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Approximating Special Social Influence Maximization Problems

Jie Wu� and Ning Wang

Abstract: Social Influence Maximization Problems (SIMPs) deal with selecting k seeds in a given Online Social

Network (OSN) to maximize the number of eventually-influenced users. This is done by using these seeds based

on a given set of influence probabilities among neighbors in the OSN. Although the SIMP has been proved to be

NP-hard, it has both submodular (with a natural diminishing-return) and monotone (with an increasing influenced

users through propagation) that make the problem suitable for approximation solutions. However, several special

SIMPs cannot be modeled as submodular or monotone functions. In this paper, we look at several conditions under

which non-submodular or non-monotone functions can be handled or approximated. One is a profit-maximization

SIMP where seed selection cost is included in the overall utility function, breaking the monotone property. The

other is a crowd-influence SIMP where crowd influence exists in addition to individual influence, breaking the

submodular property. We then review several new techniques and notions, including double-greedy algorithms

and the supermodular degree, that can be used to address special SIMPs. Our main results show that for a specific

SIMP model, special network structures of OSNs can help reduce its time complexity of the SIMP.

Key words: influence maximization; online social networks; submodular function

1 Introduction

This section reviews the notion of the submodular
function with associated properties. We discuss the
general Social Influence Maximization Problem (SIMP)
with a focus on the independent cascade model. We
then introduce two special SIMPs.

1.1 Submodular functions

Many optimization problems in combinatorics, graphs,
and game theory can be represented as non-negative
submodular functions. A submodular function � is a set
function so that the difference in the incremental value
of � that an element makes when added to an input set S
decreases as the size of the input set increases. That is to
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say, �.�/ is submodular with respect to S if �.S[fvg/�
�.S/ 6 �.S 0 [ fvg/ � �.S 0/ for S 0 � S . Submodular
functions have a natural diminishing returns property
that makes them suitable for approximation solutions
of complex optimization problems.

More specifically, an optimization problem
concerning a convex or concave function can be
described as a problem of maximizing or minimizing a
submodular function with or without constraints. The
set cover problem (minimization without constraint)
and maximum coverage problem (maximization with
constraint) are both classic NP-complete problems:
given a set of elements U and a collection of sets
S , the set cover problem is to minimize the amount
of subsets used to cover V . The maximum coverage
problem is to identify the k elements of S whose union
has the maximum cardinality. If we let �.S 0/ denote
the cardinality of S 0, a subset of S , then �.S 0/ is
submodular. �.S 0 [ fvg/� �.S 0/ is called the marginal
gain of v (i.e., a subset of V ) when it is added to
S 0. A greedy cover works by iteratively selecting a v
with the maximum marginal gain (i.e., the maximum
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number of uncovered elements). This greedy cover is a
lnnC 1 and 1� 1=e approximation of the set cover and
maximum coverage problems, respectively. Note that
in this example, � is monotone, i.e., for every S 0 � S ,
we have �.S 0/ 6 �.S/. That is, coverage does not
diminish as more subsets are included.

However, in many optimization problems, the
corresponding functions are not necessarily both
submoduler and monotone. Let us look at two cases:
� Submodular but non-monotone: The max-cut

problem is as follows: in the unweighted version, we are
given an undirected graph, and our goal is to partition
the graph into two node sets to maximize the number of
edges crossing these two sets. In the weighted version,
each edge has a non-negative weight, and our goal is
to maximize the weight of the edges crossing these two
sets.
� Monotone but non-submodular: The welfare

maximization problem is as follows: there is a set of
players and a set of indivisible items. Each player has
his own (monotone, non-decreasing) valuation for any
subset of items. Note that the valuation function can
be non-submodular. The goal is to distribute the items
to the players in a way that maximizes social welfare
(the sum of values of all players) by their personal
valuations.

Figure 1 shows an example of the max-cut problem
in a given graph using white and black nodes. If the
black node set grows from an empty set, the cut value
increases to a certain point and then decreases. The cut
function is symmetric since the role of black and white
nodes can be exchanged. More formally, � is symmetric
if for every S � V we have �.S/ D �.V � S/. An
example to show the non-submodularity of the welfare
maximization problem is that the value of a pair of
shoes is much larger than the sum of the individual
value of each shoe for a customer.

