies to predict users’ reaction (e.g., [4, 44]), and
2) build the compensation policies (i.e., which rewards are allo-
cated) to motivate user behavior that achieves some particular
objectives (e.g., [11, 37]). While a game-theoretic approach has the
general structure described above, each application comes with its
own unique features, depending on the common knowledge shared
amongst different stakeholders, as well as the nature of different
players’ strategy space. For example, game with a purpose (GWAP)
stands as a widely used game theoretical model for crowdsourcing
incentivization, where users who are ostensibly simply playing the
game also simultaneously produce useful input to a computation
or task [9]. This framework has been applied to many applications
like ESP game [25], but it is limited to scenarios where contributors
are intrinsically driven. A more interesting approach, closer to the
framework we investigate here, follows hierarchical leader-follower
structures, where contributors are extrinsically driven by awards
offered by requesters [29, 37]. Stackelberg schemes are a natural
choice for modeling this leader-follower structure wherein a task
requester (leader) typically outlines the work to be done and com-
pensation to be awarded, and contributors (followers) are required
to respond within those parameters (even if that response is not to
engage with the task) [43].

Finally, Gaikwad and colleagues [8] have explored a new ap-
proach to incentive compatibility for more accurate ratings in
crowdsourcing platforms. This work is complementary to ours,
but focuses more narrowly on socio-technical solutions to the spe-
cific problem of mediating reputation inflation in crowdsourcing
systems, and does not provide a theoretical framework with which
to reason about compensation policies and platform sustainability.

Notably, most studies to date consider incentive mechanisms
solely from the perspective of requester, i.e., aim to improve of con-
tributors’ quality of work, but neglect the benefits of contributors.

Central to this proposed effort is our assertion that these asymmet-
ric approaches are no longer sufficient, compromise platform health,
and undermine important opportunities for broader social benefit.

6 CONCLUSIONS
In this paper, we have constructed a game-theoretic representa-
tion of the interactions amongst contributors, requesters, and the
platform itself in crowdsourcing environments. Toward the devel-
opment of formal mechanisms to improve overall platform sus-
tainability and to ameliorate the prototypical imbalance between
contributors and requesters in these environments, we have pro-
posed a rating algorithm for task requesters. We have validated
the premise and efficacy of this algorithm through controlled user
experiments and through comprehensive simulations based on
massive-scale data derived from MTurk. We envision this work
as a foundational step in creating more inclusive and sustainable
crowdsourcing platforms.

The framework we propose is sufficiently general to support fur-
ther specification of contributor, requester and platform objectives.
For example, we solicited qualitative feedback from participants in
the user study (see Section 4.1) about best practices for designing
good tasks. That is, we asked them what requesters might do to
improve the quality and attractiveness of their tasks. Overwhelm-
ingly, responses focused on issues of task clarity: make instructions
simple, make instructions clear, provide examples. This feedback is
an important pointer for future iterations of contributors’ objective
function development, in particular in the specific context of micro-
tasking platforms.We focus on payment policy as the primary input
to contributor satisfaction, but we might in the future explicitly
consider clarity of task as an independent feature.
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.1 Proof of Proposition 3.1

Proof. According to the compensation function described by
Equation (10) and Equation (11), for each contributor i:
Case I: If ei, j < yj,2 (i.e., the contributor’s experience is lower than
the requirement from the requester j), contributor i’s submitted
answers won’t be accepted by requester j. In this case, the contrib-
utor’s utility function is derived as −α lazi xi, j , indicating that the
contributor’s best response will be x∗i, j = 0.

Case II: If ei, j ≥ yj,2 (i.e., the contributor’s experience satisfies
requester j’s requirement), contributor i’s submitted answers will
be accepted by the requester. In this case, contributor i’s utility is
derived as a quadratic function

f
(
xi, j ; yj

)
− α lazi xi, j =

(
2yj,1 − α lazi

)
xi, j − yj,1x

2
i, j (26)

of which the optimal x∗i, j can be obtained x∗i, j =
2μyj,1−α laz

i

yj,1
. Note

that the effort level xi, j is normalized to [0, 1], and hence we have

xi, j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0

2yj,1−α laz
i

yj,1
< 0
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1
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i
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> 1

(27)

where
2yj,1−α laz

i

yj,1
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0,
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i

2

)
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2 ,α
laz
i

]
, and

2yj,1−α laz
i

yj,1
> 1 ⇒ yj,1 ∈

(
α lazi ,∞

)
. �

.2 Proof of Proposition 3.2

Proof. Let Z denote the optimal rating policy for ORP, under
which the optimal decisionsmade by requesters areY = [y1, ..., yM ].

Then, the maximum platform utility is given by д
(
X,Y;B,E

)
=∑

j дj
(
yj ;B, ej

)
. According to Equation (17),дj

(
y∗j ;B, ej

)
≥ дj

(
yj ;B, ej

)
,

and hence д
(
X,Y;B,E

)
≤
∑
j дj

(
y∗j ;B, ej

)
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