1.2 Social influence maximization problem

Motivated by applications for viral marketing[1] and
personalized recommendations[2], research into the

Fig. 1 An example of max-cut with black and white nodes.

social influence propagation has received tremendous
attention in the last decade, especially for the SIMP in
Online Social Networks (OSNs). The original SIMP
was proposed by Kempe et al.[3] The SIMP aims to
select k initially-influenced seed users to maximize
the number of eventually-influenced users. Under the
independent cascade and linear threshold models, the
SIMP has been proven to be NP-hard, monotone, and
submodular. Consequently, a simple greedy algorithm
that iteratively maximizes the marginal gain, obtains an
approximation ratio of 1�1=e to the optimal algorithm.

1.3 Independent cascade model of SIMP

The independent cascade model[3] is a classic model
that simulates influence propagations in OSNs. The
network can be modeled as a directed graph, G D
.V;E/, where the nodes V represent users and the
edges E represent the connections among users. For
each edge there is a weightw representing the influence
propagation probability .0 6 w 6 1/. The influence
spread process starts with a set S of nodes. All nodes
in S are initially active and are also called seed users[3].
In contrast, all other nodes are initially inactive. The
independent cascade unfolds in discrete steps according
to the following randomized process. When a node
v first becomes influenced, it has a single chance to
activate its neighbors who are not yet influenced with
a probability of w. If an inactive node has received
multiple activation attempts, these activation attempts
can be sequenced in an arbitrary order. If an inactive
node is successfully activated in step t , it then becomes
active in step tC1. Whether or not an activation attempt
succeeds, it has no further impacts in subsequent steps.
The above process iterates step-by-step and terminates
when no more activations are possible. We use �.S/
to denote the expected number of eventually-influenced
nodes. �.S/ is also called the influence spread of S .

1.4 Two special SIMPs

Some variations of the SIMP are not submodular and
monotone. Reference [4] considers a SIMP variation
that is not monotone, but symmetric: instead of
specifying k seed users, the objective is changed to a
maximization problem without constraints. The profit
of a seed set, S , denoted as � 0, is given as the influence
spread (�.S/ minus the cost of selection (c.S/), i.e.,
� 0.S/ D �.S/ � c.S/. The corresponding independent
cascade model is called profit maximization. This
problem is submodular but not monotone because the
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marginal profit gained by adding a new seed can be
negative.

This paper considers another SIMP variation which is
not submodular but monotone due to the phenomenon
of crowd influence in addition to individual single
seed influence. Figure 2, which shows three people
(Alice, Bob, and Charlie), provides an example of both
crowd and single influence. Directed edges represent
the influence from Alice or Bob on Charlie. The
influences Charlie receives from Alice or Bob are
independent of each other. According to crowd
psychology, if both Alice and Bob are influenced,
there should exist a crowd influence in addition to
Alice’s and Bob’s influences. Figure 2 shows how
a combined influence on Charlie is calculated using
both individual influence and the crowd influence from
Alice and Bob. A hyperedge (of a hypergraph) is
used to depict such a crowd influence. Note that
influences through hyperedges are not submodular
since seed user selections in the SIMP are no longer
diminishing returns. Consequently, solving the SIMP
in hypergraphs poses unique challenges. The first
challenge is to deal with non-submodularity. The
problem hardness and approximability both need to
be explored. New algorithms are needed, since a
simple greedy algorithm can no longer guarantee an
approximation ratio. Another challenge is scalability.
Since hyperedges change the scalability of the SIMP,
it is difficult to reduce their complexities.

1.5 Overview

In this paper, we discuss both the profit-maximization
SIMP and the crowd-influence SIMP. Both are
recent results extended from known theoretical results.
Section 2 focuses on a solution for profit-maximization
SIMP which is based on the idea of double-greedy
algorithms[5]. Section 3 discusses a new notion of

CharlieBob

Alice

Edge
Hyperedge0.5

0.7

0.6

Influenced?
Alice Bob
Yes No
No Yes
Yes Yes

Probability to propagate the 
influence to Charlie

0.5
0.7

1−(1−0.5)(1−0.6)(1−0.7)=0.94

CharlieBob

Alice

Edge
Hyperedge0.5

0.7

0.6

Influenced?
Alice Bob
Yes No
No Yes
Yes Yes

Probability to propagate the
influence to Charlie

0.5
0.7

1-(1-0.5)(1-0.6)(1-0.7) = 0.94

Fig. 2 Social influences through edges and hyperedges.

supermodular degree in a solution for the crowd-
influence SIMP[6]. Section 4 reviews relevant work.
Section 5 shows some simulation results of several
solutions to the crowd-influence SIMP[7]. The paper
concludes in Section 6.

2 Profit-Maximization SIMP

This section starts with a special algorithmic approach
called double-greedy and then uses this approach to find
an approximation solution for the profit-maximization
SIMP.

2.1 Double-greedy algorithms

Double-greedy algorithms has been recently proposed
in Ref. [5] to solve unconstrained submodular
maximization functions. Consider a non-negative
submodular function � . Consider the complement of
� , denoted by N� , defined as N�.S/ W �.V=S/ for any
S � V . Since � is submodular, N� is also submodular.
Given an optimal solution S 0 � V with input � , V=S 0

is an optimal solution for N� . � starts from an empty
set and iteratively adds elements greedily. N� starts
from V and iteratively removes elements greedily.
Correlated execution on both � and N� is applied and
the searching dimension reduced by one after each
iteration. In the i -th iteration, the deterministic double-
greedy algorithm either adds vi to set S or removes
vi from V . The decision is conducted greedily based
on the marginal gain of � and N� , denoted as ı and Nı,
respectively.

In Fig. 3, we show an example of applying the
deterministic double greedy to the weighted max-cut
problem, where �.S/ and N�.V / are the cut value with
a set S and V , respectively. The decision result, i.e.,
whether v1, v2, and v3 are in set S or V , is denoted by
a 3-tuple. For example, .1; 0; 0/ means that only v1 is
in the set. Initially, S D ∅ and V D fv1; v2; v3g. v1 is

3 v3

v2

v1

(0,0,0) 0
(1,0,0) 5
(1,0,0) 5
(1,0,0) 5

Iteration
0
v1
v2
v3

VS
(1,1,1) 0
(1,1,1) 0
(1,0,1) 4
(1,0,0) 5

VV

3 v3

v2
(0,0,0) 0
(1,0,0) 5
(1,0,0) 5
(1,0,0) 5

Iteration
0
v1
v2
v3

VS
(1,1,1) 0
(1,1,1) 0
(1,0,1) 4
(1,0,0) 5

VV

v1

Fig. 3 Max-cut illustration.
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added to set S in the first iteration since .ı D 5) > ( Nı D
5). Similarly, v2 is deleted during the second iteration
because (ı D �2/ < . Nı D 4). Finally, v3 is deleted
during the third iteration since (ı D �1/ < . Nı D 1);
V equals S , and the algorithm terminates. There
is a geometric interpretation shown in Fig. 4. The
deterministic double-greedy algorithm is proved to have
an approximation ratio of 1=3[5]. A randomized double-
greedy algorithm is further proposed by changing the
greedy decision to a “smoother” decision. That is,
in each iteration, vi is added to S with a probability
of ı=.ı C Nı/; otherwise, vi is removed from V . The
randomized double-greedy algorithm can improve the
approximation ratio to 1=2[5]. Note that the running
time of the double-greedy algorithm is O.jV j/.

2.2 Profit-maximization SIMP

The major difference between the profit-maximization
SIMP and existing works is that there is a seed selection
cost for each node. The profit of a seed set S , denoted
by � 0.S/, is given as the influence spread (�.S/) minus
the cost of selection (c.S/), i.e., � 0.S/ D �.S/� c.S/.
� 0.�/ is a submodular function but might not monotone
anymore.

We can apply the double-greedy algorithm to
the profit-maximization SIMP. One limitation of the
double-greedy algorithms is that they only establish
approximation guarantees for non-negative submodular
functions. For a general cost function c.�/, � 0.�/ can be
negative for some node sets. To address this problem,
Tang et al.[4] extended the double-greedy algorithms
by adding an iterative pruning procedure to reduce the
search space without losing optimality. Their idea is

A (0, 0, 0)

B (1, 1, 1)G

G

(a) Interation 1: ı > Nı

B (1, 1, 1)

δ
A (1, 0, 0)

G

(b) Interation 2: ı < Nı

A (1, 0, 0)

B (1, 0, 1)
G G

(c) Interation 3: ı < Nı

A = B (1, 0, 0)

(d) Final state

Fig. 4 Geometric interpretation of a deterministic double-
greedy algorithm.

to find the nodes that must be selected as seeds and
eliminate the nodes that are impossible to be chosen as
seeds in an optimal solution. By the submodularity of
the influence metric, the marginal profit for adding a
new seed node decreases with the base seed set. Thus,
the smallest possible profit gain of adding this seed
node is generated by adding the node into an universal
set except itself, i.e., S1 D fv W � 0.vjV=v/ > 0g. The
largest possible profit gain is produced by adding a node
into an empty seed set, i.e., S 01 D fv W �

0.vj∅/ > 0/g.
Therefore, nodes in S1 must be selected in the optimal
solution since adding nodes in S1 to any set can further
increase the profit. Similarly, nodes outside S 01 cannot
be selected for the optimal set since adding nodes in
S 01 will definitely decrease the profit. After finding
a must-select node, i.e., v, we can iteratively reduce
the search space by Si D fv W � 0.vjS 0i�1=v/ > 0g and
S 0i D fv W �

0.vjSi�1/ > 0/g until the pruning procedure
is converged, i.e., Si D Si�1 and S 0i D S

0
i�1.

Figure 5 shows a toy example of iterative pruning in
the profit-maximization SIMP. To simplify the influence
spread calculation of �.�/, we assume that all edge
weights are 1. The cost of selecting V D fv1; v2; v3; v4g
as a seed node is f0:5; 5; 0:5; 0g, respectively. Before
iterative pruning, the solution space is the power set
of fv1; v2; v3; v4g, i.e., any combination of these four
nodes. If we denote S? as the optimal seed set, then
S0 � S? � S 00, where S0 D ∅ and S 00 D V . Then,
we check every node in S 00 by adding each to S0 and
calculating the corresponding marginal profit increase.
In the first round, we find that even adding v2 into the
empty solution set, i.e., � 0.v2j∅/, will lead to a profit
increase of �2. v1; v2; and v4 will be influenced but
the cost of selecting v2 is 5. Therefore, v2 cannot
belong to the optimal solution. However, we can always
remove v2 to get a better result. Then, we update S 01 D

c = 0.5 c==5 

c= O c == 0.5 

l.

，

 

，

 

1 '—

，

 Fig. 5 An illustration of iterative pruning.
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fv1; v3; v4g. On the other hand, we find that adding
v3 to the seed set fv1; v2; v4g can further increase the
total profit by 1, i.e., � 0.v3jS 00=v3/ D 1, and v3 must
be selected in the optimal solution. Then, we update
S0 to S1; i.e., S1 D fS0 [ v3g. As a result, we shrink
the solution space to be S1 � S? � S 01. Similarly, we
can continue to prune the solution space based on S1
and S 01. However, we cannot further reduce the solution
space, i.e., S2 D S1 and S 02 D S

0
1 and the pruning ends

in this example.
Tang et al.[4] proved that applying the iterative pruning

approach prior to applying double-greedy algorithms
will maintain the same approximation guarantee, i.e.,
1/2, with the condition where � 0.S?/C� 0.S 0?/ > 0, and
S? and S 0? are the final node sets after iterative pruning.

3 Crowd-influence SIMP

This section reviews the notion of supermodular degree
and applies it to solutions for the crowd-influence SIMP.

3.1 Supermodular degree

Considering crowd-influence, influence propagation is
not submodular with respect to S , meaning that �.S [
fvg/ � �.S/ > �.S 0 [ fvg/ � �.S 0/ for 9 v 2 V; S 0 �
S; S � V . Supermodular degree is proposed in Ref. [6]
to evaluate the degree to which a function violates the
submodular function.

Specifically, we define the modularity set of a node
v as Mv , which is a set of nodes including all
nodes that might increase the marginal gain of v. The
supermodular degree of a node v is the cardinality
of the corresponding modularity set. An example is
shown in Fig. 6. The corresponding modularity set of
v1 is fv2g. Similarly, The corresponding modularity
set of v2 is fv1g. This is because v1 and v2 together
can influence all the remaining nodes. We call v1
and v2 boosting nodes for each other. In general, the
modularity of v is denoted as Mv . The supermodular
degree, denoted as �, is the maximum supermodular
degree of any v, i.e., � D maxv jMvj. In Fig. 6, we
have � D 1. The supermodularity comes from the

e3

e4

e2

e1

v2

v3v1 1
v5

v6v4

0.4

e6

e5

1

Fig. 6 Supermodular in social influences.

non-diminishing return effects of influence propagation
through hyperedges, since a single node cannot activate
the hyperedge. Note that a submodular function’s
supermodular degree is 0.

For supermodular problems, the traditional greedy
algorithm, which iteratively selects a node to maximize
the marginal gain, may not work well. Figure 6,
in which we want to select two seed nodes to
influence the remaining nodes, shows such an
example. The edge weights of fe1; e2; e3; e4; e5; e6g
are f0:4; 0:2; 1; 1; 1; 1g. Note that edges e3 and e4 are
hyperedges. The traditional greedy algorithm has two
iterations: it selects v3 in the first iteration and v4 in the
second iteration. This is because the influence gain of
selecting v1 is 0:4 � 1 C 0:4 � 1 � 1 D 0:8, which is
the expected active probability for nodes v3 and v5. The
influence gain of selecting v4 is 1�1, which is the active
probability of the node v6. Similarly, the influence gain
of selecting v2; v3; v5, and v6 individually is 0:4; 1; 0,
and 0, respectively. As a result, the nodes v3 and
v4 are selected in the first and second rounds, i.e.,
�.fv3; v4g/ D 2. However, a better idea is to select
a set of nodes rather than a single one in one greedy
iteration. In Fig. 6, if we select fv1; v2g in one greedy
iteration, the result can be significantly improved. It is
because the active probability of nodes v3 and v4 are
1� .1� 0:4/.1� 1/ D 1 and 1� .1� 0:2/.1� 1/ D 1,
respectively. Nodes v3 and v4 can further propagate
influence to nodes v5 and v6 with a probability of 1.
Therefore, v1 and v2 together can influence all the other
nodes, leading to �.fv1; v2g/ D 4.

3.2 Crowd-influence SIMP

The SIMP under the independent cascade model in
hypergraphs is proven to be NP-hard, and cannot be
approximated within a ratio of jV j��1 for any � > 0.
jV j is the number of nodes in the hypergraph, meaning
that no algorithm can do better than a random seed
user selection in terms of the asymptotic approximation
ratio. Recent advances in network science show that
user connections in OSNs are not truly random[8]. The
degree distribution in OSNs is acknowledged to follow
the power-law distribution[8]: a majority of users are
inactive with a small number of connections, while a
minority of users are active with a large number of
connections. Based on Kumar et al.[9], OSNs are known
to have small diameters (about 6), high clustering
coefficients (larger than 0.1), and community structures.
These structural properties can be incorporated into
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algorithmic designs. Zheng et al.[7] proved that the
supmodular degrees, denoted as �, of most OSNs have

the following property limjV j!1
�

O.jV j/
D 0, i.e.,� 2

O.jV j/.
Zheng et al.[7] leveraged the structural properties

of OSNs to solve the non-submodular SIMP in
hypergraphs, and two approximation algorithms[6] are
applied with ratios of 1=.�C 2) and 1 � e�

1
�C1 . In

the existing Naive Greedy (NG) seed node selection
shown in Algorithm 1, the node (with the maximum
marginal gain, i.e., which increases the overall influence
maximally) is selected at a time. In contrast, the first
greedy algorithm (called Improved Greedy (IG) in
Algorithm 2) includes the selected node together with
a subset of its boosting nodes at each round, subject to
the limit of the total number of seed nodes allowed. The
second greedy algorithm (called Capped Greedy (CG)
in Algorithm 3) makes two major changes. First, every
node, together with a subset of its boosting set, is
selected as the first round of seeds. Then the subsequent
rounds of seeds together with their boosting subsets are
selected based on maximum marginal gain. Second, the
size of the seed node together with its boosting subset

Algorithm 1 NG
Input: a hypergraph G and a constant k.
Output: a set of seed nodes S , initiated ∅.

1: while jS j < k do
2: Find v D arg maxv2V .�.S [ fvg/ � �.S//.
3: Update S D S [ fvg.
4: end while

Algorithm 2 IG
Input: a hypergraph G and a constant k.
Output: a set of seed nodes S , initiated ∅.

1: while jS j < k do
2: Find arg maxv2V;M 0v�Mv

.�.S [fvg[M 0v/��.S/), s.t.
jS [ fvg [M 0vj 6 k.

3: Update S D S [ fvg [M 0v .
4: end while

Algorithm 3 CG
Input: a hypergraph G and a constant k.
Output: a set of seed nodes S , initiated ∅.

1: for each v0 2 V do
2: for each �0 from 1 to � do
3: for each S 0 � fv0g [Mv0 , s.t. jS 0j 6 minfk;�0g do
4: while jS 0j < k do
5: Find arg maxv2V;M 0v�Mv

.�.S 0 [ fvg [ M 0v/ �

�.S 0/), s.t. jS 0 [ fvg [M 0vj 6 k and M 0v 6 �0.
6: Update S 0 D S 0 [ fvg [M 0v .
7: end while
8: if �.S 0/ > �.S/ then
9: Update S D S 0.

10: end if
11: end for
12: end for
13: end for

is controlled through another round of iterations from
1 to � (supermodular degree). The detailed algorithm
is shown in Algorithms 2 and 3, respectively. The
key ideas of these three algorithms are illustrated in
Fig. 7. The major contribution in Ref. [7] is showing
that the supermodular degree is bound in OSNs. Thus,
the optimization technique using supermodular degree
can be applied to OSN-related problems.

4 Related Work

Optimizing submodular functions can be classified
on two axes: constrained / unconstrained and
maximization / minimization. For unconstrained
submodular minimization problems, we can use the
Lovász extension[10] to get a convex closure, and
thus, optimally solve them. Constrained submodular
optimization problems have different approximation
ratios based on different constraints. For example,
there is an approximation ratio of 2 for the vertex
cover[11] constraint. For an unconstrained submodular
maximization problem, the double-greedy algorithm
achieves a tight 1=2 approximation ratio according to
Feige et al.[12]

(a) NG (b) IG (c) CG

Fig. 7 Key ideas of three algorithms.
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Unfortunately, there are some problems that are
not simple non-negative submodular functions. For
example, the minimum submodular cover problem with
linear cost[13], negative submodular functions[4], and
non-submodular problems, e.g., Refs. [6, 14–16], are
all more complex. Hung et al.[14] studied a variation
of the SIMP with multiple items. Their problem is
NP-hard and non-submodular, and thus, only heuristic
algorithms are provided because the problem of non-
submodular function maximization[6] has not been
perfectly solved in Ref. [17]. Although the problem of
supermodular function maximization can be optimally
solved by the minimum-norm-point algorithm[15], non-
submodular functions are not the same. The latest
approach is based on the curvature[16], which assumes
that the marginal gain of the non-submodular function
varies within a given curvature. This paper can be
viewed as a curvature-based approach that is specially
designed for the SIMP in OSNs.

Recent studies in network science show that many
networks exhibit special structures and thus, the
handy information of network structure can be applied
in the network optimization. OSNs are scale-free
networks[8], meaning that the degree distribution in
an OSN follows the power-law distribution[18]. The
supermodular degree analysis of OSNs in this paper
is based on the OSNs’ scale-free structure. Zheng
and Wu[19] further found that the publish/subscribe
systems[20] based on unstructured P2P networks
have the nested scale-free architectures. The ‘nested’
indicates that the scale-free architecture is preserved
when low-degree peers and their associated connections
are removed.

5 Performance Evaluation

This section shows some simuluation results[7] using

three datasets and thoroughly compares the details
performance of three solutions for the crowd-influence
SIMP on one dataset: citation network.

5.1 Dataset validation

Our experiments are based on three datasets (Forum,
Board, and Citation) from Tore Opsahl[21]. Forum
records user activities in a forum with different
topics. Board records directors belonging to the boards
of some companies. Citation records collaborations
among paper authors. Figure 8 shows the network
topology in the Citation network, where each node is
an author and the edge weight sum of joint papers. It
shows the multiple clustered groups that correspond to
different subdomains of expertise.

Figures 9 and 10 show the distributions of node
degree (dv) and modularity set cardinality (jMvj).
For the above three datasets, flags (triangles, circles,
and squares) represent the real distributions based on
statistics, and lines (dotted, dashed, and solid) are
the fitting curves. Figure 9 validates the power-law
distribution. It can be seen that the fraction of nodes
with hyperdegree d is proportional to d� in each of
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Fig. 8 Citation network topology.
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these three datasets. The distribution of the modularity
set cardinality also follows the power-law, as shown in
Fig. 10. However, the power-law exponents for dv and
jMvj may not be the same in a given dataset as they
represent two different notions. Figure 10 further shows
that only a small fraction of nodes have modularity sets
with cardinalities larger than 100, which is relatively
small compared with the number of nodes in the
Citation dataset: 16 726. Both figures are plotted in a
log-log scale where the y-axis represents the fraction of
nodes corresponding to the data in the x-axis.

5.2 Algorithm performance

This subsection focuses on evaluating the performances
of proposed algorithms, in terms of maximizing the
number of eventually-influenced users. The evaluation
result in the Citation dataset is shown in Fig. 11.
A larger result represents a better performance, since
seed nodes could eventually influence more nodes on
expectation. Among all the algorithms, CG achieves
the best performances, while NG has the worst
performances. This is simply because CG considers
the impact of crowd influences. Compared to other
algorithms, CG has at least 15% more eventually-
influenced users. CG, IG, and NG become identical
when only one seed node is selected (i.e., k D 1).
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Fig. 11 Performance comparison of different algorithms.

6 Conclusion

Submodular function is an important property in
solving combinatorial problems with bounded results.
When submodule functions are non-negative and
monotone, there are well-known approximation
bounds. However, many real applications are not
modeled as submodular and monotone functions. In
this paper, we investigate two submodular function
variations, i.e., non-monotone submodular functions
and monotone non-submodular functions, in SIMP in
OSNs. For the non-monotone submodular function,
we use the existing double-greedy algorithm[5] to
achieve an approximation of 1=2 on expectation. The
social influence maximization problem (called the
profit-maximization SIMP), which is non-monotone, is
discussed in Ref. [14]. For monotone non-submodular
functions, we use the supermodular degree � to
evaluate its violation of submodularity. We verify
the structural properties of OSNs and show that the
supermodular degree is bounded[7]. Furthermore, the
two approximation algorithms for the other special
social influene maximization problem (called the
crowd-influence SIMP)[6] are applied with ratios of
1=.�C 2/ and 1 � e�1=�C1, respectively. Thus, the
optimization technique using supermodular degrees
can be applied to OSN-related problems with relatively
low complexity.
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